Discrete Mathematics Comprehensive Examination Fall 2013

Sign the exam with your student number — Not your name_____

Answer the following questions to the best of your ability.

1. Functions

Let X and Y be sets with cardinalities *n* and *m*, respectively.

- 1. How many different functions $f : \mathbb{X} \to \mathbb{Y}$ are there?
- 2. How many of these functions are one-to-one?
- 3. Let the domain X be the set of all *n*-tuples $(b_0, b_1, \ldots, b_{n-1})$ of Boolean values.
 - (a) What is the cardinality of X in this case?
 - (b) Let the co-domain be $\mathbb{Y} = \{0, 0.5, 1\} = \{\text{False, Maybe, True}\}$. How many (quasi-Boolean) functions can be defined from X to Y?
 - (c) It is estimated that there are about 10^{80} hydrogen atoms in the observable universe. Approximately how large must *n* be for there to be more quasi-Boolean functions than hydrogen atoms?

2. Combinatorics

Let $\mathbb{E} = \{a, b, c, ..., z\}$ be the set of lowercase English letters, and let \mathbb{E}^* be the set of all strings over \mathbb{E} . Given a file $\langle F \rangle$ that contains 700 strings from \mathbb{E}^* , separated by commas, are the following two statements True or False? You must explain your answer.

- 1. If all strings are one or two characters long there are duplicate strings in $\langle F \rangle$.
- 2. If all strings are three or fewer characters there are duplicate strings in $\langle F \rangle$.

3. Recursion & Induction

Consider the sequence

$$\langle F_0, F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, \ldots \rangle = \langle 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \rangle$$

- 1. What is the recurrence equation that defines terms in the sequence?
- 2. Prove that

and

 $F_{n+2} = F_2 F_{n+1} + F_1 F_n$

 $F_{n+1} = F_1 F_{n+1} + F_0 F_n$

3. Prove that

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$$

for all values of k = 1, 2, 3, 4, ...

4. Relations

Let $p = (x_1, y_1)$ and $q = (x_2, y_2)$ be be two points in $\mathbb{R} \times \mathbb{R}$. Say that p and q are *cross-sum* related if a + d = b + c. For instance, (2, 5) is cross-sum related to (4, 7) since 2 + 7 = 5 + 4. (You can use the notation $(a, b) \oplus (c, d)$ to express that two points are cross-sum related.) Show that cross-sum is an equivalence relation.