A Framework for Multilingual Information Processing

by

Steven Edward Atkin

Bachelor of Science
Physics
State University of New York, Stony Brook
1989

Master of Science
in Computer Science
Florida Institute of Technology
1994

A dissertation
submitted to the College of Engineering at
Florida Institute of Technology
in partia fulfillment of the requirements
for the degree of

Doctor of Philosophy
in
Computer Science

Melbourne, Florida
December, 2001

We the undersigned committee hereby recommend
that the attached document be accepted as fulfilling in
part the requirements for the degree of
Doctor of Philosophy of Computer Science

“A Framework for Multilingual Information Processing,”
adissertation by Steven Edward Atkin

Ryan Stansifer, Ph.D.
Associate Professor, Computer Science
Dissertation Advisor

Phil Bernhard, Ph.D.
Associate Professor, Computer Science

James Whittaker, Ph.D.
Associate Professor, Computer Science

Gary Howsell, Ph.D.
Professor, Mathematics

William Shoaff, Ph.D.
Associate Professor and Head, Computer Science

Abstract

Title: A Framework for Multilingual Information Processing
Author: Steven Edward Atkin
Major Advisor: Ryan Stansifer, Ph.D.

Recent and (continuing) rapid increases in computing power now enable
more of humankind’s written communication to be represented as digital data. The
most recent and obvious changes in multilingual information processing have been
the introduction of larger character sets encompassing more writing systems. Yet the
very richness of larger collections of characters has made the interpretation and pro-
cessing of text more difficult. The many competing motivations (satisfying the
needs of linguists, computer scientists, and typographers) for standardizing charac-
ter sets threaten the purpose of information processing: accurate and facile manipu-
lation of data. Existing character sets are constructed without a consistent strategy or
architecture. Complex algorithms and reports are necessary now to understand raw

streams of characters representing multilingual text.

We assert that information processing is an architectural problem and not
just a character set problem. We analyze several multilingual information process-
ing algorithms (e.g., bidirectional reordering and character normalization) and we
conclude that they are more dangerous than beneficial. The countless number of
unexpected interactions suggest a lack of a coherent architecture. We introduce
abstractions, novel mechanisms, and take the first steps towards organizing them
into anew architecture for multilingual information processing. We propose a multi-
layered architecture which we call Metacode where character sets appear in lower
layers and protocols and algorithms in higher layers. We recast bidirectional reor-

dering and character normalization in the Metacode framework.

Table of Contents

List Of FIQUIES ..ot e IX
Listof Tableso Xi
Acknowledgement Xiii
DediCaliONo Xiv
Chapter 1 Introduction.cu it e 1
1.1 ArchiteCture OVEIVIEW. . . . oo e e e e 3
1.2 Problem Statement.ot 5
1.3 Outline of DisSertation.o .ottt e e e 5
Chapter 2 SoftwareGlobalization............... 7
2.0 VIV BNV ettt et 7
2.2 TranSlation . . .o 9
2.3 International User INterfacest 10
231 Metaphors.o 10
232 GEOMEIIY . ot ittt 11
238 C0l0r. . ot 11
2.3 ICONS. . it 12
235 SOUN . ..ot 12
24 Cultural and Linguistic Formatting e 13
241 Numeric Formatting.ot 13
242 Dateand TimeFormatting.t e 14
243 Calendar SYystemS. . ..o 14
244 MEBSUIEIMENT . . .ottt e e 15
245 Collaling. . ..o oe e 15
2.4.6 Character ClassifiCation. e 16
247 LOCAIES. . ottt 17
25 Keyboard Input 17
26 FONIS. ..o 18
2.7 Character Coding SyStEmMS. oottt 20
Chapter 3 Character CodingSystems. 22
B L M. o 22
3.2 Character Encoding SChemes.o 24
3.3 EUropean ENCOUINGSottt e 24

3.3.1 ISO 7-bit Character ENCOdINGSo vt e e it 27

3.3.2 1SO 8-bit Character ENCOdINGS oo it 29
3.3.3 Vendor Specific Character ENcodings.ot 33
34 Japanese ENCOdINGSot 40
3.4.1 Personal Computer Encoding Method. i i 43
3.4.2 Extended Unix Code EncodingMethod, 45
3.4.3 Host Encoding Method 46
344 Internet ExchangeMethod. 47
345 Vendor SpecifiCENCOdINGSo i i 49
35 ChineseENCOOINGS.o v ottt e 50
3.5.1 PeoplesRepublicof China.o 51
352 Republicof China 53
3.5.3 Hong Kong Special AdministrativeRegion. 54
36 KOrean ENCOAINGS oottt e e e 55
361 SOUth KOMBaAottt e e e 55
36.2 NOMhKOrEa. ... 55
3.7 Vietnamese ENCOAINGS. . . . o .ottt 56
3.8 Multilingual ENCOAINGSo v vttt 57
3.8.1 Why Are Multilingual Encodings Necessary?., 57
3.8.2 Unicodeand ISO-10646.ottt e 59
3821 Historyof Unicode.o 60
3822 Goasof Unicode.o 60
3.8.23 Unicode' sPrinCiples 61
3.8.24 Differences Between Unicodeand ISO-10646c.ccovunn.. 62
3.8.25 Unicode€sOrganizationcouutii ittt 63
3.8.26 Unicode TransmisSioNFOrmMS.ot 67
3.8.3 Criticismof Unicodeco i e 68
3.8.3.1 ProblemsWith Character/Glyph Separation 69
3.8.3.2 Problems With Han Unification. i .. 69
3.8.3.3 1S0-8859-1 Compatibilitycoouuii 70
3834 EffiCienCyo 71
384 MudawwarsMuUlticode.o 71
3.84.1 Character SetsinMulticode.t 71
3.8.4.2 Character Set SwitchinginMulticode. 72
3.8.4.3 FocusonWritten Languageso oo it 73
3.8.44 ASCIlI/Unicode Compatibility 74
3.8.45 GlyphAssociationinMulticode i 74
385 TRON. .. 74
3851 TRON SingleByteCharacterCode. ... 75
3.85.2 TRON DoubleByteCharacterCode., 76
3853 Japanese TRON COOE . . .o v ottt ettt et e i i 76
386 EPICIST . . 7

3.8.6.1 EPICIST CoOEPOINtS.ottt e e e 78

3.8.6.2 EPICIST Character CodeSpace.ot e 78
3.8.6.3 Compatibility WithUnicode i 78
38.6.4 EpicVirtua Machine........... i 79
3.8.6.5 Using the Epic Virtual Machinefor Ancient Symbols 79
3.8.7 Current Direction of Multilingual Encodingscciiviien... 80
Chapter 4 Bidirectional Text, 81
41 NONLatin SCriptS. . oottt 82
411 Arabicand Hebrew SCriptsot t 83
4000 CUISIVE . o ettt e e 83
4112 POSHION. .\ttt e 84
4113 LiQaUMES. . . ottt et et e e 84
4004 MIiTOFING .o ottt e e e e e 85
4.1.2 MoNgolian SCriPt . . . oot 85
4.2 Bidirectional Layoutt e 86
421 Logical andDisplay Order. 86
4.2.2 Contextual Problems 87
4.2.3 DOmMain NameES. . ..ttt 88
424 Externa INteractionst 89
4241 LineBreaking.vvut it e 89
4242 GlyphMappingt e e 89
4.24.3 Behavioral OVEITideSot 0
425 Bidirectional EQiting 0
42,6 GOBIS ..o i it 90
4.3 Genera Solutionsto Bidirectional Layout. i 91
431 Forced Displayo a1
432 EXPHCI. oo 91
43,3 IMPliCit. .. e e 92
434 Implicit/EXPIICIE. ... e 92
4.4 Implicit/Explicit Bidirectional Algorithms o i 92
4.4.1 UnicodeBidirectional Algorithm. i 93
442 1BM Classesfor Unicode(ICU)andJava.coiiiinnnnnnnnnnnna. 93
4.4.3 Pretty Good Bidirectional Algorithm (PGBA) oo, A
4.4.4 Free Implementation of the Bidirectional Algorithm (FriBidi)................. 94
45 Evaluation of Bidirectional Layout Algorithms. 94
451 Testing Conventiont e 95
I I == B == 96
453 TeSt RESUIS ..ottt 100
4.6 Functional Approach to Bidirectional Layout. 102
4.6.1 Haskell Bidirectional Algorithm (HaBi) 103
4.6.1.1 HaBi SourceCodeot 106

Vi

46.1.2 Benefitsof HaBi.ottt e e 107

4.7 Problems With Bidirectional Layout Algorithms 108
4.7.1 Unicode Bidirectional Algorithm. i 109
4.7.2 Referencelmplementation.t e 110
A7.3 HaBi. ... e 110

4.8 Limitationsof Strategies . ..ot e 111
481 Metadata.o 111

Chapter 5 EnhancingPlain Text 112

5L MEtadata, . ..o vt 113
5.1.1 Historical Pergpective.t e 113

5.2 Unicode Character MOdel 116
521 TransmisSion Layerttt 117
522 CodePoint Layerot e e 117
5.2.3 Character/Control Layer.t 119
5.2.4 Character Property Layer.ot 120

5.3 Strategiesfor Capturing SEmMantiCSot 121
B3 XML 121
532 Language TagOingveuu ettt e e 123

5.3.21 Directional Propertiesof Language Tags. oo v 125
5.3.3 General UnicodeMetadata.t 126

5.4 ENcoding XML . ..o 130

5.5 NEW XML o e 134

5.6 TextElement 134

5.7 Metadataand Bidirectiona Inferencing. i 138

5.7.01 HTML and Bidirectional Tags. vvtitii i 142

58 New ArchiteCture. 143

Chapter 6 Metacodet 144

6.1 Metacode ArChiteCture. o 144

6.2 Metacode ComparedtoUnicode.t e e 147
6.2.1 TransmisSiON Layerottt e 147
6.2.2 CodePOiNt Layerttt e 147
6.2.3 Character Layer e 148

6.2.3.1 Combining CharaCtersot e e 148
6.2.3.2 GlyphVariants. e e 152
6.2.3.3 Control COES.ottt 153
6.2.34 Metadata Tag CharaCters oottt i 155
6.2.4 Character Property Layer. e e 155
6.25 TagDefinitionLayer ... 157
6.26 Metacode CONVEISION.ottt e ettt 158

Vii

B.2.7 CONMteNt Layer. . ..o 162

6.3 DataEquivalence. 162
6.3.1 UnicodeNormalizationt 162
6.3.1.1 UnicodeNormal FOrmMS 163
6.3.1.2 Unicode Normalization Algorithm. i i, 166
6.3.1.3 Problemswith Unicode Normalizationt 168
6.3.2 DataEquivalenceinMetacode. i 171
6.3.3 Simulating Unicodein Metacode.ot 174
6.4 CodePointsvs. Metadata.t 175
6.4.1 Metacode PrinCiples.ot 175
6.4.2 Applying Metacode HEUrStiCS. oo 176
6.4.2.1 Natural languagetextt 176
6.4.22 MahematiCs. 177
6.4.23 DanCenotationt 178

6.5 Benefitsof Metacode. o 180
Chapter 7 ConClUSIONSo e 182
T.1 SUMMANY .ottt e e e et e e e e e e e e e e 182
7.2 CONtribULIONSt e 184
7.3 LIMItations. . ..o oo e 188
T4 FUUrEWOTK . . o 188
REf B ENCES. . .. 190
APPENAIX A 201
ApPPeNdixX B ... 205
APPENdIX C .o 206
APPENdiX Do 209

viii

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.

List of Figures

USING MELAPNOIS ..ot ene st sre s snenen 11
MaCintosh trash Can ICONeoeieeree e 12
BritiSh POSE DOX.....ceiieeieiieeeeecee e e s 12
French in France and French in Canada..........ccocoveoernieinnienecee e 16
Character to glyph Mappingcccvverereeereere e 19
Contextual gIYPNS.coeiiree s 19
Japanese furigana CharaCters ... e 19
ASCIH BNCOAING ...ttt et e ene s 25
[SO-8859-1 €NCOAING -....eeuveeeeeeeiieieeeete st 31
[SO-8859-7 €NCOUING ..ottt et 32
EBCDIC €NCOUING. ... e teereeiirieirie ettt ettt s 35
IBM 8B50......cueuieeireeieresereeteeseseeteseneseseesesesesestesenesessesenssessssssenesessesesensessssenees 37
WINAOWS 1252......eeie ettt et st ene s 39
Japanese Kanji CharaCters..........couiiiinene e 40
Japanese Katakana CharaCters.........oooiiviieiereceneeereee e 41
Japanese Hiragana CharaClerS. nneseseee e 41

Mixed DBCS and SBCS CharaCtersccoeereereeineinee e 44

JIS X0212 PC €NCOUING.....cueiviririirinieririe ettt 45

BEUC ENCOOING -...veviieieieste ettt s nne s 46

[SO-2022 €NCOUING. ... eeveeeiesieiereeee ittt see st e e se e be e e 48

[SO-2022-JP €NCOAING. .. +cveueereeneeeriieeeieee sttt see e e seese e sbe e sae s 49

FOrms of UCS-4 @and UCS-2........ccouiririieiieeeee et 63

UNICOOE [@YOUL........oeviriiiiciirie et 65

SUITOQELE CONVEISION ...ttt ettt sttt bbb bbb st 66

Character set switching in MUltiCode...........ocooiieieinieinne e 73

TRON single byte character code..........cooevinnrininii e 75

TRON double byte character Code ... 77
TUNISIAN NEWSPAPES ...ttt eb et b e bbbt se et sb e s en s 81
AMDIGUOUS TAYOUL ..ottt e e 87
RENAENING NUMDEIS....c..oiiiiriie ettt 87
Using a hyphen minusin adomain NamE..........cccoreererienenienieseesie e 88
Using afull-stop in @domain NAME...........ccceererereniene e 89
Input and output of Haskell Bidirectional Reference...........cccocvvvvienennen. 104
DAATIOW ..ttt 105
Using LTRS and FIGS in Baudot Code............coevvrereireenieceereeenns 114
1SO-2022 €SCAPE SEQUENCEScoveeiueenreieeneeressessesresreseessessessesesseesessessesressenes 116
Unicode Character MOGEL ... 117
Compatibility NOrmalization...........ccccceveeceeiiiiee e 123
(=T aT0 (0= 0 (< = o RS RR 124
Error in bidirectional ProCESSINGcovvueririeiireineere e 126
Error in 1anguage taggingcoeereeereeienieirieieneee s 126
Regular expressionS for tags........ooee e 129

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 6-1.

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 6-6.

Figure 6-7.

Figure 6-8.

Figure 6-9.

Figure 6-10.
Figure 6-11.
Figure 6-12.
Figure 6-13.
Figure 6-14.
Figure 6-15.
Figure 6-16.
Figure 6-17.
Figure 6-18.
Figure 6-19.
Figure 6-20.
Figure 6-21.
Figure 6-22.

Regular expression for text Stream.........ccovvvcerereeerneee e 129
SAMPIETAG -ttt et ee b e e 130
Alternative 1anguage tag.........ccoevererererienie et 130
SAMPIE XML COUE.....eineiitireeteeere ettt s e 131
Sample XML code encoded in metadata..........ccocevevveeeceneecenesesesee e, 133
CombiNiNG CharaCterS........ccvvvveiires e et neas 135
JONNENS....ceieesreeeee ettt 137
ELM T80ttt 137
Mapping from display order to logical orderccocoievenreeireeincnene 139
EXample OULPUL SEFEAIMcue ettt 140
MathematiCal EXPreSSION........coueuerieirieirieereese e 141
BDO tag SYNEBX ...ccuvveeuieieeierieeiesresie s er s s r e s snn 142
Using HTML bidirectional tags..........ccooererieienieieeieesiere e 142

NEW TeXt FramMEWOIKcoeiieeeieieereeirt e 145

Combining character ProtOCOIccierirereneeereeee e 149

Ligature PrOtOCOLcccoviveeeirieierieie ettt e e 153

SPACING PrOtOCOeeveecieeeieeeeree e e e 155

INEENWOVEN PIrOLOCOIS.......ecviiecie et 158

Metacode code POiNt ProtOCOIcoveeeeriereeiireriereeere e e 159

1S0O-2022 escape sequence in MetaCode..........coeveeerireeienere e 161

NON iNteraCting diaCritiCScoveoeerererere e s 163

Compatibility eqUIVAIENCE..........ccorreeieeee e 163
ConVersioN tO NFKD ..o 167
ConVErsioN tONFD ..o 168
Protocol iNTEraCtionccoveoereeerieireree s 169
Datamanglingcoeeeereeeeiereee ettt e e 170
Question Exclamation Mark..........ccccevveveneeieene e 174
Metadata Question Exclamation Mark..........ccceevevverenenieneneeneeeniesnenens 174
Simulating Unicode normaliZation............cccoeeveenensenesenesense e 175
Egyptian hieroglyphic phonogram ... 177
Egyptian hieroglyphic ideographcoeoeeirienininineerese e 177
Mathematical ChaIraCLErS.........cvvrviereeree e 178
Action Stroke Dance NOLatioN..........ccveereereeneesees s 179
Action Stroke Dance Notation with movement...........cccccvvvinvinneninns 180
Metacode Action Stroke Dance Notation tag..........cocevveeereeriencsensienenns 180

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.

Table 6-10.
Table 6-11.
Table 6-12.
Table 6-13.
Table 6-14.

List of Tables

ASCI CONLIOI COUES......cvriireeereeire et 25
[SO Variant CharaCterS.........cceirereririesieie e st e e 28
French version of 1SO-646..........c.ccoiiiierineie e 28
[SO-8859 [BYOULcueeeieeierireeteiee ettt b e e bbb e sn e 30
[SO-8859 SLANAAITS.......cvveeererrereeireresreeieses e 33
EBCDIC IQYOULecueieeieeeeiieieieeteeceteeete ettt sttt 34
IBM PC COUE PAJES. ...evevereerireeiesiee sttt sttt st sttt s 36
WiNCAOWS COUE PAJES.cveueeeenierereeieeieete ettt s 38
JIS character StAaNAards...........cooeverieeeieeeceee e e s 43

[SO-2022-JP €SCAPE SEUENCES........eeueererieereeresressessesressesresessesseseeseesesseenennes 49

VENAOr ENCOTINGScveeerereeerieirieereeee et se e seens 49

(€123 1= 110 0 53

TaAWANESE StANAAITS.coueeierieierierie et 54

Unicode code POINt SECLIONScoccrveririeririere e er e 64

UTF=8. ettt bbb et et 68

Unicode transformation fOrMatScouerveveereriesesise e e see s ee e 68
Bidirectional character mappings for teStingccoevevrernernierse e 95
Arabic CharmMap tESES......oii e e 96
Hebrew charmap tESEScoiiiiie e e 97
Mixed CharmMap tESEScoeeirieieree et e e 98
EXPlICIt OVETIAE tESES. ... ettt e 99
ArabiC test AiIffEreNCES......cveveececece e e 100
Hebrew test diffEreNCeS.......ccvvieiicee s 101
Mixed test diIffEreNCES.......ccvevrerere e 101
Problem CharaCtersS..........ocovririeieeeee e 119
CharaCter PrOperties........ccoeveiirerie ettt e 120
Tag ChArBCLEIS. ...ttt e e e e 128
Other text elemMENE tAGSveoveveeeieeeeet e 138
Excluded Unicode combining CharaCters..........ccoeveereeneeneeseeseesie s 150
Redefined Unicode combining charaCters...........coovovnienninnennensee 150
Unicode glyph COMPOSITES.......ccueuerieieireeirierie et 153
Unicode Spacing CharaCters........coeeerererierese et s 154
Metacode tag CharaClerS..........ceieiieciecere et st e 155
Metacode charaCter Properties.......c.covveereerieienesereee e 156
Metacode Case Property VAIUESco.evreieeireeseeeie et 156
Metacode script direction property VAalUES.........c.ceveereenneneeneeseesieens 156
Metacode code point ValUE ProPErtYccvecerereeiiesieesieese e seesseere e e ens 156

Metacode tag property VAIUESccvcveeiieeere et 156

V= T g o 0] (oo K= 158

Converting deprecated Unicode code pointsto Metacode............cccevenee. 159

NOrmMaliZation FOMMSc.ooiee et 164

The string “flambé’ ..o 166

Xi

Table6-15. The string “flambé’ in Metacode

Xii

Acknowledgement

There is one person above all others who deserves my sincerest thanks and
respect for his continuous support during the writing of this dissertation: my advisor,

Dr. Ryan Stansifer. | could not have completed it without him.

There are many other people who contributed to this dissertation in many
ways. First, | would like to thank my colleague, Mr. Ray Venditti, for securing my
funding at IBM. He made the impossible possible. Second, my committee, Dr. Phil
Bernhard, Dr. James Whittaker, and Dr. Gary Howell. They fostered a stress-free
working relationship which was critical to the completion of this dissertation. Third,
my uncle, Dr. Jeffrey Title for al the hours of consultation, comments, and late
nights. Lastly, Dr. Phil Chan for hisinvaluable suggestions.

Xiii

Dedication

To my wife Sevim
To my Parents

To my Aunt and Uncle

Xiv

1Introduction

Computers process information in many natural languages. We call multilin-
gual information processing the manipulation and storage of natural language text.
We exclude symbolic, numeric, and scientific information processing. Natural lan-
guage text is composed of characters. We employ discrete and finite sets of charac-
ters in computers to capture text. Assigning different kinds of characters yields
different kinds of text. Current information processing methods, cobbled together
over time, capture natural language text imperfectly in information systems dueto an
over reliance on rigid character sets (such as, ASCII and EBCDIC). This dissertation
is directed towards identifying and correcting existing challenges and imperfections

in multilingual information processing.

The need for extremely accurate and elegant multilingual information pro-
cessing has become pressing as the preponderance of data processing tasks change
from almost exclusively numerical to increasingly text oriented. The world commu-
nity increasingly depends on written natural language text. E-mail has become a stan-
dard for messaging within and between companies and governments and among

millions (perhaps billions) of individuals throughout the world.

For the most part, the information stored in computers codifies mankind’s
writing (as opposed to other communication like art, music, speech, etc.) In thisdis-
sertation we are concerned exclusively with text — the text that representsthewriting
systems of the world. Because natural language writing systems are diverse we have
information processing challenges and limitations. We are not likely to soon solveall

the difficulties presented. This dissertation will address the challenges and

limitations inherent in the diverse and complex multilingual environment. We pro-
pose a comprehensive plan for fundamental improvements in the conceptualization
and implementation of a more effective approach to multilingual information pro-

cessing.

Multilingual information processing, to date, has largely been centered
around expanding and consolidating character sets. This character set centric
approach enables software developers to merge text files comprised from disparate
character sets, hopefully reducing the complexity and cost of text processing. This
oversimplified strategy has added significant problems for the designers of multilin-
gual software.

In the character set centric approach text processing is viewed as a display
oriented activity. This has resulted in the creation of character sets which maintain
distinctions only for the sake of appearance or convenience of presentation. This
bias towards display makes it more difficult to use character data for purposes other
than presentation. Digital information becomes hidden or lost without a clear and

unique choice for representing multilingual text.

In this dissertation we demonstrate that the character set centric perspective
isrestrictive, myopic, inconsistent, and clumsy. Character sets play arole, but cannot
by themselves solve multilingual information processing problems. A subtle para-
digm shift which we delineate in this dissertation allows a more natural solution to
information processing. In our view information processing is best approached as an
architectural problem. We introduce abstractions, general algorithms, novel mecha-
nisms, and take the first steps towards organizing them into a new architecture for

multilingual information processing.

In our architectureroles and responsibilities are clearly separated, fundamen-
tal abstractions are insulated from change. This separation goes to the heart of our

approach. By using the correct abstractions the common tasks only need to be written

once — correctly and cleanly. Additional applications can be built from this well
defined set and achieve more functionality. Writing systems that have been given
little attention can be accommodated without harmful interactions. Improvements of
fidelity can happen without endless tinkering. It has been and will continue to be a
continuous struggl e to capture language more perfectly, even English. It isthe nature
of living languages to grow and evolve new forms. Change will inevitably happen.
With the appropriate abstractions we minimize the potential trouble of adapting to

these changes.

Higher-level mechanisms, such as XML -like technologies, offer asolution to
some of the problems we attack. In several cases we show how to make use of these
mechanisms to solve multilingual information processing problems. We show that
there are limitations, however. Higher-level (XML-like protocols) and lower-level
(character sets) mechanisms often attack the same problem independently and from
different directions. This leads to redundant, overlapping, conflicting, and ill-suited
solutions. These mechanisms are twisted into rolesfor which they are not suited. This
strategy is an uncoordinated attack on a general problem. Our architecture provides

aclearer division of roles and responsibilities.

We acknowledge that it is not easy to switch directionsin the development of
multilingual information processing. We believe that there is a practical migration
path and from time to time we point out how this can be facilitated. In fact, the
changes we recommend to existing standards to accomplish our new approach are
relatively small.

1.1 Architecture Overview

In this dissertation we decompose multilingual information processing into
its main components. We approach the design of an architecture for multilingual
information processing from a ground-up strategy. In our architecture we develop

stackable layers which are similar to the layers found in networking architectures.

Each layer builds upon the abstraction of the prior lower layer. The various aspects
common to writing systems are dissected and layered. These layers are used to con-
struct an architecture for multilingual information processing. The number of archi-
tectural layersislarge enough to allow for a clean separation of responsibilities, but
not so small as to group unrelated functions together out of necessity. Each layer in
our architecture serves awell defined purpose with clear and simple interfaces. This
dissertation describesthese architectural layers and establishes rel ationshi ps between

them.

In our framework we incorporate character sets, protocols and algorithms.
Just like the character set centric view, we also use characters for representing text.
In the character set centric view great emphasis is placed on viewing and printing
text. This has resulted in the creation of character sets maintaining distinctions that
are founded not in meaning, but only in appearance, ultimately leading to solutions
that favor presentation, rather than content. In contrast to the character set centric

view charactersin our architecture are distinguished by their underlying meaning.

We acknowledge that at timesit may be necessary and useful to maintain dis-
tinctions based on appearance. Our architecture alows a focus on content without
sacrificing display. However, we depart from the usual mechanisms of the character
set centric approach and rely instead on higher-order protocols to capture this infor-

mation.

In some cases information processing algorithms require information over
and above the individual characters, for example; language information, line break-
ing, and non-breaking spaces. In the character set centric model such control infor-
mation is coerced into characters. In many cases this has occurred in an ad-hoc
haphazard way |eading to character setswith confusing semantics. In our architecture
we fix this problem through the use of well defined protocolsto capture more of the

underlying structure of text than is possible with character sets alone.

In this dissertation we are not specifically concerned with the definition of
text protocols, rather we aim to develop a flexible, open, and extensible mechanism
for their definition. We propose a multi-layered architecture where character sets
appear in lower layers, and protocols and agorithms are in the higher layers. Our
architecture isflexible— it is unnecessary to make character set changes as new pro-
tocols are adopted. The architecture is open — there is no limit to the number
of possible protocols. Protocols in our architecture are extensible — numerous pro-

tocols can be interwoven without ill-effect.

In the character set centric model general purpose information processing
algorithms are difficult to write, because of confusing character semantics and the
overall biastowards display. Our architecture has no such bias and confusing seman-
tics. Therefore, it iseasier to construct general purpose information processing algo-
rithms. In our architecture we provide a core set of general purpose algorithms that

we believe are crucia for multilingual information processing.

1.2 Problem Satement
We seek to define and organize the primary components for multilingual
information processing that unambiguously separates content, display and control

information.

1.3 Outline of Dissertation

Chapter 2 describes the overall field of software globalization. We introduce
the concepts of internationalization, localization, and translation. We concentrate on
the problems encountered during the creation of multilingual software. In particular,
welook at user interface, cultural formatting, keyboard input, and character set prob-

lems.

Chapter 3 presents an in depth analysis of character sets and character coding

systems. We start the chapter by introducing and defining the relevant terms related

to character coding systems. We describe in detail severa monolingual character
character setsthat cover both ideographic and syllabic scripts. We conclude the chap-

ter with an examination of multilingual character coding systems.

Chapter 4 considers multilingual character coding problems. We examine the
trouble caused when Arabic and English text are mixed in an information processing
environment. Thismixed text is called bidirectional text — text with characters writ-
ten left-to-right and right-to-left. We examine severa strategies for processing and
displaying bidirectional text. We find the existing strategies inadequate, presenting

evidence that the underlying character set centric model is insufficient.

Chapter 5 explores several strategies for addressing the shortcomings of the
character set centric model. In particular, we look at using metadata (data describing
data) to describe more of the underlying structure of scripts. We look at XML as a
metadata model for multilingual information processing, but find it unsuitable. We
define our own general metadata model, presenting evidence of its suitability for
multilingual information processing. In demonstrating the features of our metadata
model we return to the bidirectional text problem. We find that the general metadata

model allows for a general reorganization of multilingual information processing.

Chapter 6 introduces our multilingual information processing architecture.
Our architecture incorporates character sets, metadata, and core protocols, providing
an overall framework for multilingual information processing. We call this architec-
ture Metacode. To demonstrate the features of our architecture we use several writing
systems as examples. We conclude by summarizing the benefits our architecture pro-

vides.

Chapter 7 discusses our contributions, limitations, and future work.

2 Softwar e Globalization

Software globalization is concerned with the application of practicesand pro-
cesses to make a software product usable throughout the world. The term globaliza-
tion refers to the whole process starting from an internationalized version of an
application through the production of multiple localized versions of it. The three
terms internationalization, localization, and trandation broadly define the various
subdisciplines of software globalization. Software globalization builds upon interna-
tionalization, localization, and translation. In this dissertation we define inter nation-
alization as the process of creating cultural and language neutral software. The term
localization refers to the process of adapting a software product to a specific culture
and language. The term trandlation is defined as the process of converting human

readabl e text from one language into another. [55]

Throughout this chapter we discuss the primary subdisciplines that make up
the field of software globalization. In each subdiscipline we outline the principle
issues and current trends. The software globalization areais arelatively new field of

study, and as we will see the boundaries of the field are still open to debate.

2.1 Overview

Unlike, other research areas of computer science, software globalization has
arisen not from academia, but rather from industry. We argue that this industrial
movement has occurred for the following reasons. increasing user expectations,
proliferation of distributed computing, explosive software devel opment costs, com-

pounding maintenance outlays, and governmental requirements.

The market for computing in the 1950’ sand early 1960’ swas not home users,
but rather large institutions (banking, industrial, governmental, and research). In
many cases computing at these large institutions was primarily for the purposes of
number crunching. Therefore, linguistic/cultural support was not a strong require-
ment. In fact, even English was not fully supported (lower case characters do not
appear until 1967). Moreover, if asystem did provide additional linguistic support it
was usually alanguage that could be represented using the Latin script.

In the late 1970’ s we see adramatic shift in computing from number crunch-
ing to information processing. This shift, coupled with the advent of personal com-
puting in the 1980's, caused user expectations to rise. It was no longer possible to
ingist that users conform to the computer/software, but rather software must adapt to
the user, making linguistic/cultural support amust. Most commercial software during
this time period was devel oped within the United States, so devel opment teams had
little experience with linguistic/cultural issues. Support for other languages/cultures
was viewed as customization/translation and not as part of main line development.
This customization/translation activity was farmed out to another organization within
the company or an outside localization firm. Therefore, software development/deliv-
ery became staged. By staged we mean, first the US version would be delivered fol-
lowed by various language versions. This overal strategy caused software
development costs to explode. [29],[61],[85]

The ever increasing costs can be attributed to two factors. First, customiza-
tion, in reality, requires more than just translation, because in many cases the source
code itself required modification. In some cases source modifications were incom-
patible with changes made for other languages. It became necessary to maintain sep-
arate source lines for the individual languages, further increasing development costs.
Maintaining these separate source lines had a rippling effect throughout the entire
software development process. Its effects were most strongly felt during mainte-

nance, because in many cases corrective fixes could not be applied universally across

the various|anguage versions. Multiple fixes would be created, further increasing the

overall software development cost. [61],[85]

The multiple source line development strategy had a direct impact upon cus-
tomers, in particular large multinational customers. Most multinational customers
wanted the ability to simultaneously roll out multiple language software solutions
across their entire corporation. This was difficult to achieve, because of the staged
development/delivery method in effect at the time. Each specific language version
was based upon a different source line, thereby requiring the customer to repeat the
entire certification processfor each language. By thelate 1980’ sthis strategy became
crippling as costs sky rocketed. [70]

A strong push from multiple source line development to single source line
development was undertaken in the 1990's. It is at this point in time that we see the
beginnings of internationalization and localization. It was amove in the right direc-
tion, but the internationalization problem turned out to involve alot more factorsthan
simply trandating and converging multiple source lines. In the sections below we
explorethesefactors, which in turn form the six individual sub fields of software glo-
balization: Trandation, International User Interfaces, Cultura/Linguistic Format-

ting, Keyboard Input, Fonts, and Character Coding Systems.

2.2 Trandation

Naturally, a software system must be transated into the user’s native lan-
guagefor it to be useful. At first it might seem that tranglating a programs message’s

and user interface elementsis arelatively simpletask. There are subtleties, however.

Literal trandations of text strings in applications without regard for human
factors principles may serve as a source for confusing or misleading user interfaces.
One such example comes form the Danish translation of MacPaint. One of the menus

in MacPaint is called “Goodies’ which is acceptable as the name of a menu in

English. The literal trandation of goodies in Danish is the word godter. Thisis a
proper trandlation, but has an entirely different connotation (mostly having to do with

candy), leading users to confusion. [8]

Trandation of user manuals must also be approached with caution. For exam-
ple, the following is a sample of an English trandlation from the preface of a printer

manual in Japanese:

“We sincerely expect that the PRINTER CI-600 will be appreciated
more than ever, in the fields of ‘data-transformation’ by means of
human-scale, and the subsequent result of ‘fluent metabolism’ as
regards the artificiadl mammoth creature-systematized information
within the up-to-date human society.”

Clearly this example demonstrates that the problem of trandlation is one of global

importance. [8]

2.3 International User Interfaces

Software must fit into the cultural context of the user. Internationalized appli-
cations should appear as if they were custom designed for each individual market.
Thisrequires a deep understanding of not only languages, but also of cultural norms,
taboos, and metaphors. [91],[8]

2.3.1 Metaphors

Just as metaphors permeate our everyday communication, so do they occur
throughout the interfaceswe use. It isthe use of metaphors that makes our interaction
with software seem more natural and intuitive. For example, the icons shown in
Figure 2-1. are from Lotus 1-2-3. The second icon, with somebody running, is
intended to let you “run” a macro [29]. The problem is that not everyone “runs’ a
macro. In France, for example, the metaphor isn’t running a macro it’s “throwing” a
macro. So using the metaphor of somebody running makes no sense for users in

France. What may seem natural to users in the United States may not appear to be

10

obvious to users in other markets. Therefore, as software is internationalized and

localized it isimperative that metaphors be tailored for each market just aslanguage
is. [25],[8]
2.3.2 Geometry

Even visual scanning patterns are culturally dependent. Studies with English

Figure 2-1. Using Metaphors

and Hebrew readers have demonstrated the existence of these differences. English
readers tend to start scanning an object from the left quadrant, while Hebrew readers
tend to scan from the right quadrant. This is probably due to the fact that each lan-
guage has a specific scanning direction (English left-to-right and Hebrew right-to-
left). This infers that the formatting and positioning of windows in an application
must also be tailored for each market. [1],[8]

2.3.3 Color

Thevaried use of color in everyday thingsis common. However, cultural dif-
ferences can affect the meanings attributed to color. For example, in the United States
the color red is often used to indicate danger, while in Chinathe color red represents
happiness. The color white in the United States represents hope and purity, however
in Japan the color white represents death. By using color correctly, interfaces can be
created where color can impart and reinforce information conveyed by other media,
such astext. [83],[91],[8]

11

2.3.41cons

The abundant use of icons in today’s graphical interfaces aims to provide a
more intuitive user interface by equating an underlying action or function to a sym-
bol. The seemingly ssmpletrashicon in the Macintosh interface seems at first to have
only one underlying meaning, disposing of files. See Figure 2-2. Nevertheless, in the
United Kingdom an entirely different meaning was ascribed to thisicon. It turned out
that the trash can icon resembled a British post box better than a British trash can,
creating confusion. See Figure 2-3. Therefore, even the style of icons is culturally
dependent. [37],[38],[81],[91].[8]

Figure 2-2. Macintosh trash can icon

Trash

Figure 2-3. British post box

2.3.5 Sound

Not only areicons culturally sensitive, but the use of soundisaswell. The use
of sound hasimproved the “ user-friendliness’ of applications by reinforcing visually
displayed messages. At first appearance this seemsto be culturally neutral, but Lotus
corporation discovered that this was not true. Lotus spent considerable time and
money to internationalize 1-2-3 for the Japanese market, but were dismayed to find
that 1-2-3 did not receive a favorable reception. Lotus was unaware that the smple

“error beep” present in 1-2-3 was a source of great discomfort for the Japanese. The

12

Japanese tend to work in highly crowded offices and are fearful of letting coworkers
know they are making mistakes. Hence it was only natural that the Japanese avoided
using 1-2-3 when they were at work. [91],[14]

The range of issues just described broadly defines the area of interest to the
international user interface community. The design of international user interfacesis
mostly viewed as a facet of localization. This is not a strict rule as there is some

amount of overlap with some of the other sub fields of globalization.

2.4 Cultural and Linguistic Formatting

Differences in notational conventions provide yet another area that must
undergo internationalization. For example, athough all countries have some form of
amonetary system, few countries agree on details such as the currency symbol and
the formatting of currency. Similarly, most people agree that time is measured by the
cycles of the earth and the moon, but the ubiquitous Gregorian calendar used in
Europe and North Americaisn’'t necessarily utilized all around the world. Such dif-
fering views require highly flexible software that can process and represent data for
a wide variety of cultures and languages. In the following paragraphs we discuss

some of the common issues surrounding cultural and linguistic formatting. [85]

2.4.1 Numeric Formatting

Most regions of the world adhere to Arabic numbers, where values are base
10. Problems arise when large and fractional numbers are used. In the United States,
the “radix” point (the character which separates the whole part of the number from
the fractional part) is the full-stop. Throughout most of Europe the radix point is a
comma. In the United States the comma is used as break for separating groups of
numbers. Europeans use single quotes to separate groups of numbers. In addition to
the problem of formatting numeric quantities, the interpretation of the values of num-

bers is aso culturaly sensitive. For example, in the United States a “billion” is

13

represented as athousand million (1,000,000,000), but in Europeabillionisamillion
million (1,000,000,000,000), which is a substantially larger quantity. [91],[8]

2.4.2 Date and Time Formatting

As numbers are culturally dependent so are dates. For example the date 11/1/
1993 isinterpreted as November 1st, 1993 in the United States, but throughout most
of Europe the date is interpreted as January 11th, 1993. On the surface this does not
seem to be adifficult problem to handle, but countriesthat use non-western calendars
(Japan, China, Israel, etc.) al have different ways of keeping track of the date. Just
like dates the expression of time is aso culturally dependent. For example, in the
United States time is based on a 12 hour time table, while other countries prefer a 24
hour system. [91],[8]

2.4.3 Calendar Systems

Many countries use the 12 month, 365 day Gregorian calendar and define Jan-
uary 1 asthefirst day of anew year. Many Islamic countries (e.g., Saudi Arabiaand
Egypt) also use a calendar with 12 months, but only 354 or 355 days. Because this
year is shorter than the Gregorian year, thefirst day of the Islamic year changesfrom
year to year on the Gregorian calendar. Therefore, the ISamic calendar has no con-

nection to the physical seasons. [75]

Israelis use the Hebrew calendar that has either 12 or 13 months, based upon
whether it is aleap year. Non leap years have 12 months and between 353 and 355
days. In aleap year, however, an extra thirteenth month is added. This extra month

allows the Hebrew calendar to stay synchronized with the seasons of the year. [75]

Determining the year also depends on the calendar system. For example, in
Japan two calendar systems are used Gregorian and Imperial. In the Imperial system
the year isbased on the number of yearsthe current emperor has been reigning. When

the emperor dies and a new emperor ascends the throne, a new era begins, and the

14

year count for that era begins. Furthermore, in Japan it is culturally unacceptable to
create a software calendar system that allows a user to reset the year to the beginning,

since thisimplies the imminent demise of the current emperor. [75],[14]

2.4.4 M easurement

Systems of measurement also vary throughout the world. For example, most
of Europe uses units of measurement that are based upon the MK S system (meters,
kilograms, and seconds), while in the United States measurement is based upon SI
units (inches, pounds, and seconds). Such differences need to be accounted for within
software systems. For example, a word processor should display its ruler in inches
when used in the United States, but should display its unitsin centimeters when used
in Europe. [91],[8]

2.4.5 Collating

Naturally, numeric datais not the only kind of datasubject to cultural and lin-
guigticinfluences. The ordering of words (character data) isdependent upon both lan-
guage and culture. Even in languages that use the same script system, collation orders
vary. In Spanish the character, sequence “cho” comes after “co”, because “ch” is col-

lated as a single character, while in English “cho” comes before “co”.

In many cases the sorting conventions used by Asian languages are more
complex than the sorting conventions of western languages. In Asian languagesideo-
graphic characters occur more frequently than alphabetic characters. The concepts
used in sorting al phabetic scripts are not necessarily applicableto ideographic scripts.
| deographic characters represent concepts and thus can be sorted in avariety of ways
(e.g., by phonetic representation, by the character’s base building block, or by the

number of strokes used to write the character).

15

2.4.6 Character Classification

In the development of internationalized software we often find it useful to
classify characters (e.g., aphabetic, uppercase, lowercase, numeric, etc.) because it
eases processing of character data. Different languages, however, may classify char-
acters differently. For example, in English only 52 characters are classified as alpha-
betic. Danish classifies 112 characters as alphabetic. [85]

Many languages have no concept of case (lowercase and uppercase). Lan-
guages based on Ideographic characters (e.g., Chinese, Japanese, and Korean) all
have a single case. This single case property can also be found in some phonetic
scripts (e.g., Arabic and Hebrew). [75]

Even languages that make case distinctions do not always use the same case
conversion rules. For example, in German the Eszett character “I3" is a lowercase
character that gets converted to two uppercase S's. Therefore, not every lowercase

character has a smple uppercase equivalent. [75]

In some situations even the same language may use different case conversion
rules. For example, in French when diacritic characters are converted from lowercase
to uppercase the diacritics are usually removed. On the other hand, in French Cana-
dian diacritics are retained during case conversion. See Figure 2-4. Therefore, know-

ing only the language does not guarantee proper case conversion. [75]

Figure 2-4. French in France and French in Canada

Diacritic retained Dhiacritic omitted
French French
{Canada) {France)

Elevit Elevit

16

2.4.7 Locales

The cultural and linguistic formatting information described above is gener-
ally captured as a collection of dataitems and algorithms. This repository of cultural
and linguistic formatting information is called alocale. Application developers use
locales to internationalize/localize software. Locales are usually supplied by operat-
ing systems and can be found in both PC systems (e.g., OS2, Unix, Windows,
MacOS) and host based systems (e.g., OS/400 and System 390). It is becoming
increasingly popular to find locales not only in operating systems but in program-
ming languages (e.g., Java, Python, and Haskell) as well. In general there is little
variation between the cultural formatting information found in the numerous locale
implementations. [9],[108]

L ocales are named according to the country and language they support. The
name of alocale is based on two 1SO (International Standards Organization) stan-
dards: 1SO-639 (code for the representation of language names), and 1SO-3166
(codes for the representation of names of countries). For the most part the name of a
locale isformed by concatenating a code from I SO-639 with a code from | SO-3166.
[95]

The setting of a locale is usually done by an individual user or a system
administrator. When a system administrator configures a locale for a system, it is
likely that they are selecting the default locale for an entire system. Depending on the

system, a user may or may not have the ability to switch or modify alocale. [75]

2.5 Keyboard I nput

Differencesinwriting systems also pose unique challenges. Thisisespecially
truefor Chinese, Japanese, and K orean, because these languages have alarge number
of characters and thus require a special mechanism to input them from a keyboard.

This specia mechanism is known as an input method editor (IME). IMEs enable the

17

input of alarge number of charactersusing asmall set of physical keyson akeyboard.
[73]

There are three basic types of IMESs: telegraph code, phonetic, and structural.
A telegraph code IME allows the user to enter the decimal or hexadecimal value of a
character rather than the actual character itself. This is a very simple to use IME,
however, it requires the user to either memorize the decimal values of characters or
carry around abook that lists all the values. [75]

A phonetic IME takes as input the phonetic representation of a character or
sequence of characters rather than the characters themselves. The IME converts the
phonetic representation into characters by using adictionary. In some cases the pho-
netic representation may yield more than one result. When more than one result is
obtained the user is given alist from which they make a selection for the appropriate
conversion. The phonetic IME does not require a user to memorize decimal values,
however it takes longer to determine the appropriate conversion due to dictionary
lookup. [79]

In a structural IME users enter a character by selecting the character’s build-
ing blocks. In many cases the same building blocks could generate more than one
result. When multiple results are obtained the user is shown alist of candidates and
isasked to pick the most appropriate character. Structural based IMEs do not require
dictionary lookup, however they usualy require the user to search through longer

lists of characters. [75]

2.6 Fonts

Users don't view or print characters directly, rather a user views or prints
glyphs (a graphic representation of a character). Fonts are collections of glyphswith
some element of design consistency. Many glyphs do not have a one-to-one rel ation-

ship to characters. Sometimes glyphs represent combinations of characters. For

18

example, a user might type two characters, which might be displayed using asingle
glyph. See Figure 2-5. In other cases the choice of aglyph may be context dependent.
For example, acharacter may take different forms depending on its position within a
word: a separate glyph for a character at the beginning, middle, and end of a word.
See Figure 2-6. [29],[69],[7]

Figure 2-5. Character to glyph mapping
f+1— 11

Figure 2-6. Contextual glyphs

G

As scriptsvary, so do the fonts that can display them. Assumptions that fonts
of the same size and style will display different scripts approximately the same size
isincorrect. Thisis especially true of fonts from Asia. Some scripts have constructs
that go beyond ssimply placing one glyph after another in arow or column (e.g Japa-
nese furigana, which are used for annotation). The furigana usually appear above
ideographic characters and are used as a pronunciation guide. See Figure 2-7. Fully

internationalized systems must take such issues into consideration. [29]

Figure 2-7. Japanese furigana characters

furigana
/\
gl 14 |2 liﬁ;_:
E LW -5

19

Recently there has been a strong push towards fonts with large glyph reper-
toire covering awide variety of scripts. These fonts aim to simplify the construction
of international software by providing both a uniform and consistent strategy for the
presentation of character data. Such examplesinclude: Apple' sand Microsoft’s Tru-

eType font technology, Adobe’ s postscript fonts, and Apple’ s Advanced Type.

2.7 Character Coding Systems

One of thefirst steps in establishing an internationalized system is to modify
programs so that they allow charactersin avariety of languages and scripts. Software
systemsthat support only asingle language or script satisfies the needs of only alim-
ited number of users. In computers scriptsare captured through collections of discrete
characters. Most people have an instinctive feeling for what acharacter is, rather than
aprecisedefinition. Naturally, many people would agree that the L atin al phabetic | et-
ters, Chinese ideographs, and digits are characters. The problems come when some-
thing looks like a single unit of a natural language but is actually comprised from
multiple subpieces and when something is not really part of anatural language yet is

actually represented with a character.

For many years the ASCII (American Standard Code for Information Inter-
change) encoding served as the definitive mechanism for storing characters. ASCII
only alowsfor the encoding of 128 unique characters, dueto the fact that ASCII uses
only 7-bits for encoding. Languages that contain more than 128 unique characters
require customized encoding schemes. This prevents efficient document exchange
from occurring. Currently work by the Unicode Consortium isunderway on the adop-
tion of a character encoding standard, one that uses 16-bits grestly increasing the

number of scripts that can be represented.

We select the area of character coding systemsfor further study because char-
acter coding systems serve asthe foundation for multilingual information processing.

Aswe will demonstrate the work in this area has not developed to alevel of sophis-

20

tication for satisfying the needs of the multilingual information processing commu-

nity. In this dissertation we recast character coding systemsin anew light.

21

3Char acter Coding
Systems

In this chapter we explore the various approaches to encoding character data.
We start the chapter by introducing terms relating to character coding systems fol-
lowed by an examination of monolingual character coding systems, later turning our
attention to multilingual coding systems. In this dissertation the term “monolingual
encoding” refers to a character coding system that has strict limits on the number of
scripts that can be represented, which are generally less than ten. We use the term
“multilingual encoding” to refer to character coding systems that do not have strict

limitations on the number of scripts that can be represented.

3.1 Terms

In this section, we define the terms related to character coding systems. The
terminology used to describe character coding systems is often confusing, causing
terms to be mistakenly used. The definitions of the terms are not formally standard-
ized, therefore there can be some variation of terms across standards. In this disser-
tation we follow SO (International Organization for Standardization) definitions
where they exist. In cases where an 1SO definition does not exist we use the defini-
tionsfound in RFC 2130 and RFC 2277. RFC (Request For Comments) are published
by the IETF (Internet Engineering Task Force). The IETF defines protocols that are
used on theinternet. Nevertheless, there are cases in which we choose to use alterna-

tive definitions over those found in RFC’s. These alternative definitions are taken

22

from popular literature in the field of character encoding systems and are used when
the popular definition is more widely accepted. [5],[64],[106]

The following terms and definitions are used in this dissertation:
» Character — “smallest component of written language with semantic value

(including phonetic value).” [104]

» Control character — a character that affects the recording, processing, transmis-
sion or interpretation of data. [27]

» Graphic character — a character other than a control character, that has a visual
representation. [27]

» Combining character — a member of an identified subset of a coded character
set, intended for combination with the preceding or following character. [27]

» Glyph or glyph image— the actual concrete shape, representation of a character.
[96].,[106]

» Ligature— asingle glyph that is constructed from one or more glyphs. [57]
* Octet — “an 8-bit byte.” [104]

» Character set — “acomplete group of charactersfor one or more writing sys-
tems.” [104]

» Code point — “anumerical index (or position) in an encoding table (coded char-
acter set) used for encoding characters.” [96]

» Escape sequence — a sequence of bit combinations that is used for control pur-
poses in code extension procedures. [27]

» Coded character set — “amapping from a set of abstract charactersto a set of
integers (code points).” [104],[106]

» Code extension — atechnique for encoding characters that are not included in a
coded character set. [27]

» Character encoding scheme — “amapping from a coded character set (or sev-
eral) to aset of octets.” [104],[106]

» Code page — “acoded character set and a character encoding scheme which is
part of arelated series.” [104]

» Single byte character set (SBCS) — A character set whose characters are repre-
sented by one byte. [43]

23

» Double byte character set (DBCS) — A character set whose characters are repre-
sented by two bytes. [43]

» Multiple byte character set (MBCS) — A character set whose character are repre-
sented using a variable number of bytes. [43]

» Transport protocol — A data encoding solely for transmission purposes. [103]

3.2 Character Encoding Schemes
In general we divide character encoding schemes into two broad categories:
monolingual and multilingual encodings. Additionally, character encoding schemes
can be further divided into the following categories [64]:
» Fixed width encoding — in afixed width encoding each character is represented
using the same number of bytes.

* Modal encoding — in amodal encoding escape sequences are used to signal a
switch between various character sets or modes.

* Non-modal or variable width encoding — in anon-modal encoding the code
point values themselves are used to switch between character sets. Therefore,
characters may be represented using a variable number of bytes. Charactersin a
non-modal encoding typically range from oneto four bytes.

In the next section we study the character encoding schemes used predomi-
nantly in Western and Eastern Europe. We then turn our attention to the encoding
systems used in Asia. In particular, we explore the encodings used to represent Jap-
anese, Chinese, and Korean. Finally, we conclude the chapter with multilingual char-

acter encodings.

3.3 European Encodings

During the early 1960’'s the industry took the Latin alphabet, European
numeral s, punctuation marks, and various hardware control codes, and assigned them
to a set of integers (7-bits) and called the resulting mapping ASCII (American Stan-
dard Code for Information Interchange.) ASCII is both a coded character set and an
encoding. In ASCII each code point is represented by a fixed width 7-bit integer. It

24

isimportant to note that in ASCI| characters areidentified by their graphic shape and
not by their meaning. Identifying characters by their shape simplifies character set
construction. For example, in ASCII the code for an apostrophe is the same whether
it is used as an accent mark, or as a single quotation mark. This simplification tech-
niqueis certainly not anew idea. Typographers have been doing thisfor many years.
For example, we no longer see Latin final character forms being used in English.
[15],[26],[104],[87]

The ASCII encoding is divided into two broad sections: controls and graphic
characters. ASCII controls are in the hex ranges 0x00-Ox1F and Ox7F, while the
ASCII graphic characters are in the hex range 0x20-0Ox7E. See Figure 3-1. ASCII’'s
control codes are listed in Table 3-1. [15],[26],[104]

Figure 3-1. ASCII encoding
- -1+t -2 3 4 5 6 -7 8 9 -A B -C -D -E -F

0- Loyl ooaz o3 0004 s 0006 o7 fule) Dooe 0004 DIOE omc il QDIE QDOF
1-
ooin i o012 [IVEK] U EY ans 0016 g1y 0018 k] 00a DOiE oG [l 0mE anF
2- P E| S| % &) E -
oo20 W ooz anz3 o024 a5 1026 a2y 0028 oo2e T0ZA 002E omc 0020 Q02E an2F
3-| 0 2 (314 5(6|7 89| :|5]|<|=[>]?
0030 003 0042 ap33 0034 apis 0036 apay 0038 [uvet] 0034 DOAE il 0030 0n3E ap3F
.| @ B|Cc|[D|E|F|G|H|I|J|K|L|[M|N]|O
D040 ga1 0042 0043 D044 045 00aG a4y 0aag Rik] 00aA DB OMG 0040 OME O4F
5-1 P RIS|TIUIVIWIX|Y|Z|[|\|][*] =
0050 0051 0052 aD&3 00&4 (D55 00BE apsy 00eE Li] 006A DOSE nosc 0050 00BE (D5F
g-| blc|d|e|f|g h|i|j|k|[]l | m|n]|o
00g0 0081 [0+ apéd D04 [ilv:] 006G a0t 0068 0] 0064 D0GE D060 D0ED Q0EE O0gF
7- r|s|t|lufv|wlx|ylz|{]|]||}]|~
ooro wn [z 73 0oTe ao7a 207E Ty 4078 oore Ta7A T oc wio Qo7E aoiF

Table 3-1. ASCII control codes

Value Abbreviation | Name

(hex)

0x00 NULL null/idle

0x01 SOM start of message

25

Table 3-1. ASCII control codes (Continued)

Value Abbreviation | Name

(hex)

0x02 EOA end of address
0x03 EOM end of message
0x04 EOT end of transmission
0x05 WRU “who areyou..?’
0x06 RU “areyou..?”’

0x07 BELL audible signa
0x08 FEg format effector
0x09 HT/SK horizontal tab/skip
Ox0A LF line feed

0x0B VTAB vertical tabulation
0x0C FF form feed

0x0D CR carriage return
OxOE SO shift out

OxOF Sl shiftin

0x10 DCq datalink escape
Ox11 DC, device control
0x12 DC, device control
0x13 DCs device control
0x14 DC, device control stop
0x15 ERR error

0x16 SYNC synchronousidle
0ox17 LEM logical end of media
0x18 S separator

0x19 S separator

Ox1A S, separator

0x1B S separator

0x1C Sy separator

0x1D S5 separator

Ox1E Ss separator

26

Table 3-1. ASCII control codes (Continued)

Value Abbreviation | Name
(hex)

Ox1F S; separator
Ox7F DEL delete/idle

3.3.11S0 7-bit Character Encodings

Naturally, the number of languages that can be represented in ASCII is quite
limited. Only English, Hawaiian, Indonesian, Swahili, Latin and some Native Amer-
ican languages can be represented. Even though ASCII is capable of representing
English, ASCII at its core is uniquely American. For example, ASCII includes the
dollar sign “$”, but no other currency symbol. So while British users can still use
ASCII, they have no way of representing their currency symbol, the sterling “£”.
[75],[104]

Seeing a need for representing other languages system vendors created vari-
ations on ASCII that included characters unique to specific languages. These varia-
tions are standardized in 1SO-646. 1SO-646 defines rules for encoding graphic
characters in the hex range 0x20-0Ox7E. See Figure 3-1. Standards bodies then apply
the rules to create language/script specific versions of 1SO-646 sets. The |SO-646
standard defines one specific version that it calls the IRV (International Reference
Version), which isthe same as ASCII. [75],[46]

In 1SO-646 a specific set of characters are guaranteed to be in every lan-
guage/script specific version of 1SO-646. These characters are referred to as the
invariant characters. The invariant characters include most of the ASCII characters.

Nevertheless, |1SO also defines a set of characters that it calls variant characters.

27

Variant characters may be replaced by other characters that are needed for specific
languages/scripts. See Table 3-2. [75],[46]

Table 3-2. 1SO variant characters

Value Character | Name

(hex)

0x23 # number sign

0x24 $ dollar sign

0x40 @ commercial at
0x5B [left square bracket
0x5C \ backslash

0x5D] right square bracket
Ox5E A circumflex

0x60) grave accent

0x7B { left curly bracket
0x7C | vertical bar

0x7D } right curly bracket
OX7E ~ tilde

There is no requirement that the variant characters be replaced in any of the
language/script specific versions of 1SO-646. For example, the French version of
| SO-646 does not replace the circumflex “A” and the dollar sign “$”. See Table 3-3.
Unfortunately, French 1SO-646 is still not capable of representing al of French in
spite of these changes. In French all vowels can take circumflexes, however thereis
not enough room to represent them in 1SO-646, hence the need for 8-bit encodings.

[75], [46]
Table 3-3. French version of | SO-646

Value Character | Name

(hex)

0x23 £ sterling
0x24 $ dollar sign
0x40 a awith grave

28

Table 3-3. French version of 1SO-646 (Continued)

Value Character | Name

(hex)

0x5B ° ring above
0x5C c ¢ with cedilla
0x5D § section sign
Ox5E n circumflex
0x60] micro sign
0x7B é e with acute
0x7C u uwith grave
0x7D e ewith grave
Ox7E " diaeresis

3.3.21S0 8-bit Character Encodings

Around the late 1980s, the European Computer Manufacturers Association
(ECMA) began creating and, with 1SO, issuing standards for encoding European
scripts based on an 8-bit code point. These standards have been adopted by most
major hardware and software vendors. Such companiesinclude IBM, Microsoft, and
DEC [50]. Themost popular and widely used of these encodingsis | SO-8859-1, com-
monly known as Latin 1. [27],[104],[47]

The 1SO-8859-1 encoding contains the characters necessary to encode the
Western European and Scandinavian languages. See Figure 3-2 [44]. 1SO-8859-1 is
just one of many 1SO-8859-x character encodings. Most of the 1SO-8859-x encod-
ings existed as national or regiona standards before 1SO adopted them. Each of the
| SO-8859-x encodings have some common characteristics. Moreover, al of them
function as both coded character sets and character encoding schemes.
[26],[104],[47]

The 1SO-8859-x encoding is divided into four sections. See Table 3-4. In
each 1S0O-8859 encoding the first 128 positions are the same as ASCII. However,
unlike ASCII the ISO-8859-x encodings rely on an 8-bit code point. Characters that

29

are required for specific scripts/languages appear in the OxAO-OxFF range. This
allows for the addition of 96 graphic characters over what 1SO-646 IRV provides.
Graphic characters that appear in multiple 1 SO-8859-x encodings all have the same
code point value. For example, “€" appears in both 1SO-8859-1 and |SO-8859-2 at

the same code point value OXES.

Table 3-4. 1SO-8859 layout

Code point range (hex) | Abbreviation | Name

0x00-0x1F Co ASCII controls

0x20-0x7E GO 1SO-646 IRV

Ox7F-Ox9F C1 control characters
OxAO0-OxFF Gl additional graphic characters

30

Figure 3-2. 1SO-8859-1 encoding

0 1 2 3 4 5 6 7 8 -9 -A -B -C D E F
0- fuig] [Liikg ank3 Do04 anos fuil} aoar 000e DooR T00A DIOE omac 000D Q0E O00F
1 - []i] wun ama3 o4 a5 008 am7 0018 001A 3] oG L[] ane anF
0. ! # % | & || (I A N Y

020 fuiky] o024 DI2E o oo 0RE QnaF

23 oo24 s 026 omr 0az8

]
0oan wan 0033 0035 0036 B 003c 0030 a03E Ly

+
b
ad Faad el L
(o]
© s
=
by
Qg
=

0053 0055 L] apa7 L] 00EA DO5E D0SC 0050 O0GE Ll

o018
Do2e
0038
0043 D 0pes 0046 04T 0048 D4 004 DO4E DM 004D O4E Op4F

(]
1

0060
oore

-
6- a/b|lc|d|e|f h Jlk|[]l m|[n|o
[0 0061 [UiCHS k) (R L] 066 Jile Ty 068 0064 (0] 006G 0060 O0&E L
7 r|s|t|lu|v|w|x z | ~
[in0) own [Cizr3 o073 iy 0oFs uik} oorr 0078 T07A 0O7E oc o aovE Q0FF
ooan 081 D&z 0083 DG4 0oes 086 Ji[¥-1y 0088 Loan 0084 [0 DEG 0080 O0RE Q0EF
ooan ool ooaz o3 Doad a5 0086 ooar 00RE Doaa 00BA DO8E ooac 008D O03E aoaF

I
QpAD 0041 DOAZ D0AS DoA4 ODAS D0AG QAT D04 AR 00As DOAE DRAG Q0AD ODAE ODAF

- 5
OME0 0OB1 DOEE 00B3 DOEd4 aoEs DOBE QDT fulct:y e OOBA DIEE DIBC fualcl] QJ0BE
E|E|E|B|T 1|11
ooco| oec1| eoce| oocal oocs| oocs| ooce| ocT| ooce| ooce| ooca| ooce| oo oocp| oocE| oo

0

aoné panT oooe Haoe aobw DODE vl bo00 DODE

'
>
>
o>
s
o
B

=
=
2
o
(=8
o
g o
<
X
i
s
=
s
4=
g

aon Loval] ooz 0o03 oo

Y » ey i " Q Y rd ey (1] - rd A L1

elala|a|a a | ®|c|e|é & &[0 [T
QED BIET DOET 0E3 DOES QDES DES OnET 0ER aER DIEA DOER DOEC QOED QQEE QnEF

- ~ | = " -

FlO|fi|0|6|0|0|0|+|s | 0|0 Q|l|Yy | p|V
0aFD DOF1 0are DOF3 anFa DOFS anFé 0IFT anFs [z} O0FA 0IFE 0aFG 0OFD DOFE MIFF

The CO (0x00-0x1F) and C1 (Ox7F-0x9F) rangesin | SO-8859-x are reserved
for control codes. The CO range contains the ASCII controls. The assignment of the
control codesin the C1 range are not made in 1SO-8859-x, but rather are part of 1SO-
6429 (control functionsfor 7-bit and 8-bit code sets). The mativation for the C1 con-

trols comes from DEC’ s VVT220 terminals.

31

Not all of the upper ranges G1 (OXxA0-OxFF) of the ISO-8859-x standards are
based on Latin characters. For example, 1SO-8859-7 has Greek characters in the
upper range. See Figure 3-3. The scripts/languages that the SO-8859-x standards
support is summarized in Table 3-5.[11],[75],[104]

Figure 3-3. 1SO-8859-7 encoding

0 -1 2 3 4 5 6 7 8 -9 -A-B -C D E F

0- oM 000z [uic) 0o0a ooos Ta0E apar el oo anA DB omc o OME QooF
1-

(i) oan 002 a3 bna ans o0 amy e) oA DME omc 00 amE anF
0. YU # S % &])+, -]

wi=l) a1 [y anz3 oo2a oms 0026 aoar o028 Dize A DI2E Drc e RE amF
3.0 (123 4[5]|6 819 (:|;|<|[=1]>]|?

[uili] LLik3] Diaz [ilx5] i) anas 0038 Q07 a3 (] 003A [iis]] ooac 0030 anle an3F
4- B/ C/IDIE|F/ GIHI|J| K LIMN|O

D040 Lt £ 0043 Di4a Qs a6 ooaT 0048 [£i2k:] aa [DG 0040 OME OMF
5-| P R|ISITIU|IVIW|X|Y|Z|[|\|]1][|"]|_

0050 0051 [0053 D054 Q055 0056 QP& 0058 0058 05A D058 00sc 0050 OD5E O05F
6| ble|d|e]|f h|i|lj|k|[]l| m|n|o

O0G0 D01 [0i-H ol x] [Cict] falisH] D6 oosT 0068 v L) [-] D0B0 OBEE O06F
7. r|{s|t|lu|v|w|X z | ~

ooTo 0am ooTE aor3 ooTd aovs 0aTE aovT 0aTe oo 0aTA DOTE DoTc 0070 anvE an7F
8- it 1] D081 [k [olo:k] [Cit] [alil:E] L4 o[- 0088 0] L) [[o] 0080 OORE O0eF
Q-

poan 00t Doaz o3 0084 s 006 amar 0088 Doeg D0BA DI8E poac O0BD e aoaF
A- A b8 © «|[=] - —_

] e 213 00AS O0AS AnAT 0048 00ag DOaE ooac oA Fiild

2

B-| 22|37 A+ |E/H|[T|» |O|»%|Y| | Q

o080 0B ooz I0B3 DIEd 0385 D386 a7 0388 oag2 038A 08B Daac T0BD QBE Q38F
c|ltT|A|B|TFTA|E|Z|HI®©|1|K|A|M|N|E

olan Lu] nlag 0393 [ixt:h) 0385 0328 03e7 0328 0288 [i:E) [skE:] oac 0320 03 038F
p-|IT|P SIT|IY| | XY Q|1 |Y|alé i

a0 Lt 03a3 0344 a3a8 it Q3AT 0348 03s 0348 D3AB e A0 O3AE O3AF

a3a0 03B nlag 0383 0384 0385 03B6 0387 ek 0382 38A nl8e nlac 03B 03BE 03BF

ikl ey Gk 03C3 islel] 03cs 03GE BIcT 03G8 3ce 036A HGE fixlve} et} DICE

32

Table 3-5. 1SO-8859 standards

Standard name | Informal name | Languages supported

1SO-8859-1 Latin1 Afrikaans, Albanian, Basque, Catalan, Danish, Dutch,
English, Faroese, Finnish, French, Gaelic, Galician, German,
Icelandic, Italian, Norwegian, Portuguese, Spanish, Swedish

| SO-8859-2 Latin 2 Albanian, Croatian, Czech, English, German, Hungarian, Pol-
ish, Romanian, Slovak, Slovenian

1SO-8859-3 Latin3 Afrikaans, Catalan, Dutch, English, Esperanto, Galician, Ger-
man, Italian, Maltese, Spanish, Turkish

1SO-8859-4 Latin 4 Danish, Estonian, English, Finnish, German. Lappish,
Latvian, Lithuanian, Norwegian, Swedish

1SO-8859-5 Latin/Cyrillic | Azerbaijani, Belorussian, Bulgarian, English, Kazakh, Kir-
ghiz, Macedonian, Moldavian, Mongolian, Russian, Serbian,
Tadzhik, Turkmen, Ukrainian, Uzbek

1 SO-8859-6 Latin/Arabic | Arabic, Azerbaijani, Dari, English, Persian, Farsi, Kurdish,
Malay, Pashto, Sindhi, Urdu

1SO-8859-7 Latin/Greek English, Greek

| SO-8859-8 Latin/Hebrew | English, Hebrew, Yiddish

| SO-8859-9 Latin5 Turkish

1SO-8859-10 Latin 6 Greenlandic, Lappish

|SO-8859-11 Latin/Thai English, Thai

1SO-8859-13 Latin7 Baltic rim (region)

| SO-8859-14 Latin 8 Cdltic

1SO-8859-15 Latin9 removes some non character symbols from 1SO-8859-1 adds
“€” euro currency symbol.

3.3.3 Vendor Specific Character Encodings

Prior to the introduction of the SO and European Computer Manufacturers
Association character encoding standards, vendors created their own character
encodings. For the most part these character encodings were created by hardware and
operating system providers. In particular, IBM, Apple, Hewlett-Packard, and
Microsoft. A large number of these vendor specific encodings are still in use. In this

section we explore some of these encodings.

33

IBM has a number of code pages for its mainframe series of computers that
are based upon EBCDIC (Extended Binary Coded Decimal Interchange Code). The
IBM EBCDIC series of code pages use an 8-hit code point. In EBCDIC the number
and type of printable characters are the same as ASCII, but the organization of
EBCDIC differs greatly from ASCII. See Table 3-6 and Figure 3-4. [40],[57]

Table 3-6. EBCDIC layout

EBCDIC code point range (hex) | ASCII code point range (hex) Characters
0x00-0x3F 0x00-0x1F controls

0x40 0x20 space

0x41-0xF9 0x20-0x7E graphic characters
OxFA-OxFE N/A undefined

OxFF N/A control

34

Figure 3-4. EBCDIC encoding

0 1 2 -3 4 5 6 7 8 9 -A B C D E F

D- T0M o002 aoa3 aoac aoos T0BE apar 0ae7 fuilie] IBE DB omc 00D OME 00oF
1-
ooip| oot opiz| ooia| ooso| aoss| oots| ooer| cote| ooe| 02| ocer| omic| oof ome| oo
2.
oma0 0081 [o83 o8a andA 017 0Me ity i) BA DIEE DHac D005 aooa o7
3- ooan 0081 Ut O0as 0oad4 00as 0088 apa4 0088 i) 08a 00ag annd DG ORE DA
#»
4- aja|ala a|a ilyY|.|<|(|+]!
oo20| ooso| ooez| ooes| ooeof ooer| coes| ooes| ooer| ooFv| oooo| ooee| oosc| ooee| oose| ooz
s-|&|é|é|é|e| i [T |V |1 BT [$|[*|)|;|"
D026 L= DOEA QOER DoER DOED DOEE MEF QDEC anRF 0s0 D4 o0z [Be] apa DASE
£y . ~ I -

6| - |/ |A|A[A|A|A|A|[C|N[S|, |%|_|>]?
0azh =l acE DOC4 00C0 L] anc3 s ane? 0am éa [k anas anse an3E aniE
rd .Y Y r A LY “ ' “

7|8 |E|E|E|E|T T |11 D # =
OOFE orcg wacs DICB fue:}) wco QOCE QocF [Uistes ooen wazA [Wie=x) L) Dboe7 [rhixind w2
g-|®|a|b|c|d|e]|f h|i|«|»|0|Yy|p]|Z
0aoe 00 [+ ané3 (0T ams D066 aosT L] 0] 0048 DOBE DoFd DOFD DOFE LaBY
o-l°|/jlk|1 | m|n|o r| 2| ¢\ 2|2 |AE|€
o080 TOEA DIGE oec o0eD QDEE ODgF aoro Lokl oor2 wea oBa T0EE] MTE DIce 2040
A- ~|ls|tlu|v|w|x|y|z]|;|¢:]|0 b ®
0as DO7E D07 an74 D75 Q076 0av7 Qo7e are 0074 00a1 MIBF DOF DODE DOAE

I’ - ~
B-| ¢ | £ | ¥ © § | T E|ce|Y|a]S§ Z | x
onAZ as3 DOAE 0BT DoAR anaT DOEE o152 53 ore anac [nl-3) oace Mo ooy
c- AIB/CIDE|F|G/H|I|-|6|6|06|0|3d
07e 004 U Qe 0044 O0es 0046 Ope7 004 U] 0gan 00F4 00F8) anF2 DOF3 O0FE

p-| }|J|K|L/M|{N|O|P R | !'|ja|i|ufa
D 00as Di4B DG 040 OME QoaF L) 0051 DosE f0Bg 00FE 00FG aoFa DOFA OFF
.y ~ e o~
ElV|+|[S|T|U| VW X|Y|Z|[2|/0|0[0[|0|0
[0OF7 0053 0054 DOGE 0056 00E7 0058 D05y 0054 B2 000 0008 oo 0003 00ps

LY

Elof1]|2(3|4(5|6(7|8]9|30|0|U|U

[EixD] W [Hixhd [i[exx] 0034 ans 036 oear 0038 Ui} LUl 0B [ilee] oo 000A Qe

IBM also hasawide variety of IBM PC based code pages, sometimesreferred
to as DOS code pages. See Table 3-7 [35]. These code pages are also based upon an
8-bit code point. However, unlike EBCDIC, PC code pages are based upon ASCI|I.
In particular, the hex range 0x00-0x7F is in direct correspondence with ASCII. For
the most part the PC code pages are quite similar to the | SO-8859-x series. There are,

however differences that are worth noting. For example, the IBM 850 PC code page

35

isquite similar to Latin 1, however IBM 850 assigns graphic characters to the 0x80-
OxFF hex range, while 1SO-8859-1 assigns control characters to the 0x80-0x9F hex
range. Additionally, IBM 850 contains a small set of graphic box characters that are
used for drawing primitive graphics. See Figure 3-5. [75]

Table 3-7. IBM PC code pages

Code page number | Language group

437 English, French, German, Italian, Dutch
850 Western Europe, Americas, Oceania
852 Eastern Europe using Roman letters
855 Eastern Europe using Cyrillic letters
857 Western Europe and Turkish

861 Icelandic

863 Canadian-French

865 Nordic

866 Russian

869 Greek

36

Figure 3-5. IBM 850

0 4 2 3 4 5 6 7 8 9 -A-B -C D -E F
ol [OT@Tw e [w 6 e Qo @ 2|0k

2634 2638 2665 2866 2683 2860 2n2 2508 25CE 2509 284z 2640 2868 2668 2630

(>8] ™|L|t|v]|>]|«|L]|e| AV

2684 2504 2195 203C 00BE ODAT mac| 218 21 2183 nm 2180 221F 2184 2582 268G

2- L E S| % | & C|) *+], -]
30123 |4|5|6|7|8|9|:|;5|<|=|>]|"?
D030 L] 0oa ap33 D034) 0036 0ga7 0038 0038 0034 DIGE DO3C 030 QD3E aDaF
4-|@/A|B|C|/D|E|F/GH I|J K/ILIMN|O
5-|PIQ/R|S|T|IU VWX | Y|Z|[|\|]1|"]|_
-l " la|/b|c|d|fe|f|g| h|i|[j|k|]l m|n|o

zlplalrls|tlulv|iw|x|ylz|{|]|}|~|O
i) w1 0T aor3 ooTe aors ek} aory 0are orre WTA DOTE ooTe wro 0vE 23m
e |Cli|é|ala|alalcleje|e|i|1|1i|AlA
wacy IFC LOED O0E2 DOEL QnEd LIES AnET MIEA Q0EB DIES IEF IEE IES [Eist] ancs
o|E |2 |A|o6|o a|ja|y| 0|0 |p|£|0|x]|Ff
fce T0ES e DIF4 Q0FE aoFe TaFe FF oane oo QOFE o0A3 oooe oooT Hm

Ala| i |o6|0]|i

O0E1 O0ED DOF3 DOFA anFy 00

« »
ooss| ooee

-
)
Dhat
o
B- L ¢ | ¥4
2881 2882 2803 2802 2524 [iw] mco mag 2883 2551 25857 2850 it onAs 2510
Ll L . = | i L AL | — | L | =|dL
C- T a|lAl LR | F|=|aF| "
2514 618 280G 2510 2500 2530 DIED 0ac3 2564 2654 2663 2566 2660 2560 2660 00Ad
A 1] A # A - J I A -
oo |P|E|E|E|€|T|T]T(rl B R
DOFD 0000 oA DOCE 0ocH 2080 DOCD DOCE MCF 2518 2500 2585 2584 DDAG il 2580
ra A Y 3 -~ » ~ LY » rd - "
AR O|6(O|p|(p|P|U|U|U|Y|Y
0003 000F 0004 0002 00Fs 0005 DIEE DIFE 00DE 0004 oope i} 00FD 0000 D0AF =0
. o -
-l = (2o |39 §8|+], 132 | m
wAD a1 2T OQBE D0Es apat QBF? anas 00D s BT ooe 0083 DoB2 2540 an

In asimilar fashion Microsoft has also created a series of code pages for use
within Microsoft Windows. See Table 3-8 [35]. The Windows code pages are also

37

largely based upon ASCII and the 1SO-8859-x series. The Windows code pages,
however define extra graphic charactersin the hex range 0x80-0x9F. See Figure 3-6.

Table 3-8. Windows code pages

Code page number | Languages supported

1252 Danish, Dutch, English, Finnish, French, German, Icelandic,
Italian, Norwegian, Portuguese, Spanish, Swedish

1250 English, Czech, Hungarian, Polish, Slovak

1251 Russian

1253 Greek

1254 Turkish

38

Figure 3-6. Windows 1252

0 4 2 3 4 5 6 7 8 9 -A-B-C D E F

wom ooaz ana3 0004 0nos fuale-] omy fuile)] T004 DIOE ooac Wi Q0oE Q0OF

[En] wmn oz ana o4 a5 00E amy 0018 0014 DIE oo1c Ll (o] ame aniF

[}
0020 w1 [eiizkg o3 or24 s 0026 oy 0028 [02A DI2E [e=ls wan 0RE QnaF

.
D030 W 003z 0033 D034 ans 0036 37 0038 0038 DI3E DO3C 030 QD3E ap3F

D40 a1 Do apdd Didd i) 0046 apdy 0048 0044 DB DG 04D OD4E An4F

D050 0051 L] 0053 D054 0055 0056 0057 0058 0058 DOSE: DOSC 0050 OD5E 0D5F

D060 051 DGz el) oG4 0065 066 aoe7 0068 D04 DOGE D06 D060 ODGE Q0sF

7- r|s|t|lu|v|w|Xx Z | ~
ooTo W Dot oor3 DoTd aors oare aorT oars DoTa ITA DOTE ooTc W7D 007E 0oFF
A,
s | € A I 2 R O I % | S| < |E /4
204G 0081 2ma e 2ME 2026 2020 201 a2ce 2030 méd 2030 152 0080 mio oBF
~ o
0- 3 ’ “ L] ° - | — ™ 5 > ® 7 Y
ooan 2018 2018 201C o 2032 2013 2014 moc 2122 full 2034 01583 fuis] 017E Lk}
A ¢ m| ¥ ! |8 @2 |«|a|-|®]"
BAD a4l D0AZ 003 D0 anAS D0AS QDAY 00AR 00A% DA DOAR DAC 00AD QADAE QnAF
e
Bl el x]2]3 p| 9 NEEREAERRARAR
oen 00B1 Doe2 0B3 DiB4 QDES DOEE [1]v2rg 0EE onEn 00BA DIBE DOEC Q0BD ODEE QDBF
AlAA[A|A|A|ZE E|E|E|R[T 11T
C-
0aco [{ia] cE DOG3 ooca BOCS ancaE ocy ance i) anca CcE wcc DoCoD DOCE DOCF

i
=
2
o

g (=l
>
=l
&
x
=
—
s
=
s
=
=

0004 DODS 00DE oy apDa oo QoDa 0008 a0c D000 DODE DOOF

-~ # .y - .- [+] . # ~ ~ .-
E-la|a|a|a|ad|a|= e|é|é | é| i i1 i
OBED Q01 DOEZ Q0ES 00Ed ODES MES ODEY MER O0ES DOEA DOEE DREC QOED ODEE ODEF
-~ o~ -
| 0 0[06|6|0|0|+|o| 0|0 d]i b
aFD DDF1 0aF2 DOF3 anFa DOFS ODFE WIFT aFe L] 00FA OFE WaFG DOFD DOFE IFF

Hewlett-Packard has also codified aset of 8-bit code pagesthat are very much
akin to the 1SO-8859-x series. In particular, Hewlett-Packard's ROMANS. In
ROMANS the hex range 0x00-Ox7F is in direct correspondence with ASCII.
ROMANS8 provides some additional charactersthat are not in | SO-8859-1. Neverthe-
less, ROMANS does not have some characters that are in | SO-8859-1. For example,
the “©” copyright sign is present in 1SO-8859-1, but not in ROMANS. [63],[75]

39

3.4 Japanese Encodings

Languages like Japanese, Chinese, and Korean have extensive writing sys-
tems that are based on both phonetic and ideographic characters. These systems
require more than 8-bits per character, because they contain literally thousands of
characters. In this section we describe the encoding methods used in Japan. We
choose to use Japanese for two reasons:. First, Japan was the first country to encode
a large character set. Second, the Chinese and Korean encodings are largely based
upon the methods used in the Japanese encodings. [57]

The Japanese writing system is comprised from four different script systems:
Chinese ideographic characters (symbols that represent ideas or things, known as
Kanji in Japan), Katakana (syllabary used for writing borrowed words from other
languages), Hiragana (syllabary used for writing grammeatical words and inflectional
endings), and Romaji (Latin letters used for non Japanese words). The Kanji script
used in Japan includes about 7,000 characters. The Katakana and Hiragana scripts
both represent the same set of 108 syllabic characters, and are collectively known as
Kana. A sampling of Kanji, Katakana, and Hiragana characters are shown in
Figure 3-7, Figure 3-8, and Figure 3-9. [57],[73],[96],[109]

Figure 3-7. Japanese Kanji characters

JREAILSENENERL!

AE0 4E1 21 4E31 AEH AE51 AET

AN T B IR L E

AEDZ 4E12 E22 4EXZ AE42 $E52 AESZ AET2

ST IAY AP RN

AEL3 4E13 423 4E3 1E43 $E53 L 1=5] 4ET3

40

Figure 3-8. Japanese Katakana characters

TA Al DU TE F
FIKA FKT KD AE 2
A LAHI 25U E §
ARTA F-CHIITSUFTE
s mND N SRMNE ,ﬁ%

2HA B HL R A~NHE 7

®
=z ML MU AME -
YA s AW N
ZRA TRL LR LRE 5
WA
. WO
W

Figur e 3-9. Japanese Hiragana characters
HA WI 5U XE RO
ke ikl <ku ke EO
Xsa LsHIgsu HeE o
TzTa BoHDTSUTIE &
R JZ M U Fane @do
FAHA DML SFU ~HE D
Fma vl Fevl ¥HME o
YA ZONE Jo
HRa VR ARURNRE AC
HwA %
A} [YW
When discussing systems for encoding Japanese, we must be careful to make
the distinction between Japanese coded character sets and Japanese character encod-
ings. In Japanese the coded character set is referred to as the Ward-Point or Kuten
character classification system. This system is part of the JS X (Japan Industria

41

Standard) published by the Japanese Standards Association. Using the Ward-Point
system requires knowledge of spoken and written Kanji. The system uses atwo code
system for character identification. The two codes are commonly known as row and

cell and are represented using two bytes. [86]

Using a single byte 128 positions can be referenced. Nevertheless, the Japa-
nese only use the 94 printable ASCII characters. Therefore, in the Ward-Point sys-
tem, Kanji characters are arranged in groups of 94 characters. Each character is
assigned two values, arow number and acell number. These valuesidentify the char-
acter’ s position within JIS. The row and cell numbers range from 1 to 94. Therefore,
JIS can be thought of as 94x94 character matrix. This allows 8,836 characters to be
represented. This coded character set scheme was first formalized in 1978 and is
known as JIS X 0208. [86]

In Japanese characters may be read in one of two ways, On and Kun. Onisa
reading that is based on a Chinese pronunciation, while Kun is areading based on a
Japanese pronunciation. Radicals in Japanese represent core components of Kanji

characters. These radicals are indicative of agroup of Kanji characters. [86]

In the Ward-Point system characters are grouped according to their reading
and their radical makeup. Additionally, J S specifiesthree levels of character group-
ings. Level O contains non-Kanji characters, whilelevels1 and 2 are used exclusively
for Kanji characters. Level 1 containsthe 2,965 most frequently occurring characters,
while level 2 contains an additional 3,388 characters. [86],[105]

The Japanese Standards Association has continually revised JIS adding,
removing and rearranging characters. Besides the Kanji characters, J'S also encodes
the Latin, Greek, and Cyrillic aphabets, because of business needs. The various JIS

42

standards along with the characters that they each encode is summarized in Table 3-
9. [58],[86]

Table 3-9. J S character standards

Standard name Year adopted | Number of characters | Characters

JSX0201-1976 | 1976 128 Latin, Katakana

JISX0208-1978 | 1978 6,879 Kanji, Kana, Latin, Greek, Cyrillic

JISX0208-1983 | 1983 6,974 Kanji, Kana, Latin, Greek, Cyrillic

JISX0208-1990 | 1990 6,976 Kanji, Kana, Latin, Greek, Cyrillic

JISX0212-1990 | 1990 6,067 Kanji, Greek with diacritics, Eastern
Europe, Latin

JIS X0213-2000 | 2000 4,344 Kanji, Kana, Latin, Greek, Cyrillic

As we mentioned earlier the Japanese coded character sets are independent
from the method used to encode them. In the next section we examine the four meth-
ods (Personal Computer, Extended Unix Code, Host, and I nternet Exchange) used for
encoding Japanese. The main difference between these encoding methods is in the
way in which they switch between single byte character sets (SBCS) and double byte
character sets (DBCS).

3.4.1 Personal Computer Encoding M ethod

The Personal Computer (PC) encoding method is a non-modal system. In a
non-modal encoding the code point value of a character is used to switch between
SBCS (ASCII characters) and DBCS (JIS Kanji). This encoding system is generally
referred to as shift-JIS (SJIS), because the Kanji characters shift around the SBCS
characters. In the SJIS encoding system DBCS mode isinitiated when the code point
value of the first character of a two byte sequence falls within a predefined range
above hex Ox7F. Generally the rangeis hex Ox81-OxFF or OxA1-OxFE. If acharacter
fallsin the two byte range, then the character is treated as the first half of atwo byte
sequence, otherwise the character is treated as a single byte sequence. See Figure 3-

10. The code page illustrated in Figure 3-11 represents J|'S X 0212 in this code page

43

there are two double byte ranges hex 0x81-0x9F and hex OXEO-OxFC. Additionally,
in JIS X0212 the Katakana characters are encoded as single byte sequences. See
Figure 3-11 hex range OxA 1-OxDF. [43],[86]

Figure 3-10. Mixed DBCS and SBCS characters
= “EESE"(%Kandi™ in Japanese) in Japanese DBCS-PC code page

AR e L ML T

—— latlazlaslenlselaelonls1]zelss] --
| | | | | | | | | | |

oo L sy

S S S DBCS DBLS § 5§ 5 : SBCS (PC code)

Figure 3-11. JIS X0212 PC encoding

0 4 2 3 4 5 6 7 8 9 -A-B -C D E F

oM ooaz [avix] o004 0nos -] amy uile) Do T00A DOOE ooac o QDIE Q0OF

1-
[En] wm oz an3 [EEY ams 001e amy 0018 [] 00A DIE oc o ame anF
2. YL #E S % | &) E e, -
ooan fuika] Doez ooz ooz on2s fuie:) ooay 00z (i) [02A DO2E omec ik 0nE ao2F
3|01 2|3 |4|5/6|7|8|9|:|5|<|=|>]|?
D030 W 003z an3 (i8] [ilik] 003E il 00358 0038 0034 DOGE DO3C 0030 anie aniF
4-|@|A|B|C|D|E GIH I|J|KILIMN|O
D40 0041 Diu2 0pa3 D] 0046 0047 0048] 0044 DiME: DT 004D OME Op4F
5-|PIQ/R|S|T|\U VWX |\ Y|Z|[|¥|]1|"]|-
DD&0 (L] 0052 an&3 D&4 [ils}2] 0058 il 0058 0058 00EA DOSE 0AS 0050 QnsE ansF
-l " |la|/b|c|d|fe|f|g|h|i|j|k|]l m|n|o
D060 Dog2 [elV=] D64 il 0066 00§7 0068 0060 0064 DiGE: il 08B0 ODEE Q05F

r|s|tjujv

ooTe ao?3 [Cirg Y 0o7s 1076

1
| [X| XX XXX
XIX|AKIXIX X

C W7o 203E 0BT

\11-350. 3*3‘4 ><><§€

A- o | T 1], 7 x x a | v
FFé1 FFEZ FF&3 FFE4 FFé5 FFE& 7 FF&8 Frgg FFéa FFég FFEC FF&D FFEE FFGF

Bl =74 |v || x| Zly|lal|H|v|x|e|Y
FFTO FFT1 FF72 FF73 FFTd FF75 FFTE T FFTB FFra FFTA FFTE FFTC FFTD FFTE FFTF

c-| 2| F | Fl+]= Fl 2|7 N K|
FFa0 FF81 FFag FFE4 FF85 FFE& 7 FFER FFag FFEA FFiE FFacC FF8D FFRE FFBF

L=

D-| 3| & A X¥|la|3 Vinviliv|iae|7]|> °
FFan FFi FFaz FFa4 FFOS FFBE FFOT FFag FFan FF& FFOB FFIC FFa0 FFE FroF

m
j

-
XX XXX XX
F-| XX XX XXX

X X
X
X
X
X[X
X X

3.4.2 Extended Unix Code Encoding Method

The extended Unix Code (EUC) system is used predominately in Unix envi-
ronments. EUC consists of four graphic character code sets. the primary graphic code
set (GO) and three supplementary code sets (G1, G2, and G3). Code set GO is always
asingle byte per character code set, and isusually ASCII. Code set G1, usually Kanji

45

consists of two byte per character sequences that have their most significant bits set.
Charactersin code set G2 arerequired to have their byte sequence start with a special
prefix, hex OX8E. This special prefix is known as single-shift-two (SS2). Characters
in G2 are often katakana characters. Characters in code set G3 must also have their
byte sequence start with a special prefix, however in the case of G3 the prefix is hex
0x8F, known as single-shift-three (SS3). The G3 code set isreserved for user defined

or externa characters.

In EUC Kanji mode isinitiated when the value of the first character of atwo
byte sequence is between hex OxA1-OxFE. This character is then treated as the first
half of atwo byte sequence. The second byte from this sequence must aso bein the
same range. The ASCII mode is initiated when the first character is less than hex
Ox7F. Katakana mode is invoked when the first character is SS2. This character is
subsequently treated as the first half of atwo byte character sequence. Additionally,
the second byte must be in the range hex 0xA1-OxDF. The user defined character
mode is initiated when the first character is SS3. This character is subsequently
treated asthefirst byte of athree byte character sequence. The second and third bytes
must come form the range hex OxA 1-OxFE. The examplein Figure 3-12 demonstrates
EUC with one, and two byte sequences. Line 1 on Figure 3-12 are hex byte
sequences, separated by commas that correspond to the graphic characters on Figure
3-12. Additionally, the underlined byte sequences indicate double byte sequences

Figure 3-12. EUC encoding
e el e
ABCEET 123
41,42,43,B4C1,BBFA,20,31,32,33)

3.4.3 Host Encoding Method
On host environments, such as the IBM 390 and AS/400 both SBCS and
DBCS are used. In the host method special control codes are used to switch between

46

SBCS mode and DBCS mode. To switch into DBCS mode the shift-in (OxOE) control
is used, while the shift-out (OxOF) control is used to switch back to SBCS mode.
Unlike the PC encoding method the values of the characters themselves are not used
to determine the mode, therefore the host method is a modal encoding system. On
host systems SBCSis based on EBCDIC, while DBCSis based on JIS. [43]

3.4.4 Internet Exchange Method

The internet exchange method, commonly known as | SO-2022 isa 7-bit/8-bit
encoding method that enables character data to be passed through older systems. In
some legacy systemsthe high order bit of an 8-bit byte gets stripped off, causing cor-
ruption of 8-bit character data. Therefore, al bytes in |SO-2022 must be in the hex
range 0x21-0Ox7E (printable ASCI1). Generally, 1SO-2022 isnever used asan internal
character encoding. Nevertheless, Emacs processes character data in the 1SO-2022
encoding [88]. The use of the term 1SO-2022, however is somewhat misleading,
because | SO-2022 does not really specify character encodings, but rather an architec-
ture for intermixing coded character sets. The actual individual encodings are speci-
fied in RFCs. [104]

In 1SO-2022 escape sequences and shift states are used to switch between
coded character sets. Therefore, 1SO-2022 is a modal encoding system. 1SO-2022
reserves the hex range 0x00-Ox1F for 32 control codes and refersto this range asthe
CO block. Thisisthe same as the 1SO-8859 standard. Additionally, another set of 32
controls are also reserved, designated as C1. These controls may be represented with
escape sequences. The hex range 0x20-0x7F isreserved for up to four sets of graphic
characters, designated GO-G3 (in some graphic sets, each character may require mul-
tiple bytes). Most graphic sets only use the hex range 0x21-0x7E, in which case 0x20
(space), and Ox7F (delete) are reserved. Typically, the CO and C1 blocks are taken
from 1 SO-6429. See Table 3-1. The GO block isgenerally taken from 1SO-646 (Inter-
national Reference Version). See Figure 3-1. In 1SO-2022 an escape sequence starts

a7

with an ESC control character (0x1B). The bytesfollowing the ESC are aset of fixed
values that are defined by the I SO-2022 standard. [24]

In many cases a single stream of characters can be encoded in more than one
way in 1SO-2022. For example, the mixed ASCII Greek character stream on line 1
on Figure 3-13 can be represented by switching graphic character sets or by escaping
individual characters. Line 2 isthe corresponding 7-bit byte sequence for the charac-
terson line 1. The double underlined characters on line 2 indicate escape sequences.
By default 1SO-2022 sets the GO graphic character set to ASCII. Escape sequences
are used to switch character sets. The first escape sequence “1B,2C,46” on line 2
switches the GO graphic character set to 7-bit Greek, while the second escape
sequence “1B,28,42" switches GO back to ASCII. Line 3 is the corresponding 8-bit
byte sequence for the characters on line 1. The double underlined characters on line
3indicate an escape sequence, while the single underlined characters“8E” indicate a
single-shift-two (SS2). The escape sequence “1B,2E,46” on line 3 assigns the 8-bit
Greek character set to the G2 graphic character set, while the SS2 character signalsa
temporary switch into the G2 character set.

Figure 3-13. 1SO-2022 encoding

Greek EAANVIK& (1)

47,72,65,65,6B,20,1B,2C,46,45,6B,6B,67,6D,69,6A,6C, 1B, 28,42 &)

47,72,65,65,68,20,2,2E,46,8_E,C5,8_E,EB,S_E,EB,S_E,E?,S_E,ED,S_E,EQ,E,EA 18_E1DC (3)

In the case of 1SO-2022-JP (Japanese encoding of 1SO-2022), a Kanji-in
escape sequence directs the bytes that follow to be treated as two bytes per character.
The first byte of the two byte sequence determines the character grouping, while the
second byteindicates the character within the grouping. A J'S out or Kanji out escape
sequence directs the bytes that follow to be treated as single byte characters. The
escape sequences for 1SO-2022-JP are specified in Table 3-10. The example, on

48

Figure 3-14 illustrates how the characters from Figure 3-12 would be represented in
SO-2022-JP. Line 1 are hex byte sequences that correspond to the graphic characters
on Figure 3-14. Double underlined bytes represent escape sequences, while under-
lined bytes indicate double byte character sequences. [86],[104]

Table 3-10. 1SO-2022-JP escape sequences

Escape sequence (hex) Escape sequence (graphic) | Coded character set
0x1B,0x28,0x42 ESC (B ASCII
0x1B,0x28,0x4A ESC(J JIS X 0201 (Roman)
0x1B,0x24,0x40 ESC$ @ JISX0208-1978
0x1B,0x24,0x42 ESC$B JISX0208-1983

Figure 3-14. | SO-2022-JP encoding
ABCEETF 123

41,42,43,1B,24,42,3441,3B7A,1B,28,42,20,31,32.33 (1)

N

3.4.5 Vendor Specific Encodings

IBM, Microsoft, Apple, and DEC have provided a wide variety of Japanese
character encodings for use within their respective platforms and operating systems.
Unfortunately, in many cases these encodings are incompatible across vendors. Nat-
uraly, as national/international standards emerged some migration path from legacy
encodings to standardized encodings became necessary. To satisfy this need vendors
have created/modified encodings. In amost all cases these encodings are variations
or super sets of existing encodings, athough differences do exist. Some of the more

frequently occurring encodings are listed on Table 3-11. [52],[42],[43]
Table 3-11. Vendor encodings

Vendor Code page Based on
IBM 952 DBCS EUC JISX0208-1997
IBM 953 DBCS EUC JISX0212-1990

49

Table 3-11. Vendor encodings (Continued)

Vendor Code page Based on

IBM 932/942 MBCS PC JI S X0208-1978
IBM 943 MBCS PC JS X0208-1990
Microsoft MS 932 MBCS PC JIS X0208-1990
HP HPEUC DBCSEUC J S X0212-1990
DEC DEC Kanji 1SO-2022-JP JI'S X0208-1983

3.5 Chinese Encodings

The traditional Chinese writing system is not a phonemic system. In Phone-
mic systems sound is represented as units that are in a one-to-one correspondence
with symbols. For example, a Latin based language, can be written with only 26
unigue letters. On the other hand, Chinese requires thousands of unique symbols
(ideographic characters, known as Hanzi in China) to express itself. Moreover, it is
difficult to determine just how many characters exist today. One of the classic Chi-
nese dictionaries lists about 50,000 Hanzi characters, of which only 2,000-3,000 are

in general use. [93]

In general Chinese Hanzi characters are difficult to write and print due to the
large number of strokesin each character. Hanzi characters vary from oneto over 30
strokes. Typically, each character requires seven to 17 strokes. The practical disad-

vantages of such a system when compared to an aphabet are obvious. [93]

Over time, however the Chinese script has taken on certain phonetic proper-
ties. In some cases, identical sounding but semantically remote characterswould loan
their shapes to indicate the sound of a character. Additionally, the Chinese script and
language have been in a continuos state of flux. In particular, since the revolution of
1949 the Chinese government (Peoples Republic of China) has actively pursued sim-
plification of the Chinese script. [93]

In 1954 acommittee was formed to reform the language. Thiscommitteesim-

plified nearly 2,200 Hanzi characters. In some cases the radicals (base shape of a

50

Chinese Hanzi character) changed, while in others the number of strokes changed.
This ssimplification, however caused havoc in dictionaries, because Chinese dictio-
naries are organized by radical and stroke. Some scholars believe that the simplifica-
tion process has only made the Chinese script more difficult to understand.
Specifically, the reduction in the number of strokes makes several characters ook
alike. While the government of the Peoples Republic of China has continued to pro-
mote this simplification process, it has not been universally accepted however, par-

ticularly in Taiwan and Hong Kong [93]

The Chinese language can also be represented through trandliteration. In this
context we refer to tranditeration of Chinese into its phonetic equivalent in Latin let-
ters. In general there are two Latin tranditeration systems for Chinese, Wade-Giles
and Pinyin. The Wade-Giles system was invented by two british scholars during the
19th century. The Wade-Giles system is only used in Taiwan for representing place
names, street names, and people’s names. In mainland China only Pinyin is used.
[93].[77]

The Pinyin system was created during the Chinese Hanzi simplification pro-
cess. The Pinyin system can be used with or without diacritics. Most systems opt for

using Pinyin without diacritics, because diacritics require special fonts. [93]

In Taiwan the Bopomofo system is used for tranditeration. The Bopomofo
system gets its name from the first four Taiwanese phonetic characters. The Bopo-
mofo characters represent consonants and vowels. Moreover, there is a one-to-one

correspondence between Pinyin and Bopomofo. [93],[77]

3.5.1 Peoples Republic of China

As we indicated above Japan was the first country to construct a large coded
character set and encoding. Similarly, China has done the same in their Guojia
Biaozbun (GB) standards; Guojia Biaozbun means National Standard. The Chinese
use the GB 2312-80 standard to manage Hanzi (Simplified Chinese characters),

51

Bopomofo, Pinyin, Japanese K atakana, Japanese Hiragana, Latin, Greek, and Cyril-
lic in groups of 94x94 character matrices. This 94x94 matrix is the same design
employed in the Japanese standards. The overall structure is similar to JIS, but the
Chinese characters (Hanzi) are placed in different positions. The non-Hanzi charac-
tersarein the same locations as JIS. [104],[48],[105]

Just like JIS, the Hanzi characters are organized into two levels based upon
their frequency of use. Two additional groups for even less frequently used Hanzi
characters have been developed, for atotal of three groups of Hanzi characters. Addi-
tionally, GB 2312-80 may be encoded using the PC, EUC, 1SO-2022, and Host
encoding methods. [104],[48],[105]

After the construction of the GB 2312-80 standard, the Peoples Republic of
China expressed interest in supporting the efforts of both the Unicode Consortium
and 1S0O through publishing a Chinese national standard that was code and character
compatible with the evolving I SO-10646/Unicode standard, in particular version 2.1
of the Unicode standard. We delay a detailed discussion of 1SO-10646/Unicode until
later. For purposes of discussion we can think of Unicode as a super set of all coded
character sets. [67]

This new Chinese standard was named GB 13000.1-93, which is commonly
known as GB 13000. Whenever 1SO/Unicode would change their standard, the Chi-
nese would also update their standard. By adopting this strategy, GB 13000 was able
to include Traditional Chinese Hanzi characters (ideographic characters used in
Taiwan and Hong Kong), because these characters appeared in Unicode. Unfortu-
nately, GB 13000's character encoding was not compatible with GB 2312-80. In
order to remain compatible with the GB 2312-80 encoding standard a new coded
character set was created that contained al the characters from both GB 13000 and
GB 2312-80, yet used an encoding that was compatible with GB 2312-80. This new

character set is known as Guojia Biaozbun Kuozban (GBK) and also uses groups of

52

94x94 character matrices. Thus, code and character compatibility between GB 2312-
80 and GBK was ensured while at the same time, remaining synchronized with Uni-
code’ s character set. [67],[94]

Prior to the release of the Unicode 3.0 standard, GBK was regarded as the de
facto coded character set and encoding for Mainland China. Asthe Unicode standard
progressed GBK became full. Finally, when it became time to adopt the new charac-
tersin Unicode 3.0 GBK would have to expand to a three byte per character encod-
ing. Thus, a new coded character set and character encoding was born. This new
encoding is known as GB 18030. GB 18030 is a multi byte encoding (one to four
bytes). The one and two byte portions, however are compatible with GBK. GB 18030
thus creates a one-to-one relationship between parts of GB 18030 and Unicode’s
encoding space. We summarize the various GB standards in Table 3-12.
[59].[67].[84]

Table 3-12. GB standards

Standard name | Year adopted | Number of characters | Characters

GB 2312-80 1981 7,445 Simplified Hanzi, Traditional Hanzi
(some), Pinyin, Bopomofo, Hiragana,
Katakana, Latin, Greek, Cyrillic
GBK 1993 21,886 Simplified Hanzi, Traditional Hanzi
(some), Pinyin, Bopomofo, Hiragana,
Katakana, Latin, Greek, Cyrillic

GB 18030-2000 | 2000 28,468 Simplified Hanzi, Traditional Hanzi
(some), Pinyin, Bopomofo, Hiragana,
Katakana, Latin, Greek, Cyrillic

3.5.2 Republic of China

Taiwan has developed Chinese National Standard (CNS) 11643, which con-
tains over 48,000 Traditional Chinese characters plus characters from the various
other scripts. CNS 11643 is aso organized into groups of 94x94 character matrices.
Nevertheless, CNS 11643 is not the predominant coded character set within Taiwan,
rather BigFive is used. BigFive refers to the five companies that created it. BigFive

53

isgrouped into 94x157 character matrices. BigFive encodes over 13,000 Traditional
Chinese characters plus Latin, Greek, Bopomofo, and other symbols. Fortunately
there are few differences between BigFive and CNS 11643. We summarize the Tai-
wanese standardsin Table 3-13. [104]

Table 3-13. Taiwanese standards

Standard name | Year adopted | Number of characters | Characters

CNS 11643 1992 48,027 Traditional Chinese Hanzi, Bopomofo,
Latin. Greek

BigFive 1984 13,494 Traditional Chinese Hanzi, Bopomofo,
Latin. Greek

3.5.3 Hong Kong Special Administrative Region

Historically, computers lacked support for the special characters commonly
used in Hong Kong and in the areas where Cantonese is spoken. Some of the missing
Hanzi characterswere of foreign origin, particularly deriving from Japanese. The use
of these characters reflects Hong Kong’ s role in the economics of Asia. Neither, the
BigFive, GB 2312-80, or GBK adequately supported the needs of Hong Kong or gen-

eral Cantonese users. [67],[68]

Software vendors created various solutions to providing the missing charac-
ters. Unfortunately, their efforts were uncoordinated resulting in solutions that were
incompatible with each other. Concurrent to this activity the special administrative
government of Hong Kong started devel oping the “Hong Kong Government Chinese
Character Set”. Thisinformal specification wasinitially used internally as a govern-
mental standard. Soon after, it became arequired feature for general computing sys-
tems within Hong Kong. [67],[68]

In 1999 these special characters were officially published in the “Hong Kong
Supplementary Character Set” (SCS). The SCS contains 4,072 characters, the major-
ity of which are Hanzi. Additionally, the SCS was explicitly designed to fully

preserve the code point organization of BigFive, thus easing the problem of encod-
ing. [67],[68]

3.6 Korean Encodings

Just like Japanese and Chinese, Korean al so uses a set of ideographic charac-
ters in its writing system. These ideographic characters are known as Hanja in
Korean. Additionally, Korean also uses a set of phonetic characters, referred to as
Hangul. The Hangul script was created by royal decree in 1443 by a group of schol-
ars. Each Hangul character isagrouping of two to five Hangul | etters, known as Jamo
(phonemes). Each Hangul block forms a square cluster representing a syllable in the
Korean language. Jamo can be simple or double consonants and vowels. The modern
Hangul alphabet contains 24 basic Jamo elements (14 consonants and 10 vowels).
Extended letters can be derived by doubling the basic |etters. [6],[109]

3.6.1 South Korea

Asinthe other Asian encodings Korea' s standards (KS) follow alayout sim-
ilar to J'S and GB. However, Cyrillic and Greek characters are not in the same posi-
tionsasJiSand GB. Inthe KSX-1001 (formerly KSC-5601) characters are organized
into 94x94 matrices. KSX-1001 encodes Jamos (Korean letters), Hangul, Hanja,
Katakana, Hiragana, Latin, Greek, Cyrillic, as well as other symbols. Additionaly,
Korea aso encodes their own version of the 1SO-646 standard, replacing hex 0x5C
(backslash) with the Won sign (Korean currency symbol). KSX-1001 can be encoded
using EUC and 1SO-2022. [104]

3.6.2 North Korea

The North Korean government has also created a coded character set for
Korean, known as KPS 9566-97. It is constructed in a similar fashion to South
Korea sKSX-1001. KPS 9566-97 encodes nearly 8,300 charactersincluding: Jamos,

55

Hangul, Hanja, Latin, Cyrillic, Greek, Hiragana, and Katakana. It can be encoded by
using EUC and 1SO-2022. [22]

3.7 Vietnamese Encodings

Vietnamese was first written using the Chinese ideographic characters. This
system was in use by scholars until afew decades ago. In Vietnamese two Chinese
characters were usually combined, one character indicated the meaning, while the
second assisted with pronunciation. This system, chu nom, never gained widespread

adoption and was only used in literature. [92]

Around the 17th century Catholic missionaries arrived in Vietnam and began
to trandate prayer books. In doing their translations they developed a new Roman-
ized script. This script is known as quoc ngu. Initially this new script was not met
with mass appeal. Nevertheless, when Vietnam became under French control (1864-
1945) quoc ngu was officially adopted. Thus, in modern Vietnam quoc ngu is used

universaly and formsthe basisfor al Vietnamese computing. [92]

It would appear that modern Vietnamese could easily be incorporated into
one of the Latin based encodings, as Vietnamese is based upon a French model of
Latin characters. Like French an 8-bit encoding scheme should be sufficient for
encoding Vietnamese. Nevertheless, in Viethamese there are many frequently occur-
ring accented letters. In addition to the al phabetic charactersin the IRV (ASCII 0x00-
OXx7F), Vietnamese requires an additional 134 combinations of aletter and diacritical
symbols. [92]

Obvioudly al such combinations can fit within the confines of an 8-bit encod-
ing space. However, it is highly desirable to maintain compatibility with the IRV
range. Requiring such compatibility does not leave enough room in the upper range
(Ox80-0xFF) to encode all the necessary diacritic combinations. Some people within

the Vietnamese data processing community have argued that certain rarely used

56

precomposed Vietnamese characters could be dropped atogether or could be
mapped into the CO control space (0x00-0x1F). [92]

Until the introduction of Windows 95, no clear encoding standard had
emerged. Microsoft and the Vietnam Committee on Information Technology created
anew code page, known as Microsoft 1258 (CP 1258). CP 1258 can be made com-
patible with Latin 1 by dropping some precomposed characters. There are other com-
peting standards emerging, however. Most notably is the VISCII (Viethamese
Standard Code for Information Interchange) standard, described in RFC 1456. The
VISCII standard does preserve al the precomposed characters, and isbecoming quite

popular. [92]

In addition to the Microsoft and VISCII encoding schemes, thereis aconven-
tion for exchanging Vietnamese across 7-bit systems. This 7-bit convention isknown
asVIQR (Vietnamese Quoted-Readable), and isdescribed in RFC 1456. VIQR is not
really encoding scheme, but is rather a method for typing, reading, and exchanging
Vietnamese data using ASCII. In VIQR precomposed characters are represented by
the vowel followed by ASCII characters whose appearances resemble those of the

corresponding Vietnamese diacritical marks. [92]

3.8 Multilingual Encodings

So far in our discussion of encoding schemes we have concentrated our
effortson monolingual encodings. In this section weturn our attention to multilingual
encodings. We start this section with some motivation for the construction of multi-
lingual encodings, later turning our attention to the various strategies for capturing

multilingual data.

3.8.1 Why Are Multilingual Encodings Necessary?
Over the last twenty years the software industry has experienced incredible

growth. Initially, the demand for software was limited to just the United States,

57

however as cheap computing proliferated this demand has spread the world over. For
the most part the development of software has been restricted to the United States.
Historically, most software development labs would produce an English language
version of a product, subsequently followed by multiple national language versions
(NLV). The construction of these NLV s was generally not done in the United States,
rather it was done by the overseas branch of the development lab or was contracted
out to an independent software vendor (1SV). [29],[20],[85]

Oncethe source code was delivered to the overseas|ab or ISV the source code
would be modified to support the local encoding schemes for the language/country.
Simultaneousto this effort, alab in the United States would start development on the
next version of the product. Therefore, the various NLV's aways lagged behind the
English version of the product. [29],[61],[85] Thissituation caused several problems:
» Overseas marketing organizations faced a difficult time selling older versions of

products when newer versions were available in the United States.

It became difficult to provide timely maintenance to a product because afix
would need to be generated across several source trees.

* In many cases common fixes could not be used across source lines because each
source tree supported a different coded character set and encoding.

» Attempting to later merge support for all encoding schemes across all source
trees dramatically increased both the size and the complexity of the product.

Differences in encoding approaches and text processing make merging
source trees extremely difficult. In some situations merging source trees requires text
processing algorithms to be rewritten. For example, random character access func-
tions may need to be rewritten when a stateful encoding is merged with a stateless
encoding. In a stateful encoding the meaning of a character is dependent on neigh-

boring characters.

In some cases even memory management routines require modification. In
fixed width encoding schemes devel opers often assume that a byte and a character

are of the same size, or even worse the number of code unitsin astring represents the

58

number of characters in the string. These assumptions causes problems for merging
source code based on a fixed width encoding scheme with source code based on a

variable width encoding scheme.

Merging problems may also be caused by differences in encoding philoso-
phies. In some cases entire text processing functions may need to be either removed
or redesigned when source trees are merged. For example, atext searching function
based on abstract characters would have to be redesigned when used with an encod-
ing based on glyphs.

These problems caused the software industry to reach two important conclu-
sions: First, that there was an imperative need to develop a single worldwide coded
character set and encoding that would be required for al software. Second, that all

NLV's of a product must be based on a single common source tree.

3.8.2 Unicode and | SO-10646

In discussing the creation of Unicode, we can not avoid discussing 1SO-
10646 as well as the two are intertwined, sharing both a common history and goals.
In the 1980s, text encoding experts from around the world began work on two ini-
tially parallel projects to overcome character encoding obstacles. In 1984 1SO
actively started work on a universal character encoding. SO placed heavy emphasis
on compatibility with existing I SO standards, in particular | SO-8859. In the spring of
1991 1SO published adraft international standard (D1S) 10646. By that time work on
Unicode was nearing completion, and many in theindustry were concerned that there
would be great confusion from two competing standards. In the wake of opposition
to DI1S-10646 from several of the ISO national bodies SO and Unicode were asked
to work together to design acommon universal character code standard which came
under the umbrella of Unicode. [16]

59

3.8.2.1 History of Unicode
The Unicode standard first began at Xerox in 1985. The Xerox team (Huan-

mel Liao, Nelson Ng, Dave Opstad, and Lee Collins) was working on a database to
map the relationships between the identical ideographic characters in the Japanese
and Chinese character sets, and was referred to as Han unification. Around the same
time Apple, and in particular Mark Davis also began development of a universal
character set. [102]

In September of 1987, Joseph Becker from Xerox and Mark Davis from
Apple began discussions on auniversal character encoding standard for multilingual
computing. In the summer of 1988 we see thefirst proposal for auniversal character
encoding, which Joseph Becker named Unicode’. By 1989, several people from var-
ious software companies were meeting bimonthly, creating the first full review draft
of the Unicode standard. These discussions lead to the inclusion of all composite
charactersfrom the | SO-8859-x standards and Apple sHan unification work. In 1991
the Unicode consortium was officially incorporated as a nonprofit organization, and
isknown as Unicode Inc. [102],[103]

Urged by public pressure from various industry representatives, the 1SO-
10646 and Unicode design groups met in August of 1991. Together these two groups
created asingle universal character encoding. Naturally, compromises were made by
both parties. Thisjoint body officially published a standard in 1992, and is known as
Unicode/I SO-10646. [102]

3.8.2.2 Goals of Unicode
The purpose of Unicodeisto addressthe need for asimple and reliable world-

wide text encoding. Unicode is sometimes referred to as “wide-body ASCII”, due to

1. Thefirst detailed description of Unicode can be found in areprint of Joseph Becker’s classic paper
“Unicode 88" . This reprint was published by the Unicode Consortium in 1988 in celebration of Uni-
code’s ten year anniversary.

60

itsuse of 16 bitsfor encoding characters. Unicode isdesigned to encode all the major
living languages. Unicode is a fixed width, easy to understand encoding scheme.
Additionally, Unicode can support ready conversion from local or legacy encodings

into Unicode, thereby easing migration. [13]

At its core Unicode can be thought of as an extension of ASCII for two rea-
sons. First, Unicode like ASCII uses a fixed width character code. Second, Unicode
like ASCII enforces a strict one-to-one correspondence with characters and code
points. That is, each individual Unicode code point is an absolute and unambiguous
assignment of a 16-bit integer to adistinct character. Since there are obviously more
than 28 (256) characters in the world, the 8-bit byte in international/multilingual
encodings has become insufficient. The octet equals character strategy is both too
limiting and ssimplistic. Therefore, the 8-bit byte plays no role in Unicode. Moreover,
the name Unicode was chosen to suggest an encoding that is: unique, unified, and
universal. [13]

3.8.2.3 Unicode' s Principles
The design of Unicode is based upon ten founding principles[13],[32],[103]:

» Fixed width encoding — In Unicode, each character is represented by asingle
16-bit code point. Moreover, each character is never encoded more than once.

» Full encoding — In Unicode all code points are assigned, from 0x0000-OxFFFF;
nothing is blocked ouit.

» Charactersvs. glyphs— In Unicode aclear distinction is made between encoding
characters vs. encoding glyphs. Unicode only encodes characters, which are
abstract and express raw content. On the other hand, glyphs are specific visible
graphic forms expressing more than content. Thisissue is discussed in greater
detail in chapter 5.

» Semantics — In Unicode characters have properties.

* |deographic unification — Having a clear separation between characters and
glyphs permits unification of the commonly shared ideographic charactersin
Chinese, Japanese, and Korean.

61

* Plainvs. fancy text — A simple but important distinction is made between plain
text which is a pure sequence of Unicode code points, and fancy text, whichis
any text structure that bears additional information above the pure code points.
We discuss thisissue in chapter 5.

» Logical order — In Unicode characters are stored in the order in which they are
read, which is not necessarily the same order in which they are displayed. The
concept of logical order is examined in chapter 4.

» Dynamic composition — Instead of allowing only the well known accented char-
acters, Unicode allows dynamic composition of accented forms where any base
character plus any combining character can make an accented form. We discuss
dynamic composition in greater detail in chapters 4 and 5.

» Equivaent sequences — In Unicode precomposed characters are semantically
equivalent to their combining counterparts. We spend considerabl e time discuss-
ing this throughout the rest of the dissertation.

» Convertibility — Round trip conversion between Unicode and legacy encodings
is possible since each character has a unique correspondence with a sequence of
one or more Unicode characters.

Naturally, some of Unicode's design goals are in direct conflict with one
another. These conflicts have forced Unicode to make compromises from time to
time. However, oneimportant goal Unicode hasworked hard at honoringisitsability
to provide round trip conversions. In fact Joseph Becker in 1988 believed that Uni-
code' s initia utility would be as a mechanism for interchange. This was the same
reason why ASCI| was constructed. Nevertheless, ASCII hastransitioned from being
an interchange mechanism to an outright native encoding. The same can also be said
of Unicode. [13]

3.8.2.4 Differences Between Unicode and | SO-10646
By its nature, 1SO-10646 officially known as the Universal Multiple-Octet

Coded Character Set, or simply known as the UCS (Universal Character Set), only
describes the technical details of the UCS encoding. Additionally, Unicode includes
specifications that assist implementers. Unicode defines the semantics of characters
more explicitly than | SO-10646 does. For example, Unicode provides algorithms for

determining the display order of Unicode text. We explore the ordering of Unicode

62

text streams in the next chapter. Additionally, Unicode provides tables of character
attributes and conversion mappings to other character encodings. Nevertheless, Uni-
code and | SO-10646 are in agreement with respect to the defined characters. That is,
every character encoded in Unicode is also encoded in the same position as in 1SO-
10646. [16]

The Unicode standard was initially designed as a 16-bit character encoding
allowing for 65,535 different code points. Unicode is actually comprised of a series
of planes each having 65,535 code points. If you think of the values 0x0000-OxFFFF
as constituting one plane called plane 0, then you could imagine multiple planes each
having 65,535 code points. Unicode refersto plane 0 asthe BMP (Basic Multilingual
Plane). On the other hand, 1SO-10646 was designed as a 32-bit character encoding,
with the most significant bit always set to 0. In 1SO-1046 this 32-bit form is called
UCS4 (Universal Character Set four octet form), while the 16-bit Unicode form is
called UCS-2 (Universal Character Set two octet form). [32]

Conceptually, the Universal Character Set is divided into 128 three dimen-
sional groups. Each group contains 256 planes containing 256 rows of 256 cells. The
four octets of UCS-4, therefore, represent the group, plane, row, and cell of a code
point in the Universal Character Set. See Figure 3-15 [43]. A UCS-2 code point can

be transformed into a UCS-4 code point by simple zero extension. [32]

Figure 3-15. Forms of UCS-4 and UCS-2

Group Octet Plane Octet Row Octet Cell Octet

3.8.2.5 Unicode s Organization
In this section we describe the layout of Unicode version 3.1, the latest ver-

sion of the standard. There are two ways in Unicode to refer to code points. The first

63

method uses the hexadecimal value of the code point preceded by a capital letter “U”
and plussign “+”. The second method is the same as the first except the plus sign is
omitted. The Unicode code space is divided up according to Table 3-14. A more
detailed layout is shown on Figure 3-16 [96]. Additionally, the first 256 characters
within the first range of Unicode are in direct agreement with 1SO-8859-1, in such a
way that the 8-bit values are extended to 16-bit values by simply using zero exten-
sion. [16],[103]

Table 3-14. Unicode code point sections

Code point range (hex) | Description

U0000-U1FFF General scripts

U2000-U2FFF Symbols

U3000-U33FF Chinese, Japanese, K orean miscellaneous characters
U4E00-U9FFF Chinese, Japanese, K orean ideographs
UACO00-UD7A3 Hangul

UD800-UDFFF surrogates

UE000-UF8FF private use

UF900-UFFFF compatibility and special

64

Figure 3-16. Unicode layout

TROO00 ", 10000
T 010Hx .
51000 General U020 Ladin
Seripts U300
152000 y, 040 Greek
Symbols U500 Cyrillic
Armenian'Hebrew
3000 5 FJK Misc. U600 Arabic
U0)
00 Urﬂ:x) Syriac! Thaana
U
15000 o 900 Devanagari/'Bengali
U Gurmukhi/Gujarati
00 {“JK'I.P.T U OrivaTamil
Ideographs — Telugu/Kannada
L7000 U MalayalamdSinhala
Thai/Lao
T0FQ0
00 e 1000 Tibetan
1580 *
Ue1100 Myanmar!Georgian
[
Hangul Jamao
TLS000 e 1200
1300 Ethiopic
LAY ‘) Y T+ 1400 Cherokes
' Uel500 Canadian Aboriginal
ILBODO L e 1500 Syllabics
U+1700 OghamBunic
TR CO00 Ue1800 Khimer
41 F *
Hangul Us1900 Maongaolian
RO DelADY 4
j q ; U:1B00 5§ r
TrR000 - o OUITOSATES ST
Ul 5 1
1LFi0H Pf'j.\-"ﬂtl?' [.]EE T+ 1EO0
Ue1F00 Extended Latin
. 4
j Compatibility Extended Groek

U200

B Prinsary B Privaie Use O Compatibilicy O Reserved

There are three ranges of Unicode (surrogates, private use, and compatibility)
that deserve special attention. First, we discuss the surrogate range. The surrogates
are arange of code points that enable the extension of Unicode. The surrogate range

defines 1,024 lower half and 1,024 upper half code points. The sequence of a code

65

point from the upper half surrogate range followed by a code point from the lower
half surrogate range identifies a character in planes 1-16 according to the algorithm
defined on Figure 3-17. Line 1 on Figure 3-17 takes a surrogate pair H and L (H
stands for upper surrogate, L standsfor lower surrogate) and returns a Unicode scalar
value N. Line 2 on Figure 3-17 is the reverse of the agorithm on line 1.
[32],[103],[60]

Figure 3-17. Surrogate conversion
N = (H - 0xD800) * 0x400 + (L - 0xDCO0) + 0x10000 €))
H = (N - 0x10000) / 0x400 + 0xD800, L = (N - 0x10000) % 0x400 + 0xDCO0 @)

Up through Unicode version 3.0 all of Unicode's characters were defined in
the BMP. However, version 3.1 of the standard isthefirst version that makes assign-
ments outside the BMP. Unicode 3.1 adds 44,946 new characters and when added to
the existing 49,194 characters, the new total is 94,140 characters. For the most part
the new characters are additional ideographic characters that provide complete cov-
erage of the charactersin the Hong Kong supplementary character set, whichwasdis-
cussed earlier. [60]

The Unicode private use areaisarange of Unicode that can be used by private
parties for character definition. This range, for example could be used for the defini-
tion of corporate logos or trademarks. It could also be used for protocol definition

when agreement is made between the interested parties. [32]

As we stated earlier Unicode was envisioned as an interchange encoding. In
order to guarantee that round trip conversion would always be possible Unicode
defined a special block of characters, known as the compatibility range. The compat-
ibility range contains alternative representations of characters from existing stan-
dards. These duplicate characters are defined elsewhere within the standard. The

primary purpose of these duplicates is to enable round trip mapping of Unicode and

66

the various national standards. L ater in the dissertation we will examine several prob-

lems caused by the use of the compatibility range. [32]

3.8.2.6 Unicode Transmission Forms
There are four primary ways in which Unicode and 1SO-10646 code points

may be transmitted. Unfortunately, not all of the approaches are equivalent with
respect to the code points that may be transmitted. The UCS-4 encoding is the only
transmission mechanism that is capable of encoding al of the possible characters
defined in 1SO-10646. Within the semantics of Unicode, the UTF-32 (Universal
Character Set Transformation Format 32-bit Form) isused to encode UCS-4. The dif-
ference being UTF-32 isrestricted to the range 0x0-0x 10FFFF which is precisely the
range of code points defined in Unicode, whilein UCS-4 all 32-bit values are valid.
[32]

The UCS-2 encoding is capable of representing all of the code points defined
within the BMP. Code points outside of the BMP are not represented, due to the
group and plane numbers being fixed. [32]

The UTF-16 (Universal Character Set Transformation Format for Planes of
Group 0) encoding permits code points defined in planes 0-16 of group O to be
directly addressed. Thisisaccomplished by combining individual 16-bit code points
into single 1SO-10646 code points using the previously mentioned algorithm on
Figure 3-17. [32]

The UTF-8 (Universal Character Set Transformation 8-bit Form) encoding
allows Unicode and | SO-10646 to be transmitted as a sequence of 8-bit bytes rather
than as 16 or 32-bit units. It isavariable length encoding scheme requiring anywhere
from oneto six bytes per code point, however in the case of UTF-32 the max number
of byteswould be limited to four. Thisisacommon and useful transmission format,

because UTF-8's single-byte form directly corresponds to ASCII. Additionally, it is

67

safe to use in environments where code points are assumed to always be 8-bits

[32],[43]. See Table 3-15. Converting from UTF-32 proceeds in three steps [110]:

» Determine the number of octets required for the character value by looking in the
first column of Table 3-15.

» Prepare the high order bits of the octets as per the second through fifth columns
in Table 3-15.

 Fill inthe bits marked by x from the bits of the character value, starting from the
low order bits putting them first in the last octet of the sequence, then next to last,
and so on until al x bitsarefilled in.
On Table 3-16 we show how the Unicode code point U1D5A0 (M athematical
Sans-Serif Capital A) would be represented in the various Unicode transformation
formats.

Table 3-15. UTF-8

UTF-32 value hex UTF-8 1st byte | UTF-8 2nd byte | UTF-8 3rd byte | UTF-8 4th byte
0000 0000 - OXXXXXXX

0000 007F

0000 0080 - T110XXXXX TOXXXXXX

0000 O7FF

0000 0800 - 1110xXXX TOXXXXXX TOXXXXXX

0000 FFFF

0001 0000 - 11110xxx TOXXXXXX TOXXXXXX TOXXXXXX
001F FFFF

Table 3-16. Unicode transformation formats

Form Byte sequence (hex)
UTF-32 1D5A0

UTF-16 D835,DDA0

UTF-8 F0,9D,96,A0

3.8.3 Criticism of Unicode
For the purposes of introducing the other multilingual encoding schemes we

discuss some of Unicode problems.

68

3.8.3.1 Problems With Character/Glyph Separation
Although Unicode can remedy a large number of problems encountered by

multilingual applications, it aso has numerous drawbacks. Some have argued that
Unicode cannot be used as a text encoding system, because of Unicode’s bias
towards the presentation of text. One does not have to search hard to find examples
of such biases. For example, Unicode encodes the fi ligature as a distinct character.
Most text encoding specialists would argue that fi is not a character, but rather is a
glyph. Therefore, the fi glyph has no business being encoded as a character in atext
encoding. In light of Unicode' s orientation towards presentation, some authors have
argued that Unicode should only be used as a glyph encoding. We will illustrate sev-
eral other examplesin later chapters, that further support this argument. [36],[74]

3.8.3.2 Problems With Han Unification
As specified, Unicode's primary purpose is to encode all the major written

scripts of the world, rather than all the worlds written languages. This distinction is
extremely important in Unicode. Nevertheless, most of theworld’ s encoding systems
actually encode written languages and not scripts. Recently, Unicode has provided a
mechanism, known as surrogates for encoding characters that are specific to certain
written languages. Neverthel ess, the vast number of charactersthat aretied to written
languages, coupled with Unicode’ s surrogate gymnastics hardly provide a satisfac-
tory solution. [31]

Currently, Unicode encodes 49,194 charactersin its BMP, using the Han uni-
fication process. At first, this seemed more than sufficient, however input from sev-
eral nations (Japan, Mainland China, Taiwan, and Korea) was excluded during the
creation of the BMP. Moreover, these were the groups that had the most characters
to assign. Mainland China has responded by insisting that Unicode encode al of its
officia 6,000 charactersin addition to the many simplified characters, plus the older
classic set of some 40,000 characters. This alone would occupy nearly the entire

BMP. Taiwan has also responded in a similar fashion, insisting that they have the

69

rights to their own complete set of classic characters. These Taiwanese characters
represented an additional 50,000 characters, and would not consider using the same
characters encoded by Mainland China. These two groups alone required over 90,000

distinct characters. [31]

The Japanese also said they were entitled to have their own characters
encoded in a distinct range. Naturally, once Korea got wind of these requests, they
also asked for their characters. If each country getstheir way this could generate more
than 170,000 characters. In an attempt to satisfy these groups Unicode has created
surrogates. In the latest version of Unicode, 94,140 characters are encoded. Thisis
still painfully short of the 170,000 characters needed. Obviously, 32 bits would be
more than sufficient, however Unicode does not provide a 32-bit contiguous block.
Clearly, two separate 16-bit blocks do not solve the problem. In order to encode the
required number of characters, Unicode must resort to special encoding forms that
get piggybacked onto Unicode’ s 16-bit form, thereby making what would beasimple

problem more complex. [31]

In many casesit is necessary to know which language a stream of characters
represents for data processing operations, particularly sorting, spell checking, and
grammar checking. In Unicode this can be difficult to ascertain, especialy if a char-
acter isin the unified Han range. This causes difficulties in creating applications for
a single language, such as natural language processing. It is much easier to create
these applications if al the characters come from a single language block. This fur-
thers the argument for an encoding system that separates character blocks for differ-

ent languages. [74]

3.8.3.31S0-8859-1 Compatibility
Unicode is not realy compatible with 1SO-8859-1. Unicode streams are

sequences of 16-bit code points, while |SO-8859-1 streams are sequences of 8-bit

code points. Unicode’'s encoding system does not directly recognize |SO-8859-1

70

data. Unicode requires that 1 SO-8859-1 characters be first converted to Unicode by
zero extension. However, to transmit Unicode on the Internet, you have to use the 8-
bit safe Unicode transformation format (UTF-8). In the case of Unicode characters
that fall within in the 1SO-8859-1 range the UTF-8 conversion ssimply removes the
leading zero. [74]

3.8.3.4 Efficiency
Most data are actually in a single language, and most languages can be

encoded using 8-bit code points. Using a 16-bit encoding scheme doubles both the
storage requirements of programs and the transmission time of character data. Com-
pression schemes could be used to help alleviate this, but they are impractical dueto
their overhead.

3.8.4 Mudawwar’s M ulticode

Multicode is a character encoding system proposed by Muhammad Mudaw-
war from the American University at Cairoin 1997 itsgoal isto address some of Uni-
code’ sdrawbacks. Multicode’ s most important distinction isitsuse of multiple coded
character sets. Multicode is not an extension to any coded character set, but rather is
a collection of several coded character sets. In general, most coded character sets
have strong tiesto specific written languages. On the other hand, there are some char-
acters that can be viewed as being language neutral, such as mathematical symbols.
To take advantage of this approach, unlike Unicode, Multicode is oriented towards
written languages and not scripts. Each coded character set used in Multicode is
designed to be independent and self sufficient, each having all necessary control

characters, punctuation, and special symbols. [74]

3.8.4.1 Character Setsin Multicode
Instead of attempting to merge all written languagesinto asingle 16-bit coded

character set, Multicode defines separate 8-bit and 16-bit coded character sets. In

71

Multicode there can be 256 separate coded character sets. Each coded character set

isassigned a unique numeric identifier. In the case of ASCII the identifier isO. [74]

In Multicode there may be substantial overlap between coded character sets,
however there will be cases where a coded character set has unique characters. For
example, languages based on the L atin script share many common symbols, however
each has some unique letters. It is also possible to use more than one coded character
set for a language. For example, the Azeri language could be written using either
Cyrillic or Latin letters. [74],[111]

Multicode strives to define a unique coded character set for each written lan-
guage, unlike Unicode which merges scripts through a unification processes. Addi-
tionally, Multicode supports the use of more than one coded character set standard

for agiven written language, in case different countries use these sets. [74]

3.8.4.2 Character Set Switching in Multicode
In order to support multilingual text, Multicode provides a mechanism for

switching between coded character sets. Multicode definesaspecial character for this
purpose and that is known as a switch character. In every 8-bit coded character set,
Multicode reserves the last code point OxFF as the switch character. To switchto a
different coded character set, either 8-bit or 16-bit, a specia two byte sequence is
inserted into the text stream. The first byte is the switch character, and the second
byte is a character set designator. For example, to switch from French (assumed to
be coded character set 0x01) to Hindi (assumed to be 0x50) the two byte sequence
OxFF50 would be inserted into the text stream. [74]

In each 16-bit coded character set, Multicode reserves the range OxFFOO-
OXFFFF as switch characters. The first byte of the switch sequence is always OxFF
and represents the switch character. The second byte of the switch sequence is the
character set designator. Therefore, switchingina16-bit coded character setisreally
the same as switching in a8-bit character set. See Figure 3-18. In Figure 3-18, File 1

72

contains a stream of Arabic characters, File 2 contains ASCII and French characters,
while File 3 contains Japanese and ASCI| characters. In each case a switch sequence
is used to switch out of Multicode's default ASCII mode. [74]

Figure 3-18. Character set switching in Multicode

File 1 File 2 File 3
Fi Swiitch to 44 Ft Switch b
ap [feidiatk ap || 8-bit £1 | [Japanese
5 ASCH
sk - chars 02
3 * 5D 16-bit
] - lapanase
20 FF Switch to 12 chars
AT B-bit o |[Fremch Fi
— ¢+ Arabic
o chars o H Switeh to
5B || abit 00 ASCI
* Franch
* M chars 41 a-bit
: : 2| [Ascl
chars

In Multicode, 16-bit coded character sets are only used in caseswhere awrit-
ten language requires it. Multicode always uses the smallest coded character set for
any given written language. When compared to Unicode, Multicode requires only

half the storage for those written languages that can be represented using 8-bits. [74]

3.8.4.3 Focuson Written L anguages
Multicode by design is oriented towards written languages. Each coded char-

acter is designed to encode a particular written language. Furthermore, each coded
character set provides a full set of control codes, thereby eliminating the need to
switch to a special character set for control functions. Additionally, language infor-
mation isimplicitly encoded in Multicode viathe character set switch sequences. In
Multicode language centric dataprocessing iswell defined becausethereisnever any

confusion over which written language a character comes from. [74]

73

3.8.4.4 ASCI1/Unicode Compatibility
Multicode is directly compatible with ASCII. No conversion is necessary to

use ASCII datain Multicode. ASCII isthe default coded character set in Multicode;
assigned the character set designator 0x00. Furthermore, Multicode is also compati-
ble with Unicode. Multicode reserves the OXFF character set designator for this pur-
pose. There is never any misinterpretation of the switch sequence by Unicode,

because OxFFFF is an invalid Unicode character, hence it must be a switch. [74]

3.8.4.5 Glyph Association in Multicode
In Multicode severa characters may share acommon glyph, but have differ-

ent code point values. For example, the letter a which appearsin both the French and
ASCII coded character sets could be encoded in two different positions. In Multicode
characters would be associated to glyphs using either character set specific fontsor a
single unified font. By using character set specific fonts, font sizes are kept to amin-
imum as glyphs that are unnecessary to the display of a written language are not
included in the font. Additionally, there is a one-to-one mapping between characters
and glyphs. On the other hand, character set specific fonts duplicate glyphs that may
be common across a number of character sets. A unified font would remove this
redundancy, but would require a character to glyph index conversion, because the
property of a one-to-one mapping between characters and glyphswould belost. Most
notably, Unicode could be used asaunified glyph index. Thiswould allow the use of
TrueType and OpenType fonts as they use Unicode for indexing glyphs. [74]

3.85TRON

TRON (The Real-Time Operating System Nucleus) is an open architecture
that specifies interfaces and design guidelines for operating system kernels. The
TRON Application Databus (TAD) is the standard for ensuring data compatibility
across computers that support the TRON architecture. TAD supports multilingual

data via multiple character sets. TAD provides both a uniform and efficient method

74

for manipulating character sets. Additionally, applications based on TAD are inde-
pendent of any particular coded character set. [82]

In TAD, language specifier codes are used to switch from one language to
another. Charactersin TRON may be single byte, double byte or acombination of the
two. At language boundaries|anguage specifier codes areinserted, so that single byte
and double byte codes can be intermixed within a single text stream. Therefore,
TRON like Multicode always uses the most compact coded character set for agiven
written language. [82]

3.8.5.1 TRON Single Byte Character Code
In TRON control codes, character codes, language specifier codes, and

TRON escape codes are all based on a single byte code point. See Figure 3-19. The
control codes in TRON are mostly the same as ASCII’s. Nevertheless, code point
0x20 (ASCII space) istreated as a control code, and is called a separator in TRON.
The separator is used to indicate both word and phrase divisions as opposed to OxAO
(blank). In TRON the handling of the separator islanguage specific, but in English
the separator acts as an ASCII space. In other words, the separator is used as a gap
when lines are broken, and it displays a variable width space for use in proportional
spacing. [82]

Figure 3-19. TRON single byte character code
0 204 TE 7F &0 Al A1 FCr FE FF

Control Codes Character Cades CharacterCodes Character Codes
Languag e-specifier Codes «I—I
TROM Escape Codes, Jpecial Codes 4—|
The character codes (0x21-0x7E, 0x80-0x9F, OxA0, and OxA 1-0xFD) cover
220 characters. The OXAO character (blank) is handled as a fixed width space. In the

case of English, the blank is called arequired space. A required space is treated as
an a phabetic character. However, the required space cannot be used to together with
punctuation for breaking aline. [82]

75

The language specifier code OXFE is used for switching the language of the
character codes (0x21-0x7E and 0x80-0xFD). Additionally, it can be expanded into
multiple bytes through repeated application of the language specifier. For example,
the double byte sequence OXFEFE would expand the number of language specifiers
by 220. [82]

In TRON OxFF is used as an escape signal when the code point that follows
it isin the Ox80-0OxFE range. The TRON escape is used for punctuation in text and
graphic segment data. Additionally, in TRON OxFF is used to indicate a TRON spe-
cial code when the code point that followsit isin the 0x21-0x7E range. TRON spe-
cial codes are used by the TRON Application Control-Flow Language and are
employed as specia codes that can be embedded in text. [82]

3.8.5.2 TRON Double Byte Character Code
In TRON the double byte code is divided into four character zones (A,B,C,

and D), language specifier codes, TRON escape codes, and TRON special codes. See
Figure 3-20. Additionally, control codes appear as single byte code pointsinside two
byte character codes. The language specifier codes, TRON specia codes, and TRON
escape codes are the same as their single byte analogs. Combined, the A, B, C, and

D character blocks encode 48,400 characters.

3.8.5.3 Japanese TRON Code
Japanese TRON codeis adouble byte code system. The A block corresponds

to the JI'S X0208 standard. The B block contains those frequently occurring charac-
tersthat are not in JI'S X0208. In the C and D blocks are infrequently used characters.
The set of Latin characters that are used in Japanese are treated as belonging to the
Japanese group, rather than the Latin group. Therefore, in order to mix Japanese and
English, it is necessary to switch in and out of Japanese. Generally, however Latin
characters are infrequently used in Japanese. When Latin characters are used, it is

usually for the purpose of enumerating points in a preface using for example, the

76

letters A, B, C. For thisreason, Latin characters are duplicated in the Japanese group.
[82]

Figure 3-20. TRON double byte character code

Second Byte
0 a0 TE TF &0 FO' FE FF
1]
20
21]
TROM TROCH
Unuzed Character Codes Character Codes
AZane CZone
TE
Firsk
Byte TF
an
TRCM TROM
Unuzed Character Codes Character Codes
EZane DZane
FO
FE Langué?:ﬁj—:gecifier Language-specifier Codes
FF Special Codes TROM Escape Codes
3.8.6 EPICIST

The Efficient, Programmable, and Interchangeable Code Infrastructure for
Symbols and Texts (EPICIST) is a multilingual character coding system. The cre-
ators of EPICIST believe that the existing character coding standards are inflexible,
insufficient, and inefficient for addressing the needs of multilingual computing. In
particular, the currently available character code standards intentionally avoid the

handling of private or personal charactersor symbols. They only specify small ranges

77

of private characters. In the case of global digital libraries, which need to use non-
standardized symbols, the existing approaches are woefully inadequate. A new
framework isrequired in order to support more general or user specific symbolssince

formal standardization is not practical. [79]

3.8.6.1 EPICIST Code Points
EPICIST is adynamic symbol code infrastructure for multilingual comput-

ing. EPICIST can handle both general symbols and existing defined characters. EPI-
CIST isavariable length character coding system, which is based upon afixed width
16-bit code point. This 16-bit code point is called an EPIC Unit (EPICU). A symbol
in EPICIST consists of one or more EPICUs. The most significant bit of an EPICU
ishit 16, while the least significant bit isbit 0. In an EPICU the two most significant
bits are used to indicate whether the unit isthe head of asymbol or atail of asymbol.
If bit 16 is O then the unit isthe tail of a symbol. However, if bit 15 is 0 then the unit
isthe head of asymbol. If both bits 15 and 16 are O, then the unit is a symbol itself.
Thus, locating symbol boundariesis both simple and efficient. [79]

3.8.6.2 EPICIST Character Code Space
The code space of EPICIST is divided into subspaces. These subspaces fall

into four categories. standardized character set subspaces, Epic VM (virtual machine)
subspaces, user specific subspaces, and temporary subspaces. Symbol code values
that consist of one or two EPICUs are predominately used for encoding the standard-
ized characters and Epic VM instructions. Sequences of three EPICUs are reserved
for future standardized characters. Symbol code values that contain four or more

EPICUs are set aside for user specific symbols. [79]

3.8.6.3 Compatibility With Unicode
Just like the Unicode standard, which uses a capital U to indicate a Unicode

code point, EPICIST uses a capital letter P to indicate a code point. However,

78

compound EPICIST symbols that are comprised of multiple EPICU’ s use afull-stop
to delineate each unit. [79]

In EPICIST thelower code valuesarein direct correspondence with Unicode,
except for the CIK miscellaneous symbols. For example, the Unicode character range
U0000-U2FFF maps directly to the EPICIST range POO00-P2FFF. On the other hand
the Unicode range U3000-U3FFF map to the EPICIST range P38000.7000-
P8000.7FFF. [79]

In EPICIST combining characters are unnecessary, because every combina-
tion of combining characters can be assigned to a unique code point in EPICIST. On
the other hand, Unicode must use combining characters as the code space of Unicode
is insufficient if all combinations were to be defined. Therefore, Unicode uses an

incomplete set of composite characters. [78]

3.8.6.4 Epic Virtual Machine
The code range P3000-P3FFF is used and set aside for Epic VM instructions

and numerical representation. The code range P3E00-P3EFF contains the predefined
Epic VM instructions, while the P3000-P3CFF range is marked for user defined Epic
VM instructions. The code range P3F00-P3FFF is used to represent the block of inte-
gers between -128 and 127. The Epic VM decodes input symbols as instructions and
executes them. Using Epic VM one can define or modify instruction definitions
which may have been defined during runtime. In Epic VM a user can define a code
sequence at a code point. When a symbol is input, a specified code sequence is exe-

cuted. Thus, it is possible to invoke instructions as functions. [79]

3.8.6.5 Using the Epic Virtual Machine for Ancient Symbols
Itisfrequently difficult to standardize ancient charactersthat are not currently

being used, but are under study by scholars. If researchers have differing opinions
about the identities of symbols, then standardization is not possible. If at some point

scholars can come to agreement, then ancient symbols can be standardized.

79

Nevertheless, academic study cannot wait for standardization. The EPICIST system
allows researchers who have differing opinions about the identification of symbols
to assign symbolsto different code points and continue on with their investigations.
Oncethe standardization processis complete, an Epic VM program can be embedded
in EPICIST to map old code points to the new standardized ones. This is possible
because an Epic VM program is nothing more than a set of symbolsand are transmit-
ted along with data encoded in EPICIST. [78]

3.8.7 Current Direction of Multilingual Encodings

It appears Unicode is the prominent multilingual encoding. Some of the rea-
sons for this are based on sound technical arguments, while others are for political
and or commercial reasons. Technically, working with Unicode is actually no more
difficult than working with ASCII, because of Unicode's fixed width stateless char-
acters. On the other hand, Multicode, TRON, and EPICIST require either the manip-
ulation of multi-byte characters, the manipulation of variable length code sequences,

or maintaining stateful information.

Commercially, Unicode has been a magjor success. Unicode can be found in
operating systems (Linux, MacOS, OS/2, and Windows), programming languages
(Java, Perl, and Python) as well as web browsers (Mozilla, Netscape, and Internet
Explorer). Therefore, we use Unicode as a basis for illustrating information process-

ing problems that arise from adopting a multilingual encoding.

80

4Bidirectiona| Text

Unicode' s ability to mix the various script systems of the world makes the
creation of multilingual documents no more difficult than the creation of monolin-
gual documents. But this causes difficulties. An example of text using two different
script systemsisgiven in Figure 4-1. Thistext isan excerpt from a Tunisian newspa-
per, and tells of an upcoming international music festival. In this example we see an
English phrase “(Tabarka World Music Festival)” embedded in a paragraph that is
comprised of mostly Arabic text. The paragraph a so contains European numeralsfor
the date. The beginning of the paragraph starts in the upper right hand corner, and is
read from right-to-left except when numerals or English phrases are encountered. We

call such text streams “bidirectional text”. [4]
Figure 4-1. Tunisian newspaper

Slarth Luaslaal] & 3900) olallail il iy S (g paalaall Sl ng
st el [glae (@olall lisa 7 1 glsa 29) Sall loal] Tyl
5 U i Laob Tigte s o Lol il gl 3l cpalil
Olasga : Gloie cnl qalll gl Sl ¥ g gl DA (AT Lot Lhiinse
wle Ju3 LaSy (Tabarka World Music Festival) welsae alyg5ll 43 5.k
Lo asd b Zatlall Luacusll olegand 60 Qoo 1 L) 0 Gl pacal
£ s cibide oy Loslill Lus¥) iscshly (allall ianisa) aeliosn olysglhng iy
gty cntl] &5 Ty pllal

For the most part the layout of such bidirectional paragraphsisfairly straight
forward. There are subtleties however, that can make the layout become non-trivial.
Additionally, in some cases ambiguities may arise from the intermixing of script sys-

tems with conflicting directions. The goal of this chapter isto explore some of these

81

subtleties and ambiguities. In particular, great attention is given to the intermixing of
Latin based scripts (written left-to-right) with the Arabic and Hebrew script systems
(written right-to-1eft). We demonstrate that the layout of multilingual text is non-triv-
ia. Thisis followed by an investigation of the current techniques (algorithms) that
are being used for layout of multilingual text. Lastly, the deficiencies in the current
strategies are illustrated.

4.1 Non Latin Scripts

The inexact match between phoneme (phonetic unit that represents a distinct
sound in alanguage) and orthographic representation hasmadeit possiblefor English
to represent itsintricate system of soundswith out the need of diacritical marks (mod-
ifying marks that alter the phonetic value of a character). Each word in English can
be in encoded in ASCII. The remaining Latin script languages rely strongly on the

use of diacritical marks and hence cannot be correctly encoded in ASCII. [62]

The addition of diacritical marks to an aphabet cannot help but complicate
layout and editing. In some scripts the actual glyphs (visual shape of a character or a
sequence of characters) arealtered dramatically. Thereason for thisliesin the history
of literacy in the language. The glyphs for a set of alphabetic charactersis strongly
connected to the medium on (or in) which the glyphs are rendered. For example, the
graphic shapes representing the syllabary of Sumerian were created by pressing a
narrow triangular shaped stylusinto clay, producing wedge shaped marks, known as

cuneiform, from which the script gets its name. [62]

The more recent Semitic scripts, of which Arabic is presently the most wide-
spread, are pen and ink scripts. The development of Arabic as an efficient handwrit-
ing has made it relatively hard to work with in an automated environment. This
difficulty comesnot only from Arabic’s cursive nature, but also from its bidirectional
(an intermixing of text segments written right-to-left with segments written left-to-

right) layout requirements. These challenges are discussed in later sections. [62]

82

4.1.1 Arabic and Hebrew Scripts

Arabic writing isaphabetical. Ideally alphabets consist of afew dozen letters,
each of them representing only one unique sound. In modern Arabic there are 28
basic letters, 8 of them doublets differentiated by diacritics and 6 optional letters for
representing vowels. The letters are written from right-to-left, with words being sep-
arated by white space. The letters within a word are generally connected to each
other. Numerals are read from left-to-right just like the Latin based languages. From
a strictly information processing perspective this is quite similar to Latin based
scripts, disregarding the right-to-left writing direction and the interconnecting of let-
ters. [71]

When the first attempts were made to construct a type font for Arabic, there
was no model from which to construct glyphs other than handwriting. The Arabic
language was not often inscribed on stone, so stonecutters were not given any incen-
tive to create their own glyphs in spite of the popularity of stone monuments and
inscriptions. Nevertheless, Arabicisdifficult to capture in computers because Arabic
isahand written script requiring some amount of compromisefor discrete characters.
The compromise of using discrete charactersto codify Arabic writing makesit diffi-
cult to express certain intrinsic properties (cursive, position, ligatures, and mirrors)

of the Arabic script. We examine these properties below. [62]

4.1.1.1Cursive
The finest Arabic inscriptions are imitations of handwriting, and are almost

always cut in relief. A calligrapher would paint an inscription on a surface from
which a stonecutter would then chisel away the unpainted stone. Thisleft the letters
standing out against a background. Nevertheless, this fluid, connected nature of
Arabic is difficult to adapt to the technology of movable type or matrix based glyph
design. [62]

83

4.1.1.2 Position
In Arabic, and to some extent in Hebrew, the mapping of aglyph to acharac-

ter isnot one-to-one asin the Latin script. Instead the selection of a character’ sglyph
is based upon its position within a word. Subsequently, each Arabic character may
have up to four possible shapes: [6], [21], [89]

* Initial - Character appearsin the beginning of aword
* Final - Character appears at the end of aword.

* Media - Character appears somewhere in the middle.
* Isolated - Character is surrounded by white space.

Furthermore, glyph selection must also take into consideration the linking
abilities of the surrounding characters. For example, some glyphs may only link on
their right side while others may permit links on either side. In Arabic each character

belongs to one of the following joining classes:[96]

* Rightjoining - Alef, Dal, Thal, Zain
» Leftjoining - None
e Dual joining - Beh, Teh, Theh, ...
» Join causing - Tatweel, Joiner (U200D)
* Nonjoining - Spacing characters, Non-joiner (U200C)
* Transparent - Combining marks
In Hebrew some characters do have final forms even though Hebrew is not a
cursive script. Theidea of contextual shaping is certainly not limited just to right-to-
left scripts. For example, the Greek script provides a special final form for the sigma

character. [96]

4.1.1.3 Ligatures
Occasionally two or more glyphs combine to form a new single glyph called

aligature. This resultant shape then replaces the individual glyphs from which it is

comprised. In Arabic this occurs frequently and in Hebrew rarely. In particular the

84

Alef Lamed ligature (UFB4F) is used in liturgical books. The number of actual liga-
tures used in Arabic text is difficult to determine. However Unicode devotes nearly
1,000 code points for them. Although infrequent, ligatures do occur even in English.
Specifically, the fi ligature where the letter f merges with the letter i. [6], [21], [89]

4.1.1.4 Mirroring
In some cases glyph selection may be based on a character’ s direction. These

characters are known as mirrored characters (parentheses and brackets). When mir-
rored characters are intermixed with Arabic and or Hebrew characters, acomplemen-
tary shape may need to be selected so as to preserve the correct meaning of an
expression. For example, consider thetext stream 1 < 2inlogical order (onelessthan
two). If this stream isto be displayed in aright-to-left sequence it must be displayed
as2> 1. Inorder to preserve the correct meaning the < is changed to >. This process

isknown as mirroring or symmetric swapping. [89]

4.1.2 Mongolian Script

Mongolian writing is aso aphabetic, like Arabic. In Mongolian there are 27
basic letters, and 8 letters for representing vowels. Words are separated by white
space. Mongolian’ sancestor, classic Uigur script belonged to the right-to-left Arabic
script family. Like other Arabic based scripts, a character’s shape is based upon its
position within a word. This makes Mongolian and Arabic quite ssimilar, however
Mongolian has more complicated orthographies. In some cases position information
is not always enough to specify final glyphs, and there can even be some variation
for the same form. Under Chinese influence Mongolian is now written vertically in
columns from top to bottom, in a general left-to-right direction. Nevertheless, this

script system brings yet another challenge to information processing. [53]

85

4.2 Bidirectional Layout

Ascomputing power increases and as high quality laser printers become com-
monplace, user expectations rise. The computer must now be able to take sequences
of intermixed characters (left-to-right and right-to-left) and place them in their proper
position. We call this process “bidirectional layout”. In this section we explore some

of the issuesrelated to bidirectional layout.

4.2.1 Logical and Display Order

For the most part the order in which characters are stored in typesetting sys-
tems (logical order) is equivalent to the order in which they are visually presented
(display order). The only exceptions being those scripts that are written from right-
to-left. When the logical and display orders are not equivalent an algorithm is
required to convert the logical order to display order. At first this might seem trivial,
given that a right-to-left script ssimply hasits display order in reverse. Unfortunately
this is not the case. Technically, Arabic and Hebrew are not simply right-to-left
scripts, rather they are bidirectional scripts. This bidirectional nature is exhibited
when al phabetic and numeric data are intermixed. For example, the digits2and 9in
Figure4-1 arethe number 29 and not 92. Therefore, an algorithm that smply reverses

charactersisinadequate. [10]

Additionally, we must also consider text data that is comprised from various
script systems. As soon as any word or phrase from anon right-to-left script (English,
German, etc.) is incorporated into a right-to-left script (Arabic, Hebrew, etc.), the
same bidirectional problem arises. In certain cases the correct layout of atext stream
may be ambiguous even when the directions of the scripts are known. Consider the
following example in Figure 4-2 in which Arabic letters are represented by upper

case Latin characters.

86

Figure 4-2. Ambiguous layout
fred does not believe TAHT YAS SYAWLA |

In the absence of context (a base or paragraph direction) there are two possi-
ble ways to read the sentence. When read from left-to-right (Fred does not believe |
aways say that), and when read from right-to-left (I always say that Fred does not
believe.) It thus becomes apparent that the problem is not only an algorithmic one but

acontextual one. [41]

4.2.2 Contextual Problems

A logical to display conversion algorithm must al so contend with the problem
of context. In many cases an algorithm must consider the context in which asequence
of characters (alphabetic and numeric) appears. This can lead to cases in which an
algorithm will yield inappropriate results when the context is not known or misun-
derstood.

Consider a phone number appearing in a stream of Arabic letters, MY
NUMBER IS (321)713-0261. In this example uppercase Latin letters represent
Arabic letters, and the digits represent European numerals. This should not be ren-
dered as a mathematical expression. In Arabic mathematical expressions are read
right-to-left, while phone numbers are read left-to-right. See Figure 4-3. [12],[96]

Figur e 4-3. Rendering numbers
0261-713(321) S| REBMUN YM (incorrect)

(321)713-0261 S| REBMUN YM (correct)

Without understanding the context in which numbers appear, the correct dis-
play cannot be determined. There are numerous contextual and cultural factors (e.g.,
language and locale) that need to be given consideration when converting to display

order.

87

4.2.3 Domain Names

In some situations a character changes meaning based on context. Consider
the use of the hyphen-minus character in domain names. In domain names the pre-
dominant usage of the hyphen-minus is as white space and not as a mathematical
operator or sign indicator. The example in Figure 4-4 illustrates the effect of Euro-

pean digits surrounding the hyphen-minus characters.

Line 1 on Figure 4-4 is a single domain name label in logical order. In this
example uppercase Latin letters represent Hebrew letters, and the digits represent
European numerals. Line 2 isthe same label in display order, thisisthe output if the
hyphen-minus characters are treated as mathematical operators. Thetext onLine3is
also in display order, however this output is obtained when the hyphen-minus char-

acters are treated as white space characters.

Figure 4-4. Using a hyphen minusin a domain name

NOP--123 1)
--123PON @)
123--PON ®3)

Exploring domain names further, we see that even the full-stop character’s
semantics change based on context. The text on Line 1 of Figure 4-5 is a domain
name in logical order, uppercase Latin letters represent Arabic letters. Line 2 is the
resultant display order if the full-stop is treated as a sentence terminator (punctua-
tion). In this example the presence of an Arabic character in the first label forces the
entire domain name to take on an overall right-to-left reading. Thisis certainly cor-
rect behavior if thisisthefirst sentence in a paragraph, however thisisinappropriate
in the context of adomain name. This behavior unfortunately mangles the hierarchi-

cal structure of the domain name. We suggest that the output on line 3 is more desir-

88

able, as this output is consistent with the current structure of domain names. In this

case the full-stop characters are ignored.

Figure 4-5. Using afull-stop in adomain name

ABC.ibm.com (@D}
ibm.com.CBA 2
CBA.ibm.com 3

4.2.4 External Interactions

Thelayout of bidirectional text isacomplex process requiring the interaction
of various systems. We discussed above the contextual problem in bidirectional
layout and how it is solved by contextual analysis and character reordering. Thisis

only one piece of the puzzle.

4.2.4.1 Line Breaking
When bidirectional text is displayed or printed it is done so on aline by line

basisfor each paragraph. Thelines, however are not actually comprised of characters,
but rather glyphs. The process of constructing thelines, “line breaking”, requires that
the widths of all the glyphs in the paragraph along with the width of the display area
be known. It isinappropriate to assume that the number of and width of each charac-
ter isthe same when displayed. This requires a sophisticated mapping between char-
actersand glyphs. [6], [21]

4.2.4.2 Glyph M apping
Traditionaly glyphs are selected and drawn by font rendering engines rather

than via character replacement. The logic for this approach is centered around glyph
availability. Some glyphs may simply not be available in a font (e.g., Hebrew and
Greek final forms). If implementerswere to replace sequences of characterswith new
character ligatures, there would be no guarantee that they would be present in a font

aswell. Someligatures are not able to be constructed by using character replacement,

89

as they are not present in Unicode. The choice of an appropriate glyph requires

knowledge of the font and its available glyphs.

4.2.4.3 Behavioral Overrides
Putting aside glyph related problems there are still other facetsin a complete

layout solution. For example, user supplied information may be required in order to
determine where a paragraph begins and ends. Examining just the stream contents
isn't always sufficient. Thisinformation could appear as control codes or be supplied
externally. [96]

In some cases user preferences or locales can also force the stream contents
to change. For example, the shapes used to display numeric characters could be con-
trolled by alocale. In an Arabic locale numeric characters would be displayed with
“Hindi” shapes, while a Western European locale would use “Arabic” shapes for

numbers. [41]

4.2.5 Bidirectional Editing

There are also aspects of bidirectional layout that are outside the scope of
overrides, in particular the caret and the mouse. Movement of the caret and hit testing
of the mouse becomes more complex in bidirectional streams. If the caret is moving
linearly within one of the (logical or visual) streams, then this movement needs to be
trandated to the other stream. Highlighting poses a similar problem as to which
stream is being highlighted (logical or visua). [6], [21]

4.2.6 Goals

Unfortunately, the tasks that the developer would like to provide are not nec-
essarily the same onesthat can be provided. All of this depends on how the algorithm
isintended to be used. If theintended useisto fit withinin some broader context then
it may be acceptable to leave some features out. If the intended use is to provide a

complete layout framework, a set of features above and beyond the ones mentioned

90

may be required. The specification of a bidirectional algorithm can only be imple-
mented as a character stream reordering (What el se can an implementer do?), yet the

bidirectional layout problem can only be solved in a larger context.

4.3 General Solutionsto Bidirectional Layout
There are four general ways in which the bidirectional display problem can
be addressed. Three of these strategies are automated, while one requires user inter-

vention:

» Forced Display
» Explicit

e Implicit

* Implicit/Explicit

4.3.1 Forced Display

The Forced Display algorithm requires users to enter characters in display
order. So if atext stream contained Arabic (right-to-left) characters the user would
simply enter them backwards. This inelegant solution becomes cumbersome when
scripts are intermixed. On the other hand, this approach has the advantage that the
output (display order) is always correct and independent of the context. [12]

4.3.2 Explicit

Another potential solution to the bidirectional problem is to allow users to
enter text in logical order but expect them to use some explicit formatting codes (for
example, U202B and U202A in Unicode) for segments of text that run contrary to the
base text direction, but what does one do with the explicit control codesin tasks other
than display? For example, what effect should these controls have on searching and
datainterchange. These explicit codes require specific code pointsto be set-aside for
them as well. In some encodings this may be unacceptable due to the fixed number

of code points available and the number of code pointsrequired to represent the script

91

itself. A less technical problem is the pain this process causes the users, requiring
constant thought in terms of presentation, which is an unnatural way to think about
text. [12], [41]

4.3.3 Implicit

Humans want to be able to enter text in the same way as one would read it
aloud. Ideally, onewould like to maintain the flexibility of entering charactersinlog-
ical order while still achieving the correct visual appearance. Such “implicit layout
algorithms’ do exist. They require no explicit directional codes nor any higher-order
protocols. These algorithms can automatically determine the correct visual layout by
simply examining the logical text stream. Generally the implicit rules are sufficient
for thelayout of most text streams. Still, there are situationsin which animplicit algo-
rithm will not always yield an acceptable result, because it is difficult to design a set

of heuristics for every situation. [41]

4.3.4 Implicit/Explicit

An implicit/explicit Algorithm offers the greatest level of flexibility by pro-
viding a mechanism for unambiguously determining the visual representation of al
raw streams of text. This type of algorithm combines the benefits of implicit layout
algorithms with the flexibility of an explicit algorithm. Throughout the rest of this
chapter we limit our discussion of bidirectional algorithmsto thistype of algorithm,
because it shows the greatest potential for solving the bidirectional display problem.
[96]

4.4 |mplicit/Explicit Bidirectional Algorithms

The primary agorithm explored below is the Unicode Bidirectional Algo-
rithm. Thisagorithm isin the implicit/explicit class of bidirectional algorithms. The
other algorithms that are discussed in this section are variations of Unicode's algo-

rithm.

92

4.4.1 Unicode Bidirectional Algorithm

The Unicode Bidirectional Algorithm is described in Unicode Technical
Report #9. There are two reference implementations — one written in the program-
ming language Java and one in C [100]. The Unicode agorithm is based upon exist-
ing implicit layout algorithms and explicit directional control codes that may be in

the input stream.

The core of the Unicode Bidirectional algorithm is centered around three
aspects: resolving character types, reordering characters and analyzing mirrors. The
bidirectional algorithm is applied to each paragraph on aline by line basis. During
resolution, characters that do not have a strong direction are assigned a direction
based on the surrounding characters or directional overrides. In this context the term
“strong” indicates a character that is either a left-to-right character or a right-to-left
character. In the reordering phase, sequences of characters are reversed as necessary
to obtain the correct visua ordering. Finally, each mirrored character (parenthes's,
brackets, braces, etc.) is examined to seeif it needs to be replaced with its symmetric
mirror.[100]

The Unicode Bidirectional Algorithm determines the general reading direc-
tion of a paragraph either explicitly or implicitly. In the explicit method the reading
direction of aparagraph iscommunicated to the algorithm outside of and independent
from the characters in the paragraph. The implicit method determines the reading
direction of a paragraph by applying a set of heuristics on the charactersin the para-
graph. [100]

4.4.2 1BM Classesfor Unicode (ICU) and Java

Java 1.2 provides a complete framework for creating multi script applica-
tions. Java' s TextLayout and LineBreakMeasurer classesfacilitate the layout of com-
plex text in a platform neutral manner. The underlying approach to reordering is
based on the Unicode Bidirectional Algorithm. [21]

93

ICU’s approach is very close to Java due in some respect to the fact that the
overall internationalization architecture of Javais based on |CU. Thekey differences
are centered around glyph management. In ICU glyph management routines are not
necessary because ICU is not designed to be a complete programming environment.

The ICU components are designed to work in conjunction with other libraries. [45]

4.4.3 Pretty Good Bidirectional Algorithm (PGBA)

Mark Leisher’s PGBA is another agorithm for bidirectiona reordering. The
algorithm takes an implicit approach to reordering. PGBA does not attempt to match
Unicode' s reordering agorithm. However PGBA’s implicit algorithm does match
the implicit section of the Unicode Bidirectional Algorithm. At the moment it does
not support the explicit bidirectional control codes (LRE, LRO, RLE, RLO, PDF).
One should not infer that the lack of support for directional control codes resultsin
an incomplete algorithm. Under most circumstances the implicit algorithm reorders
a text stream correctly. Secondly, these control codes are not always present in al
encoding schemes. Of courseit would be anice feature, but certainly not anecessary
one. [56]

4.4.4 Free Implementation of the Bidirectional Algorithm (FriBidi)
Dov Grobgeld's FriBidi follows the Unicode Bidirectional Reference more

closely. Notably there is support for integration with graphical user interfaces along

with a collection of code page converters. However asin PGBA the explicit control

codes are not currently supported. [34]

4.5 Evaluation of Bidirectional Layout Algorithms

In this section we report on the results of our independent evaluation of the
output of the bidirectional algorithms. The primary goal we sought in evaluating the

algorithmswasto determine whether or not their output matched Unicode’ sreference

94

algorithm. We have tested them on a large number of small, carefully crafted test

cases of basic bidirectional text.

4.5.1 Testing Convention

To simulate Arabic and Hebrew input/output asimple set of rulesare utilized.
These rules make use of charactersfrom the Latin 1 charset. The character mappings
allow Latin 1 text to be used instead of real Unicode characters for Arabic, Hebrew,
and control codes. Thisis an enormous convenience in writing, reading, running and
printing the test cases. Thisform isthe same as the one used by the Unicode Bidirec-
tional Reference Java lmplementation [100]. See Table 4-1. Unfortunately not all of
the implementations adhere to these rulesin their test cases. To compensate for this,

changes were made to some of the implementations.

Table 4-1. Bidirectional character mappings for testing

Type |Arabic |Hebrew |Mixed English

L a-z a-z a-z a-z
AL A-Z
R A-Z
AN 0-9
EN

LRE
LRO
RLE
RLO
PDF
NSM ~ ~

>
<

ININIEN

S| | —|]| —
> A'd Rl ~— — o ol Z

1 1
S|l | —| ~|—| O

l
l

In the Unicode C reference implementation additional character mapping
tables were added to match those of the Unicode Java Reference implementation.

Also the bidirectional control codes were remapped from the control range 0x00-

95

Ox1F to the printable range 0x20-0x 7E. Thisremapping allowstest results to be com-
pared more equitably.

In PGBA and FriBidi the character attribute tables were modified to match
the character mappings outlined in Table 4-1. The strategy for testing ICU and Java
was dlightly different than PGBA and FriBidi. In the |CU and Javatest cases we used

the character types rather than character mappings.

45.2 Test Cases
The test cases are presented in Tables: 4-2, 4-3, 4-4, and 4-5. The source
column of each table showsthe test input. The expected column is what we think the
correct output should be. In al casesthisis the output produced by our HaBi imple-
mentation. These test cases are taken from the following sources:
* Mark Leisher - Hisweb page provides a suite of test cases aswell as atable of
results for other implementations [56]. See Tables: 4-2 and 4-3.

» Unicode Technical Report #9 - Some of the examples are used for testing con-
formance [100]. See Table 4-2.

» Additional test cases for uncovering potential bugsin an implementation’s han-
dling of weak types and directional controls. See Tables: 4-4 and 4-5.

Table 4-2. Arabic charmap tests

Source Expected
1 carisTHE CAR in arabic car isRAC EHT in arabic
2 CAR ISthecar IN ENGLISH HSILGNE NI thecar SI RAC
3 he said “IT IS 123, 456, OK” hesaid “KO ,456 ,123 SI TI”
4 hesaid“IT IS (123, 456), OK” he said “KO ,(456 ,123) SI TI”
5 he said “IT 1S 123,456, OK” he said “K0O ,123,456 Sl TI”
6 he said “IT IS (123,456), OK” he said “KO ,(123,456) Sl TI”
7 HE SAID “itis 123, 456, ok” “ok ,456 ,123itis’ DIASEH
8 <H123>shalom</H123> <123H/>shalom<123H>
9 HE SAID “itisacar!” AND RAN NAR DNA “litisacar” DIASEH
10 |HESAID “itisacar!x” AND RAN NAR DNA “itisacar!x” DIASEH

96

Table 4-2. Arabic charmap tests (Continued)

Source Expected

11 |-2CELSIUSISCOLD DLOC Sl SUISLEC 2-

12 | SOLVE 1*51-5 1/5 1+5 5+15/15-15*1 EVLOS

13 | THERANGEIS25.5 5..25SI EGNAR EHT

14 | 10U $10 10$ UOI

15 | CHANGE -10% %10- EGNAHC

16 |-10% CHANGE EGNAHC %10-

17 | hesad“ITISA CAR!" hesad“RACA SI TI!”

18 | hesad“ITISA CAR!X” hesaid “X!RACA SI TI”

19 | (TEST) abc abc (TSET)

20 | abc (TEST) abc (TSET)

21 |#@STEST TSET $@+#

22 | TEST 23 ONCE abc abc ECNO 23 TSET

23 | hesaid“THE VALUES ARE 123, 456, 789, | hesaid “KO ,789 ,456 ,123 ERA SEULAV
oK~ EHT”.

24 | hesaid“IT ISA bmw 500, OK." hesaid“A Sl TI bmw KO ,500.”

Table 4-3. Hebrew charmap tests

Source Expected
1 |HE SAID “itis 123, 456, ok”. Jitis 123, 456, ok” DIAS EH
2 | <H123>shaom</H123> <123H/>shalom<123H>
3 | <h123>SAALAM</h123> <h123>MALAAS</h123>
4 |-2CELSIUSISCOLD DLOC Sl SUISLEC -2
5 |-10% CHANGE EGNAHC -10%
6 | TEST ~~~23%%% ONCE abc abc ECNO 23%%%~~~ TSET
7 | TEST abc ~~~23%%% ONCE abc abc ECNO abc ~~~23%%% TSET
8 | TEST abc@23@cde ONCE ECNO abc@23@cde TSET
9 | TEST abc 23 cde ONCE ECNO abc 23 cde TSET
10 | TEST abc 23 ONCE cde cde ECNO abc 23 TSET
11 | Xa2Zz Za2X

97

Table 4-4. Mixed charmap tests

Source Expected
1 A~~ ~~A
2 A~a~ a—A
3 Al 1A
4 Al 1A
5 A~1 1~A
6 1 1
7 al al
8 N1 1N
9 A—~1 1~—~A
10 A~al al~A
11 N1 IN
12 al al
13 A~N1 IN~A
14 NOal alON
15 12 1/2
16 12 1,2
17 5,6 5,6
18 Al1/2 2/1A
19 Al5 15A
20 Al.22 1,2A
21 1,2 1,2
22 1,A2 2A1
23 A5,1 51A
24 +$1 +$1
25 1+$ 1+$
26 5+1 5+1
27 A+$1 1$+A
28 Al+$ $+1A
29 1+/2 1+/2
30 5+ 5+

98

Table 4-4. Mixed charmap tests (Continued)

Source Expected
31 +$ +$
32 N+$1 +$1N
33 +12% +12$
34 all all
35 15 15
36 +5 +5

Table 4-5. Explicit override tests

Source Expected
1 al}} def afed
2 a}}} DEF aFED
3 at}}defDEF aFEDfed
4 at}} DEFdef afedFED
5 af {{ def adef
6 a{{{DEF aDEF
7 o {{ defDEF adefDEF
8 af {{ DEFdef aDEFdef
9 A}}}def fedA
10 |A}}}DEF FEDA
11 |A}}}defDEF | FEDfedA
12 | A}}}DEFdef | fedFEDA
13 | A{{{def defA
14 | A{{{DEF DEFA
15 | A{{{defDEF | defDEFA
16 | A{{{DEFdef DEFdefA
17 | ™Mabc abc
18 AN} abe cha
19 |}7abc abc
20 Anabe abc
21 | }Nabe cha
22 | }Mabc abc

99

Table 4-5. Explicit override tests (Continued)

Source Expected
23 }M}abe cha
24 } }abcDEF FEDcbha

4.5.3 Test Results

All implementations were tested by using the test cases from Tables. 4-2, 4-
3, and 4-4. The implementations that support the Unicode directional control codes
(LRO, LRE, RLO, RLE, and PDF) were further tested using the test cases from
Table 4-5. At this time, the directional control codes are only supported by HaBi,
ICU, Java 1.2, Unicode Java reference, and Unicode C reference.

When theresults of thetest caseswere compared, the placement of directional
control codes and choice of mirrorswasignored. Thisis permitted by Unicode since
the final placement of control codes is arbitrary, and mirroring may optionally be

handled by a higher-order protocol.

Table 4-6. Arabic test differences

PGBA 2.4 FriBidi 1.12
2 Sl RAC the car NI ENGLISH
4 | hesaid“KO)456,123(Sl TI”
6 he said “KO ,)123,456(SI TI”
7 DIASEH “itis 456,123, ok”
8 <123H>shalom</123H>
9 DIASEH “itisacar!” DNA RAN
10 DIASEH “itisacar!x” DNA RAN
11 -SI SUISLEC 2 COLD
12 | 1+51/51-55*1 EVLOS
14 | $10 UOI
15 | %-10 EGNAHC 10- EGNAHC%
16 | EGNAHC %-10 -10% CHANGE
19 | abc)TSET((TSET) abc

100

Table 4-6. Arabic test differences (Continued)

PGBA 2.4 FriBidi 1.12
21 #@$ TEST
22 ECNO 23 TSET abc

24 | hesaid“A Sl Tl bmw 500, KO.”

Table 4-7. Hebrew test differences

PGBA 24 FriBidi 1.12
5 EGNAHC %-10

abc ECNO %%%023~~~ TSET
7 abc ECNO %%%23~~~ abc TSET
11 Z2aX az2x

Table 4-8. Mixed test differences

PGBA 2.4 FriBidi 1.12
1 A~—~
2 ~a~A ~Aa~
10 la~A ~Aal
14 1aON
18 | 1U2A 1/2A
19 51A
21 2,1
23 15A
27 +$1A
28 1+$A
32 | 1$+N
35 51

Tables: 4-6, 4-7, and 4-8 detail the differences among the implementations
with respect to the results obtained with the HaBi Implementation. Only PGBA and
FriBidi return results that are different than the HaBi implementation. The Unicode

Javareference, Unicode C reference, Java 1.2, and ICU pass all test cases.

101

In PGBA, types AL and R are treated as being equivalent [56]. Thisin itself
does not present aproblem aslong asthe datastream isfree of AL and EN (European
number). However, a problem arises when an AL isfollowed by an EN for example,
test case 18 from Table 4-4. In this situation the ENs should be treated as ANs (Ara-

bic number) and not left as ENs.

The handling of a NSM is aso different in PGBA. PGBA treats a NSM as
being equal to an ON (other neutral) [56]. This delays the handling of NSM until the
neutral type resolution phase rather than in the weak type resol ution phase. By delay-
ing their handling, thewrong set of rules are used to resolvethe NSM type. For exam-
ple, in test case 2 from Table 4-4 the last NSM should be treated as type L instead of
typeR.

In FriBidi there are afew bugs in the implementation. Specifically, when an
AL isfollowed by an EN the EN is not being changed to type AN. See test case 18
in Table 4-4. Thisis the same symptom as was found in PGBA, but the root causeis
different. In FriBidi, step W2 (weak processing phase rule two) the wrong type is
being examined it should be type EN instead of type N.

Thereis also a bug in determining the first strong directional character. The
only types that are recognized as having a strong direction are types R and L. Type
AL should also be recognized as a strong directional character. For example, when
test case 1 from Table 4-4 is examined FriBidi incorrectly determines that there are
no strong directional characters present. It then proceedsto default the base direction
to type L when it should actually be of type R. This problem also causes test cases 2,
9, and 11 from Table 4-2 to fail.

4.6 Functional Approach to Bidirectional Layout

Having examined several bidirectional algorithmswe see numerous problems

with the implementations. We believe these errors are not the fault of the implemen-

102

tations, but rather are the fault of the algorithm and its description. In this section we
introduce the Haskell bidirectional algorithm (HaBi). Our goal isto apply functional
programming techniques to the problem of bidirectional layout, so asto discover the
essence of the Unicode Bidirectional Algorithm. A greater understanding of the algo-
rithm is obtained by a clear functional description of its operations [41]. Without a
clear description, implementers may encounter ambiguities that ultimately lead to
divergent implementations, contrary to the primary goal of the Unicode Bidirectional
Algorithm. During the construction of our functional implementation we excluded all
references to the Java and C implementations of the Unicode Bidirectional Algo-

rithm, so asto prevent any bias.

4.6.1 Haskell Bidirectional Algorithm (HaBi)
In this section the source code to HaBi is presented. The HaBi reference
implementation uses the Hugs 98 version of Haskell 98 [51] asit iswidely available

(Linux, Windows, and Macintosh) and easily configurable.

Since the dominant concern in HaBi is comprehension and readability our
implementation closely follows the textual description as published in the Unicode
Technical Report #9. See Figure 4-7. HaBi is comprised of five phases asin the Java

Unicode Bidirectional Reference implementation:

» Resolution of explicit directional controls
* Resolution of weak types

» Resolution of neutral types

» Resolution of implicit levels

» Reordering of levels

Currently there is no direct support for Unicode in the Hugs 98 implementa-
tion of Haskell 981. So we treat Unicode as lists of 16 or 32-bit integers. The authors
provide two modules for Unicode manipulation. The first is used to create Unicode
(UCH4, UCS2, and UTF-8) strings. The second is used for determining character

103

types. Utility functions convert Haskell strings with optional Unicode character
escapes to 16 or 32-bit integer lists. A Unicode escape takes the form \uhhhh analo-
gous to Java. This escape sequence is used for representing code points outside the
range 0x00-0x7F. Thisformat was chosen so as to permit easy comparison of results

to other implementations.

Internally HaBi manipulates Unicode as sequences of 32-bit integers. See
Figure 4-6. HaBi is prepared to handle surrogates as soon as Unicode assigns them.
The only change HaBi requires is an updated character attribute table. It would be
more elegant to use the polymorphism of Haskell since the algorithm does not really
care about the type of a character only its attribute.

Figure 4-6. Input and output of Haskell Bidirectional Reference

String to I nteger
(Unicode) List

L ogical to Display

Integer to Sring
(Unicode) List

Each Unicode character has an associated Bidirectiona attribute and level

number. Figure 4-7 showsthe general relationship of thisinformation throughout the

1. The Haskell 98 Report defines the Char type as an enumeration consisting of 16-bit values con-
forming to the Unicode standard. The escape sequence used is consistent with that of Java (\uhhhh).
Unicodeis permitted in any identifier or any other place in a program. Currently the only Haskell
implementation known to support Unicode directly isthe Chalmers' Haskell Interpreter and Com-
piler.

104

steps of the algorithm. The first step in our implementation is to lookup and assign
bidirectional attributes to the logical character stream. The attributes are obtained
from the online character database as published in Unicode 3.0. At this point explicit
processing assigns level numbers as well as honoring any directional overrides.
Weak and neutral processing potentially causes attribute types to change based upon
surrounding attribute types. Implicit processing assigns fina level numbers to the
streams which control reordering. Reordering then produces a sequence of Unicode

charactersin display order.

Figure4-7. Dataflow

Unicode Attribute Level
Lookup | @
Explicit A >
Week A
Neutral A
Implicit O—»
Reorder v<

HaBi uses the following three internal types:

* typeAttributed = (Uc4, Bidi)
* typelLevel=(Int, Ucs4, Bidi)
o dataRun=LL[Level] |LR[Level] | RR[Level] | RL[Level]

Wherever possible the implementation treats characters collectively as
sequential runs rather than as individual characters [1]. By using one of data type
Run’ sfour possible type constructors, characters can then be grouped by level. These
four constructors signify the possible combinations of starting and ending run direc-
tions. For example, the LL constructor signifies that the start of a run and the end of
arun are both left-to-right. Therefore runs of LL followed by RL are not created.

Beforethe detail s of the source code are discussed it isimportant to make note

of the following concerning HaBi:

105

» Thelogical text stream is assumed to have already been separated into paragraphs
and lines.

» Directional control codes are removed once processed.
* No limit isimposed on the number of allowable embeddings.
» Mirroring is accomplished by performing character replacement.

By separating those facets of layout dealing with reordering from those that are con-
cerned with rendering (line breaking, glyph selection, and shaping) it becomes easier
to understand the Haskell implementation.

4.6.1.1 HaBi Source Code
In the source code, functions are named in such away so as to correspond to

the appropriate section in the Unicode Bidirectional textual reference [100]. See
Appendix A. For example, the function named weak refersto overall weak resolution.
While the function named w1l _7 lines 46-72 specifically refersto steps 1 through 7 in

weak resolution.

The function logicalToDisplay lines 152-160 in Appendix A, is used to convert
astream in logical order to one in display order. First, calls to the functions explicit
lines 37-41, weak lines 74-79, neutral lines 95-100, and implicit lines 115-120 form runs
of fully resolved characters. Calls to reorder lines 135-141 and mirror lines 144-150
are then applied to the fully resolved runs which in turn yield a stream in display
order. Thisisdiscussed in greater detail in the next few paragraphs.

The explicit function breaks the logical text stream into logical runs via calls
top2_31linesl-8, x2_9 lines 10-27 and x10 lines 29-35. The reference description sug-
gests the use of stacksfor keeping track of levels, overrides, and embeddings. In our
implementation stacks are used as well, but they are implicit rather than explicit
(function x2_9 arguments two, three, and four). The functions weak, neutral, and

implicit are then mapped onto each individual run.

106

Inweak steps 1 though 7 lines 46-72 two pieces of information are carried for-
ward (the second and third arguments of function wl_7) the current directional state
and the last character’s type. There are cases in the algorithm where a character’s
direction gets changed but the character’s intrinsic type remains unchanged. For
example, if astream contained an AL followed by aEN the AL would changeto type
R (step three in weak types resolution). However the last character would need to

remain AL so as to cause the EN to change to AN (step two in resolution of weak
types).

Thefunctionsnl 2 lines81-93 and il 2 lines 103-113 resolve the neutral and
implicit character types respectively. The details of these functions are not discussed
asthey arefairly straight forward. At this point runs are fully resolved and ready for

reordering (function reorder).

Reordering occurs in two stages. In the first stage (function reverseRun lines
122-127), aruniseither completely reversed or left asis. Thisdecision isbased upon
whether arun’slevel iseven or odd. If it is odd (right-to-left) then it is reversed. In
the second stage (function reverselLevels lines 129-133), the list of runs are reordered.
At first it may not be obvious that the list being folded is not the list of runs, but is
thelist of levels (highest level to the lowest odd level in the stream). Once reordering
isfinished thelist of runsare collapsed into asinglelist of charactersin display order.

4.6.1.2 Benefits of HaBi
By using a functional language we are able to separate details that are not

directly related to the algorithm. In HaBi reordering is completely independent from
character encoding. It does not matter what character encoding one uses (UC$4,
UCS2, or UTF8). The Haskell type system and HaBi character attribute function
allows the character encoding to change while not impacting the reordering algo-

rithm.

107

Other implementations may find this level of separation difficult to achieve
(Java and C). In C the size of types are not guaranteed to be portable, making C
unsuitable as areference. In the Java reference implementation the ramifications of
moving to UCH are unclear. Our reference presents the steps as simple, easy to
understand functions without side effects. This allows implementers to comprehend
the true meaning of each step in the algorithm independently of the others while
remaining free from language implementation details. The creation of test cases is

thus more systematic.

4.7 Problems With Bidirectional Layout Algorithms

The biggest hindrance to the creation of a mechanism for converting logical
data streamsto display streams liesin the problem description. The problem of bidi-

rectional layout isill defined with respect to the input(s) and output(s).

Certainly the most obvious input is the data stream itself. But several situa-
tions require additional input in order to correctly determine the output stream. For
example, in Farsi, mathematical expressions are written left-to-right whilein Arabic
they are written right-to-left [41]. This may require a special sub input (directiona
control code) to appear within the stream for proper handling to occur. If it becomes
necessary to use control codes for obtaining the desired results, the purpose of an

algorithm becomes unclear.

The problem of converting logical data streams to display streams is more
confounding when one considers other possible inputs (paragraph levels, line breaks,
shaping, directional overrides, numeric overrides, etc.) Arethey to be treated as sep-
arate inputs? If they are treated as being distinct, when, where and how should they
be used?

Determining the output(s) isnot simple either. The correct output(s) islargely

based on the context in which an algorithm will be used. If an algorithm is used to

108

render text, then appropriate outputs might be a glyph vector and a set of screen posi-
tions. On the other hand, if an algorithm is simply being used to determine character

reordering, then an acceptable output might just be a reordered character stream.

4.7.1 Unicode Bidirectional Algorithm

The Unicode Bidirectional algorithm has gone through several iterations over
the years. The current textual reference has been greatly refined. Nevertheless, we
believe that thereis still room for improvement. Implementing a bidirectional layout
algorithm is not a trivial matter even when one restricts an implementation to just
reordering. Part of the difficulty can be attributed to the textual description of the

algorithm. Additionally there are areas that require further clarification.

As an example, consider step L2 of the Unicode Bidirectional Reference
Algorithm. It states the following, “From the highest level found in the text to the
lowest odd level on each line, reverse any contiguous sequence of charactersthat are
at that level or higher. [100]” This has more than one possible interpretation. It could
mean that once the highest level has been found and processed the next level for pro-
cessing should be onelessthan the current level. It could also be interpreted as mean-
ing that the next level to be processed is the next lowest level actually present in the
text, which may be greater than one less than the current level. It was only through
an examination of Unicode’ s Javaimplementation that we were able to determinethe

answer. (The next level is one less than the current.)

There are also problems concerning the bounds of the Unicode Bidirectional
Algorithm. In the absence of higher-order protocolsit is not always possible to per-
form al the steps of the Unicode Bidirectional Algorithm. In particular, step L4
requires mirrored charactersto be depicted by mirrored glyphsif their resolved direc-
tionality is R. However, glyph selection requires knowledge of fonts and glyph sub-
stitution tables. One possible mechanism for avoiding glyph substitutions is to

perform mirroring via character substitutions. In this approach mirrored characters

109

are replaced by their corresponding character mirrors. In most situations this
approach yields the same results. The only drawback occurs when a mirrored char-
acter does not have its corresponding mirror encoded in Unicode. For example, the

square root character (U221A) does not have its corresponding mirror encoded.

When the Unicode Bidirectional Algorithm performs contextual analysis on
text it overrides the static proprieties assigned to some of the characters. This occurs
during the processing of weak and neutral types. Separating this portion of the algo-
rithm from resolving implicit levels and reordering levels greatly extends the appli-
cability of the algorithm. Ideally the analysis of the text should be distinct from the

actual determination of directional boundaries.

Domain names, mathematical expressions, phone numbers, and other higher-
order data elements are detected during the analysis phase. Nevertheless, it isimpos-
sibleto create an algorithm that can always correctly identify such elements. Thereal
issue is whether or not it is possible to create an algorithm that identifies such ele-
ments within some reasonabl e range of error and under aset of acceptable constraints

for the e ements themselves.

4.7.2 Reference Implementation

We argue that if source code is now going to serve as a reference we should
pick source code that is more attuned to describing algorithms. We claim to have pro-
vided such areference through the use of Haskell 98. Our HaBi referenceisclear and
succinct. The total number of lines of source code for the complete solution is less

than 300 lines. The Unicode Java reference implementation is over 1000 lines [100].

4.7.3 HaBI
Even though, HaBi is a great improvement over current imperative imple-
mentations the functional approach has offered only limited success. Our origina

goal was to discover the true nature of bidirectional display, in hopes of producing a

110

more succinct algorithm. Unfortunately, we have afailed in this attempt. The algo-

rithm appears to be ad hoc, henceit is not very algorithmic.

4.8 Limitations of Strategies
We believe, however, that the real problem of bidirectional layout lies not in
the implementations, but rather in the goals of the algorithm. The requirements of a
bidirectional layout algorithm are difficult to define. There are numerous interactions
between higher-order protocols (line breaking, glyph selection, mirroring) and bidi-
rectional layout. Additionally, thereisalimited amount of complex bidirectional text
from which to gather a strong consensus, making verification of results extremely
difficult.
The major issues that all of the current algorithms suffer from are:
» Lack of separation between inferencing (script boundary detection) and reorder-
ing.
* Incorrect output — Reordering only makes sense in the context of glyphs.
* Inadequate input — thereis simply not enough semantic information in plain text
to properly determine directional boundaries.
4.8.1 Metadata
We believe that one of the best strategies to overcoming these limitationsis
to introduce character metadata into a plain text encoding. This enables additional
semantic information to be expressed in a plain text stream as well as allowing for a
clear separation between inferencing and reordering. This is the topic of discussion

in the next chapter.

111

5Enhancing Plain Text

In the previous chapter we concluded that the current Unicode based bidirec-
tional layout algorithms: One, fail to separate inferencing from reordering and two,
produce the wrong output. The problem is poor design and a lack of clear levels of
abstraction. Code points are used for many different purposes. How should text for
natural languages be represented? |'s a stream of code points adequate? We think the
answer isno. To overcomethisdeficiency, we examine strategies for enhancing plain
text. These enhancementsinvol ve mechanismsfor describing higher-order protocols.

We generally refer to these enhancements as “ metadata’ (data describing data).

Algorithmsthat manipul ate Unicode should be based upon on code points and
character attributes, if possible, given that Unicode is a character encoding system.
The Unicode Bidirectional Algorithm, among others, isatext algorithm that requires
additional input and output (higher-order semantics) over and above the actual code
points. Unicode wishes to define such algorithms, however it lacks ageneral mecha-
nism for universally encoding higher-order semantics. Encoding higher-order
semantics into Unicode would permit a cleaner division of responsibilities. Algo-
rithms could be recast to take advantage of this division. To prove thisis viable we
recast the HaBi algorithm to take advantage of this division, separating the responsi-

bility of determining directional boundaries (inferencing) from reordering.

Below we present the historical use of metadata within character encodings.
Thisisfollowed by an examination of the presently available paradigms for express-
ing metadata. Particular attention is given to both Unicode's character/control/

metadata model and XML. We then present a universal framework for expressing

112

higher-order protocols within Unicode. Finally, the chapter concludes with evidence

demonstrating the benefits and adaptability of the new approach.

5.1 Metadata

The need for expressing metadata has existed ever since humans started com-
municating with each other. Metadata is primarily expressed through our verbal
speech. The tone, volume, and speed in which something is spoken often signals its
importance or underlying emotion. Often this is more important than the data itself,

and more difficult to codify.

Writing and printing systems also havetheir need for metadata. This metadata
has been variously conveyed through the use of color, style, and size of glyphs. Ini-
tially metadata was used as a mechanism for circumventing the limitations of early
encoding schemes. As our communication mechanisms advanced so did our need for

expressing metadata.

5.1.1 Historical Perspective

One of the earliest uses of metadata appears in Baudot’s 5-bit teleprinter.
Baudot divided his character set into two distinct planes, named L etters and Figures.
The Letters plane contained all the Uppercase Latin letters while the Figures plane
contained the Arabic numerals and punctuation characters. Together, these two
planes shared asingle set of code values. To distinguish their meaning Baudot intro-
duced two special meta-characters, letter shift “LTRS’ and figure shift “FIGS’.
Whenever code points were transmitted they were preceded by either a FIGS or
LTRS character. This enabled unambiguous interpretation of characters. Thisissim-
ilar to the shift lock mechanism in typewriters. For example, line 1 of Figure 5-1
spellsout “BAUDOT” whileline 2 spells out “?-7$95".[49],[18]

113

Figure5-1. Using LTRS and FIGS in Baudot code
Ox1F 0x19 0x03 0x07 0x09 0x18 0x10 BAUDOT D

0x1B 0x19 0x03 0x07 0x09 0x18 0x10 ?-7$95 (2

This gtill Ieft the problem of how to transmit a special signal to ateleprinter
operator. Baudot once again set aside a specia code point, named bell “BEL”. This
code point would not result in anything being printed, but rather it would be recog-

nized by the physical teleprinter as the command to ring abell. [49]

About 1900, we see code points being used as format effectors (code points
that control the positioning of printed characters on apage). A good example of such
usage can be seen in Murray’s code. Murray’s code introduced two additional char-
acters column “COL", and line page “LINE PAGE”. Known in International Teleg-
raphy Alphabet Number 2 (ITA2) as carriage return and line feed. These characters
were used to control the positioning of the rotating typehead and to control the
advancement of paper. Murray’s encoding scheme was used for nearly fifty years
with little modification. It also served as the foundation for future encoding tech-

niques.[49]

During the late 1950s and early 1960s telecommunication hardware rapidly
became complex. Consequently, hardware manufacturers needed more highly
sophisticated protocols and greater amounts of metadata. For this purpose the US
Army introduced a6-bit character code called FIELDATA. FIELDATA wasthefirst
encoding to formally introduce the concept of supervisor codes, known today has

control codes. These code points were used to signal communications hardware.[49]

The hardware manufacturers were certainly not alone in their need for meta-
data. The data processing community soon realized that they also had a need for
metadata. Thisunfortunately taxed the existing encoding schemes (5-bit and 6-bit) so

much so as to render them unusable. As a result, richer and more flexible encoding

114

schemes were created, the prime example being the American Standard Code for
Information Interchange (ASCII). [12]

ASCII with its 7-bit encoding, served not only as amechanism for datainter-
change, but also had many other special features. One feature was a mechanism for
metadata. This metadata could be used for communicating higher-order protocolsin
both hardware and software. The architecture isbased upon ASCII’ s escape character
“ESC” at hex value Ox1B. Initially the ESC was used for shifting between character
sets. This was of a particular importance to ALGOL programmers. For example, it
allowed if to be used as both an identifier and a reserved word simultaneously. The
presence of the ESC indicated that the if should be treated as areserved word, rather
than as an identifier [28]. As ASCII was adopted internationally the ESC became
useful for signaling the swapping in and out of international character sets. This con-
cept was expanded upon in 1980s in the 1 SO-2022 standard. [15],[54],[75]

| SO-2022 is an architecture and registration scheme for intermixing multiple
7-bit or 8-bit encodings using amodal encoding system similar to Baudot’s. Escape
sequences or special characters are used to switch between different character sets or
between multiple versions of the same character set. This scheme operates in two
phases. The first phase handles the switching between character sets, while the
second handles the actual characters that make up the text.[57]

Non-modal encoding systems by contrast make direct use of the byte values
in determining the size of acharacter. In non-modal encoding systems characters may
vary in sizewithin astream of text; characterstypically range from oneto four bytes.
Thisoccursin both the UTF-8 and UTF-16 encodings. [57]

In 1SO-2022 up to four different sets of graphical characters may be simulta-
neously available, labeled GO through G3. Escape sequences are used to assign and
switch between theindividual graphical sets. For example, line 1 of Figure 5-2 shows

115

the byte sequence for assigning the ASCII encoding to the GO alternate graphic char-
acter set. Line 2 shows the Latin 1 encoding being assigned to the G1 set.[3],[75]

Figure 5-2. 1SO-2022 escape sequences
ESC 0x28 0x42 assign ASCII to GO D

ESC 0x2D 0x41 assign Latin 1to G1 2

Most data processing tools make little if any distinction amongst data types.
Data processing tools smply view information as bytes leaving the meaning of the
data entirely open to human interpretation. For example, “UNIX grep” assumes that
datais represented as a linear sequence of stateless fixed length independent bytes.
Grep is highly flexible when it comes to searching characters or object code. This
model has served text processing well under the assumption that one character equals
one code point, but encoding systems have advanced and user expectations have
risen.[76]

Over the last ten or so years Unicode has become the de facto standard for
encoding multilingual text. This has brought a host of new outcomes that few could
have imagined even a decade ago. Despite this advance, users want more than just
enough information for intelligible communication. Plain text in its least common

denominator is simply insufficient.

There have been several discussions and a few attempts to enrich plain text;
|SO-2022 is one, XML can also be viewed in this framework. Both concern meta
information yet have different purposes, goals, and audiences. The transition from

storing and transmitting text as plain streams of code points is now well under-

way.[23]

5.2 Unicode Char acter M odel

Figure 5-3 presents what might be called the Unicode character model. It (like
the network model) has atransmission layer at the bottom and an application layer at

116

the top. The layers in between are the focus of this chapter. The Character/Control
layer isintentionally depicted in a gradient fashion to illustrate the vague boundary
separating characters from control. Thislack of separation has made it more difficult

to write applications that use Unicode.

Figure 5-3. Unicode Character Model

Application Layer Tel, HTML, XML

Character Property Layer Directionality, Case, Numeric

Chearacter Layer NS %ﬁ"JEJ Cortrol Layer
Codepoint Layer UZ20AC, UOB0O, L0041

Transmission Layer UCS-2 UTF-8, UTF-16, UCS-4

5.2.1 Transmission L ayer
The transmission of text across text processes ranges from simple byte
exchange to stateful encoding transmission. In chapter 3 we discussed in detail the

various ways in which Unicode/| SO-10646 characters can be transmitted.

5.2.2 Code Point L ayer
The most frequently occurring method of character identification is by

numeric value. This approach has formed the hallmark of character encoding

117

schemesfor nearly forty years. An example of which isthe ASCII encoding scheme.

Ideally the code point layer maps binary values to abstract character names.

In ASCII by contrast, the only unambiguous way to identify charactersis by
their numeric value. The use of abstract character names within ASCII has never
been standardized, limiting our ability to unambiguously refer to characters. Con-
sider the code point Ox5F in ASCII. This code point has been referred to as: “ spacing
underscore’, “low line”, and “horizontal bar”. This may not seem problematic as
their glyphs are the same. Thissituation, however, has caused charactersto be treated
asif they were glyphs rather than as abstract entities, making the distinction between

characters and glyphs almost impossible.

Additionally, having the highest level of abstraction limited to just the Code
Point Layer does not permit a clean separation between text processes and the char-
acters they manipulate. This problem is quite evident in parsing ASCI|I files. In par-

ticular consider the numerous waysin which aline end character may be expressed.

Alternatively characters can be identified by their abstract name or binary
sequence. Thistechniqueis employed within 1SO-10646. | SO-10646 provides aone-
to-one mapping from code points to character names. This alows characters to be
referred to unambiguously by either their abstract name or binary value. For example
consider once again the code point value OX5F. In 1SO-10646 this code point value
has but one name, “LOW LINE”.

Thisadditional layer of abstraction still leaves open the question what does a
character’s name mean. In 1SO-10646 characters do not posses any properties other
than their name. Unfortunately this places the burden of assigning propertiesinto the

hands of text processes, resulting in wide variation.

118

5.2.3 Character/Control Layer

Unicode defines the term character as “The smallest component of written
language that has semantic value; refers to the abstract meaning and/or shape, rather
than a specific shape.” This definition is at odds with what is actually present within
Unicode. There are several characters defined within Unicode that do not belong to
any written language “controls’ (characters that cause special actions to occur, but
are not considered part of the data) as well as characters that specifically convey a
definitive typographic shape “glyphs’, Table5-1. This intermixing has made it
nearly impossible to determine when a character should be treated as data, metadata,
or a glyph. Furthermore, the method by which new control codes are introduced is

completely ad hoc. Thereis no standard range within Unicode that contains just con-

trols. [96]

Table5-1. Problem Characters

Type Code Point | Purpose
OBJREPLACE OxFFFC placeholder for external objects
ANNOTATION OxFFF9 - used for formatting ruby characters in Japanese
OxFFFB
CHAR REPLACE OXFFFD placeholder for non convertible characters
CONTROL 0x0000 - CO0 and C1 control characters, used for legacy
Ox001F,
Ox007F -
0x0096
NON BREAKING O0x00AO0, non breaking space
SPACES OXFEFF,
0x202F
NSM 0x0300 - non spacing diacritical marks used to form glyphs
0x0362
SPACES 0x2000 - en, em, thin, hair, zero width, ideographic spaces
0x200A,
0x2008B,
0x3000
SEPARATORS 0x2028 - line and paragraph separator
0x2029

119

Table 5-1. Problem Characters (Continued)

Type Code Point | Purpose
ZWNJ 0x200C zero width non joiner, prevent ligature formation
ZWJ 0x200D zero width joiner, promote ligature formation
LRM 0x200E left-to-right mark, used in bidi processing
RLM 0x200F right-to-left mark, used in bidi processing
BIDI CONTROLS 0x202A - used for overriding directional properties, and for
0x202E embedding directional runs
SHAPING Ox206A - used to control Arabic shaping
0x206F
PRESENTATION OxFB50 - Arabic ligatures and glyph variants used by rendering
FORMS OXFDFF, engines
OXFE70 -
OXFEFE
HALFWIDTH AND OxFFOO0 - half-width and full-width forms used in rendering
FULLWIDTH OXFFEF engines

5.2.4 Character Property Layer

Clearly there existsaneed for character properties. Text processes want to be
able to interchange and interpret text unambiguoudy. Unicode adds an additional
layer of abstraction onto SO-10646. In Unicode each character may posses proper-
ties from three general areas, “normative’, “informative’, and “directional”. For
example, see Table 5-2. [32]

Table 5-2. Character Properties

Code Point | Character Name Normative Informative | Directional
Ox005F LOW LINE punctuation neutral
connector
0x0061 LATIN SMALL LETTER A | lowercase | etter left to right
0x0661 ARABIC-INDIC DIGIT decimal digit arabic numeral
ONE

120

5.3 Srategiesfor Capturing Semantics
There are two general approaches to encoding higher-order semantics within

text streams:. in-band signaling and out-of-band signaling.

Using in-band signaling determining whether a character is data or metadata
depends on the context in which a character is found. That is, code points are over-
loaded. This achieves maximal use of the character encoding, as characters are not
duplicated. It also does not require encoding modifications as protocols change. All
of this progress comes at the expense of parsing. It isno longer possibleto conduct a
simple parse of a stream looking for just data or metadata. This technique is
employed within the HTML and XML protocols. [99]

Using out-of-band signaling for describing Unicode metadata requires the
definition and transmission of complex structures similar to document data type def-
initions(DTD) in XML. Thishastheill effect of making the transmission of Unicode
more intricate. It would no longer be acceptable to simply transmit the raw Unicode
text. Without the metadata, the meaning of the raw text may be ambiguous. On the
other hand, parsing of data and metadata would be trivial, given that the two are not
intermixed. [99]

5.3.1 XML

The extensible markup language (XML) provides a standard way of sharing
structured documents and for defining other markup languages. XML uses Unicode
as its character encoding for data and markup. Control codes, data characters, and
markup characters may appear intermixed in a text stream. Confusion may ensue
when control codes, data characters, and markup characters are combined with over-
lapping higher-order protocols. Additionally, there may be situations in which
markup and control should not be interleaved. This issue is quickly being realized
both within XML and Unicode. [23]

121

Whitespace characters in XML are used in both markup and data. The char-
acters used in XML to represent whitespace are limited to “space”, “tab”, “carriage
return”, and “line feed”. Unicode on the other hand, offers several charactersfor rep-
resenting whitespace the (e.g., line separator U2028 and the paragraph separator
U2029). The use of U2028 and U2029 within XML may lead to confusion because

of the conflicting semantics. [33]

In Unicode these characters may be used to indicate hard line breaks and para-
graphs within a data stream. These may affect visual rendering as well as acting as
separators. When used within XML it is unclear whether the implied semantics can
be ignored. Does the presence of one of these control codes indicate that a rendering
protocol is being specified in addition to their use as whitespace, or are they simply

whitespace? [23]

XML completely excludes certain Unicode charactersfrom names (tags). The
characters in the compatibility area and specials area UF900-UFFFE from Unicode
are not permitted to be used within XML names. Their exclusion isduein part to the
charactersbeing already encoded in other places within Unicode. Thisisby no means
the only reason. If characters from the compatibility area were included the issue of
normalization would then to be addressed. (In this context normalization refers to

name equivalence). [33]

Unicode provides guidelines and an algorithm for determining when two
character sequences are equivalent. Unicode attemptsto addressthisissuein Unicode
Technical Report #15 Unicode Normalization Forms. In general there are two kinds

of normalization, Canonical and Compatibility. [101]

Canonical normalization handles equivalence between decomposed and pre-
composed characters. Thistype of normalization isreversible. Compatibility normal-
ization addresses equivalence between characters that do not visually appear the

same. This type of normalization isirreversible.[32],[101]

122

Compatibility normalization in particular is problematic within XML. XML
is designed to represent raw data free from any particular preferred presentation.
Characters that may be compatible do not necessarily share the same semantics[32].
It may be the case that an additional protocol isbeing specified within the stream. For
example, the UFBOO character on line 1 of Figure 5-4 is compatible with the two
character sequence “U0066 U0066” on line 2 of Figure 5-4. Line 1 also specifies an
additional protocol; in this case ligatures. In such a situation it is unclear whether or
not the names were intended to be distinct. It isdifficult to tell when the control func-
tion (higher-order protocol specification) of a character can be ignored and when it
can’t. Additionally, some have argued that Unicode' s Normalization Algorithm is
difficult to implement, resource intensive, and prone to errors. To avoid such prob-
lems XML has chosen not to perform normalization when comparing names.
[18].[33]

Figure 5-4. Compatibility Normalization
UFBO00 ff ligature Q)

U0066 U0066 ff no ligature 2

Problems such as these are due to the lack of separation between syntax and
semantics within Unicode. The absence of a general mechanism for specifying
higher-order protocols “metadata’ only serves to further confound these
issues.[18],[33]

5.3.2 Language Tagging

Over the years there has become a need for language “tagging” of multilin-
gua text. In some cases such information is necessary for correct behavior. For
example, language information becomes necessary when an intermixed stream of

Japanese, Chinese, and Korean is to be rendered. In this case, the unified Han char-

123

acters need to be displayed using language specific glyph variants. Without higher-
order language information it becomes difficult to select the appropriate glyphs.

Recently Unicode has added a mechanism for encoding language information
within plain text. Thisis achieved in Unicode through the introduction of a special
set of characters that may be used for language tagging. The current strategy under
consideration within Unicode is to add 97 new characters to Unicode. These charac-
ters would be comprised of copies of the ASCII graphic characters, a language
character tag, and a cancel tag character. These characterswould be encoded in Plane
14 “surrogates” UOOOEOOOO - UOOOEOQ7F.[99]

The use of the tagsin Unicode is very smple. First atag identifier character
ischosen, followed by an arbitrary number of unicode tag characters. A tagisimplic-
itly terminated when either a non tag character is found or another tag identifier is
encountered. Currently thereis only one tag identifier defined, the language tag. See
Figure5-5. Line 1 of Figure 5-5 demonstratesthe use of the fixed code point language
tag “UOO0EO0001” along with the cancel tag “UO00EOO7F". The plane 14 ASCII
graphic characters are in bold and are used to identify the language. The language
nameisformed by concatenating the language id from 1SO-639 and the country code
from I1SO-3166. In the future ageneric tag identifier may be added for private tag def-
initions. [99]

Figure5-5. Languagetag

UOOOEOQOL1 fr-Fr french text UOOOEOOO1 UOOOEOQ7F (1)

Tag values can be cancelled by using the tag cancel character. The cancel
character is ssmply appended onto a tag identifier. This has the effect of cancelling
that tag identifier’ s value. If the cancel tag is transmitted without atag identifier the
effect isto cancel any and all processed tag values. [99]

124

The value of atag continues until either it implicitly goes out of scope or a
cancel tag character is found. Tags of the same type may not be nested. The occur-
rence of two consecutive tag types smply applies the new value to the rest of the
unprocessed stream. Tags of differing types may be interlocked. Tags of different

types are assumed to ignore each other; there are no dependencies between tags. [99]

Tag characters have no particular visible rendering and have no direct affect
on the layout of a stream. Tag aware processes may chose to format streams
according to their own interpretation of tags and their associated values. Tag unaware

processes should |eave tag data a one and continue processing. [99]

5.3.2.1 Directional Properties of Language Tags
In this section we show that language tags can interact with other facets of

Unicode including the Bidirectional Algorithm.

In Unicode, language tag characters are all marked as having a neutral direc-
tion. Neutral characterspick up their direction from the surrounding strong characters
(Ieft or right). This seems reasonable as we do not wish the tags to accidentally influ-
ence the Bidirectional Algorithm. If the direction of the tags were left-to-right or
right-to-left, rather than neutral, then the tags would influence the resol ution of weak

and neutral types due to their juxtaposition. [96]

The examplein Figure 5-6 demonstratesthiserror. In Figure 5-6 Arabic char-
acters are represented in upper case. The character sequence LANGar (Arabic lan-
guage tag) in bold is a visual representation for the Unicode sequence
(UEOO01,UE0061,UE0072). In this example assume that the language tag characters
are assigned the left-to-right direction. Line 1 is a sequence of charactersin logical
order, while line 2 is the expected resultant display ordering. The display ordering in
line 3 isincorrect, because the tag characters inadvertently participated in bidirec-
tional processing. Marking language tags as neutral makes sense in this framework

of protecting the Bidirectional Algorithm.

125

[ronically, in the process of protecting the Bidirectional Algorithm we inad-
vertently allowed the Bidirectional Algorithm to influence language tags. For exam-
ple, line 1 on Figure 5-7 is a sequence of Arabic charactersin logical order with an
embedded language tag, Urdu (UEO0O01,UEOQ075,UEQ072). Line 2 is the same
sequence of characters, but in display order (output from the Bidirectional Algo-
rithm). When the character sequence is rendered the language tag, however, is dis-
played backwards and appears as “ru” which indicates Russian. The reason the
language tag is displayed backwards is, because neutral characters pick up their
direction form the surrounding characters, in this case right-to-left. Clearly this is

undesirable and therefore must be prevented.

Figure 5-6. Error in bidirectional processing

CIBARA LANGar, 123 1)
123, LANGar ARABIC)
LANGar , 123 ARABIC ®3)

Figure5-7. Error in language tagging
U0624,UE0001,UE0075,UE0072,U00623 — lang ur (Urdu), logical Q)

U0623,UE0072,UE0075,UE0001,U0624 — lang ru (Russian), display @)

This problem can be solved by introducing a new bidirectional property,
“ignore”. Thiswill enable the Bidirectional Algorithm to continue to function prop-
erly while also protecting the semantics of tags. Characters that posses the direction
ignorewill not have any direction and will not pick up any surrounding direction, pre-

venting these charactersfrom participating in the Bidirectional Algorithm. [96],[100]

5.3.3 General Unicode M etadata
Itisstill possibleto construct ametadata signaling mechanism for the specific

purpose of mixing data and metadata and yet allow for smple parsing. Thisis called

126

“light-weight in-band signalling”. Thisisthe approach that Unicode has adopted for
language tagging. [99]

The light-weight approach is useful, but Unicode’ s application of it creates
two problems. First, new tag identifiers always require theintroduction of anew Uni-
code code point. This puts Unicode in a constant state of flux as well as fixing the
number of possible tag identifiers. Second, there is no way to specify multiple
parameters for atag. This deficiency forces the creation of additional tag identifiers

to circumvent this limitation.

We propose that a more generalized approach be taken. Our design philoso-
phy isto encode aminimal set of stateless metadata characters that enable the defini-
tion of higher-order protocols. Our use of the term stateless in this context refers to
whether a character’s type (data or metadata) can be determined by its code point
value alone. In some metadata systems (HTML and XML) a character’s type can
only be determined by examining the full context in which it appears. Unfortunately,
these systems require sophisticated parsing techniques. We argue for the use of state-

less charactersin our system because they simplify both parsing and understanding.

Naturally, the construction of a metadata encoding system requires a balanc-
ing of trade-offs. One such trade-off is whether or not to define a syntax for the def-
inition of tags. We believe that we should specify a minimal and flexible syntax for
tagsthat allows for unambiguous communication, yet does not impose any particular

style of protocol such asHTML.

In choosing the set of metadata characters we suggest that we keep the copy
of the ASCII graphic characters that are used in Unicode’ s language tagging mode!.
We should however remove the fixed code point tag identifiers. In their place we
introduce two new characters, tag delimiter UOOOEOOO1 and tag argument separator
UOOOEQO002. See Table 5-3. The moativation for these characters comes from the
SGML/XML/HTML camps. These characters provide an easy migration path for

127

embedding XML like protocols within Unicode. The use of these charactersis by no
means required—applications may chose alternative methods. On the other hand, the
use of the tag delimiter and the tag argument separator help prevent confusion
between whether a sequence of tag characters represents a tag name or tag argument.
Additionally, the use of these characters guarantees that tag neutral tools can be
created. Such tools can always count on the fact that consecutive tags are delimited

and that their arguments are separated by tag argument separators.

Table 5-3. Tag characters

Visual
Tag Characters UCs4 Representation | Purpose
delimiter UOOOEO001 | control
argument separator | UOOOEO002 @ control
space UOOOE0020 display
graphic characters UOOOE0021 - a-z, A-Z, 0-9, display
UOOOEOQ7E etc.

The tag delimiter character is used to separate consecutive tags from one
another. While the tag argument separator is used to delineate multiple tag argu-
ments. Thisapproach allows the same set of tag graphic charactersto be used for both
tag names and tag arguments. Additionally, tag names are spelled out rather than

being assigned to afixed single code point.

The overal construction of tags will still remain ssmple. First, the tag name
is spelled out using the tag graphic characters, followed by an optional tag argument
separator. Second, there may be an arbitrary number of tag arguments for each tag,
each argument being separated by atag argument separator. A tag nameisterminated
by either encountering a tag argument separator, or an optional tag delimiter. This
still allowsfor relatively simple parsing. The regular expressionsfor tags, tag names,

and tag arguments can be found on lines 4-7 in Figure 5-8. The usage of tagsin text

128

streams is also very simple to comprehend. See the regular expression on line 2 in

Figure 5-9.

Figure 5-8. Regular expressions for tags

<tag graphic character> ::= [UOOOE0020-UOOOEQQ7E] Q)
<tag delimiter> ::= UOOOEO0O1 2
<tag argument separator> ::= UOOOEO002 3
<tag name> ::= <tag graphic character>" 4
<tag argument> ::= <tag argument separator><tag graphic character>" (5)
<tag> ::= <tag name><tag argument>" (6)
<tag> ::= <tag delimiter> @)

Figure 5-9. Regular expression for text stream
<data character> ::= [U00000000-UO002FA 1D] Q)

<text stream> ::= (<data character>|<tag>)" 2

Throughout this chapter tag characters are represented in boldface. Addition-
ally thevertical bar “|" is used to depict the tag delimiter and the at sign “@” denotes
the tag argument separator. See Table 5-3. For example, line 1 of Figure 5-10 shows
a stream with two tags, “XX” and “YY”. Additionaly, the tag “XX” has one argu-
ment “a”, and the “YY” tag has two arguments “b” and “c”. The example suggests
the nesting of “Y'Y” within “XX”. In this sample protocol we terminate the scope of
atag by repeating the tag name preceded by the tag graphic character solidus*®/”. This
method of terminating scopeisnot arequirement, protocols may adopt other methods

or none at all.

The semantics of such combinations are left to protocol designers rather than
the metadata. Thisaffordsthe greatest flexibility and yet still retainsthe ability to per-

129

form simple parsing. This design allows Unicode to simply be in the business of

defining mechanism rather than mechanism and policy.

Figure 5-10. Sample tag
defXX @alY Y @b@c|ghi/Y Y [jKI/X X| (1)

It is foreseeable that Unicode would remain the registrar of tag identifiers,
whileworking in conjunction with other standards bodies. Though, this does not pre-
clude private tags from being defined for those cases in which widespread protocol
adoption is not required.

Similarly, the semantics of cancelling or ending the scope of tagswill also be
left to the protocol designer. It is possible that in some protocols tag cancellation
might undo the last tag, while in others it may end the scope of atag. Additionadly,
there is no requirement that either of these interpretations be used at all.

The example in Figure 5-11 shows how the language tag would be repre-
sented in the new tagging model. Line 1 of Figure 5-11 is copied from Figure 5-5.
Line 2 shows the language tag spelled out with the two tag arguments being clearly
delineated. We suggest that the spelling out of tag names is a small price to pay for

this enhanced functionality.

Figure 5-11. Alternative language tag

UOOOEOO0OL1 fr-FR french text UOOOEOOO1 UOOOEOO7F (1)

LANG@fr @FR| french text /[LANG| 2

5.4 Encoding XML

In this section we demonstrate through the use of examples how our metadata
encoding system can be used to encode XML and XML like protocols. The primary

syntactic elements, for which we provide mappings in our examples, include: tags,

130

entity references, and comments. We believe that these elements are sufficient for

demonstrating that the mapping of XML to metadatais both feasible and ssmple.

The example in Figure 5-12 shows a sample address book modeled in XML.
The address book contains a collection of contacts, in this case just one contact. Each
contact in turn contains a name and address. In this example we see three general

types of tags:

» Sdf closing tags — the <business/> tag on line 8 on Figure 5-12.
» Start tags — the <addressbook> tag on line 3 on Figure 5-12.
» End tags— the </contact> tag on line 13 on Figure 5-12.

Additionally, each tag may optionally contain arguments. For example, the <contact
type="business’ > tag on line 5 on Figure 5-12, contains a single tag argument. In
this tag the string type represents the name of the argument while the string business

isits corresponding value. [72]

Figure5-12. Sample XML code

<?ml version="1.0"?>

<IENTITY amp “&">

<addressbook>

<!-thisis an address ->
<contact type="business’>
<name>Steve& apos;s Bar & amp; Grill</name>
<nickname>& gt; Steve& It;</nickname>
<business/>
<address>150 W. University Blvd</address>
<city>Melbourne</city>
<state>FL </state>

12 <zip>32901</zip>

13 </contact>

14 </addressbook>

':‘la‘kom\lm(ﬂ-bwl\)l—‘

The sample XML file also contains entity references. In XML entity refer-
ences assign aliases to pieces of data. It serves as a unique reference to some XML
data. Entity references are made by using an ampersand and a semicolon. For exam-

ple, line 6 on Figure 5-12 shows areference to the amp entity (ampersand), while the

131

definition of the reference is shown on line 2. Normally, these characters would be
processed differently in XML. However, with entity references an XML parser does
not get confused. [72]

In this example we also see the use of acomment. See line 4 on Figure 5-12.
Comments are used to provide additional information about an XML document,
however they are not actually part of the datain a XML document. Comments begin
with a<! and end with ->. The only restriction XML places upon comments is that
they do not contain double hyphens --, asthey conflict with XML’ s comment syntax.
[72]

In general when we map a XML document to combined data/metadata most
characters remain unchanged. Thisis particularly true of characters that are not part
of XML tags. Nevertheless, charactersthat make up an XML tag get mapped to acor-
responding metadata graphic tag character. However, we believe that their is some
flexibility in this mapping. In particular, the < and > do not need to be mapped at all.
These characters are not needed, because a XML parser can now immediately tell
whether a character is part of atag or not smply by examining its code point value.

Therefore, it is unnecessary to map these characters.

The text in Figure 5-13 is the same XML document from Figure 5-13 re-
encoded using our metadata tagging system. In certain cases we have changed the
syntax of the XML tags slightly to take advantage of our metadata system and to be
more consistent with our general tag syntax. In particular, these changes can be seen
onlines 1, 2 and 5. Additionally, we have created a tag specificaly for the purpose
of indicating a comment. See line 4 on Figure 5-13. To indicate whether atag is a

start tag, end tag, or aself closing tag we have adopted the following convention:

 If thetagisan end tag then the tag name is preceded by a solidus“/”.
» If thetagisasdf closing then tag the tag nameis followed by a solidus.
* All remaining tags are assumed to be start tags.

132

It is important to note that this convention is not the only way in which the tag type
can be expressed. It is quite possible that some other convention could be adopted.
One alternative, would be to indicate the type of atag as atag argument, rather than
as part of the name. We have chosen to indicate the type as part of the tag name, as

this closely matches XML’ s syntax.

Figure5-13. Sample XML code encoded in metadata

[?xml@version="1.0"|

[ENTITY @amp@CP@U@0026|

|addressbook|

[cmt@thisisan address|
|contact @type="business’ |
[name|Stevel& apos]s Bar|& amp]| Grill|[/name]|
[nickname]|& gt|Stevel& It]|/nickname]
[business/|
|address|150 W. University Blvd|/address|
[city|Melbournel/city|
|state]FL |/state]|

12 |zip|32901)/zip|

13 |/contact|

14 [/addressbook|

':la‘kom\lm(ﬂ-bwl\)l—‘

The remaining issue involving the mapping of XML to metadata deals with
the representation of characters outside the graphic tag character range. In XML itis
legal to use characters outside the ASCII range in tags and in data. Thisis possible,
because XML uses Unicode as its native encoding system. It is possible to represent
these characters in our metadata system using our code point protocol. See line 2 on
Figure 5-13. The raw code point protocol embeds any Unicode code point in meta-
data. The CP tag identifiesthe code point protocol, U indicates the Unicode character
set, and 0026 is the hexadecimal value of the Unicode code point.

We have chosen not to encode a special metadata escape character for the pur-
pose of embedding characters, because the encoding of such a character violates one
of the key goals in our metadata system, stateless encoding. In our metadata system

the meaning of each character is unambiguous and independent from any other char-

133

acter. If we were to encode an escape character then the digits following it would
need to be overloaded. Sometimes the digits would be tag digits and sometimes they
would be escaped digits. This makes the meaning of the digits contextual. This kind
of overloading and contextual behavior returns us to XML'’s problems, which our

strategy has been engineered to avoid.

5.5 New XML

Encoding XML in our metadata system offers several advantages. First, the
use of thetag delimiters“|” around each tag are actually unnecessary. The tag delim-
iter isonly required for consecutive tags. Additionally, only one of these tag delim-
iters are necessary. Each tag isimmediately detectable by simply examining its code
point value. This is not possible in XML, hence they need to clearly indicate the
bounds of each tag.

Second, in XML there are certain characters that need to be escaped so that
they can be used in data. These charactersinclude the less-than “<* and greater-than
“>" characters. Normally, these characters are used for indicating the bounds of atag.
When they are meant to be interpreted as data and not as tag indicators, they must be
referred to via entity references, so as to avoid confusing the XML parser. For exam-
ple, the“>” and “&It” entity references on line 7 on Figure 5-12. In this example
the “>” refers to the greater-than character and the “&It” refers to the less-than
character. In our metadata scheme thisis completely unnecessary. Thereis never any
confusion asto whether acharacter represents data or metadata. Therefore, we do not

need this mechanism at all in our form of XML.

5.6 Text Element
Now that a definition of a general metadata mechanism has been established

tags other than language may be constructed. In the next section we see one such

134

example, the text element tag. Thistag will enable the embedding of additional lin-

guigtic information into pain text streams.

Traditionally text processes manipulated ASCII data with the implicit under-
standing that every code point equated to a single character and in turn a single text
element, which then served as afundamental unit of manipulation. In most casesthis

assumption held, especially given that only English text was being processed. [96]

Multilingual information processing, however breaks the assumption that
code points, characters, and text elements are all equal. Text elements are directly
tied to atext process, script, and language. Encodings today provide an abstract set
of characters directly mapped onto set of numerals. The abstract characters are then

grouped to form text elements.[96]

In some cases a text element may still equate to a single character while in
other situations atext element may be comprised of several characters. For example,
in Spanish the character sequence “I1” istreated as a single text element when sorted,
but istreated as two text elements “1” and “I” when printed. [96]

Unicode relies on an abstract notion of characters and text elements. Unfor-
tunately, a general mechanism for indicating text elements is lacking. In some
instances atext element isimplicitly specified through a sequence of characters. For
example, line 1 of Figure 5-14 shows how abase character and anon spacing diacritic

combine to form asingle text element. Seeline 2 of Figure 5-14.

Figure 5-14. Combining characters
U00D6 O’ decomposed D

UOO4F U0308 O precomposed %)

In other cases text elements are explicitly specified by control codes. In par-
ticular, Unicode uses control codes (e.g., the zero width joiner U200D and the zero

width non joiner U200C) for forming visual text elements. These characters affect

135

ligature formation and cursive connection of glyphs. The intended semantic of the
zero width non joiner is to break cursive connections and ligatures. The zero width
joiner is designed to form a more highly connected rendering of adjacent charac-
ters.[97]

For example, line 1 of Figure 5-15 shows the sequence of code pointsfor con-
structing a ligature. The characters x and y represent arbitrary characters. Line 2
shows how the zero width non joiner can be used to break acursive connection. Prob-
lems still arise when one wishes to suppress ligatures while still promoting cursive
connections. In this situation Unicode recommends combining the zero width non

joiner and the zero width joiner. See line 3 of Figure 5-15.[97]

Rather than using control codes with complicated semantics and implicit
sequences of characters to form text elements, a ssimple generalized mechanism can
be used. Nonetheless, Unicode has no general way to indicate that sequences of char-
acters should be viewed as a single text element. The current approach relies on a
higher-order protocol outside of Unicode, such as XML whichisdesigned to describe
the structure of documents and collections of data, not individual characters and text
elements. XML requires data to strictly adhere to a hierarchical organization. This
may be appropriate for documents, but can be troublesome for a simple text stream.
The model that is really required needs to be organized around characters and text

elements.

This can be achieved through metadata tags and ssmple protocols. For exam-
ple, the zero width joiner and zero width non joiner characters can be described by a
new tag; the text element “ELM”. The ELM tag is used to group multiple characters
together so that they can be treated as a single grapheme or text element. For exam-

ple, line 1 of Figure 5-16 shows atext element “xy” for all purposes.

When characters are grouped together it may be for the purpose of rendering,

sorting, or case conversion. The purpose of the grouping does not need to be

136

understood by Unicode. The semantics should only be determined by processes that
make direct use of such information. Thetagissimply aconduit for signaling higher-

order semantics.

For example, line 2 of Figure 5-16 shows atext element “xy” for the purposes
of forming ligatures, but not searching or sorting. Line 3 demonstrates the text ele-

ment “xy” being cursively connected, while suppressing ligature formation.

Additionally the ELM tag can be used to form other semantic groupings. For
example, in Spanish when “c” isfollowed by “h” the two single characters combine
to form the single text element “ch”. See line 4 of Figure 5-16. This grouping does
not effect rendering, but has implications in sorting. In German however, groupings
affect case conversion. For example, the character sequence “SS’ when converted to

lowercase results in the single character “3". Seeline 5 of Figure 5-16.[96]

Figure5-15. Joiners

x U200D y (1)
x U200Cy 2
x U200D U200C U200D y ©)
Figure5-16. ELM tag
ELM|xy/ELM| 1)
ELM@LIG|xy/ELM| @)
ELM @JOIN|xy/ELM| ©)
ELM@COLL [ch/ELM| (%)
ELM@CASE|SS/ELM)| (5)

137

Table 5-4 lists afew other types of tags that are also based upon the general
text element tag. Each entry in Table 5-4 specifies a specific Unicode semantic con-
struct and its associated metadata tag.

Table 5-4. Other text element tags

gg? ;?ltjl(; Metadata Tag
Ligatures ELM@LIG|xy/ELM|
Glyph Variant ELM@FNT|xy/ELM|
Non Breaking ELM@NBR|xy/ELM|
Initial Form ELM@INI|xy/ELM|
Media Form ELM@MED|xy/ELM|
Final Form ELM@FIN|Xy/ELM|
Isolated Form ELM @I SO[xy/ELM|
Circle ELM@CIR|xy/ELM|
Superscript ELM @SUP|xy/ELM|
Subscript ELM @SUB|xy/ELM |
Vertical ELM@VER|Xy/ELM|
Wide ELM@WID|xy/ELM|
Narrow ELM@NAR|xy/ELM|
Small ELM@SMAI|Xy/ELM|
Square ELM@SQUIXy/ELM |
Fraction ELM@FRAIXY/ELM|

5.7 Metadata and Bidirectional Inferencing

Plain text streams that contain characters of varying direction pose a particu-
lar problem for determining the correct visual presentation. There are severa
instances in which it is nearly impossible to render bidirectional text correctly in the
absence of any higher-order information. In particular, picking glyphs requiresthat a

rendering engine have knowledge of fonts.

The Unicode Bidirectional Algorithm operates as a stream to stream conver-
sion which islogical given that Unicode is a character encoding mechanism and not

a glyph encoding scheme [96]. This output, however is insufficient by itself to

138

correctly display bidirectional text. If aprocessis going to present bidirectional text
then the output must be glyphs and glyph positions. The Unicode Bidirectional algo-
rithm can not possibly produce this output and, still remain consistent with Unicode’s

primary character encoding scheme.

The core of the Unicode Bidirectional algorithm is centered around three
aspects: resolving character types, reordering characters and analyzing mirrors. The
bidirectional algorithm is applied to each paragraph on aline by line basis. During
resolution charactersthat do not have astrong direction are assigned adirection based
on the surrounding characters or directiona overrides. In the reordering phase
sequences of characters are reversed as necessary to obtain the correct visual order-
ing. Finally, each mirrored character (parenthesis, brackets, braces, etc.) isexamined

to seeif it needsto be replaced with its symmetric mirror.[96]

This agorithm causes an irreversible change to the input stream which is a
significant flaw. The logical ordering is no longer available. This inhibits the con-
struction of an algorithm that takes asinput a stream in display order and produces as
output its corresponding logical ordering. The examplein Figure 5-17 illustrates this
problem. In Figure 5-17 Arabic letters are depicted by upper case latin letters while
the right square bracket indicates aright-to-left override (U202E). Line 1 isastream
in display order, lines 2 and 3 are streams in logical order. In either case if the Bidi-

rectional Algorithmisappliedtoline2 or line 3 the result isline 1.

Figure5-17. Mapping from display order to logical order

123 (DCBA) (1)
(ABCD) 123 2
1123 (ABCD) ©)

It is also impossible to tell whether a stream has been processed by the Bidi-

rectional Algorithm. The output does not contain any identifying markers to indicate

139

that a stream has been processed. A text process can never be sure whether an input
stream has undergone bidirectional processing. To further complicate the situation
the Bidirectional Algorithm must be applied on alineby linebasis. Thisisnot always
easy to accomplish if display and font metrics are not available.

We introduce three tags for bidirectional processing: “PAR” paragraph,
direction “DIR”, and mirror “MIR”. The PAR tag signifies the beginning of a para-
graph. It takes one argument, the base direction of the paragraph either right “R” or
left “L”.

The DIR tag takes one argument as well, the resolved segment’s direction
either “L” or “R”. The MIR tag does not require any argument. Its presence indicates
that the preceding character should be replaced by its symmetric mirror. The scope
of the DIR tag isterminated by either a PAR tag or the end of the input stream.

For example, in Figure 5-18 line 1 represents a stream of charactersinlogical
order. Line 2 isthe output stream after running the Bidirectional Algorithm using tag-
ging. Arabic letters are represented by upper case Latin letters. Tag characters are
indicated in bold. The at sign represents the tag argument separator and the vertical
bar represents the tag separator “UO00EO0001”. The output of the algorithm only
inserts tags to indicate resolved directional boundaries and mirrors. The data charac-

ters till remain in logical order.

Furthermore, the bidirectional embedding controls “LRE”, “RLE”, “LRO”,
“RLO", and “PDF” can be eliminated because they are superseded by the DIR tag.
These controls act solely as format effectors. They convey no other semantic infor-

mation and are unnecessary when viewed in light of the DIR tag.

Figure 5-18. Example output stream
(ABCD)123 (1)

PAR@R|MIR|(ABCDMIR|)DIR@L [123/DIR|/PAR|)

140

The Bidirectional Algorithm only requires two changes to accommodate the
new tags. In those placeswherethetext isto bereversed aDIR tag isinserted to indi-
cate the resultant direction rather than actually reversing the stream itself. In those
places where asymmetric mirror isrequired aMIR tag isinserted to indicate that this
character should be replaced with its corresponding mirror. The Haskell functions
tagLevel and tagRun replace functions reverseRun, reverseLevels and reorder. See
Appendix B lines 1-39. The mirror function has been changed to insert a MIR tag

rather than directly replacing a character with its symmetric mirror.

The Bidirectional Algorithm could also be extended to directly interpret tags
itself. This would be extremely beneficia in cases where the data and the implicit
rulesdo not provide adequate results. For example, in Farsi mathematical expressions

are written left-to-right while in Arabic they are written right-to-left.

Under thetraditional Bidirectional Algorithm control codes would need to be
inserted into the stream to force correct rendering. See line 1 Figure 5-19 where the
characters “LRE” and “PDF” represent the Unicode control codes Left to Right
Embedding and Pop Directional Format respectively [100].

The extended Bidirectional Algorithm would address this through the addi-
tion of twotags“MATH” and “LANG”. These tagswould beinserted into the stream
to identify the language and that portion of the stream that is a mathematical expres-
sion. By using tagging the output stream still remainsin logical order with its direc-
tion correctly resolved without the need of control codes. Seelines 2 and 3 of Figure
5-19.

Figure 5-19. Mathematical expression

LRE1+1=2PDF)
LANG@fa@IRIMATH| 1+ 1=2/MATH] @)
LANG@fa@IRIMATH|DIR@L| 1+ 1=2/MATH|/DIR] ®3)

141

5.7.0.1 HTML and Bidirectional Tags
The HTML 4.0 specification introduces a bidirectional override tag “BDO”

for explicitly controlling the direction by which atag’ s contents should be displayed.
Lines1 and 2 of Figure 5-20 illustrate the syntax of thistag. Thistagiscurrently sup-
ported in Microsoft’s Internet Explorer. [23]

Figure 5-20. BDO tag syntax
<bdo dir="LTR">body content</bdo> (1)

<bdo dir="RTL">body content</bdo> 2

These tags can be used in conjunction with the Unicode bidirectional tags.
The Unicode tags can be directly converted into the HTML bidirectional tags [23].
This alows for a clean division of responsibilities for displaying bidirectional data.
The Unicode metadata tags simply serve as bidirectional markers. Browsers can then
directly render theresultant HTML. This permitsthe Unicode bidirectional algorithm

to be free from the problems of determining font and display metrics.

The UniMeta program takes as input afile encoded in UTF-8 which contains
Unicodetext in logical order with bidirectional tags. See Appendix C lines 1-99. The
UniMeta program then converts the input text into HTML. Each unicode metadata tag
isreplaced with acorresponding HTML tag. Currently there is no corresponding tag
for mirroring in HTML. When aUnicode MIR tag isfound it is simply ignored. The
examplein Figure 5-21 illustrates the output from the UniMeta Java program. Lines 1
and 2 are copied from Figure 5-18. Line 3 isthe resultant HTML with BDO tags.

Figure5-21. Using HTML bidirectional tags

(ABCD)123 (@)
PAR@R|MIR|(ABCDMIR|)DIR@L |123/DIR|/PAR| 2
<bdo dir="rtl">(ABCD) <bdo dir="1tr">123</bdo></bdo> (3

142

By using metadatatagsto implement the Bidirectional Algorithm aclear divi-
sion of responsibilities is achieved. The bidirectional layout processis now divided
into two separate and distinct phases, logical run determination “inferencing” and
physical presentation “reordering”. This enables character data to remain in logical
order, and still contain the necessary information for it to be correctly displayed.
Additionally, any text process receiving such a stream is able to immediately detect

that the stream has been bidirectionally processed.

5.8 New Architecture

The introduction of metadata into an encoding allows for a general reorgani-
zation of character coding systems. We refer to this reorganization as Metacode. In

the next chapter we explore this new architecture in depth.

143

6M etacode

In this chapter we present both a new coded character set and text encoding
framework that enables a separation of concerns, we call this the Metacode system.
In the Metacode information processing system, concepts (policies) are separate and
distinct from implementation (mechanism). Metacode at its coreisan architecture for
describing written natural language data. Metacode permits various ideas, concepts
and policies to coexist, while still remaining efficient. The key advantage this new
architecture offers over current modelsis its ability to unambiguously separate con-
tent from control. In Metacode only characters that expressraw content are encoded.
In particular, Metacode does not encode controls, ligatures, glyph variants, and half-
width forms. By only encoding “pure’ characters, Metacode places a greater empha-
sis on content. In this chapter we make recommendations and take the first steps

towards implementing an architecture for multilingual information processing.

6.1 M etacode Architecture

Figure 6-1 presents the layers in the new text framework we propose. Meta-
code isbuilt upon the same general principlesused in the Open Systems Interconnec-
tion (OSI) network layer model [90]. In particular the architectureis designed around

the following notions:

* A layeriscreated when adifferent level of abstraction isrequired.
» Each layer performs awell defined function.

» The number of layersis large enough to allow for a clean separation of responsi-
bilities, but not so small asto group unrelated functions together out of necessity.

144

Figure 6-1. New Text Framework

TeX, HTML, XML,
Text algorithms

Application Layer

Content Layer

Tag Definition Layer

Character Property Layer Directionality, Case, Numeric
Character Name Layer LATIN LETTER A TAG LETTERA <«——— Metadata Names
Codepoint Layer 0x20AC, 0x0600, 0x0041

Transmission Layer

Unlike other multilingual encoding systems which switch between various
coded character sets, Metacode uses only one character set. In the Metacode system
there are no special modes, states, or escape sequences. Metacode is strictly a fixed
width character encoding scheme where each character is represented using the same
number of bytes. Just as other multilingual text encoding systems, M etacode includes

coverage for both the Asian and European writing systems.

Charactersin Metacode are grouped into two broad categories, dataand meta-
data. We believe that most of Metacode’ s data characters would be comprised from

145

elementsin natural written languages. In Metacode metadata characters provide a

mechanism for describing higher-order information about data characters.

For nearly forty years, the most frequently occurring method of character
identification has been by numeric value. This approach has formed the hallmark of

character encoding schemes such as ASCI1. Metacode continues this tradition.

In Metacode characters are identified by code point value. In Metacode code
points are based upon an integer index. Thisindex is used to map Metacode character
names to binary sequences. This index should be large enough to accommodate the
linguistic elements of both modern and ancient writing systems. Most researchers
within the 118N community believe the total number of written characters will not

exceed 22, |t seems logical that 32-bitsis an appropriate size for an index.

In Metacode, code points could be transmitted in two general ways. First,
some form of binary encoding could be used, for example UTF-8. Second, a non-
binary form of transmission could be adopted, for example character name transmis-
sion. That said, we anticipate most applications will use some form of binary trans-
mission. Large multilingual encodings by their nature require a transmission layer.
The ASCII character encoding scheme never needed a transmission layer, because
encoding and transmission were synonymous. Neverthel ess, the world transmits data
in 8-bit byte chunks. Multicode's code points don't fit within an 8-bit byte, hence

some form of transmission is a necessity.

Metacode facilitates the construction of higher-order protocols through the
use of metadata. Each higher-order protocol defines its own tags using Metacode's
metadata characters. Additionally, each higher-order protocol definesthe meaning of
their tags aswell asthe syntax for their use in Metacode streams. Moreover, we envi-
sion the creation of a common tag registration organization so that protocols may

operate cooperatively.

146

Metacode provides precise definitions for data, metadata, protocols, and
architectural layers. At its core, Metacode provides a mechanism for the unambigu-
ous representation of textual content. Therefore, determining whether Metacode
character streams are equivalent is aso both precise, unambiguous and simple. The
process of determining whether Metacode character streams are the same is the sub-

ject of section 6.3.2.

6.2 M etacode Compared to Unicode

In this section we relate Metacode' s architecture to Unicode' s organization.
Specifically, we examine each layer of Metacode in detail making comparisons to
Unicode when needed.

6.2.1 Transmission L ayer

Metacode can utilize many of the popular binary character encoding transfor-
mation formats. We prefer UTF-32, UTF-16, and UTF-8. Which are the same trans-
mission mechanisms that Unicode uses. All of these transmission mechanisms take
as input integer based encodings and produce compressed binary sequences as out-

put.

6.2.2 Code Point L ayer

In Metacode code points would be specified by an integer, usualy repre-
sented in hexadecimal. In the code point layer each code point would map to one and
only one character. Additionally, each character would map to one and only one code
point. In Metacode each code point would be of a fixed width. Code pointsin Meta-
code would never combine to form larger indices. In Metacode code points would
generaly be organized by script system. Thisis similar to Unicode. The most signif-
icant and novel feature of Metacode is a specific dedicated section of code pointsfor

the conveyance of metainformation.

147

We considered two factorsin attempting to find asuitable location for encod-
ing Metacode’ s metadata characters. First, we wanted to select a range in Metacode
that would allow for easy migration from Unicode. Second, we wanted to select a
range that would allow Metacode' s metadata characters to be simulated in other
legacy encodings, in particular Unicode. We considered using Unicode’ s private use
area, but ruled it out for two reasons: First, Metacode does not have any notion of a
private use or user defined character area, which makes legacy conversion from Uni-
code more difficult. Second, the private use area within Unicode suffers from abuse

due to the vast number of people using it conflicting ways.

We finally settled on using the surrogate range within Unicode. Unicode text
processes aready ignore this region, which permits simulation of metadata without
disrupting metadata unaware processes, facilitating easy migration from Unicode to
Metacode. Therefore, for purposes of demonstration the metadata code points are
encoded in the following locations. 0XE0001, 0XE0002, and OxE0020-0xEQQ7F.

6.2.3 Character Layer

The character layer in Metacodeisthe place where the abstract dataand meta-
data entities are defined. Additionally, we list the specific Unicode characters that
would be excluded from Metacode as well as those legacy characters that would be
redefined for Metacode. In cases where a Unicode character has no direct analog in
Metacode we show how the same information can be expressed using Metacode’'s

metadata characters.

6.2.3.1 Combining Characters
In Metacode each character istreated as an independent unit. Each Metacode

character isunaffected by its surrounding neighbors. On the other hand, Unicode per-
mits some neighboring charactersto interact with one another to form new character
units. Unicode refers to these character sequences as “ combining characters’. Meta-

code does not have any notion of combining characters at this layer. This sort of

148

interaction occurs within higher-order protocols. Therefore, we would not include
any of Unicode's combining charactersin Metacode. The Metacode stream on line 1
on Figure 6-2 illustrates the use of a higher-order protocol for the purpose of indicat-

ing combining characters.

Figure 6-2. Combining character protocol

ELM@CMBW/ELM — w diaeresis 1)

Table 6-1 lists the Unicode characters that would not be encoded in Meta-
code. The first columnin Table 6-1 contains the excluded Unicode combining char-
acters, the second column specifies the name of each character, while the third
column contai ns the non-combining form for each character listed in thefirst column.
[96]

In Metacode we would still like to be able to use the combining characters as
pure data (content) minus their joining protocol, because in many instances these
characters represent linguistic elements. To accomplish this we would redefine the
combining characters for Metacode. In our redefinition these characters would be
“pure”, hence they would posses no special combining property. See Table 6-2 [96].
The first column in Table 6-2 lists the range of code points that would be redefined
in Metacode. The second column list the type of characters that these code pointsrep-

resent.

In cases where a non-combining legacy character, mostly diacritic marks,
dready exists we would use it, rather than the newly redefined character. See
Table 6-1. We take this approach for two reasons. First, if legacy Unicode text con-
tained a diacritic character then there is a greater likelihood that they used the non-

combining form of the character, because few text processes actually support com-

149

bining characters. Second, we reduce the number of redefined characters, thus easing

migration from legacy Unicode to Metacode.

Table 6-1. Excluded Unicode combining characters

Code Point Character Name Non-Combining Code Paint
U0300 GRAVE ACCENT U0060
u0301 ACUTE ACCENT uooB4
u0302 CIRCUMFLEX ACCENT UQOSE
u0303 TILDE UQO7E
u0304 MACRON UQOOAF
U0306 BREVE u02D8
u0307 DOT ABOVE u02D9
u0308 DIAERESIS UOOAS8
U0309 HOOK ABOVE u02Co
UO30A RING ABOVE UO2DA
u030B DOUBLE ACCUTE u02DD
u030C CARON uo2C7
U030D VERITICAL LINE ABOVE u02C8
u0310 CANDRABINDU u0901
u0312 TURNED COMMA ABOVE u02BB
u0313 COMMA ABOVE uo2BC
u0314 REVERSED COMMA ABOVE | U02BD
u0327 CEDILLA uooB8
u0328 OGONEK u0o2DB

Table 6-2. Redefined Unicode combining characters

Code Point(s) Character(s)

U0305, UO30E-U030F, U0311, General diacritical marks
U0315-U0326, U0329-U0362

U0483-U0489 Cyrillic marks
U0591-UO5AF Hebrew cantillation marks

150

Table 6-2. Redefined Unicode combining characters (Continued)

Code Poaint(s) Character(s)
U05B0-U05C4 Hebrew points and punctuation
U064B-U0652, U0670 Arabic points
U0653-U0655 Arabic maddah and hamza
U06D6-UO6E9, UOGEA-UOGED Koranic annotation signs
uo711 SYRIAC SUPERSCRIPT LETTER ALAPH
U0730-U073F Syriac vowels
UQ0740-U074A Syriac marks
UQ07A6-U07B0O Thaana vowels
U0901-U0903, U093C, UO93E, U094D, Devanagari signs
U0951-U0954

UQ93F-U094C,U0962-U0963 Devanagari vowels
U0981-U0983, U09CD, U09D7 Bengali signs
UQO9BE-U09CC, UO9E2-UO9E3 Bengali vowels
UOAO2,U0A70-UOAT1 Gurmukhi signs
UOA3E-UOA4D Gurmukhi vowels
UOAB81-UOAS83, UGABC, UCACD Gujarati signs
UOABE-UOACC Gujarati vowels
UO0B01-U0B0O3, UOB3C, U0B4D, Oriyasigns
UO0B56-U0B57

UOB3E-U0B4C Oriyavowels
U0B82-U0B83, UOBCD, UOBD7 Tamil signs
UOBBE-UOBCC Tamil vowels
UO0C01-U0C03, U0C4D, UOC55-U0C56 Telugu signs
UOC3E-U0C4C Telugu vowels
U0C82-U0C83, U0CCD, UOCD5-U0CD6 Kannada signs
UOCBE-UOCCC Kannada vowels
U0D02-U0D03, U0D4D, UOD57 Malayalam signs
UOD3E-U0D4C Malayalam vowels
U0D82-U0D83, UODCA Sinhala signs
UODCF-UODDF, UODF2-UODF3 Sinhalavowels
UOE30-UOE31, UOE34-UOE3A, UOE47 Thai vowels

151

Table 6-2. Redefined Unicode combining characters (Continued)

Code Poaint(s) Character(s)

UOE48-UOE4B Thai tone marks
UOE4C-UOE4E Thai signs

UOEB1, UOCEB4-UOEBB Lao vowels

UOEBC, UOECC-UOECD Lao signs

UOECS8-UOECB Lao tone marks
UOF35,U0F37, UOF39, UOF3E-UOF3F, Tibetan marks and signs
UOF82-U0F84, UOF86-UOF87

UOF71-UOF7D, UOF80-UOF81 Tibetan vowels
UOF7E-UOF7F Tibetan vocalic modifiers
UOF90-UOFBC Tibetan subjoined consonants
U102C-U1032 Myanmar vowels
U1036-U1039 Myanmar signs
U1056-U1059 Myanmar volcalic modifiers
U17B4-U17C5 Khmer vowels
U17C6-U17C8, U17CB-U17D3 Khmer signs

U17C9-U17CA Khmer consonant shifters
U18A9 MONGOLIAN LETTER ALI GALI DAGALA
U20D0-U20E3 Diacritical marks for symbols
U302A-U302F | deographic diacritics
U3099-U309A Hiragana voicing marks
UFE20-UFE23 Half marks

6.2.3.2 Glyph Variants
In Metacode there is no notion of glyph specific characters. This means that

Metacode would not encode ligatures or specialy shaped versions of characters.
Therefore, Metacode would not incorporate any Unicode characters that are glyph
composites or glyph variations of existing nominal characters. See Table 6-3 [96].
On the other hand, Metacode would provide a controlled mechanism for describing

such information. In metacode, glyph variations would be specified by using

152

metadata tags. For example, thetext stream on line 1 on Figure 6-3 demonstrates how

aligature protocol would be specified in Metacode.

Table 6-3. Unicode glyph composites

Code Poaint(s) Description

U0132-U0133 Latin ligatures

U0587, UFB13-UFB17 Armenian ligatures

UFB0O-UFB06 Latin ligatures

UFB1D-UFB4F Hebrew presentation forms
UFB50-UFDFB Arabic presentation forms (ligatures, initial, medial, final, isolated)
UFE30-UFE44 Glyphs for vertical presentation
UFES0-UFEGB Small glyphs

UFE70-UFEFC Additional Arabic presentation forms
UFFO01-UFF5E full-width Latin glyphs

UFF61-UFFEE half-width Chinese, Japanese, and Korean

Figure 6-3. Ligature protocol
ELM@LIGfI/ELM —fl ligature Q)

6.2.3.3 Control Codes
Aswe pointed out earlier some character encodings, like ASCII, have control

codes. Metacode, however, by its nature does not need control codes. In this context
we are referring specifically to ASCII’s control codes. In Metacode legacy control
codes would be captured by using metadatatags, just like any other higher-order pro-
tocol. Metacode does not prohibit other methods for expressing control codes. One
such alternative method would be to create special singleton predefined metadata
tags that would be directly encoded in Metacode, rather than being specified as an
external higher-order protocol. This might ease migration from legacy encodings as
well as reduce the number of charactersin a stream. Another aternative would be to
encode controlsas normal Metacode characters. These characterswould have no spe-

cial semantics or required behavior. Text processes seeing these characters would

153

have the freedom to treat them just like any other character or to assign them special
properties and behavior. It would be wise to limit these single meta characters other-

wise we would just recreate all the problems with Unicode.

Occasionally there are some charactersin legacy encodingsthat do not appear
to be control codes, but behave as if they really are. For example, there are severd
characters encoded in Unicode for the purpose of indicating a break or space. See
Table 6-4 [96]. The primary difference between each of these spacing charactersis
the amount of spacetoinsert. For the most part these characters were encoded for his-
torical reasons. Nonetheless, in M etacode we would not explicitly encode these char-
acters. Wewould argue that the ideas expressed in these characters are best described
as a higher-order protocol. In Metacode we would only encode a single space char-
acter. The single space character could be wrapped around a metadata tag that spec-
ified the exact amount of space to insert, which could be none. For example, the text
stream on line 1 on Figure 6-4 demonstrates how a spacing protocol would be spec-
ified in Metacode. In order to aid comprehension the space character is represented

by its code point value 0x0020.

Table 6-4. Unicode spacing characters

Code Point Description

U2000 EN QUAD SPACE
U2001 EM QUAD SPACE
u2002 EN SPACE

U2003 EM SPACE

u2004 THREE PER EM SPACE
U2005 FOUR PER EM SPACE
U2006 SIX PER EM SPACE
u2007 FIGURE SPACE

u2008 PUNCTUATION SPACE
U2009 THIN SPACE

U200A HAIR SPACE

154

Table 6-4. Unicode spacing characters (Continued)

Code Point Description

u200B ZERO WIDTH SPACE

U202F NARROW NO BREAK SPACE
UFEFF ZERO WIDTH NO BREAK SPACE

Figure 6-4. Spacing protocol
ELM@SP@EM0x0020/ELM — EM SPACE €]

6.2.3.4 Metadata Tag Characters
In the Metacode system there would be 97 metadata characters (95 tag name

characters and two tag protocol characters). The 95 tag name characters correspond
to the ASCII and Unicode graphic character range 0x20-0x7E, while the tag protocol
characters have no analog in either ASCII or Unicode. The two special tag protocol
characters would be used for delimiting tags and for separating tag arguments. The
base name of the tag characters are taken from Unicode. See Table 6-5. In Metacode,
metadata characters would be used to specify higher-order protocols. The details of

tag construction and protocol definition was discussed in the previous chapter.

Table 6-5. Metacode tag characters

ASCII
Graphic
CodePoint | Character Name M etacode Tag Character Name
41 LATIN CAPITAL LETTERA | TAG CAPITAL LETTER A
TA LATIN SMALL LETTERZ |TAG SMALL LETTERZ
TAG DELIMITER
TAG ARGUMENT SEPARATOR

6.2.4 Character Property L ayer
Each character in Metacode would be assigned properties. These properties

are summarized in Table 6-6. The values for each character property, except for the

155

Metacode character name property appear in: Table 6-7, Table 6-8, Table 6-9, and
Table 6-10. The Metacode character name property isan arbitrary sequence of alpha-

betic characters that represent the unique name of the character.

Table 6-6. Metacode character properties

Property

Description

Case

For those scripts that have case, indicates the specific case.

Script Direction

Indicates the preferred direction for acharacter to be written.

Code Point Value

Specifies the numeric index of a character.

Tag Character

Indicates whether a character is a data or a metadata.

M etacode Character Name

Represents the unique name of a character.

Table 6-7. Metacode case property values

Value Description
U Uppercase

L Lowercase

T Titlecase

Table 6-8. Metacode script direction property values

Value Description

LTR L eft-to-right direction

RTL Right-to-left direction

U Unassigned, character is used in both left-to-right and right-to-left

script systems.

Ignore, character is a metadata character and must be processed in
logical order.

Table 6-9. Metacode code point value property

Value Description

Oxyyyyyyyy | 32-bit hexadecimal index, wherey is ahex digit

Table 6-10. Metacode tag property values

Value Description
T Character is a metadata character
F Character is a data character

156

6.2.5 Tag Definition Layer

The tag definition layer is the layer of abstraction where Metacode higher-
order protocols would be defined. The tag definition layer represents the core, most
useful, and common protocols. See Table 6-11. Table 6-11 lists each protocol cate-

gory along with an informative description.

In Metacode each higher-order protocol would remain distinct and separate
from al others. This alows protocols to be interwoven without ill effect. Text pro-
cesses would then be free to ignore specific protocols, if so desired. In some cases a
process might not understand a protocol. In other cases a protocol might not be appli-
cable to a particular process. In both situations a process can safely ignore such pro-
tocols. Above al, the Metacode protocol definition system is open ended allowing

for ever more specialized protocols and private use protocols to be added.

The text on line 3 on Figure 6-5 illustrates how two protocols would be inter-
woven in Metacode. In this example we interleave the protocols appearing on lines 1
and 2 on Figure 6-5. Thetext on line 1 on Figure 6-5 illustrates how the higher-order
collation protocol would be used to group characters together. In the collation proto-
col data characters surrounded by a collation tag would be treated as single unit for
purposes of sorting. In general, text processesthat perform sorting would make direct
use of thisinformation. The text on line 2 on Figure 6-5 illustrates how the direction
protocol would be used communicate layout information to a process performing ren-
dering. In the direction protocol characters surrounded by a direction tag would be
rendered according to the specified direction. Nevertheless, when the two protocols
are interwoven, theindividual text processes would still be able to function properly.
In this case the sorting process would ignore the direction tag and the rendering pro-

cess would ignore the collation tag.

157

Figure 6-5. Interwoven protocols

ELM@COL L ch/EL M ocolate D
DIR@Rchaocolate/DIR 2
DIR@R|ELM @COL Lch/ELMocolate/DIR (3)

Table 6-11. Mgjor protocols

Category Description

Language The language of a stream or sub-stream of text.

Ligatures A glyph representing two or more characters.

Collation A text element containing two or more characters, that istreated asasin-

gle unit for purposes of sorting.

Presentation direction

The display order for a sequence of characters, horizontal and vertical.

Paragraphs

Characters that are used to indicate paragraph boundaries.

New lines

Characters that are used to indicate new line boundaries.

Combining characters

A character with one or more diacritics or vowels.

Glyph variants

Alternate character presentation forms, half-width or full-width.

Symmetric swapping

A character that when rendered uses its corresponding mirrored glyph
rather than its normal glyph.

Transliteration

A text element contacting two or more characters, that istreated asasin-
gle unit for purposes of conversion. For example, case conversion.

General control codes

The CO and C1 control codes. For example: line feed, tab, carriage
return.

General layout controls

Typographic controls for spacing and line breaking.

6.2.6 M etacode Conver sion

Y et another example of the power of the metadata mechanism isthe ability to
embed Unicode in Metacode. Concelvably the intersection of the M etacode and Uni-

code code pointswill not be the same and some legacy applications will require spe-

cific deprecated Unicode code points. Even thisrestricted case can be easily handled,

because Metacode provides an open ended universal union of protocols. Because

many of Metacode's data characters correspond directly to code points in Unicode

round-trip conversion is easy. In Table 6-12 we provide sample mappings for those

158

Unicode characters that are deprecated in Metacode. In most situations the conver-
sion of deprecated Unicode characters to Metacode protocols is obvious because the
purpose of the Unicode characters is mapped to a specific Metacode protocol. Nev-
ertheless, in some circumstances the intended use of a deprecated character may be
impossible to determine from the data stream itself. In the case where the context is
unknown, Metacode provides a “raw code point” protocol for preserving round-trip

conversions.

The raw code point protocol works for embedding Unicode characters or any
other character encoding protocol. For example, the Unicode code point U2007 (line
1 of Figure 6-6) this code point is designated as the figure space and is a hint about
the presentation of spacing. We have a presentation spacing protocol and so this char-
acter is deprecated in Metacode. Suppose an application is looking for this specific
character and has not fully migrated to Metacode. The raw code point protocol pre-
serves this Unicode code point and any others. Line 2 on Figure 6-6 shows the
embedding of U2007 CP standsfor the raw code point protocol, U indicates the Uni-
code character set, and 2007 is the hexadecimal value of the Unicode code point. As

aways this protocol is preliminary and the details require further study and debate.

Figure 6-6. Metacode code point protocol
U2007 — figure space D

CP@U@2007)

Table 6-12. Converting deprecated Unicode code points to Metacode

Category Description | Unicode M etacode
Language Language <language tag> LANG@UR
Urdu <tag letter u>
<tag letter r>
UEO001,UE0075,UE0072 | MEOOAC,ME0041,M EOO4E,
M E0047,M E0002,M EOQ75,
MEOO072

159

Table 6-12. Converting deprecated Unicode code points to Metacode (Continued)

Category Description | Unicode M etacode
Ligatures Latin fi ELM@LIGfI/ELM
small
ligature fi
UFBO1 MEOQ045,ME004C,MEQ04D,
MEOQ002,M E0045,M E0049,
MEQ047,M0066,M0069,
M EOQO02F,M E0045,M EQ04C,
MEQO04D
Presentation | Right-to-left | <RLE> DIR@R
direction embedding
U202B M EO0044,M E0049,M E0052,M E0002,
MEOQ052
Paragraphs | Paragraph <p separator> PAR
separator
U2029 MEO0050,M E0041,M EQ052
New lines Line <| separator> BRK
separator
u2028 MEO0042,M E0052,M EQ04B
Combining | Latin w’ ELM@CMBW/ELM
characters small letter w
with diaeresis
U0077,U0308 MEO0045,ME004C,MEQ04D,
MEO002,M E0043,M EQ04D,
MEOQ042,M0077,M00AS,
M EOQ02F,M E0045,M EQ04C,
MEO004D
Glyph Full-width a ELM@WIDaELM
variants Latin small
letter a
UFF41 MEO0045,ME004C,MEQ04D,
MEO002,M E0057,M E0049,
MEO0044,M0061,M EO02F,
MEO0045,M E004C,M EQ04D
Symmetric | Activate <a symmetric s> MIR
swapping mirroring

u206B

MEO004D,M E0049,M E0052

160

Table 6-12. Converting deprecated Unicode code points to Metacode (Continued)

Category Description | Unicode M etacode
General Carriage <cr> N
control return
codes
U000D MOOOD (singleton)
General EM <em space> ELM@SP@EM /ELM
layout con- | Space
trols
U2003 M E0045,M E004C,ME004D,
M E0002,M E0053,M EQ050,
ME0002,M E0045,MEQ04D,
M0020,M E002F,M E0045,
ME004C,ME004D

In Metacodethereisno limit to the number of protocol sthat can be expressed.
Metacode can embed not only control and presentation protocols but also character
coding standards, such as 1SO-2022. In fact Metacode allows for a more natura
expression of 1S0-2022 escape sequences. For example, line 1 on Figure 6-7 shows
the 1 SO-2022 byte sequence for announcing a switch to the ASCI I character set. Line
2 shows how the announcement would be expressed in Metacode. The metadata
sequence on Line 2 alleviates the requirement of having to decipher the escape
sequence in order to determine the character set. In Metacode the escape sequenceis
replaced by the actual name of the character set. This approach offers the advantage

that lookup tables and deciphering become unnecessary.

Figure 6-7. 1SO-2022 escape sequence in Metacode
ESC (B (1)

|SO@ASCII ?
In 1SO-2022 the number of registered character sets is finite, because there
are afixed number of code points from which to make assignments. In Metacode the

number of character setsthat can be referenced is unlimited, because M etacode uses

strings to encode names. This approach offers the greatest flexibility yet allows for

161

unambiguous communication. We suggest that the character set names be taken from
the IANA (Internet Assigned Numbers Authority). The IANA records the names of
character setsin RFC 1521.

6.2.7 Content Layer

The content layer is the highest layer of abstraction in Metacode' s architec-
ture. We anticipate that applications will primarily interact with Metacode at this
layer of abstraction, as this layer deals with protocols and the raw content of Meta-
code streams. Thisisdiscussed in greater detail in the next section. Thisdoesnot pre-

clude a process from working with Metacode at some lower level of abstraction.

6.3 Data Equivalence

The concept of equivalent data streams is the subject of this section. In Meta-
code data steams may sometimes be considered to be equivalent even if they do not
contain the same code points or bytes. Unicode also has a notion of equivalence,
which they refer to as “normalization”. We start this section by first examining in
detail Unicode' s normalization algorithm. We then describe Metacode' s strategy for

determining data equivalence.

6.3.1 Unicode Nor malization

Normalization is the general process used to determine when two or more
sequences of characters are equivalent. In this context the use of the term equivalent
isunclear. Itis possibleto interpret the use of equivalent in multiple ways. For exam-
ple it could mean characters are equivalent when their code points are identical, or
characters are equivalent when they have indistinguishable visual renderings, or

characters are equivalent when they represent the same content.

162

Figure 6-8. Non interacting diacritics

cA U0063,U0327,U0302 (1)
cr, U0063,U0302,U0327 @)
¢ ©)

Unicode supports two broad types of character equivalence, canonical and
compatibility. In canonical equivalence the term equivalent means character
sequences that exhibit the same visual rendering. For example, the character
sequences on lines 1 and 2 on Figure 6-8 both produce identical renderings, shown
on line 3. [101]

In compatibility equivalence the term equivalent is taken to mean characters
representing the same content. For example, line 1 on Figure 6-9 shows the single £
ligaturewhileline 2 on Figure 6-9 shows the compatible two character sequencef and
i. In this case both sequences of characters represent the same semantic content. The
only difference between the two is whether or not a ligature is used during render-
ing.[101]

Figure 6-9. Compatibility equivalence

fi UFBOL 1)

fi U0066,U0069 @)

6.3.1.1 Unicode Normal Forms
Unicode defines four specific forms of normalization based upon the generad

canonical and compatibility equivalences. These forms are listed on Table 6-13; the

163

title column indicates the name of the normal form, while the category column indi-

cates the equivalence type. [101]

Table 6-13. Normalization forms

Title Category Description

Normalization | Canonical = visualy equivalent | Canonical Decomposition
Form D (NFD)

Normalization Canonical Decomposition followed by
Form C (NFC) Canonical Composition

Normalization | Compatibility = same content | Compatibility Decomposition
Form KD

(NFKD)

Normalization Compatibility Decomposition followed by
FormKC Canonical Composition

(NFKC)

Normalization form NFD substitutes precomposed characters with their
equivalent canonical sequence. Characters that are not precomposed are left as is.
Diacritics (combining characters), however are subject to potential reordering. This
reordering only occurs when sequences of diacritics that do not interact typographi-
cally are encountered, those that do interact are left alone. [101]

In Unicode each character is assigned to a combining class. Non Combining
characters are assigned to the zero combining class, while combining characters are
assigned a positive integer value. The reordering of combining characters operates

according to the following three rules:

* Lookup the combining class for each character.

» For each pair of adjacent characters AB, if the combining class of B is not zero
and the combining class of A is greater than the combining class of B, swap the
characters.

* Repeat step 2 until no more exchanges can be made.

164

After all of the precomposed characters are replaced by their canonical equiv-
aentsand al non interacting combining characters have been reordered the sequence
isthen said to bein NFD.[96]

Normalization form NFC uses precomposed characters where possible, main-
taining the distinction between characters that are compatibility equivalents. Most
sequences of Unicode characters are already in NFC. To convert a sequence of char-
actersinto NFC the sequence is first placed into NFD. Each character is then exam-
ined to see if it should be replaced by a precomposed character according to the
following rule.

* If the character can be combined with the last character whose combining class
was zero, then replace the sequence with the appropriate precomposed character.

After all of the diacritics that can be combined with base characters are replaced by

precomposed characters, the sequence is said to bein NFC. [101]

Normalization form NFK D replaces precomposed characters by sequences of
combining characters and al so replaces those characters that have compatibility map-
pings. In thisnormal form formatting distinctions may belost. Additionally the abil-
ity to perform round trip conversion with legacy character encodings may be
impossible, because of the loss of formatting. Normalization form NFKC replaces
sequences of combining characters with their precomposed forms while also replac-

ing characters that have compatibility mappings. [101]

There are some characters encoded in Unicode that need to be ignored during
normalization. In particular, the bidirectional controls, the zero width joiner and non
joiner. These characters are used as format effectors. The joiners can be used to pro-
mote or inhibit the formation of ligatures. Unicode does not provide definitive guid-
ance as to when these characters can be safely ignored in normalization. Unicode
only states these characters should be filtered out before storing or comparing pro-

gramming language identifiers. [101]

165

To assist in the construction of the normal forms, Unicode maintains a data
filelisting each Unicode character along with any equivalent canonical or compatible
mappings. Algorithms that wish to perform normalization must use this datafile. By
having all normalization algorithms rely on this data, the normal forms are guaran-
teed to remain stable over time. If thiswere not the caseit would be necessary to com-
municate the version of the normalization algorithm along with the resultant normal
form. [101]

6.3.1.2 Unicode Nor malization Algorithm
The best way to illustrate the use of normal forms is through an example.

Consider the general problem of searching for a string. In particular, assume that a
text processis searching for the string “flambé’. Table 6-14 listsjust some of the pos-

sible ways in which the string “flambé” could be represented in Unicode.

Table 6-14. The string “flambé’

| Code Points Description
U0066,U006C,U0061,U006D,U0062, | decomposed
U0065,U0301

2 | U0066,U006C,U0061,U006D,U0062, | precomposed
UOOE9

3 | UFB02,U0061,U006D,U0062,UC0E9 | fl ligature, precomposed

4 | UFB02,U0061,U006D,U0062,U0065, | fl ligature, decomposed
u0301

5 | UFF46,UFF4AC,UFF41,UFF4D,UFF42, | full-width, precomposed
UOOE9

6 | UFB02,UFF41,UFF4D,UFF42,U00E9 | fl ligature, full-width, precomposed
7 | U0066,U200C,U006C,U0061,U006D, | ligature supression,

U0062,U00E9 precomposed

8 | U0066,U200C,U006C,U0061,U006D, | ligature suppression,
U0062,U0065,U0301 decomposed

9 U0066,U200D,U006C,U0061,U006D, | ligature promotion, precomposed
U0062,U00E9

166

Table 6-14. The string “flambé&’ (Continued)

| Code Paints Description
10 | U0066,U200D,U006C,U0061,U006D, | ligature promotion, decomposed
U0062,U0065,U0301

11 | U202A,U0066,U006C,U0061,U006D, | l€eft to right segment, precomposed

U0062,U00E9,U202C

12 | UFF46,U200C,UFF4C,UFF41,Uff4D, | full-width, ligature promotion, precomposed
UFF42,U00E9

13 | UFF46,U200D,UFFAC,UFF41,Uff4D, | full-width, ligature suppression, precomposed
UFF42,U00E9

The character sequences found in Table 6-14 are al equivalent under the
transforms NFKC and NFKD. In the case of NFKD, all transformations yield the
sequence found on row 1 on Table 6-14, while transformations into NFK C result in
the sequence on row 2 on Table 6-14. To demonstrate this, consider the conversion
of Line 1 on Figure 6-10 copied from row 6 on Table 6-14 into NFKD. First, the
sequence is converted to NFD by replacing precomposed characters with their
decomposed equivalents. See line 2 Figure 6-10. Second, all characters that have
compatibility mappings are then replaced by their corresponding compatibility char-
acters. See line 3 Figure 6-10. The final sequence obtained is the same as the one
found on row 1 of Table 6-14.

Figure 6-10. Conversion to NFKD

UFB02,UFF41,UFF4D,UFF42,U00E9 (1)
UFBO02,UFF41,UFF4D,UFF42,U0065,U0301 2
U0066,U006C,U0061,U006D,U0062,U0065,U0301 (3

The fact that all of the sequences found in Table 6-14 are equivalent under
one normal form, in this case NFKD, does not necessarily mean that the sequences
are equivalent in other normal forms. For example, consider line 1 on Figure 6-11

which is copied from row 3 in Table 6-14. When this sequence is converted to NFD

167

the result is line 2 on Figure 6-11. This does not match the sequence on row 1 of

Table 6-14, therefore these sequences are not equivalent under NFD.

Figure 6-11. Conversion to NFD
UFB02,U0061,U006D,U0062,U00E9 €))

UFB02,U0061,U006D,U0062,U0065,U0301 (2

Thus far we have explored the details of data equivalence in Unicode. We
now examine some of the problems that are caused by Unicode’s normalization
forms. In particular, we consider the interaction between the normalization process

and other Unicode algorithms.

6.3.1.3 Problems with Unicode Normalization
The overall complexity of normalization presents serious problems for gen-

eral searching and pattern matching. Without a single normalization form, it is not
possible to determine reliably whether or not two strings are identical. The W3C
(World Wide Web Consortium) has advocated adopting Unicode’s NFC for use on
the web. Additionally, W3C recommends that normalization be performed early (by
the sender) rather than late (by the recipient). Their recommendation is to be conser-
vativein what you send, while being liberal in what you accept. The major arguments
for taking this approach are: [107]

* Almost all dataon theweb isalready in NFC.
* Most receiving components assume early normalization.
. !\Iot_ all components that perform string matching can be expected to do normal-
ization.
There are some problems with this strategy, however. It assumes that the pri-
mary purpose of normalization is to determine whether two sequences have identical
renderings which is appropriate for display but inappropriate for information proces-

ing. In Unicode’'s NFC any and all formatting information is retained. This causes

168

problems for those processes that require comparisons to be based only upon raw
content, such asweb search engines and web based databases. Additionally, it places

undo limitations on the characters that can be used during interchange.

During the process of normalization the properties of the characters are not
guaranteed to remain stable. In Unicode the numero sign isaneutral character, while
thelatin capital letter n and latin small letter o are |eft-to-right characters. Obviously
these character types are not the same. Therefore, it is no surprise that when the run
on line 3 onisconverted to display order it does not match the unnormalized display
order. See lines 4 and 2 respectively. This example reveals Unicode' s strong ties to
presentation rather than content. This might seem unimportant, as the visual display
isnot vastly different. It could lead to cases in which incorrect conclusions could be
drawn. See Figure 6-13.

Figure 6-12. Protocol interaction

U0627,U2116,U0031,U0032,U0033 1)
123 Ne |)
U0627,U004E, UOOGF,U0031,U0032,U0033 ©)
Nol23) 4)

Line 1 on Figure 6-13 is arun of charactersin logical order with its corre-
sponding display order on line 2 on Figure 6-13. The run on line 3 on Figure 6-13 is
the normalized form of line 1 on Figure 6-13, with its display order on line 4 on
Figure 6-13. When the two display orderings are compared the results are radically
different visually and semantically. See lines 2 and 4. These examples further illus-

trate the need for a new data encoding model.

169

Figure 6-13. Datamangling

U0627,U00BC (1)
7 @
U0627,U0031,U2044,U0034 3
471) @

The next serious problem with the normalization process is the unexpected
interaction with other Unicode protocols. In particular, the Unicode Bidirectional
Algorithm. The run of characters on line 1 on Figure 6-12 is a sequence of Arabic
charactersin logical order. The text displayed on line 2 on Figure 6-12 is the same
run of characters but in display order. This is the output from the Unicode Bidirec-

tional Algorithm.

When the run of characterson line 1 on Figure 6-12 are placed into NFK C the
result on line 3 on Figure 6-12 is obtained. Placing the run of charactersonline 1 on
Figure 6-12 into NFKC causes the numero sign (U2116) to be converted to the two
character sequence, latin capital letter n (UOO4E) followed by latin small letter o
(UOO6F). Thisillustrates the unanticipated and confounding interaction between nor-

malization and bidirectional processing.

In the previous examples we have seen some of the unexpected interactions
between normalization and layout. In the next section we explore data equivalencein
Metacode. In particular, wewill seethat in M etacode data equivalence does not inter-
act with other algorithms. Thisis possible, because in Metacode data equivalence is

steered away from presentation and redirected towards content.

170

6.3.2 Data Equivalencein Metacode

In Unicode the definition of equivalence is strongly tied to the visual appear-
ance of characters. In the Metacode system, however equivalenceis aligned towards
the meaning of characters, rather than their visual representation. Therefore, in Meta-
code we would define three types of data equivalence:
» Byte equivalence — If two streams contain the same sequence of bytes then the

two streams are said to be byte equivalent. See the Haskell function byteEquivalent
in Appendix D.

» Code point equivalence — If two streams contain the same sequence of code
points (data and metadata) then the two streams are said to be code point equiva-
lent. See the Haskell function codePointEquivalent in Appendix D.

» Content equivalence — If two streams contain the same sequence of data code
points (excluding metadata) then the two streams are said to be content equiva-
lent. See the Haskell function contentEquivalent in Appendix D.

In Metacode each form of data equivalence islinked to a specific architectura layer

within Metacode (starting from the lowest layer of abstraction):

» Transmission layer — Byte equivalence

» Code point layer — Code point equivalence

» Content layer — Content equivalence

Equivalence at alower layer of abstraction guarantees equivalence at higher layers.

Thisis summarized in the following three rules:

 If two streams are byte equivalent then the two streams must also be code point
equivalent and content equivalent.

 If two streams are code point equivalent then the two streams must also be con-
tent equivalent. The two streams, however may optionally be byte equivalent.

» If two streams are content equivalent the two streams may optionally be code
point equivalent and or byte equivalent.

Looking at Unicode’ s normalization algorithm we find it to be very complex
with ill defined boundaries. Metacode’ s content equivalence however, issimplewith

well defined boundaries. Metacode’s content equivalence is performed by simply

171

comparing the data characters in a stream allowing metadata characters to be com-
pletely ignored. Thisis possible because metadata characters do not play any rolein
determining content. The metadata characters always express higher-order protocols

and have no effect on the interpretation of the raw data.
Hereisalist of the other properties of Metacode' s equivalence algorithm:

» Thealgorithmisreversible.
» Thealgorithmisrobusgt, it still functions as new tags are created.

» Theagorithmisapplicableto al text processes, it assumes no particular type of
text process whether it be presentation or content based.

» The agorithm isindependent and separate from other algorithms

Unicode' s normalization algorithm does not exhibit these properties. We argue that
the definition of Metacode content equivalenceisin fact what Unicode normalization
should have been. Metacode's definition of content equivalence is more closely
aligned with Unicode’ s goal of separating characters from glyphs than Unicode nor-
malization is. Unicode normalization should not have been concerned with how par-
ticular characters are rendered. In Metacode this would be the privy of rendering

engines.

In Metacode thereisno limitation on which characters can and cannot be used
in Metacode’ s content layer. Unicode by contrast, has limitations regarding the char-
actersthat can and cannot be used in Unicode’ s normal forms. Metacode' s approach
allowstext componentsto be both liberal inwhat they send and receive. The presence

of metadata in a stream never alters the interpretation of the raw content.

Next we revisit the problem of expressing the string “flambé’. See Table 6-
14. In this table we concluded that all the entries were equivalent. Table 6-15 cap-
tures the same semantics using Metacode' s metadata characters as was expressed in
Table 6-14. To enhance comprehension of the table we use the printed version of the

characters, rather than their code point values. Additionally, in Table 6-15 we do not

172

find any combining characters, because this notion is only applicable to Unicode and
IS unnecessary in Metacode. We refer to the strings in Table 6-15 as being content
equivalent, that is they all represent the same raw content. Moreover, counting the
number of entries in Table 6-15 we find that this is less than half the number of
entries in Table 6-14. Thisis not surprising given the numerous ways in which the
same content can be expressed in Unicode. In Metacode, however there would never

be a case where the same raw content could be expressed in more than one way.

Table 6-15. The string “flambé&” in Metacode

Sring Description
flambé no higher-order protocols
2 ELM@L I Gf/IELMambé fl ligature protocol
3 ELM @WIDflambé/ELM full-width protocol
4 ELM@WIDIELM @LIGfI/ELMambé&ELM | fl ligature and full-width protocols
5 DIR@L flambé/DIR direction protocol

In Metacode, data equivalence is never based on any external tables, thereby
eliminating any potential datatable versioning problems. For example, consider Uni-
code character U2048, question exclamation mark ?!. Seeline 1 on Figure 6-14. This
character wasfirst defined in Unicode 3.0. The purpose of the character isto produce
a specia glyph variant of a question mark ? combined with an exclamation mark !
for use in vertical writing systems. See line 2 on Figure 6-14. Nonetheless, the
meaning of the question exclamation mark is the same as the combined individual
characters. Thisrequired Unicode to update their normalization tables. Nevertheless,
when applications based on earlier versions of Unicode performed normalization the
question exclamation mark would not match the individual question mark and excla-

mation mark. Therefore, these characters would be incompatible.

173

Figure 6-14. Question Exclamation Mark
u2048 2)

UOO3F,U0021 7! @)

Using Metacode and metadata tags no such dependency on a specific version
of Metacode is necessary. In Metacode a new code point definition would not be
required at all. Thisvertical form using metadataisillustrated on line 2 on Figure 6-
15. When line 2 is compared to line 1 we find the two are content equivalent; both
strings represent the same content. If at some later time we find it necessary to add a
wide form of the question exclamation mark to Metacode we need only surround the
? and ! with a metadata tag. Seeline 3 on Figure 6-15. Thus, Metacode and its asso-
ciated metadata tagging mechanism is both open and flexible. The process for deter-
mining whether the two streams are content equivalent does not require any changes
to accommodate the use of this tag further illustrating the openness of the Metacode

architecture.

Figure 6-15. Metadata Question Exclamation Mark

2 1)
ELM@VER?/ELM)
ELM@WID?/ELM ©)

6.3.3 Simulating Unicode in M etacode

Metacode permits the simulation of Unicode and its normalization forms
easing migration to our new architecture. Unicode’'s normalization forms would be
encoded by using Metacode' s metadata tagging mechanism. The notion of an Uni-
code combining character would be described as a higher-order protocol, previously
illustrated on Figure 6-2. Unicode’s normalization algorithm would be yet another
form of data equivalence. For example, the Metacode character stream on line 1 on

Figure 6-16 would represent the Unicode characters latin capital letter u and

174

combining diaeresis. Line 2 on Figure 6-16 is the single Metacode character latin
capital letter u diaeresis. In Metacode the streamson lines 1 and 2 would be unequal,
because they do not represent the same content. Nevertheless, the two streams would
be equivalent under Unicode simulation, because the streams have identical render-

ings.

Unicode normalization can be thought of as a higher-order form of data
equivalence. We call this form of equivalence “display equivalence” and placeitin
ahigher layer over content equivalence. Display equivalence does not violate any of

our earlier rules of equivalence.

Figure 6-16. Simulating Unicode normalization
ELM@CMBU/ELM D

0 @

6.4 Code Pointsvs. M etadata

Metacode is capable of easy expansion to accommodate the inevitable and
boundless growth in written expression. In Metacode expansion may occur in both
the code point layer and in the tag definition layer. Our architecture encourages rela-
tively infrequent expansion at the code point layer when anew natural language con-
struct needs to be expressed. Expansion at the tag definition layer would occur only
when information describing a natural language construct needed to be expressed.
Our architecture greatly reduces the number of instances where appropriate assign-
ment is ambiguous. For the remainder we improve the situation by providing more

workable options for capturing the essence of natural language constructs.

6.4.1 Metacode Principles
In many cases the decision as to whether to use a code point or a tag would

be obvious. Nevertheless, some heuristics would be established to provide guidance

175

with these decisions. For example, the following heuristics are indicators for encod-

ing a concept as a code point:

» The concept represents a natural language construct.
» The concept represents afundamental element of some formal system.

The following list are indicators for encoding concepts as protocols, rather than as

code points.

» The concept isastylistic variation of an already existing code point.

» The concept is used for signaling or control of some higher-order process.
» The concept causes the semantics of code points to change.

» The concept provides metainformation about an existing code point.

» The concept is a specialization or generalization of an already existing tag.

6.4.2 Applying M etacode Heuristics
Bellow we illustrate how these Metacode heuristics would be applied to
encoding new objects within Metacode. We examine situationsin which the decision

is easy to make as well as those in which the decision isless clear.

6.4.2.1 Natural language text
First, we explore the case where the decision as to whether to use acode point

or atag is unambiguous. Let us look at the task of encoding Egyptian Hieroglyphic
symbols in Metacode. The Egyptian hieroglyphic symbols are divided into two
classes, phonograms and ideographs. Phonograms are used to write the sounds of the
language. The value of the sound was usually obtained from the name of the object
being depicted. The hieroglyphic symbol “foot” on Figure 6-17 represents a conso-
nant that is pronounced as the letter “b” in English. Asthe “foot” object is both an
element of anatural language (Egyptian) and an element of aformal system (hiero-

glyphics). It would be encoded as a code point. [17], [80]

176

Figure 6-17. Egyptian hieroglyphic phonogram

J

In Egyptian, ideographs represent either the actual object being depicted or a
closely related idea. For example, consider the hieroglyphic symbol “ra” on Figure
6-18. The symbol ra stands for the sun. Even though this is not a phonogram, the ra
symbol isan element of written natural |anguage and would al so be encoded asacode

point.

Figure 6-18. Egyptian hieroglyphic ideograph

O,

6.4.2.2 Mathematics
There currently exists severa systems for representing mathematical docu-

ments, such as TeX, Mathematica, and MathML [65]. These systems, however, deal
with the representation of mathematics at the document level and not at the character
level. Unicode has recently taken stepsto fill this gap by encoding a set of characters
within the surrogate range specificaly designed for mathematics. These
mathematical characters include bold, italic and script Latin letters, bold and italic
Greek letters, and bold and italic European numerals [98]. Metacode would not
include such characters because such information is captured by Metacode' s higher-
order protocols. Unicode' s mathematical characters are redlly stylistic variations of
already encoded characters. On the other hand, it is true that the semantics of the
mathematical characters differ from the basic Latin, Greek, and European numerals.

In Metacode we would not prevent such semantics from being expressed, rather we

177

would argue that the use of code points as the means for their expression isincorrect

because these characters are stylistic variations of already encoded characters.

In the case of Unicode we find that only the European numerals have bold
forms, what about al the other types of digits? If we believe that using code pointsis
the correct approach, then we must be prepared to provide multiple forms of every
kind of digit (Arabic, Chinese, Japanese, etc.) Moreover, the introduction of multiple
stylistic forms of letters and digits only serves to make data equivalence more com-

plex.

In Metacode the semantics of mathematics are expressed through a higher-
order protocol. For example, rather than encoding bold characters Metacode would
express such information by using atag. See line 1 on Figure 6-19. On line 1 on
Figure 6-19 we seethe latin capital letter a surrounded by a math tag with the single
argument bold. Moreover, in Metacode the introduction of mathematical tags does

not require any changes to our data equivalence procedures.

Figure 6-19. Mathematical characters
MATH@BA/MATH €]

6.4.2.3 Dance notation
Metacode is not limited to just encoding natural languages and mathematics,

although we anticipate that these will be the predominant uses. It is possible to use
Metacode to encode other formal systems. For example, consider the system for
expressing dance movements. Thisis aformal system and is called “Action Stroke
Dance Notation” (ASDN). ASDN is a movement shorthand designed to capture the
basic movements of dance as actions and strokes. In ASDN each of the basic actions
is represented using a graphic symbol, known as an “action stroke”. Each of these
actions indicates a movement of either the leg or arm staffs. Each action stroke is
attached to avertical line called the staffline. Lines written to the left of the staffline

178

signal amovement of aleft [imb, while lines written to the right signal a movement
of aright limb. [19]

In the illustration on Figure 6-20, #1 is a step with the right leg, #2 is an air
gesture with the left leg, #3 is a step with the left leg, and #4 is atouch gesture with
theright leg. In Metacode we would encode each of these symbols asindividual code
points, because they represent the fundamental elements of ASDN and are part of a

formal written system. [19]

Figure 6-20. Action Stroke Dance Notation

4

___\\I
3 |
S|
21

In ASDN the direction of movement (forward and backward) can also be
expressed. In ASDN these are represented by using up and down arrows. In Meta-
code we would not encode these movement symbols, because these objects are
already encoded in Metacode, albeit not as part of ASDN notation. The movement
symbols are combined with action strokes to indicate the direction of a stroke. For
example, the action stroke on Figure 6-21 indicates a backward movement of the
right leg. [19]

179

Figure 6-21. Action Stroke Dance Notation with movement

L

In Metacode we could express the combination of an action stroke and direc-
tion in two ways. First, we could encode each combination of an action stroke and
direction as an individual code point. Second, we could create atag for combining a
movement direction with an action stroke. We would argue that the second approach
ismore appropriate, because the combination of an action stroke and adirection does
not represent a fundamental unit of the formal system. The combination of an action
stroke and a direction is a composite object constructed from two fundamental ele-
ments. Therefore, we would describe the composite object by using a higher-order
protocol “tag”. For example, in Metacode we would capture the semantics of Figure
6-21 by using the Metacode character sequence on line 1 on Figure 6-22. To simplify
comprehension of Figure 6-22 the action stroke and movement direction are specified

using their long name (italic characters), rather than by their individual code points.

Figure 6-22. Metacode Action Stroke Dance Notation tag
ASDNright-step, down-arrow/ASDN Q)

6.5 Benefits of M etacode

We argue that multilingual character coding systems should provide both a
set of unambiguous data characters and amechanism for specifying metainformation
about those characters. In Metacode characters are identified by their meaning rather
than by their shape. Additionally, Metacode's “data characters’ are always distinct
and separate from “metadata characters’. Metacode's open ended tag mechanism
allows for the definition of an unlimited number of possible protocols, yet does not

require any future code points. By adopting this framework Metacode is free to deal

180

entirely with the definition of characters. This approach affords the greatest level of
flexibility, while still retaining the ability to process multilingual data efficiently.

Metacode does not dictate how metadata should be used. Metacode solely
deals with mechanism. The semantics of protocols are left to higher-order processes.
M etacode getsto separate protocol definition from character picking. The once fuzzy
boundary separating characters from protocol is now replaced by awell defined bor-
der. This precise separation greatly simplifies the construction of multilingual infor-

mation processing applications.

181

7Conclusi ons

In Metacode information processing is focussed on content and away from
display. In our architecture roles and responsibilities are clearly indicated. We have
sharpened the focus on the indistinct boundary separating code points, characters,
and control information. The tasks of assigning code points and defining protocols
are now separate and distinct activities. This separation of activities promotes the
deprecation of code points that convey control information. In particular, ligatures,
control codes, glyph variants and half-width forms. In Metacode control information
is captured by the metadata layer, irrespective of whether the control relates to pre-

sentation or content.

7.1 Summary

In Chapter 2, we outlined the overall field of software globalization. We pro-
vided definitions for the terms internationalization, localization, and trandation. We
examined several challengesto creating multilingual software. We described in detail
each of the six subfields of software globalization: Trandation, International User
Interfaces, Cultural/Linguistic Formatting, Keyboard Input, Fonts, and Character
Coding Systems.

In Chapter 3, we discussed character sets and character coding systems. We
defined the relevant termsrelated to character coding systems. We examined in detail
several character coding schemes, covering both fixed-width stateless and variable-
width stateful systems. We made argumentsjustifying the need for multilingual char-

acter coding systems. We described in detail four multilingual coding systems:

182

Unicode, Multicode, TRON, and EPICIST. We concluded that Unicode's fixed
width statel ess encoding system is agood mechanism for encoding/transmitting code

points.

In Chapter 4, we considered problems arising from using multilingual char-
acter encodings. Specifically, we examined the problem of processing bidirectional
scripts (Arabic, Hebrew, Farsi, and Urdu). Initially, we considered the proposition
that the processing of bidirectional text was an algorithmic problem. We explored
several algorithms for processing bidirectional text: Unicode Bidirectional Algo-
rithm, FriBidi, PGBA, ICU, and Java, but found them inadequate. We created afunc-
tional bidirectional agorithm (HaBi), because a functional implementation would
enable us to discover the true nature of bidirectional text processing. We found our
HaBi implementation incomplete, however. We concluded that the bidirectional pro-
cessing problem was not an algorithmic problem but an architectural problem. The
existence of thisarchitectural problem points to fundamental flaws in the underlying

character set centric mode!.

In Chapter 5, we explored several strategies for addressing the shortcomings
of the character set centric model. In particular, we looked at using metadata for
describing more of the underlying structure of scripts. We examined XML asameta-
data model for multilingual information processing, but found it inappropriate. We
defined our own general metadata model, presenting evidence of its suitability for
multilingual information processing. We introduced several meta tags (text element,
direction, mirroring, and language) that showed how complex semantics could be
captured in our metadata model. We established that both XML and HTML could be
captured using our general metadatamodel. Applying our metadatamodel to the bidi-
rectional text processing problem enabled us to discover the true nature of bidirec-
tional text processing (inferencing and reordering). We concluded that our metadata

model allowed for a general reorganization of multilingual information processing.

183

In Chapter 6 we developed our multilingual information processing architec-
ture. Our architecture incorporates character sets, metadata, and core protocols, pro-
viding an overall framework for multilingual information processing. We named our
architecture Metacode to reflect our focus on higher-order protocols. We established
that it is easy to migrate to M etacode because Unicode can be ssmulated in Metacode.
We eliminated the need for complex normalization algorithms by introducing a hier-
archy of simple data equivalences (byte, code point, content). We concluded by sum-

marizing the benefits our architecture provides.

7.2 Contributions

In this dissertation we made practical contributions to several issuesin mul-
tilingual information processing. These contributions emerged from the study of four
areas. bidirectional processing, normalization, characters, and higher-order proto-
cols.

In summary the contributions of this dissertation are:

» We developed an architecture that unambiguously separates code points, content,
control information, and display.

* We created an architecture that minimizes harmful interactions.

» We created an extendable metadata mechanism for describing higher-order proto-
cols.

» We conducted a detailed analysis of bidirectional reordering algorithms and dis-
covered the essence of bidirectional processing.

» We established that our architecture allows for a separation of bidirectional infer-
encing from bidirectional reordering.

» The metadata architecture that we devel oped supports reversible and detectable
information processing agorithms.

» We created a hierarchy of fundamental data equivalencesthat are simpleto
implement.

» We showed that data equivalence a gorithms can operate independently from any
particular version of Metacode.

184

» We demonstrated that it is possible to simulate Unicode in our Metacode system,
allowing for easy migration.

» We provide guidance for encoding concepts in Metacode.

In the paragraphs below we discuss each of these contributions.

We presented evidence that supports our argument that there is little separa-
tion between content, display, and control information. We showed several instances
(e.g., ligatures, half-width forms, and final forms) where it was laborious to separate
display information from content. In many places throughout the dissertation we
showed the difficulty of separating control information (e.g., bidirectional controls
and breaking controls) from content. We devel oped abstractions and mechanismsfor

better delineating the boundaries between control information, display and content.

In our metadata and protocol abstractions we showed that intra-layer change
was minimized as we encoded new concepts. In the character set centric view, change
cannot be localized (e.g., spacing code points, see section 6.2.3.3). This shift in phi-
losophy is significant because it prevents unanticipated interactions as we saw in the
case of normalization. We developed a spacing protocol for expressing variable
length spaces that did not require any change in the code point layer. As we defined
other protocolsin the tag definition layer (e.g., combining characters and direction)

we showed that the content layer was unaffected.

In the character set centric approach endless code point tinkering is required
each time a new linguistic or cultural variation is added (e.g., Arabic presentation
forms). This strategy islimiting because there are only afinite number of code points
for encoding characters. We demonstrated that in Metacode linguistic and cultural
variations are captured by the open-ended metadata definition system. We saw that
Metacode’ s universal text element protocol captured a wide array of linguistic and
cultural information (e.g., glyph variants and final forms, see section 5.6) yet did not

require additional code points.

185

In this dissertation we showed that the character set centric position does not
supply the best set of basic building blocks for constructing higher-order protocols.
Thisisimportant because it leads to the use of overloaded characters and conflicting
solutions aswe saw in the case of XML. In Metacode we provide a better foundation
for higher-order protocols. We showed that our metadata system enabled a more
cohesiveform of XML (see section 5.4), because we avoid the problems of entity ref-

erences.

Our analysis of bidirectional algorithms revealed the true nature of bidirec-
tional information processing. Thisis significant because we have separated the lin-
guistic processing from the information processing. We concluded that bidirectional
processing is comprised of two activities: inferencing and reordering (see sections
4.8 and 5.7). Inferencing takes natural language text in its most primitive and basic
form and inserts cultural and linguistic assumptions (e.g., language and direction of
script) into the stream. Reordering converts attributed natural language text into a

form that is suitable for presentation.

We presented evidence that current bidirectional reordering algorithmsfail to
separate the activities of inferencing and reordering as we saw in the case of Unicode
and FriBidi. Thislack of separation causes bidirectional algorithmsto generate inap-
propriate output, code points in display order. We argue that only inferencing is
appropriate in the context of character coding systems. Reordering is an activity that
should occur in higher-order processes. In our bidirectional agorithm (HaBi) we sep-

arate inferencing and reordering, always keeping datain logical order.

We presented evidence that showed that the effects of bidirectional process-
ing were both difficult to detect and reverse. Thisis significant becausein many cases
it is necessary to undo bidirectional processing as we saw in the case of domain
names. We found that without separating inferencing from reordering the algorithm

converting from display order to logical order was not a one-to-one function. The

186

well known bidirectional algorithms are not reversible. There are no identifying
markers in the processed text leading to confusion over whether a text stream was
processed. We demonstrated that the effects of our bidirectional algorithm arerevers-
ible and detectable.

We demonstrated that there are unexpected and damaging interactions
between normalization and bidirectional processing aswe saw in the case of fractions
and Arabic text (see section 6.3.1.3). We argued that these interactions point to erro-
neous assumptions about the role of normalization in character coding systems. Nor-
malization of presentation forms cannot be solved at the code point layer. Thisis
crucial because the Metacode approach frees information processing from presenta-
tion issues. Current character coding systems assume that the purpose of normaliza-
tion is to determine if characters look the same. In the Metacode system
normalization is never based on the visual appearance of characters, but rather on the
underlying abstract meaning of the characters. This allows protocols to coexist with-

out interference as we saw in the case of bidirectional processing and normalization.

We presented evidence that in the character set centric model normalization
algorithms must be rewritten each time a new display variation is added, because the
only mechanism for expressing display variation is code points. We showed that Uni-
code’' s normalization tables required updating when they added a vertical variant of
the question exclamation mark character (see section 6.3.2). In our Metacode system
we have options, we could use code points or metadata protocols. We encoded the
vertical question exclamation mark using our universal text element protocol. This
approach minimizes the need to rewrite normalization algorithms each time a new

display variant isintroduced.

We showed that Metacode' s data equivalence agorithms (byte, code point,

and content) operate independently from the visual appearance of characters. Thisis

187

significant because it allows construction of data equivalence agorithms that do not

require change as new protocols and code points are defined.

We presented evidence that Unicode data can be easily converted to Meta-
code without aloss of semantics which we saw in the conversion of combining char-
actersand control codes (see section 6.2.6). We showed that Unicode’ snormalization
algorithm could be simulated in Metacode. Both of these are important because an

easy migration path is necessary to encourage use of Metacode.

Throughout this dissertation we offered guidance and examples for encoding
conceptsin Metacode. We studied several examples from Hieroglyphics, mathemat-
ical typesetting, and Action Stroke Dance Notation to illustrate the correct use of the
architecture. We demonstrated that in many cases it was easy to decide whether to
use a code point or a protocol. In other cases we found the decision to be more com-

plicated as we saw in Action Stroke Dance Notation.

7.3 Limitations

In our Metacode system we made some trade-offs in order to achieve greater
functionality. These trade-offs are summarized as follows:
» Dataencoded in Metacode in some cases require more memory than other multi-
lingual encodings.

* Metacode datain some situations takes longer to transmit than other multilingual
encodings, because character streams may use more memory.

* InMetacode the storage unit (character) isno longer equivalent to thelogical unit
(text element), making manipulation of data more complex.

» Editing of Metacode data is more elaborate.

7.4 Future Work

In this dissertation we provide only a small number of meta tags. Further
research and study of higher-order protocols, display hinting and linguistic elements

would be need in a full implementation of our architecture. In the discussion of our

188

architecture we did not specifically focus on the actual characters that would be
encoded in Metacode. In a complete implementation the actual choice of characters
would be necessary. This character assignment activity would have to consider issues
related to combining characters, Han unification, and control codes. Additional study
and debate is needed.

In some cases it might be desirable to keep some number of controls (e.g.,
new line, and bell) as singleton code points to ease migration. In other cases it may
be more advantageous to deprecate controls (e.g., right-to-left mark) and recast them
as higher-order protocols to avoid the trouble they cause. This issue would require

careful consideration and debate.

We anticipate that frequently used higher-order protocols (e.g., ligature) will
need to have shorthand or singleton representations to minimize memory utilization.
This activity would require identification of the commonly used protocols and dis-

cussion over which protocolswould benefit the most from using an abbreviated form.

189

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

References

Abed, Farough. “ Cultural Influences on Visua Scanning Patterns.” Journal of
Cross-Cultural Psychology, December 1991, pp 525-535.

Abramson, Dean. “Optimized |mplementations of Bidirectional Text Layout
and Bidirectional Caret Movement.” 13th International Unicode Conference,
September 1998.

Adams, Glen. “Internationalization and Character Set Standards.” Sandard
View, The ACM Journal on Sandardization, Volume 1, 1993.

Alhadif, Mohamed. “International Music Festival.” Alshafha, 10 July 2001,
p 3. (in Arabic)

Alvestrand, Harald Tevit. “IETF Policy on Character Sets and Languages.”
RFC 1766, March 1995.

Apple Computer. Inside Macintosh Text. Addison-Wesley. 1993.

Apple Computer. “About Apple Advanced Typography Fonts.” February
1998.

Atkin, Steven. “A Dynamic Object-Oriented Approach to Software
Internationalization.” Master’s Thesis Florida Institute of Technology,
December 1994.

Atkin, Steven and Borgendale, Ken. “IBM Graphical Locale Builder.” 12th
International Unicode Conference, April 1998.

Atkin, Steven and Stansifer, Ryan. “Implementations of Bidirectional
Reordering Algorithms.” 18th International Unicode Conference, April 2001.

190

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Au, Sunny. “Hello, World! A Guide For Transmitting Multilingual Electronic
Mail.” Proceedings of the 23rd ACM SIGUCCS conference on Winning the
networking game, October 1995, pp 35-39.

Becker, Joseph. “Arabic Word Processing.” Communications of the ACM,
July 1987, Volume 30, Number 7, pp 600-610.

Becker, Joseph. “Unicode 88.” Xerox Corporation, 1988.

Belge, Matt. “ The Next Step In Software Internationalization.” Interactions,
January 1995, Volume 2, Number 1, pp 21-25.

Bemer, R. W. “The American Standard Code For Information Interchange.”
Datamation, 9, No. 8, 32-36, August 1963, and ibid 9, No. 9, 39-44,
September 1963.

Bettels, Jurgen and Bishop, Avery F. “Unicode: A Universal Character Code.”
Digital Technical Journal, 1993, Number 3, Volume 5, pp 21-31.

Budge, E.A. Wallis. An Egyptian Hieroglyphic Dictionary. Dover
Publications. 1978.

Clark, James. “Minority WG Opinion on XML C14N and Unicode C14N.”
Available: http://Mmww19.w3.org/Archives/Public/www-xml -canonicalization-
comments/2000Jan/0000.html. Retrieved: January 21, 2001.

Cooper, Iver P. “ Action Stroke Dance Notation.” Available: http://
WwWw.geocites.con/Broadway/Sage/2806/. Retrieved: August 12, 2001.

Davis, Mark. et a. “ Creating Global Software: Text Handling and
Localization in Taligent's CommonPoint Application System.” I1BM Systems
Journal, 1996, Number 2, Volume 35, pp 227-242.

Davis, Mark. et d. “International Text In JDK 1.2.” Available: http://
www.ibm.convjava/education/inter national -text/. Retrieved: July 17, 2000.

191

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Democratic Peoples Republic of Korea. “DPRK Standard Korean Graphic
Character Set for Information Interchange.” KPS 9566-97, 1997.

Durst, Martin and Freytag, Asmus “Unicode in XML and Other Markup
Languages.” Available: http://www.unicode.org/unicode/reports/tr 20.
Retrieved: January 9, 2001.

Edberg, Peter. “Tutorial: Survey of Character Encodings.” 11th International
Unicode Conference, September 1997.

Erickson, Thomas D. “Working With Interface Metaphors.” in The Art of
Human Computer Interface Design. edited by Brenda Laurel, Addison-
Wesley. 1990.

European Computer Manufacturers Association. * 7-Bit Coded Character Set.”
ECMA-6, December 1991.

European Computer Manufacturers Association. “ Character Code Structure
and Extension Techniques.” ECMA-35, December 1994.

Fateman, Richard “Algol 60, alanguage, areport.” Available: http://
www.cs.ber kley.edu/~fateman/264/lec/notesl?.pdf. Retrieved: April 17, 2001.

Fernandes, Tony. Global Interface Design. AP Professional. 1995.

Flanagan, David. Java in a Nutshell. O’ Rellly and Associates. 1999.

Goundry, Norman “Why Unicode Won't Work On The Internet: Linguistic,
Political, and Technical Limitations.” Available: http://
www.hastingsresearch.con/net/04-unicode-limitations.shtml. Retrieved: June
5, 2001.

Graham, Tony. Unicode A Primer. M& T Books. 2000.

192

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Graham, Tony. “Changesin Unicode that led to changesin XML 1.0 Second
Edition.” Available: http://mww-106.ibm.con/devel operwor ks/library/u-
xml.html. Retrieved: January 20, 2001.

Grobgeld, Dov. “A Free Implementation of the Unicode Bidi Algorithm.”
Available: http://imagic.weizmann.ac.il/~dov/freesw/FriBidi/. Retrieved: July
17, 2000.

Hall, William S. “Internationalization in Windows NT, Part:1 Programming
with Unicode.” Microsoft Systems Journal, June 1994, pp 57-71.

Holmes, Neville. “ Toward Decent Text Encoding.” |EEE Computer, 1998,
Number 8, Volume 31, August, pp 108-109.

Homes, Nigel. “An Introduction to Pictoral Symbols.” in Designing Pictoral
Symbols, Watson-Guptill, 1990.

Horton, William. The Icon Book: Visual Symbols for Computer Systems and
Documentation. John Wiley & Sons. 1994.

Hughes, John. “Why Functional Programming Matters.” Computer Journal,
1989, Volume 32, Number 2, pp 98-107.

International Business Machines Corporation. National Language Design
Guide, NLDG Volume 2. IBM Canada Ltd. 1994.

International Business Machines Corporation. National Language Support
Bidi Guide, NLDG Volume 3. IBM Canada Ltd. 1995.

International Business Machines Corporation. MBCSDBCS Character Set
and Code Page System Architecture. IBM Japan Ltd. 1996.

International Business Machines Corporation. MBCS Cross System Guide:
\Volumel - Character Set and Code Page. IBM Japan Ltd. 1997.

193

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

International Business Machines Corporation. OS2 Warp Server for e-
business Keyboards and Code Pages. IBM. 1999.

International Business Machines Corporation. “IBM Classes for Unicode.”
Available: http://mwww.ibm.comvjava/tool inter national-classes/index.html.
Retrieved: July 17, 2000.

International Organization for Standardization. “1SO 7-bit Coded Character
Set for Information Interchange.” International Sandard I SO/IEC 646:1991,
1991.

International Organization for Standardization. “8-bit Single-Byte Coded
Graphic Character Sets - Part 1: Latin Alphabet No. 1.” International
Sandard 1SO/IEC 8859-1: 1998, 1998.

Ishida, Richard. “Non-Latin Writing Systems: Characteristics and Impact on
Multinational Product Design.” 18th International Unicode Conference, April
2001.

Jennings, Tom. “ASCII: American Standard Code for Information
Infiltration.” Available: http://fido.wps.com/texts/codes. Retrieved: January 9,
2001.

Jones, Scott. et. al. Digital Guide to Developing International User
Information. Digital Press. 1992.

Jones, Simon P, et a. “Report on the Programming Language Haskell 98, A
Non-strict, Purely Functional Language.” Yale University, Department of
Computer Science Tech Report YALEU/DCSRR-1106, February 1999.

Kano, Nadine. Developing International Software For W.Windows 95 and
Windows NT. Microsoft Press. 1995.

Kataoka, Tomoko I. et al. “Internationalized Text Manipulation Covering
Perso-Arabic Enhanced for Mongolian Scripts.” Lecture Notes in Computer
Science, 1998, Volume 1375, pp 305-318.

194

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Korpela, Jukka. “A Tutorial on Character Code Issues.” Available: http://
www.hut.fi/u/jkorpela/chars.html. Retrieved: January 9, 2001.

Lehtola, Aarno and Honkela, Timo. “A Framework for Global Software.”
Proceedings of the 1st ERCIM Workshop on ‘User Interfaces for All’, 1995.

Leisher, Mark. “The UCData Unicode Character Properties and Bidi
Algorithm Package.” Available: http://crl.nmsu.edu/~mleisher/ucdata.html.
Retrieved: July 17, 2000.

Lunde, Ken. CIKV Information Processing. O’ Reilly. 1999.

Lunde, Ken. “A New Standard For Japanese.” Multilingual Computing and
Technology, 2000, Number 35, Volume 11, Issue 7, pp 45-46.

Lunde, Ken. “CJKV Character Set and Encoding Devel opments.”
Multilingual Computing and Technology, 2001, Number 39, Volume 12, Issue
31 pp 53'55.

Lunde, Ken “What's New In Unicode 3.1.” Multilingual Computing and
Technology, 2001, Number 42, Volume 12, Issue 6, p 51.

Luong, Tuoc V. et. d. Internationalization Developing Software for Global
Markets. John Wiley and Sons Inc. 1995.

MacKay, Pierre. “ Typesetting Problem Scripts.” Byte Magazine, 1986,
Volume 11, Number 2, pp 201-218.

Madell, Tom. et. al. Developing and Localizing International Software.
Prentice Hall. 1994.

Maeda, Akira. “Studies on Multilingual Information Processing.” Doctor’s
Thesis Nara Institute of Science and Technology, September 18, 2000.

Math Forum, The. “Math Typesetting for the Internet.” Available: http://
forum.swarthmore.edu/typesetting/. Retrieved: August 13, 2001.

195

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Meyer, Dirk. “New Hong Kong Character Standard.” Multilingual Computing
and Technology, 2000, Number 30, Volume 11, Issue 2, pp 30-32.

Meyer, Dirk. “A New Chinese Character Set Standard.” Multilingual
Computing and Technology, 2001, Number 37, Volume 12, Issue 1, pp 63-68.

Meyer, Dirk. “Two New Chinese Character Standards: HK SCS & GB 18030-
2000.” 18th International Unicode Conference, April 2001.

Microsoft. “TrueType Open Font Specification.” version 1.0. July 1995.

Miller, Gary. Personal Correspondence. September 21, 2001.

Milo, Thomas. “ Creating Solutions for Arabic: A Case Study.” 18th
International Unicode Conference, April 2001.

Morrison, Michael. et al. XML Unleashed. Sams Publishing. 1999.

Mount Tahoma High School. “ Japanese Tutorial.” Available: http://
www.tacoma.k12.wa.us/school hs/mount_tahoma/dept/japanese/. Retrieved:
August 24, 2001.

Mudawwar, Muhammad F. “Multicode: A Truly Multilingual Approach to
Text Encoding.” |EEE Computer, 1997, Number 4, Volume 30, April, pp 37-
43.

O'Donnell, Sandra M. Programming for the World - A Guide to
Internationalization. Prentice Hall. 1994.

Ohta, Masataka. “On Plain Text.” International Symposium on Multilingual
Information Processing, Tsukuba Japan, March 25-26, 1996.

Omniglot. “Phonetic Transcription of Chinese.” Available:
http: www.omniglot.comywriting/chinese2.htm. Retrieved: August 30, 2001.

196

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Osawa, Noritaka. “EPICS: An Efficient, Programmable and Interchangeable
Code System for WWW.” 6th International World Wide Web Conference,
April, 1997.

Osawa, Noritaka. “A Multilingual Information Processing Infrastructure for
Global Digital Libraries: EPICIST.” Proceedings of the International
Symposium on Research, Development and Practicein Digital Libraries,
November, 1997.

Rossini, Stephane. Egyptian Hieroglyphics. Dover Publications. 1989.

Ruesch, Jurgen and Kees, Weldon. “ The Language of Identification and
Recognition.” in Nonverbal Communication, Berkeley: University of
California Press. 1970.

Sakamura, Ken. “The TAD Language Environment and Multilingual
Handling.” TRONWARE, 1992, VVolume 50, pp 49-57.

Salomon, Gitta. “New Usesfor Color.” in The Art of Human Computer
Interface Design. edited by Brenda Laurel, Addison-Wesley. 1990.

Scherer, Markus. “ GB 18030: A Mega-Codepage.” Available: http:www-
106.ibm.com/devel operwor ks/unicode/library/u-china.html. Retrieved:
August 31, 2001.

Schmitt, David A. International Programming for Microsoft Wndows.
Microsoft Press. 2000.

Searfoss, Glenn. JIS-Kanji Character Recognition. Van Nostrand Reinhold.
1994.

Smura, Edwin J. and Provan, Archie D. “Toward a New Beginning: The
Development of a Standard for Font and Character Encoding to Control
Electronic Document Interchange.” |EEE Transactions on Professional
Communication. 1987, Number 4, Volume PC-30, pp 259-264.

Stallman, Richard. GNU Emacs Manual. Free Software Foundation. 1999.

197

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Sun Microsystems. “Complex Text Layout Language Support in the Solaris
Operating Environment.” Available: http://www.sun.convsoftware/white-
paper s/wp-cttlanguage/. Retrieved: July 17, 2000.

Tanenbaum, Andrew S. Computer Networks. Prentice Hall. 1996.

Taylor, David. Global Software: Developing Applications for the
International Market. Springer-Verlag. 1992.

Turley, James. “Computing In Vietnamese.” Multilingual Computing and
Technology, 1998, Number 20, Volume 9, Issue 4, pp 25-29.

Turley, James. “Computing In Chinese Poses Unique Challenges.”
Multilingual Computing and Technology, 1999, Number 27, Volume 10, Issue
5, pp 30-33.

Turley, James. “ Computing in Chinese.” Multilingual Computing and
Technology, 2000, Number 28, Volume 10, Issue 6, pp 28-30.

Tuthill, Bill. and Smallberg, David. Creating Worldwide Software. Sun
Microsystems Press. 1997.

Unicode Consortium, The. The Unicode Sandard, Version 3.0. Addison-
Wesdley. 2000.

Unicode Consortium, The. “Unicode 3.0.1.” Available: http://
WwWw.uni code.org/uni code/standard/ver sions/Unicode3.0.1.html. Retrieved:
January 17, 2001.

Unicode Consortium, The. “Unicode 3.1.” Available: http://mww.unicode.org/
unicode/standard/versions/Unicode3.1.html. Retrieved: August 13, 2001.

Unicode Consortium, The. “Plane 14 Characters for Language Tags.”
Available: http://mww.unicode.org/reports/tr 7. Retrieved: January 9, 2001.

198

[100] Unicode Consortium, The. “Unicode Technical Report #9 - The Bidirectional
Algorithm.” Available: http://mwww.unicode.org/unicode/reports/tr9/tr 9-6.html
Retrieved: July 17, 2000.

[101] Unicode Consortium, The. “Unicode Standard Annex #15 - Unicode
Normalization Forms.” Available: http://www.unicode.org/unicode/reports/
tr15. Retrieved: January 9, 2001.

[102] Van Camp, David. “Unicode and Software Globalization.” Dr. Dobb’s
Journal, 1994, March, pp 46-50.

[103] Vine, Andrea. “ An Overview Of The Unicode Standard 2.1.” Multilingual
Computing and Technology, 1998, Number 23, Volume 10, Issue 1, pp 50-52.

[104] Vine, Andrea. “ Demystifying Character Sets.” Multilingual Computing and
Technology, 1999, Number 26, Volume 10, Issue 4, pp 48-52.

[105] Walters, Richard F. “Design of a Bitmapped Multilingual Workstation.” |EEE
Computer, 1990, Number 2, Volume 23, February, pp 33-41.

[106] Weider, Chris. et. a. “The Report of the IAB Character Set Workshop.” RFC
2130, April 1997.

[107] World Wide Web Consortium, The. “ Character Model for the World Wide
Web.” Available: http://www.w3.0org/TR/charmod. Retrieved April 10, 2001.

[108] X/Open. X/Open Internationalisation Guide. X/Open Company Ltd. 1992.

[109] Yau, Michael M. T. “ Supporting the Chinese, Japanese, and Korean
Languages in the OpenVMS Operating System.” Digital Technical Journal,
1993, Number 3, Volume 5, pp 63-79.

[110] Yergeau, F. “UTF-8 A Transformation Format of Unicode and I SO-10646.”
RFC 2044, October 1996.

199

[111] Yevgrashina, Lada. “ Azerbaijan Drops Cyrillic for Latin Script.” Reuters,
August 3, 2001.

200

Appendix A

-- Rule P2, P3 determine base level of text from the first strong
-- directional character

p2_3 :: [Attributed] -> Int

p2_3[=0

p2_3((_,L)xs)=0

p2_3 ((_,AL):xs)=1

p2_3((_,R):xs) =1

p2_3 (_:xs) = p2_3(xs)

-- Rules X2 - X9
x2_9 :: [Int] -> [Bidi] -> [Bidi] -> [Attributed] -> [Level]
x29___[1=1
x2_9 (I:Is) os es ((x,RLE):xs)
=x2_9 ((add I R):l:Is) (N:0s) (RLE:es) xs
x2_9 (I:Is) os es ((x,LRE):xs)
=x2_9 ((add I L):l:Is) (N:0s) (LRE:es) xs
x2_9 (I:Is) os es ((x,RLO):xs)
=x2_9 ((add I R):l:Is) (R:0s) (RLO:es) xs
x2_9 (I:Is) os es ((x,LRO):xs)
=x2_9 ((add I L):lIs) (L:0s) (LRO:es) xs
x2_91s os (e:es) ((x,PDF):xs)
| elem e [RLE,LRE,RLO,LRO] = x2_9 (tail Is) (tail os) es xs
x2_91s 0s es ((x,PDF):xs)
=x2 9ls 0s esxs
X2_91s 0s es ((x,y):xs)
| (head os) == N = ((head Is),x,y) : x2_9Is 0s es xs
| otherwise = ((head Is),x,(head 0s)) : x2_9 Is 0s es xs

-- Rule X10 group characters by level
x10 :: (Int, Int) -> [Level] -> Run
x10 (sor,eor) xs

| even sor && even eor = LL xs

| even sor && odd eor = LR xs

| odd sor && even eor = RL xs

| otherwise = RR xs

-- Process explicit characters X1 - X10

explicit :: Int -> [Attributed] -> [Run]

explicit | xs = zipWith x10 (runList levels | I) groups
where levels = (map (\x -> level (head X)) groups)
groups = groupBy levelEql (x2_9 [I][N][] xs)

201

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
a1
92
93
94

-- Rules W1 - W7
wl 7 :: [Level] -> Bidi -> Bidi -> [Level]
wi7f__=[
wl 7 ((xyL):xs) __=(xyL):(wl 7xsLL)
wl 7 ((xy,R):xs) = (Xy,R):(Wl 7xsRR)
wl 7 ((x,y,AL)xs) = (xy,R):(wl 7 xs ALR)
w1 7 ((x,y,AN):xs) dir _ = (x,y,AN):(w1_7 xs dir AN)
wl_7 ((x,Y.EN):xs) AL _ = (x,y,AN):(w1_7 xs AL AN)
wL_7 ((x,Y,EN):xs) L _ = (x,y,L):(wl_7 xs L EN)
wl_7 ((x,,.EN):xs) dir = (x,y,EN):(w1_7 xs dir EN)
wl_7 ((x,y,NSM):xs) L N = = (xyL):wl 7xsLL)
wl_7 ((x,y,NSM):xs) RN =(x,y,R):(wl_7 xS RR)
wl_7 ((x,y,NSM):xs) dir last = (x,y,last):(w1_7 xs dir last)
wl_7 ((a,b,ES):(x,y,EN):xs) dir EN =
(a,0,EN):(x,y,EN):(w1_7 xs dir EN)
wl_7 ((a,b,CS):(x,y,EN):xs) dir EN =
(a,0,EN):(x,y,EN):(w1_7 xs dir EN)
wl_7 ((a,b,CS):(x,y,EN):xs) AL AN =
(a,0,AN):(x,y,AN):(w1_7 xs AL AN)
wl_7 ((a,b,CS):(x,y,AN):xs) dir AN =
(a,0,AN):(x,y,AN):(w1_7 xs dir AN)
wl_7 ((x,y,ET):xs) dir EN = (x,y,EN):(w1_7 xs dir EN)
wl_7 ((x,y,2):xs) dir last
| z==ET && findEnd xs ET == EN && dir /= AL
= (X,Y.EN):(w1_7 xs dir EN)
| elem z [CS,ES,ET] = (x,y,ON):(w1_7 xs dir ON)
| otherwise = (x,y,2):(wl_7 xs dir 2)

-- Process a run of weak characters W1 - W7
weak :: Run -> Run

weak (LL xs) = LL (wl_7xsLN)

weak (LR xs) =LR (wl_7xsLN)

weak (RL xs) =RL (wl_7xsRN)

weak (RR xs) =RR (wl_7xsRN)

—_—

-- Rules N1 - N2
nl_2 :: [[Level]] -> Bidi -> Bidi -> Bidi -> [Level]
nl 2] __base=]]
nl 2 (x:xs) sor eor base
| isLeft x = x ++ (n1_2 xs L eor base)
| isRight x =x ++ (n1_2 xs R eor base)
| isNeutral x && sor == R && (dir xs eor) == R
= (map (newBidi R) x) ++ (n1_2 xs R eor base)
| isNeutral x && sor == L && (dir xs eor) ==
= (map (newBidi L) x) ++ (n1_2 xs L eor base)
| isNeutral x =
(map (newBidi base) x) ++ (n1_2 xs sor eor base)
| otherwise = x ++ (n1_2 xs sor eor base)

202

95 -- Process a run of neutral characters N1 - N2
96 neutral :: Run -> Run

97 neutral (LL xs) = LL (n1_2 (groupBy neutralEgl xs) L L L)
98 neutral (LR xs) = LR (n1_2 (groupBy neutralEqgl xs) LR L)
99 neutral (RL xs) = RL (n1_2 (groupBy neutralEgl xs) R L R)
100 neutral (RR xs) = RR (n1_2 (groupBy neutralEgl xs) R R R)
101

102

103 --Rulel1, 12

104 i1 2:: [[Level]] -> Bidi -> [Level]

105 i1.2[]_=]

106 i1_2 ((x:xs):ys) dir
107 |attribx ==R && dir ==

108 = (map (newLevel 1) (x:xs)) ++ (il_2ys L)
109 | elem (attrib x) [AN,EN] && dir ==

110 = (map (newLevel 2) (x:xs)) ++ (il_2ys L)
111 | elem (attrib x) [L,AN,EN] && dir ==

112 = (map (newLevel 1) (x:xs)) ++ (il_2 ys R)
113 i1_2 (x:xs) dir = x ++ (i1_2 xs dir)

114

115 -- Process a run of implicit characters 11 - 12

116 implicit :: Run -> Run

117 implicit (LL xs) = LL (i1_2 (groupBy bidiEg| xs) L)
118 implicit (LR xs) = LR (i1_2 (groupBy bidiEg| xs) L)
119 implicit (RL xs) = RL (i1_2 (groupBy bidiEqgl xs) R)
120 implicit (RR xs) = RR (i1_2 (groupBy bidiEqgl xs) R)
121

122 --Ifarunisodd (L) then reverse the characters
123 reverseRun :: [Level] -> [Level]

124 reverseRun [=]

125 reverseRun (x:xs)

126 | even (level x) = x:xs

127 | otherwise = reverse (x:xs)

128

129 reverseLevels :: [[Level]] -> [[Level]] -> Int -> [[Level]]
130 reverseLevelsw[] _=

131 reverseLevels w (x:xs) a = if (level (head X)) >=a
132 then reverselevels (x:w) xs a

133 else w ++ [x] ++ (reverseLevels [] xs a)

134

135 --Rule L2 Reorder

136 reorder:: [Run] -> Bidi -> [[Level]]

137 reorder xs base = foldl (reverseLevels []) runs levels
138 where

139 flat = concat (map toLevel xs)

140 runs = map reverseRun (groupBy levelEql flat)
141 levels = getLevels runs

142

143

203

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

-- Rule L4 Mirrors

mirror:: [Level] -> [Level]

mirror [] =]

mirror ((x,y,R):xs) = case getMirror y of
Nothing -> (x,y,R):(mirror xs)
Just a -> (x,a,R):(mirror xs)

mirror (X:xs) = x:(mirror xs)

logicalToDisplay :: [Attributed] -> [Utf-32]
logicalToDisplay attribs
=let baseLevel = p2_3 attribs in
let baseDir = (if odd baseLevel then R else L) in
let x = explicit baseLevel attribs in
let w = map weak x in
let n = map neutral w in
leti=map implicit n in
map character (mirror (concat (reorder i baseDir)))

204

Appendix B

-- Unicode metadata tags

dirL = map intToWord32 [0xe0044,0xe0049,0xe0052,0xe0002,0xe004c,0xe0001]
dirR = map intToWord32 [0xe0044,0xe004c,0xe0052,0xe0002,0xe0052,0xe0001]
dirEnd = map intToWord32 [0xe007f,0xe0044,0xe0049,0xe0052,0xe0001]

parL = map intToWord32 [0xe0050,0xe0041,0xe0052,0xe0002,0xe004c,0xe0001]
parR = map intToWord32 [0xe0050,0xe0041,0xe0052,0xe0002,0xe0052,0xe0001]
parEnd = map intToWord32 [0xe007f,0xe0050,0xe0041,0xe0052,0xe0001]

-- Mark the level with the bidi tags
tagLevel :: Int -> [Level] -> [Ucs4]
tagLevel =]
tagLevel level ((x,,2):xs)
| level /= x && even x
= dirL ++ (map character ((x,y,2):xs)) ++ dirEnd
| level /= x && odd x
=dirR ++ (map character ((x,y,z):xs)) ++ dirEnd
| otherwise
= map character ((x,y,2):xs)

-- Mark the run with the bidi tags

tagRun :: Int -> Run -> [Ucs4]

tagRun z (LL xs) = parL ++ concat (map (tagLevel z)
(groupBy levelEq| (mirror xs))) ++ parEnd

tagRun z (LR xs) = parL ++ concat (map (tagLevel z)
(groupBy levelEq| (mirror xs))) ++ parEnd

tagRun z (RL xs) = parR ++ concat (map (tagLevel z)
(groupBy levelEgl (mirror xs))) ++ parEnd

tagRun z (RR xs) = parR ++ concat (map (tagLevel z)
(groupBy levelEgl (mirror xs))) ++ parEnd

-- Insert mirror tags
mirror :: [Level] -> [Level]
mirror [] =]
mirror ((x,y,R):xs)

| isMirrored y

= (x,0xe004d,R):(x,0xe0049,R):(x,0xe0052,R):(x,y,R)
> mirror xs

| otherwise = (x,y;R) : (mirror xs)

mirror (X:xs) = X : (mirror xs)

205

Appendix C

import java.util.*;
import java.io.*;

public class UniMeta {
BufferedReader dataln;
String dirL = "\udb40\udc44\udb40\udc49\udb40\udc52\udb40\udc02\udb40\udcac” +

"\udb40\udc01";

dirR = "\udb40\udc44\udb40\udc49\udb40\udc52\udb40\udc02\udb40\udc52" +

"\udb40\udc01";

dirend = "\udb40\udc7fludb40\udc44\udb40\udc49\udb40\udc52\udb40\udc01”;
parL = “ludb40\udc50\udb40\udc41\udb40\udc52\udb40\udc02\udb40\udcdc” +

“\udb40\udc01”;

parR = “udb40\udc50\udb40\udc41\udb40lude52\udb40\udc02\udb40\ude52” +

“ludb40\udc01”;

parEnd = "\udb40\udc7fludb40\udc50\udb40\udc41\udb40lude52\udb40\udc01”,

mirror = "\udb40\udc4d\udb40\udc49\udb40\udc52";

String IBDO = "<bdo dir=\"{tr\">",
rBDO = "<hdo dir=\"rt\">",
IP ="<p dir=\"[tr\">",
rP ="<p dir=\"rth\">",
endP ="</p>",
endBDO ="</bdo>";
/I Open the input file
public UniMeta(String in) {
try {
FilelnputStream fileln = new FilelnputStream(in);
InputStreamReader str =
new InputStreamReader((fileln, "UTF8");
dataln = new BufferedReader(str);
}
catch (Exception e) {
System.out.printin("Error opening file " + in);
return;
}

}
/' Replace the unicode meta tags with HTML tags

private String replace(String in) {
StringBuffer out = new StringBuffer();
inti=0;
while(i < in.length()) {
if (in.startsWith(parL, i) {
out.append(IP+IBDO);
i += parL.length();
}

206

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
a1
92
93
94

else if (in.startsWith(parR, i) {
out.append(rP+rBDO);
i += parR.length();

}

else if (in.startsWith(dirL, i) {
out.append(IBDO);
i += dirL.length();

else if (in.startsWith(dirR, i)) {
out.append(rBDO);
i +=dirR.length();

}

else if (in.startsWith(dirend, i) {
out.append(endBDO);
i += dirEnd.length();

}
else if (in.startsWith(parEnd, i)) {
out.append(endBDO+endP);
i += parEnd.length();

else if (in.startsWith(mirror, i)) {
i += mirror.length();
1
else {
out.append(in.charAt(i));
++H;
1
1
return (out.toString());

}

/I Process the input stream, generate output to stdio

public void parse() {
String in = null;
System.out.printin("<htmI>");
try {
while ((in = dataln.readLine()) = null) {
System.out.printin(replace(in));
}
}

catch(Exception €) {
System.out.printin("Error parsing file");
return;

}

System.out.println("</htm/>");

207

95
96
97
98
99

public static void main(String[] args) {

}

}

UniMeta input = new UniMeta(args[0]);
input.parse();

208

O©CoOoO~NOOOUOTPA,WNPE

Appendix D

module Metacode where

import Unicode
import Word

type MetaChar = Ucs4

listFilter :: Eq a => (a -> Bool) -> [a] -> [4]
listFilter _ [] =[]
listFilter f (x:xs) = if f x then listFilter f xs else x:(listFilter f xs)

listEqual :: Eq a => [a] -> [a] -> Bool

listEqual [] [] = True

listEqual [] _ = False

listEqual _[] = False

listEqual (x:xs) (y:ys) = if x ==y then listEqual xs ys else False

isMetadata :: MetaChar -> Bool
isMetadata x
| x >= 0xe0000 && x <= 0xe007f = True
| otherwise = False

byteEquivalent :: [Word8] -> [Word8] -> Bool
byteEquivalent xs ys = listEqual xs ys

codePointEquivalent :: [MetaChar] -> [MetaChar] -> Bool
codePointEquivalent xs ys = listEqual xs ys

contentEquivalent :; [MetaChar] -> [MetaChar] -> Bool
contentEquivalent xs ys
= let fxs = listFilter isMetadata xs
fys = listFilter isMetadata ys in
codePointEquivalent fxs fys

209

