Analysis of Algorithms

(Five Questions) Points 100

Q1a. What is the *value of count[]* of the following pseudo-code fragment when n=2:

- 1. For i = 1 to n do
- 2. Count[j] = 0;
- 3. For i = 1 to n do
- 4. For k = 1 to 3 do
- 5. For j = i downto 1 do
- 4. $\operatorname{Count}[j]++;$

[5]

Q1b. Compute the asymptotic time complexity in the above code fragment in terms of *n*. [5]

Q1b. Explain the asymptotic space complexity in the above code fragment. [5]

Q1c. Explain the asymptotic time complexity in terms of *n* of the following pseudo-code fragment: [5]

- 1. For i = 1 to n do
- 2. For j = 1 to 5 do
- 3. Count[j]++;

Q2. Write a linear algorithm for merging three input list of sorted numbers. [20]

Q3. Write an algorithm for the following problem INPUT: A list of numbers *L*, and a key *k* from that list *L*. OUTPUT: A list of numbers *O*, such that all numbers are from *L*, O[j] = k, and for all *i*, i < j implies O[i] <= k, and i > j implies O[i] >= k. [20] **Q4b.** Is it possible that the output T of a minimum-spanning-tree algorithm for an input weighted undirected graph G has less than n-1 number of arcs in T? Explain your answer very briefly.

Q4c. Does each iteration of the quicksort algorithm divides the input problem into two equal halves?

Q4d. In a city highway system we would like to know what is the shortest distance for connecting all addresses by a network without having any duplicate path between any pairs of addresses. Mention how the problem will be solved. You need not write the algorithm.

Q4e. Explain briefly the following statement: A problem P is in NP-class, but neither NP-complete nor in P-class.

Q5a. Show the computation of the optimal profit for a 0-1 knapsack problem, with a knapsack of limit 9kg, by filling the following table corresponding to the Dynamic Programming algorithm. The following is the input list of objects. {O1(5kg, \$3), O2(3kg, \$30), O3(6kg, \$14), O4(8kg, \$47)}. [20]

[To remind you the recurrence: $P(n,m) = max\{P(n-1, m), p_n+P(n-1, m - w_n)\}$, for $w_n > m$, Otherwise P(n,m) = P(n-1, m). Initialization: P(n,m)=0 for n=0, or m=0.]

w->	0	1	2	3	4	5	6	7	8	9
Ð	0	0	0	0	0	0	0	0	0	0
{ <i>O</i> ₁ }	0	0	0	0	0	3	3	3	3	3
{0 ₁ 0 ₂ }	0	0	0	30	30	30	30	30	33	30
$\{O_1 O_2 O_3\}$	0	<u>0</u>	0	30	30	30	?	?	?	<u>?</u>
{0 ₁ 0 ₂ 0 ₃ 0 ₄ }	?	?	?	?	?	?	?	?	?	?