
Page | 1

Analysis of Algorithms (Five Questions) Points 100

Q1. Write a dynamic programming algorithm for computing M(1,n) from the following formula.

Analyze the complexity for your algorithm. Drawing a table for M is necessary.

M(I, i) are given for all i as input.

M(i, j) = 0, for all i > j

M(i, j) = max{ M(i, k) + M(k, j) + 2

 | for all k with i<k<j},

for all 1 i < j n

Page | 2

Q2. Write a recursive divide-and-conquer algorithm for computing a sequence of alternating

addition and subtraction of numbers, e.g., a-b+c-d+e-f. Analyze its space & time-complexity

(presume input size is some power of 2). [20]

Page | 3

Q3. Depth First Search algorithm for a graph:

Input: graph G=(V, E); Output: a DFS spanning tree over G

DFS(node v)

(2a) Write the DFS algorithm to print post-order numbering of nodes. [10]

(2b) Draw a undirected G=(V={a, b, c, d, e}, E={((a,b), (b,c), (b,e), (b, d), (c,e), (c,d) }.

Starting with a call to DFS(a), show your call sequences (i.e., the recursion tree or the

traversal of the graph) and your post-order numbering of the nodes. [10]

Page | 4

Q4. Suppose a test has 4 questions {q1, q2, q3, q4}, each question number q_i, is

associated with (p_i points, and t_i time-needed-to-answer), which are like the

following {(q1, p=2, t=2), (q2, p=3, t=2), (q3, p=5, t=2), (q4, p=1, t=2), (q5, p=5, t=2)}.

Partial grading is allowed, i.e., one gets points proportional to the time spent in answering

a question.

Maximum time for the test is T=7. Find best set of questions to answer by using a greedy

algorithm..

Both the optimum set of questions and the corresponding optimum aggregate points must

be computed.

 [20]

Page | 5

Q5a. What is the value of the variable count in terms of n after the following algorithm-

fragment is executed? [10]

(1) count = 0;

(2) For i = 1 through 3 do

(3) For p = 1 through i^2 do

(5) For k = 1 through 5 do

(4) count = count +1;

 end for loops;

Q5b. What is the time complexity of the following algorithm fragment in terms of n?

 [10]

(0) int count := 0;

(1) For i =1 through n do

(2) For p = 1 through 4*i do

(3) For k = 1 through i do

(4) count++;

end for loops;

(5) print count;

