Discrete Mathematics

Sign the exam with your student number - not your name
Answer the following questions to the best of your ability.

1. (10 pts) Permutations are important one-to-one functions from $\{1,2, \ldots, n\}$ onto $\{1,2, \ldots, n\}$. How many different permutations are there of n ?
2. (10 pts) Combinations are another class of important functions from $\{1,2, \ldots, n\}$ into $\{1,2, \ldots, n\}$. How many different combinations are there of n objects taken r at a time? The notation $C(n, r)=\binom{n}{r}$ is often used for this number.
3. (10 pts) What is the value of the summation of all combinations of n objects:

$$
\sum_{r=0}^{n} C(n, r)=\sum_{r=0}^{n}\binom{n}{r}
$$

4. (10 pts) The words "one-to-one" and "onto" are used in questions 1 . What do these terms mean?
5. (10 pts) Show that for $n \geq 1$

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 n-1) \cdot(2 n+1)}=\frac{n}{2 n+1}
$$

6. (10 pts) The Golden rule is a axiom of logic that defines conjunction \wedge as

$$
P \wedge Q \equiv((P \equiv Q) \equiv(P \vee Q))
$$

Fill out the truth table below to show that this axiom is valid.

P	Q	$P \wedge Q$	$P \vee Q$	$P \equiv Q$	$(P \equiv Q) \equiv(P \vee Q)$	

7. (20 pts) Answer the following short questions about graphs.

- How many edges are there in a complete graph with n vertices?
- How many edges are there in a complete bipartite graph on n and m vertices?
- How many edges and vertices are there in the n dimensional cube (a point, line segment, square, cube, etc., in $0,1,2$, 3 , etc., dimensional space)?
- Let G be an undirected graph. Let E be the number of edges in G and let D be the sum of the degrees of all the vertices in G. What is the relationship between E and D ?
- What is an Euler circuit?
- What is an Hamiltonian circuit?
- Give two data structures that can be used to represent a graph.

8. (20 pts) Answer the following short questions about trees.

- How many edges does a tree with n vertices have?
- How many vertices does full binary of height h have?
- How many leaves does full binary of height h have?
- What is the minimum height of a binary tree with n vertices?
- What property does a binary search tree have?
- Define: preorder, inorder, postorder tree traversal.

