
Testing Exception and Error Cases Using Runtime Fault
Injection

James A. Whittaker
Florida Institute of Technology

150 W. University Blvd.
Melbourne, Florida 32901, USA

++ 1 (321) 674 7638

jw@se.fit.edu

Florence E. Mottay
Florida Institute of Technology

150 W. University Blvd.
Melbourne, Florida 32901, USA

++ 1 (321) 674 7473

fmottay@se.fit.edu
Florida Tech Computer

Science Technical Report
Number CS-2001-07

Ibrahim K. El-Far
Florida Institute of Technology

150 W. University Blvd.
Melbourne, Florida 32901, USA

++ 1 (321) 674 7473

ielfar@acm.org

ABSTRACT
Fault injection deals with the insertion or simulation of
faults in order to test the robustness and fault tolerance of a
software application [8]. Such measures are generally
performed on software that is mission critical, to the extent
that failure could have significant negative ramifications.
Actual injection of faults can be performed either at
compile time, when additional code is inserted to force
error conditions to evaluate to true, or at runtime during
which faults are injected into the software’s execution
environment. This paper focuses on the latter type of fault
injection and presents a new mechanism for inserting
environment faults. In addition, insight is provided into
fault selection based on an analysis of runtime behavior.
This paper presents a methodology and tool for performing
runtime fault injection, both of which are demonstrated on
a commercial software product.

1. INTRODUCTION
For the purposes of our discussion of fault injection, code
comes in two forms:

1. Functional code is code that accomplishes the mission
of the software by implementing user requirements. In
other words, it is the code that does the work necessary
for users to fulfill their purpose in using the software.

2. Error handling code is code that keeps the functional
code from failing. Examples include code to check
inputs for validity and code that ensures stored data
does not exceed its defined type and value range.

By its very definition, functional code is readily accessible
through the software’s interface(s) (be they graphical user

interfaces or programming interfaces). In fact, testing
functional code is a fairly well established discipline,
though often imprecise [9]. On the other hand, exercising
error-handling code is generally trickier and may require
more extreme measures. Of course, some error conditions
are easy to handle; for example, some conditions require
only that certain input values be entered incorrectly to be
satisfied. But other error handling code may require
considerably complicated environmental circumstances to
arise before it will execute [8].

Consider the case in which developers write code to guard
against a full storage medium. The straightforward way to
set up this anomaly is for testers to generate and maintain
many large data files—files that are large enough to fill the
capacity of the local storage device. Not only are such files
hard to generate, but keeping them around means that the
storage device can serve no other purpose (because it is
full) than to house a single test case. And full media is only
one case out of many faulty file system possibilities. We
also need to consider file corruption, access privileges
(read-only, etc.), file permissions and damage to the actual
media, among other scenarios.

Indeed, the file system itself is only one possible part of the
environment that developers write error code against. We
must also consider memory calls, network APIs, databases,
third party components and controls, etc. All of these
environmental elements can fail in ways that an application
must expect and guard against especially when its mission
is compromised [9].

In this paper, we discuss injecting faults into an
application’s environment at runtime to effectively and
accurately trigger failures in a manageable fashion. We
begin by describing the runtime injection mechanism and
provide specific examples for Microsoft’s Windows®
operating system. Next, we discuss in detail the types of
faults that can be injected and the situations in which
testers should use specific failure scenarios. Finally, we
illustrate the technique by outlining results from a case

study performed by the authors on a commercial software
product.

2. A MECHANISM FOR RUNTIME FAULT
INJECTION
Source-based fault injection can be complicated to achieve
but is easy to explain: source statements are modified so
that specific faulty behavior is attained [1], [2], [6]. When
faults are injected to trigger exceptions, source statements
are actually added so that internal data can be set to values
which cause exception conditions to evaluate to true [3].

But source-based fault injection requires access to source
code and, in most cases, the cooperation of the original
developers, which is not always a given [8]. Release
pressure is one reason that developers refuse to write such
code. Further, it is often the case that many testers have no
access to the source code. Either they are outsourcers or the
build culture at their company does not support such
involvement.

Regardless of the organizational factors that complicate
source-based fault injection, runtime fault injection holds
the benefit that the faults are more realistic. By inserting
faults into the environment instead of the application, the
latter, free of any additional code that may introduce
unwanted behavior, is forced to react in exactly the same
way as if the failures were real and not triggered by testers.

Environment faults can be forced either by reproducing the
causal scenario or by simulation. For example, consider the
case of the ubiquitous network through which many
applications communicate with other applications or
services. To test fault tolerance of network applications,
one might physically damage the network by, say,
unplugging the cable or by sabotaging the network adapter.
Further, one could cause a busy network by generating
large amounts of bogus traffic (say by sending constant
command line pings from a few dozen machines).

But these same results, and many others, can be achieved
by simulating the exact same circumstances so that the fault
affects the application under test but not the rest of the
system. The key is to realize that any environmental fault
will manifest as failed system calls made by the
application. For example, an application sees a network
outage as a series of failed calls made to the local socket
API. The application sees low memory as failed calls to the
kernel. The application sees file corruption as CRC errors
raised by the function CreateFile, and so forth.

Ultimately, there is the reality of a failure and the reality of
what an application actually sees when the failure occurs. It
is this latter entity that we can recreate and it is at the

system-application boundary that faults can be injected.
These faults will affect only the system under test, allowing
the machine to be useful for other purposes.

In order to understand how to interpret faults as failed
system calls, we must first be able to capture system calls
before they reach their destination. Then we must be able
to record exactly how real faults manifest in the error codes
and return values of these calls.

There are at least three ways to accomplish system call
interception.

1. Source-based interception requires actual editing of a
binary and replacing instances of the destination API
with an imposter API. The imposter API then simply
acts as a pass-through mechanism. For example, using
a hex editor it is easy to search an executable for the
string kernel32.dll and replace it with mykernel32.dll.
We must then write imposter functions in
mykernel32.dll with the same name as the functions in
kernel32.dll that we want to fail. The imposter
functions simply log the call and then call the real
function in kernel32.dll. When kernel32.dll responds
to mykernel32.dll, the imposter simply passes the error
codes and return values back to the application.

2. In route interception can achieve the same effect as
source-based interception without having to change an
application’s binary image on disk. Using techniques
published in [7], one can modify addresses in function
dispatch tables to divert calls to imposter functions.
The imposters then act as pass-through mechanisms as
above. Of course, in route interception only works
when calls are routed through a centralized function
dispatch mechanism like import address tables. Since
these tables are stored in memory, the application’s
binary does not have to be modified on disk.

3. Destination-based interception requires inserting code
into the function being called by the application.
Unlike in route interception, which modifies memory
addresses that are part of the application’s code space,
destination-based interception requires modifying the
code space of the target function. In our
implementation, we insert jump statements into the
first few bytes of a function and copy those bytes to
the imposter function. When the application makes the
function call, the jump statement transfers control to
the imposter function which will first executes its code
and then transfer control back to the next executable
memory location of the original function (i.e., past our
inserted jump statement).

The above figure illustrates each of the three types of
interception.

3. Fault Selection
We have employed two types of fault selection strategies
and developed tools to help carry out each type. The first
strategy consists of recording function calls made by an
application and then systematically failing each call
everywhere it is used in the application. We call this
method systematic, call-based fault injection. For example,
if we record that the kernel call LocalLock is used each
time an application accesses a file, then we can cause
LocalLock to fail and force the software through paths
that have file opens, reads, writes, etc, so that the
application sees the failure of LocalLock. Obviously,
this is a time consuming and painstaking way to inject
faults. The second strategy consists of staging a particular
environment fault, recording the pattern of failed function
calls caused by the fault, and then simulating that pattern in
other parts of the application. We call this method pattern-
based fault injection. For example, we might stage an
unresponsive network by unplugging the Ethernet cable
and record that the application sees failed return code from
any number of socket APIs. We can then fail these same

APIs as a simulated substitute for physically unplugging
the Ethernet cable.

3.1 Pattern-based Fault Injection
The ultimate question for fault injection is: What faults
should be injected? The answers to this question are
varied:

The faults should collectively cause all of the error code
to be executed and exceptions to be tripped.

This is a typical developer-centric answer. As desirable as
it is to execute all the source code of an application under
test, this is usually unachievable given today’s relatively
short development cycles and aggressive deadlines. Other
difficulties include access to source code and the use of
sophisticated code coverage tools. Again, in practice, not
all testing teams have access to source code, development
teams, or the required tools that would enable them to stage
code-based fault injection.

Only the faults that can be readily staged in the testing
lab should be selected.

This, on the other hand, is a typical tester-centric answer. It
may be hard for some to imagine that testers are required to
consider and run scenarios that cannot be accomplished
outside the testing lab. However, testing labs are often not

representative of the setup and environment of the real
world. Users typically have more data, more machines,
bigger networks, more software, and a wider variety of
hardware, peripherals, and drivers than can be in a lab.
Users, therefore, are a great source of realistic scenarios
that may not have been anticipated by developers and that
may cause unexpected failures.

Only faults that may realistically occur in the field need
to be injected.

Users expect that software will work well in their
uncontrolled, generally unpredictable environments.
However, since such environments are difficult or
impossible to stage in the testing lab, we have developed a
tool to help simulate some of the more common faulty
scenarios. We call the general principle the Hostile
Environment Application Tester and the tool “Canned
HEAT. The purpose of Canned HEAT is to stage some
realistic problems in the environment in an easy-to-use
way.

Canned HEAT works on a simple principle. Every faulty
environment causes digital symptoms that the application
recognizes and that we can recreate. Take a network that
has gone down for example. This can be caused by an
unplugged cable, a misconfigured adaptor, faulty network
software, or network congestion. The application only
recognizes the symptom that certain API calls, say to the
network port, are failing. That is, instead of working as
expected, they are returning failure codes to the
application. Therefore, any number of actual faults may
end up producing the same symptoms. Canned HEAT is a
tool that reproduces these symptoms so that the application
runs as if an actual failure has occurred.

3.1.1 Memory Faults
The amount of memory that an application uses varies
according to the task it is performing. Some tasks require
very little memory and are unlikely to cause memory to be
depleted. Other tasks consume vast amounts of memory.
Such tasks along with other applications simultaneously
running may deprive the application of the amount of
memory necessary for normal operation. In order to
determine those features that are memory intensive,
Canned HEAT is equipped with a monitor that keeps track
of an application’s use of memory. Once a list of these
features is gathered, the first set of tests consists of
continually lowering the available memory threshold to
determine where (or if) the application begins to falter.

The next step is to run scenarios that will test the
application’s reactions to varying memory conditions.
Canned HEAT can randomly vary the amount of memory
available to an application. The intent is to simulate the real
world scenario in which background applications access
memory at sporadic times. The application is then run

through its paces, concentrating on the memory-intensive
features identified earlier.

The final test to perform is fault injection, and, with
Canned HEAT, this is as simple as running the application
and selecting a fault’s check box at any time.

Consider the following example using Microsoft® Internet
Explorer®.

Step 1. Use the application and determine which features
are memory intensive.

This step can actually be performed while the application is
being tested under ordinary circumstances. Simply launch
the application under Canned HEAT and pay close
attention to the memory monitor while you are using the
application. Make a note of which features use the most
memory. Obviously, disk-intensive operations like reading
and writing files will cause memory to be used, but also,
loading rich images, processing large files and performing
any computationally intense function will require memory
usage.

Step 2. Determine the application’s lower bound threshold
of tolerance to low memory.

It is now the time to see how the application fares with
restricted memory resources. This can be accomplished by
forcing the features to be exercised and simultaneously
restricting the application’s access to memory resources
using Canned HEAT.

Canned HEAT has a convenient slider bar under the
memory tab for this purpose. By simply sliding the bar to
the left, the available main memory is decreased (see figure
below).

Note the slider bar is all the way to the right, allowing the
application access to all available memory. However, if we
move it to the left and continue to use Internet Explorer’s
memory intensive features, we note that around 35MB,
things begin to slow down tremendously. Further, if we

take away all but about 15MB, Internet Explorer ceases to
work at all.

Step 3. Run Canned HEAT’s scenarios that randomly vary
available memory.

Once this is determined and reported to development, the
next set of tests to run concerns the application’s ability to
perform well under tremendously varying memory
conditions.

Selecting the varying memory scenario will make the
memory control slider unavailable, meaning that Canned
HEAT has assumed control of deciding when and how
much memory will be available to any given request made
by the application under test.

Using this scenario will often crash applications even when
the human user is not working with them. This is because
any given memory call may result in an artificial failure
being injected by Canned HEAT. Such is the case with
Internet Explorer as shown below.

Step 4. Inject faults at runtime during memory use.

Finally, the last set of tests involves injecting specific
faults. Whereas the last two steps simply fail memory calls
according to the amount of available memory, our tool
allows individual faults to be injected regardless of the
amount of memory available. The following series of
figures shows an example of this in Internet Explorer. We
use Canned HEAT to simulate an “insufficient memory”
fault and watch as IE’s controls simply disappear due to
lack of adequate memory resources. Eventually, IE will
hang.

3.1.2 Network Faults
We test network faults in the same four-stage process we
have just demonstrated for memory faults. First, we will
use the application and determine which features cause

network activity. Second, we will use Canned HEAT’s
slider bar to slow the network until our application is
unacceptably slow or until it crashes or hangs. Third, we
will run scenarios that will vary the network speed over
time, concentrating on those features that cause the most
network activity. Fourth, we will inject specific faults, one
at a time, and monitor the application’s resulting behavior.

Let’s consider an example.

Step 1. Use the application and determine when it hits the
network port.

The browser’s most intense use of the network port occurs
during file downloads and when web pages are served to it.

Step 2. Determine the application’s lower bound threshold
of tolerance to a slow network.

Once you have determined when the application hits the
network port, it is interesting to find out the behavior of the
application by reducing network speed. This can be
achieved by using the application while manually reducing
the network speed using Canned HEAT’s network speed
slider bar.

Canned HEAT allows the user to manually control the
network speed the same way it does for available memory.
Using the slider bar, the user can easily adjust the network
speed to the desired percentage of the full capacity of the
machine, on which the application is being tested. (see
figure below)

The next two screenshots demonstrate the use of the
network slider bar. The first one shows a perfectly loaded
page while the network speed is 33% of its maximum. This
shows that the loading of a page similar to this one does
not require more than 33% of network speed.

This next screenshot though, shows an incomplete page
(some pictures and menu titles are missing) with a network
speed around 30%.

We thus determined the network speed threshold for which
Internet Explorer can load accurately a page similar to the
Florida Tech homepage, with respect to the number of
graphics, animation etc. If we further lower the network
speed, IE will not be able to load a page anymore.

Step 3. Run Canned HEAT’s scenarios that randomly vary
network speed.

The next step is to run tests using scenarios. Canned HEAT
is programmed to simulate random network failures while
the application is running. Examples of such failures are
disabled network connection, unresponsive network port or
failure of socket API’s.

The following screenshot demonstrates the use of the
Canned HEAT’s random failures scenario. The network
slider bar is unavailable when running random scenarios, as
was the memory slider bar.

Step 4. Inject faults at runtime during network use.

The last tests to perform consist of injecting faults at
runtime. The previous step demonstrated the use of the
random failures scenarios. What we want to accomplish
here is to study the behavior of the application when
inserting specific faults.

Canned HEAT allows for inserting a number of faults
including the “network is down” fault. When this fault is
inserted, we can watch Internet Explorer’s reaction to a
network that has become unresponsive.

3.2 Systematic Call-based Fault Injection
Canned HEAT is an easy to use tool to inject course-
grained faults into an application’s environment at runtime.
It is not suitable for use when a more fine-grained, surgical
approach is needed.

Canned HEAT works by failing sets of API calls either all
of the time, most of the time or some of the time. However,
the tester is given no ability to be more choosey than

Canned HEAT’s interface will allow. Sometimes, testers
may want to fail a specific call only once. Or they may
want to fail a call only in very specific contexts. In other
words, they need a tool to observe APIs being called and
have the ability to intervene on a call-by-call basis. This
type of fault injection is called observe-and-fail.

There are many companies that have in house tools to do
such fault injection and they seldom release their tools to
the general market. I will attempt to explain how to use
these tools using a prototype we have developed at Florida
Tech called Holodeck. Any Star Trek® fan will
immediately recognize the Holodeck as the virtual reality
grid where holograms are indistinguishable from real
people. Holodeck is our code name for a tool that makes
faked software environments indistinguishable from real
environments from the software’s point of view.

Here’s how it works:

Similar to Canned HEAT, Holodeck is able to intercept
API calls. Holodeck logs these calls so that testers can
observe an application’s activity and decide where to inject
faults. Holodeck is equipped with filters that allow testers
to narrow their search to very specific types of APIs.

Consider the following example (which represents a nice
security exploit against the world’s favorite web browser).

We begin the example by first using the target application
and observing the system calls it makes (using Holodeck to
view them). Most of these calls are mundane from a testing
point of view but some are not and these can alert astute
testers to possible attacks.

One such call is LoadLibraryExW. This call causes
external code libraries to be loaded for use. One
particularly suspicious such library is MSRATING.DLL as
shown below.

As a tester we are now alerted to the fact that this DLL is
providing services to our application under test.

The desired behavior of the browser’s rating system is to
allow, say, a parent, to set up passwords for sites so that,
say, their children cannot access them. When the browser is
pointed to such a site, it will prompt for the password as
shown below.

The tool and methodology presented in this paper allow
runtime fault injection to be performed without access to or
modification of source code. By exposing system interfaces
to interrogation, testers can reason about behaviors that
may lead to exception handlers being executed. By
modifying system-call return values and error codes
dynamically, faults can be simulated so that the exact
environment fault is presented to the application under test
in a realistic manner. This mechanism is completely
general, allowing most any type of stressed environment to
be accurately simulated in a laboratory environment. As a
result, the benefits can range from increased code coverage
to a higher degree of confidence in the robustness of the
application when it is deployed.

Now that the target system call has been identified, we can
use Holodeck to inject a fault in the same manner as we
used Canned HEAT. In this case, we will simply return a
value indicating that the file MSRATING.DLL cannot be
opened.

But failing the call to LoadLibraryExW� causes the
feature to be disabled, allowing anyone to surf anywhere
they want. Note in the screen shot below, the blocked web
site loads and the rating options is unavailable, as indicated
by the inaccessibility of its icons.

4. CONCLUSIONS
Triggering exceptions can be very difficult at runtime.
Creating scenarios that cause exception handlers to execute
often involves a faulty environment that is not easy to stage
in a laboratory. Thus, software is released without ever
executing some exceptions or error handling code. Since
user environments represent more diverse usage than is
easily reproduced in testing labs, these exceptions are more
likely in the field. This predicament is risky for software
publishers who must release untested exception handlers,
particularly publishers who release mission or safety
critical applications.

Runtime software fault injection allows faulty
environments to be simulated in the testing laboratory.
Performed judiciously, software testers can increase
coverage of error handling code and gain more confidence
in their software’s ability to perform robustly in an unstable
environment.

5. ACKNOWLEDGMENTS
This work was supported in part by separate grants from
Microsoft Research and Rational Software Corporation.
We thank the remaining members of the HEAT and
Canned HEAT development teams, which include Rahul
Chaturvedi, Andres De Vivanco, Aditya Kakrania, Terry
Lentz and John Brown. In addition, many thanks go to the
testers at Microsoft and Rational for their insights into
useful ways to fault inject. Special appreciation goes to
Harry Robinson of Microsoft and Sam Guckenheimer of
Rational for their input into Canned HEAT’s user interface
and fault selection methods.

6. REFERENCES
[1] Agrawal, H., et al, Design of mutant operators for the

C programming language, Technical Report SERC-
TR-41-P, Software Engineering Research Center,
Purdue University, West Lafayette, IN, (March 1989).

[2] Bowser, J., Reference manual for Ada mutant
operators, Technical Report GIT-SERC-88/02,

Department of Computer Science, Georgia Institute of
Technology, Atlanta, (February 1988).

[3] Friedman, M. and Voas, J., Software assessment:
reliability, safety, and testability, Wiley, (1995).

[4] Ghosh, A. and Schmid, M., An approach to testing
COTS software for robustness to operating system
exceptions and errors. In Proceedings of 10th Int’l
Symposium on. Software Reliability Eng., (Los
Alamitos, CA, 1999) IEEE Computer Society Press,
166-174.

[5] Houlihan, P. Targeted software fault insertion,
Proceedings of STAR EAST 2001 (Software Testing
Analysis and Review), (Orlando FL, 2001), Software
Quality Engineering.

[6] King, K. and Offut, A.J. A Fortran language system
for mutation-based software testing, Software Practice
and Experience, 21 7, (July 1991), 685-718.

[7] Richter, J. Programming applications for Microsoft
windows, Microsoft Press, (1997).

[8] Voas, J. and McGraw, G. Software fault injection:
Inoculating programs against errors, Wiley, NY,
(1998).

[9] Whittaker, J. What is software testing. And why is it
so hard. IEEE Software, 17, 1, (2000), 70-79.

[10] Whittaker, J. Software’s invisible users. IEEE
Software, 18, 3, (2001) 84-88.

	INTRODUCTION
	A MECHANISM FOR RUNTIME FAULT INJECTION
	Fault Selection
	Pattern-based Fault Injection
	Memory Faults
	Network Faults

	Systematic Call-based Fault Injection

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

