
Implementations of Bidirectional Reordering Algorithms

Florida Tech Technical Report CS-2000-1

Steven Atkin
IBM, Austin, TX

Ryan Stansifer
Florida Tech, Melbourne, FL

Abstract
The goal of this paper is to contribute to a deeper under-

standing of the Unicode Bidirectional Reference Algorithm.
We have provided an alternative reference algorithm written
in the functional language Haskell. The advantage of Haskell
is it allows for a short, clear description of a complex prob-
lem.

We have run our algorithm, the two Unicode reference
implementations, and four others (ICU, PGBA, FriBidi, JDK
1.2) to test for compliance with the published standard. Con-
clusions are difficult to reach, but problems were found in the
implementations and descriptions and above all with a char-
acter-stream to character-stream interpretation of the display
of bidirectional text.

Keywords
Bidirectional layout, Arabic language processing, Hebrew
language processing, Unicode

I. INTRODUCTION

Prior to the introduction of rich encoding schemes such as
Unicode and ISO10646 most text streams consisted of charac-
ters originating from a single script. Traditionally an encoding
was comprised of one national script plus a subset of the Latin
script (ASCII 7) which fit within the confines of an 8 bit char-
acter type. In such an environment presentation of text is a
trivial matter. For the most part the order in which a program
stores its characters (logical order) is equivalent to the order in
which they are visually presented (display order). The only
exceptions are scripts written from right to left (Arabic,
Hebrew, Farsi, Urdu, and Yiddish). Requiring users to enter
characters in display order can solve this problem easily
enough. So if a text stream contained Arabic characters the
user would then simply enter them backwards. This solution,
albeit not elegant, becomes cumbersome when scripts are
intermixed.[3], [7], [13]

Another potential solution is to allow users to enter text in
logical order but expect them to use some explicit formatting
codes for segments of text that run right to left. Once again
this sounds acceptable, but yet causes problems. Namely what
does one do with the explicit control codes in tasks other than
display? For example, what effect should these controls have
on searching and data interchange. These explicit codes
require specific code points to be set-aside for them as well. In
some encodings this may be unacceptable due to the fixed

number of code points available and the number of code
points required to represent the script itself. [3], [7]

Ideally one would like to maintain the flexibility of enter-
ing characters in logical order while still achieving the correct
visual appearance. Fortunately such algorithms do exist and
are called implicit layout algorithms. They require no explicit
directional codes nor any higher order protocols. These algo-
rithms can automatically determine the correct visual layout
by simply examining the logical text stream. Yet in certain
cases correct layout of a text stream may still remain ambigu-
ous. Consider the following: (Figure 1) where Arabic letters
are represented by upper case Latin letters:

Figure 1: Ambiguous layout

fred does not believe TAHT YAS SYAWLA I

In this example there are two possible ways to read the
sentence. When read from left to right (Fred does not believe I
always say that), and when read from right to left (I always
say that Fred does not believe.) [7]

The Unicode Bidirectional Algorithm rectifies such prob-
lems by providing a mechanism for unambiguously determin-
ing the visual representation of all raw streams of Unicode
text. The algorithm is based upon existing implicit layout
algorithms and is supplemented by the addition of explicit
directional control codes. Generally the implicit rules are suf-
ficient for the layout of most text streams. Then again there
are cases in which the algorithm may give inappropriate
results. Consider a phone number appearing in a stream of
Arabic letters, MY NUMBER IS (321)713-0261. This should
not be rendered as a mathematical expression (Figure 2): [3],
[13]

Figure 2: Rendering numbers

0261-713(321) SI REBMUN YM (incorrect)

(321)713-0261 SI REBMUN YM (correct)

These situations can be overcome through the use of
explicit directional controls.

This paper discusses the results of various implementa-
tions of the Unicode Bidirectional Algorithm as published in
Unicode Technical Report #9 [14] as well as offering a purely
functional description of the algorithm for implementers. Spe-
cifically the following implementations will be examined

Pretty Good Bidi Algorithm (PGBA) [10], Free Implementa-
tion of the Bidi Algorithm (FriBidi) [5], IBM Classes for Uni-
code (ICU) [8], Java 1.2 [4], Unicode Java Reference [14],
Unicode C Reference [14], and our own Haskell Bidi (HaBi).

II. Reference Implementation

Currently there exist two reference implementations of the
Unicode Bidirectional algorithm: Java and C as well as a
printed textual description (Unicode Technical Report #9)
[14]. One might ask why implement the Unicode Bidirectional
algorithm in a purely functional language when so many other
implementations already exist? It is the authors contention
that a greater understanding of the algorithm is best obtained
by a clear functional description of its operations [6]. Without
a clear description implementers may encounter ambiguities
that ultimately lead to divergent implementations, contrary to
the primary goal of the Unicode Bidirectional Algorithm.
Lastly we were interested in determining if the algorithm
could be implemented without an examination of the Java
implementation on the Unicode 3.0 CD.

III. Hugs 98 Implementation

In this section the source code to HaBi is presented. The
HaBi reference implementation uses the Hugs 98 version of
Haskell 98 [9] as it is widely available (Linux, Windows, and
Macintosh) and easily configurable.

Since the dominant concern in HaBi is comprehension and
readability our implementation (Figure 4) closely follows the
textual description as published in the Unicode Technical
Report #9. HaBi is comprised of five phases as in the Java
Unicode Bidirectional Reference implementation:

• Resolution of explicit directional controls

• Resolution of weak types

• Resolution of neutral types

• Resolution of implicit levels

• Reordering of levels

Currently there is no direct support for Unicode in the
Hugs 98 implementation of Haskell 981. So we treat Unicode
as lists of 16 or 32 bit integers. The authors provide two mod-
ules for Unicode manipulation. The first is used to create Uni-
code (UCS4, UCS2, and UTF-8) strings. The second is used
for determining character types. Utility functions convert
Haskell strings with optional Unicode character escapes to 16
or 32 bit integer lists. A Unicode escape takes the form \uhhhh
analogous to Java. This escape sequence is used for represent-
ing code points outside the range 0x00 - 0x7f. This format was

chosen so as to permit easy comparison of results to other
implementations.

Internally HaBi manipulates Unicode as sequences of 32
bit integers (Figure 3). HaBi is prepared to handle surrogates
as soon as Unicode assigns them. The only change HaBi
requires is an updated character attribute table. It would be
more elegant to use the polymorphism of Haskell since the
algorithm does not really care about the type of a character
only its attribute.

Figure 3: Input and output of Haskell Bidirectional Reference

Each Unicode character has an associated Bidirectional
attribute and level number. (Figure 4) shows the general rela-
tionship of this information throughout the steps of the algo-
rithm. The first step in our implementation is to lookup and
assign bidirectional attributes to the logical character stream.
The attributes are obtained from the online character database
as published in Unicode 3.0. At this point explicit processing
assigns level numbers as well as honoring any directional
overrides. Weak and neutral processing potentially causes
attribute types to change based upon surrounding attribute
types. Implicit processing assigns final level numbers to the
stream which control reordering. Reordering then produces a
sequence of Unicode characters in display order.

Figure 4: Data flow

HaBi uses the following three internal types:

• type Attributed = (Ucs4, Bidi)

• type Level= (Int, Ucs4, Bidi)

• data Run = LL[Level] | LR[Level] | RR[Level] | RL[Level]

1. The Haskell 98 Report defines the Char type as an enu-
meration consisting of 16 bit values conforming to the Uni-
code standard. The escape sequence used is consistent with
that of Java (\uhhhh). Unicode is permitted in any identifier
or any other place in a program. Currently the only Haskell
implementation known to support Unicode directly is the
Chalmers’ Haskell Interpreter and Compiler.

String to Integer

Integer to String

Logical to Display

(Unicode) List

(Unicode) List

Unicode Attribute Level

Lookup
Explicit

Weak
Neutral
Implicit
Reorder

Wherever possible the implementation treats characters
collectively as sequential runs rather than as individual char-
acters [1]. By using one of data type Run’s four possible type
constructors characters can then be grouped by level. These
four constructors signify the possible combinations of starting
and ending run directions. For example, the LL constructor
signifies that the start of a run and the end of a run are both left
to right. Therefore runs of LL followed by RL are not created.

Before the details of the source code are discussed it is
important to make note of the following concerning HaBi:

• The logical text stream is assumed to have already been
separated into paragraphs and lines.

• Directional control codes are removed once processed.

• No limit is imposed on the number of allowable embed-
dings.

• Mirroring is accomplished by performing character
replacement.

By separating those facets of layout dealing with reordering
from those that are concerned with rendering (line breaking,
glyph selection, and shaping) comphrension of the Haskell
implementation is more discernible. In the source code (Fig-
ure 5) functions are named in such a way so as to correspond
to the appropriate section in the Unicode Bidirectional textual
reference [14]. For example, the function named weak refers to
overall weak resolution. While the function named w1_7 spe-
cifically refers to steps 1 through 7 in weak resolution.

The function logicalToDisplay is used to convert a stream in
logical order to one in display order. First, calls to the func-
tions explicit, weak, neutral, and implicit form runs of fully
resolved characters. Calls to reorder and mirror are then applied
to the fully resolved runs which in turn yield a stream in dis-
play order. This is discussed in greater detail in the next few
paragraphs.

The explicit function breaks the logical text stream into log-
ical runs via calls to p2_3, x2_9 and x10. The reference descrip-
tion suggests the use of stacks for keeping track of levels,
overrides, and embeddings. In our implementation stacks are
used as well, but they are implicit rather than explicit (func-
tion x2_9 arguments two, three, and four). The functions weak,
neutral, and implicit are then mapped onto each individual run.

In weak steps 1 though 7 two pieces of information are
carried forward (the second and third arguments of function
w1_7) the current directional state and the last character’s type.
There are cases in the algorithm where a character’s direction
gets changed but the character’s intrinsic type remains
unchanged. For example, if a stream contained an AL fol-
lowed by a EN the AL would change to type R (step three in
weak types resolution). However the last character would
need to remain AL so as to cause the EN to change to AN
(step two in resolution of weak types).

The functions n1_2 and i1_2 resolve the neutral and
implicit character types respectively. The details of these func-
tions are not discussed as they are fairly straight forward. At
this point runs are fully resolved and ready for reordering
(function reorder).

Reordering occurs in two stages. In the first stage (func-
tion reverseRun), a run is either completely reversed or left as
is. This decision is based upon whether a run’s level is even or
odd. If it is odd (right to left) then it is reversed. In the second
stage (function reverseLevels), the list of runs are reordered. At
first it may not be obvious that the list being folded is not the
list of runs, but is the list of levels (highest level to the lowest
odd level in the stream). Once reordering is finished the list of
runs are collapsed into a single list of characters in display
order.

Figure 5: HaBi source code

-- Rule P2, P3 determine base level of text from the first strong
-- directional character
p2_3 :: [Attributed] -> Int
p2_3 [] = 0
p2_3 ((_,L):xs) = 0
p2_3 ((_,AL):xs) = 1
p2_3 ((_,R):xs) = 1
p2_3 (_:xs) = p2_3(xs)

-- Rules X2 - X9
x2_9 :: [Int] -> [Bidi] -> [Bidi] -> [Attributed] -> [Level]
x2_9 _ _ _ [] = []
x2_9 (l:ls) os es ((x,RLE):xs)

= x2_9 ((add l R):l:ls) (N:os) (RLE:es) xs
x2_9 (l:ls) os es ((x,LRE):xs)

= x2_9 ((add l L):l:ls) (N:os) (LRE:es) xs
x2_9 (l:ls) os es ((x,RLO):xs)

= x2_9 ((add l R):l:ls) (R:os) (RLO:es) xs
x2_9 (l:ls) os es ((x,LRO):xs)

= x2_9 ((add l L):l:ls) (L:os) (LRO:es) xs
x2_9 ls os (e:es) ((x,PDF):xs)

| elem e [RLE,LRE,RLO,LRO] = x2_9 (tail ls) (tail os) es xs
x2_9 ls os es ((x,PDF):xs)

= x2_9 ls os es xs
x2_9 ls os es ((x,y):xs)

| (head os) == N = ((head ls),x,y) : x2_9 ls os es xs
| otherwise = ((head ls),x,(head os)) : x2_9 ls os es xs

-- Rule X10 group characters by level
x10 :: (Int, Int) -> [Level] -> Run
x10 (sor,eor) xs
 | even sor && even eor = LL xs
 | even sor && odd eor = LR xs
 | odd sor && even eor = RL xs
 | otherwise = RR xs

-- Process explicit characters X1 - X10
explicit :: Int -> [Attributed] -> [Run]
explicit l xs = zipWith x10 (runList levels l l) groups
 where levels = (map (\x -> level (head x)) groups)

groups = groupBy levelEql (x2_9 [l][N][] xs)

-- Rules W1 - W7
w1_7 :: [Level] -> Bidi -> Bidi -> [Level]

w1_7 [] _ _ = []
w1_7 ((x,y,L):xs) _ _ = (x,y,L):(w1_7 xs L L)
w1_7 ((x,y,R):xs) _ _ = (x,y,R):(w1_7 xs R R)
w1_7 ((x,y,AL):xs) _ _ = (x,y,R):(w1_7 xs AL R)
w1_7 ((x,y,AN):xs) dir _ = (x,y,AN):(w1_7 xs dir AN)
w1_7 ((x,y,EN):xs) AL _ = (x,y,AN):(w1_7 xs AL AN)
w1_7 ((x,y,EN):xs) L _ = (x,y,L):(w1_7 xs L EN)
w1_7 ((x,y,EN):xs) dir _ = (x,y,EN):(w1_7 xs dir EN)
w1_7 ((x,y,NSM):xs) L N = (x,y,L):(w1_7 xs L L)
w1_7 ((x,y,NSM):xs) R N = (x,y,R):(w1_7 xs R R)
w1_7 ((x,y,NSM):xs) dir last = (x,y,last):(w1_7 xs dir last)
w1_7 ((a,b,ES):(x,y,EN):xs) dir EN =

(a,b,EN):(x,y,EN):(w1_7 xs dir EN)
w1_7 ((a,b,CS):(x,y,EN):xs) dir EN =

(a,b,EN):(x,y,EN):(w1_7 xs dir EN)
w1_7 ((a,b,CS):(x,y,EN):xs) AL AN =

(a,b,AN):(x,y,AN):(w1_7 xs AL AN)
w1_7 ((a,b,CS):(x,y,AN):xs) dir AN =

(a,b,AN):(x,y,AN):(w1_7 xs dir AN)
w1_7 ((x,y,ET):xs) dir EN = (x,y,EN):(w1_7 xs dir EN)
w1_7 ((x,y,z):xs) dir last

| z==ET && findEnd xs ET == EN && dir /= AL
= (x,y,EN):(w1_7 xs dir EN)

| elem z [CS,ES,ET] = (x,y,ON):(w1_7 xs dir ON)
| otherwise = (x,y,z):(w1_7 xs dir z)

-- Process a run of weak characters W1 - W7
weak :: Run -> Run
weak (LL xs) = LL (w1_7 xs L N)
weak (LR xs) = LR (w1_7 xs L N)
weak (RL xs) = RL (w1_7 xs R N)
weak (RR xs) = RR (w1_7 xs R N)

-- Rules N1 - N2
n1_2 :: [[Level]] -> Bidi -> Bidi -> Bidi -> [Level]
n1_2 [] _ _ base = []
n1_2 (x:xs) sor eor base

| isLeft x = x ++ (n1_2 xs L eor base)
| isRight x = x ++ (n1_2 xs R eor base)
| isNeutral x && sor == R && (dir xs eor) == R

= (map (newBidi R) x) ++ (n1_2 xs R eor base)
| isNeutral x && sor == L && (dir xs eor) == L

= (map (newBidi L) x) ++ (n1_2 xs L eor base)
| isNeutral x =

(map (newBidi base) x) ++ (n1_2 xs sor eor base)
| otherwise = x ++ (n1_2 xs sor eor base)

-- Process a run of neutral characters N1 - N2
neutral :: Run -> Run
neutral (LL xs) = LL (n1_2 (groupBy neutralEql xs) L L L)
neutral (LR xs) = LR (n1_2 (groupBy neutralEql xs) L R L)
neutral (RL xs) = RL (n1_2 (groupBy neutralEql xs) R L R)
neutral (RR xs) = RR (n1_2 (groupBy neutralEql xs) R R R)

-- Rule I1, I2
i1_2 :: [[Level]] -> Bidi -> [Level]
i1_2 [] _ = []

i1_2 ((x:xs):ys) dir
| attrib x == R && dir == L

= (map (newLevel 1) (x:xs)) ++ (i1_2 ys L)
| elem (attrib x) [AN,EN] && dir == L

= (map (newLevel 2) (x:xs)) ++ (i1_2 ys L)
| elem (attrib x) [L,AN,EN] && dir == R

= (map (newLevel 1) (x:xs)) ++ (i1_2 ys R)
i1_2 (x:xs) dir = x ++ (i1_2 xs dir)

-- Process a run of implicit characters I1 - I2
implicit :: Run -> Run
implicit (LL xs) = LL (i1_2 (groupBy bidiEql xs) L)
implicit (LR xs) = LR (i1_2 (groupBy bidiEql xs) L)
implicit (RL xs) = RL (i1_2 (groupBy bidiEql xs) R)
implicit (RR xs) = RR (i1_2 (groupBy bidiEql xs) R)

-- If a run is odd (L) then reverse the characters
reverseRun :: [Level] -> [Level]
reverseRun [] = []
reverseRun (x:xs)

| even (level x) = x:xs
| otherwise = reverse (x:xs)

-- Reverse a sequence of runs if necessary
reverseLevels :: [[Level]] -> [[Level]] -> Int -> [[Level]]
reverseLevels w [] _ = w
reverseLevels w (x:xs) a = if (level (head x)) >= a

then reverseLevels (x:w) xs a
else w ++ [x] ++ (reverseLevels [] xs a)

-- Rule L2 Reorder
reorder:: [Run] -> Bidi -> [[Level]]
reorder xs base = foldl (reverseLevels []) runs levels

where
flat = concat (map toLevel xs)
runs = map reverseRun (groupBy levelEql flat)
levels = getLevels runs

-- Rule L4 Mirrors
mirror:: [Level] -> [Level]
mirror [] = []
mirror ((x,y,R):xs) = case getMirror y of
 Nothing -> (x,y,R):(mirror xs)
 Just a -> (x,a,R):(mirror xs)
mirror (x:xs) = x:(mirror xs)

logicalToDisplay :: [Attributed] -> [Ucs4]
logicalToDisplay attribs

=let baseLevel = p2_3 attribs in
let baseDir = (if odd baseLevel then R else L) in
let x = explicit baseLevel attribs in
let w = map weak x in
let n = map neutral w in
let i = map implicit n in
map character (mirror (concat (reorder i baseDir)))

IV. Alternative Implementations

The layout of bidirectional text is a complex endeavour
with no single right answer. There is limited agreement about
which tasks should be part of a bidirectional algorithm. To
simply compare the features of each implementation as if one
were buying a refrigerator would be unfair.

There are several places in the text of the Unicode Bidirec-
tional Algorithm that make reference to features that most cer-
tainly need to be part of a complete bidirectional layout
solution but do not necessarily need to be part of a reordering
algorithm.

In Arabic, and to some extent in Hebrew, the mapping of a
glyph (visual shape) to a character is not one-to-one as in the
Latin script. Instead the selection of a character’s glyph is
based upon its position within a word. Each Arabic character
may have up to four possible shapes: [2], [4], [12]

• Initial -Character appears in the beginning of a word

• Final - Character appears at the end of a word.

• Medial - Character appears somewhere in the middle.

• Isolated - Character is surrounded by white space.

Furthermore, glyph selection must also take into consideration
the linking abilities of the surrounding characters. For exam-
ple, some glyphs may only link on their right side while others
may permit links on either side. In Arabic each character
belongs to one of the following joining classes: [13]

• Right joining - Alef, Dal, Thal, Zain

• Left joining - None

• Dual joining - Beh, Teh, Theh, ...

• Join causing - Tatweel, Joiner (U200D)

• Non joining - Spacing characters, Non-joiner (U200C)

• Transparent -Combining marks

In Hebrew some characters do have final forms even
though Hebrew is not a cursive script. The idea of contextual
shaping is certainly not limited just to right to left scripts. For
example, the Greek script provides a special final form for the
sigma character. [13]

Occasionally two or more glyphs combine to form a new
single glyph called a ligature. This resultant shape then
replaces the individual glyphs from which it is comprised. In
Arabic this occurs frequently and rarely in Hebrew. In particu-
lar the Alef Lamed ligature (UFB4F) is used in liturgical
books. Although infrequent, even ligatures do occur in
English. Specifically, the fi ligature where the letter f merges
with the letter i. [2], [4], [12]

In some cases glyph selection may be based on a charac-
ter’s resolved direction. These characters are known as mir-
rored characters (parentheses and brackets). When mirrored
characters are intermixed with Arabic and or Hebrew charac-
ters, a complementary shape may need to be selected so as to
preserve the correct meaning of an expression. For example,
consider the text stream 1 < 2 in logical order (one less than
two). If this stream is to be displayed in a right to left
sequence it must be displayed as 2 > 1. In order to preserve the

correct meaning the < is changed to >. This process is known
as mirroring or symmetric swapping. [12]

Traditionally glyphs are selected and drawn by font ren-
dering engines rather than via character replacement. The rea-
sons for this approach is centered around glyph availability.
Some glyphs may simply not be available in a font (Hebrew
and Greek final forms). If implementers were to replace
sequences of characters with new character ligatures, there
would be no guarantee that they would be present in a font as
well. Some ligatures are not able to be constructed by using
character replacement, as they are not present in Unicode. The
choice of an appropriate glyph requires knowledge of the font
and its available glyphs.

Also the process of line breaking requires font knowledge.
Line breaking determines where a line begins and ends within
some graphical object. It is simply not possible to do this
effectively without knowing the widths of all the glyphs along
with the width of the display area. Implementers can not
assume that the number of and width of each character is the
same when rendered. [2], [4]

Putting aside glyph related problems there are still other
facets in a complete layout solution. For example, it may not
always be possible to determine where a paragraph begins and
ends by examining just the stream contents. Higher order
information is required. This information could appear as con-
trol codes or be supplied externally. [13]

Higher order external information can also force the
stream contents to change. Most countries use European
numerals for representing digits. Some countries use another
form, Arabic numerals along with the European numerals.
Higher order data may override a particular representation. [7]

There are also aspects of bidirectional layout that are out-
side the scope of higher order protocols. In particular the caret
and the mouse. Movement of the caret and hit testing of the
mouse becomes more complex in bidirectional streams. If the
caret is moving linearly within one of the streams (logical or
visual) then this movement needs to be translated to the other
stream. Highlighting poses a similar problem as to which
stream is being highlighted (logical or visual). [2], [4]

Unfortunately the tasks that one would like to provide are
not necessarily the same ones that can be provided. All of this
depends upon the intended use of an implementation. If the
intended use is to fit within in some broader context then it
may be acceptable to leave some features out. If the intended
use is to provide a complete internationalization framework a
set of features above and beyond the ones mentioned may be
required. The specification of the bidirectional algorithm can
only be implemented as a character stream reordering (What
else can an implementer do?), yet the bidirectional layout
problem can only be solved in a larger context. However, we
will summarize the features of each model for those who like
to make comparisons (Table 1).

Java 1.2 provides a complete framework for creating multi
script applications. Java’s TextLayout and LineBreakMea-
surer classes facilitate the layout of complex text in a platform
neutral manner. The underlying approach to reordering is
based on the Unicode Bidirectional Algorithm. [4]

ICU’s approach is very close to Java due in some respect
to the fact that the overall internationalization architecture of
Java is based on ICU. The key differences are centered around
glyph management. The lack of glyph management routines
should not be interpreted as a deficiency but rather as a state-
ment as to the context in which ICU is to be used. [8]

Mark Leisher’s PGBA is another algorithm for bidirec-
tional reordering. The algorithm takes an implicit approach to
reordering. PGBA does not attempt to match Unicode’s reor-
dering algorithm. However PGBA’s implicit algorithm does
match the implicit section of the Unicode Bidirectional Algo-
rithm. At the moment it does not support the explicit bidirec-
tional control codes (LRE, LRO, RLE, RLO, PDF). One
should not infer that the lack of support for directional control
codes results in an incomplete algorithm. Under most circum-
stances the implicit algorithm reorders a text stream correctly.
Secondly, these control codes are not always present in all
encoding schemes. Of course it would be a nice feature, but
certainly not a necessary one. [10]

Dov Grobgeld’s FriBidi follows the Unicode Bidirectional
Reference more closely. Notably there is support for integra-
tion with graphical user interfaces along with a collection of
codepage converters. However as in PGBA the explicit con-
trol codes are not currently supported. [5]

V. Testing Methodology

Despite all the differences found in these algorithms, we
have tested them all on a large number of small carefully
crafted test cases of basic bidirectional text. To simulate Ara-
bic and Hebrew input/output a simple set of rules are utilized.
These rules make use of characters from the Latin-1 charset.
The character mappings allow Latin-1 text to be used instead
of real Unicode characters for Arabic, Hebrew, and control
codes. This is an enormous convenience in writing, reading,
running and printing the test cases. This form (Table 2) is the
same as the one used by the Unicode Bidirectional Reference
Java Implementation [14]. Unfortunately not all of the imple-
mentations adhere to these rules in their test cases. To com-
pensate for this, changes were made to some of the
implementations.

In the Unicode C reference implementation additional
character mapping tables were added to match those of the

Unicode Java Reference implementation. Also the bidirec-
tional control codes were remapped from the control range
0x00-0x1F to the printable range 0x20-0x7E. This remapping
allows test results to be compared more easily.

In PGBA and FriBidi the character attribute tables were
modified to match the character mappings outlined in
(Table 2). However, the strategy for testing ICU and Java was
slightly different. In the ICU and Java test cases the character
types are used rather than a character mapping. So in places
where our test cases required a specific type, that type was
simply used rather than a character mapping.

The test cases used in our testing are taken from the fol-
lowing sources:

• Mark Leisher - His web page provides an excellent suite of
test cases as well as a table of results for other implementa-
tions [10].

• Unicode Technical Report #9 - Some of the examples are
used for testing conformance [14].

• Additional test cases for uncovering potential bugs in an
implementation’s handling of weak types and directional
controls.

Table 1: Feature summary

Feature
Java
1.2.2

ICU
1.5

PGBA
2.4

FriBidi
1.12

HaBi
1.0

Reordering • • • • •
Shaping •

Mirroring • • • • •
Drawing •

Caret • • • •
Hit testing • •

Highlighting • •
Line break •
Bounding

box
• •

Font •

Table 2: Bidirectional character mappings

Type Arabic Hebrew Mixed English
L a - z a - z a - z a - z

AL A - Z A - M
R A - Z N - Z

AN 0 - 9 5 - 9
EN 0 - 9 0 - 4 0 - 9

LRE [[[[
LRO { { { {
RLE]]]]
RLO } } } }
PDF ^ ^ ^ ^
NSM ~ ~ ~ ~

The test cases are presented in (Table 3) [10], [14], (Table 4)
[10], (Table 5) and (Table 6) in all cases the expected results
are those of the HaBi implementation.

Table 3: Arabic charmap tests

Source Expected
1 car is THE CAR in arabic car is RAC EHT in arabic
2 CAR IS the car IN ENGLISH HSILGNE NI the car SI RAC
3 he said “IT IS 123, 456, OK” he said “KO ,456 ,123 SI TI”
4 he said “IT IS (123, 456), OK” he said “KO ,(456 ,123) SI TI”
5 he said “IT IS 123,456, OK” he said “KO ,123,456 SI TI”
6 he said “IT IS (123,456), OK” he said “KO ,(123,456) SI TI”
7 HE SAID “it is 123, 456, ok” “it is 123, 456, ok” DIAS EH
8 <H123>shalom</H123> <123H/>shalom<123H>
9 HE SAID “it is a car!” AND RAN NAR DNA “!it is a car” DIAS EH
10 HE SAID “it is a car!x” AND RAN NAR DNA “it is a car!x” DIAS EH
11 -2 CELSIUS IS COLD DLOC SI SUISLEC -2
12 SOLVE 1*5 1-5 1/5 1+5 5+1 5/1 5-1 5*1 EVLOS
13 THE RANGE IS 2.5..5 5..2.5 SI EGNAR EHT
14 IOU $10 10$ UOI
15 CHANGE -10% %10- EGNAHC
16 -10% CHANGE EGNAHC %10-
17 he said “IT IS A CAR!” he said “RAC A SI TI!”
18 he said “IT IS A CAR!X” he said “X!RAC A SI TI”
19 (TEST) abc abc (TSET)
20 abc (TEST) abc (TSET)
21 #@$ TEST TSET $@#
22 TEST 23 ONCE abc abc ECNO 23 TSET
23 he said “THE VALUES ARE 123, 456, 789, OK” he said “KO ,789 ,456 ,123 ERA SEULAV EHT”.
24 he said “IT IS A bmw 500, OK.” he said “A SI TI bmw KO ,500.”

Table 4: Hebrew charmap tests

Source Expected
1 HE SAID “it is 123, 456, ok”. .”it is 123, 456, ok” DIAS EH
2 <H123>shalom</H123> <123H/>shalom<123H>
3 <h123>SAALAM</h123> <h123>MALAAS</h123>
4 -2 CELSIUS IS COLD DLOC SI SUISLEC -2
5 -10% CHANGE EGNAHC -10%
6 TEST ~~~23%%% ONCE abc abc ECNO 23%%%~~~ TSET
7 TEST abc ~~~23%%% ONCE abc abc ECNO abc ~~~23%%% TSET
8 TEST abc@23@cde ONCE ECNO abc@23@cde TSET
9 TEST abc 23 cde ONCE ECNO abc 23 cde TSET
10 TEST abc 23 ONCE cde cde ECNO abc 23 TSET
11 Xa 2 Z Z a 2X

Table 5: Mixed charmap tests

Source Expected
1 A~~ ~~A
2 A~a~ a~~A
3 A1 1A
4 A 1 1 A
5 A~1 1~A
6 1 1
7 a 1 a 1
8 N 1 1 N
9 A~~ 1 1 ~~A
10 A~a1 a1~A
11 N1 1N
12 a1 a1
13 A~N1 1N~A
14 NOa1 a1ON

15 1/2 1/2
16 1,2 1,2
17 5,6 5,6
18 A1/2 2/1A
19 A1,5 1,5A
20 A1,2 1,2A
21 1,.2 1,.2
22 1,A2 2A,1
23 A5,1 5,1A
24 +$1 +$1
25 1+$ 1+$
26 5+1 5+1
27 A+$1 1$+A

Table 5: Mixed charmap tests (Continued)

Source Expected

VI. Test Results

All implementations were tested by using the test cases
from (Table 3), (Table 4), and (Table 5). The implementations
that support the Unicode directional control codes (LRO,
LRE, RLO, RLE, and PDF) were further tested using the test
cases from (Table 6). At this time the directional control codes
are only supported by HaBi, ICU, Java 1.2, Unicode Java ref-
erence, and Unicode C reference.

When the results of the test cases were compared, the
placement of directional control codes and choice of mirrors
was ignored. This is permitted as the final placement of con-
trol codes is arbitrary and mirroring may optionally be han-
dled by a higher order protocol.

28 A1+$ $+1A
29 1+/2 1+/2
30 5+ 5+
31 +$ +$
32 N+$1 +$1N
33 +12$ +12$
34 a/1 a/1
35 1,5 1,5
36 +5 +5

Table 5: Mixed charmap tests (Continued)

Source Expected

Table 6: Explicit override tests

Source Expected
1 a}}}def afed
2 a}}}DEF aFED
3 a}}}defDEF aFEDfed
4 a}}}DEFdef afedFED
5 a{{{def adef
6 a{{{DEF aDEF
7 a{{{defDEF adefDEF
8 a{{{DEFdef aDEFdef
9 A}}}def fedA
10 A}}}DEF FEDA
11 A}}}defDEF FEDfedA
12 A}}}DEFdef fedFEDA
13 A{{{def defA
14 A{{{DEF DEFA
15 A{{{defDEF defDEFA
16 A{{{DEFdef DEFdefA
17 ^^abc abc
18 ^^}abc cba
19 }^abc abc
20 ^}^abc abc
21 }^}abc cba
22 }^{abc abc
23 }^^}abc cba
24 }}abcDEF FEDcba

Table 7: Arabic test differences

PGBA 2.4 FriBidi 1.12 Unicode C Reference
2 SI RAC the car NI ENGLISH
4 he said “KO ,)456 ,123(SI TI”
6 he said “KO ,)123,456(SI TI”
7 DIAS EH “it is 456 ,123, ok” “ok ,456 ,123 it is” DIAS EH
8 <123H>shalom</123H>
9 DIAS EH “it is a car!” DNA RAN
10 DIAS EH “it is a car!x” DNA RAN
11 -SI SUISLEC 2 COLD DLOC SI SUISLEC 2-
12 1+5 1/5 1-5 5*1 EVLOS
14 $10 UOI
15 %-10 EGNAHC 10- EGNAHC%
16 EGNAHC %-10 -10% CHANGE
19 abc)TSET((TSET) abc
21 #@$ TEST
22 ECNO 23 TSET abc
24 he said “A SI TI bmw 500, KO.”

Tables (Table 7), (Table 8), and (Table 9) detail the differ-
ences among the implementations with respect to the results
obtained with the HaBi Implementation. Only PGBA, FriBidi
and the Unicode C implementation return results that are dif-

ferent than the HaBi implementation. The Unicode Java refer-
ence, Java 1.2, and ICU pass all test cases.

In PGBA, types AL and R are treated as being equivalent
[10]. This in itself does not present a problem as long as the
data stream is free of AL and EN (European number). How-
ever, a problem arises when AL is followed by a EN for exam-
ple, test case 18 from (Table 5). In this situation the ENs
should be treated as ANs (Arabic number) and not left as ENs.

The handling of NSM is also different in PGBA. PGBA
treats NSM as being equal to ON (other neutral) [10]. This
delays the handling of NSM until the neutral type resolution
phase rather than in the weak type resolution phase. By delay-
ing their handling, the wrong set of rules are used to resolve
the NSM type. For example, in test case 2 from (Table 5) the
last NSM should be treated as type L instead of type R.

In FriBidi there are a few bugs in the implementation. Spe-
cifically, when an AL is followed by a EN the EN is not being
changed to type AN. See test case 18 (Table 5). This is the
same symptom as was found in PGBA, but the root cause is
different. In FriBidi, step W2 (weak processing phase rule
two) the wrong type is being examined it should be type EN
instead of type N.

There is also a bug in determining the first strong direc-
tional character. The only types that are recognized as having
a strong direction are types R and L. Type AL should also be
recognized as a strong directional character. For example,
when test case 1 from (Table 5) is examined FriBidi incor-
rectly determines that there are no strong directional charac-
ters present. It then proceeds to default the base direction to
type L when it should actually be of type R. This problem also
causes test cases 2, 9, and 11 from (Table 3) to fail.

VII. Conclusion

The biggest hindrance to the creation of a mechanism for
converting logical data streams to display streams lies in the
problem description. The problem of bidirectional layout is ill
defined with respect to the input(s) and output(s).

Certainly the most obvious input is the data stream itself.
But several situations require additional input in order to cor-
rectly determine the output stream. For example, in Farsi
mathematical expressions are written left to right while in
Arabic they are written right to left [7]. This may require a
special sub input (directional control code) to appear within
the stream for proper handling to occur. If it becomes neces-
sary to use control codes for obtaining the desired results the
purpose of an algorithm becomes unclear.

The situation becomes even more cloudy when one con-
siders other possible inputs (paragraph levels, line breaks,
shaping, directional overrides, numeric overrides, etc.) Are
they to be treated as separate inputs? If they are treated as
being distinct, when, where and how should they be used?

Determining the output(s) is not simple either. The correct
output(s) is largely based on the context in which an algorithm
will be used. If an algorithm is used to render text, then appro-
priate outputs might be a glyph vector and a set of screen posi-
tions. On the other hand, if an algorithm is simply being used
to determine character reordering, then an acceptable output
might just be a reordered character stream.

The Unicode Bidirectional algorithm has gone through
several iterations over the years. The current textual reference
has been greatly refined. Nevertheless, we believe that there is
still room for improvement. Implementing a bidirectional lay-
out algorithm is not a trivial matter even when one restricts an
implementation to just reordering. Part of the difficulty can be
attributed to the textual description of the algorithm. Addition-
ally there are areas that require further clarification.

As an example consider step L2 of the Unicode Bidirec-
tional Reference Algorithm. It states the following, “From the
highest level found in the text to the lowest odd level on each
line, reverse any contiguous sequence of characters that are at
that level or higher. [14]” This has more than one possible
interpretation. It could mean that once the highest level has
been found and processed the next level for processing should
be one less than the current level. It could also be interpreted
as meaning that the next level to be processed is the next low-
est level actually present in the text, which may be greater
than one less than the current level. It was only through an
examination of Unicode’s Java implementation that we were
able to determine the answer. (The next level is one less than
the current.)

There are also problems concerning the bounds of the Uni-
code Bidirectional Algorithm. In the absence of higher order
protocols it is not always possible to perform all the steps of
the Unicode Bidirectional Algorithm. In particular, step L4
requires mirrored characters to be depicted by mirrored glyphs
if their resolved directionality is R. However, glyph selection
requires knowledge of fonts and glyph substitution tables. One
possible mechanism for avoiding glyph substitutions is to per-

Table 8: Hebrew test differences

PGBA 2.4 FriBidi 1.12
5 EGNAHC %-10
6 abc ECNO %%%23~~~ TSET
7 abc ECNO %%%23~~~ abc TSET
11 Z 2 aX a 2X

Table 9: Mixed test differences

PGBA 2.4 FriBidi 1.12
1 A~~
2 ~a~A ~Aa~
10 1a~A ~Aa1
14 1aON
18 1/2A 1/2A
19 5,1A
21 2.,1
23 1,5A
27 +$1A
28 1+$A
32 1$+N
35 5,1

form mirroring via character substitutions. In this approach
mirrored characters are replaced by their corresponding char-
acter mirrors. In most situations this approach yields the same
results. The only drawback occurs when a mirrored character
does not have its corresponding mirror encoded in Unicode.
For example, the square root character (U221A) does not have
its corresponding mirror encoded.

Such situations have placed developers in a quandary. One
solution is to use the implementations (Java and C) as a refer-
ence. But these implementations don’t agree in every case.
Furthermore the implementations have different goals. The
Java implementation follows the textual reference closely
while the C implementation offers performance improve-
ments.

We argue that if source code is now going to serve as a ref-
erence we should pick source code that is more attuned to
describing algorithms. We claim to have provided such a ref-
erence through the use of Haskell 98. Our HaBi reference is
clear and succinct. The total number of lines of source code
for the complete solution is less than 300 lines. The Unicode
Java reference implementation is over 1000 lines [14].

By using a functional language we are able to separate
details that are not directly related to the algorithm. In HaBi
reordering is completely independent from character encod-
ing. It does not matter what character encoding one uses
(UCS4, UCS2, or UTF8). The Haskell type system and HaBi
character attribute function allows the character encoding to
change while not impacting the reordering algorithm. Other
implementations may find this level of separation difficult to
achieve (Java and C). In C the size of types are not guaranteed
to be portable, making C unsuitable as a reference. In the Java
reference implementation the ramifications of moving to
UCS4 are unclear. Our reference presents the steps as simple,
easy to understand, functions without side effects. This allows
implementers to comprehend the true meaning of each step in
the algorithm independently of the others while yet remaining
free from language implementation details. The creation of
test cases is thus more systematic.

Even if we could separate out the appropriate inputs and
outputs to a reordering algorithm, there are still other prob-
lems to address. Bidirectional algorithms have been around
for some time. Do we incorporate legacy algorithms even if
they don’t conform to our new model? If the answer is yes we
can break with legacy, then should we not consider adopting
an algorithm that clearly separates reordering activities and
responsibilities. This new reordering algorithm could be struc-
tured in such a way so as to allow for multi-phases, multi-pro-
tocols, and reversibility. Thus permitting detection and
examination of streams that have been bidirectionally pro-
cessed from those that have not.

VIII. References

[1] Abramson, Dean. “Optimized Implementations of
Bidirectional Text Layout and Bidirectional Caret
Movement.” Thirteenth International Unicode Confer-
ence, September 1998.

[2] Apple Computer. Inside Macintosh Text. Addison-
Wesley. 1993.

[3] Becker, Joseph. “Arabic Word Processing.” Communi-
cations of the ACM, July 1987, Volume 30, Number 7,
pp 600-610.

[4] Davis, Mark. et al. “International Text In JDK 1.2.”
Available: http://www.ibm.com/java/education/inter-
national-text/. Retrieved: July 17, 2000.

[5] Grobgeld, Dov. “A Free Implementation of the Uni-
code Bidi Algorithm.” Available: http://imagic.weiz-
mann.ac.il/~dov/freesw/FriBidi/. Retrieved: July 17,
2000.

[6] Hughes, John. “Why Functional Programming Mat-
ters.” Computer Journal, 1989, Volume 32, Number 2,
pp 98-107.

[7] IBM Corporation. National Language Support Bidi
Guide, NLDG Volume 3. IBM Canada Ltd. 1995.

[8] IBM Corporation. “IBM Classes for Unicode.” Avail-
able: http://www.ibm.com/java/tools/international-
classes/index.html. Retrieved: July 17, 2000.

[9] Jones, Simon P. et al. “Report on the Programming
Language Haskell 98, A Non-strict, Purely Functional
Language.” Yale University, Department of Computer
Science Tech Report YALEU/DCS/RR-1106, February
1999.

[10] Leisher, Mark. “The UCData Unicode Character Prop-
erties and Bidi Algorithm Package.” Available: http://
crl.nmsu.edu/~mleisher/ucdata.html. Retrieved: July
17, 2000.

[11] O’Donnell, Sandra M. Programming for the World - A
Guide to Internationalization. Prentice Hall. 1994.

[12] Sun Microsystems. “Complex Text Layout Language
Support in the Solaris Operating Environment.” Avail-
able: http://www.sun.com/software/white-papers/wp-
cttlanguage/. Retrieved: July 17, 2000.

[13] Unicode Consortium, The. The Unicode Standard, Ver-
sion 3.0. Addison-Wesley. 2000.

[14] Unicode Consortium, The. “Unicode Technical Report
#9 - The Bidirectional Algorithm.” Available: http://
www.unicode.org/unicode/reports/tr9/tr9-6.html
Retrieved: July 17, 2000.

IX. Further Information

The full distribution of Hugs 98 is available at:

• http://haskell.org/hugs

The full distribution of HaBi is available at:

• http://www.cs.fit.edu/~satkin/i18n.html

