
Completeness of Propositional Logic as a
Program

Ryan Stansifer
Department of Computer Sciences

Florida Institute of Technology
Melbourne, Florida USA 32901

ryan@cs.fit.edu

March 2001

Abstract

The proof of completeness for propositional logic is a constructive one,
so a computer program is suggested by the proof. We prove the complete-
ness theorem for Łukasiewicz’ axioms directly, and translate the proof into
the functional languages SML and Haskell. In this paper we consider this
proof as a program. The program produces enormous proof trees, but it is,
we contend, as good a proof of completeness as the standard mathematical
proofs. The real value of the exercise is the further evidence it provides that
typed, functional languages can clearly express the complex abstractions of
mathematics.

1 Introduction

We have written a program for finding proofs of tautologies in propositional logic
and implemented it in SML [12] and in Haskell [9, 8]. We merely implement
the steps of the constructive proof of the completeness for propositional logic.
SML and Haskell are good languages to capture the intended functions primarily
because of their recursive data structures. The programs themselves are proofs—
clear proofs to those that can read a functional programming language. Viewed

1

as a proof the programs may be clearer than the mathematical proofs that often
fumble with expressing algorithmic content.

This paper serves as a guide to these SML and Haskell programs. The com-
plete code is too long to include here in its entirety—it can be found elsewhere [16].

The programs find proofs in a particular axiom system. These proofs are
nearly impossible to discover by the human logician. But the proof trees con-
structed by the algorithm are extremely large. We examine how large they tend to
be as well as try various optimizations.

2 Propositional Logic

Propositional logic concerns reasoning about propositions
�

, � , etc. Sentences or
propositional formulas are built out of connectives for conjunctions, disjunction,
negation, implication, etc. We will be content with using just negation and im-
plication, as the others can be viewed as abbreviations or macros. This simplicity
may be welcome to human logicians, but it may be of no advantage to computer
programs—a single complex connective, a clause, say, may be more suitable for
computers that can handle more details simultaneously. Nonetheless, it is these
propositional formulas we model.

datatype prop = prop of string |
impl of prop * prop |
neg of prop;

A truth assignment to the constituent propositions makes any propositional
formula true or false. The value can be computed using the usual truth-table
semantics for the connectives.

2.1 Tautology

A propositional formula is a tautology if it is true for all possible assignments to
the propositions. This suggests a simple theorem prover that checks all combina-
tions. Of course, it has exponential complexity. Moreover, the tautology checker
does not actually build a proof in any particular system of axioms and inference
rules. Figure 1 is a list of some tautologies. These are some of the ones used in
the analysis later.

2

� ��� ���
impl(P,P)������� ���	� ���
impl(neg (neg P),P)� ��� �
��� �����
impl(P,neg (neg P))� ��� � � � �����
impl(P,impl(Q,P))� ��� � � � � ��� impl(P,impl(Q,Q))��
� ��� ���	� ���
impl(impl(neg P, P), P)� ��� �
� ��� � ��� impl(P, impl(neg P, Q))�
� ��� � ��� � ��� impl(neg P, impl(P, Q))������� ��� �����	� � � impl(neg (impl(P,P)), Q)� ��� ����� ��� � ������
impl(P, neg (impl(P,neg P)))�� ��� � ���	� � ���
impl(impl(P,neg P), neg P)������� ��� � ����� ���
impl(neg (impl(P,Q)), P)��
��� ��� � ���� �
��� �����
impl(neg (impl(P,Q)),neg(neg P))���
��� ��� � ����� � � � impl(neg (impl(P,Q)), neg Q)��� ��� � ���	� � ��� � ��� impl(impl(P,neg P), impl(P,Q))��� ��� � ��� ��� � � � �����
impl(impl(P,Q), impl(neg Q,neg P))��� ��� � � ��� � � � � �����
impl(impl(P,neg Q), impl(Q,neg P))����� ��� � � �	� � � � �����
impl(impl(neg P,neg Q), impl(Q,P))��
� ��� � � ��� ��
� ��� � ��� �����
impl(impl(neg P, neg Q),impl(impl(neg P,Q),P))��
��� ��� � ����� � � � �����
impl(neg (impl(P,Q)),impl(Q,R))���
��� ��� � ����� ��� ��� �����
impl(neg (impl(P,Q)),impl(neg P,R))��� ��� � ��� �� � � ����� � ��� ������
impl(impl(P,Q), impl(impl(Q,R), impl(P,R)))

Figure 1: List of tautologies

3

It is worth considering the tautology checker before continuing.

local
fun check’ sg phi =

value sg phi handle not_found p =>
check’ (update sg p true) phi andalso

check’ (update sg p false) phi;
in
fun checker phi = check’ undef phi;

end;

The function value computes the value, true or false, for a propositional for-
mula

�
given a particular assignment of the propositions. The function update

extends the assignment of the propositions to another proposition. The essence
of the tautology checker is to check if both (true and false) extensions make the
formula

�
true. We will see that the completeness theorem takes the same form.

It will be observed that the tautology checker does not form all ��� assignments
first—it does not bother to determine the � propositions that occur in the formula�

. Rather it optimistically evaluates the truth value of
�

and if the value cannot
be determined because of the absence of a proposition in the assignment, it uses
exception handling to retreat and try again after extending the assignment. This
takes advantage of the fact that the truth value of implication is known, if the
antecedent is false. The result is some reduction of the checking. We will see that
the completeness function operates similarly.

2.2 Axiom Schemata

In this paper we are concerned with constructing proofs that formulas are tautolo-
gies. To do so, we build proof trees out of the venerable rule of inference modus
ponens plus some axioms. Actually, not axioms but families of axioms of axiom
schemata.

There are many systems of axioms to select from. Frege [4] originally pro-
posed six axiom schemata.

4

Frege’s Axiom System

����� � � ��� � � �
���

�
� � � ��� � 	���	� �� � � � �	� � � � 	���

����
 � � � ��� � 	���	� ��� � � � � 	���
���

�

 � � � � �	� �
��� �� �

������� ��� � � �
������� � � ��� �

No question of completeleness, consistency (they are), or independence (they
aren’t) was raised. Hilbert and Ackermann [7] showed that only three schemata
were necessary.

Hilbert and Ackermann’s Axiom System
����� � � ��� �� �
���

�
�
� � � ��� ��� ��� �� �

����� � � � ��� � 	����	� ��� � � � �	� � � � 	����

Though not the smallest known, Łukasiewicz [11] proposed a well-known
collection that saves a few symbols.

Łukasiewicz’ Axiom System

Łu
� ��� � �� ��� �

Łu �
� � �
� � � � �

Łu
� � � � � ��� ����� � 	��	� � � � 	���

It is Łukasiewicz’ axiom system that we choose to use here.
In SML a proof tree is a data structure with the axioms for leaves and the rule

of inference modus ponens as the sole interior node. For the moment, we can use
this data structure:

datatype proof =
ax1 of prop | (* Lu1 *)
ax2 of prop*prop | (* Lu2 *)
ax3 of prop*prop*prop |(* Lu3 *)
mp of proof * proof;

Later, we will have cause to add a constructor for assumptions.
Proofs in Łukasiewicz’ axiom system are quite tedious. We give an example

proof in the next section after introducing some helpful lemmas.

5

3 Proof of Completeness

All instances of the axiom schemata are tautologies, as can easily be verified
using truth tables. The important question is: can proofs for all tautologies be
constructed starting from just these few axioms. They can, and this result is known
as the completeness theorem for propositional logic. In his doctoral dissertation
of 1920 Post [13] was the first to give a proof. He used the propositional subset of
Principia Mathematica.

In the meantime, many proofs of completeness for Łukasiewicz’ axioms have
been given. Often these proofs are indirect, as in [14], relying on other formal
systems. One [1] is very direct, but relies on a different notion of derivation. One
proof is given in [3]. It is especially interesting, since it reveals how one might
originally come up with such a proof. We give the most economical proof of
completeness, giving rise, we hope, to the best program.

3.1 Two Initial Lemmas

The combination of modus ponens and Łukasiewicz’ axiom 3 appear many times
in the subsequent proofs. So we begin with two lemmas that incorporate this
pattern called the Backward Propagation Lemma and the Transitivity Lemma by
Dúinlang [3].

Lemma 1 (Backward Propagation) For any propositional formula
	

, if
� � �

�
, then

� ��� � 	��	� � � � 	��
,

Proof. Given a proof of
� � �

, an application of modus ponens to axiom 3
gives the desired result.

�������	� �
� � � � ��� ���� � 	���� � � � 	����

����� �
� � �

��� � 	���� � � � 	��

6

Lemma 2 (Transitivity) If
� � � �

and
� � � 	

, then
� � � 	

.

Proof. Given a proof of
� � �

and
� � 	

����� � � �
� � � � �	� ���� � 	��	� � � � 	����

����� �
� � �

��� � 	���� � � � 	��

�� ��� �
� � 	

� � 	

3.2 A Proof Of
��� �

Before continuing with the proof of correctness, we digress to give an example of
a proof of a tautology. The simplest proof of an interesting propositional formula
is most probably the proof of

� � �
. It follows almost immediately from the

Transitivity Lemma just proved. Curiously, it is the only theorem one seems to
come up with when playing with Łukasiewicz’ axioms. Apparently the proofs of
all other interesting theorems are too obscure to discover by accident. The proof
of
� � �

is shown in Figure 2. Compare it to the SML tree expression of type
proof that represents it:

mp (
mp (

ax3 (A,impl(neg A,A),A),
ax2 (A,A)),

ax1 A)

�������	� �
� � � ��� � � � ����� ������ � � � ��� � ��� � � �� ��

�������	� �� � ��� � � � �
����� � � � �	� � �	� � � �� �

�������	� �
��� � � � ��� �

� � �

Figure 2: A proof of
� � �

7

It is these proof trees that the completeness function must discover. The proof
trees soon get too cumbersome and wide to fit on the page, so if they must be
displayed, we write them in a linear fashion.

� ��� � �� ��� � ��������� �

�
� � �
� � �� � ��������� �

� � � � ��� � � � ����� ������� � � � �	� � �	� � � � � ��
� ��
� � �� ���� ��� � � � � �
	��

��
�

� � � � 	�� �

�

The SML expression using let nicely linearizes the proof expression. It
corresponds in form (as well as in substance) closely to the linear proof above.

let
val pr1 = ax1 A; (* (˜A=>A)=>A *)
val pr2 = ax2 (A,A);(* A=>(˜A=>A) *)
val pr3 = ax3 (A,impl(neg A,A),A);
val pr4 = mp (pr3,pr2);

in
mp (pr1, pr4)

end

The proof that
��� �

is derivable can be further simplified by taking advan-
tage of the Transitivity Lemma (Lemma 2), as follows:

� ��� � � � ��� � ��������� �

�
� � �
� � �� � ��������� �

� � � � ��� ����� �
�
��
� �

Also, the SML proof expression can take advantage of a lemma, a function tran-
sitivity that applies modus ponens to two proof expressions. The result is a
function that creates a proof expression for

� � �
given any

�
:

fun derived1 (A) =
transitivity (ax2(A,A), ax1 A);

3.3 Another Proof

Another tautology with a short proof is
��� � �� ��� �

.

8

� ��� � � � �	� � ����� ��� �

�
� � �
� � � � � ����� ��� �

� � � � �
� � � � ��	� ����
� � � � ���� ��� � � �� ��� ����� ��� �
� ��
� � � � �	� � �	� � � � � � 	 � �

 �� � �� 	 � �

�

� � � �� ��� �
��� � � � �	� � � ����� ��� �� ��� � � � �	� � 	 � �

�

3.4 Other Lemmas

A chain of lemmas is required for the proof of the deduction theorem. We list
them here without proof—the proofs should be obvious from looking at the code.
Lemma 7 is Hilbert’s axiom 1.

Lemma 3 If
� ��� � � �

, then
� � � � � �

.

Lemma 4 If
� �

, then
� ��� � � �

.

Lemma 5 If
� �

and
� � � ��� � 	��

, then
� � � � 	��

.

Lemma 6 For any propositional formulas
�

and
�

,
� ��� � � � � � � � � �

� �
.

Proof. Suppose
� ��� ����� � � �

.

� � � � � ��������� � ��� �

�
���
� � � � �	� � � ��� ���� � � � ��� ��
� � � � �	� � �� ��������� �

� ���
� � � � �	� � � ��� ��
� � � � ��� � � ��� � ��� � � � � �
� �
��� � � � ��� ���
� � � � ��� �
� � � � ��� ��������� �� �
��� � � � ��� ���
� � � � ��� � � ��� � ��� �

� �

� �

� � � �
� � � � � ��������� �� ���
� � � � �	� � �	� � � � � � ��� � ��� � ��� � �

 �
��� � � � ��� � � � � � ��� � ��� �

� �

� �

Lemma 7 For any propositional formulas
�

and
�

,
� � � ��� �� �

.

9

Lemma 8 For any propositional formula
�

,
� ��� � ��

.

Lemma 9 For any propositional formula
�

,
� � � ��� �

.

Lemma 10 If
� � � �

and
� � � � �

, then
� �

.

Lemma 11 For any propositional formulas
�

and
�

,
� � � � � � � � �

.

Lemma 12 If
� � � � � � � �

, then
� � � �

.

Lemma 13 If
� � � ��� � 	��

and
� � � �

, then
� � � � 	��

.

3.5 The Deduction Theorem

The first version of the deduction theorem appeared in Herbrand’s thesis [5]. It
is a considerable breakthrough in theorem construction technique. But it requires
that the notion of a proof be enlarged to include proofs using assumptions, hence
a surprising extra constructor assume in the proof data type. The deduction
theorem shows how to eliminate a use of an assumption in a proof tree, and
provides another, completely different, way to build assumption-free proofs. It
hinges on Lemmas 4 and 13.

Theorem 1 (Deduction) Given a proof of
�

(possibly assuming
�

), there is a
proof of

� � �
without any assumptions of

�
.

Like the bracket abstraction algorithm for combinators [2, 15] considerable
savings can be obtained by eliminating the assumption only when it is actually
used. In that case Lemma 4 can use used and the recursive use of the deduction
theorem is avoided. Otherwise the two recursive calls result in an exponential
explosion in proof size.

3.6 The Completeness Theorem

Lemma 14 If
� �

and
� � �

, then
� ��� � � � �

.

Proof. Using
� �

,
� � �

and the assumption
��� �

, a proof of
��� � � � �

can be found. Using the deduction theorem and Lemma 10 an assumption-free
proof can be found.

10

fun deduction a (assume b) =
if a=b then derived1(a) else lemma_2 a (assume b)

| deduction a (mp (p1,p2,_)) =
let
fun f p = if occurs a p then deduction a p else lemma_2 a p;

in
lemma_11 (f p1, f p2)

end
| deduction a p = lemma_2 a p

;
fun F sg (prop x) = if sg x then assume (prop x) else assume (neg(prop x))
| F sg (neg p) =

if value sg p
then modus_ponens (lemma_7 p, F sg p) (* |- p ==> |- ˜˜p *)
else F sg p (* |- ˜p *)

| F sg (impl(p,q)) =
if value sg p
then if value sg q

then lemma_2 p (F sg q) (* |- q ==> |- p=>q *)
(* |- p && |- ˜q ==> |- ˜(p=>q) *)
else lemma_12 (F sg p, F sg q)

else modus_ponens (lemma_9 (p,q), F sg p)(* |- ˜p ==> |- p=>q *)
;
local
fun elim v prt prf =
lemma_8 (deduction (prop v) prt, deduction (neg (prop v)) prf);

fun allp phi sg nil = F sg phi
| allp phi sg (v::vs) =

let
val prt = allp phi (update sg v true) vs)
val prf = allp phi (update sg v false) vs)

in
elim v prt prf

end
in
fun completeness phi = allp phi undef (propositions phi nil)

end;

Figure 3: The completeness function.

11

With this lemma we can write a function (called F in figure 3) which, given any
assignment and any propositional formula, can construct a proof of the formula or
its negation (depending on which is true in the assignment). The proof assumes
a proof of each proposition occurring in the formula or its negation (depending
on which is true in the assignment). With this proof-constructing function we are
finally ready for the Completeness Theorem.

Theorem 2 (Completeness) Given a propositional formula
�

that is a tautology,
then there is a proof of

�
.

Proof. Since
�

is a tautology, the function F will construct a proof of it
assuming any combination of values for the propositions. It systematically uses
the deduction theorem to get proofs of

� � �
and

� � � �
, and then uses

Lemma 10 to get a proof of
�

. After all propositions
�

have been eliminated, the
proof is assumption free.

A look at the code (shown partially in Figure 3) makes this clear. Many stan-
dard mathematical proofs with their unnatural induction arguments over natural
numbers not only obscure the procedure, but also fail to be fully convincing.

4 Conclusions

No proof can be constructed by any of the SML and Haskell functions that does
not really represent a proof in Łukasiewicz’ axiom system. The type system
insures the “soundness” of any proofs. To ensure this requires the hiding of the
type constructor mp by the function modus ponens.

local
fun check (impl(p,q),r) =

if p=r then q else raise error
| check (p,_) = raise error

in
fun modus_ponens (p,q) =

mp(p,q,check(proof_of p,proof_of q))
end;

This can be accomplished by the abstype/with construct in the SML language.
For convenience we keep the formula for which modus ponens is a proof in the
third argument of the mp constructor.

12

F back trans MP size
��� �

4 145 317 842 1,673����� ���	� �
6 173 379 1,006 1,999��� ��� � ���
6 173 379 1,006 1,999��� � � � ���

10 689 1,493 3,974 7,889��� � � � � � 10 899 1,943 5,174 10,269��� ��� ���	� �
7 742 1,603 4,270 8,473��� ��� ��� � � 12 458 1,003 2,663 5,291� ��� � ��� � � 12 458 1,003 2,663 5,291����� ��� �����	� � 16 572 1,253 3,325 6,607��� ����� ��� � �����
8 770 1,665 4,434 8,799� ��� � ���	� � �
8 770 1,665 4,434 8,799����� ��� � ���	� �

14 725 1,578 4,194 8,329����� ��� � ���	� �
��� ���
16 753 1,640 4,358 8,655����� ��� � ���	� � � 15 935 2,028 5,394 10,709� ��� � ���	� � ��� � � 16 1,652 3,575 9,519 18,891� ��� � ��� �
� � � � ���
16 2,351 5,065 13,496 26,777� ��� � � �	� � � � � ���
15 2,323 5,003 13,332 26,451��� ��� � � ��� � � � ���
15 2,407 5,183 13,812 27,403����� ��� � ���	� � � � ���
30 1,982 4,301 11,439 22,711����� ��� � ���	� �
� ��� ���
32 1,618 3,525 9,367 18,603��� ��� � � ��� ��
� ��� � ��� ���
18 3,732 8,28 21,399 42,451� ��� � ��� ��� � � ����� � ��� ����
34 10,070 21,642 57,694 114,447� ��� � � � ������� �� ��� � ��� � ��� �����
36 10,975 23,581 62,866 124,705

Figure 4: Indications of the size of the proofs found by the completeness theorem

13

On the other hand, the language does not insure that the completeness func-
tion, a function from propositional formulas prop to proofs proof, actually
performs as advertised on all formulas. It could build a proof with assumptions or
it could build a proof of some other propositional formula. The required property
is

proof_of (completeness (phi)) = phi

for all formulas phi. It can easily be seen that each step of the program/proof
builds a proof of the expected propositional formula.

Some optimizations are necessary to the completeness function to get it to
work efficiently at all. Most importantly, the deduction must remove assumptions
in a proof only when they are in fact used. To apply the transformation needlessly
results in even larger proof trees. It is also possible to exploit partial assignments
in the manner of the tautology checker mentioned earlier. This has a modest effect
and is not shown in figure 3. The algorithm rarely tries to prove any instances of
the three axioms. So, an optimization that checks for that situation has little effect.

The proof trees created by the completeness function are quite large. Figure 4
lists some measures of the work done by the function for a number of examples.
The meaning of the columns is given here:

F Calls to the function F.

back Calls to the Backward Propagation Lemma (Lemma 1).

trans Calls to the Transitivity Lemma (Lemma 2).

MP Calls to the proof constructor modus ponens

size Number of times modus ponens is used in the final proof plus the number
of axioms used.

The poor performance is obvious; the proof of
� � �

given earlier has size 5.
The completeness function finds a proof as promised, but it has size 1,673 (the
first line of the table).

Notice that the deduction theorem tears down proof trees and builds them back
up again. It is for this reason that the number of times modus ponens is used in the
completeness function is greater than the number of times modus ponens appears
in the final proof tree.

The Haskell code does not differ significantly from the SML code. In par-
ticular, the use of lazy evaluation does not appear to be any advantage in these

14

functions. However, proof tactics, functions that discover proofs, could benefit. If
a proof is known, it should be substituted before the expense of finding one using
the completeness function.

One interesting programming note concerns exception handling. We have seen
two different uses of exceptions in the SML snippets that appear here. One is
for errors and one controls the execution of the opportunistic tautology checker.
Pure functional languages such as Haskell have no exception handling since it
introduces issues with the order of evaluation. This is not missed in the first case.
But a tautology checker that takes advantage of the truth table of implication is
harder to write without exception handling.

References

[1] Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice
Hall, Upper Saddle River, New Jersey, 1998.

[2] Haskell Brooks Curry and Robert Feys. Combinatory Logic. Studies in logic
and the foundations of mathematics. North-Holland, Amsterdam, 1958.

[3] Colm Ó Dúinlaing. Completeness of some axioms of Łukasiewicz’s: An
exercise in problem-solving. TCDMATH 97-05, Trinity College, Dublin,
June 1997.

[4] Friedrich Ludwig Gottlob Frege. Begriffsschrift, eine der Arithmetischen
Nachgebildete Formelsprache des Reinen Denkens. Halle, 1879. Translation
appears in [17] pages 1–82.

[5] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD
thesis, Université de Paris, Paris, France, 1930. Translation of Chapter 5
appears in [17] pages 525–581.

[6] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik.
Verlag von Julius Springer, Berlin, second, revised edition, 1938.

[7] David Hilbert and Wilhelm Ackermann. Principles of Mathematical Logic.
Chelsea, 1950. Edited with notes by Robert E. Luce. Translation of [6] by
Lewis M. Hammond, George G. Leckie and F. Steinhardt.

15

[8] Paul Hudak and Joseph H. Fasel. A gentle introduction to Haskell. SIGPLAN
Notices, 27(5), May 1992. A newer version is available on the WWW at
http://www.haskell.org/tutorial/.

[9] Paul Hudak, Simon L. Peyton Jones, and Philip Wadler. Report of the pro-
gramming language Haskell, a non-strict purely functional language (version
1.2). SIGPLAN Notices, 27(5), May 1992.

[10] Jan Łukasiewicz. Jan Łukasiewicz, Selected Writings. North-Holland, 1970.
Edited by L. Borowski.

[11] Jan Łukasiewicz and Alfred Tarski. Untersuchungen über den Aus-
sagenkalkül. Comptes Rendus des Séances de la Societé des Sciences et
des Lettres de Varsovie, Classe III, 23:1–21, 1930. Reprinted and translated
in [10].

[12] Lawrence C. Paulson. ML for the Working Programmer. Cambridge Uni-
versity Press, Cambridge, England, second edition, 1996.

[13] Emil Leon Post. Introduction to a general theory of elementary propositions.
American Journal of Mathematics 43, pages 163–185, 1921. Reprinted in
[17] pages 264–282.

[14] Steve Reeves and Michael Clarke. Logic for Computer Science. International
computer science series. Addison-Wesley, Wokingham, England, 1990.

[15] Ryan Stansifer. The Study of Programming Languages. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1995.

[16] Ryan Stansifer. Completeness of propositional logic as a program
(with code). Technical Report CS-2001-1, Department of Com-
puter Sciences, Florida Institute of Technology, 2001. Available at
www.cs.fit.edu/˜tr/2001.

[17] Jan van Heijenoort. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press, Cambridge, Massachusetts,
1967.

16

A SML Code

1 datatype prop = prop of string | impl of prop * prop | neg of
prop;

2

3 (* assigment of infinite number of propositions to their value.
*)

4 type assignment = string -> bool;
5

6 (* value of a formula given an assignment *)
7 fun value sg (prop n) = sg n
8 | value sg (impl (h,s)) = not (value sg h) orelse (value sg s)
9 | value sg (neg phi) = not (value sg phi)

10 ;
11

12 exception not_found of string;
13

14 fun undef n = raise not_found n;
15 fun update f x y z = if z=x then y else f z;
16

17 (* semantic tautology checker *)
18 local
19 fun check’ sg phi =
20 value sg phi handle not_found p =>
21 check’ (update sg p true) phi andalso
22 check’ (update sg p false) phi;
23 in
24 fun checker phi = check’ undef phi;
25 end;
26

27 datatype proof =
28 assume of prop |
29 ax1 of prop | (* Lk1: (˜P => P) => P *)
30 ax2 of prop*prop | (* Lk2: P => (˜P=>Q) *)
31 ax3 of prop*prop*prop | (* Lk3: P=>Q => ((Q=>R)=>(P=>R)) *)
32 mp of proof*proof*prop;
33

34 fun axiom1 p = impl(impl(neg p,p),p);
35 fun axiom2 (p,q) = impl(p, impl(neg p,q));
36 fun axiom3 (p,q,r) = impl (impl(p,q), impl(impl(q,r), impl(p,r)));

17

37

38 fun proof_of (assume p) = p
39 | proof_of (ax1 p) = axiom1 p
40 | proof_of (ax2 (p,q)) = axiom2 (p,q)
41 | proof_of (ax3 (p,q,r)) = axiom3 (p,q,r)
42 | proof_of (mp (_,_,p))= p;
43

44 (* is the formula "p" used in the a proof? *)
45 fun occurs p (assume q) = p=q
46 | occurs p (mp (p1,p2,_)) = occurs p p1 orelse occurs p p2
47 | occurs p (_) = false
48 ;
49

50 exception not_implication of prop;
51 exception not_hypothesis;
52

53 (* The constructor of type "proof" should not be used, because it
54 does not (and cannot) check its arguments to see if they are

in
55 the right form.
56 *)
57 local
58 fun check (impl(p,q),r) = if p=r then q else raise

not_hypothesis
59 | check (p,_) = raise not_implication p
60 in
61 fun modus_ponens (p,q) = mp (p,q,check (proof_of p, proof_of q))
62 end;
63

64 (* example proofs *)
65 val P = prop"P"; val Q = prop"Q"; val R = prop"R"; val S =

prop"S";
66 val pr1 = ax3 (impl(neg P,P), P, Q);
67 val pr2 = modus_ponens (pr1, ax1 (P)); (* (P=>Q) => ((˜P=>P)=>Q)

*)
68 val pr3 = modus_ponens (ax3(P,impl(neg P,P),P), ax2(P,P));
69

70

71 (* backward propagation; derived rule of inference;
72 Given any proposition C, |-A=>B ==> |- (B=>C) => (A=>C)

18

73 *)
74 fun backward C (pr1) =
75 let
76 val impl(A,B) = proof_of (pr1);
77 in
78 modus_ponens (ax3(A,B,C), pr1)
79 end;
80

81 (* transitivity; derived rule of inference;
82 |-A=>B, |-B=>C ==> |-A=>C
83 *)
84 fun transitivity (pr1, pr2) =
85 let
86 val impl(A,B) = proof_of (pr1);
87 val impl(D,C) = proof_of (pr2);
88 (* ax3: A=>B => ((B=>C)=>(A=>C)) *)
89 val pr3 = modus_ponens (ax3(A,B,C), pr1); (* (B=>C)=>(A=>C)

*)
90 in
91 (* If D<>B, then the next application of MP won’t work! *)
92 modus_ponens (pr3, pr2)
93 end;
94

95 fun derived1 (A) = transitivity (ax2(A,A), ax1 A); (* A=>A *)
96

97 (* Lemma 1.
98 |- ˜B=>˜A ==> |- A=>B
99 *)

100 fun lemma_1 (pr1) =
101 let
102 val impl(neg B,neg A) = proof_of pr1;
103 val pr2 = backward B pr1; (* ˜A=>B => ˜B=>B *)
104 val pr3 = transitivity (ax2(A,B), pr2); (* A=>(˜B=>B) *)
105 in
106 transitivity (pr3, ax1 B) (* A=>B *)
107 end;
108

109 (* Lemma 2. Requires lemma_1
110 |- A ==> |- B=>A
111 *)

19

112 fun lemma_2 B pr1 =
113 let
114 val A = proof_of pr1;
115 val pr2 = modus_ponens (ax2(A,neg B), pr1); (* ˜A=>˜B *)
116 in
117 lemma_1 pr2
118 end;
119

120 (* Lemma 3. Requires lemma_2
121 |- B, |- A=>(B=>C) ==> |- A=>C
122 *)
123 fun lemma_3 (pr1,pr2) =
124 let
125 val impl(A,impl(B,C)) = proof_of pr2;
126 val pr3 = lemma_2 (neg C) pr1; (* ˜C => B *)
127 val pr4 = backward C pr3; (* B=>C => (˜C=>C) *)
128 val pr5 = transitivity (pr4, ax1 C); (* B=>C => C*)
129 in
130 transitivity (pr2, pr5)
131 end;
132

133 (* Lemma 4. Requires lemma_3
134 |- (˜B => ˜A) => (A=>B)
135 *)
136 fun lemma_4 (A,B) =
137 let
138 val pr1 = ax3 (impl(neg A,B), impl(neg B,B), B);
139 val pr2 = lemma_3 (ax1 B, pr1);
140 val pr3 = ax3 (neg B, neg A, B);
141 val pr4 = transitivity (pr3, pr2);
142 val pr5 = backward B (ax2(A,B));
143 in
144 transitivity (pr4, pr5)
145 end;
146

147 (* Lemma 5. Requires lemma_4.
148 |- A => (B=>A)
149 *)
150 fun lemma_5 (A,B) = transitivity (ax2 (A,neg B), lemma_4 (B,A));
151

20

152 (* Lemma 6. Requires lemma_5, lemma_4
153 |- ˜˜A => A
154 *)
155 fun lemma_6 A =
156 let
157 val pr1 = lemma_5 (neg(neg A), neg A);(* ˜˜A=>(˜A=>˜˜A)

*)
158 val pr2 = lemma_4 (neg A, A); (* (˜A=>˜˜A) =>

(˜A=>˜A)*)
159 val pr3 = transitivity (pr1, pr2); (* ˜˜A => (˜A => A)

*)
160 in
161 transitivity (pr3, ax1 A)
162 end;
163

164 (* Lemma 7 |- A => ˜˜A *)
165 fun lemma_7 A = lemma_1 (lemma_6 (neg A));
166

167 (* Lemma 8. Requires lemma_4, lemma_7
168 |- A=>B, |- ˜A=>B ==> |- B
169 *)
170 fun lemma_8 (pr1,pr2) =
171 let
172 val impl(neg A,B) = proof_of pr2;
173 val pr3 = transitivity (pr2, lemma_7 B); (* ˜A=>˜˜B *)
174 val pr4 = modus_ponens (lemma_4 (neg B, A), pr3); (* ˜B=>A *)
175 val pr5 = transitivity (pr4, pr1); (* ˜B => B *)
176 in
177 modus_ponens (ax1 B, pr5) (* B *)
178 end;
179

180 (* Lemma 9. Requires lemma_7
181 |- ˜A => (A=>B)
182 *)
183 fun lemma_9 (A,B) =
184 let
185 val pr1 = ax2 (neg A, B); (* ˜A => (˜˜A=>B) *)
186 val pr2 = lemma_7 A; (* A => ˜˜A *)
187 val pr3 = backward B pr2; (* (˜˜A=>B) => (A=>B) *)
188 in

21

189 transitivity (pr1, pr3)
190 end;
191

192

193 (* Lemma 10. Requires lemma_9
194 |- A => (A=>B) ==> |- A=>B
195 *)
196 fun lemma_10 (pr1) =
197 let
198 val impl(A,impl(_,B)) = proof_of pr1;
199 val pr2 = lemma_9 (A,B); (* ˜A => (A=>B) *)
200 in
201 lemma_8 (pr1, pr2)
202 end;
203

204 (* Lemma 11. Requires lemma_10
205 |- A=>(B=>C) |- A=>B ==> |- A=>C
206 *)
207 fun lemma_11 (pr1, pr2) =
208 let
209 val impl(A,impl(B,C)) = proof_of (pr1)
210 val pr3 = backward C pr2; (* B=>C => A=>C *)
211 val pr5 = backward (impl(A,C)) pr1; (*

(B=>C)=>(A=>C)=>(A=>(A=>C))*)
212 val pr6 = modus_ponens (pr5, pr3); (* A=> (A=>C) *)
213 in
214 lemma_10 (pr6)
215 end;
216

217 (*
218 The deduction theorem
219 *)
220 fun deduction a (assume b) =
221 if a=b
222 then derived1 a (* A=>A *)
223 else lemma_2 a (assume b)
224 | deduction a (mp (p1,p2,_)) =
225 let
226 fun f p = if occurs a p then deduction a p else lemma_2 a

p;

22

227 (* deduction a p1 : A=>(P=>Q) *)
228 (* deduction a p2 : A=>P *)
229 in
230 lemma_11 (f p1, f p2)
231 end
232 | deduction a p = lemma_2 a p
233 ;
234

235

236 (* Lemma 12. Requires the deduction theorem, lemma_8.
237 |- A, |- ˜B ==> |- ˜(A=>B)
238 *)
239 fun lemma_12 (pr1, pr2) =
240 let
241 val A = proof_of (pr1);
242 val neg B = proof_of (pr2);
243 val i = impl (A,B);
244 val pr4 = modus_ponens (assume i, pr1); (* B *)
245 val pr5 = modus_ponens (ax2 (B, neg i), pr4);
246 val pr6 = modus_ponens (pr5, pr2); (* ˜(A=>B) *)
247 val pr7 = deduction i pr6; (* (A=>B) => ˜(A=>B) *)
248 val pr8 = derived1 (neg i); (* ˜(A=>B) => ˜(A=>B) *)
249 in
250 lemma_8 (pr7, pr8)
251 end;
252

253 fun assuming sg x =
254 assume (if sg x then prop x else neg(prop x));
255

256 fun F sg (prop x) = assuming sg x
257 | F sg (neg p) =
258 if value sg p
259 then modus_ponens (lemma_7 p, F sg p) (* |-p=>˜˜p,|-p ==>

|-˜˜p *)
260 else F sg p (* |- ˜p

*)
261 | F sg (impl(p,q)) =
262 if value sg p
263 then if value sg q
264 then lemma_2 p (F sg q) (* |- q ==> |- p=>q *)

23

265 else lemma_12 (F sg p, F sg q) (* |-p,|-˜q ==>
|-˜(p=>q) *)

266 (* |-˜p=>(p=>q), |-˜p ==> |-p=>q *)
267 else modus_ponens (lemma_9 (p,q), F sg p)
268 ;
269

270 local
271 fun elim v prt prf =
272 lemma_8 (deduction (prop v) prt, deduction (neg (prop v))

prf);
273

274 fun allp sg phi =
275 F sg phi handle not_found v =>
276 let
277 val prt = allp (update sg v true) phi (* v, ...|- phi *)
278 val prf = allp (update sg v false) phi (* ˜v,...|- phi *)
279 in
280 elim v prt prf
281 end;
282 in
283 fun completeness phi = allp undef phi
284 end;

B Haskell Code

1 data Formula = Prop String | Neg Formula | Impl (Formula,Formula)
2 deriving(Eq)
3

4 instance Show Formula where
5 showsPrec p (Prop s) = shows s
6 showsPrec p (Neg (Prop s)) = showChar ’˜’ . shows s
7 showsPrec p (Neg phi) = showString "(˜" . shows phi . showChar

’)’
8 showsPrec p (Impl (x,y)) = showChar ’(’ . shows x . showString

" => " . shows y . showChar ’)’
9

10

11 propositions (Prop s) l = if elem s l then l else s:l
12 propositions (Neg p) l = propositions p l

24

13 propositions (Impl (p,q)) l = propositions q (propositions p l)
14

15 value sg (Prop s) = sg s
16 value sg (Neg phi) = not (value sg phi)
17 value sg (Impl (phi,psi)) = (not (value sg phi)) || (value sg psi)
18

19 undef _ = error "not found"
20 update f x y z = if z==x then y else f z
21

22 check phi = check’ phi undef (propositions phi [])
23 where
24 check’ phi sg [] = value sg phi
25 check’ phi sg (v:vs) =
26 check’ phi (update sg v True) vs && check’ phi (update sg v

False) vs
27

28

29 data Proof = Assume Formula |
30 Ax1 Formula |
31 Ax2 (Formula,Formula) |
32 Ax3 (Formula,Formula,Formula) |
33 Mp (Proof,Proof,Formula)
34 deriving(Eq)
35

36 instance Show Proof where
37 showsPrec p x = shows (proof_of x)
38

39 proof_of (Assume p) = p
40 proof_of (Ax1 p) = axiom1 p
41 proof_of (Ax2 (p,q)) = axiom2 p q
42 proof_of (Ax3 (p,q,r)) = axiom3 p q r
43 proof_of (Mp (_,_,p)) = p
44

45 occurs p (Assume q) = (p==q)
46 occurs p (Mp (p1,p2,_)) = occurs p p1 || occurs p p2
47 occurs p (_) = False
48

49 axiom1 p = Impl (Impl (Neg p, p), p)
50 axiom2 p q = Impl (p, (Impl (Neg p, q)))
51 axiom3 p q r = Impl (Impl (p,q), Impl (Impl (q,r), (Impl (p,r))))

25

52

53 modus_ponens p q = Mp (p,q, check (proof_of p, proof_of q))
54 where
55 check (Impl(p,q),r) = if p==r then q else error "not

hypothesis"
56 check (p, _) = error "not implication"
57

58

59 backward c pr1 = modus_ponens (Ax3 (a,b,c)) pr1
60 where
61 Impl (a,b) = proof_of pr1
62

63 transitivity (pr1, pr2) = modus_ponens (modus_ponens (Ax3 (a,b,c))
pr1) pr2

64 where
65 Impl (a,b) = proof_of pr1
66 Impl (_,c) = proof_of pr2
67

68 derived1 a = transitivity (Ax2(a,a), Ax1 a)
69

70 lemma_1 pr1 = transitivity (pr3, Ax1 b)
71 where
72 pr3 = transitivity (Ax2 (a,b), pr2)
73 pr2 = backward b pr1
74 Impl (Neg b, Neg a) = proof_of pr1
75

76 lemma_2 b pr1 =lemma_1 pr2
77 where
78 pr2 = modus_ponens (Ax2(a,Neg b)) pr1 -- ˜A=>˜B
79 a = proof_of pr1
80

81 lemma_3 (pr1,pr2) = transitivity (pr2, pr5)
82 where
83 pr5 = transitivity (pr4, Ax1 c)
84 pr4 = backward c pr3
85 pr3 = lemma_2 (Neg c) pr1
86 Impl(a,Impl(b,c)) = proof_of pr2
87

88 lemma_4 (a,b) = transitivity (pr4,pr5)
89 where

26

90 pr5 = backward b (Ax2 (a,b))
91 pr4 = transitivity (pr3, pr2)
92 pr3 = Ax3 (Neg b, Neg a, b)
93 pr2 = lemma_3 (Ax1 b, pr1)
94 pr1 = Ax3 (Impl (Neg a,b), Impl (Neg b,b), b)
95

96

97 lemma_5 (a,b) = transitivity (Ax2 (a, Neg b), lemma_4 (b,a))
98

99 lemma_6 a = transitivity (pr3, Ax1 a)
100 where
101 pr3 = transitivity (pr1, pr2)
102 pr2 = lemma_4 (Neg a, a)
103 pr1 = lemma_5 (Neg (Neg a), Neg a)
104

105

106 lemma_7 a = lemma_1 (lemma_6 (Neg a))
107

108 lemma_8 (pr1, pr2) = modus_ponens (Ax1 b) pr5
109 where
110 pr5 = transitivity (pr4, pr1)
111 pr4 = modus_ponens (lemma_4 (Neg b, a)) pr3 -- ˜B=>A
112 pr3 = transitivity (pr2, lemma_7 b) -- ˜A=>˜˜B
113 Impl (Neg a, b) = proof_of pr2
114

115 lemma_9 (a,b) = transitivity (pr1, pr3)
116 where
117 pr3 = backward b pr2; -- (˜˜A=>B) => (A=>B)
118 pr2 = lemma_7 a; -- A => ˜˜A
119 pr1 = Ax2 (Neg a, b); -- ˜A => (˜˜A=>B)
120

121 lemma_10 (pr1) = lemma_8 (pr1, pr2)
122 where
123 pr2 = lemma_9 (a,b);
124 Impl(a,Impl(_,b)) = proof_of pr1;
125

126

127 lemma_11 (pr1, pr2) = lemma_10 (pr6)
128 where
129 pr6 = modus_ponens pr5 pr3; -- A => (A=>C)

27

130 pr5 = backward (Impl (a,c)) pr1 --
(B=>C)=>(A=>C)=>(A=>(A=>C))

131 pr3 = backward c pr2; -- (B=>C) => (A=>C)
132 Impl(a,Impl(_,c)) = proof_of pr1;
133

134 deduction a (Assume b) = if a==b then derived1 a else lemma_2 a
(Assume b)

135 deduction a (Mp (p1,p2,_))= lemma_11 (f p1, f p2)
136 where
137 f p = if occurs a p then deduction a p else lemma_2 a p;
138 deduction a p = lemma_2 a p
139

140 lemma_12 (pr1, pr2) = lemma_8 (pr7,pr8)
141 where
142 pr8 = derived1 (Neg i); -- ˜(A=>B) => ˜(A=>B)
143 pr7 = deduction i pr6; -- (A=>B) => ˜(A=>B)
144 pr6 = modus_ponens pr5 pr2;
145 pr5 = modus_ponens (Ax2 (b, Neg i)) pr4;
146 pr4 = modus_ponens (Assume i) pr1;
147 i = Impl (a,b);
148 Neg b = proof_of pr2;
149 a = proof_of pr1;
150

151 assuming sg x = Assume (if sg x then Prop x else Neg (Prop x))
152

153 f sg (Prop x) = assuming sg x
154 f sg (Neg p) = if value sg p then modus_ponens (lemma_7 p) (f

sg p) else f sg p
155 f sg (Impl (p,q))=
156 if value sg p
157 then if value sg q then lemma_2 p (f sg q) else lemma_12 (f sg

p, f sg q)
158 else modus_ponens (lemma_9 (p,q)) (f sg p)
159

160 elim v prt prf = lemma_8 (deduction (Prop v) prt, deduction (Neg
(Prop v)) prf)

161

162 completeness phi = completeness’ phi undef (propositions phi [])
163 where
164 completeness’ phi sg [] = f sg phi

28

165 completeness’ phi sg (v:vs) =
166 elim v
167 (completeness’ phi (update sg v True) vs)
168 (completeness’ phi (update sg v False) vs)
169

170 p = Prop "P"
171 x = Impl(p,p)

29

