
Unicode Compression: Does Size Really Matter?
TR CS-2002-11

Steve Atkin
IBM Globalization Center of Competency

International Business Machines
Austin, Texas USA 78758
atkin@us.ibm.com

Ryan Stansifer
Department of Computer Sciences

Florida Institute of Technology
Melbourne, Florida USA 32901

ryan@cs.fit.edu

July 2003

Abstract

The Unicode standard provides several algorithms, techniques, and strategies for assigning,
transmitting, and compressing Unicode characters. These techniques allow Unicode data to be
represented in a concise format in several contexts. In this paper we examine several techniques
and strategies for compressing Unicode data using the programs gzip and bzip. Unicode
compression algorithms known as SCSU and BOCU are also examined. As far as size is
concerned, algorithms designed specifically for Unicode may not be necessary.

1 Introduction

Characters these days are more than one 8-bit byte. Hence, many are concerned about the space
text files use, even in an age of cheap storage. Will storing and transmitting Unicode [18] take a
lot more space? In this paper we ask how compression affects Unicode and how Unicode affects
compression.

1

Unicode is used to encode natural-language text as opposed to programs or binary data. Just
what is natural-language text? The question seems simple, yet there are complications. In the
information age we are accustomed to discretization of all kinds: music with, for instance, MP3;
and pictures with, for instance, JPG. Also, a vast amount of text is stored and transmitted digitally.
Yet discretizing text is not generally considered much of a problem. This may be because the En-
glish language, western society, and computer technology all evolved relatively smoothly together.
However, diverse languages, writing systems, and encodings of other places belie this sanguin-
ity. Practices such as font-specific encodings, using pictures of text, incomplete and changing
standards, all suggest that text-processing practices need attention. In the future, natural-language
text may not be represented that same as it is today. Digital text may be built around different
abstractions rather than simple code points.

One obvious strategy for representing natural-language is to use Unicode. But just what is
Unicode? Is it data? Some characters have the same appearance but different meaning:

U+212B ANGSTROM SIGN
U+00C5 LATIN CAPITAL LETTER A WITH RING

Is it a collection of glyphs? Some code points represent different forms of the same data.

U+0671 ARABIC LETTER ALEF WASLA
U+FB50 ARABIC LETTER ALEF WASLA ISOLATED FORM

Is it a mechanism for interchange? The full-width characters come from Shift-JIS.

U+FF21 FULLWIDTH LATIN CAPITAL LETTER A

Is it mark-up? As, for instance, suggested by the following two code points:

U+200D Zero Width Joiner
U+2029 Paragraph Separator

Is it a compression scheme? UTF-8 [21] is often used to save space in storing and transmitting
Unicode characters.

At the heart of our study is the coded character set UCS-2, a fixed-width, 16 bit encoding of
Unicode characters. We completely ignore surrogates. This makes software programming easier
and follows the practice of the Java programming language [1]. In Java, Unicode as USC-2 is used
to interpret the computer bits representing characters internally (by which we mean inside the soft-
ware application) and UTF-8 is often used externally (by which we mean storing and exchanging
text).

An encoding scheme and a compression algorithm are similar in that they both pick a repre-
sentation for the symbols. In this paper we explore this similarity. With vast computing power
and clever compression algorithms available today, are encoding schemes necessary? Can each

TR CS-2002-11 2 July 2002

application be free to pick the representation of code points? Are there some representations that
lend themselves better to compression? To address these questions we tried many different ways
of compressing Unicode natural-language text.

Our experiments in compression do not hold all the answers to these questions. But we have
an extensive study of the size of different representations. The complete results of our experiments
as well as the corpus of text can be found at the WWW site:

http://www.cs.fit.edu/˜ryan/compress

2 Corpus

Collecting plain text is much more difficult than we expected. At first the Internet appears to be
a boundless source of text. But, we avoided “marked-up” text like HTML documents. Perhaps
marked-up text is a different kind of document: a hybrid natural/unnatural document. On the other
hand, maybe the mark-up can be safely ignored or stripped out in this context. In any case, only
one sample in our corpus of text is an HTML document. It is worth pondering if all electronically-
stored text will be “marked-up” in the future. This does have an impact on character repertoire and
character codes; see [2].

The overwhelming majority of plain text we encountered is in English and other European
languages. These samples were the easiest to collect. Project Gutenberg [14] provided five texts
in English, Spanish, and German. Non-English text was harder for us to acquire. Many schol-
arly archives are not freely accessible over the Internet. And our efforts were constrained by our
bounded time, persistence, and limited linguistic ability.

We have collected 15 large samples of natural-language plain text, two of which are multi-
lingual. We also added 9 samples of artificial text, some randomly created. These texts compress
differently because natural-language text generally has lots of extraneous information that does not
affect the intrinsic content. The entire list is shown in Table 1.

Table 2 has more information about the corpus including the coded character set we think the
file is in, the number of Unicode characters, how many different characters occur in the file, and
the entropy of the file. Entropy H is a measure of the information content:

H = −

n∑

i=1

Pi log
2
Pi bits per symbol

where Pi is the probability of occurrence of the i-th symbol. Files with high entropy will be more
random and harder to compress.

Though not relevant for the purposes of compression, the interpretation of the text files is not as
easy as we expected—especially for non-English text. What did the authors intend? Did they make
spelling errors? Did the 17th century typesetter run out of the letter ‘U’ and use ‘V’ instead (as

TR CS-2002-11 3 July 2002

Table 1: Texts Used in Experiments

work file code set language characters

Alice in Wonderland
by Carroll

alice30.txt ISO-8859-1 English 148,542

Hamlet by Shakespeare hamlet.txt ISO-8859-1 English 162,850
Ulysses by Joyce ulysses.txt ISO-8859-1 English 1,517,848
Don Quijote by Cervantes quijote.txt ISO-8859-1 Spanish 2,093,952
Cinq Semaines by Verne cinq10.txt ISO-8859-1 French 489,772
Faust I by Goethe faust1.txt ISO-8859-1 German 187,764
Writings by Neḿeth nemeth6.hun ISO-8859-2 Hungarian 118,695
Quran quran.txt ISO-8859-6 Arabic 516,342
Odyssey by Homer odyssey.txt ISO-8859-7 Greek 46,622
Anna Karenina by Tolstoy annak.txt KOI8-R Russian 1,704,065
Malik Muhammad Jayasi introduction.isc ISCII Hindi 381,306
Thai word list th 18057.txt TIS-620 Thai 135,450
Kim Van Kieu by Nguyen kieu175.vscii VISCII Vietnamese 6,783
The Tale of the Bamboo Cutter taketori.txt EUC-JP Japanese 27,268
Three Kingdoms
by Guanzhong Luo

sanguo.txt GBK Chinese 635,632

“Provincial” by Kaplan provincial.utf8 UTF-8 multi-lingual 6,980
“UTF-8” by Kuhn kuhn.utf8 UTF-8 multi-lingual 7,224
Maribyrnong Library
Home Page

maribyrnong.html UTF-8 multi-lingual 7,607

SML source code for a functor convert.sml ISO-8859-1 program 26,179
Java source code for a class LZW.java ISO-8859-1 program 20,034
C source code for a library regex.c ISO-8859-1 program 171,188
all ‘A’s aaaa.txt ISO-8859-1 artificial 12,000
four different ‘A’s aAaA.utf8 UTF-8 artificial 12,000
random Unicode characters random.utf8 UTF-8 artificial 200,000
every Unicode character sequence.utf8 UTF-8 artificial 49,257
random bytes bytes.data bytes artificial 12,000

TR CS-2002-11 4 July 2002

Table 2: Characteristics of the Corpus

roundtrip/ total distinct
file code set repl char characters characters entropy
alice30.txt ISO-8859-1 yes; 0 152,089 72 4.568
hamlet.txt ISO-8859-1 yes; 0 162,850 65 4.569
ulysses.txt ISO-8859-1 yes; 0 1,517,848 79 4.820
quijote.txt ISO-8859-1 yes; 0 2,093,952 91 4.381
cinq10.txt ISO-8859-1 yes; 0 489,772 103 4.553
faust1.txt ISO-8859-1 yes; 0 187,764 72 4.843
nemeth6.hun ISO-8859-2 yes; 0 118,695 94 4.783
quran.txt ISO-8859-6 no; 93 516,342 61 4.622
odyssey.txt ISO-8859-7 yes; 0 46,622 74 4.837
annak.txt KOI8-R yes; 0 1,704,065 136 4.734
intrduction.isc ISCII yes; 0 381,306 109 4.810
th 18057.txt TIS620 no; 100 135,450 105 5.000
kieu175.vscii VISCII yes; 0 6,783 124 4.833
taketori.txt EUC-JP yes; 0 27,268 740 6.625
sanguo.txt GBK no; 22 635,632 3,921 8.918
provincial.utf8 UTF-8 yes; 0 6,977 613 6.305
kuhn.utf8 UTF-8 yes; 1 7,224 680 6.891
maribyrnong.html UTF-8 yes; 0 7,607 247 5.505
convert.sml ISO-8859-1 yes; 0 20,034 89 4.645
LZW.java ISO-8859-1 yes; 0 20,034 88 4.731
regex.c ISO-8859-1 yes; 0 171,188 97 4.762
aaaa.txt ISO-8859-1 yes; 0 12,000 1 0.000
aAaA.utf8 UTF-8 yes; 0 12,000 4 2.000
random.utf8 UTF-8 yes; 4 200,000 48,459 15.402
sequence.utf8 UTF-8 yes; 1 49,257 49,257 15.588
bytes.data 12,000 256 7.984

TR CS-2002-11 5 July 2002

sometimes occurred in the printing of Shakespeare’s plays). Does the data represent the author’s
intention or the printed page? Transcribers had to pick characters to represent the work. Maybe
there was no character available (discretization error) in the character set. For example, in Alice in
Wonderland, we see the common practice of using the apostrophe and the grave accent for single
quotation marks, since single quotation marks are unavailable in ISO-8859-1. Encoding the work
in Unicode might be considered more accurate as all the characters in question are part of the
Unicode repertoire:

U+0027 APOSTROPHE
U+0060 GRAVE ACCENT
U+2018 LEFT SINGLE QUOTATION MARK
U+2019 RIGHT SINGLE QUOTATION MARK

The size of the character set and the character encoding scheme have an impact on the meaning of
the data.

3 Character Codes

Just a few samples were collected directly in Unicode (specifically UTF-8). The rest were in
various 8-bit code sets and a few in multi-byte code sets. Naturally, much of it was encoded
(apparently) in ISO-8859-1, commonly known as Latin-1.

Most text samples were converted into Unicode characters by using Java’s internal character
conversion logic. The following code fragment illustrates how it was done:

final String file_name = "alice30.txt";
final String encoding = "ISO-8859-1";
final BufferedReader in=new BufferedReader(new InputStreamReader(

new FileInputStream (file_name, encoding));
for (;;) {

final int unicode_char = in.read();
if (unicode_char == -1) break;

}
in.close();

Another possibility for such conversion is the GNU software recode [13]. It was used for the
Vietnamese character codes VISCII and VIQR [10], which are not predefined in the Java system
of code-point converters. (Possible errors in UTF-8 discouraged us from using recode uniformly
for all conversions.)

Among the other coded character sets used in the corpus are KOI8-R [6], GBK (simplified
Chinese) [12], and ISO-8859-2. The complete list can be found in Table 2.

TR CS-2002-11 6 July 2002

In several cases we are unable to convert back to the original data from the Unicode repre-
sentation. We indicate this in the column labeled “round-trip” in Table 2. The original may have
contained unassigned code points, or may be relying on a different version of the encoding stan-
dard. In these cases the conversion software may have inserted the replacement character; we take
a replacement character as evidence of some sort of potential problem in the natural language text.
For example, in sanguo.txt we find the 3,635th character is the replacement character. Here is a
portion of that file, readers may draw their own conclusions.

...
3,631 U+6709 CJK UNIFIED IDEOGRAPH-6709 YOU3
3,632 U+591A CJK UNIFIED IDEOGRAPH-591A DUO1
3,633 U+5927 CJK UNIFIED IDEOGRAPH-5927 DA4
3,634 U+5173 CJK UNIFIED IDEOGRAPH-5173 GUAN1
3,635 U+FFFD REPLACEMENT CHARACTER
3,636 U+FF0C FULLWIDTH COMMA
...
6,118 U+4E00 CJK UNIFIED IDEOGRAPH-4E00
6,119 U+53E5 CJK UNIFIED IDEOGRAPH-53E5 JU4
6,120 U+FFFD REPLACEMENT CHARACTER
6,121 U+7EB9 CJK UNIFIED IDEOGRAPH-7EB9 WEN2
6,122 U+305B HIRAGANA LETTER SE
6,123 U+554A CJK UNIFIED IDEOGRAPH-554A A5 QIANG1
6,124 U+FFFD REPLACEMENT CHARACTER
6,125 U+000A LINE FEED

Also, the file th 18057.txt appears corrupted from about character 120,825. And, in the UTF-8
file by Markus Kuhn we find one occurrence of the replacement character. We have no way of
knowing whether that was intentional.

Yet another problem of interpretation is raised with the Arabic text. The Arabic language is
written in the right-to-left direction. When the text is rendered using the Unicode bi-directional
algorithm, as, say by the Java widget JTextPane, the result is not what was intended. Mirroring
of brackets is done “incorrectly” (not in the way intended by the authors). The difficulties of
bi-directional text have been the subject of another investigation [3].

Other more subtle sources of misinterpretation are possible. Often the character encoding used
is not given. And even if hints are given it is hard to be sure. These encoding standards are
evolving or are confused by common alternative practice or mis-practice. Finally, it is possible
that the converters have bugs or that its developers are confused by the same problems confronting
the authors of the text.

In conclusion, a portion of the non-English corpus may not be “meaningful” as revealed by
even a superficial analysis of the data. This raises troubling questions about the fidelity of the data
representing natural language in scripts other than Latin.

TR CS-2002-11 7 July 2002

4 Character Encodings

Fundamentally the underlying data is a collection of Unicode characters. But this information can
be represented in different ways. These different representations have different advantages and
disadvantages. We examine a number of representations, and see which ones take up the least
space and which ones compress the best.

We have chosen a number of different formats to see if any significant differences emerge.
Table 3 lists the different intermediate formats we used. The first group of formats are “plain”
Unicode—just the 16-bit code point. Even so there are some variations that may make a difference.
We might pad out the 16 bits to 32 bits. This format we call UCS-4. Also the byte order might affect
compression, so we try both little-endian and big-endian: UCS-2 LE and UCS-2 BE, respectively.

Table 3: Different Intermediate Formats

UCS-4 Unicode four octet representation (big endian)
UCS-2 BE Unicode two octet representation (big endian)
UCS-2 LE Unicode two octet representation (little endian)

UTF-8 1, 2, or 3 octet representation of 16 bits
UTF-7 1, 2, or 3 octet representation of 16 bits

base 64 base 64 encoding of UCS-2
hex hexadecimal digits of UCS-2

entities mark-up language entities
names full Unicode character names

diff differences encoded in UTF-8
SCSU Standard Compression Scheme for Unicode

BOCU Binary-Ordered Compression for Unicode

Since many of the leading bytes in the 16 bits are zero, other formats have been devised to save
space. UTF-8 encodes the 16 bits in 1, 2, or 3 octets. UTF-7 does the same, but uses only the lower
7 bits of each octet as in US-ASCII. Similarly base-64 uses only 64 common, graphical symbols
encoded in US-ASCII, but with a fixed-width format. Every three Unicode characters is encoded
in 8 symbols.

The next group of formats are in a category we might call “quoted printable.” There really
is a quoted-printable format [4] in which every octet using more than 7 bits is replaced by the
digits representing the code point. This requires two characters plus an “escape” character (the
equals sign) to encode one byte. Obviously any bit pattern can be encoded this way. We did
not use the quoted-printable format because we used several very similar ones. One, we have
called “hex,” is an extremely simple one that uses the four hexadecimal digits (in US-ASCII) for
every Unicode character. Another, we have called “entities,” uses the HTML entity approach and

TR CS-2002-11 8 July 2002

contains the decimal digits in this format: &#dddd;. The format we have called “names” uses
the formal Unicode names for each character terminated by a line-feed character. Naturally these
approaches expand the number of bytes needed to store the files considerably. But, as we will see,
they compress nearly as well as the other formats.

These formats are perhaps related to a type of encoding that we have not yet investigated. We
can imagine a human-readable, multi-character encoding. This could be like RFC1345 [16] that
proposes a mnemonic system for some (not all) Unicode characters. Naturally, the challenge is
including the ideographic script systems. Perhaps a general system of input could be used as the
encoding. Some systematic input methods for alphabetic scripts have been studied [19].

The final group of formats have compression as part of their motivation. They take advantage of
the fact that mono-lingual text does not require all of Unicode, so using 16 bits for every character is
wasteful. This approach resembles UTF-8, except that UTF-8 favors US-ASCII—everything else
must take more than one byte even if it is in an alphabetic script. We have created and implemented
a format we call “diff.” It is a simple-minded, stateful encoding of Unicode that puts in the higher-
order bits of the USC-2 only when they change. The Standard Compression Scheme for Unicode
(SCSU) [20] is a more sophisticated character encoding scheme that does the same. More recently
another approach has been developed that in addition preserves the order of the characters, Binary-
Ordered Compression for Unicode (BOCU) [15]. BOCU is a stateful, muti-byte, encoding of
Unicode. The control codes including NUL, CR and LF are encoded with the same byte values as
in US-ASCII.

Some formats are easier to visualize than others. We give an example of encoding a partic-
ular sequence of five Unicode characters in the list below. We use the first five characters of file
aAaA.utf8. The format “diff” removes the bias toward US-ASCII, but all the spaces and line-
feed characters in the data require the format to make large jumps back to where all the higher-order
bits are zero.

Unicode Name BE LE UTF-8

1 U+0410 CYRILLIC CAPITAL LETTER A 0410 1004 d0 90
2 U+0041 LATIN CAPITAL LETTER A 0041 4100 41
3 U+0041 LATIN CAPITAL LETTER A 0041 4100 41
4 U+0391 GREEK CAPITAL LETTER ALPHA 0391 9103 ce 91
5 U+FF21 FULLWIDTH LATIN CAPITAL LETTER A FF21 21FF ef bc a1

entities diff base 64

1 U+0410 А 0410=d0 90 041000=BBAA
2 U+0041 A FC41=ef b1 81 410041=QQBB
3 U+0041 A 0041=41
4 U+0391 Α 0391=ce 91 0391FF=A5H/
5 U+FF21 Ａ FBA1=ef ae a1 21****=IQ==

TR CS-2002-11 9 July 2002

5 Compression

The compression software we used was the GNU gzip and bzip2 programs.
The gzip compressor used in our experiments is in the general class of LZ77 (Ziv and Lempel)

lossless compressors[22]. The basic strategy used by LZ77 compressors is to replace substrings
(phrases) with pointers to the place where they occurred before in the text, yielding a tuple contain-
ing a phrase position and a phrase length. This represents an adaptive approach where the prior text
is the codebook itself. Decompression is relatively simple and fast. For each tuple encountered, go
to that phrase position and write the number of bytes indicated by the phrase length.

The bzip2 compressor used in our experiments is in the general class of block-sorting com-
pressors. In general, block-sorters first reorder a section (block) of text using a sorting algorithm
prior to any compression. Sorting the block transforms the text into a representation that lends
itself to efficient compression. In the case of bzip2 the Burrows-Wheeler Transform [5] is used
to sort the block of text. Once the block has been sorted traditional compression techniques are
then applied, such as run-length encoding.

All experiments were conducted on a Sun Microsystems Ultra-5 computer running Solaris.
The compressors gzip, version 1.24 [8], and bzip2, version 1.0.2 [17], were invoked with their
default parameters (neither their smallest nor largest block sizes). Both are designed to take se-
quences of octets (not characters) as input. Since all data must necessarily be binary, this does not
exclude any input. However, this raises the interesting possibility of tuning these compressors for
16 bit or Unicode characters and seeing if that makes a difference. This possibility was examined
in a study by Fenwick and Brierley [7]. They concluded an LZU compressor for 16 bits offers
some improvement.

As our results substantiate, the compressed files of bzip2 are generally smaller than gzip.
Of the 320 files compressed (these includes all the various formats), gzip had smaller output in
only 27 cases; and in these cases the difference is small. On the other hand, bzip2 is generally
held to be slower than gzip, but we made no such measurements ourselves. Here we consider
only space and we ignore time. Both are important, but timing results can be difficult to interpret.

6 Results

Each file of the corpus was converted to Unicode characters and put in each of the twelve formats
discussed previously. All the files were then compressed with gzip and bzip2.

We consider first the file ulysses.txt. Ulysses, an unusual work of English literature, exhibits
behavior representative of the other natural-language texts encoded in ISO-8859-1 as far as our
experiments go. The data we collected for this case is presented in Table 4.

For text encoded in ISO-8859-1, several of the other formats use the identical encoding of the
characters. These are marked with an equals sign in Table 4, and the row of the table is omitted. In

TR CS-2002-11 10 July 2002

Table 4: Results for ulysses.txt

gzip bzip2
octets bits/char octets bits/char octets bits/char

text = 1,517,848 8.000 658,347 3.470 516,295 2.721
UCS-4 6,071,392 32.000 1,011,501 5.331 548,646 2.892

UCS-2 BE 3,035,696 16.000 795,198 4.191 532,984 2.809
UCS-2 LE 3,035,696 16.000 795,200 4.191 533,307 2.811

UTF-8 =
UTF-7 ≈ 1,517,854 7.000 658,350 3.470 516,681 2.723

base 64 2,023,800 8.000 866,530 4.567 595,115 3.137
hex 6,071,392 16.000 1,019,387 5.373 560,416 2.954

entities ≈ 1,517,860 8.000 658,355 3.470 516,797 2.724
names 27,512,696 90.631 1,383,527 7.292 632,720 3.335

diff =
SCSU =

BOCU 1,517,848 8.000 658,383 3.470 516,306 2.721

the case of ulysses.txt two other encodings are very similar, but not identical. These encodings are
marked with the ≈ sign. UTF-7 differs only because of the two occurrences of the character

U+002B PLUS SIGN

(the least frequently occurring character in the file ulysses.txt) which is used as a meta character
in UTF-7 and must itself be encoded. And the file of mark-up language entities differs from the
original only because of the three occurrences of

U+0026 AMPERSAND

which serves as the escape character for HTML entities. Otherwise these formats would also be
identical to the original.

The original text file takes up the least space and the Unicode character names take up the most.
The names require a whopping 90 bits per Unicode character. This figure is so low only because
we charged each octet with just 5 bits because the character repertoire used in the names—roughly
the upper-case ASCII letters—will fit in 5 bits. (Similarly UTF-7 is charged 7 bits, base-64 6 bits,
etc.) Furthermore, the original text file is the most compressible format. Both gzip and bzip2
are able to compress the text file more than any other format.

The case of the Vietnamese text is interesting. The data we collected for this case is presented
in Table 5. This is the only case that we have two text encodings. The first is VISCII which

TR CS-2002-11 11 July 2002

Table 5: Results for kieu175.viscii

gzip bzip2
octets bits/char octets bits/char octets bits/char

VISCII 6,783 8.000 3,434 4.050 2,933 3.459
VIQR 8,383 9.887 3,586 4.229 2,896 3.416

UCS-4 27,132 32.000 4,968 5.859 2,968 3.501
UCS-2 BE 13,566 16.000 4,190 4.942 2,966 3.498
UCS-2 LE 13,566 16.000 4,194 4.946 3,029 3.572

UTF-8 8,478 9.999 3,752 4.425 2,940 3.467
UTF-7 11,008 11.360 3,927 4.632 3,080 3.633

base 64 18,088 16.000 5,388 6.355 3,898 4.597
hex 27,132 16.000 4,700 5.543 3,017 3.558

entities 11,558 13.632 4,000 4.718 3,024 3.567
names 126,429 93.195 6,398 7.546 3,377 3.983

diff 10,507 12.392 4,120 4.859 3,166 3.734
SCSU 7,795 9.194 3,687 4.349 3,031 3.575

BOCU 8,903 10.500 4,112 4.850 3,349 3.950

is an 8-bit encoding that does not preserve the bottom half (0x00-0x7F) for US-ASCII like the
ISO-8859 standards. There are just too many Vietnamese characters that need to be represented.
The second text encoding embeds Vietnamese into US-ASCII. This encoding is called Vietnamese
Quoted Readable (VIQR); the first verse of kieu175.viqr appears below:

1. Tra(m na(m trong co˜i ngu+o+‘i ta,
Chu+˜ ta‘i chu+˜ meˆ.nh khe’o la‘ ghe’t nhau\.
Tra?i qua moˆ.t cuoˆ.c beˆ? daˆu,
Nhu+˜ng ddieˆ‘u troˆng thaˆ’y ma‘ ddau ddo+’n lo‘ng.

US-ASCII symbols are used as conjoining diacritics. The backslash character is used to mean
the next character is not to be interpreted as a diacritic mark. This encoding is apparently fairly
readable. Despite its multi-byte nature it compresses well; in fact, it is the most compressible of
all the formats. See Table 5.

Table 6 summarizes our results. All the formats compressed to about the same size by bzip2.
But some trends are evident. In the alphabetic scripts compressing the original text almost always
results in a smaller file than first converting to UTF-8 or some other format and then compressing.
Over all these texts, the compressed files require an average of 2.714 bits per characters. If the
file is converted to UTF-8 first, for example, and then compressed an average of 2.750 bits per
characters is required.

TR CS-2002-11 12 July 2002

Table 6: Comparison of bzip2 Compressibility

file text UCS-2 BE UTF-8 hex SCSU BOCU

alice30.txt 2.325 2.326 2.325 2.384 2.325 2.321
hamlet.txt 2.642 2.642 2.642 2.715 2.642 2.642
ulysses.txt 2.721 2.809 2.721 2.954 2.721 2.721
cinq10.txt 2.317 2.386 2.318 2.602 2.317 2.345
quijote.txt 2.266 2.354 2.271 2.528 2.266 2.292
faust1.txt 2.601 2.598 2.601 2.667 2.601 2.620

nemeth6.hun 3.013 3.015 3.016 3.102 3.019 3.102
quran.txt 2.135 2.183 2.136 2.356 2.144 2.156

odyssey.txt 3.117 3.122 3.113 3.203 3.120 3.167
annak.txt 2.456 2.575 2.565 2.791 2.454 2.482

introduction.isc 2.621 2.623 2.668 2.827 2.621 2.645
th 18057.txt 3.615 3.617 3.626 3.738 3.611 3.621

kieu175.viscii 3.459 3.498 3.467 3.558 3.575 3.950
ALPHABETIC 2.714 2.750 2.728 2.879 2.724 2.774

taketori.txt 5.133 5.279 5.170 5.499 6.084 5.720
sanguo.txt 7.543 7.531 7.554 8.163 7.563 7.862

provincial.utf8 5.796 5.717 5.976 5.542 5.684
kuhn.utf8 6.003 5.854 6.198 5.888 6.152

IDEOGRAPHIC/MULTI 6.152 6.074 6.459 6.269 6.355

maribyrnong.html 3.488 3.432 3.570 3.495 3.534
convert.sml 2.306 2.282 2.306 2.404 2.306 2.305

LZW.java 2.102 2.086 2.102 2.183 2.102 2.106
regex.c 1.734 1.726 1.734 1.799 1.737 1.734
aaaa.txt 0.031 0.030 0.031 0.033 0.031 0.031

aAaA.utf8 2.213 2.226 2.519 2.712 2.325
random.utf8 16.030 16.086 16.259 16.739 18.261

sequence.utf8 4.533 5.900 5.398 3.294 2.444
bytes.data 8.325 8.333 8.451 8.522 8.339 9.248

ARTIFICIAL 4.525 4.696 4.743 4.528 4.665
ALL 3.888 3.924 4.075 3.894 3.980

TR CS-2002-11 13 July 2002

Considering the files with a much larger range of characters, compressing the UCS-2 repre-
sentation almost always results in the smallest output file. Whether it is little-endian or big-endian
does not matter. The really simple hex format and the Unicode name format (not shown in Table 6)
do not ever yield the most savings; but they are not always the least compressible of the formats.

Using BOCU and SCSU saves space compared to uncompressed UTF-8, but compressing the
original text with gzip or bzip2 saves much more space. Even compressing the BOCU and
SCSU files with bzip2 rarely saves as much space. See Tables 4 and 5. The other cases are
similar; though the higher the entropy, the lower the savings.

We conclude that the program bzip2 compresses all the examples well. No matter how diverse
the formats of the input, the resulting output files are about the same size. This suggests that the
information content–the Unicode characters–is being efficiently represented by bzip2.

References

[1] Ken Arnold, James Gosling, and David Holmes. The Java Progamming Language. Java
Series. Addison-Wesley, Reading, Massachusetts, third edition, 2000.

[2] Steve Atkin. A Framework for Multilingual Information Processing. PhD thesis, Florida
Institute of Technology, 2001.

[3] Steve Atkin and Ryan Stansifer. Implementations of bidirectional reordering algorithms. In
Unicode Consortium, editor, Eighteenth International Unicode Conference (IUC18) Unicode
and the Web: the Global Connection, April 24–27, 2001, Hong Kong, San Jose, California,
2001. The Unicode Consortium.

[4] Nathaniel S. Borenstein and Ned Freed. RFC 1521: MIME (Multipurpose Internet Mail Ex-
tensions) part one: Mechanisms for specifying and describing the format of Internet message
bodies, September 1993.

[5] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Systems Research Center, May 1994.

[6] A. Chernov. RFC 1489: Registration of a Cyrillic character set, July 1993.

[7] Peter Fenwick and Simon Brierley. Compression of Unicode files. In James A. Storer and
Martin Cohn, editors, DCC ’98: Data Compression Conference, March 30–April 1, 1998,
Snowbird, Utah, Silver Spring, Maryland, 1998. IEEE Computer Society Press.

[8] Jean-loup Gailly and Mark Adler. Gzip, 1.2.4 (18 aug 93). http://www.gzip.org/.

[9] David Goldsmith and Mark Davis. RFC 2152: UTF-7: A mail-safe transformation format of
Unicode, May 1997. http://www.faqs.org/rfcs/rfc2152.html.

TR CS-2002-11 14 July 2002

[10] Vietnamese Standardization Working Group. RFC 1456: Conventions for encoding the Viet-
namese language. VISCII: VIetnamese Standard Code for Information Interchange. VIQR:
VIetnamese Quoted-Readable specification, May 1993.

[11] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Computing Surveys,
19(3):261–296, September 1987.

[12] Ken Lunde. CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Com-
puting. O’Reilly & Associates, Inc., Sebastopol, California, 1999.

[13] Franois Pinard. Recode. http://www.iro.umontreal.ca/contrib/recode/
HTML/.

[14] Project Gutenberg. http://www.promo.net/pg.

[15] Markus Scherer and Mark Davis. Bocu-1, 2002. http://oss.software.ibm.com/
cvs/icu/˜checkout˜/icuhtml/design/conversion/bocu1/bocu1.html.

[16] Keld Simonsen. RFC 1345: Character mnemonics and character sets, June 1992.

[17] Julian Steward. Bzip2, version 1.0.2, 30-dec-2001. http://sources.redhat.com/
bzip2/.

[18] The Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, Reading,
Massachusetts, 2000.

[19] Uwe Waldmann. A new input technique for accented letters in alphabetical scripts. In Uni-
code Consortium, editor, Twentieth International Unicode Conference (IUC20) Unicode and
the Web: the Global Connection, January 28 – February 1, 2002, Washington, DC, USA,
San Jose, California, 2002. The Unicode Consortium. http://www.mpi-sb.mpg.de/
˜uwe/paper/AccInput-bibl.html.

[20] Misha Wolf, Ken Whistler, Charles Wicksteed, Mark Davis, and Asmus Freytag. A standard
compression scheme for Unicode. Unicode Technical Standard 6, The Unicode Consortium,
San Jose, California, May 2002.

[21] Franois Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646, January 1998.

[22] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, IT-23:337–343, May 1977.

TR CS-2002-11 15 July 2002

