
Enabling Mobile Agents Communication

Mohammad Samarah and Philip Chan
The division of Electrical and Computer Science and Engineering

Florida Institute of Technology
150 West University Boulevard, Melbourne, FL 32901-6988

msamarah@zach.fit.edu and pkc@cs.fit.edu

Florida Tech Technical Report CS-2000-3

Abstract - In this paper, we investigate the need
for well-suited remote communication architectures
to address communication issues in mobile agent
environments. We study the implication of mobility
for agent architectures – specifically, ways in which
the architecture may facilitate agent communication.
We present an architecture for inter-agent
communication suitable for remote messaging, agent
monitoring, agent tracing, and agent debugging for
mobile agent environments. The architecture allows
for the dynamic adaptation of communication
components. It provides for a seamless and
continuous active communication during the agent
migration process. We have implemented an agent
framework simulator that conforms to all these
requirements. The paper presents the results
illustrating the framework dynamic behavior.

Keywords: Agent models and architectures,
mobile agents, communication languages and
protocols, performance evaluation, distributed
location registry.

1 Introduction

Mobile agents is an emerging technology attracting
audiences from the fields of distributed systems,
information retrieval, World Wide Web, electronic
commerce and artificial intelligence. A mobile agent
is an autonomous entity that can migrate from one
machine to another in a heterogeneous network. The
agent may suspend its execution at any point,
transport itself to another machine and then resume
execution. Mobile agents depart from the
conventional client/server model and give rise to a
paradigm shift in distributed systems in which the
agents are autonomous and self sustained.

In order for mobile agents to flourish they need a
software environment in which they can exist. A

mobile agent environment is a distributed software
system running over a network of heterogeneous
computers. The primary task of the environment is to
provide an execution framework for the agents. The
mobile agent environment implements a large subset
of the mobile agents’ models. The environment may
provide support services that relate to the mobile
agent environment itself and support services
pertaining to the environments on which the mobile
agent environment is built. The environment also
provides support services to access other mobile
agent systems, and support services to provide open
access to other non-agent based software
environments.

Agent-to-agent communication is the key to realizing
the potential of the agent paradigm, just, as the
development of human languages was the key to the
rapid progress of the human race. A well-defined
communication architecture is a necessary
component for the success and the wide deployment
of mobile agents technology. Research has addressed
the communication problem from a language
perspective such as the interaction protocols
[d’Iverno98] and the dialogue frames [Reed98].
Furthermore, a few have proposed formal
communication models for mobile agent
environments such as [Baumann98] on
communication concepts and [Dong98] on open
communication frameworks for software agents.
Current mobile agent systems employ many
communication mechanisms such as messages, local
and remote procedure calls, but we are not aware of
any framework based on communication types and
not domain specific classification. Moreover, the
agent ability to move while in active communication
is not addressed in many of the communication
mechanisms available today.

In this paper, we present an architecture for inter-
agent communication suitable for remote messaging,
agent monitoring, agent tracing, and agent debugging

for mobile agent environments. Synchronous
communication can be established for inter-agent
interactions, while asynchronous communication
addresses the need for mobile and group
communication. The framework provides the ability
of an agent to move while in active communication,
by employing message buffering and forwarding.

Our framework provides seamless communication
during migration. Communication is not interrupted
and proceeds seamlessly during the migration
process. This feature is not addressed in many of the
current architectures such as the work done in
[Baumann98], and most models assume the
communication is interrupted and/or terminated at the
initiation of the move and reestablished once the
agent arrives at the destination. Using our feature an
agent is not required to be aware of other agents
network related activities. The agents collaborate on
the task assigned, while the framework provides the
low level details of mobility.

The remainder of the paper is structured as follows.
In Section 2, we present an overview of the AGI
communication architecture. Section 3 discusses the
issues involved in distributing the location registry.
An overview of our implementation is presented in
section 4. Section 5 discusses related work. Section 6
concludes the paper with a summary of results and
future research directions.

2 The AGI Communication
Architecture

In this section we provide an overview of the
Asynchronous, Group Oriented, and Inter-agent
communication architecture, and a description of its
key features.

The AGI architecture defines three models of
communication. The first model of communication is
based on an asynchronous event model. The second
model allows for agent group collaboration. The third
model allows for direct inter-agent messaging. The
communication models provide the ability to perform
call back messaging, asynchronous messaging with
delayed retrieval, and direct synchronous messaging.

The architecture provides models for remote
communication and messaging mechanisms. These
models allow the owning entity of the agent (an end
user, another mobile agent, or a stationary agent) to:

1. View the status of an agent.
2. Trace the agent execution.

3. Monitor the agent behavior and assign events
triggers based on the agent state.

4. Initiate new directives to the agent such as: move
to another location, change to a new state, or
terminate.

The remainder of this section is structured as follows.
Section 2.1 and section 2.2 define the communication
models and types. Section 2.3 defines the messaging
middleware and the system agents.

2.1 Communication Models

The AGI communication models represent a high
abstraction from which new communication types
can be devised. The communication types represent
application-related capabilities. The AGI architecture
is compromised of three models:

1. Asynchronous Events Model: The first model
of communication is based on an asynchronous
event model, in which agents may post events
and messages and listen for events and messages
from other agents. This model is used for normal
priority messages, background tasks, and events
not requiring immediate responses. Furthermore,
this model is used to facilitate agent mobility by
storing messages for agents in transient.

2. Group Oriented Model: The second model
allows agents to cooperate and collaborate with
each other toward a common set of goals. It is
used to facilitate group communication and to
provide a versatile communication conduit.

3. Inter-Agent Synchronous Model: The third
model allows for direct inter-agent messaging
that provides the ability for two or more agents
to communicate directly with each other. It is
used to facilitate real-time messaging and
immediate delivery of alert and notification
messages.

Furthermore, each model is compromised of one or
more component. The components are integrated
using a set of interfaces. The interfaces define the
capabilities of each component, and provide a
framework to describe availability, priorities and
essential state information. Each agent may have one
or more communication core. The communication
core consists of one or more communication model
components.

Figure 2.1 shows the AGI communication models. It
depicts three agents with different communication
handling. Agent A has two communication cores, the

first core has three components and the second core
has one component. Agent B and C have a single
communication core consisting of component A
(Asynchronous), G (Group), and I (Inter-Agent).

Figure 2.1 – The AGI Communication Models

In the next section we describe the communication
types. The AGI architecture is not limited to those
types; new ones can be created and integrated into the
environment without impacting the overall
architecture. The types discussed in the next section
are directly mapped to our implementation.

2.2 Communication Types

The AGI architecture defines three types of agent-to-
agent communication mechanisms.

2.2.1 Direct inter-agent messaging

This mechanism uses the shared messaging bus
represented by the underlying network
communication layer to deliver the message via
single cast, multicast or broadcast as appropriate. It
provides an efficient communication conduit while
allowing for real-time agent-to-agent interactions. A
message is delivered directly from one agent to one
or more agents.

2.2.2 Indirect asynchronous messaging with
return receipt

This mechanism uses the shared messaging bus to
deliver the message to the messaging board. The
messaging board is a persistent storage area where
the messages are kept and maintained by a system
agent. A return receipt is sent back to the originating
agent upon the retrieval of the message. Furthermore,
the arrival of the message triggers an update event
that is sent from the messaging board to the recipient
agent.

An agent group concept has been proposed in
[Baumann97B]. This concept does not provide a
solution to fault tolerance, but may be extended using
group communication and voting. We define an agent
group as a collection of agents working together on a
common task. This mechanism provides group
communication as well as asynchronous messaging.

2.2.3 Mobile Messaging

This mechanism uses the messaging board and the
system agents to handle messages and events. Agents
may subscribe to events and messages and may post
additional messages. Messages may have a channel
identifier that serves to categorize the message by
subject, interest, or group. The subscription channels
are created and destroyed dynamically by the
submission and the deletion of the channel events. An
agent may request subscription to a channel, and
continue to receive updates, and at a later time turn
off channel updates, or completely remove its
subscription.

The communication types can be mapped into one or
more communication models. The table below shows
the mapping between the types above and the AGI
models:

Type Model
Indirect asynchronous messaging with
return receipt
Mobile Messaging

A

Indirect asynchronous messaging with
return receipt
Direct inter-agent messaging
Mobile Messaging

G

Direct inter-agent messaging I

Table 2.1 – Mapping Communication Types to
Communication Models

In the next section, we discuss the design approach of
the system agents and the middleware.

2.3 System Agents and the Messaging
Middleware Design

The mobility of an agent is defined based on the code
mobility and the migration model. As discussed in
[Dömel97] and [Baumann97a], the different degrees
of mobility can be distinguished. Our framework
allows an agent to move while in active
communication. The framework provides the
following mobility services:

a. Location Registry Service: This service provides
naming and location information. One or more
location registry agent (LRA) provides this
service.

b. Message Buffering and Forwarding Service:
This service provides a persistent area to buffer
and forward messages for agents in transient.
One or more message relay agent (MRA)
provides this service.

c. Messaging Events Management: This service
provides monitoring and notification
mechanisms of agent events. One or more
messaging event agent (MEA) provides this
service.

d. Reliable Delivery and Fault Tolerance: This is
accomplished by replication of the LRA, MRA,
and MEA agents.

In order to provide scalable location and message
services, the network is divided into location zones;
Figure 2.2 illustrates the zone topology. Each agent
belongs to a zone. A zone is a collection of hosts
connected together through the local network as
depicted in Figure 2.2.

Figure 2.2 – Zone Topology: Interconnected zones
and hosts within a Zone.

The system agents interact with each other to provide
messaging and mobility services to user agents. The
interaction is carried out through the messaging
middleware (MMW).

Each agent is equipped with the messaging
middleware. The middleware carries out the
communication among the agents. Furthermore, all
interactions among the service agents and user agents
are carried through this component. The user agent
performing a high-level application task is not aware
of the detail interaction among the messaging
middleware. The middleware maintains the system

agent names and the status of the middleware as
illustrated in table 2.2.

LRA
Name

LRA Address MRA
Name

MEA
Name

State

LRA 158.147.130.40 MRA MEA Idle

Table 2.2 – Information maintained by the
messaging middleware

Figure 2.3 – The AGI Architecture Hosts
Configuration

Each user agent undergoes a discovery phase through
the messaging middleware to select its system agents.
When an agent joins the framework, its messaging
middleware probes the network and determines the
most appropriate service agents. As the agent moves
from one machine to another the middleware may
select another system agent to take advantage of
resource availability and proximity.

Figure 2.3 shows a typical host configuration. In this
example the location zone consists of four hosts. Host
eola has three user agents, while host sunny has two
system agents: the MEA agent and the LRA replica
agent. Furthermore, host magic has one system agent:
the MRA agent, while host bucket has two user
agents and one system agent.

The system agents collaborate to provide
communication mobility. Fault tolerance and reliable
delivery of messages are provided through the
replication of system agents. In the next sections, we
describe the system agents in more details.

2.3.1 The Location Registry Agent (LRA)

The location registry agent keeps track of the location
of each agent and their current state. This agent may
reside on one or more hosts on the network. The
registry implementation may utilize a central registry,
a fully replicated registry or a distributed registry.
More details on the registry design are presented in
section 3.

The LRA agent is equipped with a special registry to
maintain location information. The registry keeps
track of three tables: the transient table, the user
agent location table, and the system agent location
table. The transient table has two attributes:

1. Agent Name: A unique name that identifies the
agent in transient.

2. Target Address: The network address where the
agent is migrating.

The location table for user agents has five attributes:

1. Agent Name: A unique name that identifies each
agent.

2. Physical Address: The network address where
the agent is currently executing.

3. MRA Agent Name: The name of the agents’
MRA service provider.

4. MEA Agent Name: The name of the agents’
MEA service provider.

5. Agent State: The agent mobility state. This
attribute is used by the middleware to decide
how to route messages. The state attribute takes
one of these values: stationary, in transient,
arrival, and off-line.

The MEA and the MRA attributes provide the ability
to load-balance the message forwarding and events
management services. In the simplest environments,
a single MEA agent and a single MRA agent carry
these services.

The location table for system agents has four
attributes:

1. Agent Name: A unique name that identifies each
agent.

2. Physical Address: The network address where
the agent is currently executing.

3. Agent State: The agent running state.
4. Utilization: The agent utilization load.

System agents inform the LRA of updated states by
utilizing the state attribute. It allows for dynamically
enabling or disabling of the system agents. The

utilization attribute is used by the middleware in the
discovery phase as a selection mechanism to select
from several system agent candidates. These two
columns are optional and are used to provide load
balancing and fault tolerance. Optionally the state
and utilization attributes can be set to null in which
case the LRA agent queries the system agent for state
and utilization information. The information returned
is cached for future queries. The middleware may
retrieve those columns from the LRA or ask the LRA
to refresh its information.

2.3.2 The Message Relay Agent (MRA)

The message relay agent is responsible for storing
asynchronous messages. The MRA agent buffers
messages for agents in transient.

The MRA agent is equipped with a special registry to
maintain message information. The registry keeps
track of one table. The message table has five
attributes:

1. Agent name: A unique name that identifies the
recipient of the message.

2. Message ID: A unique serial message identifier
used for indexing and text retrieval.

3. Message envelope: The message sender and
recipient envelope. Essentially this attribute
represents the message header.

4. Message contents: The message body
represented by the actual text of the message.

5. Time stamp: Message arrival date and time.

Buffering a message is triggered by an event that is
posted by the middleware of the agent in transient. At
arrival the middleware may instruct the MRA agent
to deliver its messages or it may retrieve the
messages itself. The MRA reassembles the message
from the message envelope and the message content
fields and routes the message to the recipient.

The MRA agent also serves as a messaging board
that stores asynchronous messages. Agents
independently post and retrieve messages relevant to
their task.

2.3.3 The Messaging Events Agent (MEA)

The messaging events agent is responsible for
receiving, maintaining and triggering message events.

The MEA agent is equipped with a special registry to
maintain event information. The registry keeps track
of one table. The event table has three attributes:

1. Agent Name: A unique name that identifies
monitored agent.

2. Monitored Event: Registry field triggering
callback message.

3. Recipient Name: A unique name that identifies
the recipient of the event.

3 Distributing The Registry

One of Mobile Agent systems target application areas
are geographically distributed applications. For such
applications scalability is a major hurdle.

To scale the system agents, the core component of
the agent must be scalable namely the registry. There
are at least three approaches for the implementation
of the registry. The registry types are contrasted in
table 3.1.

Registry Type Advantages Disadvantages
Centralized
Global
Registry

Easy to use
and
implement.

Does not scale
well.

Replicated
Registries
Everywhere

Easy to use
and provides
fault tolerance.

Replication may
overwhelm the
network. Must
deal with
concurrency and
coherency issues.

Distributed
(non-
overlapping or
slightly
overlapping)
Registries.

Scales well
and provides
fault tolerance.

Difficult to
implement. Must
deal with
concurrency and
mobility issues.

Table 3.1 – Comparing the Registry Types

We model our design of the registry for a non-
overlapping distributed registry. In this context, the
system agents employ discovery mechanisms to share
status and state information among each other and
provide mechanisms to find and update the registry
entries. The agents collaborate among each other to
keep the registries up-to-date. Periodic messages are
sent out to indicate agent activity and status. A
system agent can probe another for activity status and
determine its registry state.

When an agent moves, the registry entries associated
with that agent may move to another registry to take

advantage of geographical proximity. Upon arrival to
the destination machine, the messaging middleware
through the LRA agent determines if the registry
entries need to be moved to a system agent closer to
the new destination. If such host is available, the
registry information is copied to the new location,
and immediately removed from the previous registry.

The DNS protocol provides a distributed hierarchical
registry, but does not address mobility. We model our
distributed registry based on the DNS protocol, and
provide mechanisms to address mobility.

The remainder of this section is structured as follows.
Section 3.1 describes the organization of the location
registry. Section 3.2 provides a description of the
registry events at the system and user agent levels.

3.1 The Location Registry

The location registry agent is the logically central but
physically distributed repository for information
about agents. Agents register themselves with the
LRA so that other agents may find them. The
location registry agent maintains a database that
contains descriptions of the capabilities of the agents.

Each agent has a name and belongs to its birth zone.
In a single zone environment as described in section
2 only the agent name is significant, however in
multi-zone environments the agent name and its birth
zone information are necessary to locate the agent.
We term the agent name and its zone information as
the agent ID (AID). The format of the AID is:

Agent-name:birth-zone

The birth zone is the place to locate the agent if it can
not be found otherwise. The AID provides location
transparency; it is independent of the agent physical
address, and the agent ID does not change throughout
the life cycle of the agent.

Agent names are unique within each birth zone. The
agent ID space is the collection of user agent names
in all the zones within the execution environment.
Zone names are globally unique throughout the
environment. The zone name space is the collection
of all zone names available.

3.1.1 The Registry Organization

The location registry is organized as a tree hierarchy.
The hierarchy employs location zones at the system
and user agent levels. Zones are subdivision of the

naming space. Zones may represent geographical
locations, country codes, data center servers, a
collection of LANs (Local Area Networks), or a
subset of an organization private network. The
primary zones constitute the entire global naming
space. Zones are non-overlapping and are organized
in a hierarchical tree. Non-leaf registries have a list of
LRA agents serving that zone, and leaf registries
have a list of user agents that are served by this
location registry.

3.2 The Registry Events

In this section we describe the main events that take
place in the registry. The events are divided into three
categories: LRA agent events, middleware events,
and user agent events. The main events for LRA
agents and the middleware are startup and
termination. The main events for user agents are
startup, local name lookup, external name lookup,
migration, and termination. Due to space limitation,
we only describe details on name lookup and agent
migration.

3.2.1 Name Lookup

Name-to-address lookup queries can be for local
agents, or agents in a remote zone. From a user
perspective, the agent name lookup process is
transparent. The process is performed on behalf of
the user agent using the middleware. The middleware
calls a name-to-address lookup function that queries
an LRA agent, which returns the network address of
the destination agent to the calling middleware.

At lookup time, the primary zone registry for the
agent submitting the request is consulted, if this
registry can not be contacted, the replica registry is
contacted, if the replica is down, its replica in turn is
contacted. If the process fails, we consult the root
registry for another agent providing name services for
that zone, and we continue this process until some
timeout value is reached, or the name lookup has
been resolved.

In the next two subsections, we describe in greater
details the two scenarios of lookup: local name
lookup and external name lookup.

3.2.1a Local Name Lookup

When the name lookup is performed, the client’s
middleware asks the local LRA agent for the network
address of the destination agent. If the agent name is
found, then the query is for a local agent. Figure 3.1

illustrates this process. The middleware queries the
local LRA agent for information about an agent
within the local zone.

Figure 3.1 – The Local Name Lookup

Figure 3.2 – The External Name Lookup

3.2.1b External Name Lookup

The local lookup process is quite simple and
straightforward, involving very little work. However,
once these lookups are for zones outside of the local
zone, they get much more complicated very quickly.

Because the local LRA agent only knows about the
local zone, any agent queries for external data must
be forwarded to the LRA agents responsible for those
external zones. Because the registry is distributed, the
remote LRA agent must be located using the LRA
queries as well.

When a user agent issues a lookup for a remote zone,
it begins by sending a query to the middleware, the
middleware in turn forwards the query to the local
LRA agent. If the local LRA agent does not have the
information, then it will check its top-level zone list
and its cache of recently requested zones for the
name of the remote LRA responsible for the birth
zone in the agent ID, and then issues a request to the
remote LRA agent on behalf of the client. If the local
LRA agent does not know the network address of the
remote LRA agent, then it must issue a query to the

root LRA agent asking for the network address of the
LRA agent responsible for the remote zone. The root
LRA looks up its registry for an LRA serving the
zone requested. Once this information is returned, the
LRA agent will then issue a query to the remote
zone’s LRA agent asking for the network address of
the destination agent. Finally, this information is
returned to the user agent middleware that issued the
original query. Figure 3.2 illustrates this process. The
local LRA must query remote LRA agent for
information about an agent in a remote zone.

3.2.2 User Agent Migration

At the agent migration event the target address of the
destination machine is checked by the middleware.
The user agent may move within the same zone or to
another zone.

3.2.2a Intra-Zone Migration

If the target address of the destination machine
belongs to the same zone as the one the agent is
currently in, then the agent is moving within the same
zone. In this case, no physical move of the registry
entries is necessary. The agent network address is
updated upon the arrival to the destination machine.

3.2.2b Inter-Zone Migration

To begin migration, the local middleware checks to
see if the target host is ready by querying the
middleware on the destination machine. If a
connection was made, the destination middleware
returns its zone name as an acknowledgment to begin
the migration process. If the zone name returned is
not the same as the local zone name, then the agent is
migrating to another zone. In this case, the entries are
marked with “in transient” attribute in the birth zone,
and at arrival are copied to the destination zone. Once
the move is complete, the birth zone registry entries
are updated with the new host name.

As an agent moves from one zone to another the
registry must be updated to reflect the current
location. Several update schemes may be used to
maintain the registry records. In all schemes the birth
zone records are continuously updated to reflect the
current host name. We describe the following update
schemes:

1. Greedy Update: In this scheme when an agent
moves, its location entry is removed in the local LRA
and a new entry is added in the remote LRA. Its entry
in the birth zone LRA is updated. That is, only the

LRAs of the current zone and the birth zone have the
location changes of the agent. There are only 3
changes: One add, one delete, and one update.

2. Deep Update: In this scheme when an agent
moves, all the LRA records in zones where the agent
has resided are updated. The scheme requires an LRA
to store a back link to the previous LRA where the
agent resided. By following the back links, all LRAs
in previously visited zones are updated. There are
m+1 updates for m previous migrations, one add is
needed for the new residence.

3. Delayed Update: in this scheme when an agent
moves, its location entry is updated in the local LRA
and a new entry is added in the remote LRA. Its entry
in the birth zone LRA is updated. That is, only the
LRAs of the previous zone, current zone and the birth
zone have the location changes of the agent. There
are only 2 changes: One add, and two updates.

The first scheme is the simplest to implement and
may increase external lookups while reducing the
registry size. The second scheme blindly updates the
previously visited zones, reducing external lookups
while increasing the registry size. The third scheme
amortizes the cost of updating all visited zones over
the path of travel by updating two zones for each
move, while increasing the registry size. In terms of
update cost the first scheme performs best, however,
in terms of lookup cost the second scheme is best.
The third scheme reduces external lookups at the cost
of extra updates. The ideal scheme will vary
according to geographic proximity between zones
and the application communication cost requirements
versus storage requirements for each registry.

4 Simulation Results with Base
Agent Behavior

In this section, we describe the AGI framework
implementation. We have implemented the system
agents and the messaging middleware and created a
simulator to validate the AGI framework. The
simulator consists of the user agents and the
execution environment. Our implementation supports
communication within one zone, inter-zone
communication will be feasible using the design
approach of section 3.

We have measured three metrics to test the
simulation. The goal of the measurements is to test
the agent architecture and to simulate a real-life

execution environment. Furthermore, the experiments
are needed to validate the scalability of the system.

The test environment consisted of a network of ten
workstations comparably configured. Each
workstation had an instance of the middleware, all
agents communication were external, and the
underlying network speed was 100 Mbits/Second.
The interaction among the agents was driven
randomly and recorded in a script for multiple replay
of each test.

In the next section we describe each metric in greater
detail.

1. Message Throughput

The goal of this experiment is to measure the overall
aggregate message throughput rate of the system.
Throughput is defined as the number of messages the
system can handle within a sample interval of one
minute. The metric is given by this formula:

Message Throughput = Ms / Is

Where:
Ms = Number of messages delivered.
Is = Sampling interval in minutes.

In this experiment we vary two parameters: Number
of agents, and number of messages per agent. The
number of messages varies from 1 to 1024 messages,
the number of agents was fixed at 10, 50, 100, and
150. The message length of 2K was used, and a
sample interval of 1 minute.

Figure 4.1 – Message Throughput: Effect of the
number of messages

Figure 4.1 shows a plot of message throughput versus
the number of messages in the system. Each line

represents the throughput with a fixed number of
agents 10, 50, 100, and 150 respectively. The results
show that the throughput peak point is mainly related
to the number of agents. The smaller the number of
agents the higher the peak point value; however the
throughput decline rate appears to be independent of
the agents size and the number of messages in the
system. The throughput decline rate is uniform
regardless of the two parameters in this experiment.

2. Message Latency

The goal of this experiment is to measure the delays
in transmission of messages. Latency is defined as
the delay in receiving a message due to traffic,
overhead, etc. The metric is given by this formula:

Message Latency = Tt – Titf
 = Tt – Ml / NS

Where:
Tt = Total end to end time
Titf = Ideal Transfer time = Ml / NS
Ml = Message Length
NS = Network Speed

In this experiment we vary two parameters: Number
of messages and length of message. The number of
messages varies from 1 to 1024 messages, the
message length was fixed at 8 bytes, 2K, 4K, and 8K.

Figure 4.2 – Message Latency: Effect of the
number of messages

Figure 4.2 shows a plot of message latency versus the
number of messages in the system. Each line
represents the latency with a fixed message length of
8 bytes, 2K, 4K, and 8K respectively. As one can see,
as the number of messages is increased the overall
latency is increased. The increase is proportional to

Message Throughput

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

Number of messages

T
hr

ou
gh

pu
t

Throughput (No. of Agents
10)

Throughput (No. of Agents
50)

Throughput (No. of Agents
100)

Throughput (No. of Agents
150)

Message Latency

0

5

10

15

20

25

0 200 400 600 800 1000 1200

Number of Messages

La
te

nc
y

(m
s)

Latency (Message Length 8
Bytes)

Latency (Message Length
2K)

Latency (Message Length
4K)

Latency (Message Length
8K)

the message size. The results then show that the
overall latency is not directly related to the number of
the messages in the system, but not surprisingly, it is
related to the message size.

3. Messaging Middleware Overhead

The goal of this experiment is to measure the cost of
the middleware on communication. The overhead is
defined as the delay added by the messaging
middleware (MMW) to the communication cost. The
metric is given by this formula:

MMW Overhead = (Smwo + Rmwo)/ Tt

Where:

Smwo = The time elapsed while the message is
being processed by the sender’s middleware.
Rmwo = The time elapsed while the message is
being processed by the receiver’s
middleware.
Tt = The end to end time from the time the
message enters the sender’s middleware
until it leaves the receiver’s middleware as
depicted in figure 4.3.

Figure 4.3 – The middleware overhead metric

In this experiment we vary two parameters: Number
of agents, and length of message. The number of
agents varies from 1 to 150, while the message length
was fixed at 8 bytes, 2k, 4k, and 8K.

Figure 4.4 – Middleware Overhead: Effect of the
number of agents

Figure 4.4 shows a plot of the middleware overhead
percentage versus the number of agents in the system.
Each line represents the overhead with a fixed
message length of 8 bytes, 2K, 4K, and 8K
respectively. As one can see, the longer the message,
the lower the middleware overhead. Not surprising.
What is interesting is that the overhead appears to
stay about the same for messages of 8K or larger.

5 Related Work

In this section, we discuss research efforts related to
this paper.

Baumann discussed two communication concepts
based on session and global event management
[Baumann98]. While the communication concepts
introduced in Baumann where general, it did not
allow for the mobility of the agents while in active
communication. Our scheme allows an agent to move
while in active communication and provides for
message buffering and forwarding.

Dong in [Dong98] proposed a communication
framework from a language perspective, based on the
various types of cooperation among the agents. While
Reed in [Reed98] introduced a framework based on
dialogue types and the distinction between persuasion
and negotiation. Also, D’Iverno Agentis framework
[D’Iverno98] is based upon a model of agent
interaction whose key element is services and tasks.
Our scheme is general and application neutral, and
employs high-level communication mechanisms to
provide agent to agent communication and group
collaboration. Our scheme is independent of the
agent task and any agent group classification

Chess discussed communication portals that are
responsible for managing the arrival and departure of
itinerant agents. The portal may support either
session-oriented connection or messaging based
protocols [Chess95]. Rus’s transportable agents have
network-sensing tools that allow the agent to adapt to
the network configuration and to navigate under an
alternate plan [Rus97]. Our scheme borrows from
Rus’s concepts, and allows the agent to dynamically
acquire or offload communication components as it
moves through its life cycle.

Tambe have studied the problem of agent tracking in
multi-agent worlds. Although, the paper [Tambe96]
discusses the ability of one agent to execute models
of another agent, and provides for dynamic and
simultaneous execution of models, the architecture
does not address communication issues, but instead

Middleware Overhead

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200

Number of Agents

O
ve

rh
ea

d

Overhead (Message Length
8 bytes)

Overhead (Message Length
2K)

Overhead (Message Length
4K)

Overhead (Message Length
8K)

assumes a high bandwidth inter-model
communication.

6 Conclusion and Future Work

Mobile agents have several advantages over the
traditional client/server model. Mobile agents
consume fewer network resources since they move
the computation to the data rather than the data to the
computation and do not require a continuous
connection between machines. Mobile agents allow
clients and servers to extend each other's
functionality by programming each other.

There are many alternative techniques to mobile
agents such as queued RPC, proxy servers, etc. that
have many of the same advantages. The problem with
these techniques is that each one is only suitable for
certain domain specific applications [Harrison95, and
Green97]. A mobile agent system on the other hand
is a unified framework in which a wide range of
distributed applications can be implemented easily
and efficiently.

Mobile agents offer a new paradigm for very large
scale distributed heterogeneous applications. The
paradigm focuses on the interactions of autonomous,
cooperating and adaptable processes. Communication
is of central importance to agents, and, in particular,
establishing common agent communication
languages and protocols is essential. This paper
argues that if mobile agents are to successfully use
complex and dynamic networks, they must obtain
architectural support for remote agent communication
– an important capability required for agent
interactions. The key implications of agent
communication for agent architectures include open
and flexible framework, extendable and modular
communication models, and the ability to
communicate while in migration.

One of the main contributions of this research is an
open communication architecture based on
communication types. The AGI (Asynchronous,
Group Oriented, and Inter-agent communication)
architecture is an open framework not tied to a
particular agent execution environment, a particular
implementation, or the underlying network protocol.
Furthermore, the framework is based on components
employed through out the framework. This design
choice provides for scalability and adaptability. Well-
defined interfaces are employed among the
components to create a robust framework.

We have built an initial implementation of the AGI
agent communication architecture. Agents based on
this implementation have been used in a simulated
environment. We ran several automated agent plan
tests. Our initial results show that the AGI
architecture is capable of providing conventional and
mobile messaging. Furthermore, our tests show that
the overhead of the middleware is negligible and
does not impact the overall system performance.

Among issues for future work, we shall integrate the
design approach of section 3 for an implementation
of a distributed registry in which the location registry
is distributed across many location zones.

Other issues for future work, we are looking into an
implementation for a collaboration application in
which participants may subscribe to message
channels and listen for events. The application will
provide for active conversation, background
conversation, and passive interactions among
participants. The application will consist of a client
component, and a distributed server component.

Other future works involve integration with
commercially available agent execution
environments. Current state of the arts execution
environments includes Object-Space Voyager, IBM’s
Aglets, Agent Tcl, and Mitsubishi Concordia. One
problem with these execution environments is that
the source code is not available due to their
commercial nature. As a result augmenting and
enhancing the built in communication mechanism
may not be feasible for research purposes.
Nevertheless, we shall study the viability of the
current execution environments and compare their
mobile communication features. Additionally, we
shall investigate the role of Java RMI and object
serialization in providing mobile agent
communication facilities.

References

[Baumann97A] J. Baumann, F. Hohl, K. Rothermel,
and M. Strasser: Mole – Concepts of a Mobile Agent
System, submitted to WWW Journal, Special issue
on Applications and Techniques of Web Agents,
1997.

[Baumann97B] J. Baumann, and N. Radouniklis:
Agent Groups in Mobile Agent Systems, The IFIP
WG 6.1 International Working Conference on
Distributed Applications and Interoperable Systems,
DAIS'97.

[Baumann98] J. Baumann, F. Hohl, N. Radouniklis,
K. Rothermel, and M. Strber: Communication
Concepts for mobile agent systems, Proceedings of
the First International Workshop on Mobile Agents,
Berlin, Germany, April 1997.

[Chess95] Chess, D. et al: Itinerant Agents for
Mobile Computing, IEEE Personal Communications,
Volume 2, Number 5, Pages 34-49, October 1995.

[d’Iverno98] M. d'Inverno, D. Kinny and M. Luck:
Interaction Protocols in Agentis, Third International
Conference on Multi Agent Systems, 1998.

[Dömel97] P. Dömel, A. Lingnau and O. Drobnik:
Mobile Agent Interaction in Heterogeneous
Environments, First International Workshop on
Mobile Agents Berlin, Germany, April 1997.

[Dong98] H. Dong, J.H. Ding, X. Li and J. Lu: On
Open Communication Framework for Software
Agents, Proceedings of the Technology of Object-
Oriented Languages and Systems, 1998.

[Green97] Green, S. et al: Software Agents: A
review, IAG Technical Report, Trinity College, May
1997.

[Harrison95] C. Harrison, D. Chess and A.
Kershenbaum: Mobile agents: Are they a good idea?,
IBM Research Report, IBM T.J. Watson Research
Center, 1995.

[Reed98] C. Reed: Dialogue Frames in Agent
Communication, 3rd International Conference on
Multi-Agent Systems (ICMAS 1998).
[Rus97] D. Rus, R. Gray, and D. Kotz: Transportable
Information Agents, International conference on
autonomous Agents, Feb. 1997.

 [Tambe96] M. Tambe & P.S. Rosenbloom:
Architectures for agents that track other agents in
multi-agent worlds, Intelligent Agents, Vol II
Springer Verlag Lecture Notes in Artificial
Intelligence (LNAI 1037), 1996.

