

Software Design

Based on
Operational Modes

by

Alan Albert Jorgensen

Bachelor of Science
Electrical Engineering
University of Arizona

1963

Master of Science
Computer Science

Arizona State University
1990

A dissertation submitted to the Graduate School of
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
December, 1999

© Copyright 1999 Alan Albert Jorgensen
All Rights Reserved

The author grants permission to make single copies _________________________

We the undersigned committee hereby recommend that the attached document be
accepted as fulfilling in part the requirements for the degree of Doctor of
Philosophy of Computer Science.

�Software Design Based on Operational Modes,�
a dissertation by Alan Albert Jorgensen.

__
James A. Whittaker, Ph.D.
Associate Professor and Chairman, Software Engineering
Dissertation Advisor

__
William D. Shoaff, Ph.D.
Associate Professor and Computer Science Chair

__
Muzaffar A. Shaikh, Ph.D.
Professor, Management Science and Engineering Management,
School of Business

__
Walter P. Bond, Jr., Ph.D.
Associate Professor of Computer Science

__
Frederick B. Buoni, Ph.D.
Professor Emeritus, College of Engineering

 J. Richard Newman, Ph.D.
 Dean, College of Engineering

 iii

Abstract

Title: Software Design Based on Operational Modes

Author: Alan Albert Jorgensen

Committee Chair: James A. Whittaker, Ph.D.

The use of software is ubiquitous despite its reputation for low reliability.

This dissertation experimentally verifies this reputation and then proposes changes

to the development process to prevent certain classes of failures. I begin by

presenting numerous examples of software failures from modern, professionally

tested, software products. The root cause of each of these failures can be traced to

incorrect partitioning of internally stored data.

I propose a new design technique based on a recently developed testing

concept called �operational modes.� Operational modes allow correct

decomposition (abstraction) of software states defined by storage constraints and

describe the cause of a large class of software failures. Operational mode design is

influenced by four constraining software features: input, output, computation, and

data storage. From this understanding, four classifications of failure are derived

from this improved definition of operational modes: 1) improperly constrained

input, 2) improperly constrained output, 3) improperly constrained computation,

and 4) improperly constrained internal data. Illustrative examples of these failure

classes are presented from a number of published programs.

 iv

I propose changes to the software design process to eliminate these four

identified categories of defects by proper identification and implementation of

system constraints, i.e., operational modes that correctly partition program data.

This new theory provides developers a methodical mechanism to prevent a large

class of software faults and provides software testers a roadmap to the broad class

of software behaviors that must be tested.

I demonstrate the application of this design process modification with a

small example that, though proven to be correct in the literature, fails due to lack of

proper constraint checking. The resulting example program no longer contains

these defects as a direct result of the improvements to the design process. The

process is further verified by redesigning an example program from a modern

software development text. Not only does the technique correct a defect in that

example, but results in a function that is now clearly specified and eliminates the

need to rely on �clever� design to achieve the desired results.

 v

Table of Contents

List of Keywords...ix

List of Figures ..x

List of Tables ..xi

Acknowledgement... xii

Dedication ...xiv

Chapter 1. Software Fails...1

1.1 Software Defects ..2

1.2 Defects in Released Software ..5

1.3 Seeking a Solution ...8

Chapter 2. Why Software Fails..10

2.1 Software Systems as State Machines ...10

2.2 Operational Modes Decompose States ..14

2.3 Operational Mode Values Partition Stored Data ...17

2.4 Partition Constraints...22

2.4.1 Improperly Constrained Input ..22

2.4.2 Improperly Constrained Output ...26

2.4.3 Improperly Constrained Computation..28

2.4.4 Improperly Constrained Stored Data ...30

2.5 Properties of Constraints..33

2.5.1 Integer and Real ...34

 vi

2.5.2 Enumerations and Characters...35

2.5.3 Pointers...36

2.5.4 Arrays...36

2.5.5 Complex Structures..37

2.6 Testing Constraints ..40

2.7 Designing Constraints ..40

Chapter 3. Constraint Design and State Modeling ..42

3.1 References to Constraint Design..42

3.2 States and State Modeling..45

Chapter 4. Constraint Specification ...48

4.1 Requirements Analysis ..51

4.1.1 System Context Diagram ...52

4.1.2 Transaction Analysis..55

4.1.3 Preliminary Data Dictionary ..61

4.1.4 Preliminary Operational Mode Design ..67

4.1.5 Requirements Specification ...68

Chapter 5. Constraint Design...69

5.1 System Decomposition...70

5.2 Specification of Procedure ...73

5.3 Final Data Dictionary...75

5.4 Operational Modes...81

 vii

5.5 Design Methodology Summary ...83

5.6 Implementation ..83

5.6.1 Validation...85

5.6.2 Test Verification...86

5.6.3 Scaleability...88

Chapter 6. Case Study: Kernighan and Pike Markov Chain Algorithm................89

6.1 System Context Diagram ...91

6.2 Transaction Analysis..92

6.3 System Context Diagram Revisited ...96

6.4 Data Structures and Decomposition...97

6.5 Implementation ..110

Summary ..111

Conclusions..113

Future Work ...115

References ..119

Appendix A � Calculator Anomalies ...136

Appendix B � Defects in Production Applications..145

Appendix C � Defects in Software Development Texts ..148

Appendix D � Partitions that Create Operational Modes153

Operational Mode for Integer Division .. 153

Dynamic Partitions, Integer Addition Operational Mode 155

 viii

Assignment Operational Mode... 156

Input and Output Operational Modes ... 157

Appendix E � Running Average Program ...159

Appendix F � Running Average Program Test..174

Appendix G � Running Average Program Test Verification.................................189

Appendix H � Markov Chain Case Study Code ..228

 ix

List of Keywords

Software Defects

Software Design

Software Requirements Analysis

Operational Mode

Model Based Software Testing

State Machine

State Model

Software Constraint Design

 x

List of Figures

Figure 1 -- Required and Implemented States ...12

Figure 2 -- A Broken Output Constraint from Microsoft Money 9827

Figure 3: -- Microsoft Excel 97 Correctly Constrains Input30

Figure 4: -- Microsoft Excel 97 Crashes Due to Corrupt Data31

Figure 5 -- Operational Mode Design Data Flow ..49

Figure 6 -- Running Average System Context Diagram..54

Figure 7 -- Markov-Chain Random Text Generator System Context Diagram A...92

Figure 8 -- Markov-Chain Random Text Generator System Context Diagram B ...96

 xi

List of Tables

Table 1 -- Summary of Constraints on Data Types ...34

Table 2 -- Running Average Transaction Analysis..60

Table 3 -- Running Average Preliminary Data Dictionary64

Table 4 -- Final Data Dictionary ..77

Table 5 -- Markov Algorithm Transaction Analysis..94

Table 6 -- Markov Chain Preliminary Data Dictionary ...100

Table 7 -- Markov Chain Final Data Dictionary..104

Table 8 -- Keyboard to Mouse Click Equivalence...136

Table 9 -- Production Software Defects...145

 xii

Acknowledgement

The members of the Spring 1999 semester class of Software Testing

Methods contributed to this work by establishing that software defects are

ubiquitous and can be located with a minimum of software test training. In

particular, Mazin Al-Shuaili, Steven Atkins, Jeremy Babb, Cibel Castillo, Rahul

Chaturvedi, Arun Chitrapu, Adam Duccini, John Grant, Pi-Yu Lee, Roby Matthew,

Kay Michel, Florence Mottay, Luke Nowak, Luis Rivera, Giovanna Giovanna

Scaffidi, Keyur Shah, Brian Shirey, and Sharma Vanterpool provided well

documented results of their work.

Florence Mottay collected and organized the material that appears in

Appendix B and Appendix C. In addition she expanded, improved, and completed

the work in Table 2, Table 3, and Table 4 which contains detailed requirements and

design information for the running average example of the improved design

process. Thank you, Florence. This is only the beginning of your contribution to

this field of endeavor.

I particularly wish to thank those who provided detailed critical reviews:

Jane Davis, Dr. William (Bill) Shoaff, Dr. Shirley (Annie) Becker, Edwin Mallette,

Tom Engler, and Dr. James Whittaker.

My committee provided support and encouragement. I thank them for the

time, energy, and good advice: Dr. William D. Shoaff, Dr. Muzaffar A. Shaikh,

Dr. Frederick B. Buoni, and Dr. Walter P. Bond.

 xiii

I hold a very special appreciation for my committee chairman, Dr. James A.

Whittaker, who has read and reread this dissertation and commented with

consummate skill as a wordsmith as well as providing encouragement and technical

insight. His dedication to all of his students and to this one in particular is

remarkable. Thank you, James.

 xiv

Dedication

This work is dedicated, with love, to my parents:

Ione Towner Jorgensen

Albert Henry Jorgensen

whose dedication to me has never wavered.

This is for you.

 1

Chapter 1. Software Fails

Software development, like many other creative endeavors, is prone to

failure. Even with today�s best software development techniques, well-designed

and thoroughly tested software sometimes, and even frequently, behaves

improperly due to defects introduced during development. Software development

is now necessarily a craft but must become an engineering discipline before

software consistently produces reliable behavior. This dissertation presents

advances in software development technology in support of the transition toward

engineering rigor.

There is much to do before software development can become an

engineering discipline. My focus is to identify and correct a particular class of

failures: those that escape the capabilities of today's test and development

technology. This might not make software perfect, but it is an important step in the

software development maturation process. Refinement of the design process starts

by determining the root cause of design failures. Not only should we correct the

design flaws, but we must also correct the method by which the product was

designed [Paulk, et al., 1993]. We begin, then, by discussing the nature and

consequence of software defects. Examination of defects and searching for

common causes will lead to a better design process.

 2

1.1 Software Defects

Public concern over the presence of defects in software has deepened in

recent years due to the proliferation of personal computers and high-profile defects

such as the so-called �Y2K bug.� Moreover, as the number of people using

computers steadily increases, the impact of software defects on the performance of

our day-to-day routine is potentially enormous. Defects cause down time and force

rework when data is lost. In addition to these disruptions and frustrations, software

defects have the potential for significant loss of life, wealth, and property. Our

safety and our security depend on the correct operation of software.

Peterson [Peterson, 1995] describes the real and potential impact of

software defects on those who are unaware that their lives depend on the correct

operation of computer programs. Defective software can shred luggage [Glass,

1998], over radiate cancer victims [Leveson, 1995], and destroy rockets with their

payload [Lions, 1996, Baber, 1997]. The importance of the quality of software and

the effect of that software on our daily lives cannot be overstated. We use software

unknowingly every day; in our microwaves, in our automobiles, and at the bank

teller. How frequently must we hear, �I'm sorry, the computer is down right now?�

In this year, 1999, there is considerable public concern and discussion of the

so-called �Y2K� bug. Legacy software, developed some time in the past and with

older languages and development techniques, frequently represents the year with a

two-digit number. After 1999, the representation will transition from �99� to �00.�

 3

This representation will be interpreted as the year 1900 instead of the year 2000.

Interest rates, programmed delay periods, and many other time dependent functions

will behave irrationally. Understanding the reasons that software fails is of deep

concern to software professionals and the general public, even when they are not

aware of how dependent they are on the correct operation of software.

The specific definition of software failure is equivocal. Definitions range

from undesirable operation to catastrophe. We will work from IEEE definitions as

follows:

Failure: The inability of a system or component to

perform its required functions within specified

performance requirements [IEEE, 1991].

Defect: A product anomaly. Examples include such things

as (1) omissions and imperfections found during early

life cycle phases and (2) faults contained in software

sufficiently mature for test or operation. ... [IEEE,

1994]

Anomaly: Any condition that deviates from expectations

based on requirements specifications, design documents,

user documents, standards, etc., or from someone's

perceptions or experiences.

Anomalies may be found during, but not limited to, the

review, test, analysis, compilation, or use of software

products or applicable documentation. [IEEE, 1994]

Fault: Any change in state of an item that is

considered to be anomalous and may warrant some type of

corrective action. Examples of faults include · · ·,

 4

out-of-limits conditions on sensor values, · · ·,

software exceptions (e.g., divide by zero, file not

found), rejected commands, measured performance values

outside of commanded or expected values, an incorrect

step, process, or data definition in a computer

program, etc. Faults are preliminary indications that a

failure may have occurred [IEEE, 1991].

Within these definitions there are some important distinctions to be made.

In particular, there is a clear difference between the symptom as viewed by an

observer of the system, and the erroneous code that lead to the symptom.

However, these definitions do not clearly indicate the lack of one-to-one mapping

of symptoms to �anomalies.� A single defect in the software may result in a

multitude of varying symptoms (and vice versa).

Modern software is highly vulnerable to failure. I demonstrate below that

�fully tested� retail software can be forced into repeatable failure situations. I

show that software quality advocates have �proven� buggy programs to be

�correct� without exposing embedded defects. There is a common characterization

for these defects and simple training in that characterization allows novice software

testers to quickly uncover defects not found by experienced testers after months or

years of accumulated testing and use.

 5

1.2 Defects in Released Software

My research in this area began simply enough while playing with the

calculator program released with Microsoft® Windows® 95. I wondered if it were

possible to put the calculator into a state such that it would calculate incorrect

results. I began by investigating limiting or �boundary� values, such as the largest

number that could be entered (9999999999999e+289). I found, however, that this

number could be increased computationally. So I searched for the largest value

that could be computed (1.797693134862e+308). I obtained this number by taking

the inverse log of 308.2547155599. Starting with this value (and other apparent

limitations of the calculator), I was able to achieve numerous erroneous results

such as the following:

• A number can be computed that cannot be divided by two.

1.797693134862e+308 divided by 2 results in the error message,

�Result is too large.� Apparently there is a check on the maximum

value computed for some functions but not for others, thus allowing a

value to be computed and stored that is larger than this (unspecified)

allowable limit.

• The value 1.797693134862e+308 can be copied to the clipboard but

cannot be pasted back into calculator. Values can be calculated that

cannot be reentered. It seems reasonable to assume that if the calculator

 6

prevents the user from entering a value, it should also prevent the same

value from being generated by calculation.

Appendix A contains a list of fifteen such input sequences that cause

anomalies in the calculator from Windows® 95.

Similar, yet different, defects are found in Windows® 98 and Windows® NT

calculators. One such problem in NT calculator, for instance, causes the program

to terminate and abruptly close its window. This same sequence performed in

Windows® 95 or Windows® 98 calculators does not cause the program to abort.

Apparently there are significant differences in design between the various versions

of the calculator. Windows® 98, for instance, uses a significantly different internal

representation of floating point numbers and can represent extremely large numbers

that require a significant amount of time to compute.

These defects appear harmless, but it isn't a large stretch of the imagination

to see them leading to more serious problems when they occur in more important

applications. However, my interest in these failures is that they give insight into

the very nature of software failure and from this insight we can derive techniques to

improve the overall quality of software intensive systems.

Software failures do have a direct impact on our everyday lives. During the

writing of this dissertation, Microsoft® Word® 97 (Service Release 1) produced

many persistent anomalies that hindered my productivity. Some were merely

inconvenient but some caused the word processor application to fail

 7

catastrophically, such as the following sequence: Select Outline View, Select Level

1 outline display, expand a single level by double clicking on the �+� in the outline

view.

In order to study this failure phenomenon closely, we conducted a study to

systematically investigate a number of software products for potential defects. On

the first day of the Spring 1999 class in Software Testing Methods at the Florida

Institute of Technology, the students were given a thirty-minute synopsis of this

chapter and a preliminary theory on the causes of software defects. The challenge

to these students, who were previously untrained in software testing, was to

identify repeatable anomalies in both released software and published source code.

The students had only two days to complete this assignment. We obtained the

following results:

• Every student submitted unique and successful results.

• Defective published code was found in both programming and software

engineering texts.

• Defects were found in a variety of software from a variety of vendors,

including, but not limited to, operating systems, web browsers, and desktop

applications.

Twenty six defects were found in sixteen software packages and nineteen code

defects were found in eighteen different programming texts. A table summarizing

the application defects appears in Appendix B and the summary of the published

 8

code findings appears in Appendix C. These examples of defects were found in

commercially available products that should be presumed to be of the highest

quality available, reviewed and tested by experts in the field, and then subject to

years of use in the field.

The fact that untrained students could so easily find failures outside the

capability of the current testing methods of software suppliers indicates that

something is fundamentally wrong with the way software is developed and tested.

1.3 Seeking a Solution

This dissertation studies this very problem and presents a solution for

preventing large classes of software defects introduced during development. (The

Software Engineering Institute at Carnegie Mellon University, in its Capability

Maturity Model, recommends that knowledge of defects be used to improve the

software development process [Paulk, et al., 1993]. When I attempted to insert this

parenthetical statement as a footnote, the word processor inserted the footnote

outside the lower margin.)

I take the following approach. I 1) search for software failures, 2) study the

cause and effect, searching for root causes, 3) classify the causes of defects, 4) test

this classification theory in a software testing laboratory, and 5) discuss possible

changes to the software design process that will alleviate these defects.

 9

In Chapter 2, I perform root cause analysis of the software failures and

present a theory about why software fails. Chapter 3 describes what needs to be

done to fix this problem with reference to why other methods have not corrected

the problem. Chapter 4 describes how to modify requirements definition to capture

the information necessary to correct the problem. An example problem is

introduced to illustrate the methodology. Chapter 5 continues with the impact on

design techniques; the example is continued and completed. Chapter 6 is a case

study. A well-crafted programming example from a modern program development

text is examined, found defective and inadequately specified, and then re-designed

to be of higher quality and more completely specified.

Appendices provide detailed implementation and test details.

 10

Chapter 2. Why Software Fails

Two basic testing techniques were employed to identify the anomalies

described in the previous chapter. The first technique was to stress test software

using extreme values that might not have been anticipated by the developer. The

second technique was by model based testing [Whittaker, 1997b]. Using either

technique, failures could be attributed to erroneous state transitions. This

realization led to a careful study of the relationship between state machines and

software failures. The search for the basic cause of software defects begins by

examining the fundamental nature of software systems when viewed as a state

machine.

2.1 Software Systems as State Machines

The applicability of state machine modeling to mechanical computation

dates back to the work of Mealy [Mealy, 1955] and Moore [Moore, 1956] and

persists to modern software analysis techniques [Mills, et al., 1990, Rumbaugh, et

al., 1999]. Introducing state design into software development process began in

earnest in the late 1980�s with the advent of the cleanroom software engineering

methodology [Mills, et al., 1987] and the introduction of the State Transition

Diagram by Yourdon [Yourdon, 1989].

A deterministic finite automata (DFA) is a state machine that may be used

to model many characteristics of a software program. Mathematically, a DFA is

 11

the quintuple, M = (Q, Σ, δ, q0, F) where M is the machine, Q is a finite set of

states, Σ is a finite set of inputs commonly called the �alphabet,� δ is the transition

function that maps Q x Σ to Q,, q0 is one particular element of Q identified as the

initial or stating state, and F ⊆ Q is the set of final or terminating states [Sudkamp,

1988]. The DFA can be viewed as a directed graph where the nodes are the states

and the labeled edges are the transitions corresponding to inputs.

When taking this state model view of software, a different definition of

software failure suggests itself: �The machine makes a transition to an unspecified

state.� From this definition of software failure a software defect may be defined as:

�Code, that for some input, causes an unspecified state transition or fails to reach a

required state.�

 12

Required States

Implemented
 States

Missing
 States

Correct
 States

Error States

R

I

All Possible Software States

Figure 1 -- Required and Implemented States

Figure 1 is a Venn diagram of the software state space showing two subsets

of states. One subset is the states fulfilling the needs of the system (R) and the

other (I) is the subset of states actually implemented in the developed product. The

subset M = R ∩ ~ I are those states that should have been implemented but were not;

C = R ∩ I is the subset correctly implemented; E = ~ R ∩ I are the states implemented

that should not have been. When developers test their own product by testing only

the states they know they implemented, then only the states in C would be tested.

Using the standard testing practices of today, when test engineers test states against

requirements, then only those states in R would be tested. The difficult and subtle

software problems occur in the subset defined by E. These are the states reached

by improper state transitions. Software reaching these states behaves in an

 13

unpredictable manner. These are the class of failures that are the focus of this

work.

For a computer program to behave reliably, the states of the program and

the transitions between them must be clearly and completely defined and

implemented in the code. Therein lies a problem, however, for even simple

programs can have a vast number of states. Consider a 32 megabyte computer:

there are approximately 228 bits of memory. This means that the computer could

have 2 282 states. In fact, a program with only ten 32-bit variables can be in 2320

different states (210*32 different possible value combinations), more than the

estimated number of atomic particles in the universe [Suber, 1998]. Clearly, a

mechanism is needed to simplify this complexity.

This simplification can be accomplished by determining some property of

states that cause certain states to be equivalent in some sense, and identify the

states within these �equivalence classes� as a single state [Hopcroft & Ullman,

1979].

One method of defining equivalence classes is to base states on input

sequences. This method of identifying states has been described as a stimulus

history [Mills, et al., 1987] or input history [Prowell, 1996]. A state is identified by

the set of input sequences that reach that state from the starting state. Input

sequences reaching a particular state are said to belong to the same equivalence

 14

class. Since the number of possible input sequences is infinite, determining the

states of a system by this method is problematic. One of the problems is the

determination of the equivalence of input sequences. If input and input sequences

cannot be found to be equivalent, new states are identified and a proliferation of

states occurs. This is known as �state explosion.� Another problem is

completeness; how can it be determined that all of the states (and corresponding

input sequences) have been identified? Though theoretically useful, representing

software states as input sequences is impractical and a better representation is

required. Fortunately there is a relatively new concept for representing states

called �operational modes.�

2.2 Operational Modes Decompose States

Recent developments in software system testing exercise state transitions

and detect invalid states. This work, [Whittaker, 1997b], developed the concept of

an �operational mode� that functionally decomposes (abstracts) states. Operational

modes provide a mechanism to encapsulate and describe state complexity. By

expressing states as the cross product of operational modes and eliminating

impossible states, the number of distinct states can be reduced, alleviating the state

explosion problem.

Operational modes are not a new feature of software but rather a different

way to view the decomposition of states. All software has operational modes but

 15

the implementation of these modes has historically been left to chance. When used

for testing, operational modes have been extracted by reverse engineering.

Whittaker provides the following definition of an operational mode:

“An operational mode is a formal characterization

(specifically a set) of the status of one or more

internal data objects that affect system behavior.”

[Whittaker, 1997b, p. 120].

A similar concept is described by Heitmeyer, Kirby, and Labaw in

[Heitmeyer, et al., 1997]:

“A mode class [operational mode] is a partitioning of

the system states. Each equivalence class is called a

system mode (or simply mode) [operational mode value].”

Using these definitions we can explain the failures described in the first

section in terms of the operational modes. A calculator failure occurred, for

example, when an attempt was made to divide a particular result by two and the

result was too large. The divide-by-two calculator failure occurs because there are

operational modes associated with the prior result and with the value entered such

that the calculator will refuse to compute the division result. A state view of the

calculator can be very complex. This complexity can be simplified, however, by

considering only specific portions of the state: those having to do with the previous

result, the value entered, and the operator entered. When the operator entered is

divide, and the previous result divided by the value entered exceeds some particular

value, the calculator is in a state such that depressing the equal key (or some other

 16

function that causes the divide to occur), will produce an error message instead of

computing the result. There are many different states of the calculator where this is

true. But by considering only particular characteristics of the state, we can

determine the behavior of the calculator for a particular input. These

characteristics of the state are some of the operational modes of the calculator.

From the description of the problem, we can define the relevant operational

modes of the system as, the last operation key entered, CurrentOp, the result from a

prior calculation, PriorResult, and the last value entered, EntryValue. Each of

these operational characteristics may take on many values and the domain of these

variables is a set as follows: Domain(CurrentOp) = { �,+,*,-, /, �},

Domain(PriorResult) = { � ,0,1, (PreviousResult > SomeMaximum /

ValueEntered), �}, Domain(EntryValue) = { �,0,1, ValueEnteredTooSmall, � }.

These operational characteristic variables are some of the operational modes of the

calculator system. When these operational modes have the particular values,

CurrentOp = /, PriorResult = (PreviousResult > SomeMaximum / ValueEntered),

and EntryValue = ValueEnteredTooSmall, the equal key will cause the error

message to appear. Note that in some cases a single operational mode value may

represent many values in the calculator, such as

EntryValue = ValueEnteredTooSmall. This operational mode value is uniquely

defined by the partitioning of the values that can be entered.

 17

A similar situation occurs for the copy-paste failure. The operational mode

for the contents of the clipboard can assume values that will cause paste to operate

incorrectly. There is an operational mode associated with the copy buffer and an

operational mode value corresponding to a numeric string that cannot be pasted

into the calculator. Such a string can be stored into the copy buffer from the

calculator output and therefore the calculator enter a state wherein it cannot accept

paste input correctly.

2.3 Operational Mode Values Partition Stored Data

Normally, an operational mode is associated with a single persistent storage

element. Persistent storage is memory referenced by a software component

between any two successive inputs. A single persistent storage element contains a

set of values (though it may range from a single bit to multiple, disjoint words of

main memory). Temporary storage, on the other hand, that is reinitialized as a

result of input is not independent from the input and will not cause the system to

behave differently at the next input and therefore need not be considered part of the

state of the system. This dissertation extends and formalizes the definition of an

operational mode value by identifying it as a partitioned set of persistent storage

values as follows:

An operational mode value is an exclusive subset of instantaneous values of

elements in persistent storage. An operational mode is a set of operational mode

 18

values. Note the distinction between an operational mode value and a stored value

that defines the operational mode. The operational mode value is an abstraction of

one or more stored values. The operational mode value combines in a single

variable the values of elements of persistent store that are equivalent in the sense

that the variation of values does not affect the behavior of the system.

Mathematically we can describe the domain of an operational mode as a set of

operational mode values and each operational mode value as a set of storage values

as follows:

Domain(M) = {V | V = {V1, V2, V3� Vi�Vn}}

Domain(Vi)= {Xi | Xi = {xi1, xi2, xi3�ximi}}

Where M is an operational mode, V is the set of operational mode values, V1,

V2, V3�Vn; n is the number of operational mode values in the domain of M; Vi is the

ith operational mode value Xi where Xi is the specific set of storage values, xi1, xi2,

xi3�ximi, and mi is the number of storage values in this ith operational mode value.

The relation, Xi = {xi1, xi2, xi3�ximi}, determines the set of storage values belonging to

the operational mode value. (This relation could also appear as a partitioning, such

as Xi = {x |y ≤ x ≤ z). Operational mode values are mutually exclusive, i.e.,

∀i ∀j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ≠ j, and Vi ∩ Vj = ∅

The storage values that define an operational mode value are equivalent in

the sense described by Whittaker: e.g., storage values are in the same equivalence

 19

class if there is no difference in externally observable system behavior associated

with the values within that class.

As an example, we might define an operational mode, Count, as

Domain(Count) = {New, In Range, Max, Invalid} where Count is an operational mode

that is associated with a storage location containing the value designated by the

variable name, �C.� Thus M is Count, V1 = New, V2 = In Range, V3 = Max, and V4 =

Invalid. The operational mode values may then be defined as:

Count = New iff C = 0; Thus X1 = {0}

Count = In Range iff C > 0 and C < Maximum Value;

X2 = {x | 0 < x < Maximum Value}

Count = Max iff C = Maximum Value;

Count = Invalid iff C < 0 OR C > Maximum Value.

The set of operational mode values encompasses the complete domain of

the storage value(s) represented by the operational mode.

Each operational mode value is defined by one or more partitions of stored

data. For example, a partitioning of x could be {x < 0, x ≥ 0}. If this partitioning

describes equivalence classes on x, then these partitions represent operational mode

values.

The partitions that define operational mode values need not be constant,

however, and may be dependent on variable conditions. We accommodate this

with the following definitions: A static partition is a relation between the stored

value and a constant. A dynamic partition is a relation between the stored value

 20

and a function including at least one independent variable. This means that the set

of memory values in an operational mode value may change over time. The

example above is a static partitioning. If x were partitioned as {x < z, x ≥ z}, then

the partitions may still define equivalence classes, but the values in each class

depend on the variable value, z. This is an example of a dynamic partition.

As a practical matter, partitions may be described based on the nature of the

limiting values of stored data. The partitioning may take place naturally due to the

finite nature of computers or the limitations may be imposed by requirements. I

define the partitions imposed by the physical computation environment as natural

partitions and those imposed by requirements as artificial partitions. This is an

important distinction because the bounds on a problem solution may be imposed in

such a way that requirements may not be met.

Another more rigorous example is the operational mode for an arbitrary

integer variable in persistent storage. A signed, twos-complement 16-bit integer

may be represented by the following operational mode and associated operational

mode values:

Domain(INT) = {Min, Negative, Zero, Positive, Max}

Where:

Min = {-32768},

Negative = {-32767 .. �1} = {x | {-32767 ≤ x ≤ �1},

Zero = { 0 } = {x | x = 0},

 21

Positive = { 1 .. 32766 } = {x | 1 ≤ x ≤ 32766},

Max = {32767},

-32768 is the smallest 16-bit twos-complement integer, and

32767 is the largest 16-bit twos-complement integer.

The partition, P = { x = -32768, -32767 ≤ x ≤ �1, x = 0, 1 ≤ x ≤ 32766, x =

32767}, completely defines the operational mode values and hence the operational

mode, INT. The constraints defining the operational mode values Min and Max are

natural since they define the limiting properties of 16-bit twos-complement

integers. All of these partitions are static because all of the values in the partitions

are constants. Appendix D contains additional examples of operational modes

demonstrating artificial and dynamic partitions. In addition, these examples also

demonstrate an important characteristic of the constraints that partition operational

mode values. The underlying influence on the partitions determining operational

mode values are the constraints imposed by input, output, storage, and

computation. Constraints of all four types may be imposed by user requirements

(artificial constraints) or they may be imposed by the characteristics of computation

on a finite device, the computer (natural constraints). The key issue is that all

input, output, data storage, and computation is constrained either by requirements

or by finite computational resources. For software to be truly robust, it must test all

such constraints and respond appropriately.

 22

2.4 Partition Constraints

There are four predominant influences that determine operational mode

partition values. These influences form the basis for a theory explaining software

failure. All observed failures can be explained by noting that an anomolous state

led to the failure. The anomalous state was caused by an unplanned operational

mode value and this occurred because of one of the following software defects:

• Improperly constrained input.

• Improperly constrained output.

• Improperly constrained computation.

• Improperly constrained stored data.

 The following examples of software failure are from code published in

college texts and commercial retail software. (There is an example to illustrate

each of these fault classes.)

2.4.1 Improperly Constrained Input

There is nothing new about input constraint errors. Most good

programming texts advise protecting against invalid input. However, these same

texts provide us with coding examples that do not properly constrain inputs.

Software developers are taught to check inputs before processing. Few do,

however, even those who teach new developers how to program. Consider the

following program taken from [Kernighan & Ritchie, 1988, p. 62] as an example.

 23

 24

/*shellsort: sort v[0]…v[n-1] in order */

void shellsort(int v[], int n)

{

 int gap, i, j, temp;

 for (gap = n/2; gap > 0; gap /= 2)

 for (i = gap; i < n; i++)

 for (j=i-gap; j>=0 && v[j]>v[j+gap]; j-=gap){

 temp = v[j];

 v[j] = v[j+gap];

 v[j+gap] = temp;

 }

}

To expose a bug in this program, we can simply pass the routine a �bad�

parameter. There are at least two choices for doing so. First, we can incorrectly

specify the length of the array. The following driver code causes shellsort to fail

because of an array out-of-bounds error.

main()

{

 int in[] = {10, 20, 30, 40};

 int length = 5;

 shellsort(in, length);

}

In practice, the storage for the �in� array will contain four locations

followed by the �length� value which will be included in the sorted array. After

calling shellsort, the array n will contain (5,10,20,30) and length will have the

value 40. Most languages permit passing reference to an array to a function,

though some languages can prohibit array access out of bounds.

 25

Second, we can pass shellsort an invalid array address and the program will

fail due to an invalid pointer. The following driver performs this task:

main()

{

 int *in = main; /* Sort the program code! */

 int length = 50;

 shellsort(in, length);

}

In this case shellsort will rearrange the code for the program itself and cause

the program lock up or otherwise terminate with prejudice.

One can argue that it is the task of the calling program to avoid passing

unacceptable parameters. This argument is weak because it requires redundant

inclusion of check code at each call to the routine.

Such examples also may be justified as merely illustrative. However, in

writing a routine that can be broken so easily is dangerous for any developer who

might eventually incorporate that routine into a new software product. Such coding

examples are seldom described as being incomplete because they fail to perform

required bounds checking.

One important example code omission is the return of error information to

the calling program. There are numerous error conditions that could be detected by

the shellsort routine. Is the data to be sorted valid, i.e., is there a linear order or is it

in the required range? Is there data to be sorted (is n = 0)? This are two common

 26

themes of constraint errors: 1) constraints are not checked and 2) no provision is

made to report violation of constraints.

2.4.2 Improperly Constrained Output

Just as there are limitations on the data that the system can accept for

processing, there are also limitations on a computer�s ability to present information.

Such an example can be found in a retail version of Microsoft Money 98. By

entering large, but acceptable, values in a field for entering dollar amounts, we can

elicit an output constraint error when the application adds dollars signs and decimal

points to the numbers for display. Figure 2 shows a manifestation of this bug. At

the bottom right of the screen, a display field has overflowed causing the display of

invalid format characters instead of the correct value.

This problem may be reproduced with Microsoft Money 98 Financial

Suite Version 6.0 with the following input sequence.

1) Invoke Microsoft Money.

2) Click on �Planner.�

3) Click on �Get Out of Debt.�

4) Click on �Next.�

5) Click on �New Account.�

6) Type �asdf� enter.

7) Type enter 3 more times.

8) Type �999999999999� enter. (12 '9' digits)

 27

9) Type enter.

10) Type �999999999999� enter. (12 '9' digits)

11) Type enter 4 more times.

Figure 2 -- A Broken Output Constraint from Microsoft Money 98

Output constraints are probably the easiest to define because they appear, at

first, to be unconstrained; that is to say, if the number is too big to fit the output

field, then the output field could be extended to accommodate the required value.

In terms of the operational mode value affected by the output constraint, changing

the output field width increases the bound on the presentation value. This value is

then constrained by something other than the output field width. This is a

legitimate design technique for minimizing operational mode values (and therefore

minimizing states). In any case, however, the output constraining value must be

considered as a limitation on the output and hence on any data and computation

driving that output value.

 28

A check could have been performed to determine that the data could not fit

in the field provided. But how should this fact be reported back to the originator of

that data? Here again are the common themes: the checking of a constraint and the

reporting of the constraint violation.

2.4.3 Improperly Constrained Computation

The design for a running sales average is presented in [Mills, et al., 1990, p.

11] and �verified� later in the same text [Mills, et al., 1990, p. 117], including

verification for �improper use.� Nevertheless, this program fails when forced to

overflow its stored data through a simple calculation.

The running average is computed by :

()
12

)11(...)1()(−++−+
=

iSiSiSiR [Mills, et al., 1990]

where S represents an input (called a stimulus), R the output (called a

response), and i, the index representing the order of arrival of the inputs. When this

program is implemented, the storage set aside for the running sum will overflow

when submitted two or more inputs that, when added together, are larger than the

maximum allowed integer.

Such a test exploits the fact that this particular computation is

unconstrained. In fact, there is no check to ensure that the result will fall within an

acceptable range. A solution to this problem is to check the values by subtracting

 29

the sum from the maximum allowable integer and detecting that the result is less

than the next input: (if MaxSum � S(i-k) < R(i) then error.)

However unlikely these circumstances may be, the result of overflow is

almost certainly a severe defect. For real-time software, this is a dangerous

situation no matter how rare. The aborted maiden flight of the Ariane 5 is an

example of this phenomenon [Baber, 1997], and caused by a failure similar to the

running average problem above. Aboard the Ariane 5 a floating point to integer

conversion computation produced a result that fell outside the allowable integer

range (a violation of a natural constraint). This caused the guidance software to

malfunction resulting in the rocket veering off course. The self destruct software

(which worked perfectly) destroyed the rocket in flight. Improperly constrained

computation has serious consequences.

In both of these examples, what was the course of action open to the

programmer? Mills' monthly average procedure should report to the data originator

that the computation cannot take place. In the case of the Ariane 5, however, some

other course of action should have been required. Computing the incorrect result

and steering the rocket off course was not the correct option. Perhaps the software

should have halted to relinquish control to manual operation. Again the common

themes appear: check a constraint and report the violation.

 30

2.4.4 Improperly Constrained Stored Data

Even if inputs, outputs, and computation are constrained, programs

sometimes store bad data as a result of internal processing. In addition, sometimes

a system corrupts its own internally stored data. As a case-in-point, a commercial

spreadsheet package can be tricked into just this situation after entering a formula

that is longer than the allowed limit.

When Microsoft Excel 97 receives a formula composed of a large number of

characters, it displays a message indicating that the formula is too long (see

Figure 3).

Figure 3: -- Microsoft Excel 97 Correctly Constrains Input

 31

Thus, it successfully constrained the input and avoided processing the bad value.

However, in doing so, it managed to corrupt its internal memory. Hitting the

�Enter� key in the cell in which the formula was attempted causes the spreadsheet

to completely crash (see Figure 4).

Figure 4: -- Microsoft Excel 97 Crashes Due to Corrupt Data

Three inputs in sequence are required to cause the spreadsheet failure: the

entry of the excessive length formula had to be followed by pressing the �OK�

button to clear the dialog box, and finally, pressing the �Enter� key at the

appropriate cell location. Some failures occur only after long, complex input

sequences. This makes such defects difficult to diagnose and reproduce.

Though these examples of failure may seem unimportant because they are

in software features not commonly used, there are reasons they must be taken

 32

seriously. One, mentioned earlier, is for study. We learn the most from our

mistakes and by studying these failures we learn more about the very nature of

software failure. A second reason that these failures are important is more subtle.

The examples shown are but a single instance of failure brought about by the

software defect. A defect has been detected by using extreme values that

commonly would not be used. The range of input values and sequences that

exercise the defect have not been explored. For example, further study of the

spreadsheet defect described above reveals that the input sequence required to

exceed the input constraint exception is 1024 characters. This seems to be a

sufficiently long equation for the spreadsheet. However, the buffer overflow is

detectable at 383 characters and a failure will occur with an input stream that does

not produce the �Formula is too long� error message. This is a much shorter

equation than actually occurred at the first appearance of the failure. Perhaps there

is a different and commonly used sequence that will exercise this same defect.

Until the problem is precisely diagnosed, the significance of the defect cannot be

determined. The harm that may be caused by this defect is also not obvious. This

type of defect, a buffer overrun, is the type commonly exploited by those who

would maliciously attack systems. It is conceivable that this defect could be

exploited by sending a file via e-mail. The file could contain a macro that exploits

this defect whenever the file is opened and control of the computer could be

relinquished to the malicious user.

 33

In this example, an input constraint was checked and error information

returned to the originator. There was a disconnect, however, since that input

constraint failed to match some internal storage constraint and that internal storage

constraint was not tested and therefore not reported. It is doubtful that an error

reporting mechanism even exists for reporting the storage constraint violation other

than the �Application Error� message shown above.

The �Y2K� bug described in the first chapter is another example of a

storage constraint defect. When the year is represented as the last two digits of the

year, 1999 is that last year that the storage media can represent. Attempting to

store the year 2000 or later will resort in a storage constraint violation. The two

digit representation of the year assumes a common century. The values of that

representation may be considered to be in an equivalence class, Twentieth Century.

Care must be taken to avoid storing a value that is not in the equivalence class.

2.5 Properties of Constraints

Constraints may take on a variety of characteristics depending on the type

of data involved. Different data structures present different constraint properties.

Integer values and calculations, for example, can be bounded simply by upper and

lower limits. Other data structure representations, however, introduce many other

constraint considerations, such as floating point precision, character string length,

character string alphabet, array length, record size, etc. In addition to data and

 34

computation constraints, there are also performance constraints, which are not

addressed here. Table 1 provides a summary of the properties of constraints of data

types and the following paragraphs describe some of these constraint properties.

Table 1 -- Summary of Constraints on Data Types

Data Type Constraint Properties

Integers Range

 Precision

Real Range

 Precision

Enumerations Discrete Values

Characters See Enumerations

Pointers See Enumerations

Arrays Element Constraints

 Syntactic

 Semantic

Complex Structures Element Constraints

 Semantic

2.5.1 Integer and Real

Integer and real data are constrained by range and precision. Ranges, in

general, involve upper and lower bounds where values are constrained to be

between (or outside) the range of boundary values.

Integer precision arises because of rounding issues: consider the integer

divisions (A+B+C)/3 versus A/3 + B/3 + C/3) when A, B, and C are integers.

 35

Assuming that integer division rounds down (as is normally the case), when A, B,

and C each have the value 1 the first expression result is 1, but the second result

may be 0. The evaluation of these expressions is language dependent.

Another example is documented in the IEEE Floating Point Standard

[IEEE, 1990]. Denormalized representations are used for very small values. This

creates the situation that (1/x) is not represented for all (very small) representations

of x. For example, the range of values for single precision is 2-149 to (2-2-23)×2127.

The reciprocal of 2-149 is 2149 and this value is not in the range of values

represented.

2.5.2 Enumerations and Characters

Enumerations are constrained by specifically allowed values. The ASCII

character set [ANSI, 1997] can be thought of as integer data because it is

continuous in the range [0..127]. Sometimes, however, an alphabet from the ASCII

character set must be considered an enumeration because the system behavior may

depend on input of specific characters and not ranges of characters. For example,

the scanf() functions in standard C libraries parse strings based on the standard

white space characters space (' '), tab ('\t'), and, new line ('\n'). All other

byte values (including null, '\0') are considered �letters� and are returned as part

of the string that has been parsed by scanf(). The scanf() function

 36

implements constraints on input and output by partitioning the input characters into

two classes: white space and non-white space.

2.5.3 Pointers

Pointers are often treated as integers when, in fact, they should be treated as

enumerations, i.e., pointers should be permitted only certain, specific values.

Pointers are a dangerous software feature and can lead to an extremely large

number of partitions when erroneous values and their effects are considered. When

passing a pointer as an input to a software component, the value of the pointer

usually cannot be tested for correctness and therefore violates the requirement for

constraining input values. (See the shellsort example above.)

2.5.4 Arrays

Arrays inherit the constraints of the constituent elements as well as their

own properties of length and content.

Arrays of enumeration, such as character strings, may also have syntactic

and semantic constraints. Consider a numeric string representing a decimal integer.

The syntactic rules are:

<Number> ::= <Digit><Digit>* ;

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

and the semantic rule is:

 37

if (Number < (MaxValue / 10))

then if (Digit <= (MaxValue – (Number * 10)))

then valid: Number := ((10 * Number) + Digit)

else invalid

else invalid

where MaxValue is an upper bound on Number and also on the multiplication

(“*”) and addition (“+”) functions. That is to say, Number, as a character

string, is constrained syntactically to digits and semantically constrained such that

it cannot represent a value larger than MaxValue.

2.5.5 Complex Structures

Complex data structures also inherit the constraints of their constituent

elements. There may be, however, constraints on the structure in addition to those

on the components. A simple example might be a structure consisting of a variable

length array with storage for the array elements and another variable indicating the

current number of elements in the array. The number of elements is bounded by

the size of the array and the element values are bounded by the constraints on those

elements. As a structure, however, elements outside the bound imposed by the

number of elements are not constrained since they are, in effect, not elements

technically in the array. Software constraints should be imposed to ensure that

these non-elements are not referenced, but this is a property of the structure, not

just the elements themselves.

 38

The operational modes of a structure are affected in a similar fashion since

the operational modes are derived from the constraints. For example, a structure

composed of two integers is constrained by both integers.

The operational modes for the entire structure may be more useful than

considering the operational modes of each of the integers. When the only

constrains on a structure are those imposed by the individual components, the

operational mode values of the structure may be computed as the cross product of

the operational modes of each component.

The following example illustrates this point by creating a structure with two

integers that are each constrained differently. The integers may establish separate

operational modes, each with its own operational mode values, but by combining

the constraints, we can arrive at a single operational mode for the structure and

fewer total number of operational mode values.

struct

{

int V1; /* 0 .. 200 */

int V2; /* 100..300 */

} S;

We can consider separate operational modes associated with the values

within the structure, V1 and V2,

 39

Domain(OpModeV1) = {V1.Valid, V1.Invalid},

where the operational mode value V1.Valid is the set of data values

{S.V1 | 0 ≤ S.V1 ≤ 200},

V1.Invalid = {S.V1 | S.V1 < 0 or S.V1 > 200}

and

Domain(OpModeV2) = {V2.Valid, V2.Invalid},

where

V2.Valid = {V2 | 100 ≤ V2 ≤ 300},

V2.Invalid = {V2 | V2 < 100 or V2 > 300}.

This leads to four operational mode values for S:

Domain(OpModeS) = { V1.Valid ∧ V2.Valid,

V1.Valid ∧ V2.Invalid,

 V1.Invalid ∧ V2Valid,

V1.Invalid ∧ V2.Invalid}.

The operational mode for the structure, OpModeS, may be reduced to two values by

combining the constraints on the individual components of the structure as follows:

Domain(OpModeS) = {S.Valid, S.Invalid}

where

S.Valid = {V1,V2| 0 ≤ V1 ≤ 200 ∧ 100 ≤ V2 ≤ 300}

and

S.Invalid = {V1,V2| V1 < 0 ∨ V1 > 200 ∨ V2 < 100 ∨ V2 > 300}.

 40

Reducing the domain of OpModeS to only two values for S simplifies the

application of this operational mode but loses the relationship between OpModeV1,

OpModeV2, and OpModeS. Operational modes of more complex structures may be

reduced in the same manner.

2.6 Testing Constraints

Knowledge of constraints is useful for software testing. An effective

technique for locating software defects is to search for unanticipated operational

mode values. In general, these attributes of software have not been designed nor

implemented and consequently are pervasive in all software. The key to finding

unanticipated states is by looking for improperly implemented input, output,

computation, and storage constraints. Sometimes complicated input sequences are

required to exercise these constraints.

2.7 Designing Constraints

What is most certain is that requirements specifications must identify each

external variable and precisely specify the constraints of each of those variables.

This is also true for design specifications: each internal variable must be specified

in the same precise manner as the input and output. The constraint properties,

described earlier, must be completely defined. For example, character array

variables (or �string� structures) are constrained by length, alphabet, collation

 41

sequence, syntax, and semantics. The range limitations of the target computational

device, given the domain of the variables, must be examined to ensure that the

computation is possible over the domain and range of the computation. Indeed, the

implementation of a procedure must ensure that the calculation of a function is

possible within the constraints of the data presented and the calculation capability

available to the function.

The partitions that determine whether a calculation will be correct must also

be defined. These partitions determine the constraints that specify the values of the

operational modes. These constraints must be explicitly implemented in the

software system. During test, these partitions determine the boundary values that

must be tested to ensure that the procedure behaves correctly (computes the

expected result) for every value of each operational mode.

In the next chapter, I examine prior work on constraint design and then I

develop a process for specification and design based on operational modes.

 42

Chapter 3. Constraint Design and State Modeling

There are many references in the literature that suggest a need for

specifying, designing, and testing constraints and states. However, none goes so

far as to dictate how such an endeavor is accomplished. The following section

describes a few representative examples of the application of constraints to

software development.

3.1 References to Constraint Design

Kernighan and Plauger [Kernighan & Plauger, 1978, p. 97, 118] have

seventy-seven (77) programming style checklist items that include the following:

“Check input data for validity and plausibility.”

“Make sure data cannot violate the limits of the

program.”

“Test programs at their boundary values.�

These properties are vital to proper system operation and require explicit

definition and rigorous treatment. Indeed, they have not followed their own advice,

for we find in [Kernighan & Plauger, 1981] essentially that same code for shellsort

that is shown to be unsafe in our prior example. The earlier reference, [Kernighan

& Plauger, 1978], was coded in Pascal and is intrinsically safer than the C language

example of shellsort. The Pascal code cannot exhibit the same symptoms because

the language does not allow the same constructs nor does it handle memory in the

same manner as the C language.

 43

[Shooman, 1983, p. 120] provides a table of �defensive programming�

recommendations. This table of �typical items to be checked� includes array

bounds, division by zero, input from devices, stack depth, output, data from other

sources.

Discussing specification reviews in his modern software engineering text,

Pressman briefly mentions the need to specify constraints [Pressman, 1997, p. 292].

“Be sure stated ranges don't contain unstated

assumptions (e.g., 'Valid codes range from 10 to 100.'

Integer? Real? Hex?)”

Though Pressman describes software state with respect to the �Z� language (see

below), very little connection is made between data constraints and states.

In addition to these references on designing software constraints, there is

substantial literature on assertions and exceptions. However, these properties are

not associated in the literature with state and the effect of external and internal

events on state. Because these techniques generally divert program control, they

can sometimes cause software failure and support fault tolerance inadequately. For

example, consider the case of an exception instigated by a division by zero fault in

a function containing two division operations. At which invocation of divide did

the failure occur? This is important because an action may have taken place

between the two division operations (such as reserving a system resource) that must

be reversed for the function to proceed properly.

 44

Recent work on the design of languages such as UML [Booch, et al., 1999;

Jacobson, et al., 1999; Rumbaugh, et al., 1999], Eiffel [Meyer, 1992] and Java

[Lambert & Osborne, 1999] place greater emphasis on assertions to provide bounds

checking generally know as �preconditions,� �postconditions,� and �class

invariants.�

Sun Microsystems has developed �Assertion Design Language� (ADL)

[Sun, 1996] that allows a developer to specify procedure post conditions.

However, ADL does not require a full definition of post conditions, nor does it

concern itself with stored state.

Spivey defined the �Z� specification language [Spivey, 1988] that allows

specification of preconditions and postconditions. Full definition of these

conditions, however, is not provided nor is it required in the language. Variables

are assumed to be within the specified constraints.

All of these methods allow for constraint programming but none completely

specify how and when to provide constraint checking. It is vital that constraints be

detected as early as possible in the development cycle and that the characterization

of constraints be imperative and not merely possible as in the �Z� language. A

robust design language must require constraint specification and the process for

utilizing the design language must ensure that the constraints are implemented in

code including the appropriate response to constraint violations. Certainly, if

 45

constraints are not specified in the design, it is unlikely they will appear in the

implementation.

I propose a rigorous method of designing constraints based on the definition

of operational modes and my theory of software constraint defects. Careful

constraint design should provide a complete definition of all program boundary

values under all conditions. Proper coding of these constraints will ensure that a

system produces only correct output and behaves in a predictible manner under all

operating conditions.

3.2 States and State Modeling

The work of Mills, Linger, and Hevner [Mills, et al., 1987] in the cleanroom

method shows the importance of representing software as a state machine. States

are determined by input (stimulus) history. Mills assumes that input sequence

enumeration is not difficult during the 11-step box-structure expansion process:

“Define the black box

(1) Define black-box stimuli.

Determine all possible stimuli for the

black box.

(2) Define black-box behavior.

For each possible stimulus1, determine

its complete response in terms of its

stimulus history

1 Emphasis added.

 46

“Design the state box

(3) Discover state data requirements

For each response to be calculated,

encapsulate its stimulus history into a

state data requirement. …” [Poore &

Trammell, 1996, p179].

In this extract, the entire process for determining state is encapsulated in the

phrases, �� determine its complete response in terms of its stimulus history.� And

�� encapsulate its stimulus history into a state data requirement. � This is a non-

trivial task since there are almost always an infinite number of stimulus histories

that arrive at a single state. However, little, if any, guidance is provided.

Prowell�s work [Prowell, 1996] (also associated with cleanroom) identifies

the need to design the states of software but also provides few clues as to how to

accomplish this. His work identifies states by input history and provides a

procedure (declared an algorithm) for identifying the states by enumerating input

sequences. The major difficulties with this procedure are the assumption that input

sequences in the same equivalence class (state) are easily identified and that the

procedure will terminate, thereby assuring that all states are identified. In fact,

neither is necessarily the case. Assume that each input sequence identifies a state.

The problem of determining whether two of those states are equivalent is to

determine 1) whether the set of available inputs is identical, and 2) for each such

input, whether the destination states equivalent. Since determining whether two

states are equivalent requires that it be determined whether two (possibly the same)

 47

states are equivalent, this is infinitely recursive. A different approach to the

identification of states is required.

Whittaker [Whittaker, 1997b] provides a definition of state as a function of

operational modes as used in software testing:

“Definition 7. A state of the system under test is an

element of the set S, where S is the cross product of
the operational modes (removing the impossible

combinations).”

In the application of this concept, operational modes have been determined

by reverse engineering of operational software for testing purposes. By making

decisions about operational modes early in the development lifecycle, we avoid the

practices that create the defects we would otherwise uncover only during testing. A

method for developing the state model from operational modes, inputs, and input

properties is presented in [El-Far, 1999]. The state model is developed from the

cross product of operational modes and the impossible states are eliminated by a

process based on combinations of operational mode values that are not allowed due

to input condition conflicts. The transition function is computed from the

transitions between operational mode values.

 48

Chapter 4. Constraint Specification

This chapter proposes modifications to the software engineering process to

avoid constraint related defects. These modifications introduce constraint design to

include properties generally overlooked by current design techniques. The

technique is illustrated by means of a small example. Chapter 6 provides a longer

and more complex example.

The basic engineering process is 1) determine what is to be engineered, 2)

determine how it is to be engineered, 3) perform the engineering, and 4) validate

that the engineering process was successful. This development process includes the

classical waterfall software development processes, requirements analysis, design,

implementation, and test. But rather than the waterfall or even the more modern

iterative or spiral development models [Sorensen, 1995], the actual process is

recursive in that as development progresses, information is uncovered that affects

prior design decisions, driving process steps that influences the current process step

as well as subsequent steps. Each such discovery must be incorporated into the

requirements, design, implementation, and validation.

Operational modes are derived from constraints, which in turn are extracted

from requirements and design. Figure 5 illustrates operational mode design data

flow through the requirements analysis and design phases of product development.

This diagram shows the contribution of system requirements analysis and design to

the development of the constraints necessary for determining operational modes.

 49

Requirements
Analysis

Inputs Outputs

Output Constraints

Input Constraints

Design

Data Computations

Data Constraints

Computation
Constraints

Data Partitions

Operational Mode
Values

Operational Modes

Figure 5 -- Operational Mode Design Data Flow

The modifications to design methodology will be illustrated using a

variation of the running average problem. Presented in the form commonly found

in software design texts, the running average computation might be expressed as

follows:

 50

Integer N, Sum, Value;
N = 0; Sum = 0;
While Input(Value)
 N = N + 1; Sum = Sum +Value;
 Print (Sum/N);

This code suffers from three of the four classes of failure to constrain:

1. failure to constraint input (because there is no provision for identifying

and handling failures of the procedure �Input,�)

2. failure to constraint output, (Was the procedure, �Print,� successful?)

and

3. failure to constrain computation. (The computation of N+1 and

Sum + Value can generate computation constraint violations when they

overflow.)

My implementation of this example using the proposed changes to the design

process will redesign this procedure to eliminate these defects.

Starting with the requirements analysis, the statement of the base

requirements is: 1) Input a sequence of positive integer character strings. 2) After

each number string has been entered, print the average of all numbers entered thus

far. The following analysis and design refines these requirements into a coded

example that does not contain the constraint defects described above.

 51

4.1 Requirements Analysis

The engineering process that determines what is needed, when applied to

software, is called �requirements analysis� or �requirements discovery.� In the

large body of literature on this subject, a significant characteristic has been given

scant attention or omitted entirely: adequate identification of constraints on input

and output. Though sometimes mentioned as a desirable characteristic, current

requirements analysis techniques do not demand input constraint specification.

Output constraints are hardly ever mentioned. The improvements to the

development process presented in this dissertation demand that these constraints be

identified and specified. In fact, each requirement must be constrained and each

such constraint results in an additional requirement. This recursive characteristic

must be terminated by a common limiting factor, such as system failure; e.g., when

it is not possible or not useful to report error information, a system failure has

occurred. Requirements must specify the characteristics of system failure.

Though the proposed techniques are applicable to any of the current

development methodologies, the following developmental model presents a design

process modified from [Whittaker, 1998]. Two useful tools for requirements

analysis are the system context diagram [De Marco, 1979] and transaction analysis

[Prowell, 1997]. The method presented here for requirements discovery is, 1)

develop a system context diagram, 2) perform transaction analysis, and 3) develop

a preliminary data dictionary [De Marco, 1979]. From these work products a

 52

complete requirements specification may be developed that will include the

definition of all applicable external (artificial) constraints.

4.1.1 System Context Diagram

A system context diagram is a device for identifying system boundaries and

defining the elements external to a system. This diagram provides a clear

definition of those elements (called �users�) that interact externally with the system

and those objects that are internal to the system (called �components�)2. A user is

any object or person that provides system input or is affected by system output. De

Marco calls a user a �source or sink.�

“A source or sink is a person or organization, lying

outside the context of a system, that is a net

originator or receiver of system data.” [De Marco,

1979, p. 59]

Users have several important characteristics: 1) users cannot be constrained,

2) requirements cannot be placed on users, 3) users can do anything, and 4) it is

okay to warn the user about system limitations.

2 The external objects are identified here as �users,� though this term (and the term

�actors� used by [Jacobson, 1995]) are probably overly anthropomorphic since the

objects that may interact with a system may be devices or operating systems as well

as human �users.�

 53

There are some important classes of human users of the system that are

often overlooked:

1. software development engineers are users,

2. software test engineers are users, and

3. software maintenance engineers are users.

The system context diagram also helps identify the data that flows across

the system boundary. Figure 6 is an example of a system context diagram as

applied to the running average example.

The large circle represents the entire system. Nothing is shown inside this

circle since, at this stage of analysis, nothing is known about the internal

characteristics of the system.

The smaller circles represent users. Users may be abstractions. In this

example a keyboard is described as a user providing input. This could be less

abstract by defining various keys as individual system users. Conversely, the

display and keyboard could be combined to form a higher level abstraction

representing a single user with both input and output capabilities. The arrows

indicate the direction of data flow and the text associated with the arrows

enumerates the types of data that flows between the users and the system.

Developing a system context diagram reveals a number of other

requirements as was the case developing this example. The diagram shown is the

final version since during various stages of development, several data items were

 54

added such as �System Error Message� (the need to display diagnostic information

when the system cannot perform the required task).

Running
Average
System

Human
User

(Keyboard)

Human
User

(Display)

Initiate,
Exit ,

Number,
Non-Number

Startup Message,
Exit Message,
User Error Message,
System Error Message,
Running Average Report,
System Failure Message,
System Exit Message

Figure 6 -- Running Average System Context Diagram

The only communication defined in this system is with the human operator.

The operator has the ability to start the program, enter numbers, enter things that

are not numbers, and to provide some sort of input to indicate that the program is

no longer needed. The system will output a welcome message, the average for

each valid entry, an error message for when the operator enters something invalid,

an error indication when the system cannot perform the requested function, and a

termination message.

 55

4.1.2 Transaction Analysis

Transaction analysis is a structured design technique described in [Mills, et

al., 1987 and Whittaker, 1998]. The requirements for inputs, outputs, and events

are stated in high level terms called abstractions. These abstract requirements are

refined into details called �derived requirements.� Complex transactions are

decomposed into sequences of simpler transactions. My modification to the

transaction analysis process is to require that all transactions be constrained. As

part of the expansion of transactions into requirements, these constraints must be

identified and catalogued. A constraint is any limitation on the transaction. As a

consequence of this process change, a new column has been added to the

transaction analysis table to allow definition of transaction constraints.

During requirements discovery, transaction analysis identifies only those

activities that are externally visible to the system. The information provided by

transaction analysis is also used to refine the system context diagram as described

above. Transaction analysis must ultimately define all interactions between users,

the system, and the services to be provided by the system.

In the Running Average example, where user requirements are not

specified, only token constraints are specified. Such token constraints should be

highlighted for customer review since they are previously undefined requirements

and should err on the side of conservatism, i.e., minimum cost, since customers are

likely to approve generous product constraints. In this example, input and output

 56

were first limited to the maximum value of a 32-bit twos-complement number.

Later analysis established that this requirement was too liberal and it was restated

to accommodate a limitation discovered later in the process. The original

requirement could have been met by using a more complex computation, but would

significantly increase development time. These new values must be reviewed by

the end-user and must be specified as requirements. When not specified as

requirements, any constraint imposed by the designer may be assumed to be valid.

This is a common characteristic of software and many �bugs� are simply

unspecified features or constraints.

A transaction analysis table consists of one row for each unique transaction,

user, input, or output. There is a column for transaction item number (TR),

transaction, newly identified user, newly identified input, newly identified output,

and transactions constraints. Each transaction is numbered for ease of

identification in later design steps and for traceability. One column contains a

description of each transaction originated by either an external user or inside the

system. The form of the description is a simple noun-verb-object. In this manner,

unique users and new objects are identified. When a user or object not already on

the system context diagram is identified, the diagram must be updated to contain

these new features. The new attribute of the transaction analysis table is the

column for the constraints on the transaction.

 57

When the constraint is abstract, such as �message must fit in the display

area,� the abstraction must be refined to more specific details. In this instance,

�display area� will need more detail before this constraint is fully defined. As each

constraint is defined, it is assumed that this constraint may be violated and a

transaction defined to accommodate each such violation. A general transaction

such as �system fails� provides for failures of the error reporting transactions.

Transaction abstractions are compositions of more detailed, underlying

transactions and eventually must be fully elaborated. One method of ensuring that

transactions are adequately elaborated is to examine the constraints for specificity.

In our example, �Message must fit in the display area,� is not specific until the size

of the display area is identified. Since all transactions must be constrained, all

natural or artificial constraints must be recorded for each transaction. These

constraints may be violated for many reasons including operator error and system

failure and therefore for each transaction constraint there must be a corresponding

error transaction describing how that error will be handled. The behavior of the

system should be specified even when a failure transaction can not be completed.

The transaction analysis example creates a table with an entry for each

transaction discovery. These transactions may be readily identified from the

system context diagram in Figure 6 above. However, our new design process

requires that we capture the constraints on each transaction. Because of the

possibility of violation of each constraint, an additional transaction associated with

 58

each constraint violation is provided. These are new transactions and thus new

requirements. A system error terminates this recursive process. Table 2 is the

transaction analysis table for the running average example.

For closure of the system context diagram with the transaction analysis

table.

1. Each user on the system context diagram must appear in a least one

transaction.

2. All users that appear in the transaction analysis table must appear on the

system context diagram.

3. Each input on the system context diagram must appear in the

appropriate context in the transaction analysis table, i.e., where an input

is associated with a user on the system context diagram, a transaction

must appear in the transaction analysis table associated with that user

and as an input from that user.

4. Each input in the transaction analysis table must be associated with a

user and that input must be associated with that user on the system

context diagram and shown as an input.

5. Each output on the system context diagram must appear in the

appropriate context in the transaction analysis table, i.e., where an

output is associated with a user on the system context diagram, a

 59

transaction must appear in the transaction analysis table associated with

that user and as an output to that user.

6. Each output in the transaction analysis table must be associated with a

user and that output must be associated with that user on the system

context diagram and as an output to that user.

 60

Table 2 -- Running Average Transaction Analysis

Item Transaction New User
Identified

New
Input

Identified

New
Output

Identified

Constraints

1 User starts
program.

Human
User

(screen)

- Startup
Message

Message fits display
area.

2 User terminates
program.

- Exit Value Exit
Message

Message fits display
area.

3 User enters
positive integers.

Human
User

(keyboard)

Number - Number is a positive
integer and no larger
than the maximum
1,000,000. The
number of values
entered shall not ex-
ceed 1,999.

4 User enters a non-
number.

- Non-
Number

Error
message

Non-Number is an
entry that is not a
“Number” as defined
above and is not the
Exit entry. Error
Message must fit in
the display area.

5 System computes
the average.

- - - Running Average
subject to the same
constraints as
“Number” above.

6 System fails to
compute average.

- - System
Error
message

Message fits display
area.

 61

Item Transaction New User
Identified

New
Input

Identified

New
Output

Identified

Constraints

7 System reports
average.

- - Running
Average
Report

The Running Aver-
age Report shall
identify the result,
present the result as
a 1 to 7 digit decimal
number. The report
shall fit the display
area. The average
shall be reported to
the nearest integer
(precision require-
ment).

8 System Fails - - System
Failure
message

Message forced to fit
in available space in
the display area to
avoid an additional
error.

9 System terminates
program.

- - System
Exit
Message

Message fits display
area.

4.1.3 Preliminary Data Dictionary

The preliminary data dictionary enumerates each input, output, and other

data item identified during transaction analysis with one entry for each item. Each

entry provides an item index, an item identifier, a description, a list of all

constraints on that item, and traceability information. The index is provided for

ease of reference and traceability. For example, the constraint of item 1 of Table 3,

identifies a new data item, �display area.� Subsequent definition of this data item

refers back to item 1 from which it was derived for traceability purposes. The item

 62

identifier must be unique within the system and should be functional but brief. It is

the intent that this identifier will be subsequently used in the design and

implementation that will follow. The description, on the other hand, must be

detailed and contain information concerning the purpose, scope, and intent of the

item.

The requirements specification engineer must elicit important information

during the requirements discovery phase. In particular, requirements definition

must capture artificial constraints on inputs, outputs, and data structures identified

during the analysis. This dissertation exposes the new meta-requirement that each

data dictionary entry must identify all constraints on the data item identified by that

entry. This new meta-requirement is a direct result of identifying the failure to

properly constrain data elements during the development process. The

decomposition and implementation of these constraints, when designed and

implemented, will result in reduction of the types of failures identified in the

opening chapter.

The �Origin� column is added to provide traceability of the origin of the

requirement for the data. This column may also refer to the transaction number that

placed the requirement for the dictionary entry.

A new concept is that each constraint requires an additional data dictionary

entry for the constraint violation error indication. This error indication information

 63

specifies system diagnostics. This is similar to the requirement for to add an error

transaction for each normal transaction.

Closure with the preliminary data dictionary is accomplished with the

following checklist.

1. Each data object appearing in the transaction analysis table must appear

as an entry in the preliminary data dictionary. This includes objects

referenced by the system as well as input and output objects. (The term

�object� as used here is the object clause of the transaction statement,

such as, �System computes average.� �Average� is the object of the

sentence.)

2. The constraints on each object must be specified.

3. Where the constraints are abstract, the object must be sufficiently

refined so that the constraints are specific. In the example, the

constraint �Must fit display area� is not specific and must be refined to

�no longer than 79 characters.�

Table 3 is the preliminary data dictionary for the running average example.

Table 3 -- Running Average Preliminary Data Dictionary

Item Data Item Usage Description Constraints Origin

1 Startup
Message

Output Message to welcome user to
the program.

Must fit in the display area. TR 1…

2 Display Area Output
Constraint

User’s view of the system. A single line of output no more that
Line Length characters in length.

PDD 1

3 Line Length Output
Constraint

Maximum Length of an output
line.

79 characters. PDD 2

4 Exit Input Input from operator indicating
that termination is requested.

Must be distinguishable from User
Entered Number below.

TR 2

5 User Exit
Message

Output Message informing user that
the program is terminating.

Must fit in the display area. TR 2

6 User
Entered
Integer

Input Numeric value entered by the
user.

Positive numeric string less than or
equal to the Maximum Integer.
String is terminated by a new line
character. String may contain only
decimal digits.

TR 3

Item Data Item Usage Description Constraints Origin

7 Maximum
Integer

Input
Constraint

Maximum input value
accepted by the system.

1,000,000. PDD 6

8 Non-Number Input Any invalid character string
entered by the user.

Any input string containing a non-
decimal digit character. Terminated
by a new-line.3

TR 4

9 User Error
Message

Output Message informing the user
that entry is invalid.

Must fit in the display area. TR 4

10 Average
Value

Output Value computed by the
system. (Sum of Input values)
/ (Number of values entered).

Constrained by the User Entered
Number constraints.

TR 5, PDD
7

11 System Error
Message

Output Indicates to the user that the
system has made an error.

Must fit in the display area. TR 6

12 Running
Average
Report

Output Displays the computed
running average, in context.

Must fit in the display area. TR 7

3 Any character string that is not the exit message nor a valid number string. This string may exceed the input display area size since the user
may not be constrained and may type any length string. The operating system may also constrain the length of string that the user may enter.

Item Data Item Usage Description Constraints Origin

13 System
Failure

Message

Output Indicates that a message
intended for the display area
did not fit.

Should fit the display area. (Over
length message may be truncated.)

TR 8

14 System Exit
Message

Output Indicates to the user that the
program was terminated by
the system.

Must fit in the display area. TR 9

 67

Transaction analysis identifies three types of data items: input, output, and

constraint values. These are data values that are externally visible to the system.

During the design phase internal data items will be identified and added to the data

dictionary. The design phase will complete this dictionary as internal data

structures are defined and constrained.

4.1.4 Preliminary Operational Mode Design

Once the preliminary data dictionary is complete it is then possible to create

the preliminary design of operational modes. From this initial set of operational

modes, the top-level state model may be constructed from the techniques described

in [El-Far, 1999]. This state model will define the operation of the overall system

and include interaction with the memory shared between the program and the rest

of the system (or retained by the system between program executions). For the

example provided, the only operational mode that can be defined is

Domain(OpMode Running Average) = {Not Invoked, Invoked}. This is because

there is no external memory modified by the system. The operational model of the

example system is trivial since the state set is {Not Invoked, Invoked} and each

input either causes the Running Average system to remain invoked or else exits.

 68

4.1.5 Requirements Specification

From the details provided by the system context diagram, the transaction

analysis table, and the preliminary data dictionary, a final requirements

specification may be developed. Each transaction must result in one or more

specific requirements statements (�shalls�). Each constraint identified in the

preliminary data dictionary must appear as a limitation on a specific requirement.

The requirements specification may take any of the many accepted

specification forms including that defined by the IEEE Recommended Practice for

Software Requirements Specifications [IEEE, 1993]. The information captured in

the transaction analysis table and the preliminary data dictionary should completely

define the functional requirements of the system. All constraints identified during

transaction analysis and development of the preliminary data dictionary must be

included in the requirements specification. These requirements analysis features

provide direct input to the design phase.

 69

Chapter 5. Constraint Design

Software design describes in detail how each requirement will be

implemented. Design is accomplished by continued decomposition of the

transactions identified during requirements analysis. The transactions identify

what must take place. Design determines precisely how that will be accomplished.

This results in procedures to implement these transactions and the data structures

necessary to support them. Procedures encompass decisions, data movement, and

calculations; all of which are constrained either by hardware limitations or

requirements. The new technique of constraint identification and operational mode

design will provide a mechanism to define those limitations uniquely and

rigorously. The result of the design phase is a data dictionary and a functional

design specification.

Each input, output, calculation, and stored value must be described in detail.

Again, as in requirements analysis, current techniques fail to completely identify

data and calculation constraints. Newly recognized constraints must be checked to

determine whether they are, in reality, new requirement constraints. Sufficient

detail must be provided so that no additional design decisions are necessary during

the implementation phase.

 70

During design, decisions must be made about the allowable states internal

to the system. This is simplified by considering only the design of the operational

modes and mode values.

During design, the design engineer decomposes the system into two

component types, procedures and data structures. In addition to the constraints on

inputs and outputs defined during requirements analysis, the design phase

introduces constraints imposed by the limitations on procedures and data structures.

As before, constraints create error conditions and produce error data. An important

characteristic dealt with poorly by current design technology is the flow of error

information.

5.1 System Decomposition

System decomposition is based on the system context diagram and

transaction analysis and defines the inner working of the system, i.e., from the

system boundary inward. Decomposition results in the identification of procedures

and storage shared between the procedures. It is during the decomposition of the

system that critical decisions regarding system state occur.

Optimal system decomposition is a rich area for research. As development

progresses, the system becomes more specific and less abstract and decomposition

is complete when no abstraction remains. Choosing decomposition boundaries to

minimize coupling and maximize cohesion seems to be an optimal strategy. See

 71

[Berard, 1993] for example. I use the term �cohesion� here to describe the degree

that the functions of a component refer to a single data object and �coupling� to

describe the frequency that a component must call on the functions of another

component to achieve its task. Minimizing coupling and maximizing cohesion

tends to minimize operational modes and consequently minimize the number of

states of the system. The study of operational modes may lead to a more optimal

solution for this problem. More research is necessary.

[Parnas, 1972] has suggested decomposition based on data hiding and

modules likely to change. I have selected this data hiding technique as the primary

means of system decomposition because it seems intuitive that hiding data also

hides operational modes, which, in turn, hides states thereby simplifying modeling,

testing, and system understanding in general. In particular, a component is defined

around a single data structure and all functions that modify that data structure are

contained within that component. The data structure is not directly visible outside

that component and access to the data in the structure is achieved only through

access functions within the component. External requests for data are not trusted

and must be constraint checked.

For the running average example, the two data structures required are

Number and History. Number is the value entered by the user and may also

represent the exit condition. To perform the average operation, there must be some

 72

form of historical data retained by the system, (History). The choice of the form of

the stored history is a design decision and such decisions often prove problematic.

What is the optimal way to store the history? For our example problem the

choice of retaining the sum and count of the values entered is the classical solution.

There are other choices, such as retaining each of the values entered in a list or

retaining the current average and the count. Retaining the list of values places a

more limiting constraint on the number of values that may be included in the

average. Retaining the current average and count allows reconstruction of the sum

of values but with severe precision constraint issues. I will not attempt to solve this

problem here but identify this problem for future research.

In any case, the running average example has two components, one based

on the Number data structure and one on History. Externally visible functions are

Input for the Number component and Initialize and Average for the History

component. The Initialize function establishes the initial values of History.

Normally this should be to set the sum and count of values to zero, but to make our

system more testable, these values are also parameterized and the values set to zero

as the default condition. This allows us to set History to any value so that test

cases can be constructed representing any possible point in the history.

The Input function must accept character input from a human user and

therefore must anticipate all possible input sequences. It is necessary to

 73

assign a special input sequence to represent the program termination sequence.

The input function may accept only those sequences that represent either the

termination sequence or a sequence representing a valid numeric input. The Input

function must be decomposed into a simple state machine to process each

successive input character and produce the results: Valid Number, Termination, and

Invalid Sequence. This is an example of selecting the boundaries of a function to

hide information and consequently state. As each character is entered, the

accumulated value of the number being input may overflow the maximum value or

be an invalid character (for the current state of the input function.) This

information is all hidden, however, from the user(s) of the Input function.

The overall system flow: The Initialization function establishes the initial

History and calls on the Input function to complete the task. The Input function

will process input sequences and deliver valid numeric values to the Average

function. Input must recognize the terminating input sequence and exit gracefully.

5.2 Specification of Procedure

Procedure specification provides a detailed description of executable

functions. The specification should be sufficiently detailed that mapping the

procedure to any language should be relatively effortless. This is, in fact, the goal

of design. Sometimes the specification of procedure requires the identification of

new data structures. These new data structures, including constraints, are added to

 74

the data dictionary. For each procedure described, the data structures affected must

be identified including any new constraints on those data structures imposed by the

procedure. This identifies and creates the need for an additional component.

The entire running average system requires detailed design of the Input,

Output, and Average functions. However, for brevity, the design example

concentrates on the Average function, though the problems encountered are similar

for each executable component.

It is necessary, though insufficient, to bound the input to the limiting

condition, Max Input. Though the input component may limit the range of the

values it delivers, Average must perform this check and deliver to the calling

component the Input Invalid status. The calling component must be prepared to

deal with the Input Invalid status. But the Input Out-of-range condition is not the

only constraint that may be violated by a given invocation of Average. It is

possible that the Max Values constraint may be violated as well. This constraint is

not on the value of the input but rather on the number of values that may be

entered. Average must detect this condition and provide an appropriate response

(which must also be dealt with by the Input component).

Next, the computation of the average value itself may not be correct

because of hardware or specified limitations. If History is designed to meet the

requirements for the maximum value and maximum number of values, and Average

is to accommodate the necessary computational range, we may well have escaped

 75

the need for this particular constraint check. And lastly, the output of the average

value may be constrained by the format of the output itself. The Average

component must check the output value to ensure that it meets the constraints on

output and if it does not, report this to the Input function which must be prepared to

handle it.

The total data requirements determine the operational modes of a system.

The data structures accessible across the system determine the system level

operational modes. In all cases it is desirable to minimize the number of

operational modes and the number of operational mode values within those modes.

Data isolation is equivalent to operational mode isolation. That is, storage not

visible to a component does not contribute to the operational modes of that

component and hence does not contribute to the visible state. State minimization

implies and is implied by operational mode minimization.

5.3 Final Data Dictionary

The design phase completes the data dictionary. At completion the

dictionary contains the definition of data internal to procedures. The data dictionary

rules that were previously defined still apply: all entries are constrained, data

design constraints must be checked to see if they are previously unrecognized

requirements, except for parameterized constants, and new constraints will require

 76

additional data dictionary entries. Abstract data structures will have been

decomposed until only constant values and base data types remain.

The final data dictionary is identical in form to the preliminary data

dictionary show in Table 3. The distinction is that the final data dictionary will

have additional entries for the intra-component data flow and internal data storage.

Further, data design details are complete. For this running average example, the

preliminary data dictionary specified the nature of error messages, but the final data

dictionary specifies the exact content of the error messages. Table 4 is the final

data dictionary for the running average example.

Table 4 -- Final Data Dictionary

Item Data Item Usage Description Constraints or Value Origin

1 Startup
Message

Output Message to welcome user to
the program.

Must fit in the display area.
“Welcome to the Running Average
program.”

TR 1…

2 Display Area Output
Constraint

User’s view of the system. A single line of output no more that
Line Length characters in length.

PDD 1

3 Line Length Output
Constraint

Maximum Length of an output
line.

79 characters. PDD 2

4 Exit Input Input from operator indicating
that termination is requested.

Must be distinguishable from User
Entered Number below.
A Line with no characters.

TR 2

5 User Exit
Message

Output Message informing user that
the program is terminating.

Must fit in the display area.
“Thank you for using Running
Average.”

TR 2

6 User
Entered
Integer

Input Numeric value entered by the
user.

Positive numeric string less than or
equal to the Maximum Integer.
String is terminated by a new line
character.

TR 3

Item Data Item Usage Description Constraints or Value Origin

7 Maximum
Integer

Input
Constraint

Maximum input value
accepted by the system.

1,000,000. PDD 6

8 Non-Number Input Any invalid character string
entered by the user.

Terminated by a new-line.4 TR 4

9 User error
message

Output Message informing the user
that entry is invalid.

Must fit in the display area.
“ Invalid Input.”

TR 4

10 Average
Value

Output Average value computed by
the system.

Constrained by the User Entered
Number constraints.
(Sum of Input values) / (Number of
values entered) rounded to the
nearest integer.

TR 5, PDD 7

11 System Error
message

Output Indicates to the user that the
system has made an error.

Must fit in the display area.
And

TR 6, 8

4 Any character string that is not the exit message nor a valid number string. This string may exceed the input display area size since the user
may not be constrained and may type any length string. The operating system may constrain the length of string that the user may enter.

Item Data Item Usage Description Constraints or Value Origin

12 Running
Average
Report

Output Displays the computed
running average, in context.

Must fit in the display area.
“ The current average is xxxxxxx.”
Where xxxxxxx is the average
value, up to 7 digits.

TR 7

13 System Exit
Message

Output Indicates to the user that the
program has terminated.

Must fit in the display area. TR 9

14 Number of
values

entered.

Stored data. An integer value representing
the number of valid values the
user has entered.

Must be less than or equal to the
Entry Count Limit

TR 3, 4

15 Entry Count
Limit

Stored data
constraint

The maximum number of
values that may be entered by
the user.

Constrained by computation in DD
10 by DD 20: 2000.

TR 3, 4,
DD 10

16 Entry Count
Constraint
Violation
Message

Constraint
violation

Message to output when Entry
Count Limit Constraint is
violated.

“Too many values have been
received.”

DD 14, 15

17 Sum of Input
Values

Stored Data An integer values representing
the sum of the values the user
has entered.

Must be less than or equal to the
Input Sum Limit.

TR 4

Item Data Item Usage Description Constraints or Value Origin

18 Input Sum
Limit

Stored data
constraint

The upper bound on the sum
of input values.

Must be less than or equal to the
maximum 32-bit integer:
2,147,483,647

TR 4

19 Input Sum
Constraint
Violation
Message

Constraint
violation

Message to output when Input
Sum Limit Constraint is
violated.

“Sum is too large for this value.” DD 17, 18

20 System Error
Message

Constrain
violation

Message to output when
system fails to properly display
error messages.

“ Error Message Overrun.”

 81

5.4 Operational Modes

The basic method of operational mode design is to identify all variables and

computations in a program and to identify and document all natural and artificial

bounds of those variables and computations. These bounds provide the partitions

necessary to identify the values of the operational modes of the system. Every

operation on an operational mode value must be assured to be correct dynamically

at the bounds of that operational mode value.

Operational modes are designed in the following manner.

1) Select the variable or variables that contribute to a particular

operational mode.

2) Create a functional name for the variable set that describes the

operational mode.

3) Determine the set of partitions that affect those variables

4) Order the partitions in a manner that guarantees exclusivity, i.e.,

there is complete independence of the values within the sets defined

by the partitions.

5) Identify with each partition a name depicting the equivalence class.

This name should be appropriate for an operational mode value.

The operational characteristics of the running average system depend on the

behavior of the Human User. Even at this level of abstraction, we can identify

three different activities that the Human User can perform. We�ll identify this as an

 82

operational mode, Domain(OpMode UserInput) that will be partitioned into the set

of values {Number, Non-Number, and Exit}. The details of the actual elaboration of

the operational mode values can be left until later but an important point is to

realize that regardless of how we implement these operational mode values, coded

partitions will determine precisely the value of the operational mode, UserInput.

Another operational mode that exists for any system is the basic operational

status, System. System has the values {Invoked, Not invoked}.

Clearly, there is yet another operational mode that cannot be defined in

terms of the inputs since there are varying system behaviors without variation of

inputs as they are defined at this point in the development cycle. These behaviors

might be explained in terms of input histories, however, the identification of

relevant input history is an arduous task. But, as explained previously, we can

determine the operational modes of a procedure by examining the persistent storage

visible to that procedure. The persistent storage for the Average component is

History. The validity of a given invocation of the Average component is

determined by the values of History, and the partitioning of History determines the

operational modes of the running average system. In particular, the operational

modes are Domain(Count) = {Within Limits, At Limit}, and Domain(Sum) =

{Within Limits, Current Input Causes Sum Limit Violation}. Note that Count and

Sum do not have values �Out of Limits.� This is accomplished in the code by

checking constraints and never storing an invalid value in the associated variables.

 83

5.5 Design Methodology Summary

Software consists of the constituents inputs, outputs, storage, and

procedures. All program constituents are constrained either naturally (hardware

limitations) or artificially (requirements limitations). The complete set of

constraints on storage imposed by natural and artificial limitations and by the

mapping all of them to storage constraints creates the set of boundary conditions

for each storage element. This, in turn, formally defines the operational mode

values and hence the operational modes of a system.

Proper system design requires that, where artificial limitations exist,

hardware must be selected to meet or exceed these limitations. This includes such

characteristics as:

• Word size

• Adequate representation of variables such as floating point precision

• Processor with sufficient performance

The definition of the inputs, outputs, and procedures of a system occurs

during the requirements definition and design phases. The complete definition of

storage must be completed during the design phase.

5.6 Implementation

The coding phase should be a simple implementation of the design. All

decisions regarding representation and function should have been made in the

design phase. Any unknown representation must be referred back to the design to

 84

ensure that no new constraints are introduced by coding. If new constraints are to

be introduced, those constraints must be evaluated as system requirements.

Code must be provided to fully implement all constraints so that improper

input is prohibited, the results of each computation is correct, and output is correct

in appearance and value. By constraining the values stored in memory, the system

will avoid entering improper states. By checking stored values against constraints,

invalid states created by events outside the system are detected and controlled. In

fact, this provides us with a useful system quality metric for robustness. We can

define a system robustness metric as the percentage of total constraints that have

been implemented in code. The number of constraints actually implemented can be

estimated by the number of predicates (if statements, etc.) in the program and the

number of constraints needed can be estimated by the number of variables (inputs +

outputs + storage) plus the number of operators (computations) in the program.

This is reminiscent of McCabe's Cyclometric Complexity [McCabe, 1976] divided

by Halstead's Length metric [Halstead, 1975].

The code for the running average example appears in Appendix E. This

program is claimed to be free any of the four types of constraint errors. To

establish this, a mechanism for validation has been provided.

 85

5.6.1 Validation

Validation ensures that the system requirements have been met. This is a

final system check. Each requirement, including requirement constraints, should

be tested, i.e., each operational mode value should be verified at its boundaries.

The relations that define the operational mode values also define these boundaries.

Among other tests, the system should be compared against the system state model

to ensure proper response to each input for each state of the system.

With the addition of carefully defining constraints during the requirements

analysis, it is now possible to define verification testing in terms of those

constraints. Each constraint should be tested at the boundary conditions of that

constraint. When the constraint is a range, for instance, a test should be performed

at the outer limits within the range and at the immediate inner limits just outside

that range. Where external means are not available for testing these limits, test

probe code should be added to permit the testing of these limits. These testing

techniques are illustrated with the test suite for the running average example.

The test suite for running average together with the test results are listed in

Appendix F. Each constraint listed in the final data dictionary is tested. Where

special test conditions were required for testing, such as testing for the maximum

number of input values, special testing code was added to the running average

program, and access to this code provided through special test mechanisms.

 86

5.6.2 Test Verification

To ensure that the running average test program was a thorough test, a test

verification mechanism was developed the performed the following functions:

1) Scan the running average source code and locate each numeric

string

2) For each such string

a) Create a version of the source program with that numeric string

increased by 1.

b) Compile that version

c) If no compilation error, run the validation test noting failures.

d) Repeat a)-c) with the original string decreased in value by 1.

This verification test produced interesting results. The first was that a condition

could exist during code reuse that would cause the program to hang up by an

inadvertent recursion if the length of the error message explaining that an error

message was too long, was itself too long. That problem has been corrected in the

final version presented here. The second was an interesting oversight of

requirements definition. A user, the operating system, was not identified as a

consumer of data from the program. The program environment, unix, expects an

error code returned by programs. From habit, this author programmed such exit

codes, however, they were never specified during requirements definition nor

during design. Though they have been coded into the test for validation, they are

 87

still not specified in the requirements and design. The third was trivial in that the

fault injection software permuted numeric values that occurred in comments and, of

course, such �defects� could not be detected by the run time test. The fault injection

software was modified to ignore numeric values in comments. The forth concerned

configuration information. Some configuration parameters do not affect the

external operation of the system such that modification of one of these parameters

would not cause the system to malfunction. For example, in the running average

example, there is an internal parameter, Exit, that is the value returned by the Input

to indicate that the operator has requested program termination. As long as this

value is unique from the input values themselves, values are indistinguishable

external to the program.

There are 46 non-comment numeric constants in the running average

program resulting in 92 test validation cases. Of these cases, the program could not

be compiled in 3 cases. With the correction of the identified defects in the code and

test only 15 of the cases went undetected. The test validation procedure detect 74

of the 92 faults that were injected into the source code. The source for the test

verification program together with the verification results are published in

Appendix G.

 88

5.6.3 Scaleability

This method of design has been tested on relatively small problems and the

question of whether it be useful for large programming system still remains. This

is the problem known as scalability. I claim that the suggested modifications to the

design process are as scalable as the process itself. One manner that the technique

shown is scalable is that as the system is decomposed into components, each of

those components may be considered a system in itself and the same technique as

applied to systems may be applied to components as though they were complete

systems. It should be noted that the design methods shown here are concerned only

with the software component of a system and assumes that the total system has

already been decomposed into a hardware component and a software component.

Other decomposition may have been applied to define what the �system� is that is

under design.

 89

Chapter 6. Case Study: Kernighan and Pike Markov Chain

Algorithm

The best software available today is not engineered but is the product of

skilled craftsmanship. Software development texts, in general, provide directions

and examples for crafting software and honing craftsmanship skills. [Kernighan &

Pike, 1999] is an example of such a text and Brian W. Kernighan is recognized as

one of the best software development craftsmen in the business today. The

implementation of the �Markov Chain Algorithm� found in this text is a typical

example of coding examples in software development texts. This is a very well

crafted piece of software. Never-the-less, this program �fails� when put to rigorous

testing. Defining failure in crafted software is problematic, however, since there is

seldom, if ever, a clear definition of the function of the software. For example, this

Markov Chain algorithm processes �words.� No clear definition of this term is

provided, and, in fact, such a definition is required as the basis for the claim that

the software fails. In general, this program inputs �words� and reproduces those

�words� in a different sequence. The code provided does not do this in 100% of

the cases because the fscanf() function utilized by this program does not produce

proper C strings, but rather produces an array of char. This standard library

routine, fscanf(), treats the null character (\000) as a valid input character which it

reproduces in the output. This, however, is the C language string termination

character and during string processing, including output, signifies the end of the

 90

string. Thus characters following the null character in the same �word� are not

reproduced when the character array is output as a string.

Using the Markov algorithm as a case study requires that the entire problem

be re-engineered to meet some general requirements that are not met in the original

example. Some of these requirements are 1) reusability, 2) robustness, 3)

maintainability 4) reliability 5) fault tolerance., and 6) user friendliness

(operability). The decomposition of these requirements result in such derived

requirements as 1.1) Precise function definition, 1.2) Defined boundaries of

operation, 3.1) Clear, concise, unambiguous error messages, 3.2) Functional

modularity, 5.1) Corrects errors where possible. For reuse, the system

documentation must make clear the operation performed so that a potential new

user of the system or system code may determine easily whether the system will

apply to a new application.

On the issue of reuse, when considering a software component that has

already been designed and tested, such as the Markov Chain algorithm of this case

study, the constraints of the component must be known to determine whether the

component is useful for a new design under consideration. For this example, given

that the Markov algorithm for random text generation based on a random walk

through a given source text is the desired feature, is the capacity of this previously

designed component sufficient for the new application? The answer to this

question for the example in the cited text is not known. In fact, repeated executions

 91

with the same input data may produce different results depending on how busy the

system is that is executing the program. The reliance on malloc() to assign memory

as needed by the program means that the results of running the program with the

same set of data is not repeatable, i.e., the program may process an input text on

one occasion, but will not process that same text on another occasion. The quantity

of data that may be processed is dependent on the amount of free memory in the

system at the time of execution. Memory requirements for the system are not

specified.

6.1 System Context Diagram

We begin the redevelopment with a simple system context diagram as

shown in Figure 7. This diagram indicates that the user initiates the program and

that Words, White Space, and an End of File are processed from standard input and

that Words are sent to standard output.

 92

Figure 7 -- Markov-Chain Random Text Generator System Context Diagram A

6.2 Transaction Analysis

This information is copied into the transaction analysis table shown in

Table 6. The important new feature of the transaction analysis table added by this

dissertation is the constraints on the transactions. This is where important

definitions are included in the design, such as the precise definition of �Word� that

is lacking in [Kernighan & Pike, 1999]. Other important constraints are also

identified, such as the number of unique �Words� that may be processed, the

definition of �White Space,� and the character set from which �Words� are

composed. In addition, by the rule that each transaction must have a corresponding

Markov-chain
Random Text

Generator

Standard
Input

Standard
Output

Words

User

Words,
White space,
End of File

Initiate

 93

transaction to process a violation of that constraint, transactions identifying error

conditions are also defined (with associated constraints.) The special self

referential transaction 12 provides for system errors corresponding to failure to

process constraint violation transactions.

 94

Table 5 -- Markov Algorithm Transaction Analysis

Item Transaction New User
Identified

New
Input

Identified

New
Output

Identified

Constraints

1 User initiates
program

User Invoke

2 Standard Input
provides Word

Standard
Input

Word A word consists of
one or more
printable ASCII
characters.
Printable ASCII
characters are
valued 33..126 ('!' ..
'~'). Words may be
no more than 20
characters in length.

3 Standard Input
provides White
Space

 White
Space

 White space
consists of one or
more white space
characters (tab,
space, newline).

4 Standard Input
provides End of
File

 End of
File

 The total number of
words may not
exceed 50,000. The
total number of
unique words may
not exceed 20,000.

5 System determines
valid successors.

 For each word, a
valid successor is
defined as the word
following any
identical word for
which the prior word
in the input stream
is also identical.
The number of valid
successors may not
exceed the total
number of words.

 95

Item Transaction New User
Identified

New
Input

Identified

New
Output

Identified

Constraints

6 System emits
random valid
successors to
Standard Output

Standard
Output

 Valid
Successor

Word

Starting with the first
word from standard
input, a randomly
selected (even
distribution) valid
successor is output
on each output line.
A maximum of
10,000 words may
be output.

7 System emits
Invalid Character
Message to Error
Output

Error Output Invalid
Character
Message

Message must fit
error display area.

8 System emits
Invalid Word
Length Message to
Error Output

 Invalid
Word

Length
Message

Message must fit
error display area.

9 System emits Too
Many Words Error
Message to Error
Output

 Too Many
Words
Error

Message

Message must fit
error display area.

10 System emits Too
Many New Words
Error Message to
Error Output

 Too Many
New

Words
Error

Message

Message must fit
error display area.

11 System emits Too
Many Successors
Error Message to
Error Output

 Too Many
Successor

s Error
Message

Message must fit
error display area.

12 System emits
Invalid Error
Message Message
to Error Ourput

 Invalid
Error

Message
Message

Message must fit
error display area.

 96

6.3 System Context Diagram Revisited

The expansion of the transaction table to include transactions for processing

constraint violations has identified a new user, Error Output, with associated data

structures identified external to the system. We redraw the system context diagram

in Figure 8 to include this new user and the additional data structures.

Figure 8 -- Markov-Chain Random Text Generator System Context Diagram B

Standard
Input

Standard
Output

User Error
Output

Markov-chain
Random Text

Generator

Invalid Character Message
Invalid Word Length Message
Invalid Error Message Message
Too Many Words Error Message
Too Many Successors Error Message
Too Many New Words Error Message

Initiate

White space
End of File

Words

Words

 97

6.4 Data Structures and Decomposition

We begin the design of our random text generating system by decomposing

the system into smaller subsystems. The recommended method of decomposition

is based on information hiding. By examination of the transaction analysis table

we see that there are two fundamental data structures mentioned, Words and Valid

Successors. Our arguments for storing only unique input words cannot improve on

[Kernighan & Pike, 1999], however, there the similarity ends. We retain the

original order of the text by maintaining a list of the words in input order. The text

is maintained in a text pool as a �string� but instead of pointers, an index into the

text pool identifies specific word text. Thus, the input word sequence is stored as a

sequence of text pool indices. Our choice for identifying unique words is to

maintain a binary tree with a node associated with each unique word. We also

maintain a circular list of all of the occurrences of each unique word. This allows

quick identification of the location of all identical words starting from any word

position in the text. A word that occurs only once will refer immediately back to

itself. We could use this structure with the Markov Chain concept to compute valid

successors in the same manner as [Kernighan & Pike, 1999], however, this

ingenious and clever idea is unnecessary. It is the opinion of this author that clever

solutions should be avoided because of the cost of maintenance of such programs.

In this case, we no longer need to deal with data of unknown length since we have

a design requirement that constraints be specified. It seems a simple matter that if

 98

we know the number of valid successors to any word position, we can easily

randomly select one of them. A second data structure is required to identify the

valid successors. As with the text, the valid successors may be kept in a successor

pool and a pointer and count of successors will identify each valid successor list.

Only one such list need be maintained for each unique word pair, so the list is

associated with the first occurrence of the word pair for the successor list. This

means that it will be necessary for each word in the original word list to identify the

first occurrence of the word pair to which it belongs.

These data structures determine the need for subsystem components. The

contents of a component is determined by the type of access to the data structure

defined within the component. All storage modification references to a data

structure are contained in the same component and the data structure is global to

that component. External access to the data in that component is controlled by

access functions that return the requested data, after validating that the request for

data is valid. Functions within a component are �trusted.� This means that the

code in a given component is assumed correct within that component, i.e., a

component does not corrupt its own data. This is avoided by rigorous checking of

storage constraints to ensure that data as stored is correct.

In addition to the definition of the data structures, a complete definition of

error conditions and messages is provided. All error message text is defined in a

single file so they may be translated easily to additional languages. There is

 99

another benefit to this technique, and that is that each error has a unique and

testable identifier. This design follows the original requirement that the system

terminate operation on a failure. In a more realistic system designed for fault

tolerance, the nature of the error is passed to the user for error recovery. The

knowledge of the specific error is usually necessary for this recovery to take place

and this method of error identification supports that requirement

Table 6 -- Markov Chain Preliminary Data Dictionary

Item Data Item Usage Description Constraints Origin

1 Word Input A Sequence of printable ASCII
characters obtained from
Standard Input

Printable ASCII characters range
from 33 ('!') to 126 ('~'). A word may
contain no more than 20 characters.

TR 2

2 Smallest
Printable
Character

Input
Constraint

The smallest printable ASCII
character.

'!' (value of 33) PDD 1

3 Largest
Printable
Character

Input
Constraint

The largest printable ASCII
character.

'~' (value of 126) PDD 1

4 Maximum
Word Length

Input
Constraint

Maximum number of
characters in a Word

20 Characters. PDD 1

5 White Space Input Word delimiters; the ASCII
characters for tab, space, and
newline.

Tab (9), space (32), or newline (10). TR 3

6 End of File Input Standard unix end of file
value.

Normally -1. TR 4

7 Maximum
Number of

Words

Input
Constraint

Maximum number of words
that my be read from standard
input.

50,000 words. TR 4

Item Data Item Usage Description Constraints Origin

8 Maximum
Number of

Unique
Words

Input
Constraint

Maximum number of different
words.

20,000. TR 4

9 Valid
Successors

Storage A list for each input word of
valid successors for that word.

For each alternative successor, both
immediate predecessor input words
must be identical.

TR 5

10 Maximum
Valid

Successors

Storage
Constraint

There can be no more
successors that there are
words.

Maximum Number of Words TR 5,
PDD 7

11 Valid
Successor

Word

Output A random selection from the
Valid Successors

Uniform distribution of selection from
Valid Successors.

TR 6,
PDD 9

12 Maximum
Words
Output

Output
Constraint

The maximum number of
words that may appear on the
output.

10,000 TR 6

13 Invalid
Character
Message

Output Error message when an
invalid input character has
been encountered.

Must fit in the display area. TR 7

Item Data Item Usage Description Constraints Origin

14 Invalid Word
Length

Message

Output Error message when a word is
too long.

Must fit in the display area. TR 8

15 Too Many
Words Error

Message

Output Error message when too many
words have been input.

Must fit in the display area. TR 9

16 Too Many
New Words

Error
Message

Output Error message when too many
unique words have been input.

Must fit in the display area. TR 10

17 Too Many
Successors

Error
Message

Output Error message when a too
many unique words have been
input.

Must fit in the display area. TR 11

18 Invalid Error
Message
Message

Output Error message when an error
message of invalid length has
occurred.

Should fit the display area. (Over
length message may be truncated.)
The display area is defined as 79
characters. (Line wrap, after the 80th
character, causes an additional,
unwanted new line.)

TR 12,
PDD 13, 14,
15, 16, 17,

18

 103

Rather than rely on the Markov chain to select from a list of unknown

length, structures of known length are utilized. The requirement that arrays be of

known length so that constraints may be checked allows the problem to be defined

in a manner such that the number of valid successor words for each word of the

source text may be computed. This makes the computation of a random successor

trivial and easy to understand. To minimize the storage required for text, a text

pool is created that stores only unique words. A list of words is maintained and the

word list contains the index to the text of the word, word numbers for lesser and

greater words of a binary tree for searching for new words, and a circular linked list

of identical words. By searching each circular list of identical words, identical

word pairs may be located to compile a list of valid successors. (If a word pair

occurs only once, the only valid successor is the next word in sequence.) The

second data structure contains the lists of valid successors for each word of the

source text. Similar to the manner in which text is saved in a text pool, the lists of

valid successors are kept in a pool of successor lists. If there is only one valid

successor, it need not be stored in the pool since it is the next word in succession.

Further, the list of successors only need be associated with one occurrence of the

prefix word pair, so subsequent use of the valid successor list may simply refer to

the first reference to the list. These data structures are defined in detail in the Final

Data Dictionary in Table 7.

Table 7 -- Markov Chain Final Data Dictionary

Item Data Item Usage Description Constraints Origin

1 Word Input A Sequence of printable ASCII
characters obtained from
Standard Input

Printable ASCII characters range
from 33 ('!') to 126 ('~'). A word may
contain no more than 20 characters.

TR 2

2 Smallest
Printable
Character

Input
Constraint

The smallest printable ASCII
character.

'!' (value of 33) PDD 1

3 Largest
Printable
Character

Input
Constraint

The largest printable ASCII
character.

'~' (value of 126) PDD 1

4 Maximum
Word Length

Input
Constraint

Maximum number of
characters in a Word

20 Characters. PDD 1

5 White Space Input Word delimiters; the ASCII
characters for tab, space, and
newline.

Tab (9), space (32), or newline (10). TR 3

6 End of File Input Standard unix end of file
value.

Normally -1. TR 4

7 Maximum
Number of

Words

Input
Constraint

Maximum number of words
that my be read from standard
input.

50,000 words. TR 4

Item Data Item Usage Description Constraints Origin

8 Maximum
Number of

Unique
Words

Input
Constraint

Maximum number of different
words.

20,000. TR 4

9 Valid
Successors

Storage A list for each input word of
valid successors for that word.

For each alternative successor, both
immediate predecessor input words
must be identical.

TR 5

10 Maximum
Valid

Successors

Storage
Constraint

There can be no more
successors that there are
words.

Maximum Number of Words TR 5,
PDD 7

11 Valid
Successor

Word

Output A random selection from the
Valid Successors

Uniform distribution of selection from
Valid Successors.

TR 6,
PDD 9

12 Maximum
Words
Output

Output
Constraint

The maximum number of
words that may appear on the
output.

10,000 TR 6

13 Invalid
Character
Message

Output Error message when an
invalid input character has
been encountered.

Must fit in the display area. “Invalid
Character. Not a valid text file.”

TR 7

Item Data Item Usage Description Constraints Origin

14 Invalid Word
Length

Message

Output Error message when a word is
too long.

Must fit in the display area. “Word
too long.”

TR 8

15 Too Many
Words Error

Message

Output Error message when too many
words have been input.

Must fit in the display area. “Too
many words encountered.”

TR 9

16 Too Many
New Words

Error
Message

Output Error message when too many
unique words have been input.

Must fit in the display area. “Too
many new words encountered.”

TR 10

17 Too Many
Successors

Error
Message

Output Error message when a too
many unique words have been
input.

Must fit in the display area. “System
Error. Too many successors.”

TR 11

18 Invalid Error
Message
Message

Output Error message when an error
message of invalid length has
occurred.

Should fit the display area. (Over
length message may be truncated.)
“System Error. Error message
truncated.”

TR 12,
PDD 13, 14,
15, 16, 17,

18

19 Text Storage Character storage for unique
words.

Each word is preceded and followed
by a null character. Only unique
words are stored.

FDD 1

Item Data Item Usage Description Constraints Origin

20 Stored
Characters

Storage The number of characters
stored in Text

Must be less than or equal to the
(Maximum Word Length + 1) *
Maximum Number of Words + 1.

FDD 1, 4, 7

21 Word List Storage An array of information about
each word ordered by input.

One entry for each word of source.
Size is Maximum Number of Words

FDD 1

22 Words Storage The number of words in the
source.

Must be less than or equal to the
Maximum Number of Words

FDD 7

22 Text Index Storage Item in Word List. Character
index in Text of the Word.

Greater that equal to 1, Less than or
equal to the number of character
stored in Text.

FDD 1

23 Lesser Storage Item in Word List. Binary tree
branch for limb less than the
current word. Contains a
Word Number of Word List.

Must be less than or equal to Words. FDD 8

24 Greater Storage Item in Word List. Binary tree
branch for limb greater than
the current word. Contains a
Word Number of Word List.

Must be less than or equal to Words. FDD 8

25 Next Storage Item in Word List. Word
number of the next word of a
circular list of equal words.

Must be less than or equal to Words.
All Words in circular list will have
equal Text Index values.

FDD 8

Item Data Item Usage Description Constraints Origin

26 Successor
List

Storage The collective pool of valid
successor lists. Each
successor list is a list of Word
Numbers of valid successors
to the current word.

There are no more Successors than
there are words.

FDD 9

27 Successors Storage The list of successor
parameters. There is one
entry for reach Word Index.

There are no more Successors than
there are words. Will have the value
1 when there is only 1 valid
successor or the current word is not
the first occurrence of the matching
word pair.

FDD 9,10

28 Successor Storage An item in Successors. The
index to the Successor list for
the list of valid successors for
this word.

Must be less than or equal to the
number of successors stored in the
Successor List

FDD 10

29 Valid
Successor

Words

Storage An item in Successors. This
entry is the number of
successor words that will be
found at Successor.

Must be less than or equal to the
number of successors stored in the
Successor List.

FDD 10

Item Data Item Usage Description Constraints Origin

30 First Storage An item in Successors. The
successor list is associated
with the first occurrence of
second word of a set of
matching word pairs. First is
the Word Index of that first
occurrence of the word pair.

Must be the word index of the first
occurrence of duplicate word pairs.

 110

6.5 Implementation

Appendix H contains the program source for the Markov Chain system.

This program does not have the �defect� of the original code in [Kernighan and

Pike, 1999] caused by accepting non-printable (and string terminating) characters.

But in addition to correcting the defect, the detailed properties of the entire

program are defined and specified. The quantity of input data that the program can

process is clearly defined as well as the consequences when the constraints are

violated.

 111

Summary

This dissertation has shown that modern software fails and fails frequently.

By examining many failures of commercial, off-the-shelf software, assumed to be

thoroughly tested before release and sale, a new method of categorizing failures has

been identified. These failure categories are based on the incorrect or incomplete

design of constraints for input, output, storage, and computation. These constraints

are shown to be partition values for operational modes and that by design of

operational modes, these constraints will be included in the design and these

classes of defects can be eliminated. Improvements to existing design

methodology have been recommended to develop the information necessary to

design operational modes. A simple process is presented illustrating how to

implement these methodological improvements. This process is applied to a small

design example previously proven to be correct, yet containing defects within the

defect classifications presented. By redesigning this example using the improved

development methodology, the defects no longer exist.

The improvements in the design technique suggest a metric for robustness,

i.e., the robustness of a system can be defined as the percentage of constraints

implemented in the final code.

This development technique has been applied to a more serious case study

and has proven to be scalable. A defect in the original code of the case study has

been corrected as a matter of course using the defined improvements to the design

 112

process. In addition to correcting the defect, the result is a clearly specified

function the produces repeatable results.

 113

Conclusions

Software has a reputation for unreliability that has been verified in this

dissertation. Software is generally unreliable due to an underlying weakness in the

methodology used to develop software.

Examination of failures produced in the laboratory with respect to

operational modes reveals that there is an underlying reason for this unreliability.

This reason is the failure to provide proper constraint checking and corresponding

constraint violation processing.

This dissertation has developed a fault classification system. Faults can be

classified into four general categories; failure to properly constrain inputs, outputs,

stored values, and computations. All software failures examined by this research

fell into one or more of these fault categories. For software to be robust, it must test

all such constraints and respond appropriately. The �Garbage In Garbage Out�

(GIGO) paradigm for software development does not lead to robust software.

I propose that this weakness can be strengthened by improvements to

software engineering process. The specifics of the improvements are:

1. Mandate the definition of constraints on all transactions during

requirements analysis, specifically on all system inputs and outputs.

2. Propagate those constraints into the design phase.

3. Require the definition of constraints on storage and procedures defined

during design.

4. Implement all defined constraints in code.

 114

There are many research issues still remaining. Some of the research areas

identified include:

1. Constraints of floating point precision

2. Decomposition optimization

3. Data structure selection criteria

Very little testing technology exists for checking constraints on internally

stored data and for finding input sequences that violate them. One area for

additional research beyond this dissertation may be to construct models of

sequences based on the relationship of inputs and the knowledge of how data is

stored in the system. Such a model might then be used to verify the correct

operation of the system for arbitrary input.

The constraint violation class of defects creates a very dangerous situation

for users. Frequently, the system either crashes or corrupts internal data such that

results are no longer trustworthy but the user is not so informed. This paper

addresses only the design issues necessary to avoid constraint violation defects and

does not address the testing technology necessary to detect all constraint violation

defects. Since testing theory covers this subject meagerly, this area is ripe for

additional research.

 115

Future Work

This work has exposed many problems and questions that need resolution

before the general technology of software engineering may be said to produce

reliable software of a known quality.

A common reaction by a developer to a tester exposing an anomaly is that

the problem is caused by the environment. A typical example is the problem

introduced by floating point precision. In general, we accept the defects introduced

by floating point precision errors, yet such errors may cause serious and unnoticed

software failure. Floating point now detects and represents overflow and

underflow as well as undefined values. Can it not detect and represent loss of

precision? Floating point precision is a constraint that may be applied to the four

categories of failure defined in this dissertation. Other environmental issues are

created by defects in the operating system and common-use libraries. Should any

subsystem �trust� any other subsystem?

Some effort has been expended to provide criteria for component

decomposition and data structure selection. These design areas must now be re-

examined in light of imposing constraints and processing constraint violations.

Indeed, this dissertation has shown that all computer operations may produce errors

and the current methods of dealing with errors, such as exceptions, do not provide

sufficient flexibility to deal will all error processing paradigms. Current program

 116

languages do not have effective standard methods of reporting errors between

components nor represent erroneous information in data structures. There are no

existing standards for error messages or reporting diagnostic information, such as

component trace-back. These are fruitful areas for research.

Previous efforts have developed methods for the reverse engineering of

operational modes and to employ those operational modes in the automated

generation of software test cases. With the explicit definition of operational modes

presented here, it should now be possible to provide operational mode

characteristics directly to such test design automation tools. In addition the

relationship between operational modes and system usability and between

operational modes and general system reliability should be studied.

We infer that by using operational mode design we can eliminate false

states that could be reached by erroneous software and that reaching these states

will cause serious software failure. However, this reverse engineering of

operational modes has proven to be somewhat ad hoc. The operational mode idea

can be expanded to reverse engineer existing software operational modes and

determine the false states with the associated vulnerability. Techniques must be

developed to reliably acquire operational modes and values from existing software.

This is required not only to determine system states that must be tested, but to

provide the information necessary to re-engineer operational modes to correct

defective operational mode design.

 117

Initial examination of the development of the constraints and hence, the

operational modes of a system, suggests that this is a highly repetitive process and

should be ripe for automation. The recognition and implementation of operational

mode (and mode values) must be thorough and automation would enhance this

requirement.

State explosion can still occur making a full system state model impractical.

It is possible to design a system in which all variables are global and the

decomposition of modules is such that components access a large number of data

structures in common with other components. This prolific use of high level

access to shared data (low system cohesion) results in a large number of

operational modes and since the states of a system are derived from the cross

product of operational modes, state explosion will surely occur. One clear

objective of operational mode design is to establish high system cohesion.

Similarly, if the modules unnecessarily create unneeded partitions values, there will

be an increase in the number of operational mode values and a corresponding

increase in the number of states. The tried and true method of information hiding

makes operational modes invisible outside the information access functions and

consequently such variables do not contribute to system operational modes thereby

reducing state explosion.

Since deterministic finite automata do not represent all reasonable

computations, a DFA is not a sufficient model. More sophisticated modeling

 118

techniques are required that may include grammars or other tools of formal

language theory. Is there a relationship between operational modes and grammars?

Though the design methodology modification presented contributes to the

accuracy of development and design, the question remains, �Are there software

defects that can occur even though this process is followed with rigor?� Though

this method improves and extends our capability to define and discover

requirements, will all requirements be defined? Have we captured all data

constraints?

As noted by Knuth in 1968 [Knuth, 1973] and again in 1999, software

development is still an art. Before we can declare software development an

engineering science, we will need the answer to these questions and to many

others.

 119

References

[Aitken & Jones, 1995] Aitken, Peter G., and Bradley L. Jones. Teach Yourself C

Programming in 21 Days, Sams Publishing, 1995.

[ANSI, 1997] American National Standards Institute (ANSI), Information

Systems - Coded Character Sets - 7-Bit American National

Standard Code for Information Interchange (7-Bit ASCII).

Document Number: ANSI X3.4-1986 (R1997), New York:

American National Standards Institute, 1997.

[Baber, 1997] Baber, Robert L �The Ariane 5 explosion as seen by a software

engineer .� http://www.cs.wits.ac.za/~bob/ariane5.htm,

Johannesburg, South Africa: University of the Witwatersrand,

1997.

[Berard, 1993] Berard, E.V., Essays on Object-Oriented Software Engineering,

Englewood Cliffs, NJ:Prentice-Hall, 1993.

[Booch, 1994] Booch, Grady. Object-Oriented Analysis and Design with

Applications. Benjamin-Cummings. 1994.

 120

 [Booch, et al., 1999] Booch, Grady, James Rumbaugh, and Ivar Jacobson. The

Unified Modeling Language User Guide. Reading Massachusetts:

Addison-Wesley, 1999.

[Bergner, et al., 1997] Bergner, Klaus, Andreas Rausch, and Marc Sihling,

�Using UML for Modeling a Distributed Java Application.�

Müchen: Mathematisches Institut und Institut für Informatik der

Technisichen Universität, July 1997.

[Becker & Whittaker, 1997a] Becker, Shirley A., and James A. Whittaker. �An

Overview of Cleanroom Software Engineering.� Cleanroom

Software Engineering Practices, Edited by Shirley A. Becker and

James A. Whittaker, Harrisburg PA: Idea Group Publishing, 1997.

[Crawley & Miller, 1983] Crawley, Winston and Charles E. Miller A Structured

Approach to FORTRAN, Prentice Hall, 1983.

 [Cobb & Mills, 1990] Cobb, Richard, and Harlan Mills. �Engineering Software

under Statistical Quality Control.� IEEE Software, 7 (November

1990.): 44-54.

[Cosmo, 1994] Cosmo, Henrick. Black-box specification Language for Software

Systems. Masters Thesis, Lund University, 1994. Sweden:

Department of Communication Systems.

 121

[Deitel & Deitel, 1994] Deitel, Harvey M., and Paul J. Deitel, C++ How to

Program, 2nd Edition, Prentice Hall Engineering, 1994.

[Deck, 1997] Deck, Michael. �Development Practices.� Cleanroom Software

Engineering Practices, Edited by Shirley A. Becker and James A.

Whittaker. Harrisburg PA: Idea Group Publishing, 1997.

[Dale, et al., 1997] Dale, Nell, Chip Weems, and John McCormick.

Programming and Problem Solving with Ada. Boston,

Massachusetts: Jones and Bartlett Publishiers, 1997.

[Dale & Whittaker, 1997a] Deck, Michael, and James A. Whittaker. �Lessons

Learned from Fifteen Years of Cleanroom Testing.� Presented at

Software Testing, Analysis And Review (STAR) �97, Cleanroom

Software Engineering, Inc., 1997.

[De Marco, 1979] De Marco, Tom, Structured Analysis and System Specification,

Englewood Cliffs, New Jersey: Prentice-Hall, 1979.

[El-Far, 1999] El-Far, Ibrahim Khalil Ibrahim. Automated Construction of

Software Behavior Models. Master's Thesis, Florida Institute of

Technology, May, 1999.

 122

[Etter, 1993] Etter, D.M., Structured Fortran 77 for Engineers and Scientists, 4th

Edition., Menlo Park, California: Benjamin/Cummings Publishers,

1993.

[Ett & Trammell, 1995] Ett, William and Carmen Trammell. �A Guide to

Integration of Object-Oriented Methods and Cleanroom Software

Engineering.� STARS Task Final - Comment Draft. Loral Federal

Systems, December 22, 1995.

 [Glass, 1998] Glass, Robert L. Software Runaways, Upper Saddle River, NJ:

Prentice Hall, 1998.

[Garlan & Shaw, 1993] Garlan, David and Mary Shaw. An Introduction to

Software Architecture, Advances in Software Engineering and

Knowledge Engineering, Vol. 1. River Edge, NJ: World Scientific

Publishing Company, 1993.

[Halstead, 1975] Halstead, Maurice H. �Toward a Theoretical Basis for

Estimating Programming Effort.� Proceedings of the ACM

Conference,. Association of Computing Machinery, October 1975,

pp. 222-224.

 123

[Heitmeyer, et al., 1997] Heitmeyer, Constance L., James Kirby, and Bruce

Labaw. �Tools for Formal Specification, Verification, and

Validation of Requirements,� Proceedings of the 12th Annual

Conference on Computer Assurance (COMPASS '97), June 16-19,

1997, Gaithersburg, MD.

 [Hevner & Mills, 1993] Hevner, Alan and Harlan Mills. �Box-Structured

Development Method for System Development with Objects.�

IBM Systems Journal. v. 32, no. 2 (1993): 232-251.

[Hopcroft & Ullman, 1979] Hopcroft, John E., and Jeffrey D. Ullman.

Introduction to Automata Theory, Languages, and Computation.

Reading, Massachusetts: Addison-Wesley, 1979.

[IEEE, 1994] IEEE Computer Society. IEEE Standard Dictionary of Measures to

Produce Reliable Software, ANSI/IEEE Standard 982.1-1988,

New York: IEEE, 1994.

[IEEE, 1990] IEEE Computer Society. IEEE Standard for Binary Floating-Point

Arithmetic, IEEE Standard 754-1985(R1990). New York: IEEE,

1990.

 124

[IEEE, 1991] IEEE Computer Society. IEEE Standard Glossary of Software

Engineering Terminology, IEEE Standard 610-12-1990, Corrected

Edition. New York: IEEE, 1991.

[IEEE, 1993] IEEE Computer Society. IEEE Std 830-1993, Recommended

Practice for Software Requirements Specifications, New York:

IEEE, 1993.

[IEEE, 1994] IEEE Computer Society. IEEE Standard Classification for

Software Anomalies, IEEE Standard 1044-1993. New York: IEEE,

1994.

[Leveson, 1995] Leveson, Nancy G. Safeware: System Safety and Computers,

New York: Addison-Wesley, 1995.

[Lions, 1996] Lions, Prof. J. L., Chairman of the Board, �ARIANE 5 Flight 501

Failure Report by the Inquiry Board.�

(http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html)

Paris: 1996.

 [Jacobson, 1995] Jacobson, Ivar. �Use-Case Construct in Object-Oriented

Software Engineering.� In Scenario-Based Design: Envisioning

Work and Technology in Systems Development, edited by John M.

Carroll. John Wiley and Sons, 1995.

 125

[Jacobson, et al., 1999] Jacobson, Ivar, Grady Booch, and James Rumbaugh. The

Unified Software Development Process. Reading Massachusetts:

Addison-Wesley, 1999.

[Jacobson, et al., 1993] Jacobson, Ivar, Magnus Christerson, Patrick Jonsson,

and Gunnar Overgaard. Object-Oriented Software Engineering: A

Use Case Driven Approach, Revised Fourth Printing. Addison

Wesley, 1993.

[Koskimies & Mäkinen, 1994] Koskimies, K. and E. Mäkinen. �Automatic

Synthesis of State Machines from Trace Diagrams.� Software

Practice & Experience, 24,7 (July 1994), 643-658.

 [Koskimies, et al., 1996] Koskimies, K., T. Männistö, T. Systä, and J. Tuomi.

�SCED - A Tool for Dynamic Modeling of Object Systems.�

Report A-1996-4, Department of Computer Science, University of

Tampere. (July 1996).

[Koskimies & Mössenböck, 1996] Koskimies, K.and H. Mössenböck. �Scene:

Using Scenario Diagrams and Active Text for Illustrating Object-

Oriented Programs.� Proceedings of the 18th International

Conference on Software Engineering, Berlin. IEEE Computer

Society Press. (1996):366-375.

 126

[Kasner & Newman, 1940] Kasner, Edward and James Newman., Mathematics

and the Imagination. New York: Penguin Press, 1940.

[Knuth, 1973] Knuth, Donald E. The Art of Computer Programming, Volume

1/Fundamental Algorithms, Second Edition, Reading,

Massachusetts: Addison-Wesley Publishing Company, 1973.

[Knuth, 1975] Knuth, Donald E. The Art of Computer Programming, Volume

3/Sorting and Searching, Second Printing. Reading,

Massachusetts: Addison-Wesley Publishing Company, 1975.

[Kochan, 1988] Kochan, Stephen G. Programming in C, Revised Edition.

Indianapolis, Indiana : Hayden Books, 1988.

 [Kernighan & Plauger, 1978] Kernighan, Brian W., and P. J. Plauger. The

Elements of Programming Style, 2nd Edition, New York:

McGraw-Hill, 1978.

[Kernighan & Plauger, 1981] Kernighan, Brian W., and P. J. Plauger. Software

Tools in Pascal, Reading, Massachusetts: Addison-Wesley

Publishing Company, 1981.

 127

 [Kernighan & Ritchie, 1978] Kernighan, Brian W., and Dennis M. Ritchie. The

C Programming Language, Englewood Cliffs, New Jersey:

Prentice-Hall, (1978).

[Kernighan & Ritchie, 1988] Kernighan, Brian W., and Dennis M. Ritchie. The

C Programming Language: ANSI C Version, Englewood Cliffs,

New Jersey: Prentice-Hall, (1988).

[Kruchten, 1995] Kruchten, Philippe. �The 4+1 View Model.� IEEE Software,

12,6 (November 1995): 42-50.

 [Lezard & Johnson. 1992] Lezard, Tony, and Paul Johnson. �London

Ambulance Service Fails Again.� Forum On Risks to the Public in

Computers and Related Systems. 14,2, (November 9, 1992).

(http://catless.ncl.ac.uk/risks)

[Liberty & Keogh, 1996] Liberty, Jesse and Jim Keogh, C++: An Introduction

To Programming, Que Books, 1996.

[Lambert & Osborne, 1999] Lambert, Kenneth A. and Martin Osborne. Java: A

Framework for Programming and Problem Solving. Boston:

Brooks/Cole Publishing Company, (1999).

 128

 [Lyu, 1996] Lyu, Michael R., editor, Handbook of Software Reliability

Engineering, Los Alamitos: IEEE Computer Society Press, (1996).

[McCabe, 1976] McCabe, Thomas J. �A Software Complexity Measure.� IEEE

Transactions on Software Engineering, Volume SE-2, no. 6,

December 1976, pp. 308-320.

[Mills, et al., 1987] Mills, H. D., M. Dyer, and R. C. Linger. �Cleanroom

software engineering.� IEEE Software. 4,5 (September, 1987):

19-24.

[Meyer, 1992] Meyer, Bertrand. Eiffel: The Language. Englewood Cliffs,

New Jersey: Prentice Hall, 1992.

[Mealy, 1955] Mealy, G. H. �A method of synthesizing sequential circuits.�

Bell System Technical Journal. 34,5 (1955) 1045-1079.

[Moore, 1956] Moore, E. F. �Gedanken experiments on sequential machines.�

Automata Studies. Princeton, NJ: Princeton University Press.

(1956): 129-153.

 129

[Musa, et al., 1996] Musa, John, Gene Fuoco, Nancy Irving, and Diane Kropfl.

�The Operational Profile.� Handbook of Software Reliability

Engineering, Michael R. Lyu, editor, Los Alamitos: IEEE

Computer Society Press, (1996): 167-216.

[Mills, 1988] Mills, H. D. �Stepwise Refinement and Verification in Box-

structured Systems.� IEEE Computer, 21,6, (June 1988): 23-36.

(Also see [Poore & Trammell, 1996 169-197].)

[Mills, et al., 1990] Mills, Harlan, Richard Linger, and Alan Hevner. Principles

of Information Systems Analysis and Design. Academic Press,

1990.

[Mills, et al., 1987] Mills, H. D., R. C. Linger, and A. R. Hevner. �Box structured

information systems.� IBM Systems Journal. 26 (1987): 396-413.

(Or see [Poore & Trammell, 1996 137-167].)

[Mills & Poore, 1988] Mills, H. D., and J. H. Poore. �Bringing software under

statistical quality control.� Quality Progress, (November, 1988):

52-55.

[Mössenböck & Koskimies, 1996] Mössenböck, H., and K. Koskimies. �Active

text for structuring and understanding source code.� Software

Practice & Experience, 26,7 (July 1996): 833--850.

 130

[Myers, 1979] Myers, Glenford. The Art of Software Testing, , New York: Wiley

& Sons, 1979.

[Parnas, 1972] Parnas, D. L. �On the Criteria to Be Used in Decomposing

Systems into Modules.� Classics in Software Engineering,

Edward Nash Yourdon, Editor, New York: Yourdon Press, [1997]:

141-150. (Originally published in Communications of the ACM,

Association for Computing Machinery, [December, 1972]:

1053-58.)

[Peterson, 1995] Peterson, Ivars. Fatal Defect: Chasing Killer Computer Bugs.

New York : Times Books (Random House), 1995.

[Press, et al., 1988] Press, W., B. Flannery, S. Teukolsky, and W. Vetterling,

Numerical Recipes in C. Cambridge University Press, 1988.

[Perry & Kaiser, 1990] Perry, Dewayne and Gail Kaiser. �Adequate Testing and

Object-Oriented Programming.� Journal of Object-Oriented

Programming, 2, 5 (January-February, 1990): 13-19.

[Pressman, 1997] Pressman, Roger S. Software Engineering, A Practitioner�s

Approach, 4th Edition, New York: McGraw-Hill, 1997.

 131

[Prowell, 1996] Prowell, Stacy J. Sequence-Based Software Specification,

Ph.D. dissertation, University of Tennessee, Knoxville. 1996.

[Prowell, 1997] Prowell, Stacy. �Specification Practices.� Cleanroom Software

Engineering Practices. Edited by Shirley A. Becker and James A.

Whittaker. Harrisburg, PA: Idea Group Publishing (1997):13-36.

[Poore & Trammell, 1996] Poore, J. H., and C. J. Trammell, Cleanroom Software

Engineering: A Reader. Oxford, England: Blackwell Publishers,

1996.

[Paulk, et al., 1993] Paulk, Mark C., Charles V. Weber, Suzanne M. Garcia,

Marybeth Chrissis, and Marilyn Bush. Key Practices of the

Capability Maturity Model, Version 1.1. Technical report

CMU/SEI-93-TR-25, Pittsburgh, Pennsylvania: Software

Engineering Institute, Carnegie Mellon University, 1993.

[Rumbaugh, et al., 1999] Rumbaugh, James, Ivar Jacobson, and Grady Booch,

The Unified Modeling Language Reference Manual. Reading,

Massachusetts: Addison-Wesley, 1999.

[Schildt, 1995] Schildt, Herbert, C the Complete Reference 3/E, 3rd Edition.

Berkeley, California: Osborne McGraw-Hill, 1995.

 132

[Smith, et al., 1985] Smith, Douglas, Maruice Eggen, and Richard St. Andre. A

Transition to Advanced Mathematics, Second Edition, Monterey,

California:Brooks/Cole Publishing Company, 1985.

[Sexton, 1988] Sexton, B. C. �Statistical testing of software.� Master�s thesis,

Department of Computer Science, University of Tennessee, 1988.

[Shooman, 1983] Shooman, Martin L. Software Engineering - Design,

Reliability, and Management, New York: McGraw-Hill, 1983.

[Shaw, 1990] Shaw, Mary. �Toward Higher Level Abstraction for Software

Systems.� Data and Knowledge Engineering 5, , New York, NY:

North Holland, 1990.

 [Shlaer & Mellor, 1992] Shlaer, Sally and Stephen J. Mellor. Object Lifecycles:

Modeling the World in States. Singapore: Yourdon Press, 1992.

[Sorensen, 1995] Sorensen, R. �A Comparison of Software Development

Methodologies.� CrossTalk, January, 1995, pp. 12-18.

[Spivey, 1988] Spivey, J. M., Understanding Z: A specification Language and Its

Formal Semantics. Cambridge University Press, 1988.

[Stroustrup, 1997] Stroustrup, Bjarne, The C++ Programming Language, 3rd

Edition, Addison-Wesley, 1997.

 133

[Stavely, 1998] Stavely, Allan M. Toward Zero-Defect Programming, 1st

Edition, Addison-Wesley, 1998.

[Sudkamp, 1988] Sudkamp, Thomas A. Languages and Machines, An

Introduction to the theory of Computer Science, Addison-Wesley,

1988.

[Suber, 1998] Suber, Peter. �Infinite Reflections.� St. John's Review, XLIV, 2,

Santa Fe, New Mexico:St. John's College (1998): 1-59. Originally

presented as an all-college address at St. John's College in October

1996.

[Sun, 1996] Sun Microsystem Inc. ADL Language Reference Manual. Palo

Alto, California: Sun Microsystems, 1996.

(http://www.smli.com/research/adl/lrm/adl)

 [Thomason, 1990] Thomason, M. G. �Generating functions for stochastic

context-free grammars.� International Journal of Pattern

Recognition and Artificial Intelligence. 4, 4 (April 1990) 553-572.

[Whittaker & Jorgensen, 1999] Whittaker, James A. and Alan A. Jorgensen,

�Why Software Fails.� ACM Software Engineering Notes, July

1999.

 134

[Whittaker, 1997a] Whittaker, James A. �Certification Practices.� Cleanroom

Software Engineering Practices, Edited by Shirley A. Becker and

James A. Whittaker, Harrisburg PA: Idea Group Publishing,

(1997) 83-115.

 [Whittaker, 1997b] Whittaker, James A. �Stochastic software testing.� The

Annals of Software Engineering. 4 (1997) 115-131.

[Whittaker, 1998] Whittaker, James A. Introduction to Software Engineering.

Melbourne, FL: SES Press, 1998.

[Whittaker & Poore, 1993] Whittaker, James A., and J. H. Poore, �Markov

analysis of software specifications.� ACM Transactions on

Software Engineering and Methodology. 3,1 (1993) 93-106.

[Whittaker & Thompson, 1994] Whittaker, J. A. and M. G. Thompson. �A

Markov Chain Model for Statistical Software Testing.� IEEE

Transactions on Software Engineering, 20,10 (1994) 812-824.

[Yourdon, 1989] Yourdon,Edward. Modern Structured Analysis Englewood

Cliffs, N.J.: Prentice Hall, (1989).

APPENDICES

 136

Appendix A – Calculator Anomalies

This appendix enumerates tests and results performed on Microsoft®

Windows 95® Calculator.

Microsoft® calculator may be operated by a sequence of mouse clicks. Each of

these mouse clicks may also be performed with keystrokes and the examples

presented in this appendix are expressed as a sequence of keystrokes. Table 8

describes the function of each keyboard character used in these examples.

Table 8 -- Keyboard to Mouse Click Equivalence

Key
Mouse
Button Key

Mouse
Button Key

Mouse
Button Key

Mouse
Button

- - | Or <Delete> CE h Hyp
! n! ~ Not <Enter> = i Inv
x^3 + + <Esc> C <Insert> Dat
% % < Lsh <F2> Deg l log
% Mod 0-9 0-9 <F2> Dword m dms
& And A-F A-F <F3> Rad n ln
((<Backkspace> Back <F3> Word o cos
)) <Ctrl+A> Ave <F4> Byte p PI
* * <Ctrl+D> s <F4> Grad r 1/x

. or , . <Ctrl+L> MC <F5> Hex s sin
/ / <Ctrl+M> MS <F6> Dec t tan
; Int <Ctrl+P> M+ <F7> Oct v F-E

@ sqrt <Ctrl+R> MR <F8> Bin x Exp
@ x^2 <Ctrl+S> Sta <F9> +/- y x^y
^ Xor <Ctrl+T> Sum

The following test examples are described as keystroke sequences and these

sequences are described with a notational convention. The notation also provides a

method of showing the consequences of those sequences.

 137

Abstractions for keystroke sequences appear as follows:

<Abstraction> ::= <Keystroke Sequence>

where the greater-than and less-than symbols bracket the name of an

abstraction and the symbol �::=� reads �consists of� or �is equivalent to.� This

statement may then be read as �An abstractions consists of a keystroke sequence.�

We provide a notation for repeating keystrokes and keystroke sequences:

<Repeated Keystroke Sequence> ::= <Key>N | <Abstraction>N

where N is a positive integer greater than one. Hence, 96 means depressing

and releasing the �9� key precisely 6 times. The symbol �|� stands for logical

alternation and reads �or.�

Compound keystrokes, such as simultaneously depressing �Ctrl� and

another key, are treated as an abstraction such as <Alt+D> or <Ctrl+x>. Named

keys will also be treated as abstractions such as <F2>, <Esc>, <Backspace>, etc.

For example: <MaxE> = <Esc>913x289 means the label <MaxE>

represents the keystroke sequence: Depress �Escape,� depress �9� 13 times, depress

�x�, then �2�, then �8�, and then �9�. We have now defined an abstraction, <MaxE>,

which represents the maximum value that may be entered into the calculator. As

an additional example, <Invoke Scientific> = <Invoke><Alt+V>s represents

starting the calculator, depressing the �Alt� and �V� keys simultaneously (selecting

the �view� dialog) and then depressing �s� (selecting scientific view). �Invoke� is

 138

a special abstraction representing the initiation of the calculator program. This

provides us with an abstraction for starting the calculator and ensuring that it is in

the scientific mode of operation.

One more addition to this notational convenience:

<Sequence of Keystrokes> ! <Result>

 Where < Result > is the information displayed in the calculator

result window or some other result. When placed in quotation marks, the result is

the information display in the calculator results window. The symbol �!� reads

�results in� or �produces.�

Following are fifteen (15) sequences that produce anomalies. Note that in

each of the following examples, it is possible to save values such as <MaxD> in

memory. Memory recall will replace the results indicated for the abstraction

without having to reproduce the entire sequence described. The full sequence

provides rigor to the description. These sequences are not unique for the results

obtained.

1. Maximum Entry <> Maximum Display

We discover that the maximum value that can be entered can be multiplied

by 105 and therefore the maximum value that can be computed and displayed is

larger than the maximum value that can be entered.

<Invoke Scientific><MaxE>*105= " 9.999999999999e+306

 139

The following sequence defines the maximum value that may be displayed:

<MaxD> = 1797693134862x289=r/107=r

<Invoke Scientific><MaxD> " 1.797693134862e+308

2. Minimum Fixed Point Entry <> Minimum Fixed Point Displayed

In this example, the minimum fixed point value that can be entered is larger

than the minimum fixed point value that can be computed.

<MinFE> = .0111 (The minimum fixed point value that my be entered)

< Invoke Scientific><MinFE>= " 0.000000000001

< Invoke Scientific><MinFE>=/1000= " 0.000000000000001

3. Fixed Point Copy Pastes Incorrectly

Both of the prior examples place the calculator in an anomalous state and an

anomaly may occur after that. In this example, we find that we cannot paste back

into the calculator a value computed by the calculatorF, the small fixed point

number computed above.

< Invoke Scientific><MinFE>=/1000=<Alt+e>c<Alt+e>p

" 0.000000000000

4. Maximum Display not Divisible by 2

In this example, a number can be computed that cannot be divided by two.

Since any number divided by two results in a number of smaller magnitude, the

expectation is that the computation is possible.

 140

<Invoke Scientific><MaxD>/2= " �Result is too large.�

5. Valid Sum or Product Invalid

In a similar manner, it should be possible to multiply any number by one.

<Invoke Scientific><MaxD>*1= " �Result is too large.�

Adding one a very large number should result in no change, since the value

one is out of the precision range of a very large number.

<Invoke Scientific><MaxD>+1= " �Result is too large.�

6. Negative Overflow

This result might be considered valid, however, the calculator is ill prepared

to deal with �-1.#INF.� Clearly, the developers have not anticipated that result

would produce a floating point overflow.

<Invoke Scientific><MaxD>-=3 " -1.#INF

7. Float Copy Pastes Incorrectly

Since the maximum computable value is larger that the maximum value that

may be entered, we would expect that we cannot copy and re-paste this value;

however, paste is allowed but the result is incorrect.

< Invoke Scientific><MaxD>=<Alt+e>c<Alt+e>p "

1.797693134862e+030

The result should be 1.797693134862e+308.

 141

8. Load from Statistics Box Not Displayed

A value sent to the statistics box (STA) is incorrectly displayed when

reloaded to the calculator.

< Invoke Scientific><MaxD><Ctrl+s>r<Insert><Esc><Ctrl+s>l " 0

The correct result is stored in the calculator input. It is the display of the

currently entered value (from the statistics box) that is incorrect.

9. Trig functions of Maximum Display Invalid

The sine and cosine functions should always return a value between �1.0

and +1.0. The tangent function might return �INF� but NANQ is unexpected and

is not anticipated in further calculator processing.

<Invoke Scientific><F2><MaxD>s " 3.137566414384e+306

<Invoke Scientific><F2><MaxD>o " 3.137566414384e+306

<Invoke Scientific><F2><MaxD>t " �1.#QNAN�

10. Trig functions Inaccurate

An error is introduced by even small multiples of 90 degrees.

The cosine of 990 degrees:

<Invoke Scientific><F2>990o " 4.655537023598e-15

The tangent of 990 degrees:

<Invoke Scientific><F2>990t " -2.147979910655e+14

The expected result in each case is zero.

 142

11. Squaring Square Root Invalid

A value exists such that the square of the square root may not be calculated.

The square root of the maximum displayable value may be computed but

this number may not be squared to arrive at the original value.

< Invoke Scientific><MaxD>i@@ " �Result is too large.�

Similarly for cube root and cube functions:

< Invoke Scientific><MaxD>i## " �Result is too large.�

And for natural log:

< Invoke Scientific><MaxD>inn " �Result is too large.�

But interestingly enough, however, for based ten log:

< Invoke Scientific><MaxD>ill " 1.797693134862e+308

This gives us another sequence for <MaxD>:

308.2547155599il

This sequence is not equivalent to <MaxD>, however, because:

< Invoke Scientific><MaxD>-308.2547155599il= " 6.91e+297

12. F-E Erases Display

Changing the display mode from fixed point to exponential in the midst of a

calculation erases the current computation.

<Invoke Scientific>666vv " 666.

However:

<Invoke Scientific>666v*v " 0.

 143

13. F-E Exponentiates Invalid Strings

Defining some additional abstractions plus and minus infinity and for not a

number:

<-Inf> = <MaxD>-=3

<Inf> = <-Inf><F9>

<Nan> = <MaxD>t

The calculator treats these representations of invalid numbers as numbers.

Clicking on the F-E button to change display modes causes these unusual display

values to have exponents appended in the display.

<Invoke Scientific><Inf>v " �1.#INFe+0�

<Invoke Scientific><Nan>v " �1.#QNANe+0�

14. Factorial Function Accepts Invalid Input

Entering a real (non-integer) number should be invalid for the factorial

function.

<Invoke Scientific>1.0121! " �Result is too large.�

15. Dat Clears Invert Mode

The invert function precondition flag should not be reset by operations that

do not perform functions. The DAT function (transferring data to the statistics

box) clears the inverse function precondition flag.

<Invoke Scientific>i " <Invert Box is Checked>

 144

< Invoke Scientific>i<Ctrl+s><Insert> " <Invert Box is not Checked>

 145

Appendix B – Defects in Production Applications

Students from the Spring 1999 class in Software Testing Methods

discovered the defects shown in Table 9 in production applications with a

minimum of training in software testing but including the classifications of

software defects presented in this dissertation.

Table 9 -- Production Software Defects

Report
number

Severity Type Reported by

1 Crash WordPad NT Input array overflow Adam Duccini

2 Crashes Excel WinNT Input constraint Luis Rivera

3 Wrong output in Word 97 Memory? Rahul Chaturvedi

4 Close a file without saving,
Word7 Win95

Stored Data Kay Michel

5 Improperly stored data
constraint in Word 97
WinNT

unhandled input Pi-Yu Lee

6 Wrong result in Money 97
WinNT

Computation
constraint

Cibel Castillo

7 Incorrect Error Message in
MS Paint Win98

unexpected result Rahul Chaturvedi

8 Crashes Netscape 3.0 the browser stops
responding

Rahul Chaturvedi

9 Crashes Internet Explorer
3.0

the browser stops
responding

Rahul Chaturvedi

10 Crashes Microsoft 95/98 system freezes Rahul Chaturvedi

 146

Report
number

Severity Type Reported by

11 Win NT takes an exception
while starting Lotus Bean
Machine

takes an exception Steven Atkins

12 Unexpected result in
WinTeX95 V2.01 and V2.02

unexpected result Mazin Al-Shuaili

13 Unexpected result in
WinTeX95 V2.01 and V2.02

crashes the program Mazin Al-Shuaili

14 Unexpected result in
WinTeX95 V2.01 and V2.02

crashes the program Mazin Al-Shuaili

15 Unexpected result in
WinTeX95 V2.01 and V2.02

unexpected result Mazin Al-Shuaili

16 Crash Word 97/Win
95/98/NT

Stored Data Florence Mottay

17 Bad result in Win CE Rounding Error Florence Mottay

18 Bad result in Win CE Input Constraint Florence Mottay

19 Different compiling errors
with Borland Turbo C++ 3.0
and Visual C++ 6.0. In
Borland: Crash

input/stored data/
computation
constraints

Arun Chitrapu

20 Windows 95 failed after
install and uninstall Win98

? Sharma Vanterpool

21 Disable MS Word to work
properly until reboot of the
machine

memory overflow Giovanna Scaffidi

22 WS_FTP V 951229 Non
existent file transferred

stored data constraint Keyur Shah

23 MS-Access. Closes the
application

stored data constraint Roby Mathew

 147

Report
number

Severity Type Reported by

24 Newtek's Lightwave 3D 5.5
Modeler. Numbers converted
incorrectly

computation or/and
stored data constraint

Luke Nowak

25 Newtek's Lightwave 3D 5.5
Modeler. Program crashes

Input constraint Luke Nowak

26 Install Office 97, Visual C++
v. 5.0 are inaccessible

? Kay Michel

 148

Appendix C – Defects in Software Development Texts

This appendix contains the examples of coding defects found by students in

the spring, 1999 Software Testing Methods class. Each entry identifies 1) the text,

2) the student name identifying the defect, 3) the code questioned by the student,

and 4) the defect classification.

1. Text: The C Programming Language: ANSI C Version, Kernighan and

Ritchie, [Kernighan & Ritchie, 1988, 62]

Student: Steven Atkins

Code: void shellsort(int v[], int n)

Problem: Unconstrained input

2. Text: C++ How to Program, 2nd Edition, Deitel and Deitel, [Deitel &

Deitel, 1994, 62],

Student: Pi-Yu Lee

Code: cin >> integer1

 cin >> integer2

 sum = integer1 + integer2

Problem: Unconstrained computation

 149

3. Text: Programming and Problem Solving with Ada, Dale, Weems and

McCormick, 1997, [Dale, et al., 1997, 361]

Student: Cibel Castillo

Code: Upper_Count : in out Natural

 Upper_Count = UpperCount + 1

Problem: Unconstrained stored data

4. Text: C++ How to Program, 2nd Edition, Deitel and Deitel, [Deitel &

Deitel, 1994, 438],

Student: Keyur Shah

Code: cin>>phone

Problem: Unconstrained input (the format of the phone number is not

checked. If you enter more than 10 digits, the program crashes)

5. Text: Numerical Recipes in C. Press, Flannery, Teukolsky, and

Vetterling, 1988 [Press, et al., 1988].

Student: Mazin Al-Shuaili

Code: fv = (float) v[mn];

Fu = 1.0/sqrt(fv);

Problem: Unconstrained input

 150

6. Text: Teach Yourself C Programming in 21 Days, Aitken and Jones.

[Aitken & Jones, 1995, 71]

Student: Arun Chitrapu

Code: cin>>firstNumber

 cin >>secondNumber
Problem: Unconstrained input (what if firstNumber is greater than the

maximum allowed size for an integer?)

7. Text: C the Complete Reference 3/E, 3rd Edition. Schildt, [Schildt, 1995,

206]

Student: Brian Shirey

Code: char *p;

printf(“Enter an address: “);

scanf(“%p”, &p);

Problem: Unconstrained input (if address is 0000:0000, it will crash)

8. Text: Structured Fortran 77 for Engineers and Scientists, 4th Edition.

Etter,1993, [Etter, 1993, 64].

Student: Jeremy Babb

Code: READ*, CARBON

 AGE = (-LOG(CARBON))/0.0001216

Problem: Unconstrained input (what if carbon is 0)

9. Text: The C++ Programming Language, 3rd Edition, Stroustrup

[Stroustrup, 1997, 50]

Student: John Grant

Code: float x;

 cout <<“Enter length”;

 151

 cin >> length;

Problem: Unconstrained input (what if we enter length = 0)

10. Text: Programming in C, Revised Edition, Kochan, 1988 [Kochan,

1988, 48].

Student: Adam Duccini

Code: int triangular_number

 For (n=1; n<= number; n++)

 triangular_number = triangular_number + n;

Problem: Unconstrained computation

11. Text: A Structured Approach to FORTRAN, Crawley and Miller, 1983,

[Crawley & Miller, 1983, 220]

Student name: Roby Mathew

Code: loop

 Total = total + age

Problem: Unconstrained computation

12. Text: Programming and Problem Solving with Ada, Dale, Weems and

McCormick, 1997, [Dale, et al., 1997, 655]

Student: Luke Nowak

Code: for Column in 1..Column_Length loop

 Total := 0;

 For Row in 1..Row_Length loop

 Total := Total + Total(Row,Column);

 end loop;

 end loop;

Problem: Unconstrained computation

 152

13. Text: C++: An Introduction To Programming, Liberty and Keogh, 1996

[Liberty & Keogh, 1996,207].

Student: Kay Michel

Code: Rectangle* pRect = new Rectangle;

Problem: Unconstrained input (set the pointer to NULL)

 153

Appendix D – Partitions that Create Operational Modes

The main text provides some examples of the derivation of operational

modes from constraints. This appendix provides additional examples of

determining operational modes from natural and artificial partitions of persistent

storage values imposed by input, output, other storage, and other computations.

For the following examples that x and y are16-bit, twos-complement

integers. These examples all may be generalized by considering that x and y are

members of the set, N, of twos-complement numbers (which, by definition, are

always bounded), where N = {n | Min ≤ n ≤ Max, Min is the minimum value

represented and Max is the maximum value represented}.

Operational Mode for Integer Division

As an additional example, consider the integer computation x / y. We assign

to this computation the operational mode Domain(Quotient) = {Valid, Invalid}.

Clearly, the operational mode value must be determined from X and Y. However,

Quotient may be computed from the operational modes of X and Y. Note that the

operational mode values for X and Y have been determined for the constraints on

the division operation only. Other operational mode values may also be introduced

 154

by partitions of X and Y introduced by constraints on inputs, outputs, storage, and

other computations involving X or Y.

Domain(OpMode Numerator) = {Numerator.Nominal, Min},

Domain(OpMode Denominator) =

{Zero, Minus One, Denominator.Nominal}.

Where:

Min = {-32768} = {x | x = -32768}

Numerator.Nominal = {-32767..32767}

= {x | {-32767 x ≤ 32767}

Zero = {0} = {y | y = 0}

Minus One = {-1} = {y | y = -1}

Denominator.Nominal = {-32767..-2,1..32767}

 = {y | {-32767 ≤ y ≤ -2 or 1 ≤ y ≤ 32767}

The complete cross product of the X and Y operational modes is:

(OpMode Numerator x OpMode Denominator) = Quotient =
{ (Numerator.Nominal, Zero),

(Numerator.Nominal, Minus One),

(Numerator.Nominal, Denominator.Nominal),

(Min, Zero),

(Min, Minus One),

(Min, Denominator.Nominal) }

Relating these states to the values of OpMode Quotient,
Valid = { (Numerator.Nominal, Minus One),

(Numerator.Nominal, Denominator.Nominal),

(Min, Denominator.Nominal) }

Invalid = { (Numerator.Nominal, Zero),

(Min, Zero),

(Min, Minus One) }

 155

Note that the values of OpMode Quotient determine the partitions and

hence the operational mode values of X and Y. Thus, the constraints on the

computation imply constraint partitions for the operational mode values of

the operands.

Dynamic Partitions, Integer Addition Operational Mode

The limiting (or constraining) values as illustrated by the previous example

need not always be constant. Consider another integer computation, x + y. We can

assign to this computation, the operational mode Domain(OpMode SUM) =

{Sum.Valid, Sum.Invalid}. Clearly, the operational mode value must be determined

from X and Y. However, OpMode SUM cannot be computed from the operational

modes of X and Y independent of the specific values of x and y:

Domain(X.Mode) = {X.Too Small, X.Nominal, X.Too Big},

Domain(Y.Mode = { Y.Too Small, Y.Nominal, Y.Too Big}

X.Too Small = {x | x < -32768 � y}

X.Too Big = {x | x > 32767 � y}

X.Nominal = {x | -32768 � y ≤ x ≤ 32767 � y }

Y.Too Small = {y | y < -32768 � x}

Y.Too Big = {y | y > 32767 � x}

Y.Nominal = {y | -32768 � x ≤ y ≤ 32767 � x }

Now the operational mode values for SUM can be calculated easily as

SUM.Valid = X.Mode.Nominal ∪ Y.Mode.Nominal

SUM.Invalid = X.Mode.Too Small ∪ X.Mode.Too Big

∪ Y.Mode.Too Small ∪ Y.Mode.Too Big

 156

Assignment Operational Mode

There is another, even simpler limiting case:

x := y (assignment) (x ∈ X, y ∈ Y; X = Y = N = {n | -32768 ≤ n ≤ 32767})

In this example, by implication, the constraints on x are necessarily

constraints on y; that is to say, the operational modes of x and y have the same

values and the same constraining partitions because of the assignment. We also

introduce artificial constraints imposed by arbitrary requirements. For example,

suppose that prior to the assignment we have operational modes:

Domain(OP.X) = {X.Valid, X.Invalid} and

Domain(OP.Y) = { Y.Valid, Y.Invalid},

where OP.X.Valid = {x | 0 ≤ x ≤ 200}, (0 and 200 are arbitrary requirements

costraints) and

X.Invalid = {x | x < 0 or x > 200) and

Y.Valid = {y | 1 ≤ y ≤ 400} and

Y.Invalid = {y | y < 1 or y > 400).

After the assignment, there is a new set of operational mode values

imposed:

Domain(OP.X) = {X.Y.Valid, X.X.Invalid, X.Y.Invalid, X.XY.Invalid}

where X.XY.Valid = {x | 1 ≤ x ≤ 200},

X.X.Invalid = {x | 200 < x ≤ 400},

X.Y.Invalid = {x | x = 0},

X.XY.Invalid = {x | x < 0 or x > 400},

and

Domain(OP.Y) = {Y.XY.Valid, Y.X.Invalid, Y.Y.Invalid, Y.XY.Invalid}

 157

where Y.XY.Valid = {y | 1 ≤ y ≤ 200},

Y.X.Invalid = {y | 200 < y ≤ 400},

Y.Y.Invalid = {y | y = 0},

Y.XY.Invalid = {y | y < 0 or y > 400}.

If this assignment statement must always be executed, y inherits the

constraints on the memory location x and the operational mode OP.Y can be

redifined as:

Domain(OP.Y) = { XY.Valid, Y.Invalid }

where XY.Valid = {y | 1 ≤ y ≤ 200},

 Y.Invalid = {y | y < 0 or y > 200}.

Input and Output Operational Modes

Limitation on input or output can also partition storage values. One

constraint may be the number of digits that may exist in certain input (or output)

fields. For example, consider Input(x), where the limiting field width is four

characters including a sign character. Then the range of values that may be entered

is �999 to 9999 and we can define an operational mode for the input value, x:

Domain(OpMode INPUT) = {Valid, Invalid}

Where Valid = {x | -999 ≤ x ≤ 9999}

Invalid = {x | x < -999 or 9999 < x}

The calculator copy/paste result described in Appendix A is a result of

having different operational modes for the display value, the input value and the

output value. The partition that is the upper bound for input is less than the upper

bound for the partition for output. Consequently there is a range of values that can

 158

be displayed (output) that cannot be input and the copy/paste function will not

work as expected for all values of output.

Appendix E – Running Average Program

/* This program was reformatted by prettyc */
#define D EBUG

/*

 Running Average System

 Alan A. Jorgensen
 Wed Jun 16 12:14:42 EDT 1999

*/

#include <stdio.h>

/* System Configuration Parameters */

#define MaxValues 2000
#define MaxEntry 1000000
#define MaxInt 0x7FFFFFFF
#define LineLength 80

/* Macro to set error message code */

#define SetError(Message) seterror(Message)

/* Macro to display the error message and exit process with error code. */

#define ErrorExit errorexit()

/* Macro to return an error message to caller */

#define Return(ErrorMessage) {ErrorCode = ErrorMessage; return;}

/* Macro to test for existence of error */

1234567890123456789012345678901234567890123456789012345678901234567890
#define Error (ErrorCode != NULL)

/* Macro to display error message and reset error code. */

#define DisplayError displayerror()

/* LineLength, though 80 characters, can only accomodate 79 characters without
line wrap.

To constrain output to no more that 79 characters, for configuable line length we
need a dynamic format string as follows.
*/

char LineLengthFormat[35];
SetFormat()

 {
 sprintf(LineLengthFormat, “%%.%ds\n”, LineLength - 1);
#ifdef DEBUG
 printf(“%s”, LineLengthFormat);
#endif
 }

#if (MaxEntry + (MaxValues / 2)) > (MaxInt / MaxValues)
X CONFIGURATION_ERROR - MaxValues * MaxEntry + MaxValues / 2 must be < MaxInt
#endif

/* Output component

This component displays all messages to the operator and constrains output to the
required display area. */

Output(FILE *Destination, char Message[])
{ /* Output message but truncate to allowed
 length*/
 fprintf(Destination, LineLengthFormat, Message);

 /*
 ** Fatal error if Message is too long
 */
 if (strnlen(Message, LineLength) > LineLength - 1)
 {
 SetError(“Output Message Length Overrun.”);
 ErrorExit;

 }
 }

/* Global Error System */

char * ErrorCode = NULL;

/* Since C does not provide a strnlen function and strlen can address out of
bounds with an improperly terminated string, we provide a strnlen function that
allows bounding the string length search. */

int strnlen(char s[], int l)
 {
 int c;
 for (c = 0; c < l; c++)
 if (s[c] == 0)
 return c;
 return l;
 }

/* Definition of path for error messages */

#define ErrorDevice stdout
#define DisplayDevice stdout

/* Procedure to display the error message and exit
 process with error code. */

errorexit()
 { /* We do not use “Output” or “DisplayError”
 here because they call error exit on an
 error. */
 fprintf(ErrorDevice, LineLengthFormat, ErrorCode);
 fprintf(ErrorDevice, “Fatal Error. Program \
Terminates.\n”);
 exit(1);
 }

/* Procedure to set error message code */

seterror(char * Message)
 {
 ErrorCode = Message;
 }

/* Procedure to display error message and reset error code. */

displayerror()
 {
 Output(ErrorDevice, ErrorCode);
 ErrorCode = NULL;
 }

/* Definition of Average History */

int Values = 0; /* Number of valid values entered. */
int Sum = 0; /* Sum of the valid values entered. */

/* Procedure to set the history to known values. Error
 if values not zero. */

SetHistory(int values, int sum)
 {
 if (Sum != 0)
 Return(“History Already Initialized.”);
 if (Values != 0)
 Return(“History Already Initialized.”);
 Values = values;
 Sum = sum;
 }

/* Procedure to perform normal initialization. History
 (count of values and sum of values) are set to zero.
 The system welcome message is displayed. */

Initialize()
 {
 SetHistory(0, 0);
 Output(DisplayDevice, “Welcome to the Running Average program.”);
 }

/* Definition of unique value produced by the procedure
 “Input” to indicate that program termination has been
 requested. */

#define Exit (-1)

/* Procedure to read input characters and form them into
 valid integer numbers. Only positive numbers are
 allowed. Any other string will result in an error
 message being returned to the user. */

Input(int * Value)
 {
 int Number = 0;
 char Digit;
 Digit = getc(stdin);

 if (Digit == '\n')
 {
 *Value = Exit;
 return;
 }
 while (Digit != '\n')
 {
 if ((Digit < '0')
 ||(Digit > '9'))
 {
 if (!Error)
 {
 SetError(“Invalid Input.”);
 Number = 0;
 }
 }
 else if (!Error)
 {
 if (Number > MaxEntry / 10)
 {
 SetError(“Number entered is too large.”);
 }

 /*
 The control structure used here is
 necessary if the order of evaluation of
 logical expressions is not specified.
 */

 else if (Digit - '0' > MaxEntry - 10 *
 Number)
 {
 SetError(“Number entered is too \
large.”);
 }
 else /* The current value can accommodate
 the next new digit value */

 /* The order of the following computation is
 important if overflow is to be avoided.
 If we add Digit and then subtract the
 representation of '0', we might cause a
 spurious overflow, though the computation
 would correct itself, generating another
 overflow, when we subtract '0'.
 */
 Number = 10 *Number - '0' + Digit;
 }
 Digit = getc(stdin);
 }
 *Value = Number;
 return;
 }

/* Procedure to compute the average of the valid values
 submitted. Boundary values of operational modes are

 checked to ensure that program does not reach an
 invalid state. Error messages indicate unacceptable
 input. System capacity errors are catestrophic and
 the program terminates gracefully. On recieving the
 terminating input the exit message is displayed and
 the program terminates. */

Average()
 {
 int Number = 0;
 if (Error)
 ErrorExit;
 while (Number != Exit)
 {
 Input(&Number);
 if (Error)
 DisplayError;
 else if (Number != Exit)
 {
#ifdef DEBUG
 printf(“You entered %d\n”, Number);
#endif
 if (Number < 0)
 SetError(“Number entered is less than zero.”);
 else if (Number > MaxInt - Sum)
 {
 SetError(“Sum is too large for this value.”);
 ErrorExit;

 }
 else if (Values > MaxValues - 1)
 {
 SetError(“Too many values have been received.”);
 ErrorExit;
 }
 else
 {
 Values = Values + 1;
 Sum = Sum +(long) Number;
 }
 if (Error)
 DisplayError;
 else
 {
#ifdef DEBUG
 printf(“%d values have been entered.\n”, Values);
#endif
 {
 char RunningAverageReport[80];
 sprintf(RunningAverageReport,
 “The current average is %d.”,((Sum +(Values / 2))
Values));
 Output(DisplayDevice, RunningAverageReport);
 }
 }
 }
 }

 Output(DisplayDevice, “Thank you for using Running Average.”);
 }

main(int Params, char * Parameter[])
 {
 int InitialCount;
 int InitialSum;

 /* Build the format message required for output
 constraint.
 */
 SetFormat();

 /* The following code is for test purposes only.
 Normally the program is used with no command line
 parameters; however, if the password “test” is as
 the first command line parameter, the next two
 parameters are values to initialize the count and
 sum. This avoids the necessity of using large
 input streams to test boundary conditions. A
 second password, “trial” tests the prohibition
 against multiple initialization, “long” tests the
 ability to detect excessively long error
 messages.
 */
 if (Params != 1)
 {
 if (!strcmp(Parameter[1], “test”))
 {
 Initialize();

 sscanf(Parameter[2], “%d”, &InitialCount);
 sscanf(Parameter[3], “%d”, &InitialSum);
 SetHistory(InitialCount, InitialSum);
 }
 else if (!strcmp(Parameter[1], “trial”))
 {
 sscanf(Parameter[2], “%d”, &InitialCount);
 sscanf(Parameter[3], “%d”, &InitialSum);
 SetHistory(InitialCount, InitialSum);
 Initialize();
 }
 else if (!strcmp(Parameter[1], “long”))
 { /* Create an excessively long error
 message */
 SetError(
“12345678901234567890123456789012345678901234567890\
12345678901234567890123456789012345678901234567890”
);
 DisplayError;
 }
 else
 {
 SetError(“Invalid Test Command.”);
 ErrorExit;
 }
 }
 else

 /*
 ** End Test Code
 */
 Initialize();
 Average();
 exit(0);
 }

 174

Appendix F – Running Average Program Test

The test for the running average program is a Korn Shell script that tests

each of the constraints defined in the final data dictionary. Each test heading refers

to the data dictionary entry number that is being tested (DD n). Test output is

saved in a file, �ver.2� and compared against the file, �ver� which is the set of

correct answers verified manually.

Verification -- Test Script to verify the running
average program.

function Divider
 {
 echo
“___
________”
 }

function Log
 {
 Divider
 echo
 echo Test $Test
 echo $1 $2 $3 $4 $5 $6 $7 $8 $9
 echo
 Divider
 let Test+=1
 }

function Run
 {
Divider
echo “Test Script to verify the running average
program.”
echo $(date)
Divider
echo

 175

Test=1

Log DD 1, 4-6 Verify Startup and Exit

RunAvg <<.

.
echo Exit Code $?

Log DD 2, 3 Verify Message Length

RunAvg long <<.

.
echo Exit Code $?

Log DD 6, Verify Valid Input Integers

RunAvg <<.
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00000000000000000000000000000000001
0
1000000

.
echo Exit Code $?

Log DD 7, Range of Input Values

RunAvg <<.
-1

 176

-0
0
1000000
1000001

.
echo Exit Code $?

Log DD 8, 9 Invalid Integer Inputs

RunAvg <<.

Blank Line
\0
-0
100000O
1000001

.
echo Exit Code $?

Log DD 10, Average of Maximum Input

RunAvg <<.
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000

 177

1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000
1000000

 178

1000000
1000000
1000000
1000000

.
echo Exit Code $?

Log DD 10, Running Average

RunAvg <<.
0
2
4
10
24
56
128
288
640
1408
3072
6656
14336
30720
65536
139264
294912
622592
1310720
5767168

.
echo Exit Code $?

Log DD 10, Rounding, Zero Result

RunAvg <<.
0
0
1
0
1
0
1

 179

0
1
0
0
1
1
0
0
1
1
0
0
0
1
1
1

.
echo Exit Code $?

Log DD 10, Rounding, Result 1

RunAvg <<.
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
1
0
0
0

.

 180

echo Exit Code $?

Log DD 10, Average with a large number of inputs.
RunAvg test 1998 199800000 <<.
100999
100999
100999

.
echo Exit Code $?

Log DD 11, System Error Message

RunAvg test 1999 21474836470<<.
1
0

.
echo Exit Code $?

Log Reinitialize

RunAvg trial 1999 2000000000 <<.
0
1000000

.
echo Exit Code $?

Log Reinitialize with too many values

RunAvg trial 1999 0<<.
0
1

.
echo Exit Code $?

Log Reinitialize with New Sum too big

RunAvg trial 0 21474836470<<.
0
1

.

 181

echo Exit Code $?

Log Initialize with Sum too big

RunAvg test 0 21474836470<<.
0
1

.
echo Exit Code $?

Divider
 }

Run >ver.2
diff ver ver.2 | sed “s/^< //” | sed “s/^> //”

Following is the set of correct answers for this test.

__

Test Script to verify the running average program.
Sat Oct 23 13:15:26 EDT 1999
__

__

Test 1
DD 1, 4-6 Verify Startup and Exit

__

Welcome to the Running Average program.
Thank you for using Running Average.
Exit Code 0
__

Test 2
DD 2, 3 Verify Message Length

 182

__

12345678901234567890123456789012345678901234567890123456
78901234567890123456789
Output Message Length Overrun.
Fatal Error. Program Terminates.
Exit Code 1
__

Test 3
DD 6, Verify Valid Input Integers

__

Welcome to the Running Average program.
The current average is 1.
The current average is 1.
The current average is 333334.
Thank you for using Running Average.
Exit Code 0
__

Test 4
DD 7, Range of Input Values

__

Welcome to the Running Average program.
Invalid Input.
Invalid Input.
The current average is 0.
The current average is 500000.
Number entered is too large.
Thank you for using Running Average.
Exit Code 0
__

Test 5
DD 8, 9 Invalid Integer Inputs

 183

__

Welcome to the Running Average program.
Invalid Input.
Invalid Input.
Invalid Input.
Invalid Input.
Invalid Input.
Number entered is too large.
Thank you for using Running Average.
Exit Code 0
__

Test 6
DD 10, Average of Maximum Input

__

Welcome to the Running Average program.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.

 184

The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.
The current average is 1000000.

 185

Thank you for using Running Average.
Exit Code 0
__

Test 7
DD 10, Running Average

__

Welcome to the Running Average program.
The current average is 0.
The current average is 1.
The current average is 2.
The current average is 4.
The current average is 8.
The current average is 16.
The current average is 32.
The current average is 64.
The current average is 128.
The current average is 256.
The current average is 512.
The current average is 1024.
The current average is 2048.
The current average is 4096.
The current average is 8192.
The current average is 16384.
The current average is 32768.
The current average is 65536.
Number entered is too large.
Number entered is too large.
Thank you for using Running Average.
Exit Code 0
__

Test 8
DD 10, Rounding, Zero Result

__

Welcome to the Running Average program.
The current average is 0.
The current average is 0.
The current average is 0.

 186

The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
The current average is 0.
Thank you for using Running Average.
Exit Code 0
__

Test 9
DD 10, Rounding, Result 1

__

Welcome to the Running Average program.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.

 187

The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
The current average is 1.
Thank you for using Running Average.
Exit Code 0
__

Test 10
DD 10, Average with a large number of inputs.

__

Welcome to the Running Average program.
The current average is 100000.
The current average is 100001.
Too many values have been received.
Fatal Error. Program Terminates.
Exit Code 1
__

Test 11
DD 11, System Error Message

__

Welcome to the Running Average program.
Sum is too large for this value.
Fatal Error. Program Terminates.
Exit Code 1
__

Test 12
Reinitialize

__

Welcome to the Running Average program.
History Already Initialized.
Fatal Error. Program Terminates.

 188

Exit Code 1
__

Test 13
Reinitialize with too many values

__

Welcome to the Running Average program.
History Already Initialized.
Fatal Error. Program Terminates.
Exit Code 1
__

Test 14
Reinitialize with New Sum too big

__

Welcome to the Running Average program.
History Already Initialized.
Fatal Error. Program Terminates.
Exit Code 1
__

Test 15
Initialize with Sum too big

__

Welcome to the Running Average program.
Sum is too large for this value.
Fatal Error. Program Terminates.
Exit Code 1
__

 189

Appendix G – Running Average Program Test Verification

The running average test program was verified by generating permuted

versions of the running average program and rerunning to test program to ensure

that the defect injected into the permuted program was detected. Permutation was

accomplished by locating numeric strings in the source and replacing them with

values one larger and one smaller in sucessive permutations of the program source.

The was accomplished with the following parsing program designed to emit a list

of numeric string positions in the text when no input parameters are supplied or to

emit a permuted copy of the input when a line number, character position, and

replacement value are supplied as parameters. This parsing program was generated

using the Useful Self Replicating Program (USRP). The source file for the parser

is included as well as the generated parsing C code program.

USRP source:

(#include “Header.h”)
(int number;)
(int pos, ln;)
(int Pos, Ln, Val;)
(char NumberString[1000/];)
(main(int parms, char * Parm[]/))
({ sscanf(Parm[1],”%d”,&Ln/);)
(sscanf(Parm[2],”%d”,&Pos/);)
(sscanf(Parm[3],”%d”,&Val/);)
(printf(“//* Line %d Character Position %d Replaced with
%d. *//\n”,)
(Ln,Pos,Val/);)
(<File>)
(/})

 190

<P> (if (Ln != 0/) printf(“%s”,MatchStr/);)

<Spacing> ::= <Space> | <Tab>

<White Space> ::= <Space> | <Tab> | <Line Break>

<Spaces> ::= { <White Space> }

<CM> (strcat(NumberString, MatchStr/);)

<Number> ::=
 (pos = cp; ln = LineNo; NumberString[0/] = 0;)
 <Digit> (number = MatchStr[0] - '0';) (<CM>)
 {<Digit> (number = 10*number + MatchStr[0] - '0';)
(<CM>) }

<Replace> (return Ln;)

<Empty>

<Save or Replace Number> ::= <Replace>
 (if ((Ln == ln/) && (Pos == pos/)/))
 (printf(“%d”,Val/);)
 (else printf(“%s”,NumberString/);)
 | <Empty> (printf(“Line %d Character %d =
%d\n”,ln,pos,number/);)

<Comment Character> ::= (if ((Line[cp] == '*'/) &&
(Line[cp+1] == '//'/)/))
 (return FALSE;)
 <Any Character> (<P>)

<Comment> ::= //* (<P>) {<Comment Character>}

<Number or Character> ::=
 (if (EndFile/) return FALSE;)
 <Comment> *// (<P>)
 | <Number> <Save or Replace Number>
 | <Any Character> (<P>)

<Program> ::= <Number or Character> {<Number or
Character>}

 191

<File> ::= (<Read Line>) [<Spaces>] <Program> <End of
File>

The C program:

/* This program was reformatted by prettyc */
#include “Header.h”
int number;
int pos, ln;
int Pos, Ln, Val;
char NumberString[1000];
main(int parms, char * Parm[])
 {
 sscanf(Parm[1], “%d”, &Ln);
 sscanf(Parm[2], “%d”, &Pos);
 sscanf(Parm[3], “%d”, &Val);
 printf(“/* Line %d Character Position %d Replaced
with %d. */\n”, Ln, Pos,
 Val);
 File();
 }

int P()
 {
 if (Ln != 0)
 printf(“%s”, MatchStr);
 return TRUE;
 }

int Spacing()
 {
 if (Space())
 {
 return TRUE;
 }
 if (Tab())
 {
 return TRUE;
 }
 return FALSE;
 }

int WhiteSpace()
 {

 192

 if (Space())
 {
 return TRUE;
 }
 if (Tab())
 {
 return TRUE;
 }
 if (LineBreak())
 {
 return TRUE;
 }
 return FALSE;
 }

int Spaces()
 {
 while (WhiteSpace())
 ;
 return TRUE;
 }

int CM()
 {
 strcat(NumberString, MatchStr);
 return TRUE;
 }

int Number()
 {
 pos = cp;
 ln = LineNo;
 NumberString[0] = 0;
 if (Digit())
 {
 number = MatchStr[0] - '0';
 CM();
 while (Digit())
 {
 number = 10 *number + MatchStr[0] - '0';
 CM();
 }
 return TRUE;
 }
 return FALSE;

 193

 }

int Replace()
 {
 return Ln;
 return TRUE;
 }

int Empty()
 {
 return TRUE;
 }

int SaveorReplaceNumber()
 {
 if (Replace())
 {
 if ((Ln == ln)
 &&(Pos == pos))
 printf(“%d”, Val);
 else
 printf(“%s”, NumberString);
 return TRUE;
 }
 if (Empty())
 {
 printf(“Line %d Character %d = %d\n”, ln, pos,
number);
 return TRUE;
 }
 return FALSE;
 }

int CommentCharacter()
 {
 if ((Line[cp] == '*')
 &&(Line[cp + 1] == '/'))
 return FALSE;
 if (AnyCharacter())
 {
 P();
 return TRUE;
 }
 return FALSE;
 }

 194

int Comment()
 {
 if (Matches(“/*”))
 {
 P();
 while (CommentCharacter())
 ;
 return TRUE;
 }
 return FALSE;
 }

int NumberorCharacter()
 {
 if (EndFile)
 return FALSE;
 if (Comment())
 {
 if (!Matches(“*/”))
 error(“*/”);
 P();
 return TRUE;
 }
 if (Number())
 {
 if (!SaveorReplaceNumber())
 error(“SaveorReplaceNumber”);
 return TRUE;
 }
 if (AnyCharacter())
 {
 P();
 return TRUE;
 }
 return FALSE;
 }

int Program()
 {
 if (NumberorCharacter())
 {
 while (NumberorCharacter())
 ;
 return TRUE;

 195

 }
 return FALSE;
 }

int File()
 {
 ReadLine();
 if (Spaces())
 ;
 if (Program())
 {
 if (!EndofFile())
 error(“EndofFile”);
 return TRUE;
 }
 return FALSE;
 }

And the general purpose USRP Header file:

/* This program was reformatted by prettyc */

/* Useful Self Replicating Program C Language Version
*/

/* Begin Useful Self Replicating Program C Language
Boilerplate */

/* written by:
 Alan A. Jorgensen

Tue Nov 21 10:58:03 EST 1995
*/

#include <stdio.h>
#include <string.h>
#define FALSE 0
#define TRUE 1
#define MaxLineLength 255
char Line[MaxLineLength];
int cp = 0;
int Length;

 196

int EndFile = FALSE;
char Character;
char MatchStr[MaxLineLength] = ““;
int LineNo = 0;
int ReadLine()
 {
 int i = 0;
 int c;
 for (i = 0; i < 254
 &&(c = getchar()) != EOF
 && c != '\n'; i++)
 Line[i] = c;
 if (c == EOF)
 {
 EndFile = TRUE;
 Line[0] = 0;
 cp = 0;
 Length = 0;
 return 0;
 }
 LineNo++;
 if (c == '\n')
 {
 Line[i] = '\n';
 Line[i + 1] = 0;
 Length = i + 1;
 }
 else
 {
 Line[i] = 0;
 Length = i;
 }
 cp = 0;
 if (c == EOF)
 {
 EndFile = TRUE;
 return EOF;
 }
 return 0;
 }

int error(msg)
char * msg;
 {
 int i;

 197

 printf(“\nLine %d:\n”, LineNo);
 printf(“%s”, Line);
 for (i = 0; i < cp; i++)
 if (Line[i] == '\t')
 printf(“\t”);
 else
 printf(“ “);
 printf(“^\n”);
 printf(“%s expected.\n”, msg);
 exit(1);
 return TRUE;
 }

char lower(letter)
char letter;
 {
 if (letter >= 'A'
 && letter <= 'Z')
 return(letter + 'a' - 'A');
 else
 return(letter);
 }

void LowerCase(Str)
char *Str;
 {
 while (*Str != 0)
 {
 *Str = lower(*Str);
 Str++;
 }
 }

Skip(i)
int i;
 {
 cp += i;
 if (cp >= Length)
 ReadLine();
 }

int Matches(s)
char * s;
 {
 int i;

 198

 char *st = s;
 if (EndFile)
 return FALSE;
 for (i = 0;(*s != 0)
 && *s == *(Line +cp +(i++)); s++)
 ;
 if (*s)
 return FALSE;
 else
 {
 if (i == 1)
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 }
 else
 strcpy(MatchStr, st);
 Skip(i);
 return TRUE;
 }
 }

int Alphabetic = FALSE;
int KeyMatches(s)
char * s;
 {/* Matches AND the next character is not a label
character */
 int i;
 char *st = s;
 if (EndFile)
 return FALSE;
 for (i = 0;(*s != 0)
 && *s == *(Line +cp +(i++)); s++)
 ;
 if (*s)
 return FALSE;
 else
 {
 if (((Line[cp +i] >= '0')
 &&(Line[cp +i] <= '9'))
 ||((Line[cp +i] >= 'a')
 &&(Line[cp +i] <= 'z'))
 ||((Line[cp +i] >= 'A')
 &&(Line[cp +i] <= 'Z'))

 199

 ||(Line[cp +i] == '_'))
 return FALSE;
 if (i == 1)
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 }
 else
 strcpy(MatchStr, st);
 Skip(i);
 return TRUE;
 }
 }

int UpperCaseLetter()
 {
 if ((Line[cp] >= 'A')
 &&(Line[cp] <= 'Z'))
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 Skip(1);
 return TRUE;
 }
 else
 return FALSE;
 }

int LowerCaseLetter()
 {
 if ((Line[cp] >= 'a')
 &&(Line[cp] <= 'z'))
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 Skip(1);
 return TRUE;
 }
 else
 return FALSE;
 }

 200

int Digit()
 {
 if ((Line[cp] >= '0')
 &&(Line[cp] <= '9'))
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 Skip(1);
 return TRUE;
 }
 else
 return FALSE;
 }

int OctalDigit()
 {
 if ((Line[cp] >= '0')
 &&(Line[cp] <= '7'))
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 Skip(1);
 return TRUE;
 }
 else
 return FALSE;
 }

int HexDigit()
 {
 if ((Line[cp] >= '0')
 &&(Line[cp] <= '9')
 ||(Line[cp] >= 'a')
 &&(Line[cp] <= 'f')
 ||(Line[cp] >= 'A')
 &&(Line[cp] <= 'F'))
 {
 Character = Line[cp];
 MatchStr[0] = Character;
 MatchStr[1] = 0;
 Skip(1);
 return TRUE;
 }

 201

 else
 return FALSE;
 }

int Letter()
 {
 if (UpperCaseLetter())
 return TRUE;
 else
 return LowerCaseLetter();
 }

int Space()
 {
 return Matches(“ “);
 }

int Tab()
 {
 return Matches(“\t”);
 }

int LineBreak()
 {
 if (Matches(“\n”))
 {
 return TRUE;
 }
 return FALSE;
 }

int EndofFile()
 {
 return EndFile;
 }

int AnyCharacter()
 {
 if (EndFile == TRUE)
 return FALSE;
 MatchStr[0] = Line[cp];
 MatchStr[1] = 0;
 Skip(1);
 return TRUE;
 }

 202

/* End Useful Self Replicating Program C Languange
Boilerplate */

Actual validation is accomplished with a Korn Shell script that produces a

list of numberic string locations and then generates, compiles, and executes each

permutation. The script produces a log indicating the specific permutation, the

permuted line, before and after, and the results of running the test against that

permutation. When the compile was unsuccessful, this is noted in the log and the

test is not run on that permutation. This was generally the case when the parser

located the �0� or the �7� in 0x7FFFFFFF. The parser could be enhanced to

recognize more complex token types.

TestTest -- This test evaluates the capability of Test
to locate bugs
in RunAvg. fltinj is used to inject faults into
RunAvg.c, compiles them
and runs them.

function TestCase
 {
 let Case+=1
 echo >>Log
 echo “___”
>>Log
 echo “Case $Case $(date)” >>Log
 echo >>Log
 fltinj $L $C $V <RunAvg.c >TC.c

 diff RunAvg.c TC.c >>Log

 gcc -g -o RunAvg TC.c 2>>Log
 if [[$? != 0]]
 then echo “Compile Failed” >>Log
 let CompileFails+=1

 203

 else
 Validate | wc -l | read ErrorLines
 if ((ErrorLines != 4))
 then echo “Test Failed” >>Log
 let TestFails+=1
 else echo “Test Passed!” >>Log
 let TestPasses+=1
 head -1 TC.c >>Log
 fi
 fi
 }

function RunCase
 {
 read Line
 while read x L x C x Va
 do
 let V=Va-1
 TestCase
 let V=Va+1
 TestCase
 if (($Case >= $Cases))
 then break
 fi
 done
 }

if [[$1 = ““]]
then Cases=50000
else Cases=$1
fi
rm -f Log

fltinj <RunAvg.c >Cases

Case=0
CompileFails=0
TestFails=0
TestPasses=0
cat Cases | RunCase
echo >>Log
let Total=CompileFails+TestFails+TestPasses
echo “Out of $Total test cases” >>Log
echo “$CompileFails cases failed to compile.” >>Log

 204

echo “$TestFails failed the test.” >>Log
echo “$TestPasses passed the test.” >>Log

And the resulting Log file:

Case 1 Sat Oct 23 13:18:00 EDT 1999

0a1
> /* Line 17 Character Position 18 Replaced with 1999.
*/
17c18
< #define MaxValues 2000

> #define MaxValues 1999
Test Failed

Case 2 Sat Oct 23 13:18:01 EDT 1999

0a1
> /* Line 17 Character Position 18 Replaced with 2001.
*/
17c18
< #define MaxValues 2000

> #define MaxValues 2001
Test Failed

Case 3 Sat Oct 23 13:18:02 EDT 1999

0a1
> /* Line 18 Character Position 17 Replaced with 999999.
*/
18c19
< #define MaxEntry 1000000

> #define MaxEntry 999999
Test Failed

 205

Case 4 Sat Oct 23 13:18:04 EDT 1999

0a1
> /* Line 18 Character Position 17 Replaced with
1000001. */
18c19
< #define MaxEntry 1000000

> #define MaxEntry 1000001
Test Failed

Case 5 Sat Oct 23 13:18:05 EDT 1999

0a1
> /* Line 19 Character Position 15 Replaced with -1. */
19c20
< #define MaxInt 0x7FFFFFFF

> #define MaxInt -1x7FFFFFFF
TC.c:59: missing white space after number `1'
Compile Failed

Case 6 Sat Oct 23 13:18:05 EDT 1999

0a1
> /* Line 19 Character Position 15 Replaced with 1. */
19c20
< #define MaxInt 0x7FFFFFFF

> #define MaxInt 1x7FFFFFFF
TC.c:59: missing white space after number `1'
Compile Failed

Case 7 Sat Oct 23 13:18:05 EDT 1999

0a1
> /* Line 19 Character Position 17 Replaced with 6. */
19c20
< #define MaxInt 0x7FFFFFFF

> #define MaxInt 0x6FFFFFFF
TC.c:60: parse error before `CONFIGURATION_ERROR'

 206

TC.c:79: warning: data definition has no type or storage
class
TC.c:80: parse error before `}'
Compile Failed

Case 8 Sat Oct 23 13:18:05 EDT 1999

0a1
> /* Line 19 Character Position 17 Replaced with 8. */
19c20
< #define MaxInt 0x7FFFFFFF

> #define MaxInt 0x8FFFFFFF
Test Failed

Case 9 Sat Oct 23 13:18:06 EDT 1999

0a1
> /* Line 20 Character Position 19 Replaced with 79. */
20c21
< #define LineLength 80

> #define LineLength 79
Test Failed

Case 10 Sat Oct 23 13:18:08 EDT 1999

0a1
> /* Line 20 Character Position 19 Replaced with 81. */
20c21
< #define LineLength 80

> #define LineLength 81
Test Failed

Case 11 Sat Oct 23 13:18:09 EDT 1999

0a1
> /* Line 49 Character Position 22 Replaced with 34. */
49c50
< char LineLengthFormat[35];

 207

> char LineLengthFormat[34];
Test Passed!
/* Line 49 Character Position 22 Replaced with 34. */

Case 12 Sat Oct 23 13:18:10 EDT 1999

0a1
> /* Line 49 Character Position 22 Replaced with 36. */
49c50
< char LineLengthFormat[35];

> char LineLengthFormat[36];
Test Passed!
/* Line 49 Character Position 22 Replaced with 36. */

Case 13 Sat Oct 23 13:18:12 EDT 1999

0a1
> /* Line 52 Character Position 53 Replaced with 0. */
52c53
< sprintf(LineLengthFormat, “%%.%ds\n”, LineLength -
1);

> sprintf(LineLengthFormat, “%%.%ds\n”, LineLength -
0);
Test Failed

Case 14 Sat Oct 23 13:18:13 EDT 1999

0a1
> /* Line 52 Character Position 53 Replaced with 2. */
52c53
< sprintf(LineLengthFormat, “%%.%ds\n”, LineLength -
1);

> sprintf(LineLengthFormat, “%%.%ds\n”, LineLength -
2);
Test Failed

Case 15 Sat Oct 23 13:18:14 EDT 1999

 208

0a1
> /* Line 58 Character Position 29 Replaced with 1. */
58c59
< #if (MaxEntry + (MaxValues / 2)) > (MaxInt /
MaxValues)

> #if (MaxEntry + (MaxValues / 1)) > (MaxInt /
MaxValues)
Test Passed!
/* Line 58 Character Position 29 Replaced with 1. */

Case 16 Sat Oct 23 13:18:15 EDT 1999

0a1
> /* Line 58 Character Position 29 Replaced with 3. */
58c59
< #if (MaxEntry + (MaxValues / 2)) > (MaxInt /
MaxValues)

> #if (MaxEntry + (MaxValues / 3)) > (MaxInt /
MaxValues)
Test Passed!
/* Line 58 Character Position 29 Replaced with 3. */

Case 17 Sat Oct 23 13:18:16 EDT 1999

0a1
> /* Line 59 Character Position 59 Replaced with 1. */
59c60
< X CONFIGURATION_ERROR - MaxValues * MaxEntry +
MaxValues / 2 must be <

> X CONFIGURATION_ERROR - MaxValues * MaxEntry +
MaxValues / 1 must be <
Test Passed!
/* Line 59 Character Position 59 Replaced with 1. */

Case 18 Sat Oct 23 13:18:17 EDT 1999

0a1
> /* Line 59 Character Position 59 Replaced with 3. */

 209

59c60
< X CONFIGURATION_ERROR - MaxValues * MaxEntry +
MaxValues / 2 must be <

> X CONFIGURATION_ERROR - MaxValues * MaxEntry +
MaxValues / 3 must be <
Test Passed!
/* Line 59 Character Position 59 Replaced with 3. */

Case 19 Sat Oct 23 13:18:19 EDT 1999

0a1
> /* Line 75 Character Position 50 Replaced with 0. */
75c76
< if (strnlen(Message, LineLength) > LineLength - 1)

> if (strnlen(Message, LineLength) > LineLength - 0)
Test Failed

Case 20 Sat Oct 23 13:18:20 EDT 1999

0a1
> /* Line 75 Character Position 50 Replaced with 2. */
75c76
< if (strnlen(Message, LineLength) > LineLength - 1)

> if (strnlen(Message, LineLength) > LineLength - 2)
Test Passed!
/* Line 75 Character Position 50 Replaced with 2. */

Case 21 Sat Oct 23 13:18:21 EDT 1999

0a1
> /* Line 94 Character Position 11 Replaced with -1. */
94c95
< for (c = 0; c < l; c++)

> for (c = -1; c < l; c++)
Test Failed

Case 22 Sat Oct 23 13:18:22 EDT 1999

 210

0a1
> /* Line 94 Character Position 11 Replaced with 1. */
94c95
< for (c = 0; c < l; c++)

> for (c = 1; c < l; c++)
Test Passed!
/* Line 94 Character Position 11 Replaced with 1. */

Case 23 Sat Oct 23 13:18:23 EDT 1999

0a1
> /* Line 95 Character Position 16 Replaced with -1. */
95c96
< if (s[c] == 0)

> if (s[c] == -1)
TC.c: In function `strnlen':
TC.c:96: warning: comparison is always 0 due to limited
range of data type
Test Failed

Case 24 Sat Oct 23 13:18:24 EDT 1999

0a1
> /* Line 95 Character Position 16 Replaced with 1. */
95c96
< if (s[c] == 0)

> if (s[c] == 1)
Test Failed

Case 25 Sat Oct 23 13:18:25 EDT 1999

0a1
> /* Line 114 Character Position 7 Replaced with 0. */
114c115
< exit(1);

> exit(0);
Test Failed

 211

Case 26 Sat Oct 23 13:18:26 EDT 1999

0a1
> /* Line 114 Character Position 7 Replaced with 2. */
114c115
< exit(1);

> exit(2);
Test Failed

Case 27 Sat Oct 23 13:18:28 EDT 1999

0a1
> /* Line 137 Character Position 13 Replaced with -1. */
137c138
< int Values = 0; /* Number of valid values entered. */

> int Values = -1; /* Number of valid values entered.
*/
Test Failed

Case 28 Sat Oct 23 13:18:29 EDT 1999

0a1
> /* Line 137 Character Position 13 Replaced with 1. */
137c138
< int Values = 0; /* Number of valid values entered. */

> int Values = 1; /* Number of valid values entered. */
Test Failed

Case 29 Sat Oct 23 13:18:30 EDT 1999

0a1
> /* Line 138 Character Position 10 Replaced with -1. */
138c139
< int Sum = 0; /* Sum of the valid values entered. */

> int Sum = -1; /* Sum of the valid values entered. */
Test Failed

 212

Case 30 Sat Oct 23 13:18:31 EDT 1999

0a1
> /* Line 138 Character Position 10 Replaced with 1. */
138c139
< int Sum = 0; /* Sum of the valid values entered. */

> int Sum = 1; /* Sum of the valid values entered. */
Test Failed

Case 31 Sat Oct 23 13:18:32 EDT 1999

0a1
> /* Line 145 Character Position 13 Replaced with -1. */
145c146
< if (Sum != 0)

> if (Sum != -1)
Test Failed

Case 32 Sat Oct 23 13:18:33 EDT 1999

0a1
> /* Line 145 Character Position 13 Replaced with 1. */
145c146
< if (Sum != 0)

> if (Sum != 1)
Test Failed

Case 33 Sat Oct 23 13:18:34 EDT 1999

0a1
> /* Line 147 Character Position 16 Replaced with -1. */
147c148
< if (Values != 0)

> if (Values != -1)
Test Failed

 213

Case 34 Sat Oct 23 13:18:36 EDT 1999

0a1
> /* Line 147 Character Position 16 Replaced with 1. */
147c148
< if (Values != 0)

> if (Values != 1)
Test Failed

Case 35 Sat Oct 23 13:18:37 EDT 1999

0a1
> /* Line 160 Character Position 13 Replaced with -1. */
160c161
< SetHistory(0, 0);

> SetHistory(-1, 0);
Test Failed

Case 36 Sat Oct 23 13:18:38 EDT 1999

0a1
> /* Line 160 Character Position 13 Replaced with 1. */
160c161
< SetHistory(0, 0);

> SetHistory(1, 0);
Test Failed

Case 37 Sat Oct 23 13:18:39 EDT 1999

0a1
> /* Line 160 Character Position 16 Replaced with -1. */
160c161
< SetHistory(0, 0);

> SetHistory(0, -1);
Test Failed

 214

Case 38 Sat Oct 23 13:18:40 EDT 1999

0a1
> /* Line 160 Character Position 16 Replaced with 1. */
160c161
< SetHistory(0, 0);

> SetHistory(0, 1);
Test Failed

Case 39 Sat Oct 23 13:18:41 EDT 1999

0a1
> /* Line 168 Character Position 15 Replaced with 0. */
168c169
< #define Exit (-1)

> #define Exit (-0)
Test Failed

Case 40 Sat Oct 23 13:18:43 EDT 1999

0a1
> /* Line 168 Character Position 15 Replaced with 2. */
168c169
< #define Exit (-1)

> #define Exit (-2)
Test Passed!
/* Line 168 Character Position 15 Replaced with 2. */

Case 41 Sat Oct 23 13:18:44 EDT 1999

0a1
> /* Line 176 Character Position 15 Replaced with -1. */
176c177
< int Number = 0;

> int Number = -1;
Test Failed

 215

Case 42 Sat Oct 23 13:18:45 EDT 1999

0a1
> /* Line 176 Character Position 15 Replaced with 1. */
176c177
< int Number = 0;

> int Number = 1;
Test Failed

Case 43 Sat Oct 23 13:18:46 EDT 1999

0a1
> /* Line 186 Character Position 18 Replaced with -1. */
186c187
< if ((Digit < '0')

> if ((Digit < '-1')
TC.c: In function `Input':
TC.c:187: warning: multi-character character constant
Test Failed

Case 44 Sat Oct 23 13:18:47 EDT 1999

0a1
> /* Line 186 Character Position 18 Replaced with 1. */
186c187
< if ((Digit < '0')

> if ((Digit < '1')
Test Failed

Case 45 Sat Oct 23 13:18:48 EDT 1999

0a1
> /* Line 187 Character Position 16 Replaced with 8. */
187c188
< ||(Digit > '9'))

> ||(Digit > '8'))
Test Failed

 216

Case 46 Sat Oct 23 13:18:49 EDT 1999

0a1
> /* Line 187 Character Position 16 Replaced with 10. */
187c188
< ||(Digit > '9'))

> ||(Digit > '10'))
TC.c: In function `Input':
TC.c:188: warning: multi-character character constant
Test Failed

Case 47 Sat Oct 23 13:18:50 EDT 1999

0a1
> /* Line 192 Character Position 17 Replaced with -1. */
192c193
< Number = 0;

> Number = -1;
Test Failed

Case 48 Sat Oct 23 13:18:52 EDT 1999

0a1
> /* Line 192 Character Position 17 Replaced with 1. */
192c193
< Number = 0;

> Number = 1;
Test Passed!
/* Line 192 Character Position 17 Replaced with 1. */

Case 49 Sat Oct 23 13:18:53 EDT 1999

0a1
> /* Line 197 Character Position 30 Replaced with 9. */
197c198
< if (Number > MaxEntry / 10)

> if (Number > MaxEntry / 9)

 217

Test Passed!
/* Line 197 Character Position 30 Replaced with 9. */

Case 50 Sat Oct 23 13:18:54 EDT 1999

0a1
> /* Line 197 Character Position 30 Replaced with 11. */
197c198
< if (Number > MaxEntry / 10)

> if (Number > MaxEntry / 11)
Test Failed

Case 51 Sat Oct 23 13:18:55 EDT 1999

0a1
> /* Line 206 Character Position 24 Replaced with -1. */
206c207
< else if (Digit - '0' > MaxEntry - 10 *Number)

> else if (Digit - '-1' > MaxEntry - 10 *Number)
TC.c: In function `Input':
TC.c:207: warning: multi-character character constant
Test Failed

Case 52 Sat Oct 23 13:18:56 EDT 1999

0a1
> /* Line 206 Character Position 24 Replaced with 1. */
206c207
< else if (Digit - '0' > MaxEntry - 10 *Number)

> else if (Digit - '1' > MaxEntry - 10 *Number)
Test Failed

Case 53 Sat Oct 23 13:18:57 EDT 1999

0a1
> /* Line 206 Character Position 40 Replaced with 9. */
206c207
< else if (Digit - '0' > MaxEntry - 10 *Number)

 218

> else if (Digit - '0' > MaxEntry - 9 *Number)
Test Failed

Case 54 Sat Oct 23 13:18:58 EDT 1999

0a1
> /* Line 206 Character Position 40 Replaced with 11. */
206c207
< else if (Digit - '0' > MaxEntry - 10 *Number)

> else if (Digit - '0' > MaxEntry - 11 *Number)
Test Failed

Case 55 Sat Oct 23 13:19:00 EDT 1999

0a1
> /* Line 219 Character Position 17 Replaced with 9. */
219c220
< Number = 10 *Number - '0' + Digit;

> Number = 9 *Number - '0' + Digit;
Test Failed

Case 56 Sat Oct 23 13:19:01 EDT 1999

0a1
> /* Line 219 Character Position 17 Replaced with 11. */
219c220
< Number = 10 *Number - '0' + Digit;

> Number = 11 *Number - '0' + Digit;
Test Failed

Case 57 Sat Oct 23 13:19:02 EDT 1999

0a1
> /* Line 219 Character Position 31 Replaced with -1. */
219c220
< Number = 10 *Number - '0' + Digit;

 219

> Number = 10 *Number - '-1' + Digit;
TC.c: In function `Input':
TC.c:220: warning: multi-character character constant
Test Failed

Case 58 Sat Oct 23 13:19:03 EDT 1999

0a1
> /* Line 219 Character Position 31 Replaced with 1. */
219c220
< Number = 10 *Number - '0' + Digit;

> Number = 10 *Number - '1' + Digit;
Test Failed

Case 59 Sat Oct 23 13:19:04 EDT 1999

0a1
> /* Line 237 Character Position 15 Replaced with -1. */
237c238
< int Number = 0;

> int Number = -1;
Test Failed

Case 60 Sat Oct 23 13:19:05 EDT 1999

0a1
> /* Line 237 Character Position 15 Replaced with 1. */
237c238
< int Number = 0;

> int Number = 1;
Test Passed!
/* Line 237 Character Position 15 Replaced with 1. */

Case 61 Sat Oct 23 13:19:06 EDT 1999

0a1
> /* Line 250 Character Position 19 Replaced with -1. */
250c251

 220

< if (Number < 0)

> if (Number < -1)
Test Passed!
/* Line 250 Character Position 19 Replaced with -1. */

Case 62 Sat Oct 23 13:19:08 EDT 1999

0a1
> /* Line 250 Character Position 19 Replaced with 1. */
250c251
< if (Number < 0)

> if (Number < 1)
Test Failed

Case 63 Sat Oct 23 13:19:09 EDT 1999

0a1
> /* Line 257 Character Position 36 Replaced with 0. */
257c258
< else if (Values > MaxValues - 1)

> else if (Values > MaxValues - 0)
Test Failed

Case 64 Sat Oct 23 13:19:10 EDT 1999

0a1
> /* Line 257 Character Position 36 Replaced with 2. */
257c258
< else if (Values > MaxValues - 1)

> else if (Values > MaxValues - 2)
Test Failed

Case 65 Sat Oct 23 13:19:12 EDT 1999

0a1
> /* Line 264 Character Position 26 Replaced with 0. */
264c265

 221

< Values = Values + 1;

> Values = Values + 0;
Test Failed

Case 66 Sat Oct 23 13:19:13 EDT 1999

0a1
> /* Line 264 Character Position 26 Replaced with 2. */
264c265
< Values = Values + 1;

> Values = Values + 2;
Test Failed

Case 67 Sat Oct 23 13:19:14 EDT 1999

0a1
> /* Line 275 Character Position 36 Replaced with 79. */
275c276
< char RunningAverageReport[80];

> char RunningAverageReport[79];
Test Passed!
/* Line 275 Character Position 36 Replaced with 79. */

Case 68 Sat Oct 23 13:19:15 EDT 1999

0a1
> /* Line 275 Character Position 36 Replaced with 81. */
275c276
< char RunningAverageReport[80];

> char RunningAverageReport[81];
Test Passed!
/* Line 275 Character Position 36 Replaced with 81. */

Case 69 Sat Oct 23 13:19:16 EDT 1999

0a1
> /* Line 277 Character Position 24 Replaced with 1. */

 222

277c278
< (Values / 2)) / Values));

> (Values / 1)) / Values));
Test Failed

Case 70 Sat Oct 23 13:19:17 EDT 1999

0a1
> /* Line 277 Character Position 24 Replaced with 3. */
277c278
< (Values / 2)) / Values));

> (Values / 3)) / Values));
Test Failed

Case 71 Sat Oct 23 13:19:18 EDT 1999

0a1
> /* Line 304 Character Position 16 Replaced with 0. */
304c305
< if (Params != 1)

> if (Params != 0)
Test Failed

Case 72 Sat Oct 23 13:19:20 EDT 1999

0a1
> /* Line 304 Character Position 16 Replaced with 2. */
304c305
< if (Params != 1)

> if (Params != 2)
Test Failed

Case 73 Sat Oct 23 13:19:21 EDT 1999

0a1
> /* Line 306 Character Position 26 Replaced with 0. */
306c307

 223

< if (!strcmp(Parameter[1], “test”))

> if (!strcmp(Parameter[0], “test”))
Test Failed

Case 74 Sat Oct 23 13:19:22 EDT 1999

0a1
> /* Line 306 Character Position 26 Replaced with 2. */
306c307
< if (!strcmp(Parameter[1], “test”))

> if (!strcmp(Parameter[2], “test”))
Test Failed

Case 75 Sat Oct 23 13:19:23 EDT 1999

0a1
> /* Line 309 Character Position 23 Replaced with 1. */
309c310
< sscanf(Parameter[2], “%d”, &InitialCount);

> sscanf(Parameter[1], “%d”, &InitialCount);
Test Failed

Case 76 Sat Oct 23 13:19:24 EDT 1999

0a1
> /* Line 309 Character Position 23 Replaced with 3. */
309c310
< sscanf(Parameter[2], “%d”, &InitialCount);

> sscanf(Parameter[3], “%d”, &InitialCount);
Test Failed

Case 77 Sat Oct 23 13:19:25 EDT 1999

0a1
> /* Line 310 Character Position 23 Replaced with 2. */
310c311
< sscanf(Parameter[3], “%d”, &InitialSum);

 224

> sscanf(Parameter[2], “%d”, &InitialSum);
Test Failed

Case 78 Sat Oct 23 13:19:26 EDT 1999

0a1
> /* Line 310 Character Position 23 Replaced with 4. */
310c311
< sscanf(Parameter[3], “%d”, &InitialSum);

> sscanf(Parameter[4], “%d”, &InitialSum);
Test Failed

Case 79 Sat Oct 23 13:19:28 EDT 1999

0a1
> /* Line 313 Character Position 31 Replaced with 0. */
313c314
< else if (!strcmp(Parameter[1], “trial”))

> else if (!strcmp(Parameter[0], “trial”))
Test Failed

Case 80 Sat Oct 23 13:19:29 EDT 1999

0a1
> /* Line 313 Character Position 31 Replaced with 2. */
313c314
< else if (!strcmp(Parameter[1], “trial”))

> else if (!strcmp(Parameter[2], “trial”))
Test Failed

Case 81 Sat Oct 23 13:19:30 EDT 1999

0a1
> /* Line 315 Character Position 23 Replaced with 1. */
315c316
< sscanf(Parameter[2], “%d”, &InitialCount);

 225

> sscanf(Parameter[1], “%d”, &InitialCount);
Test Failed

Case 82 Sat Oct 23 13:19:31 EDT 1999

0a1
> /* Line 315 Character Position 23 Replaced with 3. */
315c316
< sscanf(Parameter[2], “%d”, &InitialCount);

> sscanf(Parameter[3], “%d”, &InitialCount);
Test Failed

Case 83 Sat Oct 23 13:19:32 EDT 1999

0a1
> /* Line 316 Character Position 23 Replaced with 2. */
316c317
< sscanf(Parameter[3], “%d”, &InitialSum);

> sscanf(Parameter[2], “%d”, &InitialSum);
Test Failed

Case 84 Sat Oct 23 13:19:33 EDT 1999

0a1
> /* Line 316 Character Position 23 Replaced with 4. */
316c317
< sscanf(Parameter[3], “%d”, &InitialSum);

> sscanf(Parameter[4], “%d”, &InitialSum);
Test Failed

Case 85 Sat Oct 23 13:19:34 EDT 1999

0a1
> /* Line 320 Character Position 31 Replaced with 0. */
320c321
< else if (!strcmp(Parameter[1], “long”))

> else if (!strcmp(Parameter[0], “long”))

 226

Test Failed

Case 86 Sat Oct 23 13:19:36 EDT 1999

0a1
> /* Line 320 Character Position 31 Replaced with 2. */
320c321
< else if (!strcmp(Parameter[1], “long”))

> else if (!strcmp(Parameter[2], “long”))
Test Failed

Case 87 Sat Oct 23 13:19:37 EDT 1999

0a1
> /* Line 323 Character Position 11 Replaced with -
834729263. */
323c324
<
“12345678901234567890123456789012345678901234567890\

> “-834729263\
Test Failed

Case 88 Sat Oct 23 13:19:38 EDT 1999

0a1
> /* Line 323 Character Position 11 Replaced with -
834729261. */
323c324
<
“12345678901234567890123456789012345678901234567890\

> “-834729261\
Test Failed

Case 89 Sat Oct 23 13:19:39 EDT 1999

0a1
> /* Line 324 Character Position 0 Replaced with -
834729263. */

 227

324c325
< 12345678901234567890123456789012345678901234567890”

> -834729263”
Test Failed

Case 90 Sat Oct 23 13:19:40 EDT 1999

0a1
> /* Line 324 Character Position 0 Replaced with -
834729261. */
324c325
< 12345678901234567890123456789012345678901234567890”

> -834729261”
Test Failed

Case 91 Sat Oct 23 13:19:41 EDT 1999

0a1
> /* Line 341 Character Position 7 Replaced with -1. */
341c342
< exit(0);

> exit(-1);
Test Failed

Case 92 Sat Oct 23 13:19:43 EDT 1999

0a1
> /* Line 341 Character Position 7 Replaced with 1. */
341c342
< exit(0);

> exit(1);
Test Failed

Out of 92 test cases
3 cases failed to compile.
74 failed the test.
15 passed the test.

Appendix H – Markov Chain Case Study Code

The following file is the parameter file, in general, defining the constraint values obtained from the data

dictionary.

/* Parameters.h -- compilable configuration file */

/* White Space */

#define Tab '\t'
#define Space ' '
#define NewLine '\n'

#define WhiteSpace(c) ((c == Tab) || (c == Space) || (c == NewLine))

#define EndFile(c) (c == EOF)

/* Parameters.h -- compilable configuration file */

typedef int TextIndex; /* 1 .. MaxText */
#define EndofWords -1

/* Smallest Printable Character */

#define SmallestPrintableCharacter '!'

/* Largest Printable Character */

#define LargestPrintableCharacter '~'

#define ValidASCII(c) ((c >= SmallestPrintableCharacter) \
 && (c <= LargestPrintableCharacter))

/* Maximum Word Length */

#define MaximumWordLength 20

/* Maximum Number of Words */

#define MaximumNumberofWords 50000

/* Maximum Number of Unique Words */

#define MaximumNumberofUniqueWords 20000

/* Maximum Valid Successors */

#define MaximumValidSuccessors MaximumNumberofWords

/* Maximum Words Output */

#define MaximumWordsOutput 10000

/* Maximum available text space including null characters. */

/* This is the Maximum number of unique words times the maximum
 word length, plus a null character for each word, plus one
 additional null at the beginning so that each word will have
 a null preceding and a null following.
*/

#define MxUniqWords MaximumNumberofUniqueWords

#define MaxText (MxUniqWords * MaximumWordLength + MxUniqWords + 1)

The specified error messages are included in a separate file:

/* ErrorMessages.h -- Defines all system error messages.

 Collecting them all in one place makes translation to other languages
 easier.

 Also, each error is uniquely identified by the message name.

*/

char InvalidCharacterMessage[] = "Invalid Character. Not a valid text file.";
char InvalidWordLengthMessage[] = "Word too long.";
char TooManyWordsErrorMessage[] = "Too many words encountered.";
char TooManyNewWordsErrorMessage[] = "Too many new words encountered.";
char TooManySuccessorsErrorMessage[] = "System Error. Too many successors.";
char InvalidErrorMessageMessage[] = "System Error. Error message truncated.";
char InvalidWordMessage[] = "System Error. Word storage corrupted.";

char FatalErrorMessage[] = "Fatal Error. Program Terminates.";
char ErrorMessageLengthErrorMessage[] = "Error Message Length Overrun.";
char BinaryTreeErrorMessage[] = "System Error in Binary Search. \
Binary Tree Corrupt.";
char TooManyCharactersMessage[] = "Input text too long.";
char InvalidNextRequestMessage[] = "Invalid request for Next Word.";
char InvalidTextIndexRequestMessage[] = "Invalid request for Text Index.";
char InvalidSuccessorRequestMessage[] = "Invalid request for Successor.";

The main program simply calls on the relevant functions to perform input, compute the valid successors and

output the text using only valid successors:

/* TexGen -- Reads in a text file and permutes it by a random walk based
 on successors to matching word pairs.

 This program is a re-implementation of the “Markov Algorithm” from
 Kernighan and Pike, 1999. The original implementation was designed in
 a manner that did not allow testing of constraints. This implementation
 provides for bounded conditions and ensures that the constraints are
 enforced.

 Alan A. Jorgensen
 August, 1999.

*/

#define DE BUG

#include “Parameters.h”

main ()
 {
 int w;

 InputWords();

#ifdef DEBUG
 printf(“A sorted list of the input words.\n”);
 PrintTree();
#endif

 ListValidSuccessors();

#ifdef DEBUG

 printf(“Indexed list of all words, link to next identical word,\n”);
 printf(“and link to first occurance of the pair.\n”);
 for (w = 1;w <= Words; w++)
 printf(“%d %s %d %d\n”,w,&Text[WordList[w].TextIndex], Next(w),
 First(w));

 printf(“A list of all word pairs in sequence with choice counts.\n”);
 for (w = 1; w < Words; w ++)
 {
 int s;
 printf(“%s %s %d “, &Text(w), &Text(w+1), Successors(w+1));
 for (s = 0; s < Successors(w+1); s++)

 printf(“%d “,SuccessorList[Successor(w+1)+s]);
 printf(“\n”);
 }
 printf(“This is the permuted output list.\n”);
#endif

 OutputPermutedText();
 }

/* OutputPermutedText -- outputs text by a random walk through the source text.
 A choice of path occurs when the are duplicate word pairs. */

OutputPermutedText()
 {
 int Word = 1;
 int Words = NumberofWords();
 int WordsOutput = 0;
 while ((Word <= Words)
 &&(WordsOutput < MaximumWordsOutput))
 {
#ifdef DEBUG
 printf(“%d “, Word);
#endif
 PrintWord(Word);
 WordsOutput++;
 Word = ValidSuccessor(Word);
 }
 }

The first component is the Text Component:

/* TextComponent.c -- Component that processes and controls access to the
 Words and Word Text. */

#define DE BUG

#include <stdio.h>
#include “Parameters.h”
#include “Errors.h”
#include “ErrorMessages.h”

int StoredCharacters; /* Number of Text characters used */
char Text[MaxText];

typedef struct
 {
 int TextIndex; /* Index to Text */
 int Lesser; /* Index to Word List of Lesser Word */
 int Greater; /* Index to Word List of Greater Word */
 int Next; /* Link to next Identical Word */
 } WordType;

/* Access functions for the Word List structure */

#define TextIndex(N) (WordList[N].TextIndex)
#define Lesser(N) (WordList[N].Lesser)
#define Greater(N) (WordList[N].Greater)
#define Text(N) (Text[TextIndex(N)])
#define Next(N) (WordList[N].Next)

int Words; /* Number of Words Used */
WordType WordList[MaximumNumberofWords]; /* Word structure */

int NumberofWords()
 {
 return Words;
 }

int NextIdenticalWord(Word)
 {
 if (Word <= Words) return Next(Word);
 else
 SetError(InvalidNextRequestMessage);
 ErrorExit;
 }

int TextPointer(Word)
 {
 if (Word <= Words) return TextIndex(Word);
 else
 SetError(InvalidTextIndexRequestMessage);
 ErrorExit;

 }

PrintWord(Word)
 {
 int CharacterPosition; /* Position of current character in Text */
 int WordLength; /* Current Length of the current word. */

 if ((Word < 1) || (Word > Words))
 {
 SetError(InvalidWordMessage);
 ErrorExit;
 }
 for (CharacterPosition = TextIndex(Word), WordLength=0;
 (Text[CharacterPosition] != 0) && (WordLength < MaximumWordLength);
 WordLength++, CharacterPosition++)
 printf(“%c”,Text[CharacterPosition]);
 printf(“\n”);
 }

InputWords()
 {
 int CC = 0; /* Current character; may be end of file, but
 not to start with. */

 int DupWord; /* The word list index of the same word as the
 current word. */

 int WordSize; /* Number of characters in the current word. */

 int NewWords; /* The number of Unique Words encountered. */

 Words = 0;
 NewWords = 0;
 StoredCharacters = 0;

 /* Start the Text table with a null so that all words start with and
 end with a null */
 Text[StoredCharacters++] = 0;

 Text[StoredCharacters] = 0; /* Start with a null word */

 CC = getchar();

 /* Skip White Space */

 while (WhiteSpace(CC)) CC = getchar();

 /* Read in the next word */

 while (!EndFile(CC))
 { /* start a new word */

 if (Words >= MaximumNumberofWords)
 {
 SetError (TooManyWordsErrorMessage);
 ErrorExit ;
 }
 if (NewWords >= MaximumNumberofUniqueWords)
 {
 SetError (TooManyNewWordsErrorMessage);
 ErrorExit ;
 }

 /* Start the Word list with word 1 so that we can use word zero as
 the null pointer. In addition Word[0] is null. */

 Words += 1;
 NewWords += 1;
 WordSize = 0;

 Lesser(Words) = 0;
 Greater(Words) = 0;
 Next(Words) = Words;
 TextIndex(Words) = StoredCharacters;

 /* TextIndex(Words) is the index of the current word text. */

 while (!EndFile(CC) && !WhiteSpace(CC) && (StoredCharacters < MaxText))
 { /* we have a new character that is not white space */

 if (! ValidASCII(CC))
 {

#ifdef DEBUG
 if (Words > 2)
 printf(“%d after %s %s %s\n”,CC, &Text(Words-2),
 &Text(Words-1), &Text(Words));
#endif
 SetError(InvalidCharacterMessage);
 ErrorExit;
 }

 /* Exit if the current word is too long. */

 if (WordSize >= MaximumWordLength)
 {
 SetError(InvalidWordLengthMessage);
 ErrorExit;
 }

 /* Exit if we have exceeded the character storage limitation. */

 if (StoredCharacters >= MaxText)

 {
 SetError(TooManyCharactersMessage);
 ErrorExit;
 }

 /* A valid character has been read. */

 WordSize++;

 /* Store the character in the text buffer. If it is a
 duplicate word, we will remove it later. */

 Text[StoredCharacters++] = CC;
 CC = getchar() ;
 }

 /* The word is now stored */

 /* Terminate the word string if there is sufficient memory. */

 if (StoredCharacters >= MaxText)
 {
 SetError(TooManyCharactersMessage);
 ErrorExit;
 }
 else Text[StoredCharacters++] = 0;

 /* Delete the word and re-index if it is a duplicate */

 DupWord = BinarySearch(Words);

 if (DupWord != Words)
 { /* Word is Duplicate */
 /* Delete the Text */
 StoredCharacters = TextIndex(Words);
 TextIndex(Words) = TextIndex(DupWord);
 Next(Words) = Next(DupWord);
 Next(DupWord) = Words;
 NewWords--;
 }

 /* Skip additional white space characters */

 while (WhiteSpace(CC)) CC = getchar();

 }
 }

/* BinarySearch.c -- searches for duplicate word entries and returns the
 word list index of the duplicate. If the word is not already present
 the word is inserted and the word list index to it is returned. */

int BinarySearch()
 {
 int Compare; /* Results of string compare, -1,0,1 */
 int Node = 1; /* Start with the first word of the word list */

 /* Next(Node) >= 1 tells us that the pointer is correct
 TextIndex(Node) then points to the word in Text, The current word
 text is at TextIndex(Words). */

 while (Node != 0)
 { /* The node exists. */

 /* The strncmp routine will compare the prefixes of strings. The
 system is designed to prohibit strings greater than the Maximum
 Word Length but if the system memory becomes corrupt, strncmp
 will deliver an incorrect result and not detect the memory
 corruption. */

 Compare = strncmp(&Text(Words), &Text(Node), MaximumWordLength);

 if (Compare == 0) return Node; /* The current node matches. */

 if (Compare < 0)
 if (Lesser(Node) == 0)

 {
 Lesser(Node) = Words;
 return (Words);
 }
 else Node = Lesser(Node);
 else if (Greater(Node)== 0)
 {
 Greater(Node) = Words;
 return (Words);
 }
 else Node = Greater(Node);
 }
 SetError(BinaryTreeErrorMessage);
 ErrorExit;
 }

#ifdef DEBUG
PrintSubtree (int N)
 {
 if (N == 0) return;
 PrintSubtree(Lesser(N));
 printf(“%s\n”,&Text(N));
 PrintSubtree(Greater(N));
 }

PrintTree ()
 {
 PrintSubtree(1);
 }
#endif

and the second is the Successors Component:

/* SuccessorComponent.c -- Computes and manages the successor list. */

#define DE BUG
/*

 Each Word except the first and last starts a two word prefix. We must
 count the total number of prefixes that match that word (and its
 successor) and create pointers to the addition duplicate prefixes in the
 Successor list. No pointers are placed in the Successor list for words
 that do not start a duplicated prefix. */

#include “Parameters.h”
#include “Errors.h”
#include “ErrorMessages.h”

int SuccessorList[MaximumNumberofWords];

struct
 { int Successor;
 int ValidSuccessorWords;
 int First; /* Index to the first word of the first occurrence of a
 matching pair */
 } Successors[MaximumNumberofWords];

/* Valid Successor Access Functions */

#define Successor(Word) (Successors[Word].Successor)
#define ValidSuccessorWords(Word) (Successors[Word].ValidSuccessorWords)
#define First(Word) (Successors[Word].First)

#ifdef DEBUG
PSL(s,n)
 {
 int i;
 for (i=0;i<n;i++)
 printf(“%d “,SuccessorList[s+i]);
 printf(“\n”);
 }
#endif

ListValidSuccessors()
 {
 int successors = 0; /* The total number of successors assigned in the
 Successor List. */
 int Word; /* The current word number. */
 int Words = NumberofWords(); /* The total number of words input
*/
 /* Reset all successor counts */

 for (Word = 1; Word < Words; Word++)
 ValidSuccessorWords(Word) = 0;

 /* List the successors for all words.
 (A null word has been defined for Word 0). */

 for (Word = 1; Word < NumberofWords() ; Word++)
 {
 if (ValidSuccessorWords(Word) == 0)
 { /* We have not encountered this word pair before so search
 for matching pairs */
 int NextWord = NextIdenticalWord(Word);
 /* Next Word that equals this word */
 First(Word) = 0;
 while (NextWord != Word)
 {
 if (ValidSuccessorWords(NextWord) == 0)
 { /* We haven't already counted this one */
 /* The words are the same if the Text Indices are
 Identical. */
 if (TextPointer(NextWord-1) == TextPointer(Word-1))
 { /* The prior word is the same.
 There are now at least two matching pairs of
 words. */
 First(Word) = Word;
 if (ValidSuccessorWords(Word) == 0)
 { /* Start a Successor list */
 Successor(Word) = successors;
 SuccessorList[successors++] = Word+1;
 SuccessorList[successors++] = NextWord+1;

 ValidSuccessorWords(Word) += 2;
 }
 else
 { /* The Successor List is already started. */
 SuccessorList[successors++] = NextWord+1;
 ValidSuccessorWords(Word) += 1;
 }
 /* Mark next word as counted */
 ValidSuccessorWords(NextWord) = 1;
 /* Refer each pair to the first occurrence of the
 pair */
 First(NextWord) = Word;
 }
 }
 NextWord = NextIdenticalWord(NextWord);
 }
 }
 if (ValidSuccessorWords(Word) == 0)
 { /* There were no matching pairs */
 ValidSuccessorWords(Word) = 1; /* Mark it as counted */
 }
 }
 }

int ValidSuccessor(int Word)
 {
 if (Word > NumberofWords())
 {
 SetError(InvalidSuccessorRequestMessage);
 ErrorExit;
 }

 if (First(Word) != 0)
 { /* This is not the first place that this matching pair is
 ** found. So locate the first occurrence of this matching pair
 ** where the count is kept. */
 Word = First(Word);

 /*
 ** There is more than one choice, so pick one
 */
 Word = SuccessorList[Successor(Word)
 + rand() % ValidSuccessorWords(Word)];
 }
 else
 Word++;
 return Word;
 }

The remaining detail is the error handler functions with the appropriate header definition file:

/* Errors.h -- Error system include file */

/* Definition of path for error messages */

#define ErrorDevice stdout
#define DisplayDevice stdout

/* Macro to set error message code */

#define SetError(Message) seterror(Message)

/* Macro to display the error message and exit process with error code. */

#define ErrorExit errorexit()

/* Macro to return an error message to caller */

#define Return(ErrorMessage) {ErrorCode = ErrorMessage; return;}

/* Macro to test for existence of error */

#define Error (ErrorCode != NULL)

/* Macro to display error message and reset error code. */

#define DisplayError displayerror()

/* Errors.c -- Error handling package. Used in conjunction with the error
 Macros in Errors.h */

#include <stdio.h>
#include “Errors.h”
#include “Parameters.h”
#include “ErrorMessages.h”

/* LineLength, though 80 characters, can only accommodate 79 characters
without line wrap.

To constrain output to no more that 79 characters, for configurable line
length we need a dynamic format string as follows.
*/

char LineLengthFormat[35] = “%.79s\n” ;

#ifndef LineLenth
#define LineLength 80
#endif

/* A function is provided to redefine the maximum output message length. */

SetFormat()
 {
 sprintf(LineLengthFormat, “%%.%ds\n”, LineLength - 1);
#ifdef DEBUG
 printf(“%s”, LineLengthFormat);
#endif
 }

/* Error Output

This component displays all messages to the operator and constrains
output to the required display area. */

Output(FILE *Destination, char Message[])
 { /* Output message but truncated to allowed length */
 fprintf(Destination, LineLengthFormat, Message);

 /*
 ** Fatal error if Message is too long
 */
 if (strnlen(Message, LineLength) > LineLength - 1)
 {
 SetError(ErrorMessageLengthErrorMessage);
 ErrorExit;
 }
 }

/* Global Error System */

char * ErrorCode = NULL;

/* Since C does not provide a strnlen function and strlen can address out
of bounds with an improperly terminated string, we provide a strnlen
function that allows bounding the string length search. */

int strnlen(char s[], int l)
 {
 int c;
 for (c = 0; c < l; c++)
 if (s[c] == 0)
 return c;
 return l;
 }

/* Procedure to display the error message and exit process with error
** code. */

errorexit()
 {
 DisplayError;

 /*
 ** We do not use “Output” here because Output calls error exit on an error.
 */
 fprintf(ErrorDevice, “%s\n”, FatalErrorMessage);
 exit(1);
 }

/* Procedure to set error message code */

seterror(char * Message)
 {
 ErrorCode = Message;
 }

/* Procedure to display error message and reset error code. */

displayerror()
 {
 Output(ErrorDevice, ErrorCode);
 ErrorCode = NULL;
 }

