Algorithms Spring 2006 Graduate Comprehensive Exam

1. Answer the following short questions: [20] pts

a. TheDynamic Programminglgorithms have bottom up control while tBeside and
Conqueralgorithms have top down control. True/False

b. The set of NP-complete problems is a subsdteoNtP-class of problems. True/False
c. It has been proved that NP-complete problemsatahave polynomial algorithms.
True/False

d. In order to prove a problem X to be NP-hard sheuld develop a polynomial
transformation from X to a known NP-hard problemué/False

e. TheSingle source shortest path finding problisn®-class problem. True/False

f. Name a well-known algorithm for tidinimum spanning tregnding problem.

g. 4-SAT (where each clause in a Boolean Satidiiplproblem has four literals) is an
NP-hard problem. True/False

h. In general O(ﬁ) algorithm is worse than O(NlogN) algorithm. Tricalse

i. When would you buy an O@ﬂo) algorithm over an O(\b algorithm for the same
problem?

J. Which problem does the well-knovitoyd’s algorithmsolve?

2. The next question is related to the Maximum Sgbegece problem. MaxSubseq
problem over a sequence of positive and negatiwaeus is to find a subsequence that
produces the largest sum. For instance, over aesegqu3 -1 9 -5 2), the answer is 11 for
the subsequence (3 —1 9). The following iteratigerthm calculates the MaxSubseq,.

Algorithm MaxSubseqgl(an array of numbear®f lengthn)
MaxSum=0;
For (i=0; i<n; i=i+1)
For (j=i; j<n; j=j+1) {
thisSum=0;
For (k=i; k<=j; k=k+1)
thisSum=thisSum+a[Kk];
If (thisSum>MaxSum)
MaxSum=thisSum;
%

return MaxSum:;
End Algorithm.

The innermost loop ovéxis redundant. Improve the algorithm by appropnatel
removing it and describe how is the time-complekitproved in your algorithm. [20]

3. The following is a recurrence formula. Write a Rymc Programming algorithm for
computing all a[i,j]'s, where i and j are integéestween 0 and a constant N>0.
ali, 0]=-i, a[0, j]= -,
alfi, j] = max{ afi-1,k]-2, Gk<j;
alp, j-1]-2, & p<i;
a[p-1, k-1] -1}, & p<i, & k< j}, for both i and j >0.
Analyze the time-complexity of the algorithm. 120

4. Set up the recurrence equation for asymptotic tomaplexity of the following
algorithm and solve it for the usual theta functigkssume n=end-start+1= 2k, for some
integer k>0.]

Algorithm Little (int array A[], int start, int end
begin
if end = = start do
return I/l null
else Little (A, start+2, end);

End Algorithm. [20]

5. The following is a directed weighted graph. Drafirst. [Usual presumption of
adjacency list representation of the graphs halds igraph theoretic question.]
V={a, b, c, d, e}, E={(a, b, 2), (a, d, 8), (b,3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2)}.

For the following algorithm find out what the outgtom line 4 would be.

(1) enqueue all arcs @;

(2) while Q not emptydo

(3) (v, w, g =popQ);

(4) print{,w,9;

B) d=d-3;

(6) if d > 0thenpush(v, w, g onQ;
end while loop;

