Discrete Mathematics Comprehensive Examination Spring 2014

Sign the exam with your student number — Not your name_____

Answer the following questions to the best of your ability.

1. Relations & Functions

- 1. Let p = (a, b) and q = (c, d) be be two points in $\mathbb{R} \times \mathbb{R}$. Say, that p and q are *homogeneously* related if ad = bc. Use the notation $(a, b) \oplus (c, d)$ to express the homogeneous relation.
 - (a) Is the relation a partial order?
 - (b) Is the relation an equivalence?

- 2. Let X and Y be sets with cardinalities *n* and *m*, respectively.
 - (a) How many different functions $f : \mathbb{X} \to \mathbb{Y}$ can be defined?
 - (b) How many of these functions are one-to-one?
 - (c) Let the domain X be the set of all *n*-tuples $(b_0, b_1, \dots, b_{n-1})$ of quasi-Boolean values. That is, each b_k can be assigned a value from the set {False, Maybe, True}.
 - i. What is the cardinality of X in this case?
 - ii. Let the co-domain be the set of bits: $\mathbb{Y} = \mathbb{B} = \{0, 1\}$. How many (quasi-Boolean) functions can be defined from \mathbb{X} to \mathbb{Y} ?
 - iii. How large would *n* need to be to have more functions than Internet Protocal version 6 address?

2. Combinatorics

Let $\mathbb{E} = \{a, b, c, ..., z\}$ be the set of lowercase English letters, and let \mathbb{E}^* be the set of all strings over \mathbb{E} . Given a file $\langle F \rangle$ that contains 700 strings from \mathbb{E}^* , separated by commas, are the following two statements True or False? You must explain your answer.

- 1. If all strings are one or two characters long there must be duplicate strings in $\langle F \rangle$.
- 2. If all strings are three characters long there are no duplicate strings in $\langle F \rangle$.

3. Recursion & Induction

Consider the Lucas sequence

$$\vec{L} = \langle L_0, L_1, L_2, L_3, L_4, L_5, L_6, L_7, L_8, \ldots \rangle = \langle 2, 1, 3, 4, 7, 11, 18, 29, 47, \ldots \rangle$$

Let

$$\vec{F} = \langle F_0, F_1, F_2, F_3, F_4, F_5, F_6, F_7, F_8, \ldots \rangle$$

be the Fibonacci sequence.

- 1. What recurrence equation and initial conditions define terms in the sequence \vec{L} ?
- 2. Prove that

 $L_{m+1} = L_{m+1}F_1 + L_mF_0$

and

$$L_{m+2} = L_{m+1}F_2 + L_mF_1$$

3. Prove that

$$L_{m+k} = L_{m+1}F_k + L_mF_{k-1}$$

for all values of k = 1, 2, 3, 4, ...

4. Proofs

Show that there are infinitely many prime numbers.