
Algorithms Spring 2006 Graduate Comprehensive Exam

1. Answer the following short questions: [20 pts]
a. The Dynamic Programming algorithms have bottom up control while the Divide and
Conquer algorithms have top down control. True/False
b. The set of NP-complete problems is a subset of the NP-class of problems. True/False
c. It has been proved that NP-complete problems cannot have polynomial algorithms.
True/False
d. In order to prove a problem X to be NP-hard one should develop a polynomial
transformation from X to a known NP-hard problem. True/False
e. The Single source shortest path finding problem is P-class problem. True/False
f. Name a well-known algorithm for the Minimum spanning tree finding problem.
g. 4-SAT (where each clause in a Boolean Satisfiability problem has four literals) is an
NP-hard problem. True/False
h. In general O(N2) algorithm is worse than O(NlogN) algorithm. True/False
i. When would you buy an O(N100) algorithm over an O(2N) algorithm for the same
problem?
j. Which problem does the well-known Floyd’s algorithm solve?

2. The next question is related to the Maximum Subsequence problem. MaxSubseq
problem over a sequence of positive and negative numbers is to find a subsequence that
produces the largest sum. For instance, over a sequence (3 -1 9 -5 2), the answer is 11 for
the subsequence (3 –1 9). The following iterative algorithm calculates the MaxSubseq.

Algorithm MaxSubseq1(an array of numbers a, of length n)
MaxSum=0;
For (i=0; i<n; i=i+1)
 For (j=i; j<n; j=j+1) {
 thisSum=0;
 For (k=i; k<=j; k=k+1)
 thisSum=thisSum+a[k];
 If (thisSum>MaxSum)
 MaxSum=thisSum;
 };
return MaxSum;
End Algorithm.

The innermost loop over k is redundant. Improve the algorithm by appropriately
removing it and describe how is the time-complexity improved in your algorithm. [20]

3. The following is a recurrence formula. Write a Dynamic Programming algorithm for
computing all a[i,j]’s, where i and j are integers between 0 and a constant N>0.
a[i, 0]= -i, a[0, j]= -j,
a[i, j] = max{ a[i-1,k]-2, 0≤ k< j;

a[p, j-1]-2, 0≤ p< i;
a[p-1, k-1] -1}, 0≤ p< i, 0≤ k< j}, for both i and j >0.

Analyze the time-complexity of the algorithm. [20]

4. Set up the recurrence equation for asymptotic time complexity of the following
algorithm and solve it for the usual theta function. [Assume n=end-start+1= 2k, for some
integer k>0.]

Algorithm Little (int array A[], int start, int end)
begin
if end = = start do

return // null
else Little (A, start+2, end);

End Algorithm. [20]

5. The following is a directed weighted graph. Draw it first. [Usual presumption of
adjacency list representation of the graphs holds for a graph theoretic question.]
V={a, b, c, d, e}, E={(a, b, 2), (a, d, 8), (b, c, 3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2)}.

For the following algorithm find out what the output from line 4 would be.

(1) enqueue all arcs in Q;
(2) while Q not empty do
(3) (v, w, d) = pop(Q);
(4) print (v, w, d);
(5) d = d –3;
(6) if d ≥ 0 then push (v, w, d) on Q;
 end while loop;

