Discrete Mathematics

Sign the exam with your student number - not your name

Answer the following questions to the best of your ability.

1. (20^{pts}) Give a simple formulas that can be used to evaluate each of the following summations. n-1

$$0 + 1 + 2 + 3 + 4 + \dots + (n - 1) = \sum_{k=0}^{n-1} k^{k}$$

$$1 + 2 + 4 + 8 + \dots + 2^{n-1} = \sum_{k=0}^{n-1} 2^k$$

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k}$$

$$\log(1) + \log(2) + \log(3) + \dots + \log(n) = \sum_{k=1}^{n} \log(k)$$

- 2. (20^{pts}) Let $\mathbb{B} = \{0, 1\}$ be the set of bits, and let \mathbb{B}^n be the Cartesian product of \mathbb{B} with itself *n* times. A Boolean function *b* on *n* Boolean variables maps \mathbb{B}^n to \mathbb{B} $(b: \mathbb{B}^n \longrightarrow \mathbb{B}).$
 - (a) (5) What is the cardinality of \mathbb{B} ?
 - (b) (5) What is the cardinality of \mathbb{B}^n ?
 - (c) (10) How many Boolean functions on n variables are there?

3. (10^{pts}) For $n \ge 0$, the triangular sequence is

$$0, 0, 1, 3, 6, 10, \ldots, n(n-1)/2, \ldots$$

Use mathematical induction to show that the partial sums of triangular sequence equals a tetrahedral number n(n-1)(n-2)/6. That is, prove by mathematical induction that

$$\sum_{k=0}^{n-1} \frac{1}{2}k(k-1) = \frac{1}{6}n(n-1)(n-2), \text{ for all } n \ge 0$$

4. (10^{pts}) Let \mathbb{Q} be the set of rational numbers. Let a/b and c/d be rational numbers. Write

$$\frac{a}{b} \oplus \frac{c}{d}$$
 if $a + d = b + c$

For example $1/2 \oplus 4/5$. Show that \oplus is an equivalence relation on \mathbb{Q} .

5. (10^{pts}) Solve the recurrence equation

 $T_n = T_{n-1} + n \qquad \text{where} \quad T_0 = 0$

- 6. (10^{pts}) Let \mathbb{P} be a set of pigeons and let \mathbb{H} be set of holes such that $|\mathbb{P}| > |\mathbb{H}|$.
 - (a) Prove that if f is a function from \mathbb{P} to \mathbb{H} then f is not one-to-one.
 - (b) Let p be a prime number and let $f(x) = x \pmod{p}$ be a hash function. Under what conditions will this hash function certainly produce a collision?

7. (10^{pts}) Give a recursive definition for binary trees.

8. (10^{pts}) Let T be a binary tree. Let h(T) be the height of T and let l(T) be the number of leaves in T.

For binary trees T_1 and T_2 define

 $T_1 \leq T_2$ if $h(T_1) < h(T_2)$ or $h(T_1) = h(T_2)$ and $l(T_1) \leq l(T_2)$

Show that \leq is a partial order on binary trees.