
A Framework for Multilingual Information Processing

by

Steven Edward Atkin

Bachelor of Science
Physics

State University of New York, Stony Brook
1989

Master of Science
in Computer Science

Florida Institute of Technology
1994

A dissertation
submitted to the College of Engineering at

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
December, 2001

We the undersigned committee hereby recommend
that the attached document be accepted as fulfilling in

part the requirements for the degree of
Doctor of Philosophy of Computer Science

“A Framework for Multilingual Information Processing,”
a dissertation by Steven Edward Atkin

Ryan Stansifer, Ph.D.
Associate Professor, Computer Science
Dissertation Advisor

Phil Bernhard, Ph.D.
Associate Professor, Computer Science

James Whittaker, Ph.D.
Associate Professor, Computer Science

Gary Howell, Ph.D.
Professor, Mathematics

William Shoaff, Ph.D.
Associate Professor and Head, Computer Science

iii

Abstract

Title: A Framework for Multilingual Information Processing

Author: Steven Edward Atkin

Major Advisor: Ryan Stansifer, Ph.D.

Recent and (continuing) rapid increases in computing power now enable

more of humankind’s written communication to be represented as digital data. The

most recent and obvious changes in multilingual information processing have been

the introduction of larger character sets encompassing more writing systems. Yet the

very richness of larger collections of characters has made the interpretation and pro-

cessing of text more difficult. The many competing motivations (satisfying the

needs of linguists, computer scientists, and typographers) for standardizing charac-

ter sets threaten the purpose of information processing: accurate and facile manipu-

lation of data. Existing character sets are constructed without a consistent strategy or

architecture. Complex algorithms and reports are necessary now to understand raw

streams of characters representing multilingual text.

We assert that information processing is an architectural problem and not

just a character set problem. We analyze several multilingual information process-

ing algorithms (e.g., bidirectional reordering and character normalization) and we

conclude that they are more dangerous than beneficial. The countless number of

unexpected interactions suggest a lack of a coherent architecture. We introduce

abstractions, novel mechanisms, and take the first steps towards organizing them

into a new architecture for multilingual information processing. We propose a multi-

layered architecture which we call Metacode where character sets appear in lower

layers and protocols and algorithms in higher layers. We recast bidirectional reor-

dering and character normalization in the Metacode framework.

iv

Table of Contents

List of Figures . ix

List of Tables . xi

Acknowledgement . xiii

Dedication . xiv

Chapter 1 Introduction. 1

1.1 Architecture Overview. 3

1.2 Problem Statement . 5

1.3 Outline of Dissertation . 5

Chapter 2 Software Globalization . 7

2.1 Overview . 7

2.2 Translation . 9

2.3 International User Interfaces . 10

2.3.1 Metaphors. 10

2.3.2 Geometry . 11

2.3.3 Color. 11

2.3.4 Icons . 12

2.3.5 Sound . 12

2.4 Cultural and Linguistic Formatting . 13

2.4.1 Numeric Formatting . 13

2.4.2 Date and Time Formatting . 14

2.4.3 Calendar Systems . 14

2.4.4 Measurement . 15

2.4.5 Collating. 15

2.4.6 Character Classification . 16

2.4.7 Locales . 17

2.5 Keyboard Input . 17

2.6 Fonts. 18

2.7 Character Coding Systems . 20

Chapter 3 Character Coding Systems. 22

3.1 Terms . 22

3.2 Character Encoding Schemes. 24

3.3 European Encodings . 24

v

3.3.1 ISO 7-bit Character Encodings . 27

3.3.2 ISO 8-bit Character Encodings . 29

3.3.3 Vendor Specific Character Encodings . 33

3.4 Japanese Encodings . 40

3.4.1 Personal Computer Encoding Method . 43

3.4.2 Extended Unix Code Encoding Method . 45

3.4.3 Host Encoding Method . 46

3.4.4 Internet Exchange Method . 47

3.4.5 Vendor Specific Encodings . 49

3.5 Chinese Encodings. 50

3.5.1 Peoples Republic of China . 51

3.5.2 Republic of China . 53

3.5.3 Hong Kong Special Administrative Region. 54

3.6 Korean Encodings . 55

3.6.1 South Korea . 55

3.6.2 North Korea . 55

3.7 Vietnamese Encodings . 56

3.8 Multilingual Encodings . 57

3.8.1 Why Are Multilingual Encodings Necessary?. 57

3.8.2 Unicode and ISO-10646. 59

3.8.2.1 History of Unicode . 60

3.8.2.2 Goals of Unicode . 60

3.8.2.3 Unicode’s Principles . 61

3.8.2.4 Differences Between Unicode and ISO-10646 . 62

3.8.2.5 Unicode’s Organization . 63

3.8.2.6 Unicode Transmission Forms. 67

3.8.3 Criticism of Unicode . 68

3.8.3.1 Problems With Character/Glyph Separation . 69

3.8.3.2 Problems With Han Unification. 69

3.8.3.3 ISO-8859-1 Compatibility . 70

3.8.3.4 Efficiency . 71

3.8.4 Mudawwar’s Multicode . 71

3.8.4.1 Character Sets in Multicode . 71

3.8.4.2 Character Set Switching in Multicode . 72

3.8.4.3 Focus on Written Languages . 73

3.8.4.4 ASCII/Unicode Compatibility . 74

3.8.4.5 Glyph Association in Multicode . 74

3.8.5 TRON. 74

3.8.5.1 TRON Single Byte Character Code . 75

3.8.5.2 TRON Double Byte Character Code . 76

3.8.5.3 Japanese TRON Code . 76

3.8.6 EPICIST . 77

vi

3.8.6.1 EPICIST Code Points. 78

3.8.6.2 EPICIST Character Code Space. 78

3.8.6.3 Compatibility With Unicode . 78

3.8.6.4 Epic Virtual Machine . 79

3.8.6.5 Using the Epic Virtual Machine for Ancient Symbols . 79

3.8.7 Current Direction of Multilingual Encodings . 80

Chapter 4 Bidirectional Text . 81

4.1 Non Latin Scripts . 82

4.1.1 Arabic and Hebrew Scripts . 83

4.1.1.1 Cursive . 83

4.1.1.2 Position. 84

4.1.1.3 Ligatures. 84

4.1.1.4 Mirroring . 85

4.1.2 Mongolian Script . 85

4.2 Bidirectional Layout . 86

4.2.1 Logical and Display Order . 86

4.2.2 Contextual Problems . 87

4.2.3 Domain Names. 88

4.2.4 External Interactions . 89

4.2.4.1 Line Breaking. 89

4.2.4.2 Glyph Mapping . 89

4.2.4.3 Behavioral Overrides . 90

4.2.5 Bidirectional Editing . 90

4.2.6 Goals . 90

4.3 General Solutions to Bidirectional Layout. 91

4.3.1 Forced Display . 91

4.3.2 Explicit . 91

4.3.3 Implicit . 92

4.3.4 Implicit/Explicit . 92

4.4 Implicit/Explicit Bidirectional Algorithms . 92

4.4.1 Unicode Bidirectional Algorithm. 93

4.4.2 IBM Classes for Unicode (ICU) and Java . 93

4.4.3 Pretty Good Bidirectional Algorithm (PGBA) . 94

4.4.4 Free Implementation of the Bidirectional Algorithm (FriBidi) 94

4.5 Evaluation of Bidirectional Layout Algorithms. 94

4.5.1 Testing Convention . 95

4.5.2 Test Cases. 96

4.5.3 Test Results . 100

4.6 Functional Approach to Bidirectional Layout . 102

4.6.1 Haskell Bidirectional Algorithm (HaBi) . 103

4.6.1.1 HaBi Source Code . 106

vii

4.6.1.2 Benefits of HaBi. 107

4.7 Problems With Bidirectional Layout Algorithms . 108

4.7.1 Unicode Bidirectional Algorithm. 109

4.7.2 Reference Implementation . 110

4.7.3 HaBi . 110

4.8 Limitations of Strategies . 111

4.8.1 Metadata. 111

Chapter 5 Enhancing Plain Text . 112

5.1 Metadata. 113

5.1.1 Historical Perspective. 113

5.2 Unicode Character Model . 116

5.2.1 Transmission Layer . 117

5.2.2 Code Point Layer . 117

5.2.3 Character/Control Layer. 119

5.2.4 Character Property Layer . 120

5.3 Strategies for Capturing Semantics . 121

5.3.1 XML. 121

5.3.2 Language Tagging . 123

5.3.2.1 Directional Properties of Language Tags. 125

5.3.3 General Unicode Metadata. 126

5.4 Encoding XML . 130

5.5 New XML . 134

5.6 Text Element . 134

5.7 Metadata and Bidirectional Inferencing. 138

5.7.0.1 HTML and Bidirectional Tags . 142

5.8 New Architecture . 143

Chapter 6 Metacode . 144

6.1 Metacode Architecture. 144

6.2 Metacode Compared to Unicode . 147

6.2.1 Transmission Layer . 147

6.2.2 Code Point Layer . 147

6.2.3 Character Layer . 148

6.2.3.1 Combining Characters . 148

6.2.3.2 Glyph Variants . 152

6.2.3.3 Control Codes. 153

6.2.3.4 Metadata Tag Characters . 155

6.2.4 Character Property Layer . 155

6.2.5 Tag Definition Layer . 157

6.2.6 Metacode Conversion. 158

viii

6.2.7 Content Layer. 162

6.3 Data Equivalence . 162

6.3.1 Unicode Normalization . 162

6.3.1.1 Unicode Normal Forms . 163

6.3.1.2 Unicode Normalization Algorithm. 166

6.3.1.3 Problems with Unicode Normalization . 168

6.3.2 Data Equivalence in Metacode. 171

6.3.3 Simulating Unicode in Metacode. 174

6.4 Code Points vs. Metadata. 175

6.4.1 Metacode Principles . 175

6.4.2 Applying Metacode Heuristics. 176

6.4.2.1 Natural language text . 176

6.4.2.2 Mathematics . 177

6.4.2.3 Dance notation . 178

6.5 Benefits of Metacode . 180

Chapter 7 Conclusions . 182

7.1 Summary . 182

7.2 Contributions . 184

7.3 Limitations . 188

7.4 Future Work . 188

References . 190

Appendix A . 201

Appendix B . 205

Appendix C . 206

Appendix D . 209

ix

List of Figures
Figure 2-1. Using Metaphors ..11
Figure 2-2. Macintosh trash can icon ... 12
Figure 2-3. British post box.. 12
Figure 2-4. French in France and French in Canada .. 16
Figure 2-5. Character to glyph mapping .. 19
Figure 2-6. Contextual glyphs .. 19
Figure 2-7. Japanese furigana characters ... 19
Figure 3-1. ASCII encoding ... 25
Figure 3-2. ISO-8859-1 encoding .. 31
Figure 3-3. ISO-8859-7 encoding .. 32
Figure 3-4. EBCDIC encoding... 35
Figure 3-5. IBM 850... 37
Figure 3-6. Windows 1252... 39
Figure 3-7. Japanese Kanji characters.. 40
Figure 3-8. Japanese Katakana characters.. 41
Figure 3-9. Japanese Hiragana characters .. 41
Figure 3-10. Mixed DBCS and SBCS characters .. 44
Figure 3-11. JIS X0212 PC encoding... 45
Figure 3-12. EUC encoding ... 46
Figure 3-13. ISO-2022 encoding.. 48
Figure 3-14. ISO-2022-JP encoding... 49
Figure 3-15. Forms of UCS-4 and UCS-2.. 63
Figure 3-16. Unicode layout... 65
Figure 3-17. Surrogate conversion ... 66
Figure 3-18. Character set switching in Multicode .. 73
Figure 3-19. TRON single byte character code.. 75
Figure 3-20. TRON double byte character code .. 77
Figure 4-1. Tunisian newspaper ... 81
Figure 4-2. Ambiguous layout ... 87
Figure 4-3. Rendering numbers.. 87
Figure 4-4. Using a hyphen minus in a domain name.. 88
Figure 4-5. Using a full-stop in a domain name... 89
Figure 4-6. Input and output of Haskell Bidirectional Reference 104
Figure 4-7. Data flow ... 105
Figure 5-1. Using LTRS and FIGS in Baudot code ..114
Figure 5-2. ISO-2022 escape sequences ...116
Figure 5-3. Unicode Character Model...117
Figure 5-4. Compatibility Normalization... 123
Figure 5-5. Language tag ... 124
Figure 5-6. Error in bidirectional processing ... 126
Figure 5-7. Error in language tagging .. 126
Figure 5-8. Regular expressions for tags.. 129

x

Figure 5-9. Regular expression for text stream .. 129
Figure 5-10. Sample tag ... 130
Figure 5-11. Alternative language tag.. 130
Figure 5-12. Sample XML code... 131
Figure 5-13. Sample XML code encoded in metadata... 133
Figure 5-14. Combining characters.. 135
Figure 5-15. Joiners.. 137
Figure 5-16. ELM tag... 137
Figure 5-17. Mapping from display order to logical order .. 139
Figure 5-18. Example output stream .. 140
Figure 5-19. Mathematical expression ... 141
Figure 5-20. BDO tag syntax ... 142
Figure 5-21. Using HTML bidirectional tags... 142
Figure 6-1. New Text Framework .. 145
Figure 6-2. Combining character protocol ... 149
Figure 6-3. Ligature protocol ... 153
Figure 6-4. Spacing protocol .. 155
Figure 6-5. Interwoven protocols ... 158
Figure 6-6. Metacode code point protocol ... 159
Figure 6-7. ISO-2022 escape sequence in Metacode ... 161
Figure 6-8. Non interacting diacritics .. 163
Figure 6-9. Compatibility equivalence... 163
Figure 6-10. Conversion to NFKD... 167
Figure 6-11. Conversion to NFD.. 168
Figure 6-12. Protocol interaction ... 169
Figure 6-13. Data mangling ... 170
Figure 6-14. Question Exclamation Mark.. 174
Figure 6-15. Metadata Question Exclamation Mark.. 174
Figure 6-16. Simulating Unicode normalization.. 175
Figure 6-17. Egyptian hieroglyphic phonogram .. 177
Figure 6-18. Egyptian hieroglyphic ideograph .. 177
Figure 6-19. Mathematical characters.. 178
Figure 6-20. Action Stroke Dance Notation... 179
Figure 6-21. Action Stroke Dance Notation with movement... 180
Figure 6-22. Metacode Action Stroke Dance Notation tag .. 180

xi

List of Tables
Table 3-1. ASCII control codes.. 25
Table 3-2. ISO variant characters ... 28
Table 3-3. French version of ISO-646.. 28
Table 3-4. ISO-8859 layout .. 30
Table 3-5. ISO-8859 standards... 33
Table 3-6. EBCDIC layout ... 34
Table 3-7. IBM PC code pages... 36
Table 3-8. Windows code pages... 38
Table 3-9. JIS character standards.. 43
Table 3-10. ISO-2022-JP escape sequences ... 49
Table 3-11. Vendor encodings .. 49
Table 3-12. GB standards ... 53
Table 3-13. Taiwanese standards.. 54
Table 3-14. Unicode code point sections ... 64
Table 3-15. UTF-8.. 68
Table 3-16. Unicode transformation formats ... 68
Table 4-1. Bidirectional character mappings for testing .. 95
Table 4-2. Arabic charmap tests ... 96
Table 4-3. Hebrew charmap tests ... 97
Table 4-4. Mixed charmap tests ... 98
Table 4-5. Explicit override tests.. 99
Table 4-6. Arabic test differences... 100
Table 4-7. Hebrew test differences... 101
Table 4-8. Mixed test differences ... 101
Table 5-1. Problem Characters ..119
Table 5-2. Character Properties .. 120
Table 5-3. Tag characters.. 128
Table 5-4. Other text element tags ... 138
Table 6-1. Excluded Unicode combining characters.. 150
Table 6-2. Redefined Unicode combining characters .. 150
Table 6-3. Unicode glyph composites .. 153
Table 6-4. Unicode spacing characters... 154
Table 6-5. Metacode tag characters.. 155
Table 6-6. Metacode character properties .. 156
Table 6-7. Metacode case property values ... 156
Table 6-8. Metacode script direction property values .. 156
Table 6-9. Metacode code point value property ... 156
Table 6-10. Metacode tag property values ... 156
Table 6-11. Major protocols ... 158
Table 6-12. Converting deprecated Unicode code points to Metacode.......................... 159
Table 6-13. Normalization forms ... 164
Table 6-14. The string “flambé”... 166

xii

Table 6-15. The string “flambé” in Metacode.. 173

xiii

Acknowledgement

There is one person above all others who deserves my sincerest thanks and

respect for his continuous support during the writing of this dissertation: my advisor,

Dr. Ryan Stansifer. I could not have completed it without him.

There are many other people who contributed to this dissertation in many

ways. First, I would like to thank my colleague, Mr. Ray Venditti, for securing my

funding at IBM. He made the impossible possible. Second, my committee, Dr. Phil

Bernhard, Dr. James Whittaker, and Dr. Gary Howell. They fostered a stress-free

working relationship which was critical to the completion of this dissertation. Third,

my uncle, Dr. Jeffrey Title for all the hours of consultation, comments, and late

nights. Lastly, Dr. Phil Chan for his invaluable suggestions.

xiv

Dedication

To my wife Sevim

To my Parents

To my Aunt and Uncle

1

1 Introduction

Computers process information in many natural languages. We call multilin-

gual information processing the manipulation and storage of natural language text.

We exclude symbolic, numeric, and scientific information processing. Natural lan-

guage text is composed of characters. We employ discrete and finite sets of charac-

ters in computers to capture text. Assigning different kinds of characters yields

different kinds of text. Current information processing methods, cobbled together

over time, capture natural language text imperfectly in information systems due to an

over reliance on rigid character sets (such as, ASCII and EBCDIC). This dissertation

is directed towards identifying and correcting existing challenges and imperfections

in multilingual information processing.

The need for extremely accurate and elegant multilingual information pro-

cessing has become pressing as the preponderance of data processing tasks change

from almost exclusively numerical to increasingly text oriented. The world commu-

nity increasingly depends on written natural language text. E-mail has become a stan-

dard for messaging within and between companies and governments and among

millions (perhaps billions) of individuals throughout the world.

For the most part, the information stored in computers codifies mankind’s

writing (as opposed to other communication like art, music, speech, etc.) In this dis-

sertation we are concerned exclusively with text — the text that represents the writing

systems of the world. Because natural language writing systems are diverse we have

information processing challenges and limitations. We are not likely to soon solve all

the difficulties presented. This dissertation will address the challenges and

2

limitations inherent in the diverse and complex multilingual environment. We pro-

pose a comprehensive plan for fundamental improvements in the conceptualization

and implementation of a more effective approach to multilingual information pro-

cessing.

Multilingual information processing, to date, has largely been centered

around expanding and consolidating character sets. This character set centric

approach enables software developers to merge text files comprised from disparate

character sets, hopefully reducing the complexity and cost of text processing. This

oversimplified strategy has added significant problems for the designers of multilin-

gual software.

In the character set centric approach text processing is viewed as a display

oriented activity. This has resulted in the creation of character sets which maintain

distinctions only for the sake of appearance or convenience of presentation. This

bias towards display makes it more difficult to use character data for purposes other

than presentation. Digital information becomes hidden or lost without a clear and

unique choice for representing multilingual text.

In this dissertation we demonstrate that the character set centric perspective

is restrictive, myopic, inconsistent, and clumsy. Character sets play a role, but cannot

by themselves solve multilingual information processing problems. A subtle para-

digm shift which we delineate in this dissertation allows a more natural solution to

information processing. In our view information processing is best approached as an

architectural problem. We introduce abstractions, general algorithms, novel mecha-

nisms, and take the first steps towards organizing them into a new architecture for

multilingual information processing.

In our architecture roles and responsibilities are clearly separated, fundamen-

tal abstractions are insulated from change. This separation goes to the heart of our

approach. By using the correct abstractions the common tasks only need to be written

3

once — correctly and cleanly. Additional applications can be built from this well

defined set and achieve more functionality. Writing systems that have been given

little attention can be accommodated without harmful interactions. Improvements of

fidelity can happen without endless tinkering. It has been and will continue to be a

continuous struggle to capture language more perfectly, even English. It is the nature

of living languages to grow and evolve new forms. Change will inevitably happen.

With the appropriate abstractions we minimize the potential trouble of adapting to

these changes.

Higher-level mechanisms, such as XML-like technologies, offer a solution to

some of the problems we attack. In several cases we show how to make use of these

mechanisms to solve multilingual information processing problems. We show that

there are limitations, however. Higher-level (XML-like protocols) and lower-level

(character sets) mechanisms often attack the same problem independently and from

different directions. This leads to redundant, overlapping, conflicting, and ill-suited

solutions. These mechanisms are twisted into roles for which they are not suited. This

strategy is an uncoordinated attack on a general problem. Our architecture provides

a clearer division of roles and responsibilities.

We acknowledge that it is not easy to switch directions in the development of

multilingual information processing. We believe that there is a practical migration

path and from time to time we point out how this can be facilitated. In fact, the

changes we recommend to existing standards to accomplish our new approach are

relatively small.

1.1 Architecture Overview
In this dissertation we decompose multilingual information processing into

its main components. We approach the design of an architecture for multilingual

information processing from a ground-up strategy. In our architecture we develop

stackable layers which are similar to the layers found in networking architectures.

4

Each layer builds upon the abstraction of the prior lower layer. The various aspects

common to writing systems are dissected and layered. These layers are used to con-

struct an architecture for multilingual information processing. The number of archi-

tectural layers is large enough to allow for a clean separation of responsibilities, but

not so small as to group unrelated functions together out of necessity. Each layer in

our architecture serves a well defined purpose with clear and simple interfaces. This

dissertation describes these architectural layers and establishes relationships between

them.

In our framework we incorporate character sets, protocols and algorithms.

Just like the character set centric view, we also use characters for representing text.

In the character set centric view great emphasis is placed on viewing and printing

text. This has resulted in the creation of character sets maintaining distinctions that

are founded not in meaning, but only in appearance, ultimately leading to solutions

that favor presentation, rather than content. In contrast to the character set centric

view characters in our architecture are distinguished by their underlying meaning.

We acknowledge that at times it may be necessary and useful to maintain dis-

tinctions based on appearance. Our architecture allows a focus on content without

sacrificing display. However, we depart from the usual mechanisms of the character

set centric approach and rely instead on higher-order protocols to capture this infor-

mation.

In some cases information processing algorithms require information over

and above the individual characters, for example; language information, line break-

ing, and non-breaking spaces. In the character set centric model such control infor-

mation is coerced into characters. In many cases this has occurred in an ad-hoc

haphazard way leading to character sets with confusing semantics. In our architecture

we fix this problem through the use of well defined protocols to capture more of the

underlying structure of text than is possible with character sets alone.

5

In this dissertation we are not specifically concerned with the definition of

text protocols, rather we aim to develop a flexible, open, and extensible mechanism

for their definition. We propose a multi-layered architecture where character sets

appear in lower layers, and protocols and algorithms are in the higher layers. Our

architecture is flexible — it is unnecessary to make character set changes as new pro-

tocols are adopted. The architecture is open — there is no limit to the number

of possible protocols. Protocols in our architecture are extensible — numerous pro-

tocols can be interwoven without ill-effect.

In the character set centric model general purpose information processing

algorithms are difficult to write, because of confusing character semantics and the

overall bias towards display. Our architecture has no such bias and confusing seman-

tics. Therefore, it is easier to construct general purpose information processing algo-

rithms. In our architecture we provide a core set of general purpose algorithms that

we believe are crucial for multilingual information processing.

1.2 Problem Statement
We seek to define and organize the primary components for multilingual

information processing that unambiguously separates content, display and control

information.

1.3 Outline of Dissertation
Chapter 2 describes the overall field of software globalization. We introduce

the concepts of internationalization, localization, and translation. We concentrate on

the problems encountered during the creation of multilingual software. In particular,

we look at user interface, cultural formatting, keyboard input, and character set prob-

lems.

Chapter 3 presents an in depth analysis of character sets and character coding

systems. We start the chapter by introducing and defining the relevant terms related

6

to character coding systems. We describe in detail several monolingual character

character sets that cover both ideographic and syllabic scripts. We conclude the chap-

ter with an examination of multilingual character coding systems.

Chapter 4 considers multilingual character coding problems. We examine the

trouble caused when Arabic and English text are mixed in an information processing

environment. This mixed text is called bidirectional text — text with characters writ-

ten left-to-right and right-to-left. We examine several strategies for processing and

displaying bidirectional text. We find the existing strategies inadequate, presenting

evidence that the underlying character set centric model is insufficient.

Chapter 5 explores several strategies for addressing the shortcomings of the

character set centric model. In particular, we look at using metadata (data describing

data) to describe more of the underlying structure of scripts. We look at XML as a

metadata model for multilingual information processing, but find it unsuitable. We

define our own general metadata model, presenting evidence of its suitability for

multilingual information processing. In demonstrating the features of our metadata

model we return to the bidirectional text problem. We find that the general metadata

model allows for a general reorganization of multilingual information processing.

Chapter 6 introduces our multilingual information processing architecture.

Our architecture incorporates character sets, metadata, and core protocols, providing

an overall framework for multilingual information processing. We call this architec-

ture Metacode. To demonstrate the features of our architecture we use several writing

systems as examples. We conclude by summarizing the benefits our architecture pro-

vides.

Chapter 7 discusses our contributions, limitations, and future work.

7

2 Software Globalization

Software globalization is concerned with the application of practices and pro-

cesses to make a software product usable throughout the world. The term globaliza-

tion refers to the whole process starting from an internationalized version of an

application through the production of multiple localized versions of it. The three

terms internationalization, localization, and translation broadly define the various

subdisciplines of software globalization. Software globalization builds upon interna-

tionalization, localization, and translation. In this dissertation we define internation-

alization as the process of creating cultural and language neutral software. The term

localization refers to the process of adapting a software product to a specific culture

and language. The term translation is defined as the process of converting human

readable text from one language into another. [55]

Throughout this chapter we discuss the primary subdisciplines that make up

the field of software globalization. In each subdiscipline we outline the principle

issues and current trends. The software globalization area is a relatively new field of

study, and as we will see the boundaries of the field are still open to debate.

2.1 Overview
Unlike, other research areas of computer science, software globalization has

arisen not from academia, but rather from industry. We argue that this industrial

movement has occurred for the following reasons: increasing user expectations,

proliferation of distributed computing, explosive software development costs, com-

pounding maintenance outlays, and governmental requirements.

8

The market for computing in the 1950’s and early 1960’s was not home users,

but rather large institutions (banking, industrial, governmental, and research). In

many cases computing at these large institutions was primarily for the purposes of

number crunching. Therefore, linguistic/cultural support was not a strong require-

ment. In fact, even English was not fully supported (lower case characters do not

appear until 1967). Moreover, if a system did provide additional linguistic support it

was usually a language that could be represented using the Latin script.

In the late 1970’s we see a dramatic shift in computing from number crunch-

ing to information processing. This shift, coupled with the advent of personal com-

puting in the 1980’s, caused user expectations to rise. It was no longer possible to

insist that users conform to the computer/software, but rather software must adapt to

the user, making linguistic/cultural support a must. Most commercial software during

this time period was developed within the United States, so development teams had

little experience with linguistic/cultural issues. Support for other languages/cultures

was viewed as customization/translation and not as part of main line development.

This customization/translation activity was farmed out to another organization within

the company or an outside localization firm. Therefore, software development/deliv-

ery became staged. By staged we mean, first the US version would be delivered fol-

lowed by various language versions. This overall strategy caused software

development costs to explode. [29],[61],[85]

The ever increasing costs can be attributed to two factors. First, customiza-

tion, in reality, requires more than just translation, because in many cases the source

code itself required modification. In some cases source modifications were incom-

patible with changes made for other languages. It became necessary to maintain sep-

arate source lines for the individual languages, further increasing development costs.

Maintaining these separate source lines had a rippling effect throughout the entire

software development process. Its effects were most strongly felt during mainte-

nance, because in many cases corrective fixes could not be applied universally across

9

the various language versions. Multiple fixes would be created, further increasing the

overall software development cost. [61],[85]

The multiple source line development strategy had a direct impact upon cus-

tomers, in particular large multinational customers. Most multinational customers

wanted the ability to simultaneously roll out multiple language software solutions

across their entire corporation. This was difficult to achieve, because of the staged

development/delivery method in effect at the time. Each specific language version

was based upon a different source line, thereby requiring the customer to repeat the

entire certification process for each language. By the late 1980’s this strategy became

crippling as costs sky rocketed. [70]

A strong push from multiple source line development to single source line

development was undertaken in the 1990’s. It is at this point in time that we see the

beginnings of internationalization and localization. It was a move in the right direc-

tion, but the internationalization problem turned out to involve a lot more factors than

simply translating and converging multiple source lines. In the sections below we

explore these factors, which in turn form the six individual sub fields of software glo-

balization: Translation, International User Interfaces, Cultural/Linguistic Format-

ting, Keyboard Input, Fonts, and Character Coding Systems.

2.2 Translation
Naturally, a software system must be translated into the user’s native lan-

guage for it to be useful. At first it might seem that translating a programs message’s

and user interface elements is a relatively simple task. There are subtleties, however.

Literal translations of text strings in applications without regard for human

factors principles may serve as a source for confusing or misleading user interfaces.

One such example comes form the Danish translation of MacPaint. One of the menus

in MacPaint is called “Goodies” which is acceptable as the name of a menu in

10

English. The literal translation of goodies in Danish is the word godter. This is a

proper translation, but has an entirely different connotation (mostly having to do with

candy), leading users to confusion. [8]

Translation of user manuals must also be approached with caution. For exam-

ple, the following is a sample of an English translation from the preface of a printer

manual in Japanese:

“We sincerely expect that the PRINTER CI-600 will be appreciated
more than ever, in the fields of ‘data-transformation’ by means of
human-scale, and the subsequent result of ‘fluent metabolism’ as
regards the artificial mammoth creature-systematized information
within the up-to-date human society.”

Clearly this example demonstrates that the problem of translation is one of global

importance. [8]

2.3 International User Interfaces
Software must fit into the cultural context of the user. Internationalized appli-

cations should appear as if they were custom designed for each individual market.

This requires a deep understanding of not only languages, but also of cultural norms,

taboos, and metaphors. [91],[8]

2.3.1 Metaphors

Just as metaphors permeate our everyday communication, so do they occur

throughout the interfaces we use. It is the use of metaphors that makes our interaction

with software seem more natural and intuitive. For example, the icons shown in

Figure 2-1. are from Lotus 1-2-3. The second icon, with somebody running, is

intended to let you “run” a macro [29]. The problem is that not everyone “runs” a

macro. In France, for example, the metaphor isn’t running a macro it’s “throwing” a

macro. So using the metaphor of somebody running makes no sense for users in

France. What may seem natural to users in the United States may not appear to be

11

obvious to users in other markets. Therefore, as software is internationalized and

localized it is imperative that metaphors be tailored for each market just as language

is. [25],[8]

Figure 2-1. Using Metaphors

2.3.2 Geometry

Even visual scanning patterns are culturally dependent. Studies with English

and Hebrew readers have demonstrated the existence of these differences. English

readers tend to start scanning an object from the left quadrant, while Hebrew readers

tend to scan from the right quadrant. This is probably due to the fact that each lan-

guage has a specific scanning direction (English left-to-right and Hebrew right-to-

left). This infers that the formatting and positioning of windows in an application

must also be tailored for each market. [1],[8]

2.3.3 Color

The varied use of color in everyday things is common. However, cultural dif-

ferences can affect the meanings attributed to color. For example, in the United States

the color red is often used to indicate danger, while in China the color red represents

happiness. The color white in the United States represents hope and purity, however

in Japan the color white represents death. By using color correctly, interfaces can be

created where color can impart and reinforce information conveyed by other media,

such as text. [83],[91],[8]

12

2.3.4 Icons

The abundant use of icons in today’s graphical interfaces aims to provide a

more intuitive user interface by equating an underlying action or function to a sym-

bol. The seemingly simple trash icon in the Macintosh interface seems at first to have

only one underlying meaning, disposing of files. See Figure 2-2. Nevertheless, in the

United Kingdom an entirely different meaning was ascribed to this icon. It turned out

that the trash can icon resembled a British post box better than a British trash can,

creating confusion. See Figure 2-3. Therefore, even the style of icons is culturally

dependent. [37],[38],[81],[91],[8]

Figure 2-2. Macintosh trash can icon

Figure 2-3. British post box

2.3.5 Sound

Not only are icons culturally sensitive, but the use of sound is as well. The use

of sound has improved the “user-friendliness” of applications by reinforcing visually

displayed messages. At first appearance this seems to be culturally neutral, but Lotus

corporation discovered that this was not true. Lotus spent considerable time and

money to internationalize 1-2-3 for the Japanese market, but were dismayed to find

that 1-2-3 did not receive a favorable reception. Lotus was unaware that the simple

“error beep” present in 1-2-3 was a source of great discomfort for the Japanese. The

13

Japanese tend to work in highly crowded offices and are fearful of letting coworkers

know they are making mistakes. Hence it was only natural that the Japanese avoided

using 1-2-3 when they were at work. [91],[14]

The range of issues just described broadly defines the area of interest to the

international user interface community. The design of international user interfaces is

mostly viewed as a facet of localization. This is not a strict rule as there is some

amount of overlap with some of the other sub fields of globalization.

2.4 Cultural and Linguistic Formatting
Differences in notational conventions provide yet another area that must

undergo internationalization. For example, although all countries have some form of

a monetary system, few countries agree on details such as the currency symbol and

the formatting of currency. Similarly, most people agree that time is measured by the

cycles of the earth and the moon, but the ubiquitous Gregorian calendar used in

Europe and North America isn’t necessarily utilized all around the world. Such dif-

fering views require highly flexible software that can process and represent data for

a wide variety of cultures and languages. In the following paragraphs we discuss

some of the common issues surrounding cultural and linguistic formatting. [85]

2.4.1 Numeric Formatting

Most regions of the world adhere to Arabic numbers, where values are base

10. Problems arise when large and fractional numbers are used. In the United States,

the “radix” point (the character which separates the whole part of the number from

the fractional part) is the full-stop. Throughout most of Europe the radix point is a

comma. In the United States the comma is used as break for separating groups of

numbers. Europeans use single quotes to separate groups of numbers. In addition to

the problem of formatting numeric quantities, the interpretation of the values of num-

bers is also culturally sensitive. For example, in the United States a “billion” is

14

represented as a thousand million (1,000,000,000), but in Europe a billion is a million

million (1,000,000,000,000), which is a substantially larger quantity. [91],[8]

2.4.2 Date and Time Formatting

As numbers are culturally dependent so are dates. For example the date 11/1/

1993 is interpreted as November 1st, 1993 in the United States, but throughout most

of Europe the date is interpreted as January 11th, 1993. On the surface this does not

seem to be a difficult problem to handle, but countries that use non-western calendars

(Japan, China, Israel, etc.) all have different ways of keeping track of the date. Just

like dates the expression of time is also culturally dependent. For example, in the

United States time is based on a 12 hour time table, while other countries prefer a 24

hour system. [91],[8]

2.4.3 Calendar Systems

Many countries use the 12 month, 365 day Gregorian calendar and define Jan-

uary 1 as the first day of a new year. Many Islamic countries (e.g., Saudi Arabia and

Egypt) also use a calendar with 12 months, but only 354 or 355 days. Because this

year is shorter than the Gregorian year, the first day of the Islamic year changes from

year to year on the Gregorian calendar. Therefore, the Islamic calendar has no con-

nection to the physical seasons. [75]

Israelis use the Hebrew calendar that has either 12 or 13 months, based upon

whether it is a leap year. Non leap years have 12 months and between 353 and 355

days. In a leap year, however, an extra thirteenth month is added. This extra month

allows the Hebrew calendar to stay synchronized with the seasons of the year. [75]

Determining the year also depends on the calendar system. For example, in

Japan two calendar systems are used Gregorian and Imperial. In the Imperial system

the year is based on the number of years the current emperor has been reigning. When

the emperor dies and a new emperor ascends the throne, a new era begins, and the

15

year count for that era begins. Furthermore, in Japan it is culturally unacceptable to

create a software calendar system that allows a user to reset the year to the beginning,

since this implies the imminent demise of the current emperor. [75],[14]

2.4.4 Measurement

Systems of measurement also vary throughout the world. For example, most

of Europe uses units of measurement that are based upon the MKS system (meters,

kilograms, and seconds), while in the United States measurement is based upon SI

units (inches, pounds, and seconds). Such differences need to be accounted for within

software systems. For example, a word processor should display its ruler in inches

when used in the United States, but should display its units in centimeters when used

in Europe. [91],[8]

2.4.5 Collating

Naturally, numeric data is not the only kind of data subject to cultural and lin-

guistic influences. The ordering of words (character data) is dependent upon both lan-

guage and culture. Even in languages that use the same script system, collation orders

vary. In Spanish the character, sequence “cho” comes after “co”, because “ch” is col-

lated as a single character, while in English “cho” comes before “co”.

In many cases the sorting conventions used by Asian languages are more

complex than the sorting conventions of western languages. In Asian languages ideo-

graphic characters occur more frequently than alphabetic characters. The concepts

used in sorting alphabetic scripts are not necessarily applicable to ideographic scripts.

Ideographic characters represent concepts and thus can be sorted in a variety of ways

(e.g., by phonetic representation, by the character’s base building block, or by the

number of strokes used to write the character).

16

2.4.6 Character Classification

In the development of internationalized software we often find it useful to

classify characters (e.g., alphabetic, uppercase, lowercase, numeric, etc.) because it

eases processing of character data. Different languages, however, may classify char-

acters differently. For example, in English only 52 characters are classified as alpha-

betic. Danish classifies 112 characters as alphabetic. [85]

Many languages have no concept of case (lowercase and uppercase). Lan-

guages based on Ideographic characters (e.g., Chinese, Japanese, and Korean) all

have a single case. This single case property can also be found in some phonetic

scripts (e.g., Arabic and Hebrew). [75]

Even languages that make case distinctions do not always use the same case

conversion rules. For example, in German the Eszett character “ß” is a lowercase

character that gets converted to two uppercase S’s. Therefore, not every lowercase

character has a simple uppercase equivalent. [75]

In some situations even the same language may use different case conversion

rules. For example, in French when diacritic characters are converted from lowercase

to uppercase the diacritics are usually removed. On the other hand, in French Cana-

dian diacritics are retained during case conversion. See Figure 2-4. Therefore, know-

ing only the language does not guarantee proper case conversion. [75]

Figure 2-4. French in France and French in Canada

17

2.4.7 Locales

The cultural and linguistic formatting information described above is gener-

ally captured as a collection of data items and algorithms. This repository of cultural

and linguistic formatting information is called a locale. Application developers use

locales to internationalize/localize software. Locales are usually supplied by operat-

ing systems and can be found in both PC systems (e.g., OS/2, Unix, Windows,

MacOS) and host based systems (e.g., OS/400 and System 390). It is becoming

increasingly popular to find locales not only in operating systems but in program-

ming languages (e.g., Java, Python, and Haskell) as well. In general there is little

variation between the cultural formatting information found in the numerous locale

implementations. [9],[108]

Locales are named according to the country and language they support. The

name of a locale is based on two ISO (International Standards Organization) stan-

dards: ISO-639 (code for the representation of language names), and ISO-3166

(codes for the representation of names of countries). For the most part the name of a

locale is formed by concatenating a code from ISO-639 with a code from ISO-3166.

[95]

The setting of a locale is usually done by an individual user or a system

administrator. When a system administrator configures a locale for a system, it is

likely that they are selecting the default locale for an entire system. Depending on the

system, a user may or may not have the ability to switch or modify a locale. [75]

2.5 Keyboard Input
Differences in writing systems also pose unique challenges. This is especially

true for Chinese, Japanese, and Korean, because these languages have a large number

of characters and thus require a special mechanism to input them from a keyboard.

This special mechanism is known as an input method editor (IME). IMEs enable the

18

input of a large number of characters using a small set of physical keys on a keyboard.

[75]

There are three basic types of IMEs: telegraph code, phonetic, and structural.

A telegraph code IME allows the user to enter the decimal or hexadecimal value of a

character rather than the actual character itself. This is a very simple to use IME,

however, it requires the user to either memorize the decimal values of characters or

carry around a book that lists all the values. [75]

A phonetic IME takes as input the phonetic representation of a character or

sequence of characters rather than the characters themselves. The IME converts the

phonetic representation into characters by using a dictionary. In some cases the pho-

netic representation may yield more than one result. When more than one result is

obtained the user is given a list from which they make a selection for the appropriate

conversion. The phonetic IME does not require a user to memorize decimal values,

however it takes longer to determine the appropriate conversion due to dictionary

lookup. [75]

In a structural IME users enter a character by selecting the character’s build-

ing blocks. In many cases the same building blocks could generate more than one

result. When multiple results are obtained the user is shown a list of candidates and

is asked to pick the most appropriate character. Structural based IMEs do not require

dictionary lookup, however they usually require the user to search through longer

lists of characters. [75]

2.6 Fonts
Users don’t view or print characters directly, rather a user views or prints

glyphs (a graphic representation of a character). Fonts are collections of glyphs with

some element of design consistency. Many glyphs do not have a one-to-one relation-

ship to characters. Sometimes glyphs represent combinations of characters. For

19

example, a user might type two characters, which might be displayed using a single

glyph. See Figure 2-5. In other cases the choice of a glyph may be context dependent.

For example, a character may take different forms depending on its position within a

word: a separate glyph for a character at the beginning, middle, and end of a word.

See Figure 2-6. [29],[69],[7]

Figure 2-5. Character to glyph mapping

Figure 2-6. Contextual glyphs

As scripts vary, so do the fonts that can display them. Assumptions that fonts

of the same size and style will display different scripts approximately the same size

is incorrect. This is especially true of fonts from Asia. Some scripts have constructs

that go beyond simply placing one glyph after another in a row or column (e.g Japa-

nese furigana, which are used for annotation). The furigana usually appear above

ideographic characters and are used as a pronunciation guide. See Figure 2-7. Fully

internationalized systems must take such issues into consideration. [29]

Figure 2-7. Japanese furigana characters

20

Recently there has been a strong push towards fonts with large glyph reper-

toire covering a wide variety of scripts. These fonts aim to simplify the construction

of international software by providing both a uniform and consistent strategy for the

presentation of character data. Such examples include: Apple’s and Microsoft’s Tru-

eType font technology, Adobe’s postscript fonts, and Apple’s Advanced Type.

2.7 Character Coding Systems
One of the first steps in establishing an internationalized system is to modify

programs so that they allow characters in a variety of languages and scripts. Software

systems that support only a single language or script satisfies the needs of only a lim-

ited number of users. In computers scripts are captured through collections of discrete

characters. Most people have an instinctive feeling for what a character is, rather than

a precise definition. Naturally, many people would agree that the Latin alphabetic let-

ters, Chinese ideographs, and digits are characters. The problems come when some-

thing looks like a single unit of a natural language but is actually comprised from

multiple subpieces and when something is not really part of a natural language yet is

actually represented with a character.

For many years the ASCII (American Standard Code for Information Inter-

change) encoding served as the definitive mechanism for storing characters. ASCII

only allows for the encoding of 128 unique characters, due to the fact that ASCII uses

only 7-bits for encoding. Languages that contain more than 128 unique characters

require customized encoding schemes. This prevents efficient document exchange

from occurring. Currently work by the Unicode Consortium is underway on the adop-

tion of a character encoding standard, one that uses 16-bits greatly increasing the

number of scripts that can be represented.

We select the area of character coding systems for further study because char-

acter coding systems serve as the foundation for multilingual information processing.

As we will demonstrate the work in this area has not developed to a level of sophis-

21

tication for satisfying the needs of the multilingual information processing commu-

nity. In this dissertation we recast character coding systems in a new light.

22

3Character Coding
Systems

In this chapter we explore the various approaches to encoding character data.

We start the chapter by introducing terms relating to character coding systems fol-

lowed by an examination of monolingual character coding systems, later turning our

attention to multilingual coding systems. In this dissertation the term “monolingual

encoding” refers to a character coding system that has strict limits on the number of

scripts that can be represented, which are generally less than ten. We use the term

“multilingual encoding” to refer to character coding systems that do not have strict

limitations on the number of scripts that can be represented.

3.1 Terms
In this section, we define the terms related to character coding systems. The

terminology used to describe character coding systems is often confusing, causing

terms to be mistakenly used. The definitions of the terms are not formally standard-

ized, therefore there can be some variation of terms across standards. In this disser-

tation we follow ISO (International Organization for Standardization) definitions

where they exist. In cases where an ISO definition does not exist we use the defini-

tions found in RFC 2130 and RFC 2277. RFC (Request For Comments) are published

by the IETF (Internet Engineering Task Force). The IETF defines protocols that are

used on the internet. Nevertheless, there are cases in which we choose to use alterna-

tive definitions over those found in RFC’s. These alternative definitions are taken

23

from popular literature in the field of character encoding systems and are used when

the popular definition is more widely accepted. [5],[64],[106]

The following terms and definitions are used in this dissertation:

• Character — “smallest component of written language with semantic value
(including phonetic value).” [104]

• Control character — a character that affects the recording, processing, transmis-
sion or interpretation of data. [27]

• Graphic character — a character other than a control character, that has a visual
representation. [27]

• Combining character — a member of an identified subset of a coded character
set, intended for combination with the preceding or following character. [27]

• Glyph or glyph image— the actual concrete shape, representation of a character.
[96],[106]

• Ligature — a single glyph that is constructed from one or more glyphs. [57]

• Octet — “an 8-bit byte.” [104]

• Character set — “a complete group of characters for one or more writing sys-
tems.” [104]

• Code point — “a numerical index (or position) in an encoding table (coded char-
acter set) used for encoding characters.” [96]

• Escape sequence — a sequence of bit combinations that is used for control pur-
poses in code extension procedures. [27]

• Coded character set — “a mapping from a set of abstract characters to a set of
integers (code points).” [104],[106]

• Code extension — a technique for encoding characters that are not included in a
coded character set. [27]

• Character encoding scheme — “a mapping from a coded character set (or sev-
eral) to a set of octets.” [104],[106]

• Code page — “a coded character set and a character encoding scheme which is
part of a related series.” [104]

• Single byte character set (SBCS) — A character set whose characters are repre-
sented by one byte. [43]

24

• Double byte character set (DBCS) — A character set whose characters are repre-
sented by two bytes. [43]

• Multiple byte character set (MBCS) — A character set whose character are repre-
sented using a variable number of bytes. [43]

• Transport protocol — A data encoding solely for transmission purposes. [103]

3.2 Character Encoding Schemes
In general we divide character encoding schemes into two broad categories:

monolingual and multilingual encodings. Additionally, character encoding schemes

can be further divided into the following categories [64]:

• Fixed width encoding — in a fixed width encoding each character is represented
using the same number of bytes.

• Modal encoding — in a modal encoding escape sequences are used to signal a
switch between various character sets or modes.

• Non-modal or variable width encoding — in a non-modal encoding the code
point values themselves are used to switch between character sets. Therefore,
characters may be represented using a variable number of bytes. Characters in a
non-modal encoding typically range from one to four bytes.

In the next section we study the character encoding schemes used predomi-

nantly in Western and Eastern Europe. We then turn our attention to the encoding

systems used in Asia. In particular, we explore the encodings used to represent Jap-

anese, Chinese, and Korean. Finally, we conclude the chapter with multilingual char-

acter encodings.

3.3 European Encodings
During the early 1960’s the industry took the Latin alphabet, European

numerals, punctuation marks, and various hardware control codes, and assigned them

to a set of integers (7-bits) and called the resulting mapping ASCII (American Stan-

dard Code for Information Interchange.) ASCII is both a coded character set and an

encoding. In ASCII each code point is represented by a fixed width 7-bit integer. It

25

is important to note that in ASCII characters are identified by their graphic shape and

not by their meaning. Identifying characters by their shape simplifies character set

construction. For example, in ASCII the code for an apostrophe is the same whether

it is used as an accent mark, or as a single quotation mark. This simplification tech-

nique is certainly not a new idea. Typographers have been doing this for many years.

For example, we no longer see Latin final character forms being used in English.

[15],[26],[104],[87]

The ASCII encoding is divided into two broad sections: controls and graphic

characters. ASCII controls are in the hex ranges 0x00-0x1F and 0x7F, while the

ASCII graphic characters are in the hex range 0x20-0x7E. See Figure 3-1. ASCII’s

control codes are listed in Table 3-1. [15],[26],[104]

Figure 3-1. ASCII encoding

Table 3-1. ASCII control codes
Value
(hex)

Abbreviation Name

0x00 NULL null/idle

0x01 SOM start of message

26

0x02 EOA end of address

0x03 EOM end of message

0x04 EOT end of transmission

0x05 WRU “who are you..?”

0x06 RU “are you..?”

0x07 BELL audible signal

0x08 FE0 format effector

0x09 HT/SK horizontal tab/skip

0x0A LF line feed

0x0B VTAB vertical tabulation

0x0C FF form feed

0x0D CR carriage return

0x0E SO shift out

0x0F SI shift in

0x10 DC0 data link escape

0x11 DC1 device control

0x12 DC2 device control

0x13 DC3 device control

0x14 DC4 device control stop

0x15 ERR error

0x16 SYNC synchronous idle

0x17 LEM logical end of media

0x18 S0 separator

0x19 S1 separator

0x1A S2 separator

0x1B S3 separator

0x1C S4 separator

0x1D S5 separator

0x1E S6 separator

Table 3-1. ASCII control codes (Continued)
Value
(hex)

Abbreviation Name

27

3.3.1 ISO 7-bit Character Encodings

Naturally, the number of languages that can be represented in ASCII is quite

limited. Only English, Hawaiian, Indonesian, Swahili, Latin and some Native Amer-

ican languages can be represented. Even though ASCII is capable of representing

English, ASCII at its core is uniquely American. For example, ASCII includes the

dollar sign “$”, but no other currency symbol. So while British users can still use

ASCII, they have no way of representing their currency symbol, the sterling “£”.

[75],[104]

Seeing a need for representing other languages system vendors created vari-

ations on ASCII that included characters unique to specific languages. These varia-

tions are standardized in ISO-646. ISO-646 defines rules for encoding graphic

characters in the hex range 0x20-0x7E. See Figure 3-1. Standards bodies then apply

the rules to create language/script specific versions of ISO-646 sets. The ISO-646

standard defines one specific version that it calls the IRV (International Reference

Version), which is the same as ASCII. [75],[46]

In ISO-646 a specific set of characters are guaranteed to be in every lan-

guage/script specific version of ISO-646. These characters are referred to as the

invariant characters. The invariant characters include most of the ASCII characters.

Nevertheless, ISO also defines a set of characters that it calls variant characters.

0x1F S7 separator

0x7F DEL delete/idle

Table 3-1. ASCII control codes (Continued)
Value
(hex)

Abbreviation Name

28

Variant characters may be replaced by other characters that are needed for specific

languages/scripts. See Table 3-2. [75],[46]

There is no requirement that the variant characters be replaced in any of the

language/script specific versions of ISO-646. For example, the French version of

ISO-646 does not replace the circumflex “^” and the dollar sign “$”. See Table 3-3.

Unfortunately, French ISO-646 is still not capable of representing all of French in

spite of these changes. In French all vowels can take circumflexes, however there is

not enough room to represent them in ISO-646, hence the need for 8-bit encodings.

[75], [46]

Table 3-2. ISO variant characters
Value
(hex)

Character Name

0x23 # number sign

0x24 $ dollar sign

0x40 @ commercial at

0x5B [left square bracket

0x5C \ backslash

0x5D] right square bracket

0x5E ^ circumflex

0x60 ` grave accent

0x7B { left curly bracket

0x7C | vertical bar

0x7D } right curly bracket

0x7E ~ tilde

Table 3-3. French version of ISO-646
Value
(hex)

Character Name

0x23 £ sterling

0x24 $ dollar sign

0x40 à a with grave

29

3.3.2 ISO 8-bit Character Encodings

Around the late 1980s, the European Computer Manufacturers Association

(ECMA) began creating and, with ISO, issuing standards for encoding European

scripts based on an 8-bit code point. These standards have been adopted by most

major hardware and software vendors. Such companies include IBM, Microsoft, and

DEC [50]. The most popular and widely used of these encodings is ISO-8859-1, com-

monly known as Latin 1. [27],[104],[47]

The ISO-8859-1 encoding contains the characters necessary to encode the

Western European and Scandinavian languages. See Figure 3-2 [44]. ISO-8859-1 is

just one of many ISO-8859-x character encodings. Most of the ISO-8859-x encod-

ings existed as national or regional standards before ISO adopted them. Each of the

ISO-8859-x encodings have some common characteristics. Moreover, all of them

function as both coded character sets and character encoding schemes.

[26],[104],[47]

The ISO-8859-x encoding is divided into four sections. See Table 3-4. In

each ISO-8859 encoding the first 128 positions are the same as ASCII. However,

unlike ASCII the ISO-8859-x encodings rely on an 8-bit code point. Characters that

0x5B ° ring above

0x5C ç c with cedilla

0x5D § section sign

0x5E ^ circumflex

0x60 µ micro sign

0x7B é e with acute

0x7C ù u with grave

0x7D è e with grave

0x7E ¨ diaeresis

Table 3-3. French version of ISO-646 (Continued)
Value
(hex)

Character Name

30

are required for specific scripts/languages appear in the 0xA0-0xFF range. This

allows for the addition of 96 graphic characters over what ISO-646 IRV provides.

Graphic characters that appear in multiple ISO-8859-x encodings all have the same

code point value. For example, “é” appears in both ISO-8859-1 and ISO-8859-2 at

the same code point value 0xE9.

Table 3-4. ISO-8859 layout
Code point range (hex) Abbreviation Name

0x00-0x1F C0 ASCII controls

0x20-0x7E G0 ISO-646 IRV

0x7F-0x9F C1 control characters

0xA0-0xFF G1 additional graphic characters

31

Figure 3-2. ISO-8859-1 encoding

The C0 (0x00-0x1F) and C1 (0x7F-0x9F) ranges in ISO-8859-x are reserved

for control codes. The C0 range contains the ASCII controls. The assignment of the

control codes in the C1 range are not made in ISO-8859-x, but rather are part of ISO-

6429 (control functions for 7-bit and 8-bit code sets). The motivation for the C1 con-

trols comes from DEC’s VT220 terminals.

32

Not all of the upper ranges G1 (0xA0-0xFF) of the ISO-8859-x standards are

based on Latin characters. For example, ISO-8859-7 has Greek characters in the

upper range. See Figure 3-3. The scripts/languages that the ISO-8859-x standards

support is summarized in Table 3-5.[11],[75],[104]

Figure 3-3. ISO-8859-7 encoding

33

3.3.3 Vendor Specific Character Encodings

Prior to the introduction of the ISO and European Computer Manufacturers

Association character encoding standards, vendors created their own character

encodings. For the most part these character encodings were created by hardware and

operating system providers. In particular, IBM, Apple, Hewlett-Packard, and

Microsoft. A large number of these vendor specific encodings are still in use. In this

section we explore some of these encodings.

Table 3-5. ISO-8859 standards
Standard name Informal name Languages supported

ISO-8859-1 Latin 1 Afrikaans, Albanian, Basque, Catalan, Danish, Dutch,
English, Faroese, Finnish, French, Gaelic, Galician, German,
Icelandic, Italian, Norwegian, Portuguese, Spanish, Swedish

ISO-8859-2 Latin 2 Albanian, Croatian, Czech, English, German, Hungarian, Pol-
ish, Romanian, Slovak, Slovenian

ISO-8859-3 Latin 3 Afrikaans, Catalan, Dutch, English, Esperanto, Galician, Ger-
man, Italian, Maltese, Spanish, Turkish

ISO-8859-4 Latin 4 Danish, Estonian, English, Finnish, German. Lappish,
Latvian, Lithuanian, Norwegian, Swedish

ISO-8859-5 Latin/Cyrillic Azerbaijani, Belorussian, Bulgarian, English, Kazakh, Kir-
ghiz, Macedonian, Moldavian, Mongolian, Russian, Serbian,
Tadzhik, Turkmen, Ukrainian, Uzbek

ISO-8859-6 Latin/Arabic Arabic, Azerbaijani, Dari, English, Persian, Farsi, Kurdish,
Malay, Pashto, Sindhi, Urdu

ISO-8859-7 Latin/Greek English, Greek

ISO-8859-8 Latin/Hebrew English, Hebrew, Yiddish

ISO-8859-9 Latin 5 Turkish

ISO-8859-10 Latin 6 Greenlandic, Lappish

ISO-8859-11 Latin/Thai English, Thai

ISO-8859-13 Latin 7 Baltic rim (region)

ISO-8859-14 Latin 8 Celtic

ISO-8859-15 Latin 9 removes some non character symbols from ISO-8859-1 adds
“€” euro currency symbol.

34

IBM has a number of code pages for its mainframe series of computers that

are based upon EBCDIC (Extended Binary Coded Decimal Interchange Code). The

IBM EBCDIC series of code pages use an 8-bit code point. In EBCDIC the number

and type of printable characters are the same as ASCII, but the organization of

EBCDIC differs greatly from ASCII. See Table 3-6 and Figure 3-4. [40],[57]

Table 3-6. EBCDIC layout
EBCDIC code point range (hex) ASCII code point range (hex) Characters

0x00-0x3F 0x00-0x1F controls

0x40 0x20 space

0x41-0xF9 0x20-0x7E graphic characters

0xFA-0xFE N/A undefined

0xFF N/A control

35

Figure 3-4. EBCDIC encoding

IBM also has a wide variety of IBM PC based code pages, sometimes referred

to as DOS code pages. See Table 3-7 [35]. These code pages are also based upon an

8-bit code point. However, unlike EBCDIC, PC code pages are based upon ASCII.

In particular, the hex range 0x00-0x7F is in direct correspondence with ASCII. For

the most part the PC code pages are quite similar to the ISO-8859-x series. There are,

however differences that are worth noting. For example, the IBM 850 PC code page

36

is quite similar to Latin 1, however IBM 850 assigns graphic characters to the 0x80-

0xFF hex range, while ISO-8859-1 assigns control characters to the 0x80-0x9F hex

range. Additionally, IBM 850 contains a small set of graphic box characters that are

used for drawing primitive graphics. See Figure 3-5. [75]

Table 3-7. IBM PC code pages
Code page number Language group

437 English, French, German, Italian, Dutch

850 Western Europe, Americas, Oceania

852 Eastern Europe using Roman letters

855 Eastern Europe using Cyrillic letters

857 Western Europe and Turkish

861 Icelandic

863 Canadian-French

865 Nordic

866 Russian

869 Greek

37

Figure 3-5. IBM 850

In a similar fashion Microsoft has also created a series of code pages for use

within Microsoft Windows. See Table 3-8 [35]. The Windows code pages are also

38

largely based upon ASCII and the ISO-8859-x series. The Windows code pages,

however define extra graphic characters in the hex range 0x80-0x9F. See Figure 3-6.

Table 3-8. Windows code pages
Code page number Languages supported

1252 Danish, Dutch, English, Finnish, French, German, Icelandic,
Italian, Norwegian, Portuguese, Spanish, Swedish

1250 English, Czech, Hungarian, Polish, Slovak

1251 Russian

1253 Greek

1254 Turkish

39

Figure 3-6. Windows 1252

Hewlett-Packard has also codified a set of 8-bit code pages that are very much

akin to the ISO-8859-x series. In particular, Hewlett-Packard’s ROMAN8. In

ROMAN8 the hex range 0x00-0x7F is in direct correspondence with ASCII.

ROMAN8 provides some additional characters that are not in ISO-8859-1. Neverthe-

less, ROMAN8 does not have some characters that are in ISO-8859-1. For example,

the “©” copyright sign is present in ISO-8859-1, but not in ROMAN8. [63],[75]

40

3.4 Japanese Encodings
Languages like Japanese, Chinese, and Korean have extensive writing sys-

tems that are based on both phonetic and ideographic characters. These systems

require more than 8-bits per character, because they contain literally thousands of

characters. In this section we describe the encoding methods used in Japan. We

choose to use Japanese for two reasons: First, Japan was the first country to encode

a large character set. Second, the Chinese and Korean encodings are largely based

upon the methods used in the Japanese encodings. [57]

The Japanese writing system is comprised from four different script systems:

Chinese ideographic characters (symbols that represent ideas or things, known as

Kanji in Japan), Katakana (syllabary used for writing borrowed words from other

languages), Hiragana (syllabary used for writing grammatical words and inflectional

endings), and Romaji (Latin letters used for non Japanese words). The Kanji script

used in Japan includes about 7,000 characters. The Katakana and Hiragana scripts

both represent the same set of 108 syllabic characters, and are collectively known as

Kana. A sampling of Kanji, Katakana, and Hiragana characters are shown in

Figure 3-7, Figure 3-8, and Figure 3-9. [57],[73],[96],[109]

Figure 3-7. Japanese Kanji characters

41

Figure 3-8. Japanese Katakana characters

Figure 3-9. Japanese Hiragana characters

When discussing systems for encoding Japanese, we must be careful to make

the distinction between Japanese coded character sets and Japanese character encod-

ings. In Japanese the coded character set is referred to as the Ward-Point or Kuten

character classification system. This system is part of the JIS X (Japan Industrial

42

Standard) published by the Japanese Standards Association. Using the Ward-Point

system requires knowledge of spoken and written Kanji. The system uses a two code

system for character identification. The two codes are commonly known as row and

cell and are represented using two bytes. [86]

Using a single byte 128 positions can be referenced. Nevertheless, the Japa-

nese only use the 94 printable ASCII characters. Therefore, in the Ward-Point sys-

tem, Kanji characters are arranged in groups of 94 characters. Each character is

assigned two values, a row number and a cell number. These values identify the char-

acter’s position within JIS. The row and cell numbers range from 1 to 94. Therefore,

JIS can be thought of as 94x94 character matrix. This allows 8,836 characters to be

represented. This coded character set scheme was first formalized in 1978 and is

known as JIS X 0208. [86]

In Japanese characters may be read in one of two ways, On and Kun. On is a

reading that is based on a Chinese pronunciation, while Kun is a reading based on a

Japanese pronunciation. Radicals in Japanese represent core components of Kanji

characters. These radicals are indicative of a group of Kanji characters. [86]

In the Ward-Point system characters are grouped according to their reading

and their radical makeup. Additionally, JIS specifies three levels of character group-

ings. Level 0 contains non-Kanji characters, while levels 1 and 2 are used exclusively

for Kanji characters. Level 1 contains the 2,965 most frequently occurring characters,

while level 2 contains an additional 3,388 characters. [86],[105]

The Japanese Standards Association has continually revised JIS adding,

removing and rearranging characters. Besides the Kanji characters, JIS also encodes

the Latin, Greek, and Cyrillic alphabets, because of business needs. The various JIS

43

standards along with the characters that they each encode is summarized in Table 3-

9. [58],[86]

As we mentioned earlier the Japanese coded character sets are independent

from the method used to encode them. In the next section we examine the four meth-

ods (Personal Computer, Extended Unix Code, Host, and Internet Exchange) used for

encoding Japanese. The main difference between these encoding methods is in the

way in which they switch between single byte character sets (SBCS) and double byte

character sets (DBCS).

3.4.1 Personal Computer Encoding Method

The Personal Computer (PC) encoding method is a non-modal system. In a

non-modal encoding the code point value of a character is used to switch between

SBCS (ASCII characters) and DBCS (JIS Kanji). This encoding system is generally

referred to as shift-JIS (SJIS), because the Kanji characters shift around the SBCS

characters. In the SJIS encoding system DBCS mode is initiated when the code point

value of the first character of a two byte sequence falls within a predefined range

above hex 0x7F. Generally the range is hex 0x81-0xFF or 0xA1-0xFE. If a character

falls in the two byte range, then the character is treated as the first half of a two byte

sequence, otherwise the character is treated as a single byte sequence. See Figure 3-

10. The code page illustrated in Figure 3-11 represents JIS X0212 in this code page

Table 3-9. JIS character standards
Standard name Year adopted Number of characters Characters

JIS X0201-1976 1976 128 Latin, Katakana

JIS X0208-1978 1978 6,879 Kanji, Kana, Latin, Greek, Cyrillic

JIS X0208-1983 1983 6,974 Kanji, Kana, Latin, Greek, Cyrillic

JIS X0208-1990 1990 6,976 Kanji, Kana, Latin, Greek, Cyrillic

JIS X0212-1990 1990 6,067 Kanji, Greek with diacritics, Eastern
Europe, Latin

JIS X0213-2000 2000 4,344 Kanji, Kana, Latin, Greek, Cyrillic

44

there are two double byte ranges hex 0x81-0x9F and hex 0xE0-0xFC. Additionally,

in JIS X0212 the Katakana characters are encoded as single byte sequences. See

Figure 3-11 hex range 0xA1-0xDF. [43],[86]

Figure 3-10. Mixed DBCS and SBCS characters

45

Figure 3-11. JIS X0212 PC encoding

3.4.2 Extended Unix Code Encoding Method

The extended Unix Code (EUC) system is used predominately in Unix envi-

ronments. EUC consists of four graphic character code sets: the primary graphic code

set (G0) and three supplementary code sets (G1, G2, and G3). Code set G0 is always

a single byte per character code set, and is usually ASCII. Code set G1, usually Kanji

46

consists of two byte per character sequences that have their most significant bits set.

Characters in code set G2 are required to have their byte sequence start with a special

prefix, hex 0x8E. This special prefix is known as single-shift-two (SS2). Characters

in G2 are often katakana characters. Characters in code set G3 must also have their

byte sequence start with a special prefix, however in the case of G3 the prefix is hex

0x8F, known as single-shift-three (SS3). The G3 code set is reserved for user defined

or external characters.

In EUC Kanji mode is initiated when the value of the first character of a two

byte sequence is between hex 0xA1-0xFE. This character is then treated as the first

half of a two byte sequence. The second byte from this sequence must also be in the

same range. The ASCII mode is initiated when the first character is less than hex

0x7F. Katakana mode is invoked when the first character is SS2. This character is

subsequently treated as the first half of a two byte character sequence. Additionally,

the second byte must be in the range hex 0xA1-0xDF. The user defined character

mode is initiated when the first character is SS3. This character is subsequently

treated as the first byte of a three byte character sequence. The second and third bytes

must come form the range hex 0xA1-0xFE. The example in Figure 3-12 demonstrates

EUC with one, and two byte sequences. Line 1 on Figure 3-12 are hex byte

sequences, separated by commas that correspond to the graphic characters on Figure

3-12. Additionally, the underlined byte sequences indicate double byte sequences

Figure 3-12. EUC encoding

41,42,43,B4C1,BBFA,20,31,32,33 (1)

3.4.3 Host Encoding Method

On host environments, such as the IBM 390 and AS/400 both SBCS and

DBCS are used. In the host method special control codes are used to switch between

47

SBCS mode and DBCS mode. To switch into DBCS mode the shift-in (0x0E) control

is used, while the shift-out (0x0F) control is used to switch back to SBCS mode.

Unlike the PC encoding method the values of the characters themselves are not used

to determine the mode, therefore the host method is a modal encoding system. On

host systems SBCS is based on EBCDIC, while DBCS is based on JIS. [43]

3.4.4 Internet Exchange Method

The internet exchange method, commonly known as ISO-2022 is a 7-bit/8-bit

encoding method that enables character data to be passed through older systems. In

some legacy systems the high order bit of an 8-bit byte gets stripped off, causing cor-

ruption of 8-bit character data. Therefore, all bytes in ISO-2022 must be in the hex

range 0x21-0x7E (printable ASCII). Generally, ISO-2022 is never used as an internal

character encoding. Nevertheless, Emacs processes character data in the ISO-2022

encoding [88]. The use of the term ISO-2022, however is somewhat misleading,

because ISO-2022 does not really specify character encodings, but rather an architec-

ture for intermixing coded character sets. The actual individual encodings are speci-

fied in RFCs. [104]

In ISO-2022 escape sequences and shift states are used to switch between

coded character sets. Therefore, ISO-2022 is a modal encoding system. ISO-2022

reserves the hex range 0x00-0x1F for 32 control codes and refers to this range as the

C0 block. This is the same as the ISO-8859 standard. Additionally, another set of 32

controls are also reserved, designated as C1. These controls may be represented with

escape sequences. The hex range 0x20-0x7F is reserved for up to four sets of graphic

characters, designated G0-G3 (in some graphic sets, each character may require mul-

tiple bytes). Most graphic sets only use the hex range 0x21-0x7E, in which case 0x20

(space), and 0x7F (delete) are reserved. Typically, the C0 and C1 blocks are taken

from ISO-6429. See Table 3-1. The G0 block is generally taken from ISO-646 (Inter-

national Reference Version). See Figure 3-1. In ISO-2022 an escape sequence starts

48

with an ESC control character (0x1B). The bytes following the ESC are a set of fixed

values that are defined by the ISO-2022 standard. [24]

In many cases a single stream of characters can be encoded in more than one

way in ISO-2022. For example, the mixed ASCII Greek character stream on line 1

on Figure 3-13 can be represented by switching graphic character sets or by escaping

individual characters. Line 2 is the corresponding 7-bit byte sequence for the charac-

ters on line 1. The double underlined characters on line 2 indicate escape sequences.

By default ISO-2022 sets the G0 graphic character set to ASCII. Escape sequences

are used to switch character sets. The first escape sequence “1B,2C,46” on line 2

switches the G0 graphic character set to 7-bit Greek, while the second escape

sequence “1B,28,42” switches G0 back to ASCII. Line 3 is the corresponding 8-bit

byte sequence for the characters on line 1. The double underlined characters on line

3 indicate an escape sequence, while the single underlined characters “8E” indicate a

single-shift-two (SS2). The escape sequence “1B,2E,46” on line 3 assigns the 8-bit

Greek character set to the G2 graphic character set, while the SS2 character signals a

temporary switch into the G2 character set.

Figure 3-13. ISO-2022 encoding

(1)

47,72,65,65,6B,20,1B,2C,46,45,6B,6B,67,6D,69,6A,6C,1B,28,42 (2)

47,72,65,65,6B,20,1B,2E,46,8E,C5,8E,EB,8E,EB,8E,E7,8E,ED,8E,E9,8E,EA,8E,DC (3)

In the case of ISO-2022-JP (Japanese encoding of ISO-2022), a Kanji-in

escape sequence directs the bytes that follow to be treated as two bytes per character.

The first byte of the two byte sequence determines the character grouping, while the

second byte indicates the character within the grouping. A JIS out or Kanji out escape

sequence directs the bytes that follow to be treated as single byte characters. The

escape sequences for ISO-2022-JP are specified in Table 3-10. The example, on

Greek Ελληνικά

49

Figure 3-14 illustrates how the characters from Figure 3-12 would be represented in

ISO-2022-JP. Line 1 are hex byte sequences that correspond to the graphic characters

on Figure 3-14. Double underlined bytes represent escape sequences, while under-

lined bytes indicate double byte character sequences. [86],[104]

Figure 3-14. ISO-2022-JP encoding

41,42,43,1B,24,42,3441,3B7A,1B,28,42,20,31,32.33 (1)

3.4.5 Vendor Specific Encodings

IBM, Microsoft, Apple, and DEC have provided a wide variety of Japanese

character encodings for use within their respective platforms and operating systems.

Unfortunately, in many cases these encodings are incompatible across vendors. Nat-

urally, as national/international standards emerged some migration path from legacy

encodings to standardized encodings became necessary. To satisfy this need vendors

have created/modified encodings. In almost all cases these encodings are variations

or super sets of existing encodings, although differences do exist. Some of the more

frequently occurring encodings are listed on Table 3-11. [52],[42],[43]

Table 3-10. ISO-2022-JP escape sequences
Escape sequence (hex) Escape sequence (graphic) Coded character set

0x1B,0x28,0x42 ESC (B ASCII

0x1B,0x28,0x4A ESC (J JIS X0201 (Roman)

0x1B,0x24,0x40 ESC $ @ JIS X0208-1978

0x1B,0x24,0x42 ESC $ B JIS X0208-1983

Table 3-11. Vendor encodings
Vendor Code page Based on

IBM 952 DBCS EUC JISX0208-1997

IBM 953 DBCS EUC JISX0212-1990

50

3.5 Chinese Encodings
The traditional Chinese writing system is not a phonemic system. In Phone-

mic systems sound is represented as units that are in a one-to-one correspondence

with symbols. For example, a Latin based language, can be written with only 26

unique letters. On the other hand, Chinese requires thousands of unique symbols

(ideographic characters, known as Hanzi in China) to express itself. Moreover, it is

difficult to determine just how many characters exist today. One of the classic Chi-

nese dictionaries lists about 50,000 Hanzi characters, of which only 2,000-3,000 are

in general use. [93]

In general Chinese Hanzi characters are difficult to write and print due to the

large number of strokes in each character. Hanzi characters vary from one to over 30

strokes. Typically, each character requires seven to 17 strokes. The practical disad-

vantages of such a system when compared to an alphabet are obvious. [93]

Over time, however the Chinese script has taken on certain phonetic proper-

ties. In some cases, identical sounding but semantically remote characters would loan

their shapes to indicate the sound of a character. Additionally, the Chinese script and

language have been in a continuos state of flux. In particular, since the revolution of

1949 the Chinese government (Peoples Republic of China) has actively pursued sim-

plification of the Chinese script. [93]

In 1954 a committee was formed to reform the language. This committee sim-

plified nearly 2,200 Hanzi characters. In some cases the radicals (base shape of a

IBM 932/942 MBCS PC JIS X0208-1978

IBM 943 MBCS PC JIS X0208-1990

Microsoft MS 932 MBCS PC JIS X0208-1990

HP HP EUC DBCS EUC JIS X0212-1990

DEC DEC Kanji ISO-2022-JP JIS X0208-1983

Table 3-11. Vendor encodings (Continued)
Vendor Code page Based on

51

Chinese Hanzi character) changed, while in others the number of strokes changed.

This simplification, however caused havoc in dictionaries, because Chinese dictio-

naries are organized by radical and stroke. Some scholars believe that the simplifica-

tion process has only made the Chinese script more difficult to understand.

Specifically, the reduction in the number of strokes makes several characters look

alike. While the government of the Peoples Republic of China has continued to pro-

mote this simplification process, it has not been universally accepted however, par-

ticularly in Taiwan and Hong Kong [93]

The Chinese language can also be represented through transliteration. In this

context we refer to transliteration of Chinese into its phonetic equivalent in Latin let-

ters. In general there are two Latin transliteration systems for Chinese, Wade-Giles

and Pinyin. The Wade-Giles system was invented by two british scholars during the

19th century. The Wade-Giles system is only used in Taiwan for representing place

names, street names, and people’s names. In mainland China only Pinyin is used.

[93],[77]

The Pinyin system was created during the Chinese Hanzi simplification pro-

cess. The Pinyin system can be used with or without diacritics. Most systems opt for

using Pinyin without diacritics, because diacritics require special fonts. [93]

In Taiwan the Bopomofo system is used for transliteration. The Bopomofo

system gets its name from the first four Taiwanese phonetic characters. The Bopo-

mofo characters represent consonants and vowels. Moreover, there is a one-to-one

correspondence between Pinyin and Bopomofo. [93],[77]

3.5.1 Peoples Republic of China

As we indicated above Japan was the first country to construct a large coded

character set and encoding. Similarly, China has done the same in their Guojia

Biaozbun (GB) standards; Guojia Biaozbun means National Standard. The Chinese

use the GB 2312-80 standard to manage Hanzi (Simplified Chinese characters),

52

Bopomofo, Pinyin, Japanese Katakana, Japanese Hiragana, Latin, Greek, and Cyril-

lic in groups of 94x94 character matrices. This 94x94 matrix is the same design

employed in the Japanese standards. The overall structure is similar to JIS, but the

Chinese characters (Hanzi) are placed in different positions. The non-Hanzi charac-

ters are in the same locations as JIS. [104],[48],[105]

Just like JIS, the Hanzi characters are organized into two levels based upon

their frequency of use. Two additional groups for even less frequently used Hanzi

characters have been developed, for a total of three groups of Hanzi characters. Addi-

tionally, GB 2312-80 may be encoded using the PC, EUC, ISO-2022, and Host

encoding methods. [104],[48],[105]

After the construction of the GB 2312-80 standard, the Peoples Republic of

China expressed interest in supporting the efforts of both the Unicode Consortium

and ISO through publishing a Chinese national standard that was code and character

compatible with the evolving ISO-10646/Unicode standard, in particular version 2.1

of the Unicode standard. We delay a detailed discussion of ISO-10646/Unicode until

later. For purposes of discussion we can think of Unicode as a super set of all coded

character sets. [67]

This new Chinese standard was named GB 13000.1-93, which is commonly

known as GB 13000. Whenever ISO/Unicode would change their standard, the Chi-

nese would also update their standard. By adopting this strategy, GB 13000 was able

to include Traditional Chinese Hanzi characters (ideographic characters used in

Taiwan and Hong Kong), because these characters appeared in Unicode. Unfortu-

nately, GB 13000’s character encoding was not compatible with GB 2312-80. In

order to remain compatible with the GB 2312-80 encoding standard a new coded

character set was created that contained all the characters from both GB 13000 and

GB 2312-80, yet used an encoding that was compatible with GB 2312-80. This new

character set is known as Guojia Biaozbun Kuozban (GBK) and also uses groups of

53

94x94 character matrices. Thus, code and character compatibility between GB 2312-

80 and GBK was ensured while at the same time, remaining synchronized with Uni-

code’s character set. [67],[94]

Prior to the release of the Unicode 3.0 standard, GBK was regarded as the de

facto coded character set and encoding for Mainland China. As the Unicode standard

progressed GBK became full. Finally, when it became time to adopt the new charac-

ters in Unicode 3.0 GBK would have to expand to a three byte per character encod-

ing. Thus, a new coded character set and character encoding was born. This new

encoding is known as GB 18030. GB 18030 is a multi byte encoding (one to four

bytes). The one and two byte portions, however are compatible with GBK. GB 18030

thus creates a one-to-one relationship between parts of GB 18030 and Unicode’s

encoding space. We summarize the various GB standards in Table 3-12.

[59],[67],[84]

3.5.2 Republic of China

Taiwan has developed Chinese National Standard (CNS) 11643, which con-

tains over 48,000 Traditional Chinese characters plus characters from the various

other scripts. CNS 11643 is also organized into groups of 94x94 character matrices.

Nevertheless, CNS 11643 is not the predominant coded character set within Taiwan,

rather BigFive is used. BigFive refers to the five companies that created it. BigFive

Table 3-12. GB standards
Standard name Year adopted Number of characters Characters

GB 2312-80 1981 7,445 Simplified Hanzi,Traditional Hanzi
(some), Pinyin, Bopomofo, Hiragana,
Katakana, Latin, Greek, Cyrillic

GBK 1993 21,886 Simplified Hanzi,Traditional Hanzi
(some), Pinyin, Bopomofo, Hiragana,
Katakana, Latin, Greek, Cyrillic

GB 18030-2000 2000 28,468 Simplified Hanzi,Traditional Hanzi
(some), Pinyin, Bopomofo, Hiragana,
Katakana, Latin, Greek, Cyrillic

54

is grouped into 94x157 character matrices. BigFive encodes over 13,000 Traditional

Chinese characters plus Latin, Greek, Bopomofo, and other symbols. Fortunately

there are few differences between BigFive and CNS 11643. We summarize the Tai-

wanese standards in Table 3-13. [104]

3.5.3 Hong Kong Special Administrative Region

Historically, computers lacked support for the special characters commonly

used in Hong Kong and in the areas where Cantonese is spoken. Some of the missing

Hanzi characters were of foreign origin, particularly deriving from Japanese. The use

of these characters reflects Hong Kong’s role in the economics of Asia. Neither, the

BigFive, GB 2312-80, or GBK adequately supported the needs of Hong Kong or gen-

eral Cantonese users. [67],[68]

Software vendors created various solutions to providing the missing charac-

ters. Unfortunately, their efforts were uncoordinated resulting in solutions that were

incompatible with each other. Concurrent to this activity the special administrative

government of Hong Kong started developing the “Hong Kong Government Chinese

Character Set”. This informal specification was initially used internally as a govern-

mental standard. Soon after, it became a required feature for general computing sys-

tems within Hong Kong. [67],[68]

In 1999 these special characters were officially published in the “Hong Kong

Supplementary Character Set” (SCS). The SCS contains 4,072 characters, the major-

ity of which are Hanzi. Additionally, the SCS was explicitly designed to fully

Table 3-13. Taiwanese standards
Standard name Year adopted Number of characters Characters

CNS 11643 1992 48,027 Traditional Chinese Hanzi, Bopomofo,
Latin. Greek

BigFive 1984 13,494 Traditional Chinese Hanzi, Bopomofo,
Latin. Greek

55

preserve the code point organization of BigFive, thus easing the problem of encod-

ing. [67],[68]

3.6 Korean Encodings
Just like Japanese and Chinese, Korean also uses a set of ideographic charac-

ters in its writing system. These ideographic characters are known as Hanja in

Korean. Additionally, Korean also uses a set of phonetic characters, referred to as

Hangul. The Hangul script was created by royal decree in 1443 by a group of schol-

ars. Each Hangul character is a grouping of two to five Hangul letters, known as Jamo

(phonemes). Each Hangul block forms a square cluster representing a syllable in the

Korean language. Jamo can be simple or double consonants and vowels. The modern

Hangul alphabet contains 24 basic Jamo elements (14 consonants and 10 vowels).

Extended letters can be derived by doubling the basic letters. [6],[109]

3.6.1 South Korea

As in the other Asian encodings Korea’s standards (KS) follow a layout sim-

ilar to JIS and GB. However, Cyrillic and Greek characters are not in the same posi-

tions as JIS and GB. In the KSX-1001 (formerly KSC-5601) characters are organized

into 94x94 matrices. KSX-1001 encodes Jamos (Korean letters), Hangul, Hanja,

Katakana, Hiragana, Latin, Greek, Cyrillic, as well as other symbols. Additionally,

Korea also encodes their own version of the ISO-646 standard, replacing hex 0x5C

(backslash) with the Won sign (Korean currency symbol). KSX-1001 can be encoded

using EUC and ISO-2022. [104]

3.6.2 North Korea

The North Korean government has also created a coded character set for

Korean, known as KPS 9566-97. It is constructed in a similar fashion to South

Korea’s KSX-1001. KPS 9566-97 encodes nearly 8,300 characters including: Jamos,

56

Hangul, Hanja, Latin, Cyrillic, Greek, Hiragana, and Katakana. It can be encoded by

using EUC and ISO-2022. [22]

3.7 Vietnamese Encodings
Vietnamese was first written using the Chinese ideographic characters. This

system was in use by scholars until a few decades ago. In Vietnamese two Chinese

characters were usually combined, one character indicated the meaning, while the

second assisted with pronunciation. This system, chu nom, never gained widespread

adoption and was only used in literature. [92]

Around the 17th century Catholic missionaries arrived in Vietnam and began

to translate prayer books. In doing their translations they developed a new Roman-

ized script. This script is known as quoc ngu. Initially this new script was not met

with mass appeal. Nevertheless, when Vietnam became under French control (1864-

1945) quoc ngu was officially adopted. Thus, in modern Vietnam quoc ngu is used

universally and forms the basis for all Vietnamese computing. [92]

It would appear that modern Vietnamese could easily be incorporated into

one of the Latin based encodings, as Vietnamese is based upon a French model of

Latin characters. Like French an 8-bit encoding scheme should be sufficient for

encoding Vietnamese. Nevertheless, in Vietnamese there are many frequently occur-

ring accented letters. In addition to the alphabetic characters in the IRV (ASCII 0x00-

0x7F), Vietnamese requires an additional 134 combinations of a letter and diacritical

symbols. [92]

Obviously all such combinations can fit within the confines of an 8-bit encod-

ing space. However, it is highly desirable to maintain compatibility with the IRV

range. Requiring such compatibility does not leave enough room in the upper range

(0x80-0xFF) to encode all the necessary diacritic combinations. Some people within

the Vietnamese data processing community have argued that certain rarely used

57

precomposed Vietnamese characters could be dropped altogether or could be

mapped into the C0 control space (0x00-0x1F). [92]

Until the introduction of Windows 95, no clear encoding standard had

emerged. Microsoft and the Vietnam Committee on Information Technology created

a new code page, known as Microsoft 1258 (CP 1258). CP 1258 can be made com-

patible with Latin 1 by dropping some precomposed characters. There are other com-

peting standards emerging, however. Most notably is the VISCII (Vietnamese

Standard Code for Information Interchange) standard, described in RFC 1456. The

VISCII standard does preserve all the precomposed characters, and is becoming quite

popular. [92]

In addition to the Microsoft and VISCII encoding schemes, there is a conven-

tion for exchanging Vietnamese across 7-bit systems. This 7-bit convention is known

as VIQR (Vietnamese Quoted-Readable), and is described in RFC 1456. VIQR is not

really encoding scheme, but is rather a method for typing, reading, and exchanging

Vietnamese data using ASCII. In VIQR precomposed characters are represented by

the vowel followed by ASCII characters whose appearances resemble those of the

corresponding Vietnamese diacritical marks. [92]

3.8 Multilingual Encodings
So far in our discussion of encoding schemes we have concentrated our

efforts on monolingual encodings. In this section we turn our attention to multilingual

encodings. We start this section with some motivation for the construction of multi-

lingual encodings, later turning our attention to the various strategies for capturing

multilingual data.

3.8.1 Why Are Multilingual Encodings Necessary?

Over the last twenty years the software industry has experienced incredible

growth. Initially, the demand for software was limited to just the United States,

58

however as cheap computing proliferated this demand has spread the world over. For

the most part the development of software has been restricted to the United States.

Historically, most software development labs would produce an English language

version of a product, subsequently followed by multiple national language versions

(NLV). The construction of these NLVs was generally not done in the United States,

rather it was done by the overseas branch of the development lab or was contracted

out to an independent software vendor (ISV). [29],[20],[85]

Once the source code was delivered to the overseas lab or ISV the source code

would be modified to support the local encoding schemes for the language/country.

Simultaneous to this effort, a lab in the United States would start development on the

next version of the product. Therefore, the various NLVs always lagged behind the

English version of the product. [29],[61],[85] This situation caused several problems:

• Overseas marketing organizations faced a difficult time selling older versions of
products when newer versions were available in the United States.

• It became difficult to provide timely maintenance to a product because a fix
would need to be generated across several source trees.

• In many cases common fixes could not be used across source lines because each
source tree supported a different coded character set and encoding.

• Attempting to later merge support for all encoding schemes across all source
trees dramatically increased both the size and the complexity of the product.

Differences in encoding approaches and text processing make merging

source trees extremely difficult. In some situations merging source trees requires text

processing algorithms to be rewritten. For example, random character access func-

tions may need to be rewritten when a stateful encoding is merged with a stateless

encoding. In a stateful encoding the meaning of a character is dependent on neigh-

boring characters.

In some cases even memory management routines require modification. In

fixed width encoding schemes developers often assume that a byte and a character

are of the same size, or even worse the number of code units in a string represents the

59

number of characters in the string. These assumptions causes problems for merging

source code based on a fixed width encoding scheme with source code based on a

variable width encoding scheme.

Merging problems may also be caused by differences in encoding philoso-

phies. In some cases entire text processing functions may need to be either removed

or redesigned when source trees are merged. For example, a text searching function

based on abstract characters would have to be redesigned when used with an encod-

ing based on glyphs.

These problems caused the software industry to reach two important conclu-

sions: First, that there was an imperative need to develop a single worldwide coded

character set and encoding that would be required for all software. Second, that all

NLVs of a product must be based on a single common source tree.

3.8.2 Unicode and ISO-10646

In discussing the creation of Unicode, we can not avoid discussing ISO-

10646 as well as the two are intertwined, sharing both a common history and goals.

In the 1980s, text encoding experts from around the world began work on two ini-

tially parallel projects to overcome character encoding obstacles. In 1984 ISO

actively started work on a universal character encoding. ISO placed heavy emphasis

on compatibility with existing ISO standards, in particular ISO-8859. In the spring of

1991 ISO published a draft international standard (DIS) 10646. By that time work on

Unicode was nearing completion, and many in the industry were concerned that there

would be great confusion from two competing standards. In the wake of opposition

to DIS-10646 from several of the ISO national bodies ISO and Unicode were asked

to work together to design a common universal character code standard which came

under the umbrella of Unicode. [16]

60

3.8.2.1 History of Unicode

The Unicode standard first began at Xerox in 1985. The Xerox team (Huan-

mei Liao, Nelson Ng, Dave Opstad, and Lee Collins) was working on a database to

map the relationships between the identical ideographic characters in the Japanese

and Chinese character sets, and was referred to as Han unification. Around the same

time Apple, and in particular Mark Davis also began development of a universal

character set. [102]

In September of 1987, Joseph Becker from Xerox and Mark Davis from

Apple began discussions on a universal character encoding standard for multilingual

computing. In the summer of 1988 we see the first proposal for a universal character

encoding, which Joseph Becker named Unicode1. By 1989, several people from var-

ious software companies were meeting bimonthly, creating the first full review draft

of the Unicode standard. These discussions lead to the inclusion of all composite

characters from the ISO-8859-x standards and Apple’s Han unification work. In 1991

the Unicode consortium was officially incorporated as a nonprofit organization, and

is known as Unicode Inc. [102],[103]

Urged by public pressure from various industry representatives, the ISO-

10646 and Unicode design groups met in August of 1991. Together these two groups

created a single universal character encoding. Naturally, compromises were made by

both parties. This joint body officially published a standard in 1992, and is known as

Unicode/ISO-10646. [102]

3.8.2.2 Goals of Unicode

The purpose of Unicode is to address the need for a simple and reliable world-

wide text encoding. Unicode is sometimes referred to as “wide-body ASCII”, due to

1. The first detailed description of Unicode can be found in a reprint of Joseph Becker’s classic paper
“Unicode 88”. This reprint was published by the Unicode Consortium in 1988 in celebration of Uni-
code’s ten year anniversary.

61

its use of 16 bits for encoding characters. Unicode is designed to encode all the major

living languages. Unicode is a fixed width, easy to understand encoding scheme.

Additionally, Unicode can support ready conversion from local or legacy encodings

into Unicode, thereby easing migration. [13]

At its core Unicode can be thought of as an extension of ASCII for two rea-

sons. First, Unicode like ASCII uses a fixed width character code. Second, Unicode

like ASCII enforces a strict one-to-one correspondence with characters and code

points. That is, each individual Unicode code point is an absolute and unambiguous

assignment of a 16-bit integer to a distinct character. Since there are obviously more

than 28 (256) characters in the world, the 8-bit byte in international/multilingual

encodings has become insufficient. The octet equals character strategy is both too

limiting and simplistic. Therefore, the 8-bit byte plays no role in Unicode. Moreover,

the name Unicode was chosen to suggest an encoding that is: unique, unified, and

universal. [13]

3.8.2.3 Unicode’s Principles

The design of Unicode is based upon ten founding principles [13],[32],[103]:

• Fixed width encoding — In Unicode, each character is represented by a single
16-bit code point. Moreover, each character is never encoded more than once.

• Full encoding — In Unicode all code points are assigned, from 0x0000-0xFFFF;
nothing is blocked out.

• Characters vs. glyphs — In Unicode a clear distinction is made between encoding
characters vs. encoding glyphs. Unicode only encodes characters, which are
abstract and express raw content. On the other hand, glyphs are specific visible
graphic forms expressing more than content. This issue is discussed in greater
detail in chapter 5.

• Semantics — In Unicode characters have properties.

• Ideographic unification — Having a clear separation between characters and
glyphs permits unification of the commonly shared ideographic characters in
Chinese, Japanese, and Korean.

62

• Plain vs. fancy text — A simple but important distinction is made between plain
text which is a pure sequence of Unicode code points, and fancy text, which is
any text structure that bears additional information above the pure code points.
We discuss this issue in chapter 5.

• Logical order — In Unicode characters are stored in the order in which they are
read, which is not necessarily the same order in which they are displayed. The
concept of logical order is examined in chapter 4.

• Dynamic composition — Instead of allowing only the well known accented char-
acters, Unicode allows dynamic composition of accented forms where any base
character plus any combining character can make an accented form. We discuss
dynamic composition in greater detail in chapters 4 and 5.

• Equivalent sequences — In Unicode precomposed characters are semantically
equivalent to their combining counterparts. We spend considerable time discuss-
ing this throughout the rest of the dissertation.

• Convertibility — Round trip conversion between Unicode and legacy encodings
is possible since each character has a unique correspondence with a sequence of
one or more Unicode characters.

Naturally, some of Unicode’s design goals are in direct conflict with one

another. These conflicts have forced Unicode to make compromises from time to

time. However, one important goal Unicode has worked hard at honoring is its ability

to provide round trip conversions. In fact Joseph Becker in 1988 believed that Uni-

code’s initial utility would be as a mechanism for interchange. This was the same

reason why ASCII was constructed. Nevertheless, ASCII has transitioned from being

an interchange mechanism to an outright native encoding. The same can also be said

of Unicode. [13]

3.8.2.4 Differences Between Unicode and ISO-10646

By its nature, ISO-10646 officially known as the Universal Multiple-Octet

Coded Character Set, or simply known as the UCS (Universal Character Set), only

describes the technical details of the UCS encoding. Additionally, Unicode includes

specifications that assist implementers. Unicode defines the semantics of characters

more explicitly than ISO-10646 does. For example, Unicode provides algorithms for

determining the display order of Unicode text. We explore the ordering of Unicode

63

text streams in the next chapter. Additionally, Unicode provides tables of character

attributes and conversion mappings to other character encodings. Nevertheless, Uni-

code and ISO-10646 are in agreement with respect to the defined characters. That is,

every character encoded in Unicode is also encoded in the same position as in ISO-

10646. [16]

The Unicode standard was initially designed as a 16-bit character encoding

allowing for 65,535 different code points. Unicode is actually comprised of a series

of planes each having 65,535 code points. If you think of the values 0x0000-0xFFFF

as constituting one plane called plane 0, then you could imagine multiple planes each

having 65,535 code points. Unicode refers to plane 0 as the BMP (Basic Multilingual

Plane). On the other hand, ISO-10646 was designed as a 32-bit character encoding,

with the most significant bit always set to 0. In ISO-1046 this 32-bit form is called

UCS-4 (Universal Character Set four octet form), while the 16-bit Unicode form is

called UCS-2 (Universal Character Set two octet form). [32]

Conceptually, the Universal Character Set is divided into 128 three dimen-

sional groups. Each group contains 256 planes containing 256 rows of 256 cells. The

four octets of UCS-4, therefore, represent the group, plane, row, and cell of a code

point in the Universal Character Set. See Figure 3-15 [43]. A UCS-2 code point can

be transformed into a UCS-4 code point by simple zero extension. [32]

Figure 3-15. Forms of UCS-4 and UCS-2

3.8.2.5 Unicode’s Organization

In this section we describe the layout of Unicode version 3.1, the latest ver-

sion of the standard. There are two ways in Unicode to refer to code points. The first

64

method uses the hexadecimal value of the code point preceded by a capital letter “U”

and plus sign “+”. The second method is the same as the first except the plus sign is

omitted. The Unicode code space is divided up according to Table 3-14. A more

detailed layout is shown on Figure 3-16 [96]. Additionally, the first 256 characters

within the first range of Unicode are in direct agreement with ISO-8859-1, in such a

way that the 8-bit values are extended to 16-bit values by simply using zero exten-

sion. [16],[103]

Table 3-14. Unicode code point sections
Code point range (hex) Description

U0000-U1FFF General scripts

U2000-U2FFF Symbols

U3000-U33FF Chinese, Japanese, Korean miscellaneous characters

U4E00-U9FFF Chinese, Japanese, Korean ideographs

UAC00-UD7A3 Hangul

UD800-UDFFF surrogates

UE000-UF8FF private use

UF900-UFFFF compatibility and special

65

Figure 3-16. Unicode layout

There are three ranges of Unicode (surrogates, private use, and compatibility)

that deserve special attention. First, we discuss the surrogate range. The surrogates

are a range of code points that enable the extension of Unicode. The surrogate range

defines 1,024 lower half and 1,024 upper half code points. The sequence of a code

66

point from the upper half surrogate range followed by a code point from the lower

half surrogate range identifies a character in planes 1-16 according to the algorithm

defined on Figure 3-17. Line 1 on Figure 3-17 takes a surrogate pair H and L (H

stands for upper surrogate, L stands for lower surrogate) and returns a Unicode scalar

value N. Line 2 on Figure 3-17 is the reverse of the algorithm on line 1.

[32],[103],[60]

Figure 3-17. Surrogate conversion

N = (H - 0xD800) * 0x400 + (L - 0xDC00) + 0x10000 (1)

H = (N - 0x10000) / 0x400 + 0xD800, L = (N - 0x10000) % 0x400 + 0xDC00 (2)

Up through Unicode version 3.0 all of Unicode’s characters were defined in

the BMP. However, version 3.1 of the standard is the first version that makes assign-

ments outside the BMP. Unicode 3.1 adds 44,946 new characters and when added to

the existing 49,194 characters, the new total is 94,140 characters. For the most part

the new characters are additional ideographic characters that provide complete cov-

erage of the characters in the Hong Kong supplementary character set, which was dis-

cussed earlier. [60]

The Unicode private use area is a range of Unicode that can be used by private

parties for character definition. This range, for example could be used for the defini-

tion of corporate logos or trademarks. It could also be used for protocol definition

when agreement is made between the interested parties. [32]

As we stated earlier Unicode was envisioned as an interchange encoding. In

order to guarantee that round trip conversion would always be possible Unicode

defined a special block of characters, known as the compatibility range. The compat-

ibility range contains alternative representations of characters from existing stan-

dards. These duplicate characters are defined elsewhere within the standard. The

primary purpose of these duplicates is to enable round trip mapping of Unicode and

67

the various national standards. Later in the dissertation we will examine several prob-

lems caused by the use of the compatibility range. [32]

3.8.2.6 Unicode Transmission Forms

There are four primary ways in which Unicode and ISO-10646 code points

may be transmitted. Unfortunately, not all of the approaches are equivalent with

respect to the code points that may be transmitted. The UCS-4 encoding is the only

transmission mechanism that is capable of encoding all of the possible characters

defined in ISO-10646. Within the semantics of Unicode, the UTF-32 (Universal

Character Set Transformation Format 32-bit Form) is used to encode UCS-4. The dif-

ference being UTF-32 is restricted to the range 0x0-0x10FFFF which is precisely the

range of code points defined in Unicode, while in UCS-4 all 32-bit values are valid.

[32]

The UCS-2 encoding is capable of representing all of the code points defined

within the BMP. Code points outside of the BMP are not represented, due to the

group and plane numbers being fixed. [32]

The UTF-16 (Universal Character Set Transformation Format for Planes of

Group 0) encoding permits code points defined in planes 0-16 of group 0 to be

directly addressed. This is accomplished by combining individual 16-bit code points

into single ISO-10646 code points using the previously mentioned algorithm on

Figure 3-17. [32]

The UTF-8 (Universal Character Set Transformation 8-bit Form) encoding

allows Unicode and ISO-10646 to be transmitted as a sequence of 8-bit bytes rather

than as 16 or 32-bit units. It is a variable length encoding scheme requiring anywhere

from one to six bytes per code point, however in the case of UTF-32 the max number

of bytes would be limited to four. This is a common and useful transmission format,

because UTF-8’s single-byte form directly corresponds to ASCII. Additionally, it is

68

safe to use in environments where code points are assumed to always be 8-bits

[32],[43]. See Table 3-15. Converting from UTF-32 proceeds in three steps [110]:

• Determine the number of octets required for the character value by looking in the
first column of Table 3-15.

• Prepare the high order bits of the octets as per the second through fifth columns
in Table 3-15.

• Fill in the bits marked by x from the bits of the character value, starting from the
low order bits putting them first in the last octet of the sequence, then next to last,
and so on until all x bits are filled in.

On Table 3-16 we show how the Unicode code point U1D5A0 (Mathematical

Sans-Serif Capital A) would be represented in the various Unicode transformation

formats.

3.8.3 Criticism of Unicode

For the purposes of introducing the other multilingual encoding schemes we

discuss some of Unicode problems.

Table 3-15. UTF-8
UTF-32 value hex UTF-8 1st byte UTF-8 2nd byte UTF-8 3rd byte UTF-8 4th byte

0000 0000 -
0000 007F

0xxxxxxx

0000 0080 -
0000 07FF

110xxxxx 10xxxxxx

0000 0800 -
0000 FFFF

1110xxxx 10xxxxxx 10xxxxxx

0001 0000 -
001F FFFF

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 3-16. Unicode transformation formats
Form Byte sequence (hex)

UTF-32 1D5A0

UTF-16 D835,DDA0

UTF-8 F0,9D,96,A0

69

3.8.3.1 Problems With Character/Glyph Separation

Although Unicode can remedy a large number of problems encountered by

multilingual applications, it also has numerous drawbacks. Some have argued that

Unicode cannot be used as a text encoding system, because of Unicode’s bias

towards the presentation of text. One does not have to search hard to find examples

of such biases. For example, Unicode encodes the fi ligature as a distinct character.

Most text encoding specialists would argue that fi is not a character, but rather is a

glyph. Therefore, the fi glyph has no business being encoded as a character in a text

encoding. In light of Unicode’s orientation towards presentation, some authors have

argued that Unicode should only be used as a glyph encoding. We will illustrate sev-

eral other examples in later chapters, that further support this argument. [36],[74]

3.8.3.2 Problems With Han Unification

As specified, Unicode’s primary purpose is to encode all the major written

scripts of the world, rather than all the worlds written languages. This distinction is

extremely important in Unicode. Nevertheless, most of the world’s encoding systems

actually encode written languages and not scripts. Recently, Unicode has provided a

mechanism, known as surrogates for encoding characters that are specific to certain

written languages. Nevertheless, the vast number of characters that are tied to written

languages, coupled with Unicode’s surrogate gymnastics hardly provide a satisfac-

tory solution. [31]

Currently, Unicode encodes 49,194 characters in its BMP, using the Han uni-

fication process. At first, this seemed more than sufficient, however input from sev-

eral nations (Japan, Mainland China, Taiwan, and Korea) was excluded during the

creation of the BMP. Moreover, these were the groups that had the most characters

to assign. Mainland China has responded by insisting that Unicode encode all of its

official 6,000 characters in addition to the many simplified characters, plus the older

classic set of some 40,000 characters. This alone would occupy nearly the entire

BMP. Taiwan has also responded in a similar fashion, insisting that they have the

70

rights to their own complete set of classic characters. These Taiwanese characters

represented an additional 50,000 characters, and would not consider using the same

characters encoded by Mainland China. These two groups alone required over 90,000

distinct characters. [31]

The Japanese also said they were entitled to have their own characters

encoded in a distinct range. Naturally, once Korea got wind of these requests, they

also asked for their characters. If each country gets their way this could generate more

than 170,000 characters. In an attempt to satisfy these groups Unicode has created

surrogates. In the latest version of Unicode, 94,140 characters are encoded. This is

still painfully short of the 170,000 characters needed. Obviously, 32 bits would be

more than sufficient, however Unicode does not provide a 32-bit contiguous block.

Clearly, two separate 16-bit blocks do not solve the problem. In order to encode the

required number of characters, Unicode must resort to special encoding forms that

get piggybacked onto Unicode’s 16-bit form, thereby making what would be a simple

problem more complex. [31]

In many cases it is necessary to know which language a stream of characters

represents for data processing operations, particularly sorting, spell checking, and

grammar checking. In Unicode this can be difficult to ascertain, especially if a char-

acter is in the unified Han range. This causes difficulties in creating applications for

a single language, such as natural language processing. It is much easier to create

these applications if all the characters come from a single language block. This fur-

thers the argument for an encoding system that separates character blocks for differ-

ent languages. [74]

3.8.3.3 ISO-8859-1 Compatibility

Unicode is not really compatible with ISO-8859-1. Unicode streams are

sequences of 16-bit code points, while ISO-8859-1 streams are sequences of 8-bit

code points. Unicode’s encoding system does not directly recognize ISO-8859-1

71

data. Unicode requires that ISO-8859-1 characters be first converted to Unicode by

zero extension. However, to transmit Unicode on the Internet, you have to use the 8-

bit safe Unicode transformation format (UTF-8). In the case of Unicode characters

that fall within in the ISO-8859-1 range the UTF-8 conversion simply removes the

leading zero. [74]

3.8.3.4 Efficiency

Most data are actually in a single language, and most languages can be

encoded using 8-bit code points. Using a 16-bit encoding scheme doubles both the

storage requirements of programs and the transmission time of character data. Com-

pression schemes could be used to help alleviate this, but they are impractical due to

their overhead.

3.8.4 Mudawwar’s Multicode

Multicode is a character encoding system proposed by Muhammad Mudaw-

war from the American University at Cairo in 1997 its goal is to address some of Uni-

code’s drawbacks. Multicode’s most important distinction is its use of multiple coded

character sets. Multicode is not an extension to any coded character set, but rather is

a collection of several coded character sets. In general, most coded character sets

have strong ties to specific written languages. On the other hand, there are some char-

acters that can be viewed as being language neutral, such as mathematical symbols.

To take advantage of this approach, unlike Unicode, Multicode is oriented towards

written languages and not scripts. Each coded character set used in Multicode is

designed to be independent and self sufficient, each having all necessary control

characters, punctuation, and special symbols. [74]

3.8.4.1 Character Sets in Multicode

Instead of attempting to merge all written languages into a single 16-bit coded

character set, Multicode defines separate 8-bit and 16-bit coded character sets. In

72

Multicode there can be 256 separate coded character sets. Each coded character set

is assigned a unique numeric identifier. In the case of ASCII the identifier is 0. [74]

In Multicode there may be substantial overlap between coded character sets,

however there will be cases where a coded character set has unique characters. For

example, languages based on the Latin script share many common symbols, however

each has some unique letters. It is also possible to use more than one coded character

set for a language. For example, the Azeri language could be written using either

Cyrillic or Latin letters. [74],[111]

Multicode strives to define a unique coded character set for each written lan-

guage, unlike Unicode which merges scripts through a unification processes. Addi-

tionally, Multicode supports the use of more than one coded character set standard

for a given written language, in case different countries use these sets. [74]

3.8.4.2 Character Set Switching in Multicode

In order to support multilingual text, Multicode provides a mechanism for

switching between coded character sets. Multicode defines a special character for this

purpose and that is known as a switch character. In every 8-bit coded character set,

Multicode reserves the last code point 0xFF as the switch character. To switch to a

different coded character set, either 8-bit or 16-bit, a special two byte sequence is

inserted into the text stream. The first byte is the switch character, and the second

byte is a character set designator. For example, to switch from French (assumed to

be coded character set 0x01) to Hindi (assumed to be 0x50) the two byte sequence

0xFF50 would be inserted into the text stream. [74]

In each 16-bit coded character set, Multicode reserves the range 0xFF00-

0xFFFF as switch characters. The first byte of the switch sequence is always 0xFF

and represents the switch character. The second byte of the switch sequence is the

character set designator. Therefore, switching in a 16-bit coded character set is really

the same as switching in a 8-bit character set. See Figure 3-18. In Figure 3-18, File 1

73

contains a stream of Arabic characters, File 2 contains ASCII and French characters,

while File 3 contains Japanese and ASCII characters. In each case a switch sequence

is used to switch out of Multicode’s default ASCII mode. [74]

Figure 3-18. Character set switching in Multicode

In Multicode, 16-bit coded character sets are only used in cases where a writ-

ten language requires it. Multicode always uses the smallest coded character set for

any given written language. When compared to Unicode, Multicode requires only

half the storage for those written languages that can be represented using 8-bits. [74]

3.8.4.3 Focus on Written Languages

Multicode by design is oriented towards written languages. Each coded char-

acter is designed to encode a particular written language. Furthermore, each coded

character set provides a full set of control codes, thereby eliminating the need to

switch to a special character set for control functions. Additionally, language infor-

mation is implicitly encoded in Multicode via the character set switch sequences. In

Multicode language centric data processing is well defined because there is never any

confusion over which written language a character comes from. [74]

74

3.8.4.4 ASCII/Unicode Compatibility

Multicode is directly compatible with ASCII. No conversion is necessary to

use ASCII data in Multicode. ASCII is the default coded character set in Multicode;

assigned the character set designator 0x00. Furthermore, Multicode is also compati-

ble with Unicode. Multicode reserves the 0xFF character set designator for this pur-

pose. There is never any misinterpretation of the switch sequence by Unicode,

because 0xFFFF is an invalid Unicode character, hence it must be a switch. [74]

3.8.4.5 Glyph Association in Multicode

In Multicode several characters may share a common glyph, but have differ-

ent code point values. For example, the letter a which appears in both the French and

ASCII coded character sets could be encoded in two different positions. In Multicode

characters would be associated to glyphs using either character set specific fonts or a

single unified font. By using character set specific fonts, font sizes are kept to a min-

imum as glyphs that are unnecessary to the display of a written language are not

included in the font. Additionally, there is a one-to-one mapping between characters

and glyphs. On the other hand, character set specific fonts duplicate glyphs that may

be common across a number of character sets. A unified font would remove this

redundancy, but would require a character to glyph index conversion, because the

property of a one-to-one mapping between characters and glyphs would be lost. Most

notably, Unicode could be used as a unified glyph index. This would allow the use of

TrueType and OpenType fonts as they use Unicode for indexing glyphs. [74]

3.8.5 TRON

TRON (The Real-Time Operating System Nucleus) is an open architecture

that specifies interfaces and design guidelines for operating system kernels. The

TRON Application Databus (TAD) is the standard for ensuring data compatibility

across computers that support the TRON architecture. TAD supports multilingual

data via multiple character sets. TAD provides both a uniform and efficient method

75

for manipulating character sets. Additionally, applications based on TAD are inde-

pendent of any particular coded character set. [82]

In TAD, language specifier codes are used to switch from one language to

another. Characters in TRON may be single byte, double byte or a combination of the

two. At language boundaries language specifier codes are inserted, so that single byte

and double byte codes can be intermixed within a single text stream. Therefore,

TRON like Multicode always uses the most compact coded character set for a given

written language. [82]

3.8.5.1 TRON Single Byte Character Code

In TRON control codes, character codes, language specifier codes, and

TRON escape codes are all based on a single byte code point. See Figure 3-19. The

control codes in TRON are mostly the same as ASCII’s. Nevertheless, code point

0x20 (ASCII space) is treated as a control code, and is called a separator in TRON.

The separator is used to indicate both word and phrase divisions as opposed to 0xA0

(blank). In TRON the handling of the separator is language specific, but in English

the separator acts as an ASCII space. In other words, the separator is used as a gap

when lines are broken, and it displays a variable width space for use in proportional

spacing. [82]

Figure 3-19. TRON single byte character code

The character codes (0x21-0x7E, 0x80-0x9F, 0xA0, and 0xA1-0xFD) cover

220 characters. The 0xA0 character (blank) is handled as a fixed width space. In the

case of English, the blank is called a required space. A required space is treated as

an alphabetic character. However, the required space cannot be used to together with

punctuation for breaking a line. [82]

76

The language specifier code 0xFE is used for switching the language of the

character codes (0x21-0x7E and 0x80-0xFD). Additionally, it can be expanded into

multiple bytes through repeated application of the language specifier. For example,

the double byte sequence 0xFEFE would expand the number of language specifiers

by 220. [82]

In TRON 0xFF is used as an escape signal when the code point that follows

it is in the 0x80-0xFE range. The TRON escape is used for punctuation in text and

graphic segment data. Additionally, in TRON 0xFF is used to indicate a TRON spe-

cial code when the code point that follows it is in the 0x21-0x7E range. TRON spe-

cial codes are used by the TRON Application Control-Flow Language and are

employed as special codes that can be embedded in text. [82]

3.8.5.2 TRON Double Byte Character Code

In TRON the double byte code is divided into four character zones (A,B,C,

and D), language specifier codes, TRON escape codes, and TRON special codes. See

Figure 3-20. Additionally, control codes appear as single byte code points inside two

byte character codes. The language specifier codes, TRON special codes, and TRON

escape codes are the same as their single byte analogs. Combined, the A, B, C, and

D character blocks encode 48,400 characters.

3.8.5.3 Japanese TRON Code

Japanese TRON code is a double byte code system. The A block corresponds

to the JIS X0208 standard. The B block contains those frequently occurring charac-

ters that are not in JIS X0208. In the C and D blocks are infrequently used characters.

The set of Latin characters that are used in Japanese are treated as belonging to the

Japanese group, rather than the Latin group. Therefore, in order to mix Japanese and

English, it is necessary to switch in and out of Japanese. Generally, however Latin

characters are infrequently used in Japanese. When Latin characters are used, it is

usually for the purpose of enumerating points in a preface using for example, the

77

letters A, B, C. For this reason, Latin characters are duplicated in the Japanese group.

[82]

Figure 3-20. TRON double byte character code

3.8.6 EPICIST

The Efficient, Programmable, and Interchangeable Code Infrastructure for

Symbols and Texts (EPICIST) is a multilingual character coding system. The cre-

ators of EPICIST believe that the existing character coding standards are inflexible,

insufficient, and inefficient for addressing the needs of multilingual computing. In

particular, the currently available character code standards intentionally avoid the

handling of private or personal characters or symbols. They only specify small ranges

78

of private characters. In the case of global digital libraries, which need to use non-

standardized symbols, the existing approaches are woefully inadequate. A new

framework is required in order to support more general or user specific symbols since

formal standardization is not practical. [79]

3.8.6.1 EPICIST Code Points

EPICIST is a dynamic symbol code infrastructure for multilingual comput-

ing. EPICIST can handle both general symbols and existing defined characters. EPI-

CIST is a variable length character coding system, which is based upon a fixed width

16-bit code point. This 16-bit code point is called an EPIC Unit (EPICU). A symbol

in EPICIST consists of one or more EPICUs. The most significant bit of an EPICU

is bit 16, while the least significant bit is bit 0. In an EPICU the two most significant

bits are used to indicate whether the unit is the head of a symbol or a tail of a symbol.

If bit 16 is 0 then the unit is the tail of a symbol. However, if bit 15 is 0 then the unit

is the head of a symbol. If both bits 15 and 16 are 0, then the unit is a symbol itself.

Thus, locating symbol boundaries is both simple and efficient. [79]

3.8.6.2 EPICIST Character Code Space

The code space of EPICIST is divided into subspaces. These subspaces fall

into four categories: standardized character set subspaces, Epic VM (virtual machine)

subspaces, user specific subspaces, and temporary subspaces. Symbol code values

that consist of one or two EPICUs are predominately used for encoding the standard-

ized characters and Epic VM instructions. Sequences of three EPICUs are reserved

for future standardized characters. Symbol code values that contain four or more

EPICUs are set aside for user specific symbols. [79]

3.8.6.3 Compatibility With Unicode

Just like the Unicode standard, which uses a capital U to indicate a Unicode

code point, EPICIST uses a capital letter P to indicate a code point. However,

79

compound EPICIST symbols that are comprised of multiple EPICU’s use a full-stop

to delineate each unit. [79]

In EPICIST the lower code values are in direct correspondence with Unicode,

except for the CJK miscellaneous symbols. For example, the Unicode character range

U0000-U2FFF maps directly to the EPICIST range P0000-P2FFF. On the other hand

the Unicode range U3000-U3FFF map to the EPICIST range P8000.7000-

P8000.7FFF. [79]

In EPICIST combining characters are unnecessary, because every combina-

tion of combining characters can be assigned to a unique code point in EPICIST. On

the other hand, Unicode must use combining characters as the code space of Unicode

is insufficient if all combinations were to be defined. Therefore, Unicode uses an

incomplete set of composite characters. [78]

3.8.6.4 Epic Virtual Machine

The code range P3000-P3FFF is used and set aside for Epic VM instructions

and numerical representation. The code range P3E00-P3EFF contains the predefined

Epic VM instructions, while the P3000-P3CFF range is marked for user defined Epic

VM instructions. The code range P3F00-P3FFF is used to represent the block of inte-

gers between -128 and 127. The Epic VM decodes input symbols as instructions and

executes them. Using Epic VM one can define or modify instruction definitions

which may have been defined during runtime. In Epic VM a user can define a code

sequence at a code point. When a symbol is input, a specified code sequence is exe-

cuted. Thus, it is possible to invoke instructions as functions. [79]

3.8.6.5 Using the Epic Virtual Machine for Ancient Symbols

It is frequently difficult to standardize ancient characters that are not currently

being used, but are under study by scholars. If researchers have differing opinions

about the identities of symbols, then standardization is not possible. If at some point

scholars can come to agreement, then ancient symbols can be standardized.

80

Nevertheless, academic study cannot wait for standardization. The EPICIST system

allows researchers who have differing opinions about the identification of symbols

to assign symbols to different code points and continue on with their investigations.

Once the standardization process is complete, an Epic VM program can be embedded

in EPICIST to map old code points to the new standardized ones. This is possible

because an Epic VM program is nothing more than a set of symbols and are transmit-

ted along with data encoded in EPICIST. [78]

3.8.7 Current Direction of Multilingual Encodings

It appears Unicode is the prominent multilingual encoding. Some of the rea-

sons for this are based on sound technical arguments, while others are for political

and or commercial reasons. Technically, working with Unicode is actually no more

difficult than working with ASCII, because of Unicode’s fixed width stateless char-

acters. On the other hand, Multicode, TRON, and EPICIST require either the manip-

ulation of multi-byte characters, the manipulation of variable length code sequences,

or maintaining stateful information.

Commercially, Unicode has been a major success. Unicode can be found in

operating systems (Linux, MacOS, OS/2, and Windows), programming languages

(Java, Perl, and Python) as well as web browsers (Mozilla, Netscape, and Internet

Explorer). Therefore, we use Unicode as a basis for illustrating information process-

ing problems that arise from adopting a multilingual encoding.

81

4Bidirectional Text

Unicode’s ability to mix the various script systems of the world makes the

creation of multilingual documents no more difficult than the creation of monolin-

gual documents. But this causes difficulties. An example of text using two different

script systems is given in Figure 4-1. This text is an excerpt from a Tunisian newspa-

per, and tells of an upcoming international music festival. In this example we see an

English phrase “(Tabarka World Music Festival)” embedded in a paragraph that is

comprised of mostly Arabic text. The paragraph also contains European numerals for

the date. The beginning of the paragraph starts in the upper right hand corner, and is

read from right-to-left except when numerals or English phrases are encountered. We

call such text streams “bidirectional text”. [4]

Figure 4-1. Tunisian newspaper

For the most part the layout of such bidirectional paragraphs is fairly straight

forward. There are subtleties however, that can make the layout become non-trivial.

Additionally, in some cases ambiguities may arise from the intermixing of script sys-

tems with conflicting directions. The goal of this chapter is to explore some of these

82

subtleties and ambiguities. In particular, great attention is given to the intermixing of

Latin based scripts (written left-to-right) with the Arabic and Hebrew script systems

(written right-to-left). We demonstrate that the layout of multilingual text is non-triv-

ial. This is followed by an investigation of the current techniques (algorithms) that

are being used for layout of multilingual text. Lastly, the deficiencies in the current

strategies are illustrated.

4.1 Non Latin Scripts
The inexact match between phoneme (phonetic unit that represents a distinct

sound in a language) and orthographic representation has made it possible for English

to represent its intricate system of sounds with out the need of diacritical marks (mod-

ifying marks that alter the phonetic value of a character). Each word in English can

be in encoded in ASCII. The remaining Latin script languages rely strongly on the

use of diacritical marks and hence cannot be correctly encoded in ASCII. [62]

The addition of diacritical marks to an alphabet cannot help but complicate

layout and editing. In some scripts the actual glyphs (visual shape of a character or a

sequence of characters) are altered dramatically. The reason for this lies in the history

of literacy in the language. The glyphs for a set of alphabetic characters is strongly

connected to the medium on (or in) which the glyphs are rendered. For example, the

graphic shapes representing the syllabary of Sumerian were created by pressing a

narrow triangular shaped stylus into clay, producing wedge shaped marks, known as

cuneiform, from which the script gets its name. [62]

The more recent Semitic scripts, of which Arabic is presently the most wide-

spread, are pen and ink scripts. The development of Arabic as an efficient handwrit-

ing has made it relatively hard to work with in an automated environment. This

difficulty comes not only from Arabic’s cursive nature, but also from its bidirectional

(an intermixing of text segments written right-to-left with segments written left-to-

right) layout requirements. These challenges are discussed in later sections. [62]

83

4.1.1 Arabic and Hebrew Scripts

Arabic writing is alphabetical. Ideally alphabets consist of a few dozen letters,

each of them representing only one unique sound. In modern Arabic there are 28

basic letters, 8 of them doublets differentiated by diacritics and 6 optional letters for

representing vowels. The letters are written from right-to-left, with words being sep-

arated by white space. The letters within a word are generally connected to each

other. Numerals are read from left-to-right just like the Latin based languages. From

a strictly information processing perspective this is quite similar to Latin based

scripts, disregarding the right-to-left writing direction and the interconnecting of let-

ters. [71]

When the first attempts were made to construct a type font for Arabic, there

was no model from which to construct glyphs other than handwriting. The Arabic

language was not often inscribed on stone, so stonecutters were not given any incen-

tive to create their own glyphs in spite of the popularity of stone monuments and

inscriptions. Nevertheless, Arabic is difficult to capture in computers because Arabic

is a hand written script requiring some amount of compromise for discrete characters.

The compromise of using discrete characters to codify Arabic writing makes it diffi-

cult to express certain intrinsic properties (cursive, position, ligatures, and mirrors)

of the Arabic script. We examine these properties below. [62]

4.1.1.1 Cursive

The finest Arabic inscriptions are imitations of handwriting, and are almost

always cut in relief. A calligrapher would paint an inscription on a surface from

which a stonecutter would then chisel away the unpainted stone. This left the letters

standing out against a background. Nevertheless, this fluid, connected nature of

Arabic is difficult to adapt to the technology of movable type or matrix based glyph

design. [62]

84

4.1.1.2 Position

In Arabic, and to some extent in Hebrew, the mapping of a glyph to a charac-

ter is not one-to-one as in the Latin script. Instead the selection of a character’s glyph

is based upon its position within a word. Subsequently, each Arabic character may

have up to four possible shapes: [6], [21], [89]

• Initial - Character appears in the beginning of a word

• Final - Character appears at the end of a word.

• Medial - Character appears somewhere in the middle.

• Isolated - Character is surrounded by white space.

Furthermore, glyph selection must also take into consideration the linking

abilities of the surrounding characters. For example, some glyphs may only link on

their right side while others may permit links on either side. In Arabic each character

belongs to one of the following joining classes:[96]

• Right joining - Alef, Dal, Thal, Zain

• Left joining - None

• Dual joining - Beh, Teh, Theh, ...

• Join causing - Tatweel, Joiner (U200D)

• Non joining - Spacing characters, Non-joiner (U200C)

• Transparent - Combining marks

In Hebrew some characters do have final forms even though Hebrew is not a

cursive script. The idea of contextual shaping is certainly not limited just to right-to-

left scripts. For example, the Greek script provides a special final form for the sigma

character. [96]

4.1.1.3 Ligatures

Occasionally two or more glyphs combine to form a new single glyph called

a ligature. This resultant shape then replaces the individual glyphs from which it is

comprised. In Arabic this occurs frequently and in Hebrew rarely. In particular the

85

Alef Lamed ligature (UFB4F) is used in liturgical books. The number of actual liga-

tures used in Arabic text is difficult to determine. However Unicode devotes nearly

1,000 code points for them. Although infrequent, ligatures do occur even in English.

Specifically, the fi ligature where the letter f merges with the letter i. [6], [21], [89]

4.1.1.4 Mirroring

In some cases glyph selection may be based on a character’s direction. These

characters are known as mirrored characters (parentheses and brackets). When mir-

rored characters are intermixed with Arabic and or Hebrew characters, a complemen-

tary shape may need to be selected so as to preserve the correct meaning of an

expression. For example, consider the text stream 1 < 2 in logical order (one less than

two). If this stream is to be displayed in a right-to-left sequence it must be displayed

as 2 > 1. In order to preserve the correct meaning the < is changed to >. This process

is known as mirroring or symmetric swapping. [89]

4.1.2 Mongolian Script

Mongolian writing is also alphabetic, like Arabic. In Mongolian there are 27

basic letters, and 8 letters for representing vowels. Words are separated by white

space. Mongolian’s ancestor, classic Uigur script belonged to the right-to-left Arabic

script family. Like other Arabic based scripts, a character’s shape is based upon its

position within a word. This makes Mongolian and Arabic quite similar, however

Mongolian has more complicated orthographies. In some cases position information

is not always enough to specify final glyphs, and there can even be some variation

for the same form. Under Chinese influence Mongolian is now written vertically in

columns from top to bottom, in a general left-to-right direction. Nevertheless, this

script system brings yet another challenge to information processing. [53]

86

4.2 Bidirectional Layout
As computing power increases and as high quality laser printers become com-

monplace, user expectations rise. The computer must now be able to take sequences

of intermixed characters (left-to-right and right-to-left) and place them in their proper

position. We call this process “bidirectional layout”. In this section we explore some

of the issues related to bidirectional layout.

4.2.1 Logical and Display Order

For the most part the order in which characters are stored in typesetting sys-

tems (logical order) is equivalent to the order in which they are visually presented

(display order). The only exceptions being those scripts that are written from right-

to-left. When the logical and display orders are not equivalent an algorithm is

required to convert the logical order to display order. At first this might seem trivial,

given that a right-to-left script simply has its display order in reverse. Unfortunately

this is not the case. Technically, Arabic and Hebrew are not simply right-to-left

scripts, rather they are bidirectional scripts. This bidirectional nature is exhibited

when alphabetic and numeric data are intermixed. For example, the digits 2 and 9 in

Figure 4-1 are the number 29 and not 92. Therefore, an algorithm that simply reverses

characters is inadequate. [10]

Additionally, we must also consider text data that is comprised from various

script systems. As soon as any word or phrase from a non right-to-left script (English,

German, etc.) is incorporated into a right-to-left script (Arabic, Hebrew, etc.), the

same bidirectional problem arises. In certain cases the correct layout of a text stream

may be ambiguous even when the directions of the scripts are known. Consider the

following example in Figure 4-2 in which Arabic letters are represented by upper

case Latin characters.

87

Figure 4-2. Ambiguous layout

fred does not believe TAHT YAS SYAWLA I

In the absence of context (a base or paragraph direction) there are two possi-

ble ways to read the sentence. When read from left-to-right (Fred does not believe I

always say that), and when read from right-to-left (I always say that Fred does not

believe.) It thus becomes apparent that the problem is not only an algorithmic one but

a contextual one. [41]

4.2.2 Contextual Problems

A logical to display conversion algorithm must also contend with the problem

of context. In many cases an algorithm must consider the context in which a sequence

of characters (alphabetic and numeric) appears. This can lead to cases in which an

algorithm will yield inappropriate results when the context is not known or misun-

derstood.

Consider a phone number appearing in a stream of Arabic letters, MY

NUMBER IS (321)713-0261. In this example uppercase Latin letters represent

Arabic letters, and the digits represent European numerals. This should not be ren-

dered as a mathematical expression. In Arabic mathematical expressions are read

right-to-left, while phone numbers are read left-to-right. See Figure 4-3. [12],[96]

Figure 4-3. Rendering numbers

0261-713(321) SI REBMUN YM (incorrect)

(321)713-0261 SI REBMUN YM (correct)

Without understanding the context in which numbers appear, the correct dis-

play cannot be determined. There are numerous contextual and cultural factors (e.g.,

language and locale) that need to be given consideration when converting to display

order.

88

4.2.3 Domain Names

In some situations a character changes meaning based on context. Consider

the use of the hyphen-minus character in domain names. In domain names the pre-

dominant usage of the hyphen-minus is as white space and not as a mathematical

operator or sign indicator. The example in Figure 4-4 illustrates the effect of Euro-

pean digits surrounding the hyphen-minus characters.

Line 1 on Figure 4-4 is a single domain name label in logical order. In this

example uppercase Latin letters represent Hebrew letters, and the digits represent

European numerals. Line 2 is the same label in display order, this is the output if the

hyphen-minus characters are treated as mathematical operators. The text on Line 3 is

also in display order, however this output is obtained when the hyphen-minus char-

acters are treated as white space characters.

Figure 4-4. Using a hyphen minus in a domain name

NOP--123 (1)

--123PON (2)

123--PON (3)

Exploring domain names further, we see that even the full-stop character’s

semantics change based on context. The text on Line 1 of Figure 4-5 is a domain

name in logical order, uppercase Latin letters represent Arabic letters. Line 2 is the

resultant display order if the full-stop is treated as a sentence terminator (punctua-

tion). In this example the presence of an Arabic character in the first label forces the

entire domain name to take on an overall right-to-left reading. This is certainly cor-

rect behavior if this is the first sentence in a paragraph, however this is inappropriate

in the context of a domain name. This behavior unfortunately mangles the hierarchi-

cal structure of the domain name. We suggest that the output on line 3 is more desir-

89

able, as this output is consistent with the current structure of domain names. In this

case the full-stop characters are ignored.

Figure 4-5. Using a full-stop in a domain name

ABC.ibm.com (1)

ibm.com.CBA (2)

CBA.ibm.com (3)

4.2.4 External Interactions

The layout of bidirectional text is a complex process requiring the interaction

of various systems. We discussed above the contextual problem in bidirectional

layout and how it is solved by contextual analysis and character reordering. This is

only one piece of the puzzle.

4.2.4.1 Line Breaking

When bidirectional text is displayed or printed it is done so on a line by line

basis for each paragraph. The lines, however are not actually comprised of characters,

but rather glyphs. The process of constructing the lines, “line breaking”, requires that

the widths of all the glyphs in the paragraph along with the width of the display area

be known. It is inappropriate to assume that the number of and width of each charac-

ter is the same when displayed. This requires a sophisticated mapping between char-

acters and glyphs. [6], [21]

4.2.4.2 Glyph Mapping

Traditionally glyphs are selected and drawn by font rendering engines rather

than via character replacement. The logic for this approach is centered around glyph

availability. Some glyphs may simply not be available in a font (e.g., Hebrew and

Greek final forms). If implementers were to replace sequences of characters with new

character ligatures, there would be no guarantee that they would be present in a font

as well. Some ligatures are not able to be constructed by using character replacement,

90

as they are not present in Unicode. The choice of an appropriate glyph requires

knowledge of the font and its available glyphs.

4.2.4.3 Behavioral Overrides

Putting aside glyph related problems there are still other facets in a complete

layout solution. For example, user supplied information may be required in order to

determine where a paragraph begins and ends. Examining just the stream contents

isn’t always sufficient. This information could appear as control codes or be supplied

externally. [96]

In some cases user preferences or locales can also force the stream contents

to change. For example, the shapes used to display numeric characters could be con-

trolled by a locale. In an Arabic locale numeric characters would be displayed with

“Hindi” shapes, while a Western European locale would use “Arabic” shapes for

numbers. [41]

4.2.5 Bidirectional Editing

There are also aspects of bidirectional layout that are outside the scope of

overrides, in particular the caret and the mouse. Movement of the caret and hit testing

of the mouse becomes more complex in bidirectional streams. If the caret is moving

linearly within one of the (logical or visual) streams, then this movement needs to be

translated to the other stream. Highlighting poses a similar problem as to which

stream is being highlighted (logical or visual). [6], [21]

4.2.6 Goals

Unfortunately, the tasks that the developer would like to provide are not nec-

essarily the same ones that can be provided. All of this depends on how the algorithm

is intended to be used. If the intended use is to fit within in some broader context then

it may be acceptable to leave some features out. If the intended use is to provide a

complete layout framework, a set of features above and beyond the ones mentioned

91

may be required. The specification of a bidirectional algorithm can only be imple-

mented as a character stream reordering (What else can an implementer do?), yet the

bidirectional layout problem can only be solved in a larger context.

4.3 General Solutions to Bidirectional Layout
There are four general ways in which the bidirectional display problem can

be addressed. Three of these strategies are automated, while one requires user inter-

vention:

• Forced Display

• Explicit

• Implicit

• Implicit/Explicit

4.3.1 Forced Display

The Forced Display algorithm requires users to enter characters in display

order. So if a text stream contained Arabic (right-to-left) characters the user would

simply enter them backwards. This inelegant solution becomes cumbersome when

scripts are intermixed. On the other hand, this approach has the advantage that the

output (display order) is always correct and independent of the context. [12]

4.3.2 Explicit

Another potential solution to the bidirectional problem is to allow users to

enter text in logical order but expect them to use some explicit formatting codes (for

example, U202B and U202A in Unicode) for segments of text that run contrary to the

base text direction, but what does one do with the explicit control codes in tasks other

than display? For example, what effect should these controls have on searching and

data interchange. These explicit codes require specific code points to be set-aside for

them as well. In some encodings this may be unacceptable due to the fixed number

of code points available and the number of code points required to represent the script

92

itself. A less technical problem is the pain this process causes the users, requiring

constant thought in terms of presentation, which is an unnatural way to think about

text. [12], [41]

4.3.3 Implicit

Humans want to be able to enter text in the same way as one would read it

aloud. Ideally, one would like to maintain the flexibility of entering characters in log-

ical order while still achieving the correct visual appearance. Such “implicit layout

algorithms” do exist. They require no explicit directional codes nor any higher-order

protocols. These algorithms can automatically determine the correct visual layout by

simply examining the logical text stream. Generally the implicit rules are sufficient

for the layout of most text streams. Still, there are situations in which an implicit algo-

rithm will not always yield an acceptable result, because it is difficult to design a set

of heuristics for every situation. [41]

4.3.4 Implicit/Explicit

An implicit/explicit Algorithm offers the greatest level of flexibility by pro-

viding a mechanism for unambiguously determining the visual representation of all

raw streams of text. This type of algorithm combines the benefits of implicit layout

algorithms with the flexibility of an explicit algorithm. Throughout the rest of this

chapter we limit our discussion of bidirectional algorithms to this type of algorithm,

because it shows the greatest potential for solving the bidirectional display problem.

[96]

4.4 Implicit/Explicit Bidirectional Algorithms
The primary algorithm explored below is the Unicode Bidirectional Algo-

rithm. This algorithm is in the implicit/explicit class of bidirectional algorithms. The

other algorithms that are discussed in this section are variations of Unicode’s algo-

rithm.

93

4.4.1 Unicode Bidirectional Algorithm

The Unicode Bidirectional Algorithm is described in Unicode Technical

Report #9. There are two reference implementations — one written in the program-

ming language Java and one in C [100]. The Unicode algorithm is based upon exist-

ing implicit layout algorithms and explicit directional control codes that may be in

the input stream.

The core of the Unicode Bidirectional algorithm is centered around three

aspects: resolving character types, reordering characters and analyzing mirrors. The

bidirectional algorithm is applied to each paragraph on a line by line basis. During

resolution, characters that do not have a strong direction are assigned a direction

based on the surrounding characters or directional overrides. In this context the term

“strong” indicates a character that is either a left-to-right character or a right-to-left

character. In the reordering phase, sequences of characters are reversed as necessary

to obtain the correct visual ordering. Finally, each mirrored character (parenthesis,

brackets, braces, etc.) is examined to see if it needs to be replaced with its symmetric

mirror.[100]

The Unicode Bidirectional Algorithm determines the general reading direc-

tion of a paragraph either explicitly or implicitly. In the explicit method the reading

direction of a paragraph is communicated to the algorithm outside of and independent

from the characters in the paragraph. The implicit method determines the reading

direction of a paragraph by applying a set of heuristics on the characters in the para-

graph. [100]

4.4.2 IBM Classes for Unicode (ICU) and Java

Java 1.2 provides a complete framework for creating multi script applica-

tions. Java’s TextLayout and LineBreakMeasurer classes facilitate the layout of com-

plex text in a platform neutral manner. The underlying approach to reordering is

based on the Unicode Bidirectional Algorithm. [21]

94

ICU’s approach is very close to Java due in some respect to the fact that the

overall internationalization architecture of Java is based on ICU. The key differences

are centered around glyph management. In ICU glyph management routines are not

necessary because ICU is not designed to be a complete programming environment.

The ICU components are designed to work in conjunction with other libraries. [45]

4.4.3 Pretty Good Bidirectional Algorithm (PGBA)

Mark Leisher’s PGBA is another algorithm for bidirectional reordering. The

algorithm takes an implicit approach to reordering. PGBA does not attempt to match

Unicode’s reordering algorithm. However PGBA’s implicit algorithm does match

the implicit section of the Unicode Bidirectional Algorithm. At the moment it does

not support the explicit bidirectional control codes (LRE, LRO, RLE, RLO, PDF).

One should not infer that the lack of support for directional control codes results in

an incomplete algorithm. Under most circumstances the implicit algorithm reorders

a text stream correctly. Secondly, these control codes are not always present in all

encoding schemes. Of course it would be a nice feature, but certainly not a necessary

one. [56]

4.4.4 Free Implementation of the Bidirectional Algorithm (FriBidi)

Dov Grobgeld’s FriBidi follows the Unicode Bidirectional Reference more

closely. Notably there is support for integration with graphical user interfaces along

with a collection of code page converters. However as in PGBA the explicit control

codes are not currently supported. [34]

4.5 Evaluation of Bidirectional Layout Algorithms
In this section we report on the results of our independent evaluation of the

output of the bidirectional algorithms. The primary goal we sought in evaluating the

algorithms was to determine whether or not their output matched Unicode’s reference

95

algorithm. We have tested them on a large number of small, carefully crafted test

cases of basic bidirectional text.

4.5.1 Testing Convention

To simulate Arabic and Hebrew input/output a simple set of rules are utilized.

These rules make use of characters from the Latin 1 charset. The character mappings

allow Latin 1 text to be used instead of real Unicode characters for Arabic, Hebrew,

and control codes. This is an enormous convenience in writing, reading, running and

printing the test cases. This form is the same as the one used by the Unicode Bidirec-

tional Reference Java Implementation [100]. See Table 4-1. Unfortunately not all of

the implementations adhere to these rules in their test cases. To compensate for this,

changes were made to some of the implementations.

In the Unicode C reference implementation additional character mapping

tables were added to match those of the Unicode Java Reference implementation.

Also the bidirectional control codes were remapped from the control range 0x00-

Table 4-1. Bidirectional character mappings for testing

Type Arabic Hebrew Mixed English

L a - z a - z a - z a - z

AL A - Z A - M

R A - Z N - Z

AN 0 - 9 5 - 9

EN 0 - 9 0 - 4 0 - 9

LRE [[[[

LRO { { { {

RLE]]]]

RLO } } } }

PDF ^ ^ ^ ^

NSM ~ ~ ~ ~

96

0x1F to the printable range 0x20-0x7E. This remapping allows test results to be com-

pared more equitably.

In PGBA and FriBidi the character attribute tables were modified to match

the character mappings outlined in Table 4-1. The strategy for testing ICU and Java

was slightly different than PGBA and FriBidi. In the ICU and Java test cases we used

the character types rather than character mappings.

4.5.2 Test Cases

The test cases are presented in Tables: 4-2, 4-3, 4-4, and 4-5. The source

column of each table shows the test input. The expected column is what we think the

correct output should be. In all cases this is the output produced by our HaBi imple-

mentation. These test cases are taken from the following sources:

• Mark Leisher - His web page provides a suite of test cases as well as a table of
results for other implementations [56]. See Tables: 4-2 and 4-3.

• Unicode Technical Report #9 - Some of the examples are used for testing con-
formance [100]. See Table 4-2.

• Additional test cases for uncovering potential bugs in an implementation’s han-
dling of weak types and directional controls. See Tables: 4-4 and 4-5.

Table 4-2. Arabic charmap tests

Source Expected

1 car is THE CAR in arabic car is RAC EHT in arabic

2 CAR IS the car IN ENGLISH HSILGNE NI the car SI RAC

3 he said “IT IS 123, 456, OK” he said “KO ,456 ,123 SI TI”

4 he said “IT IS (123, 456), OK” he said “KO ,(456 ,123) SI TI”

5 he said “IT IS 123,456, OK” he said “KO ,123,456 SI TI”

6 he said “IT IS (123,456), OK” he said “KO ,(123,456) SI TI”

7 HE SAID “it is 123, 456, ok” “ok ,456 ,123 it is” DIAS EH

8 <H123>shalom</H123> <123H/>shalom<123H>

9 HE SAID “it is a car!” AND RAN NAR DNA “!it is a car” DIAS EH

10 HE SAID “it is a car!x” AND RAN NAR DNA “it is a car!x” DIAS EH

97

11 -2 CELSIUS IS COLD DLOC SI SUISLEC 2-

12 SOLVE 1*5 1-5 1/5 1+5 5+1 5/1 5-1 5*1 EVLOS

13 THE RANGE IS 2.5..5 5..2.5 SI EGNAR EHT

14 IOU $10 10$ UOI

15 CHANGE -10% %10- EGNAHC

16 -10% CHANGE EGNAHC %10-

17 he said “IT IS A CAR!” he said “RAC A SI TI!”

18 he said “IT IS A CAR!X” he said “X!RAC A SI TI”

19 (TEST) abc abc (TSET)

20 abc (TEST) abc (TSET)

21 #@$ TEST TSET $@#

22 TEST 23 ONCE abc abc ECNO 23 TSET

23 he said “THE VALUES ARE 123, 456, 789,
OK”

he said “KO ,789 ,456 ,123 ERA SEULAV
EHT”.

24 he said “IT IS A bmw 500, OK.” he said “A SI TI bmw KO ,500.”

Table 4-3. Hebrew charmap tests

Source Expected

1 HE SAID “it is 123, 456, ok”. .”it is 123, 456, ok” DIAS EH

2 <H123>shalom</H123> <123H/>shalom<123H>

3 <h123>SAALAM</h123> <h123>MALAAS</h123>

4 -2 CELSIUS IS COLD DLOC SI SUISLEC -2

5 -10% CHANGE EGNAHC -10%

6 TEST ~~~23%%% ONCE abc abc ECNO 23%%%~~~ TSET

7 TEST abc ~~~23%%% ONCE abc abc ECNO abc ~~~23%%% TSET

8 TEST abc@23@cde ONCE ECNO abc@23@cde TSET

9 TEST abc 23 cde ONCE ECNO abc 23 cde TSET

10 TEST abc 23 ONCE cde cde ECNO abc 23 TSET

11 Xa 2 Z Z a 2X

Table 4-2. Arabic charmap tests (Continued)

Source Expected

98

Table 4-4. Mixed charmap tests

Source Expected

1 A~~ ~~A

2 A~a~ a~~A

3 A1 1A

4 A 1 1 A

5 A~1 1~A

6 1 1

7 a 1 a 1

8 N 1 1 N

9 A~~ 1 1 ~~A

10 A~a1 a1~A

11 N1 1N

12 a1 a1

13 A~N1 1N~A

14 NOa1 a1ON

15 1/2 1/2

16 1,2 1,2

17 5,6 5,6

18 A1/2 2/1A

19 A1,5 1,5A

20 A1,2 1,2A

21 1,.2 1,.2

22 1,A2 2A,1

23 A5,1 5,1A

24 +$1 +$1

25 1+$ 1+$

26 5+1 5+1

27 A+$1 1$+A

28 A1+$ $+1A

29 1+/2 1+/2

30 5+ 5+

99

31 +$ +$

32 N+$1 +$1N

33 +12$ +12$

34 a/1 a/1

35 1,5 1,5

36 +5 +5

Table 4-5. Explicit override tests

Source Expected

1 a}}}def afed

2 a}}}DEF aFED

3 a}}}defDEF aFEDfed

4 a}}}DEFdef afedFED

5 a{{{def adef

6 a{{{DEF aDEF

7 a{{{defDEF adefDEF

8 a{{{DEFdef aDEFdef

9 A}}}def fedA

10 A}}}DEF FEDA

11 A}}}defDEF FEDfedA

12 A}}}DEFdef fedFEDA

13 A{{{def defA

14 A{{{DEF DEFA

15 A{{{defDEF defDEFA

16 A{{{DEFdef DEFdefA

17 ^^abc abc

18 ^^}abc cba

19 }^abc abc

20 ^}^abc abc

21 }^}abc cba

22 }^{abc abc

Table 4-4. Mixed charmap tests (Continued)

Source Expected

100

4.5.3 Test Results

All implementations were tested by using the test cases from Tables: 4-2, 4-

3, and 4-4. The implementations that support the Unicode directional control codes

(LRO, LRE, RLO, RLE, and PDF) were further tested using the test cases from

Table 4-5. At this time, the directional control codes are only supported by HaBi,

ICU, Java 1.2, Unicode Java reference, and Unicode C reference.

When the results of the test cases were compared, the placement of directional

control codes and choice of mirrors was ignored. This is permitted by Unicode since

the final placement of control codes is arbitrary, and mirroring may optionally be

handled by a higher-order protocol.

23 }^^}abc cba

24 }}abcDEF FEDcba

Table 4-6. Arabic test differences

PGBA 2.4 FriBidi 1.12

2 SI RAC the car NI ENGLISH

4 he said “KO ,)456 ,123(SI TI”

6 he said “KO ,)123,456(SI TI”

7 DIAS EH “it is 456 ,123, ok”

8 <123H>shalom</123H>

9 DIAS EH “it is a car!” DNA RAN

10 DIAS EH “it is a car!x” DNA RAN

11 -SI SUISLEC 2 COLD

12 1+5 1/5 1-5 5*1 EVLOS

14 $10 UOI

15 %-10 EGNAHC 10- EGNAHC%

16 EGNAHC %-10 -10% CHANGE

19 abc)TSET((TSET) abc

Table 4-5. Explicit override tests (Continued)

Source Expected

101

Tables: 4-6, 4-7, and 4-8 detail the differences among the implementations

with respect to the results obtained with the HaBi Implementation. Only PGBA and

FriBidi return results that are different than the HaBi implementation. The Unicode

Java reference, Unicode C reference, Java 1.2, and ICU pass all test cases.

21 #@$ TEST

22 ECNO 23 TSET abc

24 he said “A SI TI bmw 500, KO.”

Table 4-7. Hebrew test differences

PGBA 2.4 FriBidi 1.12

5 EGNAHC %-10

6 abc ECNO %%%23~~~ TSET

7 abc ECNO %%%23~~~ abc TSET

11 Z 2 aX a 2X

Table 4-8. Mixed test differences

PGBA 2.4 FriBidi 1.12

1 A~~

2 ~a~A ~Aa~

10 1a~A ~Aa1

14 1aON

18 1/2A 1/2A

19 5,1A

21 2.,1

23 1,5A

27 +$1A

28 1+$A

32 1$+N

35 5,1

Table 4-6. Arabic test differences (Continued)

PGBA 2.4 FriBidi 1.12

102

In PGBA, types AL and R are treated as being equivalent [56]. This in itself

does not present a problem as long as the data stream is free of AL and EN (European

number). However, a problem arises when an AL is followed by an EN for example,

test case 18 from Table 4-4. In this situation the ENs should be treated as ANs (Ara-

bic number) and not left as ENs.

The handling of a NSM is also different in PGBA. PGBA treats a NSM as

being equal to an ON (other neutral) [56]. This delays the handling of NSM until the

neutral type resolution phase rather than in the weak type resolution phase. By delay-

ing their handling, the wrong set of rules are used to resolve the NSM type. For exam-

ple, in test case 2 from Table 4-4 the last NSM should be treated as type L instead of

type R.

In FriBidi there are a few bugs in the implementation. Specifically, when an

AL is followed by an EN the EN is not being changed to type AN. See test case 18

in Table 4-4. This is the same symptom as was found in PGBA, but the root cause is

different. In FriBidi, step W2 (weak processing phase rule two) the wrong type is

being examined it should be type EN instead of type N.

There is also a bug in determining the first strong directional character. The

only types that are recognized as having a strong direction are types R and L. Type

AL should also be recognized as a strong directional character. For example, when

test case 1 from Table 4-4 is examined FriBidi incorrectly determines that there are

no strong directional characters present. It then proceeds to default the base direction

to type L when it should actually be of type R. This problem also causes test cases 2,

9, and 11 from Table 4-2 to fail.

4.6 Functional Approach to Bidirectional Layout
Having examined several bidirectional algorithms we see numerous problems

with the implementations. We believe these errors are not the fault of the implemen-

103

tations, but rather are the fault of the algorithm and its description. In this section we

introduce the Haskell bidirectional algorithm (HaBi). Our goal is to apply functional

programming techniques to the problem of bidirectional layout, so as to discover the

essence of the Unicode Bidirectional Algorithm. A greater understanding of the algo-

rithm is obtained by a clear functional description of its operations [41]. Without a

clear description, implementers may encounter ambiguities that ultimately lead to

divergent implementations, contrary to the primary goal of the Unicode Bidirectional

Algorithm. During the construction of our functional implementation we excluded all

references to the Java and C implementations of the Unicode Bidirectional Algo-

rithm, so as to prevent any bias.

4.6.1 Haskell Bidirectional Algorithm (HaBi)

In this section the source code to HaBi is presented. The HaBi reference

implementation uses the Hugs 98 version of Haskell 98 [51] as it is widely available

(Linux, Windows, and Macintosh) and easily configurable.

Since the dominant concern in HaBi is comprehension and readability our

implementation closely follows the textual description as published in the Unicode

Technical Report #9. See Figure 4-7. HaBi is comprised of five phases as in the Java

Unicode Bidirectional Reference implementation:

• Resolution of explicit directional controls

• Resolution of weak types

• Resolution of neutral types

• Resolution of implicit levels

• Reordering of levels

Currently there is no direct support for Unicode in the Hugs 98 implementa-

tion of Haskell 981. So we treat Unicode as lists of 16 or 32-bit integers. The authors

provide two modules for Unicode manipulation. The first is used to create Unicode

(UCS4, UCS2, and UTF-8) strings. The second is used for determining character

104

types. Utility functions convert Haskell strings with optional Unicode character

escapes to 16 or 32-bit integer lists. A Unicode escape takes the form \uhhhh analo-

gous to Java. This escape sequence is used for representing code points outside the

range 0x00-0x7F. This format was chosen so as to permit easy comparison of results

to other implementations.

Internally HaBi manipulates Unicode as sequences of 32-bit integers. See

Figure 4-6. HaBi is prepared to handle surrogates as soon as Unicode assigns them.

The only change HaBi requires is an updated character attribute table. It would be

more elegant to use the polymorphism of Haskell since the algorithm does not really

care about the type of a character only its attribute.

Figure 4-6. Input and output of Haskell Bidirectional Reference

Each Unicode character has an associated Bidirectional attribute and level

number. Figure 4-7 shows the general relationship of this information throughout the

1. The Haskell 98 Report defines the Char type as an enumeration consisting of 16-bit values con-
forming to the Unicode standard. The escape sequence used is consistent with that of Java (\uhhhh).
Unicode is permitted in any identifier or any other place in a program. Currently the only Haskell
implementation known to support Unicode directly is the Chalmers’ Haskell Interpreter and Com-
piler.

String to Integer

Integer to String

Logical to Display

(Unicode) List

(Unicode) List

105

steps of the algorithm. The first step in our implementation is to lookup and assign

bidirectional attributes to the logical character stream. The attributes are obtained

from the online character database as published in Unicode 3.0. At this point explicit

processing assigns level numbers as well as honoring any directional overrides.

Weak and neutral processing potentially causes attribute types to change based upon

surrounding attribute types. Implicit processing assigns final level numbers to the

streams which control reordering. Reordering then produces a sequence of Unicode

characters in display order.

Figure 4-7. Data flow

HaBi uses the following three internal types:

• type Attributed = (Ucs4, Bidi)

• type Level= (Int, Ucs4, Bidi)

• data Run = LL[Level] | LR[Level] | RR[Level] | RL[Level]

Wherever possible the implementation treats characters collectively as

sequential runs rather than as individual characters [1]. By using one of data type

Run’s four possible type constructors, characters can then be grouped by level. These

four constructors signify the possible combinations of starting and ending run direc-

tions. For example, the LL constructor signifies that the start of a run and the end of

a run are both left-to-right. Therefore runs of LL followed by RL are not created.

Before the details of the source code are discussed it is important to make note

of the following concerning HaBi:

Unicode Attribute Level

Lookup
Explicit

Weak
Neutral
Implicit
Reorder

106

• The logical text stream is assumed to have already been separated into paragraphs
and lines.

• Directional control codes are removed once processed.

• No limit is imposed on the number of allowable embeddings.

• Mirroring is accomplished by performing character replacement.

By separating those facets of layout dealing with reordering from those that are con-

cerned with rendering (line breaking, glyph selection, and shaping) it becomes easier

to understand the Haskell implementation.

4.6.1.1 HaBi Source Code

In the source code, functions are named in such a way so as to correspond to

the appropriate section in the Unicode Bidirectional textual reference [100]. See

Appendix A. For example, the function named weak refers to overall weak resolution.

While the function named w1_7 lines 46-72 specifically refers to steps 1 through 7 in

weak resolution.

The function logicalToDisplay lines 152-160 in Appendix A, is used to convert

a stream in logical order to one in display order. First, calls to the functions explicit

lines 37-41, weak lines 74-79, neutral lines 95-100, and implicit lines 115-120 form runs

of fully resolved characters. Calls to reorder lines 135-141 and mirror lines 144-150

are then applied to the fully resolved runs which in turn yield a stream in display

order. This is discussed in greater detail in the next few paragraphs.

The explicit function breaks the logical text stream into logical runs via calls

to p2_3 lines1-8, x2_9 lines 10-27 and x10 lines 29-35. The reference description sug-

gests the use of stacks for keeping track of levels, overrides, and embeddings. In our

implementation stacks are used as well, but they are implicit rather than explicit

(function x2_9 arguments two, three, and four). The functions weak, neutral, and

implicit are then mapped onto each individual run.

107

In weak steps 1 though 7 lines 46-72 two pieces of information are carried for-

ward (the second and third arguments of function w1_7) the current directional state

and the last character’s type. There are cases in the algorithm where a character’s

direction gets changed but the character’s intrinsic type remains unchanged. For

example, if a stream contained an AL followed by a EN the AL would change to type

R (step three in weak types resolution). However the last character would need to

remain AL so as to cause the EN to change to AN (step two in resolution of weak

types).

The functions n1_2 lines 81-93 and i1_2 lines 103-113 resolve the neutral and

implicit character types respectively. The details of these functions are not discussed

as they are fairly straight forward. At this point runs are fully resolved and ready for

reordering (function reorder).

Reordering occurs in two stages. In the first stage (function reverseRun lines

122-127), a run is either completely reversed or left as is. This decision is based upon

whether a run’s level is even or odd. If it is odd (right-to-left) then it is reversed. In

the second stage (function reverseLevels lines 129-133), the list of runs are reordered.

At first it may not be obvious that the list being folded is not the list of runs, but is

the list of levels (highest level to the lowest odd level in the stream). Once reordering

is finished the list of runs are collapsed into a single list of characters in display order.

4.6.1.2 Benefits of HaBi

By using a functional language we are able to separate details that are not

directly related to the algorithm. In HaBi reordering is completely independent from

character encoding. It does not matter what character encoding one uses (UCS4,

UCS2, or UTF8). The Haskell type system and HaBi character attribute function

allows the character encoding to change while not impacting the reordering algo-

rithm.

108

Other implementations may find this level of separation difficult to achieve

(Java and C). In C the size of types are not guaranteed to be portable, making C

unsuitable as a reference. In the Java reference implementation the ramifications of

moving to UCS4 are unclear. Our reference presents the steps as simple, easy to

understand functions without side effects. This allows implementers to comprehend

the true meaning of each step in the algorithm independently of the others while

remaining free from language implementation details. The creation of test cases is

thus more systematic.

4.7 Problems With Bidirectional Layout Algorithms
The biggest hindrance to the creation of a mechanism for converting logical

data streams to display streams lies in the problem description. The problem of bidi-

rectional layout is ill defined with respect to the input(s) and output(s).

Certainly the most obvious input is the data stream itself. But several situa-

tions require additional input in order to correctly determine the output stream. For

example, in Farsi, mathematical expressions are written left-to-right while in Arabic

they are written right-to-left [41]. This may require a special sub input (directional

control code) to appear within the stream for proper handling to occur. If it becomes

necessary to use control codes for obtaining the desired results, the purpose of an

algorithm becomes unclear.

The problem of converting logical data streams to display streams is more

confounding when one considers other possible inputs (paragraph levels, line breaks,

shaping, directional overrides, numeric overrides, etc.) Are they to be treated as sep-

arate inputs? If they are treated as being distinct, when, where and how should they

be used?

Determining the output(s) is not simple either. The correct output(s) is largely

based on the context in which an algorithm will be used. If an algorithm is used to

109

render text, then appropriate outputs might be a glyph vector and a set of screen posi-

tions. On the other hand, if an algorithm is simply being used to determine character

reordering, then an acceptable output might just be a reordered character stream.

4.7.1 Unicode Bidirectional Algorithm

The Unicode Bidirectional algorithm has gone through several iterations over

the years. The current textual reference has been greatly refined. Nevertheless, we

believe that there is still room for improvement. Implementing a bidirectional layout

algorithm is not a trivial matter even when one restricts an implementation to just

reordering. Part of the difficulty can be attributed to the textual description of the

algorithm. Additionally there are areas that require further clarification.

As an example, consider step L2 of the Unicode Bidirectional Reference

Algorithm. It states the following, “From the highest level found in the text to the

lowest odd level on each line, reverse any contiguous sequence of characters that are

at that level or higher. [100]” This has more than one possible interpretation. It could

mean that once the highest level has been found and processed the next level for pro-

cessing should be one less than the current level. It could also be interpreted as mean-

ing that the next level to be processed is the next lowest level actually present in the

text, which may be greater than one less than the current level. It was only through

an examination of Unicode’s Java implementation that we were able to determine the

answer. (The next level is one less than the current.)

There are also problems concerning the bounds of the Unicode Bidirectional

Algorithm. In the absence of higher-order protocols it is not always possible to per-

form all the steps of the Unicode Bidirectional Algorithm. In particular, step L4

requires mirrored characters to be depicted by mirrored glyphs if their resolved direc-

tionality is R. However, glyph selection requires knowledge of fonts and glyph sub-

stitution tables. One possible mechanism for avoiding glyph substitutions is to

perform mirroring via character substitutions. In this approach mirrored characters

110

are replaced by their corresponding character mirrors. In most situations this

approach yields the same results. The only drawback occurs when a mirrored char-

acter does not have its corresponding mirror encoded in Unicode. For example, the

square root character (U221A) does not have its corresponding mirror encoded.

When the Unicode Bidirectional Algorithm performs contextual analysis on

text it overrides the static proprieties assigned to some of the characters. This occurs

during the processing of weak and neutral types. Separating this portion of the algo-

rithm from resolving implicit levels and reordering levels greatly extends the appli-

cability of the algorithm. Ideally the analysis of the text should be distinct from the

actual determination of directional boundaries.

Domain names, mathematical expressions, phone numbers, and other higher-

order data elements are detected during the analysis phase. Nevertheless, it is impos-

sible to create an algorithm that can always correctly identify such elements. The real

issue is whether or not it is possible to create an algorithm that identifies such ele-

ments within some reasonable range of error and under a set of acceptable constraints

for the elements themselves.

4.7.2 Reference Implementation

We argue that if source code is now going to serve as a reference we should

pick source code that is more attuned to describing algorithms. We claim to have pro-

vided such a reference through the use of Haskell 98. Our HaBi reference is clear and

succinct. The total number of lines of source code for the complete solution is less

than 300 lines. The Unicode Java reference implementation is over 1000 lines [100].

4.7.3 HaBi

Even though, HaBi is a great improvement over current imperative imple-

mentations the functional approach has offered only limited success. Our original

goal was to discover the true nature of bidirectional display, in hopes of producing a

111

more succinct algorithm. Unfortunately, we have a failed in this attempt. The algo-

rithm appears to be ad hoc, hence it is not very algorithmic.

4.8 Limitations of Strategies
We believe, however, that the real problem of bidirectional layout lies not in

the implementations, but rather in the goals of the algorithm. The requirements of a

bidirectional layout algorithm are difficult to define. There are numerous interactions

between higher-order protocols (line breaking, glyph selection, mirroring) and bidi-

rectional layout. Additionally, there is a limited amount of complex bidirectional text

from which to gather a strong consensus, making verification of results extremely

difficult.

The major issues that all of the current algorithms suffer from are:

• Lack of separation between inferencing (script boundary detection) and reorder-
ing.

• Incorrect output — Reordering only makes sense in the context of glyphs.

• Inadequate input — there is simply not enough semantic information in plain text
to properly determine directional boundaries.

4.8.1 Metadata

We believe that one of the best strategies to overcoming these limitations is

to introduce character metadata into a plain text encoding. This enables additional

semantic information to be expressed in a plain text stream as well as allowing for a

clear separation between inferencing and reordering. This is the topic of discussion

in the next chapter.

112

5Enhancing Plain Text

In the previous chapter we concluded that the current Unicode based bidirec-

tional layout algorithms: One, fail to separate inferencing from reordering and two,

produce the wrong output. The problem is poor design and a lack of clear levels of

abstraction. Code points are used for many different purposes. How should text for

natural languages be represented? Is a stream of code points adequate? We think the

answer is no. To overcome this deficiency, we examine strategies for enhancing plain

text. These enhancements involve mechanisms for describing higher-order protocols.

We generally refer to these enhancements as “metadata” (data describing data).

Algorithms that manipulate Unicode should be based upon on code points and

character attributes, if possible, given that Unicode is a character encoding system.

The Unicode Bidirectional Algorithm, among others, is a text algorithm that requires

additional input and output (higher-order semantics) over and above the actual code

points. Unicode wishes to define such algorithms, however it lacks a general mecha-

nism for universally encoding higher-order semantics. Encoding higher-order

semantics into Unicode would permit a cleaner division of responsibilities. Algo-

rithms could be recast to take advantage of this division. To prove this is viable we

recast the HaBi algorithm to take advantage of this division, separating the responsi-

bility of determining directional boundaries (inferencing) from reordering.

Below we present the historical use of metadata within character encodings.

This is followed by an examination of the presently available paradigms for express-

ing metadata. Particular attention is given to both Unicode’s character/control/

metadata model and XML. We then present a universal framework for expressing

113

higher-order protocols within Unicode. Finally, the chapter concludes with evidence

demonstrating the benefits and adaptability of the new approach.

5.1 Metadata
The need for expressing metadata has existed ever since humans started com-

municating with each other. Metadata is primarily expressed through our verbal

speech. The tone, volume, and speed in which something is spoken often signals its

importance or underlying emotion. Often this is more important than the data itself,

and more difficult to codify.

Writing and printing systems also have their need for metadata. This metadata

has been variously conveyed through the use of color, style, and size of glyphs. Ini-

tially metadata was used as a mechanism for circumventing the limitations of early

encoding schemes. As our communication mechanisms advanced so did our need for

expressing metadata.

5.1.1 Historical Perspective

One of the earliest uses of metadata appears in Baudot’s 5-bit teleprinter.

Baudot divided his character set into two distinct planes, named Letters and Figures.

The Letters plane contained all the Uppercase Latin letters while the Figures plane

contained the Arabic numerals and punctuation characters. Together, these two

planes shared a single set of code values. To distinguish their meaning Baudot intro-

duced two special meta-characters, letter shift “LTRS” and figure shift “FIGS”.

Whenever code points were transmitted they were preceded by either a FIGS or

LTRS character. This enabled unambiguous interpretation of characters. This is sim-

ilar to the shift lock mechanism in typewriters. For example, line 1 of Figure 5-1

spells out “BAUDOT” while line 2 spells out “?-7$95”.[49],[18]

114

Figure 5-1. Using LTRS and FIGS in Baudot code

0x1F 0x19 0x03 0x07 0x09 0x18 0x10 BAUDOT (1)

0x1B 0x19 0x03 0x07 0x09 0x18 0x10 ?-7$95 (2)

This still left the problem of how to transmit a special signal to a teleprinter

operator. Baudot once again set aside a special code point, named bell “BEL”. This

code point would not result in anything being printed, but rather it would be recog-

nized by the physical teleprinter as the command to ring a bell. [49]

About 1900, we see code points being used as format effectors (code points

that control the positioning of printed characters on a page). A good example of such

usage can be seen in Murray’s code. Murray’s code introduced two additional char-

acters column “COL”, and line page “LINE PAGE”. Known in International Teleg-

raphy Alphabet Number 2 (ITA2) as carriage return and line feed. These characters

were used to control the positioning of the rotating typehead and to control the

advancement of paper. Murray’s encoding scheme was used for nearly fifty years

with little modification. It also served as the foundation for future encoding tech-

niques.[49]

During the late 1950s and early 1960s telecommunication hardware rapidly

became complex. Consequently, hardware manufacturers needed more highly

sophisticated protocols and greater amounts of metadata. For this purpose the US

Army introduced a 6-bit character code called FIELDATA. FIELDATA was the first

encoding to formally introduce the concept of supervisor codes, known today has

control codes. These code points were used to signal communications hardware.[49]

The hardware manufacturers were certainly not alone in their need for meta-

data. The data processing community soon realized that they also had a need for

metadata. This unfortunately taxed the existing encoding schemes (5-bit and 6-bit) so

much so as to render them unusable. As a result, richer and more flexible encoding

115

schemes were created, the prime example being the American Standard Code for

Information Interchange (ASCII). [12]

ASCII with its 7-bit encoding, served not only as a mechanism for data inter-

change, but also had many other special features. One feature was a mechanism for

metadata. This metadata could be used for communicating higher-order protocols in

both hardware and software. The architecture is based upon ASCII’s escape character

“ESC” at hex value 0x1B. Initially the ESC was used for shifting between character

sets. This was of a particular importance to ALGOL programmers. For example, it

allowed if to be used as both an identifier and a reserved word simultaneously. The

presence of the ESC indicated that the if should be treated as a reserved word, rather

than as an identifier [28]. As ASCII was adopted internationally the ESC became

useful for signaling the swapping in and out of international character sets. This con-

cept was expanded upon in 1980s in the ISO-2022 standard. [15],[54],[75]

ISO-2022 is an architecture and registration scheme for intermixing multiple

7-bit or 8-bit encodings using a modal encoding system similar to Baudot’s. Escape

sequences or special characters are used to switch between different character sets or

between multiple versions of the same character set. This scheme operates in two

phases. The first phase handles the switching between character sets, while the

second handles the actual characters that make up the text.[57]

Non-modal encoding systems by contrast make direct use of the byte values

in determining the size of a character. In non-modal encoding systems characters may

vary in size within a stream of text; characters typically range from one to four bytes.

This occurs in both the UTF-8 and UTF-16 encodings. [57]

In ISO-2022 up to four different sets of graphical characters may be simulta-

neously available, labeled G0 through G3. Escape sequences are used to assign and

switch between the individual graphical sets. For example, line 1 of Figure 5-2 shows

116

the byte sequence for assigning the ASCII encoding to the G0 alternate graphic char-

acter set. Line 2 shows the Latin 1 encoding being assigned to the G1 set.[3],[75]

Figure 5-2. ISO-2022 escape sequences

ESC 0x28 0x42 assign ASCII to G0 (1)

ESC 0x2D 0x41 assign Latin 1 to G1 (2)

Most data processing tools make little if any distinction amongst data types.

Data processing tools simply view information as bytes leaving the meaning of the

data entirely open to human interpretation. For example, “UNIX grep” assumes that

data is represented as a linear sequence of stateless fixed length independent bytes.

Grep is highly flexible when it comes to searching characters or object code. This

model has served text processing well under the assumption that one character equals

one code point, but encoding systems have advanced and user expectations have

risen.[76]

Over the last ten or so years Unicode has become the de facto standard for

encoding multilingual text. This has brought a host of new outcomes that few could

have imagined even a decade ago. Despite this advance, users want more than just

enough information for intelligible communication. Plain text in its least common

denominator is simply insufficient.

There have been several discussions and a few attempts to enrich plain text;

ISO-2022 is one, XML can also be viewed in this framework. Both concern meta

information yet have different purposes, goals, and audiences. The transition from

storing and transmitting text as plain streams of code points is now well under-

way.[23]

5.2 Unicode Character Model
Figure 5-3 presents what might be called the Unicode character model. It (like

the network model) has a transmission layer at the bottom and an application layer at

117

the top. The layers in between are the focus of this chapter. The Character/Control

layer is intentionally depicted in a gradient fashion to illustrate the vague boundary

separating characters from control. This lack of separation has made it more difficult

to write applications that use Unicode.

Figure 5-3. Unicode Character Model

5.2.1 Transmission Layer

The transmission of text across text processes ranges from simple byte

exchange to stateful encoding transmission. In chapter 3 we discussed in detail the

various ways in which Unicode/ISO-10646 characters can be transmitted.

5.2.2 Code Point Layer

The most frequently occurring method of character identification is by

numeric value. This approach has formed the hallmark of character encoding

118

schemes for nearly forty years. An example of which is the ASCII encoding scheme.

Ideally the code point layer maps binary values to abstract character names.

In ASCII by contrast, the only unambiguous way to identify characters is by

their numeric value. The use of abstract character names within ASCII has never

been standardized, limiting our ability to unambiguously refer to characters. Con-

sider the code point 0x5F in ASCII. This code point has been referred to as: “spacing

underscore”, “low line”, and “horizontal bar”. This may not seem problematic as

their glyphs are the same. This situation, however, has caused characters to be treated

as if they were glyphs rather than as abstract entities, making the distinction between

characters and glyphs almost impossible.

Additionally, having the highest level of abstraction limited to just the Code

Point Layer does not permit a clean separation between text processes and the char-

acters they manipulate. This problem is quite evident in parsing ASCII files. In par-

ticular consider the numerous ways in which a line end character may be expressed.

Alternatively characters can be identified by their abstract name or binary

sequence. This technique is employed within ISO-10646. ISO-10646 provides a one-

to-one mapping from code points to character names. This allows characters to be

referred to unambiguously by either their abstract name or binary value. For example

consider once again the code point value 0x5F. In ISO-10646 this code point value

has but one name, “LOW LINE”.

This additional layer of abstraction still leaves open the question what does a

character’s name mean. In ISO-10646 characters do not posses any properties other

than their name. Unfortunately this places the burden of assigning properties into the

hands of text processes, resulting in wide variation.

119

5.2.3 Character/Control Layer

Unicode defines the term character as “The smallest component of written

language that has semantic value; refers to the abstract meaning and/or shape, rather

than a specific shape.” This definition is at odds with what is actually present within

Unicode. There are several characters defined within Unicode that do not belong to

any written language “controls” (characters that cause special actions to occur, but

are not considered part of the data) as well as characters that specifically convey a

definitive typographic shape “glyphs”, Table 5-1. This intermixing has made it

nearly impossible to determine when a character should be treated as data, metadata,

or a glyph. Furthermore, the method by which new control codes are introduced is

completely ad hoc. There is no standard range within Unicode that contains just con-

trols. [96]

Table 5-1. Problem Characters

Type Code Point Purpose

OBJ REPLACE 0xFFFC placeholder for external objects

ANNOTATION 0xFFF9 -
0xFFFB

used for formatting ruby characters in Japanese

CHAR REPLACE 0xFFFD placeholder for non convertible characters

CONTROL 0x0000 -
0x001F,
0x007F -
0x0096

C0 and C1 control characters, used for legacy

NON BREAKING
SPACES

0x00A0,
0xFEFF,
0x202F

non breaking space

NSM 0x0300 -
0x0362

non spacing diacritical marks used to form glyphs

SPACES 0x2000 -
0x200A,
0x200B,
0x3000

en, em, thin, hair, zero width, ideographic spaces

SEPARATORS 0x2028 -
0x2029

line and paragraph separator

120

5.2.4 Character Property Layer

Clearly there exists a need for character properties. Text processes want to be

able to interchange and interpret text unambiguously. Unicode adds an additional

layer of abstraction onto ISO-10646. In Unicode each character may posses proper-

ties from three general areas, “normative”, “informative”, and “directional”. For

example, see Table 5-2. [32]

ZWNJ 0x200C zero width non joiner, prevent ligature formation

ZWJ 0x200D zero width joiner, promote ligature formation

LRM 0x200E left-to-right mark, used in bidi processing

RLM 0x200F right-to-left mark, used in bidi processing

BIDI CONTROLS 0x202A -
0x202E

used for overriding directional properties, and for
embedding directional runs

SHAPING 0x206A -
0x206F

used to control Arabic shaping

PRESENTATION
FORMS

0xFB50 -
0xFDFF,
0xFE70 -
0xFEFE

Arabic ligatures and glyph variants used by rendering
engines

HALFWIDTH AND
FULLWIDTH

0xFF00 -
0xFFEF

half-width and full-width forms used in rendering
engines

Table 5-2. Character Properties

Code Point Character Name Normative Informative Directional

0x005F LOW LINE punctuation
connector

neutral

0x0061 LATIN SMALL LETTER A lowercase letter left to right

0x0661 ARABIC-INDIC DIGIT
ONE

decimal digit arabic numeral

Table 5-1. Problem Characters (Continued)

Type Code Point Purpose

121

5.3 Strategies for Capturing Semantics
There are two general approaches to encoding higher-order semantics within

text streams: in-band signaling and out-of-band signaling.

Using in-band signaling determining whether a character is data or metadata

depends on the context in which a character is found. That is, code points are over-

loaded. This achieves maximal use of the character encoding, as characters are not

duplicated. It also does not require encoding modifications as protocols change. All

of this progress comes at the expense of parsing. It is no longer possible to conduct a

simple parse of a stream looking for just data or metadata. This technique is

employed within the HTML and XML protocols. [99]

Using out-of-band signaling for describing Unicode metadata requires the

definition and transmission of complex structures similar to document data type def-

initions (DTD) in XML. This has the ill effect of making the transmission of Unicode

more intricate. It would no longer be acceptable to simply transmit the raw Unicode

text. Without the metadata, the meaning of the raw text may be ambiguous. On the

other hand, parsing of data and metadata would be trivial, given that the two are not

intermixed. [99]

5.3.1 XML

The extensible markup language (XML) provides a standard way of sharing

structured documents and for defining other markup languages. XML uses Unicode

as its character encoding for data and markup. Control codes, data characters, and

markup characters may appear intermixed in a text stream. Confusion may ensue

when control codes, data characters, and markup characters are combined with over-

lapping higher-order protocols. Additionally, there may be situations in which

markup and control should not be interleaved. This issue is quickly being realized

both within XML and Unicode. [23]

122

Whitespace characters in XML are used in both markup and data. The char-

acters used in XML to represent whitespace are limited to “space”, “tab”, “carriage

return”, and “line feed”. Unicode on the other hand, offers several characters for rep-

resenting whitespace the (e.g., line separator U2028 and the paragraph separator

U2029). The use of U2028 and U2029 within XML may lead to confusion because

of the conflicting semantics. [33]

In Unicode these characters may be used to indicate hard line breaks and para-

graphs within a data stream. These may affect visual rendering as well as acting as

separators. When used within XML it is unclear whether the implied semantics can

be ignored. Does the presence of one of these control codes indicate that a rendering

protocol is being specified in addition to their use as whitespace, or are they simply

whitespace? [23]

XML completely excludes certain Unicode characters from names (tags). The

characters in the compatibility area and specials area UF900-UFFFE from Unicode

are not permitted to be used within XML names. Their exclusion is due in part to the

characters being already encoded in other places within Unicode. This is by no means

the only reason. If characters from the compatibility area were included the issue of

normalization would then to be addressed. (In this context normalization refers to

name equivalence). [33]

Unicode provides guidelines and an algorithm for determining when two

character sequences are equivalent. Unicode attempts to address this issue in Unicode

Technical Report #15 Unicode Normalization Forms. In general there are two kinds

of normalization, Canonical and Compatibility. [101]

Canonical normalization handles equivalence between decomposed and pre-

composed characters. This type of normalization is reversible. Compatibility normal-

ization addresses equivalence between characters that do not visually appear the

same. This type of normalization is irreversible.[32],[101]

123

Compatibility normalization in particular is problematic within XML. XML

is designed to represent raw data free from any particular preferred presentation.

Characters that may be compatible do not necessarily share the same semantics [32].

It may be the case that an additional protocol is being specified within the stream. For

example, the UFB00 character on line 1 of Figure 5-4 is compatible with the two

character sequence “U0066 U0066” on line 2 of Figure 5-4. Line 1 also specifies an

additional protocol; in this case ligatures. In such a situation it is unclear whether or

not the names were intended to be distinct. It is difficult to tell when the control func-

tion (higher-order protocol specification) of a character can be ignored and when it

can’t. Additionally, some have argued that Unicode’s Normalization Algorithm is

difficult to implement, resource intensive, and prone to errors. To avoid such prob-

lems XML has chosen not to perform normalization when comparing names.

[18],[33]

Figure 5-4. Compatibility Normalization

UFB00 ff ligature (1)

U0066 U0066 ff no ligature (2)

Problems such as these are due to the lack of separation between syntax and

semantics within Unicode. The absence of a general mechanism for specifying

higher-order protocols “metadata” only serves to further confound these

issues.[18],[33]

5.3.2 Language Tagging

Over the years there has become a need for language “tagging” of multilin-

gual text. In some cases such information is necessary for correct behavior. For

example, language information becomes necessary when an intermixed stream of

Japanese, Chinese, and Korean is to be rendered. In this case, the unified Han char-

124

acters need to be displayed using language specific glyph variants. Without higher-

order language information it becomes difficult to select the appropriate glyphs.

Recently Unicode has added a mechanism for encoding language information

within plain text. This is achieved in Unicode through the introduction of a special

set of characters that may be used for language tagging. The current strategy under

consideration within Unicode is to add 97 new characters to Unicode. These charac-

ters would be comprised of copies of the ASCII graphic characters, a language

character tag, and a cancel tag character. These characters would be encoded in Plane

14 “surrogates” U000E0000 - U000E007F.[99]

The use of the tags in Unicode is very simple. First a tag identifier character

is chosen, followed by an arbitrary number of unicode tag characters. A tag is implic-

itly terminated when either a non tag character is found or another tag identifier is

encountered. Currently there is only one tag identifier defined, the language tag. See

Figure 5-5. Line 1 of Figure 5-5 demonstrates the use of the fixed code point language

tag “U000E0001” along with the cancel tag “U000E007F”. The plane 14 ASCII

graphic characters are in bold and are used to identify the language. The language

name is formed by concatenating the language id from ISO-639 and the country code

from ISO-3166. In the future a generic tag identifier may be added for private tag def-

initions. [99]

Figure 5-5. Language tag

U000E0001 fr-Fr french text U000E0001 U000E007F (1)

Tag values can be cancelled by using the tag cancel character. The cancel

character is simply appended onto a tag identifier. This has the effect of cancelling

that tag identifier’s value. If the cancel tag is transmitted without a tag identifier the

effect is to cancel any and all processed tag values. [99]

125

The value of a tag continues until either it implicitly goes out of scope or a

cancel tag character is found. Tags of the same type may not be nested. The occur-

rence of two consecutive tag types simply applies the new value to the rest of the

unprocessed stream. Tags of differing types may be interlocked. Tags of different

types are assumed to ignore each other; there are no dependencies between tags. [99]

Tag characters have no particular visible rendering and have no direct affect

on the layout of a stream. Tag aware processes may chose to format streams

according to their own interpretation of tags and their associated values. Tag unaware

processes should leave tag data alone and continue processing. [99]

5.3.2.1 Directional Properties of Language Tags

In this section we show that language tags can interact with other facets of

Unicode including the Bidirectional Algorithm.

In Unicode, language tag characters are all marked as having a neutral direc-

tion. Neutral characters pick up their direction from the surrounding strong characters

(left or right). This seems reasonable as we do not wish the tags to accidentally influ-

ence the Bidirectional Algorithm. If the direction of the tags were left-to-right or

right-to-left, rather than neutral, then the tags would influence the resolution of weak

and neutral types due to their juxtaposition. [96]

The example in Figure 5-6 demonstrates this error. In Figure 5-6 Arabic char-

acters are represented in upper case. The character sequence LANGar (Arabic lan-

guage tag) in bold is a visual representation for the Unicode sequence

(UE0001,UE0061,UE0072). In this example assume that the language tag characters

are assigned the left-to-right direction. Line 1 is a sequence of characters in logical

order, while line 2 is the expected resultant display ordering. The display ordering in

line 3 is incorrect, because the tag characters inadvertently participated in bidirec-

tional processing. Marking language tags as neutral makes sense in this framework

of protecting the Bidirectional Algorithm.

126

Ironically, in the process of protecting the Bidirectional Algorithm we inad-

vertently allowed the Bidirectional Algorithm to influence language tags. For exam-

ple, line 1 on Figure 5-7 is a sequence of Arabic characters in logical order with an

embedded language tag, Urdu (UE0001,UE0075,UE0072). Line 2 is the same

sequence of characters, but in display order (output from the Bidirectional Algo-

rithm). When the character sequence is rendered the language tag, however, is dis-

played backwards and appears as “ru” which indicates Russian. The reason the

language tag is displayed backwards is, because neutral characters pick up their

direction form the surrounding characters, in this case right-to-left. Clearly this is

undesirable and therefore must be prevented.

Figure 5-6. Error in bidirectional processing

CIBARA LANGar, 123 (1)

123 , LANGar ARABIC (2)

LANGar , 123 ARABIC (3)

Figure 5-7. Error in language tagging

U0624,UE0001,UE0075,UE0072,U00623 — lang ur (Urdu), logical (1)

U0623,UE0072,UE0075,UE0001,U0624 — lang ru (Russian), display (2)

This problem can be solved by introducing a new bidirectional property,

“ignore”. This will enable the Bidirectional Algorithm to continue to function prop-

erly while also protecting the semantics of tags. Characters that posses the direction

ignore will not have any direction and will not pick up any surrounding direction, pre-

venting these characters from participating in the Bidirectional Algorithm. [96],[100]

5.3.3 General Unicode Metadata

It is still possible to construct a metadata signaling mechanism for the specific

purpose of mixing data and metadata and yet allow for simple parsing. This is called

127

“light-weight in-band signalling”. This is the approach that Unicode has adopted for

language tagging. [99]

The light-weight approach is useful, but Unicode’s application of it creates

two problems. First, new tag identifiers always require the introduction of a new Uni-

code code point. This puts Unicode in a constant state of flux as well as fixing the

number of possible tag identifiers. Second, there is no way to specify multiple

parameters for a tag. This deficiency forces the creation of additional tag identifiers

to circumvent this limitation.

We propose that a more generalized approach be taken. Our design philoso-

phy is to encode a minimal set of stateless metadata characters that enable the defini-

tion of higher-order protocols. Our use of the term stateless in this context refers to

whether a character’s type (data or metadata) can be determined by its code point

value alone. In some metadata systems (HTML and XML) a character’s type can

only be determined by examining the full context in which it appears. Unfortunately,

these systems require sophisticated parsing techniques. We argue for the use of state-

less characters in our system because they simplify both parsing and understanding.

Naturally, the construction of a metadata encoding system requires a balanc-

ing of trade-offs. One such trade-off is whether or not to define a syntax for the def-

inition of tags. We believe that we should specify a minimal and flexible syntax for

tags that allows for unambiguous communication, yet does not impose any particular

style of protocol such as HTML.

In choosing the set of metadata characters we suggest that we keep the copy

of the ASCII graphic characters that are used in Unicode’s language tagging model.

We should however remove the fixed code point tag identifiers. In their place we

introduce two new characters, tag delimiter U000E0001 and tag argument separator

U000E0002. See Table 5-3. The motivation for these characters comes from the

SGML/XML/HTML camps. These characters provide an easy migration path for

128

embedding XML like protocols within Unicode. The use of these characters is by no

means required—applications may chose alternative methods. On the other hand, the

use of the tag delimiter and the tag argument separator help prevent confusion

between whether a sequence of tag characters represents a tag name or tag argument.

Additionally, the use of these characters guarantees that tag neutral tools can be

created. Such tools can always count on the fact that consecutive tags are delimited

and that their arguments are separated by tag argument separators.

The tag delimiter character is used to separate consecutive tags from one

another. While the tag argument separator is used to delineate multiple tag argu-

ments. This approach allows the same set of tag graphic characters to be used for both

tag names and tag arguments. Additionally, tag names are spelled out rather than

being assigned to a fixed single code point.

The overall construction of tags will still remain simple. First, the tag name

is spelled out using the tag graphic characters, followed by an optional tag argument

separator. Second, there may be an arbitrary number of tag arguments for each tag,

each argument being separated by a tag argument separator. A tag name is terminated

by either encountering a tag argument separator, or an optional tag delimiter. This

still allows for relatively simple parsing. The regular expressions for tags, tag names,

and tag arguments can be found on lines 4-7 in Figure 5-8. The usage of tags in text

Table 5-3. Tag characters

Tag Characters UCS-4
Visual
Representation Purpose

delimiter U000E0001 | control

argument separator U000E0002 @ control

space U000E0020 display

graphic characters U000E0021 -
U000E007E

a-z, A-Z, 0-9,
etc.

display

129

streams is also very simple to comprehend. See the regular expression on line 2 in

Figure 5-9.

Figure 5-8. Regular expressions for tags

<tag graphic character> ::= [U000E0020-U000E007E] (1)

<tag delimiter> ::= U000E0001 (2)

<tag argument separator> ::= U000E0002 (3)

<tag name> ::= <tag graphic character>+ (4)

<tag argument> ::= <tag argument separator><tag graphic character>+ (5)

<tag> ::= <tag name><tag argument>* (6)

<tag> ::= <tag delimiter> (7)

Figure 5-9. Regular expression for text stream

<data character> ::= [U00000000-U0002FA1D] (1)

<text stream> ::= (<data character>|<tag>)+ (2)

Throughout this chapter tag characters are represented in boldface. Addition-

ally the vertical bar “|” is used to depict the tag delimiter and the at sign “@” denotes

the tag argument separator. See Table 5-3. For example, line 1 of Figure 5-10 shows

a stream with two tags, “XX” and “YY”. Additionally, the tag “XX” has one argu-

ment “a”, and the “YY” tag has two arguments “b” and “c”. The example suggests

the nesting of “YY” within “XX”. In this sample protocol we terminate the scope of

a tag by repeating the tag name preceded by the tag graphic character solidus “/”. This

method of terminating scope is not a requirement, protocols may adopt other methods

or none at all.

The semantics of such combinations are left to protocol designers rather than

the metadata. This affords the greatest flexibility and yet still retains the ability to per-

130

form simple parsing. This design allows Unicode to simply be in the business of

defining mechanism rather than mechanism and policy.

Figure 5-10. Sample tag

defXX@a|YY@b@c|ghi/YY|jkl/XX| (1)

It is foreseeable that Unicode would remain the registrar of tag identifiers,

while working in conjunction with other standards bodies. Though, this does not pre-

clude private tags from being defined for those cases in which widespread protocol

adoption is not required.

Similarly, the semantics of cancelling or ending the scope of tags will also be

left to the protocol designer. It is possible that in some protocols tag cancellation

might undo the last tag, while in others it may end the scope of a tag. Additionally,

there is no requirement that either of these interpretations be used at all.

The example in Figure 5-11 shows how the language tag would be repre-

sented in the new tagging model. Line 1 of Figure 5-11 is copied from Figure 5-5.

Line 2 shows the language tag spelled out with the two tag arguments being clearly

delineated. We suggest that the spelling out of tag names is a small price to pay for

this enhanced functionality.

Figure 5-11. Alternative language tag

U000E0001 fr-FR french text U000E0001 U000E007F (1)

LANG@fr@FR| french text /LANG| (2)

5.4 Encoding XML
In this section we demonstrate through the use of examples how our metadata

encoding system can be used to encode XML and XML like protocols. The primary

syntactic elements, for which we provide mappings in our examples, include: tags,

131

entity references, and comments. We believe that these elements are sufficient for

demonstrating that the mapping of XML to metadata is both feasible and simple.

The example in Figure 5-12 shows a sample address book modeled in XML.

The address book contains a collection of contacts, in this case just one contact. Each

contact in turn contains a name and address. In this example we see three general

types of tags:

• Self closing tags — the <business/> tag on line 8 on Figure 5-12.

• Start tags — the <addressbook> tag on line 3 on Figure 5-12.

• End tags — the </contact> tag on line 13 on Figure 5-12.

Additionally, each tag may optionally contain arguments. For example, the <contact

type=”business”> tag on line 5 on Figure 5-12, contains a single tag argument. In

this tag the string type represents the name of the argument while the string business

is its corresponding value. [72]

Figure 5-12. Sample XML code
1 <?xml version=”1.0”?>
2 <!ENTITY amp “&”>
3 <addressbook>
4 <!- this is an address ->
5 <contact type=”business”>
6 <name>Steve's Bar & Grill</name>
7 <nickname>>Steve<</nickname>
8 <business/>
9 <address>150 W. University Blvd</address>
10 <city>Melbourne</city>
11 <state>FL</state>
12 <zip>32901</zip>
13 </contact>
14 </addressbook>

The sample XML file also contains entity references. In XML entity refer-

ences assign aliases to pieces of data. It serves as a unique reference to some XML

data. Entity references are made by using an ampersand and a semicolon. For exam-

ple, line 6 on Figure 5-12 shows a reference to the amp entity (ampersand), while the

132

definition of the reference is shown on line 2. Normally, these characters would be

processed differently in XML. However, with entity references an XML parser does

not get confused. [72]

In this example we also see the use of a comment. See line 4 on Figure 5-12.

Comments are used to provide additional information about an XML document,

however they are not actually part of the data in a XML document. Comments begin

with a <! and end with ->. The only restriction XML places upon comments is that

they do not contain double hyphens --, as they conflict with XML’s comment syntax.

[72]

In general when we map a XML document to combined data/metadata most

characters remain unchanged. This is particularly true of characters that are not part

of XML tags. Nevertheless, characters that make up an XML tag get mapped to a cor-

responding metadata graphic tag character. However, we believe that their is some

flexibility in this mapping. In particular, the < and > do not need to be mapped at all.

These characters are not needed, because a XML parser can now immediately tell

whether a character is part of a tag or not simply by examining its code point value.

Therefore, it is unnecessary to map these characters.

The text in Figure 5-13 is the same XML document from Figure 5-13 re-

encoded using our metadata tagging system. In certain cases we have changed the

syntax of the XML tags slightly to take advantage of our metadata system and to be

more consistent with our general tag syntax. In particular, these changes can be seen

on lines 1, 2 and 5. Additionally, we have created a tag specifically for the purpose

of indicating a comment. See line 4 on Figure 5-13. To indicate whether a tag is a

start tag, end tag, or a self closing tag we have adopted the following convention:

• If the tag is an end tag then the tag name is preceded by a solidus “/”.

• If the tag is a self closing then tag the tag name is followed by a solidus.

• All remaining tags are assumed to be start tags.

133

It is important to note that this convention is not the only way in which the tag type

can be expressed. It is quite possible that some other convention could be adopted.

One alternative, would be to indicate the type of a tag as a tag argument, rather than

as part of the name. We have chosen to indicate the type as part of the tag name, as

this closely matches XML’s syntax.

Figure 5-13. Sample XML code encoded in metadata
1 |?xml@version=”1.0”|
2 |ENTITY@amp@CP@U@0026|
3 |addressbook|
4 |cmt@this is an address|
5 |contact@type=”business”|
6 |name|Steve|&apos|s Bar|&| Grill|/name|
7 |nickname||>|Steve|<||/nickname|
8 |business/|
9 |address|150 W. University Blvd|/address|
10 |city|Melbourne|/city|
11 |state|FL|/state|
12 |zip|32901|/zip|
13 |/contact|
14 |/addressbook|

The remaining issue involving the mapping of XML to metadata deals with

the representation of characters outside the graphic tag character range. In XML it is

legal to use characters outside the ASCII range in tags and in data. This is possible,

because XML uses Unicode as its native encoding system. It is possible to represent

these characters in our metadata system using our code point protocol. See line 2 on

Figure 5-13. The raw code point protocol embeds any Unicode code point in meta-

data. The CP tag identifies the code point protocol, U indicates the Unicode character

set, and 0026 is the hexadecimal value of the Unicode code point.

We have chosen not to encode a special metadata escape character for the pur-

pose of embedding characters, because the encoding of such a character violates one

of the key goals in our metadata system, stateless encoding. In our metadata system

the meaning of each character is unambiguous and independent from any other char-

134

acter. If we were to encode an escape character then the digits following it would

need to be overloaded. Sometimes the digits would be tag digits and sometimes they

would be escaped digits. This makes the meaning of the digits contextual. This kind

of overloading and contextual behavior returns us to XML’s problems, which our

strategy has been engineered to avoid.

5.5 New XML
Encoding XML in our metadata system offers several advantages. First, the

use of the tag delimiters “|” around each tag are actually unnecessary. The tag delim-

iter is only required for consecutive tags. Additionally, only one of these tag delim-

iters are necessary. Each tag is immediately detectable by simply examining its code

point value. This is not possible in XML, hence they need to clearly indicate the

bounds of each tag.

Second, in XML there are certain characters that need to be escaped so that

they can be used in data. These characters include the less-than “<“ and greater-than

“>” characters. Normally, these characters are used for indicating the bounds of a tag.

When they are meant to be interpreted as data and not as tag indicators, they must be

referred to via entity references, so as to avoid confusing the XML parser. For exam-

ple, the “>” and “<” entity references on line 7 on Figure 5-12. In this example

the “>” refers to the greater-than character and the “<” refers to the less-than

character. In our metadata scheme this is completely unnecessary. There is never any

confusion as to whether a character represents data or metadata. Therefore, we do not

need this mechanism at all in our form of XML.

5.6 Text Element
Now that a definition of a general metadata mechanism has been established

tags other than language may be constructed. In the next section we see one such

135

example, the text element tag. This tag will enable the embedding of additional lin-

guistic information into pain text streams.

Traditionally text processes manipulated ASCII data with the implicit under-

standing that every code point equated to a single character and in turn a single text

element, which then served as a fundamental unit of manipulation. In most cases this

assumption held, especially given that only English text was being processed. [96]

Multilingual information processing, however breaks the assumption that

code points, characters, and text elements are all equal. Text elements are directly

tied to a text process, script, and language. Encodings today provide an abstract set

of characters directly mapped onto set of numerals. The abstract characters are then

grouped to form text elements.[96]

In some cases a text element may still equate to a single character while in

other situations a text element may be comprised of several characters. For example,

in Spanish the character sequence “ll” is treated as a single text element when sorted,

but is treated as two text elements “l” and “l” when printed. [96]

Unicode relies on an abstract notion of characters and text elements. Unfor-

tunately, a general mechanism for indicating text elements is lacking. In some

instances a text element is implicitly specified through a sequence of characters. For

example, line 1 of Figure 5-14 shows how a base character and a non spacing diacritic

combine to form a single text element. See line 2 of Figure 5-14.

Figure 5-14. Combining characters

U00D6 O¨ decomposed (1)

U004F U0308 Ö precomposed (2)

In other cases text elements are explicitly specified by control codes. In par-

ticular, Unicode uses control codes (e.g., the zero width joiner U200D and the zero

width non joiner U200C) for forming visual text elements. These characters affect

136

ligature formation and cursive connection of glyphs. The intended semantic of the

zero width non joiner is to break cursive connections and ligatures. The zero width

joiner is designed to form a more highly connected rendering of adjacent charac-

ters.[97]

For example, line 1 of Figure 5-15 shows the sequence of code points for con-

structing a ligature. The characters x and y represent arbitrary characters. Line 2

shows how the zero width non joiner can be used to break a cursive connection. Prob-

lems still arise when one wishes to suppress ligatures while still promoting cursive

connections. In this situation Unicode recommends combining the zero width non

joiner and the zero width joiner. See line 3 of Figure 5-15.[97]

Rather than using control codes with complicated semantics and implicit

sequences of characters to form text elements, a simple generalized mechanism can

be used. Nonetheless, Unicode has no general way to indicate that sequences of char-

acters should be viewed as a single text element. The current approach relies on a

higher-order protocol outside of Unicode, such as XML which is designed to describe

the structure of documents and collections of data, not individual characters and text

elements. XML requires data to strictly adhere to a hierarchical organization. This

may be appropriate for documents, but can be troublesome for a simple text stream.

The model that is really required needs to be organized around characters and text

elements.

This can be achieved through metadata tags and simple protocols. For exam-

ple, the zero width joiner and zero width non joiner characters can be described by a

new tag; the text element “ELM”. The ELM tag is used to group multiple characters

together so that they can be treated as a single grapheme or text element. For exam-

ple, line 1 of Figure 5-16 shows a text element “xy” for all purposes.

When characters are grouped together it may be for the purpose of rendering,

sorting, or case conversion. The purpose of the grouping does not need to be

137

understood by Unicode. The semantics should only be determined by processes that

make direct use of such information. The tag is simply a conduit for signaling higher-

order semantics.

For example, line 2 of Figure 5-16 shows a text element “xy” for the purposes

of forming ligatures, but not searching or sorting. Line 3 demonstrates the text ele-

ment “xy” being cursively connected, while suppressing ligature formation.

Additionally the ELM tag can be used to form other semantic groupings. For

example, in Spanish when “c” is followed by “h” the two single characters combine

to form the single text element “ch”. See line 4 of Figure 5-16. This grouping does

not effect rendering, but has implications in sorting. In German however, groupings

affect case conversion. For example, the character sequence “SS” when converted to

lowercase results in the single character “ß”. See line 5 of Figure 5-16.[96]

Figure 5-15. Joiners

x U200D y (1)

x U200C y (2)

x U200D U200C U200D y (3)

Figure 5-16. ELM tag

ELM|xy/ELM| (1)

ELM@LIG|xy/ELM| (2)

ELM@JOIN|xy/ELM| (3)

ELM@COLL|ch/ELM| (4)

ELM@CASE|SS/ELM| (5)

138

Table 5-4 lists a few other types of tags that are also based upon the general

text element tag. Each entry in Table 5-4 specifies a specific Unicode semantic con-

struct and its associated metadata tag.

5.7 Metadata and Bidirectional Inferencing
Plain text streams that contain characters of varying direction pose a particu-

lar problem for determining the correct visual presentation. There are several

instances in which it is nearly impossible to render bidirectional text correctly in the

absence of any higher-order information. In particular, picking glyphs requires that a

rendering engine have knowledge of fonts.

The Unicode Bidirectional Algorithm operates as a stream to stream conver-

sion which is logical given that Unicode is a character encoding mechanism and not

a glyph encoding scheme [96]. This output, however is insufficient by itself to

Table 5-4. Other text element tags
Semantic
Construct

Metadata Tag

Ligatures ELM@LIG|xy/ELM|

Glyph Variant ELM@FNT|xy/ELM|

Non Breaking ELM@NBR|xy/ELM|

Initial Form ELM@INI|xy/ELM|

Medial Form ELM@MED|xy/ELM|

Final Form ELM@FIN|xy/ELM|

Isolated Form ELM@ISO|xy/ELM|

Circle ELM@CIR|xy/ELM|

Superscript ELM@SUP|xy/ELM|

Subscript ELM@SUB|xy/ELM|

Vertical ELM@VER|xy/ELM|

Wide ELM@WID|xy/ELM|

Narrow ELM@NAR|xy/ELM|

Small ELM@SMA|xy/ELM|

Square ELM@SQU|xy/ELM|

Fraction ELM@FRA|xy/ELM|

139

correctly display bidirectional text. If a process is going to present bidirectional text

then the output must be glyphs and glyph positions. The Unicode Bidirectional algo-

rithm can not possibly produce this output and, still remain consistent with Unicode’s

primary character encoding scheme.

The core of the Unicode Bidirectional algorithm is centered around three

aspects: resolving character types, reordering characters and analyzing mirrors. The

bidirectional algorithm is applied to each paragraph on a line by line basis. During

resolution characters that do not have a strong direction are assigned a direction based

on the surrounding characters or directional overrides. In the reordering phase

sequences of characters are reversed as necessary to obtain the correct visual order-

ing. Finally, each mirrored character (parenthesis, brackets, braces, etc.) is examined

to see if it needs to be replaced with its symmetric mirror.[96]

This algorithm causes an irreversible change to the input stream which is a

significant flaw. The logical ordering is no longer available. This inhibits the con-

struction of an algorithm that takes as input a stream in display order and produces as

output its corresponding logical ordering. The example in Figure 5-17 illustrates this

problem. In Figure 5-17 Arabic letters are depicted by upper case latin letters while

the right square bracket indicates a right-to-left override (U202E). Line 1 is a stream

in display order, lines 2 and 3 are streams in logical order. In either case if the Bidi-

rectional Algorithm is applied to line 2 or line 3 the result is line 1.

Figure 5-17. Mapping from display order to logical order

123 (DCBA) (1)

(ABCD) 123 (2)

]123 (ABCD) (3)

It is also impossible to tell whether a stream has been processed by the Bidi-

rectional Algorithm. The output does not contain any identifying markers to indicate

140

that a stream has been processed. A text process can never be sure whether an input

stream has undergone bidirectional processing. To further complicate the situation

the Bidirectional Algorithm must be applied on a line by line basis. This is not always

easy to accomplish if display and font metrics are not available.

We introduce three tags for bidirectional processing: “PAR” paragraph,

direction “DIR”, and mirror “MIR”. The PAR tag signifies the beginning of a para-

graph. It takes one argument, the base direction of the paragraph either right “R” or

left “L”.

The DIR tag takes one argument as well, the resolved segment’s direction

either “L” or “R”. The MIR tag does not require any argument. Its presence indicates

that the preceding character should be replaced by its symmetric mirror. The scope

of the DIR tag is terminated by either a PAR tag or the end of the input stream.

For example, in Figure 5-18 line 1 represents a stream of characters in logical

order. Line 2 is the output stream after running the Bidirectional Algorithm using tag-

ging. Arabic letters are represented by upper case Latin letters. Tag characters are

indicated in bold. The at sign represents the tag argument separator and the vertical

bar represents the tag separator “U000E0001”. The output of the algorithm only

inserts tags to indicate resolved directional boundaries and mirrors. The data charac-

ters still remain in logical order.

Furthermore, the bidirectional embedding controls “LRE”, “RLE”, “LRO”,

“RLO”, and “PDF” can be eliminated because they are superseded by the DIR tag.

These controls act solely as format effectors. They convey no other semantic infor-

mation and are unnecessary when viewed in light of the DIR tag.

Figure 5-18. Example output stream

(ABCD)123 (1)

PAR@R|MIR|(ABCDMIR|)DIR@L|123/DIR|/PAR| (2)

141

The Bidirectional Algorithm only requires two changes to accommodate the

new tags. In those places where the text is to be reversed a DIR tag is inserted to indi-

cate the resultant direction rather than actually reversing the stream itself. In those

places where a symmetric mirror is required a MIR tag is inserted to indicate that this

character should be replaced with its corresponding mirror. The Haskell functions

tagLevel and tagRun replace functions reverseRun, reverseLevels and reorder. See

Appendix B lines 1-39. The mirror function has been changed to insert a MIR tag

rather than directly replacing a character with its symmetric mirror.

The Bidirectional Algorithm could also be extended to directly interpret tags

itself. This would be extremely beneficial in cases where the data and the implicit

rules do not provide adequate results. For example, in Farsi mathematical expressions

are written left-to-right while in Arabic they are written right-to-left.

Under the traditional Bidirectional Algorithm control codes would need to be

inserted into the stream to force correct rendering. See line 1 Figure 5-19 where the

characters “LRE” and “PDF” represent the Unicode control codes Left to Right

Embedding and Pop Directional Format respectively [100].

The extended Bidirectional Algorithm would address this through the addi-

tion of two tags “MATH” and “LANG”. These tags would be inserted into the stream

to identify the language and that portion of the stream that is a mathematical expres-

sion. By using tagging the output stream still remains in logical order with its direc-

tion correctly resolved without the need of control codes. See lines 2 and 3 of Figure

5-19.

Figure 5-19. Mathematical expression

LRE 1 + 1 = 2 PDF (1)

LANG@fa@IR|MATH| 1 + 1 = 2 /MATH| (2)

LANG@fa@IR|MATH|DIR@L| 1 + 1 = 2 /MATH|/DIR| (3)

142

5.7.0.1 HTML and Bidirectional Tags

The HTML 4.0 specification introduces a bidirectional override tag “BDO”

for explicitly controlling the direction by which a tag’s contents should be displayed.

Lines 1 and 2 of Figure 5-20 illustrate the syntax of this tag. This tag is currently sup-

ported in Microsoft’s Internet Explorer. [23]

Figure 5-20. BDO tag syntax

<bdo dir=”LTR”>body content</bdo> (1)

<bdo dir=”RTL”>body content</bdo> (2)

These tags can be used in conjunction with the Unicode bidirectional tags.

The Unicode tags can be directly converted into the HTML bidirectional tags [23].

This allows for a clean division of responsibilities for displaying bidirectional data.

The Unicode metadata tags simply serve as bidirectional markers. Browsers can then

directly render the resultant HTML. This permits the Unicode bidirectional algorithm

to be free from the problems of determining font and display metrics.

The UniMeta program takes as input a file encoded in UTF-8 which contains

Unicode text in logical order with bidirectional tags. See Appendix C lines 1-99. The

UniMeta program then converts the input text into HTML. Each unicode metadata tag

is replaced with a corresponding HTML tag. Currently there is no corresponding tag

for mirroring in HTML. When a Unicode MIR tag is found it is simply ignored. The

example in Figure 5-21 illustrates the output from the UniMeta Java program. Lines 1

and 2 are copied from Figure 5-18. Line 3 is the resultant HTML with BDO tags.

Figure 5-21. Using HTML bidirectional tags

(ABCD)123 (1)

PAR@R|MIR|(ABCDMIR|)DIR@L|123/DIR|/PAR| (2)

<bdo dir=”rtl”>(ABCD) <bdo dir=”ltr”>123</bdo></bdo> (3)

143

By using metadata tags to implement the Bidirectional Algorithm a clear divi-

sion of responsibilities is achieved. The bidirectional layout process is now divided

into two separate and distinct phases, logical run determination “inferencing” and

physical presentation “reordering”. This enables character data to remain in logical

order, and still contain the necessary information for it to be correctly displayed.

Additionally, any text process receiving such a stream is able to immediately detect

that the stream has been bidirectionally processed.

5.8 New Architecture
The introduction of metadata into an encoding allows for a general reorgani-

zation of character coding systems. We refer to this reorganization as Metacode. In

the next chapter we explore this new architecture in depth.

144

6Metacode

In this chapter we present both a new coded character set and text encoding

framework that enables a separation of concerns, we call this the Metacode system.

In the Metacode information processing system, concepts (policies) are separate and

distinct from implementation (mechanism). Metacode at its core is an architecture for

describing written natural language data. Metacode permits various ideas, concepts

and policies to coexist, while still remaining efficient. The key advantage this new

architecture offers over current models is its ability to unambiguously separate con-

tent from control. In Metacode only characters that express raw content are encoded.

In particular, Metacode does not encode controls, ligatures, glyph variants, and half-

width forms. By only encoding “pure” characters, Metacode places a greater empha-

sis on content. In this chapter we make recommendations and take the first steps

towards implementing an architecture for multilingual information processing.

6.1 Metacode Architecture
Figure 6-1 presents the layers in the new text framework we propose. Meta-

code is built upon the same general principles used in the Open Systems Interconnec-

tion (OSI) network layer model [90]. In particular the architecture is designed around

the following notions:

• A layer is created when a different level of abstraction is required.

• Each layer performs a well defined function.

• The number of layers is large enough to allow for a clean separation of responsi-
bilities, but not so small as to group unrelated functions together out of necessity.

145

Figure 6-1. New Text Framework

Unlike other multilingual encoding systems which switch between various

coded character sets, Metacode uses only one character set. In the Metacode system

there are no special modes, states, or escape sequences. Metacode is strictly a fixed

width character encoding scheme where each character is represented using the same

number of bytes. Just as other multilingual text encoding systems, Metacode includes

coverage for both the Asian and European writing systems.

Characters in Metacode are grouped into two broad categories, data and meta-

data. We believe that most of Metacode’s data characters would be comprised from

ZIP, UTF-8

0x20AC, 0x0600, 0x0041

Transmission Layer

Codepoint Layer

Character Name Layer LATIN LETTER A Metadata NamesTAG LETTER A

ELM, DIR, LANGTag Definition Layer

Content Layer Data Equivalence

Character Property Layer Directionality, Case, Numeric

Application Layer TeX, HTML, XML,
Text algorithms

146

elements in natural written languages. In Metacode metadata characters provide a

mechanism for describing higher-order information about data characters.

For nearly forty years, the most frequently occurring method of character

identification has been by numeric value. This approach has formed the hallmark of

character encoding schemes such as ASCII. Metacode continues this tradition.

In Metacode characters are identified by code point value. In Metacode code

points are based upon an integer index. This index is used to map Metacode character

names to binary sequences. This index should be large enough to accommodate the

linguistic elements of both modern and ancient writing systems. Most researchers

within the I18N community believe the total number of written characters will not

exceed 232. It seems logical that 32-bits is an appropriate size for an index.

In Metacode, code points could be transmitted in two general ways. First,

some form of binary encoding could be used, for example UTF-8. Second, a non-

binary form of transmission could be adopted, for example character name transmis-

sion. That said, we anticipate most applications will use some form of binary trans-

mission. Large multilingual encodings by their nature require a transmission layer.

The ASCII character encoding scheme never needed a transmission layer, because

encoding and transmission were synonymous. Nevertheless, the world transmits data

in 8-bit byte chunks. Multicode’s code points don’t fit within an 8-bit byte, hence

some form of transmission is a necessity.

Metacode facilitates the construction of higher-order protocols through the

use of metadata. Each higher-order protocol defines its own tags using Metacode’s

metadata characters. Additionally, each higher-order protocol defines the meaning of

their tags as well as the syntax for their use in Metacode streams. Moreover, we envi-

sion the creation of a common tag registration organization so that protocols may

operate cooperatively.

147

Metacode provides precise definitions for data, metadata, protocols, and

architectural layers. At its core, Metacode provides a mechanism for the unambigu-

ous representation of textual content. Therefore, determining whether Metacode

character streams are equivalent is also both precise, unambiguous and simple. The

process of determining whether Metacode character streams are the same is the sub-

ject of section 6.3.2.

6.2 Metacode Compared to Unicode
In this section we relate Metacode’s architecture to Unicode’s organization.

Specifically, we examine each layer of Metacode in detail making comparisons to

Unicode when needed.

6.2.1 Transmission Layer

Metacode can utilize many of the popular binary character encoding transfor-

mation formats. We prefer UTF-32, UTF-16, and UTF-8. Which are the same trans-

mission mechanisms that Unicode uses. All of these transmission mechanisms take

as input integer based encodings and produce compressed binary sequences as out-

put.

6.2.2 Code Point Layer

In Metacode code points would be specified by an integer, usually repre-

sented in hexadecimal. In the code point layer each code point would map to one and

only one character. Additionally, each character would map to one and only one code

point. In Metacode each code point would be of a fixed width. Code points in Meta-

code would never combine to form larger indices. In Metacode code points would

generally be organized by script system. This is similar to Unicode. The most signif-

icant and novel feature of Metacode is a specific dedicated section of code points for

the conveyance of meta information.

148

We considered two factors in attempting to find a suitable location for encod-

ing Metacode’s metadata characters. First, we wanted to select a range in Metacode

that would allow for easy migration from Unicode. Second, we wanted to select a

range that would allow Metacode’s metadata characters to be simulated in other

legacy encodings, in particular Unicode. We considered using Unicode’s private use

area, but ruled it out for two reasons: First, Metacode does not have any notion of a

private use or user defined character area, which makes legacy conversion from Uni-

code more difficult. Second, the private use area within Unicode suffers from abuse

due to the vast number of people using it conflicting ways.

We finally settled on using the surrogate range within Unicode. Unicode text

processes already ignore this region, which permits simulation of metadata without

disrupting metadata unaware processes, facilitating easy migration from Unicode to

Metacode. Therefore, for purposes of demonstration the metadata code points are

encoded in the following locations: 0xE0001, 0xE0002, and 0xE0020-0xE007F.

6.2.3 Character Layer

The character layer in Metacode is the place where the abstract data and meta-

data entities are defined. Additionally, we list the specific Unicode characters that

would be excluded from Metacode as well as those legacy characters that would be

redefined for Metacode. In cases where a Unicode character has no direct analog in

Metacode we show how the same information can be expressed using Metacode’s

metadata characters.

6.2.3.1 Combining Characters

In Metacode each character is treated as an independent unit. Each Metacode

character is unaffected by its surrounding neighbors. On the other hand, Unicode per-

mits some neighboring characters to interact with one another to form new character

units. Unicode refers to these character sequences as “combining characters”. Meta-

code does not have any notion of combining characters at this layer. This sort of

149

interaction occurs within higher-order protocols. Therefore, we would not include

any of Unicode’s combining characters in Metacode. The Metacode stream on line 1

on Figure 6-2 illustrates the use of a higher-order protocol for the purpose of indicat-

ing combining characters.

Figure 6-2. Combining character protocol

ELM@CMBw¨/ELM — w diaeresis (1)

Table 6-1 lists the Unicode characters that would not be encoded in Meta-

code. The first column in Table 6-1 contains the excluded Unicode combining char-

acters, the second column specifies the name of each character, while the third

column contains the non-combining form for each character listed in the first column.

[96]

In Metacode we would still like to be able to use the combining characters as

pure data (content) minus their joining protocol, because in many instances these

characters represent linguistic elements. To accomplish this we would redefine the

combining characters for Metacode. In our redefinition these characters would be

“pure”, hence they would posses no special combining property. See Table 6-2 [96].

The first column in Table 6-2 lists the range of code points that would be redefined

in Metacode. The second column list the type of characters that these code points rep-

resent.

In cases where a non-combining legacy character, mostly diacritic marks,

already exists we would use it, rather than the newly redefined character. See

Table 6-1. We take this approach for two reasons. First, if legacy Unicode text con-

tained a diacritic character then there is a greater likelihood that they used the non-

combining form of the character, because few text processes actually support com-

150

bining characters. Second, we reduce the number of redefined characters, thus easing

migration from legacy Unicode to Metacode.

Table 6-1. Excluded Unicode combining characters
Code Point Character Name Non-Combining Code Point

U0300 GRAVE ACCENT U0060

U0301 ACUTE ACCENT U00B4

U0302 CIRCUMFLEX ACCENT U005E

U0303 TILDE U007E

U0304 MACRON U00AF

U0306 BREVE U02D8

U0307 DOT ABOVE U02D9

U0308 DIAERESIS U00A8

U0309 HOOK ABOVE U02C0

U030A RING ABOVE U02DA

U030B DOUBLE ACCUTE U02DD

U030C CARON U02C7

U030D VERITICAL LINE ABOVE U02C8

U0310 CANDRABINDU U0901

U0312 TURNED COMMA ABOVE U02BB

U0313 COMMA ABOVE U02BC

U0314 REVERSED COMMA ABOVE U02BD

U0327 CEDILLA U00B8

U0328 OGONEK UO2DB

Table 6-2. Redefined Unicode combining characters
Code Point(s) Character(s)

U0305, U030E-U030F, U0311,
U0315-U0326, U0329-U0362

General diacritical marks

U0483-U0489 Cyrillic marks

U0591-U05AF Hebrew cantillation marks

151

U05B0-U05C4 Hebrew points and punctuation

U064B-U0652, U0670 Arabic points

U0653-U0655 Arabic maddah and hamza

U06D6-U06E9, U06EA-U06ED Koranic annotation signs

U0711 SYRIAC SUPERSCRIPT LETTER ALAPH

U0730-U073F Syriac vowels

U0740-U074A Syriac marks

U07A6-U07B0 Thaana vowels

U0901-U0903, U093C, U093E, U094D,
U0951-U0954

Devanagari signs

U093F-U094C,U0962-U0963 Devanagari vowels

U0981-U0983, U09CD, U09D7 Bengali signs

U09BE-U09CC, U09E2-U09E3 Bengali vowels

U0A02,U0A70-U0A71 Gurmukhi signs

U0A3E-U0A4D Gurmukhi vowels

U0A81-U0A83, U0ABC, U0ACD Gujarati signs

U0ABE-U0ACC Gujarati vowels

U0B01-U0B03, U0B3C, U0B4D,
U0B56-U0B57

Oriya signs

U0B3E-U0B4C Oriya vowels

U0B82-U0B83, U0BCD, U0BD7 Tamil signs

U0BBE-U0BCC Tamil vowels

U0C01-U0C03, U0C4D, U0C55-U0C56 Telugu signs

U0C3E-U0C4C Telugu vowels

U0C82-U0C83, U0CCD, U0CD5-U0CD6 Kannada signs

U0CBE-U0CCC Kannada vowels

U0D02-U0D03, U0D4D, U0D57 Malayalam signs

U0D3E-U0D4C Malayalam vowels

U0D82-U0D83, U0DCA Sinhala signs

U0DCF-U0DDF, U0DF2-U0DF3 Sinhala vowels

U0E30-U0E31, U0E34-U0E3A, U0E47 Thai vowels

Table 6-2. Redefined Unicode combining characters (Continued)
Code Point(s) Character(s)

152

6.2.3.2 Glyph Variants

In Metacode there is no notion of glyph specific characters. This means that

Metacode would not encode ligatures or specially shaped versions of characters.

Therefore, Metacode would not incorporate any Unicode characters that are glyph

composites or glyph variations of existing nominal characters. See Table 6-3 [96].

On the other hand, Metacode would provide a controlled mechanism for describing

such information. In metacode, glyph variations would be specified by using

U0E48-U0E4B Thai tone marks

U0E4C-U0E4E Thai signs

U0EB1, U0EB4-U0EBB Lao vowels

U0EBC, U0ECC-U0ECD Lao signs

U0EC8-U0ECB Lao tone marks

U0F35,U0F37, U0F39, U0F3E-U0F3F,
U0F82-U0F84, U0F86-U0F87

Tibetan marks and signs

U0F71-U0F7D, U0F80-U0F81 Tibetan vowels

U0F7E-U0F7F Tibetan vocalic modifiers

U0F90-U0FBC Tibetan subjoined consonants

U102C-U1032 Myanmar vowels

U1036-U1039 Myanmar signs

U1056-U1059 Myanmar volcalic modifiers

U17B4-U17C5 Khmer vowels

U17C6-U17C8, U17CB-U17D3 Khmer signs

U17C9-U17CA Khmer consonant shifters

U18A9 MONGOLIAN LETTER ALI GALI DAGALA

U20D0-U20E3 Diacritical marks for symbols

U302A-U302F Ideographic diacritics

U3099-U309A Hiragana voicing marks

UFE20-UFE23 Half marks

Table 6-2. Redefined Unicode combining characters (Continued)
Code Point(s) Character(s)

153

metadata tags. For example, the text stream on line 1 on Figure 6-3 demonstrates how

a ligature protocol would be specified in Metacode.

Figure 6-3. Ligature protocol

ELM@LIGfl/ELM — fl ligature (1)

6.2.3.3 Control Codes

As we pointed out earlier some character encodings, like ASCII, have control

codes. Metacode, however, by its nature does not need control codes. In this context

we are referring specifically to ASCII’s control codes. In Metacode legacy control

codes would be captured by using metadata tags, just like any other higher-order pro-

tocol. Metacode does not prohibit other methods for expressing control codes. One

such alternative method would be to create special singleton predefined metadata

tags that would be directly encoded in Metacode, rather than being specified as an

external higher-order protocol. This might ease migration from legacy encodings as

well as reduce the number of characters in a stream. Another alternative would be to

encode controls as normal Metacode characters. These characters would have no spe-

cial semantics or required behavior. Text processes seeing these characters would

Table 6-3. Unicode glyph composites
Code Point(s) Description

U0132-U0133 Latin ligatures

U0587, UFB13-UFB17 Armenian ligatures

UFB00-UFB06 Latin ligatures

UFB1D-UFB4F Hebrew presentation forms

UFB50-UFDFB Arabic presentation forms (ligatures, initial, medial, final, isolated)

UFE30-UFE44 Glyphs for vertical presentation

UFE50-UFE6B Small glyphs

UFE70-UFEFC Additional Arabic presentation forms

UFF01-UFF5E full-width Latin glyphs

UFF61-UFFEE half-width Chinese, Japanese, and Korean

154

have the freedom to treat them just like any other character or to assign them special

properties and behavior. It would be wise to limit these single meta characters other-

wise we would just recreate all the problems with Unicode.

Occasionally there are some characters in legacy encodings that do not appear

to be control codes, but behave as if they really are. For example, there are several

characters encoded in Unicode for the purpose of indicating a break or space. See

Table 6-4 [96]. The primary difference between each of these spacing characters is

the amount of space to insert. For the most part these characters were encoded for his-

torical reasons. Nonetheless, in Metacode we would not explicitly encode these char-

acters. We would argue that the ideas expressed in these characters are best described

as a higher-order protocol. In Metacode we would only encode a single space char-

acter. The single space character could be wrapped around a metadata tag that spec-

ified the exact amount of space to insert, which could be none. For example, the text

stream on line 1 on Figure 6-4 demonstrates how a spacing protocol would be spec-

ified in Metacode. In order to aid comprehension the space character is represented

by its code point value 0x0020.

Table 6-4. Unicode spacing characters
Code Point Description

U2000 EN QUAD SPACE

U2001 EM QUAD SPACE

U2002 EN SPACE

U2003 EM SPACE

U2004 THREE PER EM SPACE

U2005 FOUR PER EM SPACE

U2006 SIX PER EM SPACE

U2007 FIGURE SPACE

U2008 PUNCTUATION SPACE

U2009 THIN SPACE

U200A HAIR SPACE

155

Figure 6-4. Spacing protocol

ELM@SP@EM0x0020/ELM — EM SPACE (1)

6.2.3.4 Metadata Tag Characters

In the Metacode system there would be 97 metadata characters (95 tag name

characters and two tag protocol characters). The 95 tag name characters correspond

to the ASCII and Unicode graphic character range 0x20-0x7E, while the tag protocol

characters have no analog in either ASCII or Unicode. The two special tag protocol

characters would be used for delimiting tags and for separating tag arguments. The

base name of the tag characters are taken from Unicode. See Table 6-5. In Metacode,

metadata characters would be used to specify higher-order protocols. The details of

tag construction and protocol definition was discussed in the previous chapter.

6.2.4 Character Property Layer

Each character in Metacode would be assigned properties. These properties

are summarized in Table 6-6. The values for each character property, except for the

U200B ZERO WIDTH SPACE

U202F NARROW NO BREAK SPACE

UFEFF ZERO WIDTH NO BREAK SPACE

Table 6-5. Metacode tag characters

ASCII
Graphic
Code Point Character Name Metacode Tag Character Name

41 LATIN CAPITAL LETTER A TAG CAPITAL LETTER A

7A LATIN SMALL LETTER Z TAG SMALL LETTER Z

TAG DELIMITER

TAG ARGUMENT SEPARATOR

Table 6-4. Unicode spacing characters (Continued)
Code Point Description

156

Metacode character name property appear in: Table 6-7, Table 6-8, Table 6-9, and

Table 6-10. The Metacode character name property is an arbitrary sequence of alpha-

betic characters that represent the unique name of the character.

Table 6-6. Metacode character properties
Property Description

Case For those scripts that have case, indicates the specific case.

Script Direction Indicates the preferred direction for a character to be written.

Code Point Value Specifies the numeric index of a character.

Tag Character Indicates whether a character is a data or a metadata.

Metacode Character Name Represents the unique name of a character.

Table 6-7. Metacode case property values
Value Description

U Uppercase

L Lowercase

T Titlecase

Table 6-8. Metacode script direction property values
Value Description

LTR Left-to-right direction

RTL Right-to-left direction

U Unassigned, character is used in both left-to-right and right-to-left
script systems.

I Ignore, character is a metadata character and must be processed in
logical order.

Table 6-9. Metacode code point value property
Value Description

0xyyyyyyyy 32-bit hexadecimal index, where y is a hex digit

Table 6-10. Metacode tag property values
Value Description

T Character is a metadata character

F Character is a data character

157

6.2.5 Tag Definition Layer

The tag definition layer is the layer of abstraction where Metacode higher-

order protocols would be defined. The tag definition layer represents the core, most

useful, and common protocols. See Table 6-11. Table 6-11 lists each protocol cate-

gory along with an informative description.

In Metacode each higher-order protocol would remain distinct and separate

from all others. This allows protocols to be interwoven without ill effect. Text pro-

cesses would then be free to ignore specific protocols, if so desired. In some cases a

process might not understand a protocol. In other cases a protocol might not be appli-

cable to a particular process. In both situations a process can safely ignore such pro-

tocols. Above all, the Metacode protocol definition system is open ended allowing

for ever more specialized protocols and private use protocols to be added.

The text on line 3 on Figure 6-5 illustrates how two protocols would be inter-

woven in Metacode. In this example we interleave the protocols appearing on lines 1

and 2 on Figure 6-5. The text on line 1 on Figure 6-5 illustrates how the higher-order

collation protocol would be used to group characters together. In the collation proto-

col data characters surrounded by a collation tag would be treated as single unit for

purposes of sorting. In general, text processes that perform sorting would make direct

use of this information. The text on line 2 on Figure 6-5 illustrates how the direction

protocol would be used communicate layout information to a process performing ren-

dering. In the direction protocol characters surrounded by a direction tag would be

rendered according to the specified direction. Nevertheless, when the two protocols

are interwoven, the individual text processes would still be able to function properly.

In this case the sorting process would ignore the direction tag and the rendering pro-

cess would ignore the collation tag.

158

Figure 6-5. Interwoven protocols

ELM@COLLch/ELMocolate (1)

DIR@Rchocolate/DIR (2)

DIR@R|ELM@COLLch/ELMocolate/DIR (3)

6.2.6 Metacode Conversion

Yet another example of the power of the metadata mechanism is the ability to

embed Unicode in Metacode. Conceivably the intersection of the Metacode and Uni-

code code points will not be the same and some legacy applications will require spe-

cific deprecated Unicode code points. Even this restricted case can be easily handled,

because Metacode provides an open ended universal union of protocols. Because

many of Metacode’s data characters correspond directly to code points in Unicode

round-trip conversion is easy. In Table 6-12 we provide sample mappings for those

Table 6-11. Major protocols

Category Description

Language The language of a stream or sub-stream of text.

Ligatures A glyph representing two or more characters.

Collation A text element containing two or more characters, that is treated as a sin-
gle unit for purposes of sorting.

Presentation direction The display order for a sequence of characters, horizontal and vertical.

Paragraphs Characters that are used to indicate paragraph boundaries.

New lines Characters that are used to indicate new line boundaries.

Combining characters A character with one or more diacritics or vowels.

Glyph variants Alternate character presentation forms, half-width or full-width.

Symmetric swapping A character that when rendered uses its corresponding mirrored glyph
rather than its normal glyph.

Transliteration A text element contacting two or more characters, that is treated as a sin-
gle unit for purposes of conversion. For example, case conversion.

General control codes The C0 and C1 control codes. For example: line feed, tab, carriage
return.

General layout controls Typographic controls for spacing and line breaking.

159

Unicode characters that are deprecated in Metacode. In most situations the conver-

sion of deprecated Unicode characters to Metacode protocols is obvious because the

purpose of the Unicode characters is mapped to a specific Metacode protocol. Nev-

ertheless, in some circumstances the intended use of a deprecated character may be

impossible to determine from the data stream itself. In the case where the context is

unknown, Metacode provides a “raw code point” protocol for preserving round-trip

conversions.

The raw code point protocol works for embedding Unicode characters or any

other character encoding protocol. For example, the Unicode code point U2007 (line

1 of Figure 6-6) this code point is designated as the figure space and is a hint about

the presentation of spacing. We have a presentation spacing protocol and so this char-

acter is deprecated in Metacode. Suppose an application is looking for this specific

character and has not fully migrated to Metacode. The raw code point protocol pre-

serves this Unicode code point and any others. Line 2 on Figure 6-6 shows the

embedding of U2007 CP stands for the raw code point protocol, U indicates the Uni-

code character set, and 2007 is the hexadecimal value of the Unicode code point. As

always this protocol is preliminary and the details require further study and debate.

Figure 6-6. Metacode code point protocol

U2007 — figure space (1)

CP@U@2007 (2)

Table 6-12. Converting deprecated Unicode code points to Metacode
Category Description Unicode Metacode

Language Language
Urdu

<language tag>
<tag letter u>
<tag letter r>

LANG@UR

UE0001,UE0075,UE0072 ME004C,ME0041,ME004E,
ME0047,ME0002,ME0075,
ME0072

160

Ligatures Latin
small
ligature fi

fi ELM@LIGfi/ELM

UFB01 ME0045,ME004C,ME004D,
ME0002,ME0045,ME0049,
ME0047,M0066,M0069,
ME002F,ME0045,ME004C,
ME004D

Presentation
direction

Right-to-left
embedding

<RLE> DIR@R

U202B ME0044,ME0049,ME0052,ME0002,
ME0052

Paragraphs Paragraph
separator

<p separator> PAR

U2029 ME0050,ME0041,ME0052

New lines Line
separator

<l separator> BRK

U2028 ME0042,ME0052,ME004B

Combining
characters

Latin
small letter w
with diaeresis

w¨ ELM@CMBw¨/ELM

U0077,U0308 ME0045,ME004C,ME004D,
ME0002,ME0043,ME004D,
ME0042,M0077,M00A8,
ME002F,ME0045,ME004C,
ME004D

Glyph
variants

Full-width
Latin small
letter a

a ELM@WIDa/ELM

UFF41 ME0045,ME004C,ME004D,
ME0002,ME0057,ME0049,
ME0044,M0061,ME002F,
ME0045,ME004C,ME004D

Symmetric
swapping

Activate
mirroring

<a symmetric s> MIR

U206B ME004D,ME0049,ME0052

Table 6-12. Converting deprecated Unicode code points to Metacode (Continued)
Category Description Unicode Metacode

161

In Metacode there is no limit to the number of protocols that can be expressed.

Metacode can embed not only control and presentation protocols but also character

coding standards, such as ISO-2022. In fact Metacode allows for a more natural

expression of ISO-2022 escape sequences. For example, line 1 on Figure 6-7 shows

the ISO-2022 byte sequence for announcing a switch to the ASCII character set. Line

2 shows how the announcement would be expressed in Metacode. The metadata

sequence on Line 2 alleviates the requirement of having to decipher the escape

sequence in order to determine the character set. In Metacode the escape sequence is

replaced by the actual name of the character set. This approach offers the advantage

that lookup tables and deciphering become unnecessary.

Figure 6-7. ISO-2022 escape sequence in Metacode

ESC (B (1)

ISO@ASCII (2)

In ISO-2022 the number of registered character sets is finite, because there

are a fixed number of code points from which to make assignments. In Metacode the

number of character sets that can be referenced is unlimited, because Metacode uses

strings to encode names. This approach offers the greatest flexibility yet allows for

General
control
codes

Carriage
return

<cr> N

U000D M000D (singleton)

General
layout con-
trols

EM
Space

<em space> ELM@SP@EM /ELM

U2003 ME0045,ME004C,ME004D,
ME0002,ME0053,ME0050,
ME0002,ME0045,ME004D,
M0020,ME002F,ME0045,
ME004C,ME004D

Table 6-12. Converting deprecated Unicode code points to Metacode (Continued)
Category Description Unicode Metacode

162

unambiguous communication. We suggest that the character set names be taken from

the IANA (Internet Assigned Numbers Authority). The IANA records the names of

character sets in RFC 1521.

6.2.7 Content Layer

The content layer is the highest layer of abstraction in Metacode’s architec-

ture. We anticipate that applications will primarily interact with Metacode at this

layer of abstraction, as this layer deals with protocols and the raw content of Meta-

code streams. This is discussed in greater detail in the next section. This does not pre-

clude a process from working with Metacode at some lower level of abstraction.

6.3 Data Equivalence
The concept of equivalent data streams is the subject of this section. In Meta-

code data steams may sometimes be considered to be equivalent even if they do not

contain the same code points or bytes. Unicode also has a notion of equivalence,

which they refer to as “normalization”. We start this section by first examining in

detail Unicode’s normalization algorithm. We then describe Metacode’s strategy for

determining data equivalence.

6.3.1 Unicode Normalization

Normalization is the general process used to determine when two or more

sequences of characters are equivalent. In this context the use of the term equivalent

is unclear. It is possible to interpret the use of equivalent in multiple ways. For exam-

ple it could mean characters are equivalent when their code points are identical, or

characters are equivalent when they have indistinguishable visual renderings, or

characters are equivalent when they represent the same content.

163

Figure 6-8. Non interacting diacritics

c¸^ U0063,U0327,U0302 (1)

c^¸ U0063,U0302,U0327 (2)

þ (3)

Unicode supports two broad types of character equivalence, canonical and

compatibility. In canonical equivalence the term equivalent means character

sequences that exhibit the same visual rendering. For example, the character

sequences on lines 1 and 2 on Figure 6-8 both produce identical renderings, shown

on line 3. [101]

In compatibility equivalence the term equivalent is taken to mean characters

representing the same content. For example, line 1 on Figure 6-9 shows the single ü

ligature while line 2 on Figure 6-9 shows the compatible two character sequence f and

i. In this case both sequences of characters represent the same semantic content. The

only difference between the two is whether or not a ligature is used during render-

ing.[101]

Figure 6-9. Compatibility equivalence

ü UFB01 (1)

fi U0066,U0069 (2)

6.3.1.1 Unicode Normal Forms

Unicode defines four specific forms of normalization based upon the general

canonical and compatibility equivalences. These forms are listed on Table 6-13; the

164

title column indicates the name of the normal form, while the category column indi-

cates the equivalence type. [101]

Normalization form NFD substitutes precomposed characters with their

equivalent canonical sequence. Characters that are not precomposed are left as is.

Diacritics (combining characters), however are subject to potential reordering. This

reordering only occurs when sequences of diacritics that do not interact typographi-

cally are encountered, those that do interact are left alone. [101]

In Unicode each character is assigned to a combining class. Non Combining

characters are assigned to the zero combining class, while combining characters are

assigned a positive integer value. The reordering of combining characters operates

according to the following three rules:

• Lookup the combining class for each character.

• For each pair of adjacent characters AB, if the combining class of B is not zero
and the combining class of A is greater than the combining class of B, swap the
characters.

• Repeat step 2 until no more exchanges can be made.

Table 6-13. Normalization forms

Title Category Description

Normalization
Form D (NFD)

Canonical = visually equivalent Canonical Decomposition

Normalization
Form C (NFC)

Canonical Decomposition followed by
Canonical Composition

Normalization
Form KD
(NFKD)

Compatibility = same content Compatibility Decomposition

Normalization
Form KC
(NFKC)

Compatibility Decomposition followed by
Canonical Composition

165

After all of the precomposed characters are replaced by their canonical equiv-

alents and all non interacting combining characters have been reordered the sequence

is then said to be in NFD.[96]

Normalization form NFC uses precomposed characters where possible, main-

taining the distinction between characters that are compatibility equivalents. Most

sequences of Unicode characters are already in NFC. To convert a sequence of char-

acters into NFC the sequence is first placed into NFD. Each character is then exam-

ined to see if it should be replaced by a precomposed character according to the

following rule.

• If the character can be combined with the last character whose combining class
was zero, then replace the sequence with the appropriate precomposed character.

After all of the diacritics that can be combined with base characters are replaced by

precomposed characters, the sequence is said to be in NFC. [101]

Normalization form NFKD replaces precomposed characters by sequences of

combining characters and also replaces those characters that have compatibility map-

pings. In this normal form formatting distinctions may be lost. Additionally the abil-

ity to perform round trip conversion with legacy character encodings may be

impossible, because of the loss of formatting. Normalization form NFKC replaces

sequences of combining characters with their precomposed forms while also replac-

ing characters that have compatibility mappings. [101]

There are some characters encoded in Unicode that need to be ignored during

normalization. In particular, the bidirectional controls, the zero width joiner and non

joiner. These characters are used as format effectors. The joiners can be used to pro-

mote or inhibit the formation of ligatures. Unicode does not provide definitive guid-

ance as to when these characters can be safely ignored in normalization. Unicode

only states these characters should be filtered out before storing or comparing pro-

gramming language identifiers. [101]

166

To assist in the construction of the normal forms, Unicode maintains a data

file listing each Unicode character along with any equivalent canonical or compatible

mappings. Algorithms that wish to perform normalization must use this data file. By

having all normalization algorithms rely on this data, the normal forms are guaran-

teed to remain stable over time. If this were not the case it would be necessary to com-

municate the version of the normalization algorithm along with the resultant normal

form. [101]

6.3.1.2 Unicode Normalization Algorithm

The best way to illustrate the use of normal forms is through an example.

Consider the general problem of searching for a string. In particular, assume that a

text process is searching for the string “flambé”. Table 6-14 lists just some of the pos-

sible ways in which the string “flambé” could be represented in Unicode.

Table 6-14. The string “flambé”

Code Points Description

1 U0066,U006C,U0061,U006D,U0062,
U0065,U0301

decomposed

2 U0066,U006C,U0061,U006D,U0062,
U00E9

precomposed

3 UFB02,U0061,U006D,U0062,U00E9 fl ligature, precomposed

4 UFB02,U0061,U006D,U0062,U0065,
U0301

fl ligature, decomposed

5 UFF46,UFF4C,UFF41,UFF4D,UFF42,
U00E9

full-width, precomposed

6 UFB02,UFF41,UFF4D,UFF42,U00E9 fl ligature, full-width, precomposed

7 U0066,U200C,U006C,U0061,U006D,
U0062,U00E9

ligature supression,
precomposed

8 U0066,U200C,U006C,U0061,U006D,
U0062,U0065,U0301

ligature suppression,
decomposed

9 U0066,U200D,U006C,U0061,U006D,
U0062,U00E9

ligature promotion, precomposed

167

The character sequences found in Table 6-14 are all equivalent under the

transforms NFKC and NFKD. In the case of NFKD, all transformations yield the

sequence found on row 1 on Table 6-14, while transformations into NFKC result in

the sequence on row 2 on Table 6-14. To demonstrate this, consider the conversion

of Line 1 on Figure 6-10 copied from row 6 on Table 6-14 into NFKD. First, the

sequence is converted to NFD by replacing precomposed characters with their

decomposed equivalents. See line 2 Figure 6-10. Second, all characters that have

compatibility mappings are then replaced by their corresponding compatibility char-

acters. See line 3 Figure 6-10. The final sequence obtained is the same as the one

found on row 1 of Table 6-14.

Figure 6-10. Conversion to NFKD

UFB02,UFF41,UFF4D,UFF42,U00E9 (1)

UFB02,UFF41,UFF4D,UFF42,U0065,U0301 (2)

U0066,U006C,U0061,U006D,U0062,U0065,U0301 (3)

The fact that all of the sequences found in Table 6-14 are equivalent under

one normal form, in this case NFKD, does not necessarily mean that the sequences

are equivalent in other normal forms. For example, consider line 1 on Figure 6-11

which is copied from row 3 in Table 6-14. When this sequence is converted to NFD

10 U0066,U200D,U006C,U0061,U006D,
U0062,U0065,U0301

ligature promotion, decomposed

11 U202A,U0066,U006C,U0061,U006D,
U0062,U00E9,U202C

left to right segment, precomposed

12 UFF46,U200C,UFF4C,UFF41,Uff4D,
UFF42,U00E9

full-width, ligature promotion, precomposed

13 UFF46,U200D,UFF4C,UFF41,Uff4D,
UFF42,U00E9

full-width, ligature suppression, precomposed

Table 6-14. The string “flambé” (Continued)

Code Points Description

168

the result is line 2 on Figure 6-11. This does not match the sequence on row 1 of

Table 6-14, therefore these sequences are not equivalent under NFD.

Figure 6-11. Conversion to NFD

UFB02,U0061,U006D,U0062,U00E9 (1)

UFB02,U0061,U006D,U0062,U0065,U0301 (2)

Thus far we have explored the details of data equivalence in Unicode. We

now examine some of the problems that are caused by Unicode’s normalization

forms. In particular, we consider the interaction between the normalization process

and other Unicode algorithms.

6.3.1.3 Problems with Unicode Normalization

The overall complexity of normalization presents serious problems for gen-

eral searching and pattern matching. Without a single normalization form, it is not

possible to determine reliably whether or not two strings are identical. The W3C

(World Wide Web Consortium) has advocated adopting Unicode’s NFC for use on

the web. Additionally, W3C recommends that normalization be performed early (by

the sender) rather than late (by the recipient). Their recommendation is to be conser-

vative in what you send, while being liberal in what you accept. The major arguments

for taking this approach are: [107]

• Almost all data on the web is already in NFC.

• Most receiving components assume early normalization.

• Not all components that perform string matching can be expected to do normal-
ization.

There are some problems with this strategy, however. It assumes that the pri-

mary purpose of normalization is to determine whether two sequences have identical

renderings which is appropriate for display but inappropriate for information proces-

ing. In Unicode’s NFC any and all formatting information is retained. This causes

169

problems for those processes that require comparisons to be based only upon raw

content, such as web search engines and web based databases. Additionally, it places

undo limitations on the characters that can be used during interchange.

During the process of normalization the properties of the characters are not

guaranteed to remain stable. In Unicode the numero sign is a neutral character, while

the latin capital letter n and latin small letter o are left-to-right characters. Obviously

these character types are not the same. Therefore, it is no surprise that when the run

on line 3 on is converted to display order it does not match the unnormalized display

order. See lines 4 and 2 respectively. This example reveals Unicode’s strong ties to

presentation rather than content. This might seem unimportant, as the visual display

is not vastly different. It could lead to cases in which incorrect conclusions could be

drawn. See Figure 6-13.

Figure 6-12. Protocol interaction

U0627,U2116,U0031,U0032,U0033 (1)

(2)

U0627,U004E,U006F,U0031,U0032,U0033 (3)

(4)

Line 1 on Figure 6-13 is a run of characters in logical order with its corre-

sponding display order on line 2 on Figure 6-13. The run on line 3 on Figure 6-13 is

the normalized form of line 1 on Figure 6-13, with its display order on line 4 on

Figure 6-13. When the two display orderings are compared the results are radically

different visually and semantically. See lines 2 and 4. These examples further illus-

trate the need for a new data encoding model.

1 2 3 № ا

N o 1 2 3 ا

170

Figure 6-13. Data mangling

U0627,U00BC (1)

(2)

U0627,U0031,U2044,U0034 (3)

(4)

The next serious problem with the normalization process is the unexpected

interaction with other Unicode protocols. In particular, the Unicode Bidirectional

Algorithm. The run of characters on line 1 on Figure 6-12 is a sequence of Arabic

characters in logical order. The text displayed on line 2 on Figure 6-12 is the same

run of characters but in display order. This is the output from the Unicode Bidirec-

tional Algorithm.

When the run of characters on line 1 on Figure 6-12 are placed into NFKC the

result on line 3 on Figure 6-12 is obtained. Placing the run of characters on line 1 on

Figure 6-12 into NFKC causes the numero sign (U2116) to be converted to the two

character sequence, latin capital letter n (U004E) followed by latin small letter o

(U006F). This illustrates the unanticipated and confounding interaction between nor-

malization and bidirectional processing.

In the previous examples we have seen some of the unexpected interactions

between normalization and layout. In the next section we explore data equivalence in

Metacode. In particular, we will see that in Metacode data equivalence does not inter-

act with other algorithms. This is possible, because in Metacode data equivalence is

steered away from presentation and redirected towards content.

¼ ا

4 / 1 ا

171

6.3.2 Data Equivalence in Metacode

In Unicode the definition of equivalence is strongly tied to the visual appear-

ance of characters. In the Metacode system, however equivalence is aligned towards

the meaning of characters, rather than their visual representation. Therefore, in Meta-

code we would define three types of data equivalence:

• Byte equivalence — If two streams contain the same sequence of bytes then the
two streams are said to be byte equivalent. See the Haskell function byteEquivalent
in Appendix D.

• Code point equivalence — If two streams contain the same sequence of code
points (data and metadata) then the two streams are said to be code point equiva-
lent. See the Haskell function codePointEquivalent in Appendix D.

• Content equivalence — If two streams contain the same sequence of data code
points (excluding metadata) then the two streams are said to be content equiva-
lent. See the Haskell function contentEquivalent in Appendix D.

In Metacode each form of data equivalence is linked to a specific architectural layer

within Metacode (starting from the lowest layer of abstraction):

• Transmission layer — Byte equivalence

• Code point layer — Code point equivalence

• Content layer — Content equivalence

Equivalence at a lower layer of abstraction guarantees equivalence at higher layers.

This is summarized in the following three rules:

• If two streams are byte equivalent then the two streams must also be code point
equivalent and content equivalent.

• If two streams are code point equivalent then the two streams must also be con-
tent equivalent. The two streams, however may optionally be byte equivalent.

• If two streams are content equivalent the two streams may optionally be code
point equivalent and or byte equivalent.

Looking at Unicode’s normalization algorithm we find it to be very complex

with ill defined boundaries. Metacode’s content equivalence however, is simple with

well defined boundaries. Metacode’s content equivalence is performed by simply

172

comparing the data characters in a stream allowing metadata characters to be com-

pletely ignored. This is possible because metadata characters do not play any role in

determining content. The metadata characters always express higher-order protocols

and have no effect on the interpretation of the raw data.

Here is a list of the other properties of Metacode’s equivalence algorithm:

• The algorithm is reversible.

• The algorithm is robust, it still functions as new tags are created.

• The algorithm is applicable to all text processes, it assumes no particular type of
text process whether it be presentation or content based.

• The algorithm is independent and separate from other algorithms

Unicode’s normalization algorithm does not exhibit these properties. We argue that

the definition of Metacode content equivalence is in fact what Unicode normalization

should have been. Metacode’s definition of content equivalence is more closely

aligned with Unicode’s goal of separating characters from glyphs than Unicode nor-

malization is. Unicode normalization should not have been concerned with how par-

ticular characters are rendered. In Metacode this would be the privy of rendering

engines.

In Metacode there is no limitation on which characters can and cannot be used

in Metacode’s content layer. Unicode by contrast, has limitations regarding the char-

acters that can and cannot be used in Unicode’s normal forms. Metacode’s approach

allows text components to be both liberal in what they send and receive. The presence

of metadata in a stream never alters the interpretation of the raw content.

Next we revisit the problem of expressing the string “flambé”. See Table 6-

14. In this table we concluded that all the entries were equivalent. Table 6-15 cap-

tures the same semantics using Metacode’s metadata characters as was expressed in

Table 6-14. To enhance comprehension of the table we use the printed version of the

characters, rather than their code point values. Additionally, in Table 6-15 we do not

173

find any combining characters, because this notion is only applicable to Unicode and

is unnecessary in Metacode. We refer to the strings in Table 6-15 as being content

equivalent, that is they all represent the same raw content. Moreover, counting the

number of entries in Table 6-15 we find that this is less than half the number of

entries in Table 6-14. This is not surprising given the numerous ways in which the

same content can be expressed in Unicode. In Metacode, however there would never

be a case where the same raw content could be expressed in more than one way.

In Metacode, data equivalence is never based on any external tables, thereby

eliminating any potential data table versioning problems. For example, consider Uni-

code character U2048, question exclamation mark ?!. See line 1 on Figure 6-14. This

character was first defined in Unicode 3.0. The purpose of the character is to produce

a special glyph variant of a question mark ? combined with an exclamation mark !

for use in vertical writing systems. See line 2 on Figure 6-14. Nonetheless, the

meaning of the question exclamation mark is the same as the combined individual

characters. This required Unicode to update their normalization tables. Nevertheless,

when applications based on earlier versions of Unicode performed normalization the

question exclamation mark would not match the individual question mark and excla-

mation mark. Therefore, these characters would be incompatible.

Table 6-15. The string “flambé” in Metacode

String Description

1 flambé no higher-order protocols

2 ELM@LIGfl/ELMambé fl ligature protocol

3 ELM@WIDflambé/ELM full-width protocol

4 ELM@WID|ELM@LIGfl/ELMambé/ELM fl ligature and full-width protocols

5 DIR@Lflambé/DIR direction protocol

174

Figure 6-14. Question Exclamation Mark

U2048 ?! (1)

U003F,U0021 ?! (2)

Using Metacode and metadata tags no such dependency on a specific version

of Metacode is necessary. In Metacode a new code point definition would not be

required at all. This vertical form using metadata is illustrated on line 2 on Figure 6-

15. When line 2 is compared to line 1 we find the two are content equivalent; both

strings represent the same content. If at some later time we find it necessary to add a

wide form of the question exclamation mark to Metacode we need only surround the

? and ! with a metadata tag. See line 3 on Figure 6-15. Thus, Metacode and its asso-

ciated metadata tagging mechanism is both open and flexible. The process for deter-

mining whether the two streams are content equivalent does not require any changes

to accommodate the use of this tag further illustrating the openness of the Metacode

architecture.

Figure 6-15. Metadata Question Exclamation Mark

?! (1)

ELM@VER?!/ELM (2)

ELM@WID?!/ELM (3)

6.3.3 Simulating Unicode in Metacode

Metacode permits the simulation of Unicode and its normalization forms

easing migration to our new architecture. Unicode’s normalization forms would be

encoded by using Metacode’s metadata tagging mechanism. The notion of an Uni-

code combining character would be described as a higher-order protocol, previously

illustrated on Figure 6-2. Unicode’s normalization algorithm would be yet another

form of data equivalence. For example, the Metacode character stream on line 1 on

Figure 6-16 would represent the Unicode characters latin capital letter u and

175

combining diaeresis. Line 2 on Figure 6-16 is the single Metacode character latin

capital letter u diaeresis. In Metacode the streams on lines 1 and 2 would be unequal,

because they do not represent the same content. Nevertheless, the two streams would

be equivalent under Unicode simulation, because the streams have identical render-

ings.

Unicode normalization can be thought of as a higher-order form of data

equivalence. We call this form of equivalence “display equivalence” and place it in

a higher layer over content equivalence. Display equivalence does not violate any of

our earlier rules of equivalence.

Figure 6-16. Simulating Unicode normalization

ELM@CMBU¨/ELM (1)

Ü (2)

6.4 Code Points vs. Metadata
Metacode is capable of easy expansion to accommodate the inevitable and

boundless growth in written expression. In Metacode expansion may occur in both

the code point layer and in the tag definition layer. Our architecture encourages rela-

tively infrequent expansion at the code point layer when a new natural language con-

struct needs to be expressed. Expansion at the tag definition layer would occur only

when information describing a natural language construct needed to be expressed.

Our architecture greatly reduces the number of instances where appropriate assign-

ment is ambiguous. For the remainder we improve the situation by providing more

workable options for capturing the essence of natural language constructs.

6.4.1 Metacode Principles

In many cases the decision as to whether to use a code point or a tag would

be obvious. Nevertheless, some heuristics would be established to provide guidance

176

with these decisions. For example, the following heuristics are indicators for encod-

ing a concept as a code point:

• The concept represents a natural language construct.

• The concept represents a fundamental element of some formal system.

The following list are indicators for encoding concepts as protocols, rather than as

code points.

• The concept is a stylistic variation of an already existing code point.

• The concept is used for signaling or control of some higher-order process.

• The concept causes the semantics of code points to change.

• The concept provides meta information about an existing code point.

• The concept is a specialization or generalization of an already existing tag.

6.4.2 Applying Metacode Heuristics

Bellow we illustrate how these Metacode heuristics would be applied to

encoding new objects within Metacode. We examine situations in which the decision

is easy to make as well as those in which the decision is less clear.

6.4.2.1 Natural language text

First, we explore the case where the decision as to whether to use a code point

or a tag is unambiguous. Let us look at the task of encoding Egyptian Hieroglyphic

symbols in Metacode. The Egyptian hieroglyphic symbols are divided into two

classes, phonograms and ideographs. Phonograms are used to write the sounds of the

language. The value of the sound was usually obtained from the name of the object

being depicted. The hieroglyphic symbol “foot” on Figure 6-17 represents a conso-

nant that is pronounced as the letter “b” in English. As the “foot” object is both an

element of a natural language (Egyptian) and an element of a formal system (hiero-

glyphics). It would be encoded as a code point. [17], [80]

177

Figure 6-17. Egyptian hieroglyphic phonogram

In Egyptian, ideographs represent either the actual object being depicted or a

closely related idea. For example, consider the hieroglyphic symbol “ra” on Figure

6-18. The symbol ra stands for the sun. Even though this is not a phonogram, the ra

symbol is an element of written natural language and would also be encoded as a code

point.

Figure 6-18. Egyptian hieroglyphic ideograph

6.4.2.2 Mathematics

There currently exists several systems for representing mathematical docu-

ments, such as TeX, Mathematica, and MathML [65]. These systems, however, deal

with the representation of mathematics at the document level and not at the character

level. Unicode has recently taken steps to fill this gap by encoding a set of characters

within the surrogate range specifically designed for mathematics. These

mathematical characters include bold, italic and script Latin letters, bold and italic

Greek letters, and bold and italic European numerals [98]. Metacode would not

include such characters because such information is captured by Metacode’s higher-

order protocols. Unicode’s mathematical characters are really stylistic variations of

already encoded characters. On the other hand, it is true that the semantics of the

mathematical characters differ from the basic Latin, Greek, and European numerals.

In Metacode we would not prevent such semantics from being expressed, rather we

178

would argue that the use of code points as the means for their expression is incorrect

because these characters are stylistic variations of already encoded characters.

In the case of Unicode we find that only the European numerals have bold

forms, what about all the other types of digits? If we believe that using code points is

the correct approach, then we must be prepared to provide multiple forms of every

kind of digit (Arabic, Chinese, Japanese, etc.) Moreover, the introduction of multiple

stylistic forms of letters and digits only serves to make data equivalence more com-

plex.

In Metacode the semantics of mathematics are expressed through a higher-

order protocol. For example, rather than encoding bold characters Metacode would

express such information by using a tag. See line 1 on Figure 6-19. On line 1 on

Figure 6-19 we see the latin capital letter a surrounded by a math tag with the single

argument bold. Moreover, in Metacode the introduction of mathematical tags does

not require any changes to our data equivalence procedures.

Figure 6-19. Mathematical characters

MATH@BA/MATH (1)

6.4.2.3 Dance notation

Metacode is not limited to just encoding natural languages and mathematics,

although we anticipate that these will be the predominant uses. It is possible to use

Metacode to encode other formal systems. For example, consider the system for

expressing dance movements. This is a formal system and is called “Action Stroke

Dance Notation” (ASDN). ASDN is a movement shorthand designed to capture the

basic movements of dance as actions and strokes. In ASDN each of the basic actions

is represented using a graphic symbol, known as an “action stroke”. Each of these

actions indicates a movement of either the leg or arm staffs. Each action stroke is

attached to a vertical line called the staffline. Lines written to the left of the staffline

179

signal a movement of a left limb, while lines written to the right signal a movement

of a right limb. [19]

In the illustration on Figure 6-20, #1 is a step with the right leg, #2 is an air

gesture with the left leg, #3 is a step with the left leg, and #4 is a touch gesture with

the right leg. In Metacode we would encode each of these symbols as individual code

points, because they represent the fundamental elements of ASDN and are part of a

formal written system. [19]

Figure 6-20. Action Stroke Dance Notation

In ASDN the direction of movement (forward and backward) can also be

expressed. In ASDN these are represented by using up and down arrows. In Meta-

code we would not encode these movement symbols, because these objects are

already encoded in Metacode, albeit not as part of ASDN notation. The movement

symbols are combined with action strokes to indicate the direction of a stroke. For

example, the action stroke on Figure 6-21 indicates a backward movement of the

right leg. [19]

180

Figure 6-21. Action Stroke Dance Notation with movement

In Metacode we could express the combination of an action stroke and direc-

tion in two ways. First, we could encode each combination of an action stroke and

direction as an individual code point. Second, we could create a tag for combining a

movement direction with an action stroke. We would argue that the second approach

is more appropriate, because the combination of an action stroke and a direction does

not represent a fundamental unit of the formal system. The combination of an action

stroke and a direction is a composite object constructed from two fundamental ele-

ments. Therefore, we would describe the composite object by using a higher-order

protocol “tag”. For example, in Metacode we would capture the semantics of Figure

6-21 by using the Metacode character sequence on line 1 on Figure 6-22. To simplify

comprehension of Figure 6-22 the action stroke and movement direction are specified

using their long name (italic characters), rather than by their individual code points.

Figure 6-22. Metacode Action Stroke Dance Notation tag

ASDNright-step, down-arrow/ASDN (1)

6.5 Benefits of Metacode
We argue that multilingual character coding systems should provide both a

set of unambiguous data characters and a mechanism for specifying meta information

about those characters. In Metacode characters are identified by their meaning rather

than by their shape. Additionally, Metacode’s “data characters” are always distinct

and separate from “metadata characters”. Metacode’s open ended tag mechanism

allows for the definition of an unlimited number of possible protocols, yet does not

require any future code points. By adopting this framework Metacode is free to deal

181

entirely with the definition of characters. This approach affords the greatest level of

flexibility, while still retaining the ability to process multilingual data efficiently.

Metacode does not dictate how metadata should be used. Metacode solely

deals with mechanism. The semantics of protocols are left to higher-order processes.

Metacode gets to separate protocol definition from character picking. The once fuzzy

boundary separating characters from protocol is now replaced by a well defined bor-

der. This precise separation greatly simplifies the construction of multilingual infor-

mation processing applications.

182

7Conclusions

In Metacode information processing is focussed on content and away from

display. In our architecture roles and responsibilities are clearly indicated. We have

sharpened the focus on the indistinct boundary separating code points, characters,

and control information. The tasks of assigning code points and defining protocols

are now separate and distinct activities. This separation of activities promotes the

deprecation of code points that convey control information. In particular, ligatures,

control codes, glyph variants and half-width forms. In Metacode control information

is captured by the metadata layer, irrespective of whether the control relates to pre-

sentation or content.

7.1 Summary
In Chapter 2, we outlined the overall field of software globalization. We pro-

vided definitions for the terms internationalization, localization, and translation. We

examined several challenges to creating multilingual software. We described in detail

each of the six subfields of software globalization: Translation, International User

Interfaces, Cultural/Linguistic Formatting, Keyboard Input, Fonts, and Character

Coding Systems.

In Chapter 3, we discussed character sets and character coding systems. We

defined the relevant terms related to character coding systems. We examined in detail

several character coding schemes, covering both fixed-width stateless and variable-

width stateful systems. We made arguments justifying the need for multilingual char-

acter coding systems. We described in detail four multilingual coding systems:

183

Unicode, Multicode, TRON, and EPICIST. We concluded that Unicode’s fixed

width stateless encoding system is a good mechanism for encoding/transmitting code

points.

In Chapter 4, we considered problems arising from using multilingual char-

acter encodings. Specifically, we examined the problem of processing bidirectional

scripts (Arabic, Hebrew, Farsi, and Urdu). Initially, we considered the proposition

that the processing of bidirectional text was an algorithmic problem. We explored

several algorithms for processing bidirectional text: Unicode Bidirectional Algo-

rithm, FriBidi, PGBA, ICU, and Java, but found them inadequate. We created a func-

tional bidirectional algorithm (HaBi), because a functional implementation would

enable us to discover the true nature of bidirectional text processing. We found our

HaBi implementation incomplete, however. We concluded that the bidirectional pro-

cessing problem was not an algorithmic problem but an architectural problem. The

existence of this architectural problem points to fundamental flaws in the underlying

character set centric model.

In Chapter 5, we explored several strategies for addressing the shortcomings

of the character set centric model. In particular, we looked at using metadata for

describing more of the underlying structure of scripts. We examined XML as a meta-

data model for multilingual information processing, but found it inappropriate. We

defined our own general metadata model, presenting evidence of its suitability for

multilingual information processing. We introduced several meta tags (text element,

direction, mirroring, and language) that showed how complex semantics could be

captured in our metadata model. We established that both XML and HTML could be

captured using our general metadata model. Applying our metadata model to the bidi-

rectional text processing problem enabled us to discover the true nature of bidirec-

tional text processing (inferencing and reordering). We concluded that our metadata

model allowed for a general reorganization of multilingual information processing.

184

In Chapter 6 we developed our multilingual information processing architec-

ture. Our architecture incorporates character sets, metadata, and core protocols, pro-

viding an overall framework for multilingual information processing. We named our

architecture Metacode to reflect our focus on higher-order protocols. We established

that it is easy to migrate to Metacode because Unicode can be simulated in Metacode.

We eliminated the need for complex normalization algorithms by introducing a hier-

archy of simple data equivalences (byte, code point, content). We concluded by sum-

marizing the benefits our architecture provides.

7.2 Contributions
In this dissertation we made practical contributions to several issues in mul-

tilingual information processing. These contributions emerged from the study of four

areas: bidirectional processing, normalization, characters, and higher-order proto-

cols.

In summary the contributions of this dissertation are:

• We developed an architecture that unambiguously separates code points, content,
control information, and display.

• We created an architecture that minimizes harmful interactions.

• We created an extendable metadata mechanism for describing higher-order proto-
cols.

• We conducted a detailed analysis of bidirectional reordering algorithms and dis-
covered the essence of bidirectional processing.

• We established that our architecture allows for a separation of bidirectional infer-
encing from bidirectional reordering.

• The metadata architecture that we developed supports reversible and detectable
information processing algorithms.

• We created a hierarchy of fundamental data equivalences that are simple to
implement.

• We showed that data equivalence algorithms can operate independently from any
particular version of Metacode.

185

• We demonstrated that it is possible to simulate Unicode in our Metacode system,
allowing for easy migration.

• We provide guidance for encoding concepts in Metacode.

In the paragraphs below we discuss each of these contributions.

We presented evidence that supports our argument that there is little separa-

tion between content, display, and control information. We showed several instances

(e.g., ligatures, half-width forms, and final forms) where it was laborious to separate

display information from content. In many places throughout the dissertation we

showed the difficulty of separating control information (e.g., bidirectional controls

and breaking controls) from content. We developed abstractions and mechanisms for

better delineating the boundaries between control information, display and content.

In our metadata and protocol abstractions we showed that intra-layer change

was minimized as we encoded new concepts. In the character set centric view, change

cannot be localized (e.g., spacing code points, see section 6.2.3.3). This shift in phi-

losophy is significant because it prevents unanticipated interactions as we saw in the

case of normalization. We developed a spacing protocol for expressing variable

length spaces that did not require any change in the code point layer. As we defined

other protocols in the tag definition layer (e.g., combining characters and direction)

we showed that the content layer was unaffected.

In the character set centric approach endless code point tinkering is required

each time a new linguistic or cultural variation is added (e.g., Arabic presentation

forms). This strategy is limiting because there are only a finite number of code points

for encoding characters. We demonstrated that in Metacode linguistic and cultural

variations are captured by the open-ended metadata definition system. We saw that

Metacode’s universal text element protocol captured a wide array of linguistic and

cultural information (e.g., glyph variants and final forms, see section 5.6) yet did not

require additional code points.

186

In this dissertation we showed that the character set centric position does not

supply the best set of basic building blocks for constructing higher-order protocols.

This is important because it leads to the use of overloaded characters and conflicting

solutions as we saw in the case of XML. In Metacode we provide a better foundation

for higher-order protocols. We showed that our metadata system enabled a more

cohesive form of XML (see section 5.4), because we avoid the problems of entity ref-

erences.

Our analysis of bidirectional algorithms revealed the true nature of bidirec-

tional information processing. This is significant because we have separated the lin-

guistic processing from the information processing. We concluded that bidirectional

processing is comprised of two activities: inferencing and reordering (see sections

4.8 and 5.7). Inferencing takes natural language text in its most primitive and basic

form and inserts cultural and linguistic assumptions (e.g., language and direction of

script) into the stream. Reordering converts attributed natural language text into a

form that is suitable for presentation.

We presented evidence that current bidirectional reordering algorithms fail to

separate the activities of inferencing and reordering as we saw in the case of Unicode

and FriBidi. This lack of separation causes bidirectional algorithms to generate inap-

propriate output, code points in display order. We argue that only inferencing is

appropriate in the context of character coding systems. Reordering is an activity that

should occur in higher-order processes. In our bidirectional algorithm (HaBi) we sep-

arate inferencing and reordering, always keeping data in logical order.

We presented evidence that showed that the effects of bidirectional process-

ing were both difficult to detect and reverse. This is significant because in many cases

it is necessary to undo bidirectional processing as we saw in the case of domain

names. We found that without separating inferencing from reordering the algorithm

converting from display order to logical order was not a one-to-one function. The

187

well known bidirectional algorithms are not reversible. There are no identifying

markers in the processed text leading to confusion over whether a text stream was

processed. We demonstrated that the effects of our bidirectional algorithm are revers-

ible and detectable.

We demonstrated that there are unexpected and damaging interactions

between normalization and bidirectional processing as we saw in the case of fractions

and Arabic text (see section 6.3.1.3). We argued that these interactions point to erro-

neous assumptions about the role of normalization in character coding systems. Nor-

malization of presentation forms cannot be solved at the code point layer. This is

crucial because the Metacode approach frees information processing from presenta-

tion issues. Current character coding systems assume that the purpose of normaliza-

tion is to determine if characters look the same. In the Metacode system

normalization is never based on the visual appearance of characters, but rather on the

underlying abstract meaning of the characters. This allows protocols to coexist with-

out interference as we saw in the case of bidirectional processing and normalization.

We presented evidence that in the character set centric model normalization

algorithms must be rewritten each time a new display variation is added, because the

only mechanism for expressing display variation is code points. We showed that Uni-

code’s normalization tables required updating when they added a vertical variant of

the question exclamation mark character (see section 6.3.2). In our Metacode system

we have options, we could use code points or metadata protocols. We encoded the

vertical question exclamation mark using our universal text element protocol. This

approach minimizes the need to rewrite normalization algorithms each time a new

display variant is introduced.

We showed that Metacode’s data equivalence algorithms (byte, code point,

and content) operate independently from the visual appearance of characters. This is

188

significant because it allows construction of data equivalence algorithms that do not

require change as new protocols and code points are defined.

We presented evidence that Unicode data can be easily converted to Meta-

code without a loss of semantics which we saw in the conversion of combining char-

acters and control codes (see section 6.2.6). We showed that Unicode’s normalization

algorithm could be simulated in Metacode. Both of these are important because an

easy migration path is necessary to encourage use of Metacode.

Throughout this dissertation we offered guidance and examples for encoding

concepts in Metacode. We studied several examples from Hieroglyphics, mathemat-

ical typesetting, and Action Stroke Dance Notation to illustrate the correct use of the

architecture. We demonstrated that in many cases it was easy to decide whether to

use a code point or a protocol. In other cases we found the decision to be more com-

plicated as we saw in Action Stroke Dance Notation.

7.3 Limitations
In our Metacode system we made some trade-offs in order to achieve greater

functionality. These trade-offs are summarized as follows:

• Data encoded in Metacode in some cases require more memory than other multi-
lingual encodings.

• Metacode data in some situations takes longer to transmit than other multilingual
encodings, because character streams may use more memory.

• In Metacode the storage unit (character) is no longer equivalent to the logical unit
(text element), making manipulation of data more complex.

• Editing of Metacode data is more elaborate.

7.4 Future Work
In this dissertation we provide only a small number of meta tags. Further

research and study of higher-order protocols, display hinting and linguistic elements

would be need in a full implementation of our architecture. In the discussion of our

189

architecture we did not specifically focus on the actual characters that would be

encoded in Metacode. In a complete implementation the actual choice of characters

would be necessary. This character assignment activity would have to consider issues

related to combining characters, Han unification, and control codes. Additional study

and debate is needed.

In some cases it might be desirable to keep some number of controls (e.g.,

new line, and bell) as singleton code points to ease migration. In other cases it may

be more advantageous to deprecate controls (e.g., right-to-left mark) and recast them

as higher-order protocols to avoid the trouble they cause. This issue would require

careful consideration and debate.

We anticipate that frequently used higher-order protocols (e.g., ligature) will

need to have shorthand or singleton representations to minimize memory utilization.

This activity would require identification of the commonly used protocols and dis-

cussion over which protocols would benefit the most from using an abbreviated form.

190

References

[1] Abed, Farough. “Cultural Influences on Visual Scanning Patterns.” Journal of
Cross-Cultural Psychology, December 1991, pp 525-535.

[2] Abramson, Dean. “Optimized Implementations of Bidirectional Text Layout
and Bidirectional Caret Movement.” 13th International Unicode Conference,
September 1998.

[3] Adams, Glen. “Internationalization and Character Set Standards.” Standard
View, The ACM Journal on Standardization, Volume 1, 1993.

[4] Alhadif, Mohamed. “International Music Festival.” Alshafha, 10 July 2001,
p 3. (in Arabic)

[5] Alvestrand, Harald Tevit. “IETF Policy on Character Sets and Languages.”
RFC 1766, March 1995.

[6] Apple Computer. Inside Macintosh Text. Addison-Wesley. 1993.

[7] Apple Computer. “About Apple Advanced Typography Fonts.” February
1998.

[8] Atkin, Steven. “A Dynamic Object-Oriented Approach to Software
Internationalization.” Master’s Thesis Florida Institute of Technology,
December 1994.

[9] Atkin, Steven and Borgendale, Ken. “IBM Graphical Locale Builder.” 12th
International Unicode Conference, April 1998.

[10] Atkin, Steven and Stansifer, Ryan. “Implementations of Bidirectional
Reordering Algorithms.” 18th International Unicode Conference, April 2001.

191

[11] Au, Sunny. “Hello, World! A Guide For Transmitting Multilingual Electronic
Mail.” Proceedings of the 23rd ACM SIGUCCS conference on Winning the
networking game, October 1995, pp 35-39.

[12] Becker, Joseph. “Arabic Word Processing.” Communications of the ACM,
July 1987, Volume 30, Number 7, pp 600-610.

[13] Becker, Joseph. “Unicode 88.” Xerox Corporation, 1988.

[14] Belge, Matt. “The Next Step In Software Internationalization.” Interactions,
January 1995, Volume 2, Number 1, pp 21-25.

[15] Bemer, R. W. “The American Standard Code For Information Interchange.”
Datamation, 9, No. 8, 32-36, August 1963, and ibid 9, No. 9, 39-44,
September 1963.

[16] Bettels, Jürgen and Bishop, Avery F. “Unicode: A Universal Character Code.”
Digital Technical Journal, 1993, Number 3, Volume 5, pp 21-31.

[17] Budge, E.A. Wallis. An Egyptian Hieroglyphic Dictionary. Dover
Publications. 1978.

[18] Clark, James. “Minority WG Opinion on XML C14N and Unicode C14N.”
Available: http://www19.w3.org/Archives/Public/www-xml-canonicalization-
comments/2000Jan/0000.html. Retrieved: January 21, 2001.

[19] Cooper, Iver P. “Action Stroke Dance Notation.” Available: http://
www.geocites.com/Broadway/Stage/2806/. Retrieved: August 12, 2001.

[20] Davis, Mark. et al. “Creating Global Software: Text Handling and
Localization in Taligent’s CommonPoint Application System.” IBM Systems
Journal, 1996, Number 2, Volume 35, pp 227-242.

[21] Davis, Mark. et al. “International Text In JDK 1.2.” Available: http://
www.ibm.com/java/education/international-text/. Retrieved: July 17, 2000.

192

[22] Democratic Peoples Republic of Korea. “DPRK Standard Korean Graphic
Character Set for Information Interchange.” KPS 9566-97, 1997.

[23] Dürst, Martin and Freytag, Asmus “Unicode in XML and Other Markup
Languages.” Available: http://www.unicode.org/unicode/reports/tr20.
Retrieved: January 9, 2001.

[24] Edberg, Peter. “Tutorial: Survey of Character Encodings.” 11th International
Unicode Conference, September 1997.

[25] Erickson, Thomas D. “Working With Interface Metaphors.” in The Art of
Human Computer Interface Design. edited by Brenda Laurel, Addison-
Wesley. 1990.

[26] European Computer Manufacturers Association. “7-Bit Coded Character Set.”
ECMA-6, December 1991.

[27] European Computer Manufacturers Association. “Character Code Structure
and Extension Techniques.” ECMA-35, December 1994.

[28] Fateman, Richard “Algol 60, a language, a report.” Available: http://
www.cs.berkley.edu/~fateman/264/lec/notes17.pdf. Retrieved: April 17, 2001.

[29] Fernandes, Tony. Global Interface Design. AP Professional. 1995.

[30] Flanagan, David. Java in a Nutshell. O’Reilly and Associates. 1999.

[31] Goundry, Norman “Why Unicode Won’t Work On The Internet: Linguistic,
Political, and Technical Limitations.” Available: http://
www.hastingsresearch.com/net/04-unicode-limitations.shtml. Retrieved: June
5, 2001.

[32] Graham, Tony. Unicode A Primer. M&T Books. 2000.

193

[33] Graham, Tony. “Changes in Unicode that led to changes in XML 1.0 Second
Edition.” Available: http://www-106.ibm.com/developerworks/library/u-
xml.html. Retrieved: January 20, 2001.

[34] Grobgeld, Dov. “A Free Implementation of the Unicode Bidi Algorithm.”
Available: http://imagic.weizmann.ac.il/~dov/freesw/FriBidi/. Retrieved: July
17, 2000.

[35] Hall, William S. “Internationalization in Windows NT, Part:1 Programming
with Unicode.” Microsoft Systems Journal, June 1994, pp 57-71.

[36] Holmes, Neville. “Toward Decent Text Encoding.” IEEE Computer, 1998,
Number 8, Volume 31, August, pp 108-109.

[37] Homes, Nigel. “An Introduction to Pictoral Symbols.” in Designing Pictoral
Symbols, Watson-Guptill, 1990.

[38] Horton, William. The Icon Book: Visual Symbols for Computer Systems and
Documentation. John Wiley & Sons. 1994.

[39] Hughes, John. “Why Functional Programming Matters.” Computer Journal,
1989, Volume 32, Number 2, pp 98-107.

[40] International Business Machines Corporation. National Language Design
Guide, NLDG Volume 2. IBM Canada Ltd. 1994.

[41] International Business Machines Corporation. National Language Support
Bidi Guide, NLDG Volume 3. IBM Canada Ltd. 1995.

[42] International Business Machines Corporation. MBCS/DBCS Character Set
and Code Page System Architecture. IBM Japan Ltd. 1996.

[43] International Business Machines Corporation. MBCS Cross System Guide:
Volume1 - Character Set and Code Page. IBM Japan Ltd. 1997.

194

[44] International Business Machines Corporation. OS/2 Warp Server for e-
business Keyboards and Code Pages. IBM. 1999.

[45] International Business Machines Corporation. “IBM Classes for Unicode.”
Available: http://www.ibm.com/java/tools/international-classes/index.html.
Retrieved: July 17, 2000.

[46] International Organization for Standardization. “ISO 7-bit Coded Character
Set for Information Interchange.” International Standard ISO/IEC 646:1991,
1991.

[47] International Organization for Standardization. “8-bit Single-Byte Coded
Graphic Character Sets - Part 1: Latin Alphabet No. 1.” International
Standard ISO/IEC 8859-1: 1998, 1998.

[48] Ishida, Richard. “Non-Latin Writing Systems: Characteristics and Impact on
Multinational Product Design.” 18th International Unicode Conference, April
2001.

[49] Jennings, Tom. “ASCII: American Standard Code for Information
Infiltration.” Available: http://fido.wps.com/texts/codes. Retrieved: January 9,
2001.

[50] Jones, Scott. et. al. Digital Guide to Developing International User
Information. Digital Press. 1992.

[51] Jones, Simon P. et al. “Report on the Programming Language Haskell 98, A
Non-strict, Purely Functional Language.” Yale University, Department of
Computer Science Tech Report YALEU/DCS/RR-1106, February 1999.

[52] Kano, Nadine. Developing International Software For Windows 95 and
Windows NT. Microsoft Press. 1995.

[53] Kataoka, Tomoko I. et al. “Internationalized Text Manipulation Covering
Perso-Arabic Enhanced for Mongolian Scripts.” Lecture Notes in Computer
Science, 1998, Volume 1375, pp 305-318.

195

[54] Korpela, Jukka. “A Tutorial on Character Code Issues.” Available: http://
www.hut.fi/u/jkorpela/chars.html. Retrieved: January 9, 2001.

[55] Lehtola, Aarno and Honkela, Timo. “A Framework for Global Software.”
Proceedings of the 1st ERCIM Workshop on ‘User Interfaces for All’, 1995.

[56] Leisher, Mark. “The UCData Unicode Character Properties and Bidi
Algorithm Package.” Available: http://crl.nmsu.edu/~mleisher/ucdata.html.
Retrieved: July 17, 2000.

[57] Lunde, Ken. CJKV Information Processing. O’Reilly. 1999.

[58] Lunde, Ken. “A New Standard For Japanese.” Multilingual Computing and
Technology, 2000, Number 35, Volume 11, Issue 7, pp 45-46.

[59] Lunde, Ken. “CJKV Character Set and Encoding Developments.”
Multilingual Computing and Technology, 2001, Number 39, Volume 12, Issue
3, pp 53-55.

[60] Lunde, Ken “What’s New In Unicode 3.1.” Multilingual Computing and
Technology, 2001, Number 42, Volume 12, Issue 6, p 51.

[61] Luong, Tuoc V. et. al. Internationalization Developing Software for Global
Markets. John Wiley and Sons Inc. 1995.

[62] MacKay, Pierre. “Typesetting Problem Scripts.” Byte Magazine, 1986,
Volume 11, Number 2, pp 201-218.

[63] Madell, Tom. et. al. Developing and Localizing International Software.
Prentice Hall. 1994.

[64] Maeda, Akira. “Studies on Multilingual Information Processing.” Doctor’s
Thesis Nara Institute of Science and Technology, September 18, 2000.

[65] Math Forum, The. “Math Typesetting for the Internet.” Available: http://
forum.swarthmore.edu/typesetting/. Retrieved: August 13, 2001.

196

[66] Meyer, Dirk. “New Hong Kong Character Standard.” Multilingual Computing
and Technology, 2000, Number 30, Volume 11, Issue 2, pp 30-32.

[67] Meyer, Dirk. “A New Chinese Character Set Standard.” Multilingual
Computing and Technology, 2001, Number 37, Volume 12, Issue 1, pp 63-68.

[68] Meyer, Dirk. “Two New Chinese Character Standards: HK SCS & GB 18030-
2000.” 18th International Unicode Conference, April 2001.

[69] Microsoft. “TrueType Open Font Specification.” version 1.0. July 1995.

[70] Miller, Gary. Personal Correspondence. September 21, 2001.

[71] Milo, Thomas. “Creating Solutions for Arabic: A Case Study.” 18th
International Unicode Conference, April 2001.

[72] Morrison, Michael. et al. XML Unleashed. Sams Publishing. 1999.

[73] Mount Tahoma High School. “Japanese Tutorial.” Available: http://
www.tacoma.k12.wa.us/schools/hs/mount_tahoma/dept/japanese/. Retrieved:
August 24, 2001.

[74] Mudawwar, Muhammad F. “Multicode: A Truly Multilingual Approach to
Text Encoding.” IEEE Computer, 1997, Number 4, Volume 30, April, pp 37-
43.

[75] O’Donnell, Sandra M. Programming for the World - A Guide to
Internationalization. Prentice Hall. 1994.

[76] Ohta, Masataka. “On Plain Text.” International Symposium on Multilingual
Information Processing, Tsukuba Japan, March 25-26, 1996.

[77] Omniglot. “Phonetic Transcription of Chinese.” Available:
http:www.omniglot.com/writing/chinese2.htm. Retrieved: August 30, 2001.

197

[78] Osawa, Noritaka. “EPICS: An Efficient, Programmable and Interchangeable
Code System for WWW.” 6th International World Wide Web Conference,
April, 1997.

[79] Osawa, Noritaka. “A Multilingual Information Processing Infrastructure for
Global Digital Libraries: EPICIST.” Proceedings of the International
Symposium on Research, Development and Practice in Digital Libraries,
November, 1997.

[80] Rossini, Stephane. Egyptian Hieroglyphics. Dover Publications. 1989.

[81] Ruesch, Jurgen and Kees, Weldon. “The Language of Identification and
Recognition.” in Nonverbal Communication, Berkeley: University of
California Press. 1970.

[82] Sakamura, Ken. “The TAD Language Environment and Multilingual
Handling.” TRONWARE, 1992, Volume 50, pp 49-57.

[83] Salomon, Gitta. “New Uses for Color.” in The Art of Human Computer
Interface Design. edited by Brenda Laurel, Addison-Wesley. 1990.

[84] Scherer, Markus. “GB 18030: A Mega-Codepage.” Available: http:www-
106.ibm.com/developerworks/unicode/library/u-china.html. Retrieved:
August 31, 2001.

[85] Schmitt, David A. International Programming for Microsoft Windows.
Microsoft Press. 2000.

[86] Searfoss, Glenn. JIS-Kanji Character Recognition. Van Nostrand Reinhold.
1994.

[87] Smura, Edwin J. and Provan, Archie D. “Toward a New Beginning: The
Development of a Standard for Font and Character Encoding to Control
Electronic Document Interchange.” IEEE Transactions on Professional
Communication. 1987, Number 4, Volume PC-30, pp 259-264.

[88] Stallman, Richard. GNU Emacs Manual. Free Software Foundation. 1999.

198

[89] Sun Microsystems. “Complex Text Layout Language Support in the Solaris
Operating Environment.” Available: http://www.sun.com/software/white-
papers/wp-cttlanguage/. Retrieved: July 17, 2000.

[90] Tanenbaum, Andrew S. Computer Networks. Prentice Hall. 1996.

[91] Taylor, David. Global Software: Developing Applications for the
International Market. Springer-Verlag. 1992.

[92] Turley, James. “Computing In Vietnamese.” Multilingual Computing and
Technology, 1998, Number 20, Volume 9, Issue 4, pp 25-29.

[93] Turley, James. “Computing In Chinese Poses Unique Challenges.”
Multilingual Computing and Technology, 1999, Number 27, Volume 10, Issue
5, pp 30-33.

[94] Turley, James. “Computing in Chinese.” Multilingual Computing and
Technology, 2000, Number 28, Volume 10, Issue 6, pp 28-30.

[95] Tuthill, Bill. and Smallberg, David. Creating Worldwide Software. Sun
Microsystems Press. 1997.

[96] Unicode Consortium, The. The Unicode Standard, Version 3.0. Addison-
Wesley. 2000.

[97] Unicode Consortium, The. “Unicode 3.0.1.” Available: http://
www.unicode.org/unicode/standard/versions/Unicode3.0.1.html. Retrieved:
January 17, 2001.

[98] Unicode Consortium, The. “Unicode 3.1.” Available: http://www.unicode.org/
unicode/standard/versions/Unicode3.1.html. Retrieved: August 13, 2001.

[99] Unicode Consortium, The. “Plane 14 Characters for Language Tags.”
Available: http://www.unicode.org/reports/tr7. Retrieved: January 9, 2001.

199

[100] Unicode Consortium, The. “Unicode Technical Report #9 - The Bidirectional
Algorithm.” Available: http://www.unicode.org/unicode/reports/tr9/tr9-6.html
Retrieved: July 17, 2000.

[101] Unicode Consortium, The. “Unicode Standard Annex #15 - Unicode
Normalization Forms.” Available: http://www.unicode.org/unicode/reports/
tr15. Retrieved: January 9, 2001.

[102] Van Camp, David. “Unicode and Software Globalization.” Dr. Dobb’s
Journal, 1994, March, pp 46-50.

[103] Vine, Andrea. “An Overview Of The Unicode Standard 2.1.” Multilingual
Computing and Technology, 1998, Number 23, Volume 10, Issue 1, pp 50-52.

[104] Vine, Andrea. “Demystifying Character Sets.” Multilingual Computing and
Technology, 1999, Number 26, Volume 10, Issue 4, pp 48-52.

[105] Walters, Richard F. “Design of a Bitmapped Multilingual Workstation.” IEEE
Computer, 1990, Number 2, Volume 23, February, pp 33-41.

[106] Weider, Chris. et. al. “The Report of the IAB Character Set Workshop.” RFC
2130, April 1997.

[107] World Wide Web Consortium, The. “Character Model for the World Wide
Web.” Available: http://www.w3.org/TR/charmod. Retrieved April 10, 2001.

[108] X/Open. X/Open Internationalisation Guide. X/Open Company Ltd. 1992.

[109] Yau, Michael M. T. “Supporting the Chinese, Japanese, and Korean
Languages in the OpenVMS Operating System.” Digital Technical Journal,
1993, Number 3, Volume 5, pp 63-79.

[110] Yergeau, F. “UTF-8 A Transformation Format of Unicode and ISO-10646.”
RFC 2044, October 1996.

200

[111] Yevgrashina, Lada. “Azerbaijan Drops Cyrillic for Latin Script.” Reuters,
August 3, 2001.

201

Appendix A

1 -- Rule P2, P3 determine base level of text from the first strong
2 -- directional character
3 p2_3 :: [Attributed] -> Int
4 p2_3 [] = 0
5 p2_3 ((_,L):xs) = 0
6 p2_3 ((_,AL):xs) = 1
7 p2_3 ((_,R):xs) = 1
8 p2_3 (_:xs) = p2_3(xs)
9
10 -- Rules X2 - X9
11 x2_9 :: [Int] -> [Bidi] -> [Bidi] -> [Attributed] -> [Level]
12 x2_9 _ _ _ [] = []
13 x2_9 (l:ls) os es ((x,RLE):xs)
14 = x2_9 ((add l R):l:ls) (N:os) (RLE:es) xs
15 x2_9 (l:ls) os es ((x,LRE):xs)
16 = x2_9 ((add l L):l:ls) (N:os) (LRE:es) xs
17 x2_9 (l:ls) os es ((x,RLO):xs)
18 = x2_9 ((add l R):l:ls) (R:os) (RLO:es) xs
19 x2_9 (l:ls) os es ((x,LRO):xs)
20 = x2_9 ((add l L):l:ls) (L:os) (LRO:es) xs
21 x2_9 ls os (e:es) ((x,PDF):xs)
22 | elem e [RLE,LRE,RLO,LRO] = x2_9 (tail ls) (tail os) es xs
23 x2_9 ls os es ((x,PDF):xs)
24 = x2_9 ls os es xs
25 x2_9 ls os es ((x,y):xs)
26 | (head os) == N = ((head ls),x,y) : x2_9 ls os es xs
27 | otherwise = ((head ls),x,(head os)) : x2_9 ls os es xs
28
29 -- Rule X10 group characters by level
30 x10 :: (Int, Int) -> [Level] -> Run
31 x10 (sor,eor) xs
32 | even sor && even eor = LL xs
33 | even sor && odd eor = LR xs
34 | odd sor && even eor = RL xs
35 | otherwise = RR xs
36
37 -- Process explicit characters X1 - X10
38 explicit :: Int -> [Attributed] -> [Run]
39 explicit l xs = zipWith x10 (runList levels l l) groups
40 where levels = (map (\x -> level (head x)) groups)
41 groups = groupBy levelEql (x2_9 [l][N][] xs)
42
43
44
45

202

46 -- Rules W1 - W7
47 w1_7 :: [Level] -> Bidi -> Bidi -> [Level]
48 w1_7 [] _ _ = []
49 w1_7 ((x,y,L):xs) _ _ = (x,y,L):(w1_7 xs L L)
50 w1_7 ((x,y,R):xs) _ _ = (x,y,R):(w1_7 xs R R)
51 w1_7 ((x,y,AL):xs) _ _ = (x,y,R):(w1_7 xs AL R)
52 w1_7 ((x,y,AN):xs) dir _ = (x,y,AN):(w1_7 xs dir AN)
53 w1_7 ((x,y,EN):xs) AL _ = (x,y,AN):(w1_7 xs AL AN)
54 w1_7 ((x,y,EN):xs) L _ = (x,y,L):(w1_7 xs L EN)
55 w1_7 ((x,y,EN):xs) dir _ = (x,y,EN):(w1_7 xs dir EN)
56 w1_7 ((x,y,NSM):xs) L N = (x,y,L):(w1_7 xs L L)
57 w1_7 ((x,y,NSM):xs) R N = (x,y,R):(w1_7 xs R R)
58 w1_7 ((x,y,NSM):xs) dir last = (x,y,last):(w1_7 xs dir last)
59 w1_7 ((a,b,ES):(x,y,EN):xs) dir EN =
60 (a,b,EN):(x,y,EN):(w1_7 xs dir EN)
61 w1_7 ((a,b,CS):(x,y,EN):xs) dir EN =
62 (a,b,EN):(x,y,EN):(w1_7 xs dir EN)
63 w1_7 ((a,b,CS):(x,y,EN):xs) AL AN =
64 (a,b,AN):(x,y,AN):(w1_7 xs AL AN)
65 w1_7 ((a,b,CS):(x,y,AN):xs) dir AN =
66 (a,b,AN):(x,y,AN):(w1_7 xs dir AN)
67 w1_7 ((x,y,ET):xs) dir EN = (x,y,EN):(w1_7 xs dir EN)
68 w1_7 ((x,y,z):xs) dir last
69 | z==ET && findEnd xs ET == EN && dir /= AL
70 = (x,y,EN):(w1_7 xs dir EN)
71 | elem z [CS,ES,ET] = (x,y,ON):(w1_7 xs dir ON)
72 | otherwise = (x,y,z):(w1_7 xs dir z)
73
74 -- Process a run of weak characters W1 - W7
75 weak :: Run -> Run
76 weak (LL xs) = LL (w1_7 xs L N)
77 weak (LR xs) = LR (w1_7 xs L N)
78 weak (RL xs) = RL (w1_7 xs R N)
79 weak (RR xs) = RR (w1_7 xs R N)
80
81 -- Rules N1 - N2
82 n1_2 :: [[Level]] -> Bidi -> Bidi -> Bidi -> [Level]
83 n1_2 [] _ _ base = []
84 n1_2 (x:xs) sor eor base
85 | isLeft x = x ++ (n1_2 xs L eor base)
86 | isRight x = x ++ (n1_2 xs R eor base)
87 | isNeutral x && sor == R && (dir xs eor) == R
88 = (map (newBidi R) x) ++ (n1_2 xs R eor base)
89 | isNeutral x && sor == L && (dir xs eor) == L
90 = (map (newBidi L) x) ++ (n1_2 xs L eor base)
91 | isNeutral x =
92 (map (newBidi base) x) ++ (n1_2 xs sor eor base)
93 | otherwise = x ++ (n1_2 xs sor eor base)
94

203

95 -- Process a run of neutral characters N1 - N2
96 neutral :: Run -> Run
97 neutral (LL xs) = LL (n1_2 (groupBy neutralEql xs) L L L)
98 neutral (LR xs) = LR (n1_2 (groupBy neutralEql xs) L R L)
99 neutral (RL xs) = RL (n1_2 (groupBy neutralEql xs) R L R)
100 neutral (RR xs) = RR (n1_2 (groupBy neutralEql xs) R R R)
101
102
103 -- Rule I1, I2
104 i1_2 :: [[Level]] -> Bidi -> [Level]
105 i1_2 [] _ = []
106 i1_2 ((x:xs):ys) dir
107 | attrib x == R && dir == L
108 = (map (newLevel 1) (x:xs)) ++ (i1_2 ys L)
109 | elem (attrib x) [AN,EN] && dir == L
110 = (map (newLevel 2) (x:xs)) ++ (i1_2 ys L)
111 | elem (attrib x) [L,AN,EN] && dir == R
112 = (map (newLevel 1) (x:xs)) ++ (i1_2 ys R)
113 i1_2 (x:xs) dir = x ++ (i1_2 xs dir)
114
115 -- Process a run of implicit characters I1 - I2
116 implicit :: Run -> Run
117 implicit (LL xs) = LL (i1_2 (groupBy bidiEql xs) L)
118 implicit (LR xs) = LR (i1_2 (groupBy bidiEql xs) L)
119 implicit (RL xs) = RL (i1_2 (groupBy bidiEql xs) R)
120 implicit (RR xs) = RR (i1_2 (groupBy bidiEql xs) R)
121
122 -- If a run is odd (L) then reverse the characters
123 reverseRun :: [Level] -> [Level]
124 reverseRun [] = []
125 reverseRun (x:xs)
126 | even (level x) = x:xs
127 | otherwise = reverse (x:xs)
128
129 reverseLevels :: [[Level]] -> [[Level]] -> Int -> [[Level]]
130 reverseLevels w [] _ = w
131 reverseLevels w (x:xs) a = if (level (head x)) >= a
132 then reverseLevels (x:w) xs a
133 else w ++ [x] ++ (reverseLevels [] xs a)
134
135 -- Rule L2 Reorder
136 reorder:: [Run] -> Bidi -> [[Level]]
137 reorder xs base = foldl (reverseLevels []) runs levels
138 where
139 flat = concat (map toLevel xs)
140 runs = map reverseRun (groupBy levelEql flat)
141 levels = getLevels runs
142
143

204

144 -- Rule L4 Mirrors
145 mirror:: [Level] -> [Level]
146 mirror [] = []
147 mirror ((x,y,R):xs) = case getMirror y of
148 Nothing -> (x,y,R):(mirror xs)
149 Just a -> (x,a,R):(mirror xs)
150 mirror (x:xs) = x:(mirror xs)
151
152 logicalToDisplay :: [Attributed] -> [Utf-32]
153 logicalToDisplay attribs
154 =let baseLevel = p2_3 attribs in
155 let baseDir = (if odd baseLevel then R else L) in
156 let x = explicit baseLevel attribs in
157 let w = map weak x in
158 let n = map neutral w in
159 let i = map implicit n in
160 map character (mirror (concat (reorder i baseDir)))

205

Appendix B

1 -- Unicode metadata tags
2 dirL = map intToWord32 [0xe0044,0xe0049,0xe0052,0xe0002,0xe004c,0xe0001]
3 dirR = map intToWord32 [0xe0044,0xe004c,0xe0052,0xe0002,0xe0052,0xe0001]
4 dirEnd = map intToWord32 [0xe007f,0xe0044,0xe0049,0xe0052,0xe0001]
5 parL = map intToWord32 [0xe0050,0xe0041,0xe0052,0xe0002,0xe004c,0xe0001]
6 parR = map intToWord32 [0xe0050,0xe0041,0xe0052,0xe0002,0xe0052,0xe0001]
7 parEnd = map intToWord32 [0xe007f,0xe0050,0xe0041,0xe0052,0xe0001]
8
9 -- Mark the level with the bidi tags
10 tagLevel :: Int -> [Level] -> [Ucs4]
11 tagLevel _ [] = []
12 tagLevel level ((x,y,z):xs)
13 | level /= x && even x
14 = dirL ++ (map character ((x,y,z):xs)) ++ dirEnd
15 | level /= x && odd x
16 = dirR ++ (map character ((x,y,z):xs)) ++ dirEnd
17 | otherwise
18 = map character ((x,y,z):xs)
19
20 -- Mark the run with the bidi tags
21 tagRun :: Int -> Run -> [Ucs4]
22 tagRun z (LL xs) = parL ++ concat (map (tagLevel z)
23 (groupBy levelEql (mirror xs))) ++ parEnd
24 tagRun z (LR xs) = parL ++ concat (map (tagLevel z)
25 (groupBy levelEql (mirror xs))) ++ parEnd
26 tagRun z (RL xs) = parR ++ concat (map (tagLevel z)
27 (groupBy levelEql (mirror xs))) ++ parEnd
28 tagRun z (RR xs) = parR ++ concat (map (tagLevel z)
29 (groupBy levelEql (mirror xs))) ++ parEnd
30
31 -- Insert mirror tags
32 mirror :: [Level] -> [Level]
33 mirror [] = []
34 mirror ((x,y,R):xs)
35 | isMirrored y
36 = (x,0xe004d,R):(x,0xe0049,R):(x,0xe0052,R):(x,y,R)
37 : mirror xs
38 | otherwise = (x,y,R) : (mirror xs)
39 mirror (x:xs) = x : (mirror xs)

206

Appendix C

1 import java.util.*;
2 import java.io.*;
3
4 public class UniMeta {
5 BufferedReader dataIn;
6 String dirL = "\udb40\udc44\udb40\udc49\udb40\udc52\udb40\udc02\udb40\udc4c" +
7 "\udb40\udc01";
8 dirR = "\udb40\udc44\udb40\udc49\udb40\udc52\udb40\udc02\udb40\udc52" +
9 "\udb40\udc01";
10 dirEnd = "\udb40\udc7f\udb40\udc44\udb40\udc49\udb40\udc52\udb40\udc01";
11 parL = “\udb40\udc50\udb40\udc41\udb40\udc52\udb40\udc02\udb40\udc4c” +
12 “\udb40\udc01”;
13 parR = “\udb40\udc50\udb40\udc41\udb40\udc52\udb40\udc02\udb40\udc52” +
14 “\udb40\udc01”;
15 parEnd = "\udb40\udc7f\udb40\udc50\udb40\udc41\udb40\udc52\udb40\udc01";
16 mirror = "\udb40\udc4d\udb40\udc49\udb40\udc52";
17
18 String lBDO = "<bdo dir=\"ltr\">",
19 rBDO = "<bdo dir=\"rtl\">",
20 lP = "<p dir=\”ltr\”>",
21 rP = “<p dir=\”rtl\”>”,
22 endP = "</p>",
23 endBDO ="</bdo>";
24 // Open the input file
25 public UniMeta(String in) {
26 try {
27 FileInputStream fileIn = new FileInputStream(in);
28 InputStreamReader str =
29 new InputStreamReader(fileIn, "UTF8");
30 dataIn = new BufferedReader(str);
31 }
32 catch (Exception e) {
33 System.out.println("Error opening file " + in);
34 return;
35 }
36 }
37 // Replace the unicode meta tags with HTML tags
38 private String replace(String in) {
39 StringBuffer out = new StringBuffer();
40 int i = 0;
41 while(i < in.length()) {
42 if (in.startsWith(parL, i)) {
43 out.append(lP+lBDO);
44 i += parL.length();
45 }

207

46 else if (in.startsWith(parR, i)) {
47 out.append(rP+rBDO);
48 i += parR.length();
49 }
50 else if (in.startsWith(dirL, i)) {
51 out.append(lBDO);
52 i += dirL.length();
53 }
54 else if (in.startsWith(dirR, i)) {
55 out.append(rBDO);
56 i += dirR.length();
57 }
58 else if (in.startsWith(dirEnd, i)) {
59 out.append(endBDO);
60 i += dirEnd.length();
61 }
62 else if (in.startsWith(parEnd, i)) {
63 out.append(endBDO+endP);
64 i += parEnd.length();
65 }
66 else if (in.startsWith(mirror, i)) {
67 i += mirror.length();
68 }
69 else {
70 out.append(in.charAt(i));
71 ++i;
72 }
73 }
74 return (out.toString());
75 }
76
77 // Process the input stream, generate output to stdio
78 public void parse() {
79 String in = null;
80 System.out.println("<html>");
81 try {
82 while ((in = dataIn.readLine()) != null) {
83 System.out.println(replace(in));
84 }
85 }
86 catch(Exception e) {
87 System.out.println("Error parsing file");
88 return;
89 }
90 System.out.println("</html>");
91 }
92
93
94

208

95 public static void main(String[] args) {
96 UniMeta input = new UniMeta(args[0]);
97 input.parse();
98 }
99 }

209

Appendix D

1 module Metacode where
2
3 import Unicode
4 import Word
5
6 type MetaChar = Ucs4
7
8 listFilter :: Eq a => (a -> Bool) -> [a] -> [a]
9 listFilter _ [] = []
10 listFilter f (x:xs) = if f x then listFilter f xs else x:(listFilter f xs)
11
12 listEqual :: Eq a => [a] -> [a] -> Bool
13 listEqual [] [] = True
14 listEqual [] _ = False
15 listEqual _ [] = False
16 listEqual (x:xs) (y:ys) = if x == y then listEqual xs ys else False
17
18 isMetadata :: MetaChar -> Bool
19 isMetadata x
20 | x >= 0xe0000 && x <= 0xe007f = True
21 | otherwise = False
22
23 byteEquivalent :: [Word8] -> [Word8] -> Bool
24 byteEquivalent xs ys = listEqual xs ys
25
26 codePointEquivalent :: [MetaChar] -> [MetaChar] -> Bool
27 codePointEquivalent xs ys = listEqual xs ys
28
29 contentEquivalent :: [MetaChar] -> [MetaChar] -> Bool
30 contentEquivalent xs ys
31 = let fxs = listFilter isMetadata xs
32 fys = listFilter isMetadata ys in
33 codePointEquivalent fxs fys

