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ABSTRACT 
Fault injection deals with the insertion or simulation of 
faults in order to test the robustness and fault tolerance of a 
software application  [8]. Such measures are generally 
performed on software that is mission critical, to the extent 
that failure could have significant negative ramifications. 
Actual injection of faults can be performed either at 
compile time, when additional code is inserted to force 
error conditions to evaluate to true, or at runtime during 
which faults are injected into the software’s execution 
environment. This paper focuses on the latter type of fault 
injection and presents a new mechanism for inserting 
environment faults. In addition, insight is provided into 
fault selection based on an analysis of runtime behavior. 
This paper presents a methodology and tool for performing 
runtime fault injection, both of which are demonstrated on 
a commercial software product.  

1. INTRODUCTION 
For the purposes of our discussion of fault injection, code 
comes in two forms: 

1. Functional code is code that accomplishes the mission 
of the software by implementing user requirements. In 
other words, it is the code that does the work necessary 
for users to fulfill their purpose in using the software. 

2. Error handling code is code that keeps the functional 
code from failing. Examples include code to check 
inputs for validity and code that ensures stored data 
does not exceed its defined type and value range.  

By its very definition, functional code is readily accessible 
through the software’s interface(s) (be they graphical user 

interfaces or programming interfaces). In fact, testing 
functional code is a fairly well established discipline, 
though often imprecise  [9]. On the other hand, exercising 
error-handling code is generally trickier and may require 
more extreme measures. Of course, some error conditions 
are easy to handle; for example, some conditions require 
only that certain input values be entered incorrectly to be 
satisfied. But other error handling code may require 
considerably complicated environmental circumstances to 
arise before it will execute  [8]. 

Consider the case in which developers write code to guard 
against a full storage medium. The straightforward way to 
set up this anomaly is for testers to generate and maintain 
many large data files—files that are large enough to fill the 
capacity of the local storage device. Not only are such files 
hard to generate, but keeping them around means that the 
storage device can serve no other purpose (because it is 
full) than to house a single test case. And full media is only 
one case out of many faulty file system possibilities. We 
also need to consider file corruption, access privileges 
(read-only, etc.), file permissions and damage to the actual 
media, among other scenarios. 

Indeed, the file system itself is only one possible part of the 
environment that developers write error code against. We 
must also consider memory calls, network APIs, databases, 
third party components and controls, etc. All of these 
environmental elements can fail in ways that an application 
must expect and guard against especially when its mission 
is compromised  [9].  

In this paper, we discuss injecting faults into an 
application’s environment at runtime to effectively and 
accurately trigger failures in a manageable fashion. We 
begin by describing the runtime injection mechanism and 
provide specific examples for Microsoft’s Windows® 
operating system. Next, we discuss in detail the types of 
faults that can be injected and the situations in which 
testers should use specific failure scenarios. Finally, we 
illustrate the technique by outlining results from a case 

 

 



study performed by the authors on a commercial software 
product. 

2. A MECHANISM FOR RUNTIME FAULT 
INJECTION 
Source-based fault injection can be complicated to achieve 
but is easy to explain: source statements are modified so 
that specific faulty behavior is attained  [1], [2], [6]. When 
faults are injected to trigger exceptions, source statements 
are actually added so that internal data can be set to values 
which cause exception conditions to evaluate to true  [3].   

But source-based fault injection requires access to source 
code and, in most cases, the cooperation of the original 
developers, which is not always a given  [8]. Release 
pressure is one reason that developers refuse to write such 
code. Further, it is often the case that many testers have no 
access to the source code. Either they are outsourcers or the 
build culture at their company does not support such 
involvement.  

Regardless of the organizational factors that complicate 
source-based fault injection, runtime fault injection holds 
the benefit that the faults are more realistic. By inserting 
faults into the environment instead of the application, the 
latter, free of any additional code that may introduce 
unwanted behavior, is forced to react in exactly the same 
way as if the failures were real and not triggered by testers.  

Environment faults can be forced either by reproducing the 
causal scenario or by simulation. For example, consider the 
case of the ubiquitous network through which many 
applications communicate with other applications or 
services. To test fault tolerance of network applications, 
one might physically damage the network by, say, 
unplugging the cable or by sabotaging the network adapter. 
Further, one could cause a busy network by generating 
large amounts of bogus traffic (say by sending constant 
command line pings from a few dozen machines).  

But these same results, and many others, can be achieved 
by simulating the exact same circumstances so that the fault 
affects the application under test but not the rest of the 
system. The key is to realize that any environmental fault 
will manifest as failed system calls made by the 
application. For example, an application sees a network 
outage as a series of failed calls made to the local socket 
API. The application sees low memory as failed calls to the 
kernel. The application sees file corruption as CRC errors 
raised by the function CreateFile, and so forth.  

Ultimately, there is the reality of a failure and the reality of 
what an application actually sees when the failure occurs. It 
is this latter entity that we can recreate and it is at the 

system-application boundary that faults can be injected. 
These faults will affect only the system under test, allowing 
the machine to be useful for other purposes.  

In order to understand how to interpret faults as failed 
system calls, we must first be able to capture system calls 
before they reach their destination. Then we must be able 
to record exactly how real faults manifest in the error codes 
and return values of these calls. 

There are at least three ways to accomplish system call 
interception. 

1. Source-based interception requires actual editing of a 
binary and replacing instances of the destination API 
with an imposter API. The imposter API then simply 
acts as a pass-through mechanism. For example, using 
a hex editor it is easy to search an executable for the 
string kernel32.dll and replace it with mykernel32.dll. 
We must then write imposter functions in 
mykernel32.dll with the same name as the functions in 
kernel32.dll that we want to fail. The imposter 
functions simply log the call and then call the real 
function in kernel32.dll. When kernel32.dll responds 
to mykernel32.dll, the imposter simply passes the error 
codes and return values back to the application.  

2. In route interception can achieve the same effect as 
source-based interception without having to change an 
application’s binary image on disk. Using techniques 
published in  [7], one can modify addresses in function 
dispatch tables to divert calls to imposter functions. 
The imposters then act as pass-through mechanisms as 
above. Of course, in route interception only works 
when calls are routed through a centralized function 
dispatch mechanism like import address tables. Since 
these tables are stored in memory, the application’s 
binary does not have to be modified on disk.  

3. Destination-based interception requires inserting code 
into the function being called by the application. 
Unlike in route interception, which modifies memory 
addresses that are part of the application’s code space, 
destination-based interception requires modifying the 
code space of the target function. In our 
implementation, we insert jump statements into the 
first few bytes of a function and copy those bytes to 
the imposter function. When the application makes the 
function call, the jump statement transfers control to 
the imposter function which will first executes its code 
and then transfer control back to the next executable 
memory location of the original function (i.e., past our 
inserted jump statement).  



The above figure illustrates each of the three types of 
interception.  

3. Fault Selection 
We have employed two types of fault selection strategies 
and developed tools to help carry out each type. The first 
strategy consists of recording function calls made by an 
application and then systematically failing each call 
everywhere it is used in the application. We call this 
method systematic, call-based fault injection. For example, 
if we record that the kernel call LocalLock is used each 
time an application accesses a file, then we can cause 
LocalLock to fail and force the software through paths 
that have file opens, reads, writes, etc, so that the 
application sees the failure of LocalLock. Obviously, 
this is a time consuming and painstaking way to inject 
faults. The second strategy consists of staging a particular 
environment fault, recording the pattern of failed function 
calls caused by the fault, and then simulating that pattern in 
other parts of the application. We call this method pattern-
based fault injection. For example, we might stage an 
unresponsive network by unplugging the Ethernet cable 
and record that the application sees failed return code from 
any number of socket APIs. We can then fail these same 

APIs as a simulated substitute for physically unplugging 
the Ethernet cable. 

3.1 Pattern-based Fault Injection 
The ultimate question for fault injection is: What faults 
should be injected? The answers to this question are 
varied: 

The faults should collectively cause all of the error code 
to be executed and exceptions to be tripped. 

This is a typical developer-centric answer. As desirable as 
it is to execute all the source code of an application under 
test, this is usually unachievable given today’s relatively 
short development cycles and aggressive deadlines. Other 
difficulties include access to source code and the use of 
sophisticated code coverage tools. Again, in practice, not 
all testing teams have access to source code, development 
teams, or the required tools that would enable them to stage 
code-based fault injection.   

Only the faults that can be readily staged in the testing 
lab should be selected.  

This, on the other hand, is a typical tester-centric answer. It 
may be hard for some to imagine that testers are required to 
consider and run scenarios that cannot be accomplished 
outside the testing lab. However, testing labs are often not 



representative of the setup and environment of the real 
world. Users typically have more data, more machines, 
bigger networks, more software, and a wider variety of 
hardware, peripherals, and drivers than can be in a lab. 
Users, therefore, are a great source of realistic scenarios 
that may not have been anticipated by developers and that 
may cause unexpected failures.  

Only faults that may realistically occur in the field need 
to be injected.  

Users expect that software will work well in their 
uncontrolled, generally unpredictable environments. 
However, since such environments are difficult or 
impossible to stage in the testing lab, we have developed a 
tool to help simulate some of the more common faulty 
scenarios. We call the general principle the Hostile 
Environment Application Tester and the tool “Canned 
HEAT. The purpose of Canned HEAT is to stage some 
realistic problems in the environment in an easy-to-use 
way. 

Canned HEAT works on a simple principle. Every faulty 
environment causes digital symptoms that the application 
recognizes and that we can recreate. Take a network that 
has gone down for example. This can be caused by an 
unplugged cable, a misconfigured adaptor, faulty network 
software, or network congestion.  The application only 
recognizes the symptom that certain API calls, say to the 
network port, are failing. That is, instead of working as 
expected, they are returning failure codes to the 
application. Therefore, any number of actual faults may 
end up producing the same symptoms. Canned HEAT is a 
tool that reproduces these symptoms so that the application 
runs as if an actual failure has occurred. 

3.1.1 Memory Faults 
The amount of memory that an application uses varies 
according to the task it is performing. Some tasks require 
very little memory and are unlikely to cause memory to be 
depleted. Other tasks consume vast amounts of memory. 
Such tasks along with other applications simultaneously 
running may deprive the application of the amount of 
memory necessary for normal operation. In order to 
determine those features that are memory intensive, 
Canned HEAT is equipped with a monitor that keeps track 
of an application’s use of memory. Once a list of these 
features is gathered, the first set of tests consists of 
continually lowering the available memory threshold to 
determine where (or if) the application begins to falter. 

The next step is to run scenarios that will test the 
application’s reactions to varying memory conditions. 
Canned HEAT can randomly vary the amount of memory 
available to an application. The intent is to simulate the real 
world scenario in which background applications access 
memory at sporadic times. The application is then run 

through its paces, concentrating on the memory-intensive 
features identified earlier.  

The final test to perform is fault injection, and, with 
Canned HEAT, this is as simple as running the application 
and selecting a fault’s check box at any time.  

Consider the following example using Microsoft® Internet 
Explorer®. 

Step 1. Use the application and determine which features 
are memory intensive. 

This step can actually be performed while the application is 
being tested under ordinary circumstances. Simply launch 
the application under Canned HEAT and pay close 
attention to the memory monitor while you are using the 
application. Make a note of which features use the most 
memory. Obviously, disk-intensive operations like reading 
and writing files will cause memory to be used, but also, 
loading rich images, processing large files and performing 
any computationally intense function will require memory 
usage.  

Step 2. Determine the application’s lower bound threshold 
of tolerance to low memory. 

It is now the time to see how the application fares with 
restricted memory resources. This can be accomplished by 
forcing the features to be exercised and simultaneously 
restricting the application’s access to memory resources 
using Canned HEAT.  

Canned HEAT has a convenient slider bar under the 
memory tab for this purpose. By simply sliding the bar to 
the left, the available main memory is decreased (see figure 
below).  

 
Note the slider bar is all the way to the right, allowing the 
application access to all available memory. However, if we 
move it to the left and continue to use Internet Explorer’s 
memory intensive features, we note that around 35MB, 
things begin to slow down tremendously. Further, if we 



take away all but about 15MB, Internet Explorer ceases to 
work at all. 

Step 3. Run Canned HEAT’s scenarios that randomly vary 
available memory. 

Once this is determined and reported to development, the 
next set of tests to run concerns the application’s ability to 
perform well under tremendously varying memory 
conditions.  

Selecting the varying memory scenario will make the 
memory control slider unavailable, meaning that Canned 
HEAT has assumed control of deciding when and how 
much memory will be available to any given request made 
by the application under test.  

Using this scenario will often crash applications even when 
the human user is not working with them. This is because 
any given memory call may result in an artificial failure 
being injected by Canned HEAT. Such is the case with 
Internet Explorer as shown below. 

 
Step 4. Inject faults at runtime during memory use.  

Finally, the last set of tests involves injecting specific 
faults. Whereas the last two steps simply fail memory calls 
according to the amount of available memory, our tool 
allows individual faults to be injected regardless of the 
amount of memory available. The following series of 
figures shows an example of this in Internet Explorer. We 
use Canned HEAT to simulate an “insufficient memory” 
fault and watch as IE’s controls simply disappear due to 
lack of adequate memory resources. Eventually, IE will 
hang.  

 

 
 

 
 

 

3.1.2 Network Faults 
We test network faults in the same four-stage process we 
have just demonstrated for memory faults. First, we will 
use the application and determine which features cause 



network activity. Second, we will use Canned HEAT’s 
slider bar to slow the network until our application is 
unacceptably slow or until it crashes or hangs. Third, we 
will run scenarios that will vary the network speed over 
time, concentrating on those features that cause the most 
network activity. Fourth, we will inject specific faults, one 
at a time, and monitor the application’s resulting behavior.  

Let’s consider an example. 

Step 1. Use the application and determine when it hits the 
network port. 

The browser’s most intense use of the network port occurs 
during file downloads and when web pages are served to it. 

Step 2. Determine the application’s lower bound threshold 
of tolerance to a slow network. 

Once you have determined when the application hits the 
network port, it is interesting to find out the behavior of the 
application by reducing network speed. This can be 
achieved by using the application while manually reducing 
the network speed using Canned HEAT’s network speed 
slider bar.   

Canned HEAT allows the user to manually control the 
network speed the same way it does for available memory. 
Using the slider bar, the user can easily adjust the network 
speed to the desired percentage of the full capacity of the 
machine, on which the application is being tested. (see 
figure below) 

 
The next two screenshots demonstrate the use of the 
network slider bar. The first one shows a perfectly loaded 
page while the network speed is 33% of its maximum. This 
shows that the loading of a page similar to this one does 
not require more than 33% of network speed. 

 
This next screenshot though, shows an incomplete page 
(some pictures and menu titles are missing) with a network 
speed around 30%.   

 
We thus determined the network speed threshold for which 
Internet Explorer can load accurately a page similar to the 
Florida Tech homepage, with respect to the number of 
graphics, animation etc. If we further lower the network 
speed, IE will not be able to load a page anymore.  

Step 3. Run Canned HEAT’s scenarios that randomly vary 
network speed. 

The next step is to run tests using scenarios. Canned HEAT 
is programmed to simulate random network failures while 
the application is running. Examples of such failures are 
disabled network connection, unresponsive network port or 
failure of socket API’s. 

The following screenshot demonstrates the use of the 
Canned HEAT’s random failures scenario. The network 
slider bar is unavailable when running random scenarios, as 
was the memory slider bar.  



 
 

Step 4. Inject faults at runtime during network use.  

The last tests to perform consist of injecting faults at 
runtime. The previous step demonstrated the use of the 
random failures scenarios. What we want to accomplish 
here is to study the behavior of the application when 
inserting specific faults.  

Canned HEAT allows for inserting a number of faults 
including the “network is down” fault. When this fault is 
inserted, we can watch Internet Explorer’s reaction to a 
network that has become unresponsive. 

 

3.2 Systematic Call-based Fault Injection 
Canned HEAT is an easy to use tool to inject course-
grained faults into an application’s environment at runtime. 
It is not suitable for use when a more fine-grained, surgical 
approach is needed.  

Canned HEAT works by failing sets of API calls either all 
of the time, most of the time or some of the time. However, 
the tester is given no ability to be more choosey than 

Canned HEAT’s interface will allow. Sometimes, testers 
may want to fail a specific call only once. Or they may 
want to fail a call only in very specific contexts. In other 
words, they need a tool to observe APIs being called and 
have the ability to intervene on a call-by-call basis. This 
type of fault injection is called observe-and-fail.  

There are many companies that have in house tools to do 
such fault injection and they seldom release their tools to 
the general market. I will attempt to explain how to use 
these tools using a prototype we have developed at Florida 
Tech called Holodeck. Any Star Trek® fan will 
immediately recognize the Holodeck as the virtual reality 
grid where holograms are indistinguishable from real 
people. Holodeck is our code name for a tool that makes 
faked software environments indistinguishable from real 
environments from the software’s point of view.  

Here’s how it works: 

Similar to Canned HEAT, Holodeck is able to intercept 
API calls. Holodeck logs these calls so that testers can 
observe an application’s activity and decide where to inject 
faults. Holodeck is equipped with filters that allow testers 
to narrow their search to very specific types of APIs. 

Consider the following example (which represents a nice 
security exploit against the world’s favorite web browser).  

We begin the example by first using the target application 
and observing the system calls it makes (using Holodeck to 
view them). Most of these calls are mundane from a testing 
point of view but some are not and these can alert astute 
testers to possible attacks. 

One such call is LoadLibraryExW. This call causes 
external code libraries to be loaded for use. One 
particularly suspicious such library is MSRATING.DLL as 
shown below. 

As a tester we are now alerted to the fact that this DLL is 
providing services to our application under test.  



The desired behavior of the browser’s rating system is to 
allow, say, a parent, to set up passwords for sites so that, 
say, their children cannot access them. When the browser is 
pointed to such a site, it will prompt for the password as 
shown below. 

 
The tool and methodology presented in this paper allow 
runtime fault injection to be performed without access to or 
modification of source code. By exposing system interfaces 
to interrogation, testers can reason about behaviors that 
may lead to exception handlers being executed. By 
modifying system-call return values and error codes 
dynamically, faults can be simulated so that the exact 
environment fault is presented to the application under test 
in a realistic manner. This mechanism is completely 
general, allowing most any type of stressed environment to 
be accurately simulated in a laboratory environment. As a 
result, the benefits can range from increased code coverage 
to a higher degree of confidence in the robustness of the 
application when it is deployed. 

Now that the target system call has been identified, we can 
use Holodeck to inject a fault in the same manner as we 
used Canned HEAT. In this case, we will simply return a 
value indicating that the file MSRATING.DLL cannot be 
opened. 

But failing the call to LoadLibraryExW� causes the 
feature to be disabled, allowing anyone to surf anywhere 
they want. Note in the screen shot below, the blocked web 
site loads and the rating options is unavailable, as indicated 
by the inaccessibility of its icons. 

 

4. CONCLUSIONS 
Triggering exceptions can be very difficult at runtime. 
Creating scenarios that cause exception handlers to execute 
often involves a faulty environment that is not easy to stage 
in a laboratory. Thus, software is released without ever 
executing some exceptions or error handling code. Since 
user environments represent more diverse usage than is 
easily reproduced in testing labs, these exceptions are more 
likely in the field. This predicament is risky for software 
publishers who must release untested exception handlers, 
particularly publishers who release mission or safety 
critical applications. 

Runtime software fault injection allows faulty 
environments to be simulated in the testing laboratory. 
Performed judiciously, software testers can increase 
coverage of error handling code and gain more confidence 
in their software’s ability to perform robustly in an unstable 
environment.  
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