Discrete Mathematics Comprehensive Examination Department of Computer Sciences College of Engineering Florida Institute of Technology Spring 2010

Sign the exam with your student number — not your name. Each of the five section is equally weighted.

Relations

Let *s* and *t* be two equal length strings over an alphabet Σ . Say *s* is *similar* to *t*, and write $s \sim t$, when they differ by at most $n \geq 0$ characters. Answer the following questions. Explain each of your answers.

1. Is *similar* reflexive?

For instance, *s* and *t* could be strings of nucleotides over the DNA alphabet.

For instance, ATCG differs by by 1 from ATGG, 2 from TACG, by 3 from TACG, and cannot be compared to the shorter string ATC. Consider n = 0 and n > 0.

- 2. Is *similar* symmetric?
- 3. Is *similar* antisymmetric?
- 4. Is *similar* transitive?
- 5. Is *similar* an equivalence relation on strings?
- 6. Is *similar* a partial order on strings?

Counting

Count the following things. That is, find a function that computes the things described.

1. The number of strings of length *n* over an alphabet Σ with *m* characters.

For instance, the number of decimal strings of length 5 over the alphabet of digits $\Sigma = \{0, 1, 2, \dots, 9\}.$

- 2. The number of characters needed to name *k* things over an alphabet Σ with *m* characters.
- 3. The total number of subsets of an n element set X.
- 4. The number of *k* element subsets of an *n* element set X.
- 5. The number of relations between a *n* element set and an *m* element set.
- 6. The number of functions between a *n* element set and an *m* element set.

Induction

An interesting identity relates binomial coefficients and Fibonacci numbers.

$$\sum_{0 \le k < n} \binom{n-1-k}{k} = F_n \text{ for all } n = 0, 1, 2, \dots$$

Prove the identity is true.

	Binc	nomial Coefficients $\binom{n}{k}$							
		Choose k							
		0	1	2	3	4			
	0	1	0	0	0	0			
п	1	1	1	0	0	0			
	2	1	2	1	0	0			
	3	1	3	3	1	0			
	4	1	4	6	4	1			

Add binomial coefficients along the upward left-to-right diagonal to compute values of Fibonacci numbers.

Fibonacci numbers									
п	0	1	2	3	4				
F_n	0	1	1	2	3				

Logic

Consider the statements made by Lewis Carroll.

Premise 1 No professors are ignorant.

Premise 2 All vain people are ignorant.

Conclusion No professors are vain.

1. Use quantifiers and predicates to write each premise and the conclusion.

2. Draw a diagram that illustrates the relationships among professors, ignorant and vain people.

3. Explain why the conclusion follows from the premises.

Graphs

- 1. What is a binary tree?
- 2. Draw and label the nodes in a binary tree. Use at least 10 nodes, but keep the depth below 6.
- 3. List the nodes as they are visited when the tree is traversed in
 - (a) Preorder
 - (b) Inorder
 - (c) Postorder
- 4. When a binary tree contains *n* nodes what is its minimum and maximum depth?
- 5. How is a binary *search* tree different from a simple binary tree?