A Unique Examination of the Buffer Overflow Condition

by
Terry Bruce Gillette

Bachelor of Science
Ocean Engineering
Florida Institute of Technology
1984

A thesis submitted to the
College of Engineering at
Florida Institute of Technology
in partial fulfillment of the requirement for the degree of

Master of Science
in
Computer Science

Melbourne, Florida
May, 2002

We the undersigned committee hereby recommend
that the attached document be accepted as fulfilling in
part the requirements for the degree of
Master of Science of Computer Science.

“A Unique Examination of the Buffer Overflow Condition”

athesiswritten by Terry Bruce Gillette

James A. Whittaker, Ph.D.
Professor and Director of the Center for Software Engineering
Research
Committee Chairperson

Alan A. Jorgensen, Ph.D.
Senior Research Scientist, Computer Science
Committee Member

Fredric M. Ham, Ph.D.
Harris Professor, Electrical Engineering
Committee Member

William D. Shoaff, Ph.D.
Associate Professor and Department Head
Computer Sciences

Abstract

Title: A Unique Examination of the Buffer Overflow Condition
Author: Gillette, Terry Bruce. (M. S., Computer Science)
Committee Chair: James A. Whittaker, Ph.D.

Buffer overflows have been the most common form of security vulnerability for the last ten
years. More over, buffer overflow vulnerabilities enable the type of exploits that dominate remote network
penetration. As our reliance on commercial third party software is critical in the current computing envi-
ronment one must consider the question of how these vulnerabilities are discovered in rel eased proprietary

software.

This thesis presents research focused on the fundamental issues surrounding the buffer overflow
vulnerability. The objective is to analyze and understand the technical nature of this type of vulnerability
and, on the basis of this, develop an efficient generic method that can improve the detection of this soft-
ware flaw in released, proprietary software systems. The work is performed from the perspective of a
security auditor searching for a single vulnerability in a released program, a different approach compared
to the many previous studies that focus on both static source code analysis and run time fault injection.
First, for systems that include commercial off-the-shelf software components, we perform a systematic
review of buffer overflow exploit data and develop aclassification hierarchy. The goal of this new taxon-
omy is to provide atool to assist the auditor in developing the heuristic elements for exploratory testing.
Second, we propose that a signature analysis of a disassembled binary executable can lead to the discov-
ery of abuffer overflow vulnerability. In support of this argument we demonstrate a methodology that can
be used on closed source proprietary software where only the executable binary imageis available. In this
case, the key selling point is not the potential rapid automated detection of a buffer overflow vulnerability

but the proof of concept that security flaws can be detected by binary scanning techniques.

Chapter 1

Chapter 2

Chapter 3

Table of Contents

LISt Of FIQUIES....ueiiiiciie ittt ettt ettt s te e ae e ae e s naeeneesneesnes viii
LiSt OF TADIES ..ot iX
LiSt Of EXNIDITS....cveeerireerereer e X
(D= [Ter= o] o SRRSO Xi
ACKNOWIEAGMENES ...ttt e nnea Xii
L gL oo [o1 1o o OSSPSR 1
L1 MOUIVALION ..ttt st eb e sn e enennenreas 1
1.2 Problem Statement and OUr APPrOACHccovverrerieieeinere e 3
1.3 Brief Summary of Results and COntribULioNS.............ccovrerereneereeinencsenenie s 4
1.4 Organization Of the TRESISccviiiiiieeee e 5
A History of Buffer Overflow Vulnerabilities.........cccoovevviveviiinii e 6
2.1 AnIntroduction tO the TOPIC.....ceiveeririiere et 6
2.2 MOUVEIION ...ttt ettt b e en e nennenreas 8
2.2.1 Benevolent Hacking: The White Hatcccceoveirininineneneceeeee e 12
2.2.2 Malicious Hacking: The Black Hat..........ccccceieereniiineneneeceeenc e 14
2.3 Chronology of Buffer Overflow EXplOitS........ccooierereeieninernsieeeeeeesese e 16
Buffer OVerflows-A TaXONOMYccccveeereieiiesieseeeseseeseeseesees e sreeseeseeseesaesresseens 24
0 R 1 (oo [0t o F PP PP SRRSO 24
3.2 AN Effective TaXONOMY.......ccceiveieirireii st 27
3.2.1 Characteristics of a Satisfactory TaxonOMYcccevvrerereeenenrerereniennens 28
3.3 Previous EffOrtS......c.cccoiiiiiiiiiesese e e e 29
3.3.1 Protection Analysis (PA) ProjECtocveveieirerenisee e 30
3.3.2 The Research in Secured Operating Systems (RISOS) Project 30
3.3.3 The Landwehr TaxOnOomycoeeeeeeereninrenenreeeesesre s seeeeeeesne s 31
3.3.4 The MaliCK SUMNVEY.....cccoceeeeeeieeietes ettt 32
3.3.5 The BiShop TaXONOMYccueiveierirririeniinreieseeeeieeresre s sneas 33
3.3.6 ASIaM'S TAXONOMYccoeiveieiriierierise et 33
3.3.7 The Lindquist TaXONOMYccccecreereriirinreeeesie st 34
3.3.8 The Fisch Damage Control and Assessment Taxonomyccccceeereenn. 35
3.3.9 Summary of Previous Methods...........cceoveveininininse e 35
3.4 A Taxonomy of Buffer Overflow EXPIOitS.......ccocooeirinierencienne e 35
3.4.1 Offensive AcCeSS REQUITEMENLS.........c.erveeeirirerieseeieese s 38
B2 INEENE ettt bbb bbbt 39
3.4.3 Offensive PlatfOorm........ccooveiiiiise e 39
3.4.4 DElIVErY SIAEOYververeeeeeeeierieetesrese sttt 40
345 Target HarOWar€.......cccciiiiiiiiteeeeeeses e 41

Chapter 4

Chapter 5

Table of Contents (Continued)

3.4.6 Target SOftWArEccueeeecie e 42

3.5 CASE SIUAIES....ceeeieeieie ettt bbb et 42
G G W 01110 VUSRS 43
The Buffer Overflow Exploit-Technical DiSCUSSIONccocvvinereninreireeeeeesrenes 44
N €= 1= =T 1= g o o) o 44
4.1.1 The Hardware/Software Interface..........coccovoverinenicinneseseeeeeee, 45
4.1.1.1 What defineSaprogram?........cccceceevevierieeseseeieeseeeeseseesesseens 45

4.1.1.2 Memory Organization.........ccccveeereeieesesieeseseeseseeseseesse e 45

4.1.1.3 The Stack and the HEapcccoccvevviieie e 47

4.1.1.4 The REQISIEScciiiicieiecee ettt ee et st nneens 48

4.1.2 Binary Execution at RUN TiME......ccccveieiiiieie e 49
0t R I 4 1= N = o oo SRS 50

4.1.2.2 The Call ..o s 52

4.1.2.3 ThE REIUM ..ot 54

4.1.2.4 The DisassemblYccccccieiirienisiesesieesee s see e sneens 56

4.1.3 Assessing Stack Overflow Vulnerabilities.........c.cooovevievinceciceececeen, 57
4.1.3.1 The Activation RECOId.........ccoereeireneiiniinieeeeee e 57

4.1.3.2 The Stack Smashing Buffer Overflow Exploit........c..ccccevuennees 62

4.1.3.3 Other Variants of the Buffer Overflow Exploit.........c..ccccueu..e. 67

4.1.3.4 AACK COOEevviieiieiieieiere st 68

4.2 Discussion of the C and C++ Programming Languagecccccveveeveeveeveniennene 69
4.2.1 The Standard Librarycccccecveieiiiesese e 69

4.2.2 Unsafe String PriMItIVESccciiiieiicecc e 70
4221 Thegets() FUNCLIONcceccviii e 70

4.2.2.2 Thestr* () FUNCLIONS.......cccccveiieeiese et 71

4.2.2.3 The Format Family FUNCLIONS..........ccccoveveeieiieece e 71

4.2.2.4 Stack Behavior During a Format String Function Cal.............. 73

4225 The*scanf() Family.....cccocooeiiiieiii e 74

4.2.2.6 Other FUNCLIONScooiiiieiieiinie et 74

Binary Reverse Engineering to Locate Security FIaws.........ccccecviiiiinenciccnnene, 77
5.1 INEFOAUCTION ...ttt et sb e e 77
5.2 Binary IMageBaSiCSccoceiiiuieieii ettt ettt st n e e 77
5.2.1 Compiling, Linking and Librariescccccevvveeiene s 78
5.2.1.1 COMPIING ctiitieiiiieie et s 78

5.2.1.2 LiNKING ..coiiiiiee ettt 79

5.2.1.3 LiBrariES. oo 79

L o o [1 USRS 80

5.3 A Unique Executable File Format-Win32 PE..........ccccceveiieieveceee e, 81

\Y

Chapter 6

Table of Contents (Continued)

5.3.1 PE File BaCkgroundccccoveiieieiiiierieesee st ses e 81

5.3.2 PE FIELAYOUL......cccuvi ettt sttt 82
5.3.2.1 PEFIleHEAENooieiiece e 82

5.3.2.2 PE File CONCEPLS.....uiiiieiiiiiieiiee st sttt 83

B.3.2.3 SECLIONS.....ccuiiiiieeie ettt b 84

5.3.24 Offsetsand AlIgNMENtcccoceeiiiiiieiee e 84

5.4 ReVErSE ENQINEEIINGoccvveieeiieiiiesieesieestessteestee s s teesse e sesssaesaeeaeesteesneesnaeennes 85
5.4.1 Software Reverse Engineering - A Dispiriting Adventure............ccc........ 86
54.1.1 TheHuman Element ... 87

5.4.2 Anaysis Methodsin Binary Disassemblyccccevvviviieeienvin e, 87
5.4.2.1 Anaysisof Data FIOWcccccceiiiiiieieesie et 88

5.4.2.2 Anaysisof Control FIOW........ccccccevieiiiiieciic e 88

5.4.2.3 ANAlYSISOf TYPE..iioiiiieiit it 88

B5.4.3 LiMITBHIONSciiiieieiieieeee ettt ettt bbb s sa e sae e 89

5.5 Legal CoNSIAEralionS.ccccueieiiiiaiieeniesriesieesieesessteesseessesssaesseessesssessnssssessses 90
5.6 Recovery of High Level Abstractions Fromthe Binarycccccceevviviviencennnnen, 90
A Novel Approach to The Discovery of Buffer Overflowsin a Binary Image....... 92
20 R 11 oo [FTox 1 o o DO U USSP 92
L 2 oo £ PSPPSR 92
6.2.1 DiSASSEMDIEN ... e e 93
6.2.1.1 DA (Interactive Disassembler) Proccccoevvveviviciecveenieene 93

6.2.2 OLNEN TOOIS....coeiiieeie ittt st st sae e see e be e en 94

6.3 APPIrOACN......eeee e 94
6.3.1 The gets() FUNCLIONceeiieci e 95

e T I 0T 1 Ll PSS 95

6.3.3 The FOrmat Family........cccocceiiieiiesie et 96

6.4 Search AlQOMtNMcooi e e 98
L3 R |V - 1 o UV P TR UUURURPRN 99

B.4.2 GEIANAIYSIS ..ottt bbbt e e n e sr s 101

6.4.3 GEREIUNNVAIUE......cooii it 103

B.4.4 GEISIIING ...veiveetiete ettt ettt b e e bbb s ae e sbe e b e e sbe s 105

B.4.5 SUMMAEIY ..eoiiiiiiiiiiee ittt sttt st e e et e e s st e e sbeeeennbeeenans 107

(SRS oL = =] o OSSR 107
6.5.1 SPIINtf_CrasSher.C...ccccveiiieiieciie sttt s 108

6.5.2 First BiNArY SCaN.....cccccviiuiiiieiiie i ettt esteeetee e sreeebe s steessae et esreesnne s 110

6.5.3 Summary of Initial Test RESUILS.......ccccevieiiieiiiesie e 113

6.6 EXIENEd TESHING.....ciiiieiie ettt sre e e s 114
6.6.1 Sharewar€ TESHING.....cccveiieeiie et s 115

Vi

Table of Contents (Continued)

6.6.1.1 Seattle Lab Internet Mail Server version 2.5.0.1065 115

6.6.1.2 CesarFTPVversion 0.0.9.6.......ccccccccevieniiienies e 116

6.6.1.3 Winamp version 2.6.0.0........ccccecueriiieniiieiiieesie e see e ssee e 116

6.6.1.4 OMNIHTTPA version 1.01.......cccccevvienieeiiieiee e eses e 118

6.6.2 Enterprise Class Server AppliCations..........ccccveieeiviesiie e ciee e 118

6.6.2.1 fp30reg.dil version 4.0.2.3406ccccceeveeeieeireeseeesieessiee s 118

6.6.2.2 Microsoft ftp Client version 5.0.2134.1.......ccccccovvevveeiieeninenns 118

6.6.2.3 Microsoft Frontpage 2000 Server EXtensionsc.cccceenee.. 118

Chapter 7 (O] [ox 1T =T o 1SS 123
7.1 Resultsand ContribULIONS.ccceevieiiiie e s 124

7.1.1 Technique LimitationS.......cccoveiirieniee e 125

7.2 RESEACh DITECLIONS ..ocviceeicee et sre s 125

7.2.1 Structure RECONSIIUCTION.......c.eevieiee ettt 126

7.2.2 ClassS RECONSIIUCLION.cccuiieerieerie et 126

%S T T = I 7o o) P 126

L= (=000 SRR 128

APPENAIX A et ne s e Rt r e Rt R r e renn e e s 133
N 0] 1= 0 [5G = T TR 136
N o 0= 3o G PSP 139
N o 0= I3 SR 159
N o o= 0o [Gl =S 167
APPENAIX F e et b e e r e e e s 168

Vi

Figure 1.
Figure 2:
Figure 3:
Figure 4:
Figure5:
Figure 6:
Figure7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

List of Figures

Frequency of buffer overrun vulnerabilities ..o i 10
Freguency of buffer overrun vulnerabilities by percentage..........cccooveeevveceeieiceeveninns 11
The (6) major classifiCation CAEQONIES.cuevvieereseee e 38
Hierarchy of Offensive REQUIFEMENLS..........ccocviieierise e ee e e 38
HIErarchy Of TNTENT ..o e 39
Offensive Platform REQUITEMENLSccoovviiriieiieeeeees s 40
(DS A Y (= (o |V USRS 41
I 0 =l = T = S 42
QI 0 = 000 1 A1 =T 42
WiNdowS NT MeMOFY LaYOUL........cccveruereeeeresieieseeseeseeeeseesseesesseesesseeseessesseeseessenns 46
Elementary Stack Behavior at Run Time - The Prologcccoovveriiineneneieeenenennens 51
Elementary Stack Behavior at Run Time - The Call ..., 53
Elementary Stack Behavior at Run Time - The RetUrNccoveveeviviieenin e 54
Stack Map of EXaMPIE 4.1.3......c.eeiecese ettt st 61
A Stack Smashing Buffer Overflow EXPIOitcccoveceviiiievnsieececese e 65
Stack Frame at aprintf() Callccooovieeiierieere e 73
General Format of aBinary Programcccececeiiineneneinese e e 81
THE PE Fil@ FOMMIEL......c.eiitieiiitieeee ettt st sb e ne s 83
Program Layout and Data Passingccccueiueeieeiieiieesissieesee e sieesee s sneeseeessessnne s 99
Program FIOW: MaiN()ccveceeiiiieseeic ettt aesneens 100
Program FIOW: GEANAIYSIS() ...ueiveerieirieriieiesiesieseesieseesteeseesreesaeseeseesassreeseesseessesseens 102
Program Flow: GEtREtUrNYV@UE()cocveieeiiere e 104
Program FIOW: GELSIIING() ... eveeeeeeereieieieeereree s 106
Test Program Stack BENaVIOF ..o 108

viii

Table 1:
Table2:
Table3:
Table4:

List of Tables

A Chronology of Buffer Overflow EXPlOItSLccovievieiiiieiie s 18
ANSI C FOrmat ParaMeLerscoceiirieiiieeiee sttt s 72
Format String StaCk ValUEScoecviieici ettt 73
C Library Functions Associated with Buffer Overflows.........cccococevevvvncenivscescneeen, 75

Exhibit 1:
Exhibit 2:
Exhibit 3:
Exhibit 4:
Exhibit 5:
Exhibit 6:
Exhibit 7:
Exhibit 8:
Exhibit 9:

Exhibit 10:
Exhibit 11:
Exhibit 12:
Exhibit 13:
Exhibit 14:
Exhibit 15:
Exhibit 16:
Exhibit 17:
Exhibit 18:

List of Exhibits

Test Program with (2) Safe Sprintf() returNS.........coccevieeecee e 109
Test Program Page FaUlt.............ccvevieieieceee e 109
Test Program Showing String Literalcccccevieiiiieiiciese e 110
Disassembly of (2) Safe Sprintf() Callsin Test Programccceccvvevvieiieieeneennnenn 111
Disassembly of Flawed Sprintf() Callsin Test Program.........c.ccoceeeverieeenieenenennennes 111
Address Values for Sprintf() Callsin Test Programcccccceeerinenenenrenesesenennens 112
sprintf_scan.idc Input Dialogue with Address of Flawed Sprintf() Call 112
sprintf_scan.idc Output for Flawed Sprintf() Callccccovveie e, 113
Test Program Stack Showing [52] Byte Target BUffer.........ccovvveeeveccece v, 113
sprintf_scan.idc OULPUL: SLIM@IL........ccveciiiiei e 115
sprintf_scan.idc OULPUL: CESAIFTP........cc.cciiiieieeeee e 116
sprintf_scan.idc OULPUL: WINAMP......cooviiiiiinceenesesee e 117
sprintf_scan.idc OULPUL: iMAgEMEBP.EXE......cccvieieeriee e erreesreesree e e saeesreesase e sreesaeesees 119
Imagemap Server Error with String Literalccccovevviieviecice e 120
Imagemap.exe Disassembly Showing Flawed Sprintf() Callcccoeeveevecvicevnnnen, 120
Imagemap.exe Stack Space Showing Target BUffercccooveveevevce e 121
Telnet Session to Port 80 Localhost with <~2700 character String>..........c.cccoeevenene 121
Imagemap.exe Page Fault MESSAgE.........coeviierierieieieee et 122

Dedication

Staring at the back of someone’s head for (6) months while the grass grows and the baby cries
can be quite an ordeal especially when ones marriage included the promise of a partnership. For this rea-
son, the following work is dedicated to my wife Pam without whose love, understanding and patience this

would not have been possible.

Xi

Acknowledgments

When the thesis is finally written and sealed, the days of agonizing over half-baked ideas, strug-
gling through writer’s block, and worrying about when (and if) al thisis going to end all seem rather dis-
tant. The many people who helped me in this long and sometimes frustrating process deserve special

thanks, and they are many.

During my graduate studies | have received outstanding support by the Lockheed Martin Corpo-
ration. Without their sponsorship this advanced degree would have not been possible. In particular, man-
agement has advocated and endorsed the pursuit of further education. As my direct manager, | have had
the great fortune to benefit from the mentoring Ben Dusenbery with whose guidance and encouragement

made thiswork areality.

Xii

Chapter 1

I ntroduction

Basic research iswhat I'm doing when | don’t
know what | am doing.

- Wernher von Braun

This thesis explores the buffer overflow vulnerability as it exists in today's modern information
systems. We will then extend this knowledge by the design, implementation, and analysis of a novel
approach to the discovery of potential buffer overflow vulnerabilities in closed source, proprietary soft-

ware.

1.1 Motivation

Buffer overflows have been causing serious security problems for decades. In the last few years
the underlying cause of the majority of computer system and network exploits and vulnerahilities have
been the buffer overflow condition. As such, this represents or should represent a top security concern for
al entities associated with information security. Broadly speaking the buffer overflow can affect any sys-
tem where a static amount of space has been allocated for undefined dynamic input. The underlying archi-
tecture of modern computer systems makes all data handling processes susceptible to this condition. In the
past the buffer overflow was treated as a software bug that would, at the very worst, manifest itself as a
nuisance if it were to cause a running process to crash. With the arrival of time-sharing systems, buffer
overflows became an intellectual curiosity asameansto seize control of amachinein alaboratory setting.

The advent of computer networks has given rise to new computational environments and compu-
tational models. Remote execution, distributed computing, and code mobility are no longer constrained to
the research environment. These modern computational models bring great flexibility and new promises
to our everyday world of information technology. However, accompanying the expanded potential comes
a set of security implications that were not present when computation was carried out largely on local,
stand-alone machines. The buffer overflow represents perhaps the most insidious example of an emergent
security threat that scaled directly from a stand-al one problem to one of global significance.

Underlying architecture make all data handling processes susceptible to this condition. The key
to the buffer overflow exploit isits ability to allow for the execution of arbitrary code. In the Age of Infor-
mation and subsequent information warfare, the buffer overflow is analogous to the missile. Likeits coun-

1

2
terpart it can be used to leverage a tactical or strategic advantage across any information system in place
today. In this thesis we concentrate on the possibility of buffer overflow detection at run time using the
unique approach of binary disassembly.

It is afact that buffer overflows are caused by the poor implementation of high level program-
ming languages during the software development process. Today, the vast majority of software executing
on both commercia and government systems is untrusted, commercial off the shelf software. Unlike cus-
tom applications, which may in their specification include explicitly addressed security measures, docu-
mented third party source audits and rigorous testing, commercial software walks an often indistinct line
between what is secure enough and what will be profitable. When one considers security-hardened soft-
ware, it is usually in the context of the expense that would be incurred if it were to fail or if it were to be
exploited. The development costs of these custom applications are usually in direct proportion to the
potential liability that their failure or exploitation would cost. Consequently, this class of software is well
out of reach of the average consumer, available only to the deep pockets that governments or big business
can bring to the table. Even this does not guarantee error free, nonexploitable code. Widely published
examples of very expensive software gone wrong include the Ariane 1V disaster, the failure of a1 billion
US military space mission, and loss of life caused by a software controller for medical radiological equip-
ment to name afew. This class of software represents the best money can buy and illustrates in dramatic
fashion the serious challenges to complex software systems.

With the development of and widespread use of high level programming languages such as C and
C++, dominant PC architectures, and dominant Operating Systems, the move has been away from hetero-
geneous custom software where a single customer funds development and is able to controls its destiny.
Today's software is available to homogeneous, global audience and is driven by a market economy. Com-
petitive market forces coupled with profitability margins serve to dictate when software is released to the
masses. In addition, because of its commercia nature, this software is a proprietary product that is, in
effect, secret from the very users who purchase it. The security risks inherent in using third party propri-
etary software are extremely important because today’ s information systems are being built from increas-
ing amounts of reused and prepackaged code. A huge portion of the global information infrastructure has
been scaled up on this type of software.

The security analysis of complex software systems has always been and continues to be a serious
challenge with many unanswered research issues. Unfortunately, third party software serves only to com-
plicate matters. Code that is acquired from a vendor and delivered as an executable file with no source
code available makes some traditional analysesimpossible. To offset the costs of rigorous testing, vendors
rely on the information hiding associated with an executable binary to provide a large portion of a pro-

grams security. The upshot is, that relying on today's third party software systems to ensure security is a

3
risky proposition. Thisis especially true when such systems are designed to work over a network with glo-
bal extent. In fact, we have already witnessed the failure of this paradigm.

Current empirical evidence demonstrates that most external security violations are made possible
by flawsin software and the buffer overflow ranks as the most significant [73]. The key suppliers of oper-
ating systems, firewalls, and web-based applications invest considerable effort to find these types of
flaws. It is not just good enough that they find one or a few, they must find them all which is a demon-
strated impossibility with large complex programs. Once released into the real world this software is sub-
jected to an assault of global proportions as hackers both good and bad rush to exploit it. They are not
limited by release schedules, timelines and deadlines. Their only limitation is their ability and more signif-

icantly, they do not have to find every flaw....they only have to find one.

1.2 Problem Statement and Our Approach

The central problem we study in thisthesis can be stated in summary as:

We seek a technique to rapidly find an instance of a potential buffer
overflow vulnerability in an executable binary. This technique will be
scalable to commercial third party software systems.

Satic Source Code Analysisis proposed by University of Virginia computer science researchers
as one such approach and focuses on the source structure, syntax and procedural design of the code [74].
This approach encompasses the use of search algorithms to find faulty coding constructs that could lead to
a potentia buffer overflow. The effectiveness and accuracy of the methods associated with source code
analysis can be and have been well studied and are in fact well documented. Established techniques range
from line-by-line hand auditing to automated procedures. The fact is, that despite their use in today's
development environment, programming errors that lead to buffer overflows remain.

Run-Time Analysis or Black-Box Testing is another approach that is related to the input/output
domain of aparticular program. Thiswell described class of techniques, usually performed at run-time, is
highly dependent on the actual program input. Punishing automated testing tools [75] have been devel-
oped and are currently used in the software development process however buffer overflows continue to
appear.

Far from being two discrete means of testing which operate on paralel paths, these two
approaches are usually combined to form a third unified method to provide a more complete orthogonal
coverage of the software. These methods, when broadly considered, represent the testing process of soft-

ware in general. They are specifically used during the development cycle where access to the source code

4
is an essential element in developing the overall testing methodology. Ongoing research associated with
these techniques is moving in the direction of capturing all errorsin the development cycle.

Asit only takes one undiscovered exploitable buffer overflow to compromise areleased program
we do not care about finding them all, we only concern ourselves with finding one. Thus the central ques-
tion we posein thisthesisis: “'l's there a technique that one can use to find an incidence of a buffer over-
flow vulnerahility, with accuracy and efficiency, when applied to acommercial third party software?’ The
research described here is an attempt to provide such atechnique. Through a detailed examination of the
buffer overflow phenomenon we develop a technique called binary scanning, and demonstrate its effec-
tiveness for finding a single buffer overflow accurately and efficiently. Binary scanning is a novel method
for examining a disassembled binary executable for a unique signature related to a buffer overflow vulner-
ability. Our approach will investigate high-level code constructs that result in a buffer overflow. These
constructs will then be compiled into a binary then disassembled and examined for signatures in the
assembly code. Our ultimate goa will be to develop an algorithm that can search for and discover these
signatures. We note with interest that this general binary scanning approach yields its results in a manner
similar to the way released software is exploited. That is, a single vulnerability is discovered as quickly as

possible.

1.3 Brief Summary of Resultsand Contributions

We proposed binary scanning as a novel approach to locate potential buffer overflow vulnerabil-
ities in proprietary software. Here we briefly summarize the results and contributions resulting from our

research:

« Severa binary scanning strategies have been identified and specific schemes have been devel-
oped. A substantial number of systematic empirical evaluations with the developed scanning
algorithm have been performed.

e The binary scanning strategies do show a linear scalability. Our studies show that the algo-
rithm that we have developed work from modest code constructs to small commercially
released software. We propose then demonstrate that this scalability is linear right up through
enterprise class software applications.

» The binary scanning strategies can outperform the other more common software testing tech-
niques for finding a single instance of a buffer overflow vulnerability with certain unique char-
acteristics. In the commercial software domains we studied, one can only assume that some
level of testing was performed prior to release. Our results show that the binary scanning
approach isavalid one.

14 Organization of the Thesis

In Chapter 2 we provide atopical overview of the buffer overflow exploit. To give balance to our
investigations we explore the literature for the motivation behind exploitsin general. To provide a tempo-
ral understanding, a chronology of the buffer overflow problem is presented.

In Chapter 3 we describe a taxonomy. The taxonomy provides a useful structure in which to
gather awide diversity of vulnerabilities into a hierarchy of categories. The strategies behind the classifi-
cation scheme and conclusions resulting from the taxonomy are discussed.

To evaluate our proposed schemes and techniques, we performed a substantial review of the C
and C++ programming language which is summarized in Chapter 4. Particular consideration was given to
the standard library in the presentation of known dangerous functions. We extend this research by devel-
oping code constructs with known buffer overflow conditions to be used to baseline our vulnerability sig-
natures and act as a control during testing. The control group program and methodology used in the design
is described in Chapter 6.

In Chapter 5 we present how programs behave at compile time with a discussion of binary disas-
sembly and at run-time in a Win32 environment with a discussion of the PE File format. In addition, the
difficulties of reverse engineering and the legal implications of commercia product disassembly are sum-
marized.

Using a baseline group of potential string primitives identified in Chapter 4, we will empirically
derive possible compile-time signatures for use in a technique of binary scanning. Once a signature has
been identified a binary scanning algorithm can be developed. Chapter 6 leads the reader through the con-
figuration of our test apparatus, algorithm development. Chapter 6 concludes with several commercial
proprietary binary files that are disassembled and scanned for a potential buffer overflow vulnerability.

In Chapter 7 we conclude with a summary of our work and provide an evaluation as to the valid-
ity of the approach. In addition, we formulate pointers to potential future work as an extension of thistech-

nique.

Chapter 2

A History of Buffer Overflow Vulnerabilities

All of physicsis either impossible or trivial. Itis
impossible until you understand it, and then it
becomestrivial.

- Ernest Rutherford

21 Anlntroduction tothe Topic

As we enter the so-called "information age” of global networks, ubiquitous computing devices,
and electronic commerce, many businesses, consumers, and other users are becoming increasingly con-
cerned about computer security. Y et the current state of computer security is lamentably poor in practice.
One survey found that nearly 2/3 of Internet hosts are vulnerable to unsophisticated, well known, easy-to-
exploit attacks [1], and the number vulnerable to more clever or more recent attacksis presumably greater
till. Recent FBI studies have shown that business losses are large and increasing [2]. Anecdotally, break-
ins are rampant, and hackers discover new vulnerabilities almost every day. There are several causes for
these trends.

First, today's systems rely heavily on applications built in an age when security did not receive
the same attention it does today. The Internet, once popul ated almost exclusively by cooperating research-
ers, and local-area networks, populated exclusively by local co-workers, spawned many legacy applica-
tions that were originally designed for use only in afriendly environment. This legacy codeis unlikely to
go away anytime soon, yet the threats it must defend against have changed dramatically: global networks
now expose us to amuch broader array of adverse interests, including hackers, vandals, competitors, crim-
inals and other untrustworthy entities. Nonetheless, we need someway to protect our data from a growing
number of unfriendly and potentially malicious computer users even as we continue to rely on irreplace-
able legacy applications. Thisleaves usin an exposed position with no obvious solution.

A second contributing factor is that building secure systems is fundamentally hard, and today's
programming environments do not make the task any easier; in fact, they often make the task significantly
harder.

» The operating system does not provide any way for applications to specify just the subset of

privileges they actually need, and as a result when an application is compromised, the intruder
typically obtains full access to the entire system.

6

7

« The Unix system-call interface does not provide any simple way to atomically query a system
object for permission information before performing some operation on that object, and as a
result exploitable race conditions are common.

¢ The language almost invariably, C does not assure memory safety, and as a result it may be
easy to cause memory errors and force a security-critical application to crash or worse, execute
arbitrary code.

» The standard C libraries provide string buffer management primitives that are unsafe, and as a
result our programs fall prey to buffer overrun vulnerabilities.

In all cases, it isin principle possible to code the desired functionality in a secure way, but the
secure way is often not the easiest, best-supported, most convenient, most portable, or standard way, and it
is not always feasible to fix problematic aspects of the programming environment. Of course, when the
standard library functions have security pitfalls, it becomes too easy for devel opersto inadvertently intro-
duce security holes where these functions are used. In addition, modern programming practice includes
the reuse of existing libraries. A symptom of this problem may be recognized in the frequency with which
programs are found to contain the same mistakes again and again.

A third common cause of insecurity is that many of our security-critical applications are large
and complicated. Complexity breeds subtle interactions, subtle bugs, and thus subtle security holes [3].
Moreover, sheer size can make the source code so unwieldy that it becomes very difficult to review the
application for potential security errors, or even to understand exactly what it is doing. As a result, large,
complex applications often go largely unscrutinized, despite their security-critical nature. One symptom
of this phenomenon can be found in the number of vulnerabilities that have lain dormant in poorly
reviewed source code for years before being discovered by the security community.

In essence, then, we have a software quality assurance problem with serious implications for
computer security: How do we deal with the fact that our most trusted software, even our security soft-
ware itself, often contains security vulnerabilities? Re-design and reimplementation of all security-critical
code of questionable quality does not appear to be a viable option at the moment; it is simply too costly to
be a general solution. As a consegquence, we are stuck with an overwhelming amount of legacy and other
code of questionable security. As a consumer of this software with no access to the source code we have
no good way to check it for even the simplest, most common classes of coding errors.

At this point, some readers might suspect that the answer to these woes lies with the vendor to
perform a careful, manual review of all security-critical code prior to release. Indeed, we would certainly
agree that code inspection is essential to security. However, the root problem is that manual inspection is
extremely time-consuming, and the amount of legacy code that would require auditing is enormous. As a
result, code review is not applied as often or as thoroughly as it is needed. A second problem is that the

sort of common, mindless mistakes that are easy for a programmer to make are also typically easy for a

8
reviewer to overlook, and thus we might hope for an even higher level of assurance than manual code
review can provide by itself. These comments suggest that we might do well to look for tools to help auto-
mate the process, to reduce the burden on the reviewer, to raise the assurance level, and in genera to
reduce the cost of the security quality assurance process.

We have argued that assurance for security software is an important unsolved problem, and that
simple programming errors account for a surprisingly large proportion of security failures. Critical to this
entire discussion is the fact that a person looking to exploit a particular application needs to find only a
single instance of a vulnerahility. Perhaps the best illustration of this phenomenon may be found in the
buffer overrun vulnerability, avariant of an array bounds violation error that forms one of the most prom-
inent causes of insecurity in modern software systems [4]. In this chapter we discuss the buffer overflow

paradigm and how it has manifested itself in the modern global software environment.

2.2 M otivation

Knowledge of the Buffer overflow condition is nothing new. In general, the theory surrounding
buffer overflows has been part of computer science since the beginning of digital data processing. Our
overwhelming use of the von Neumann architecture, where both data and programs are stored in the same
memory space [78], makes the possibility of a buffer overflow a constant. This is especially true when
using programming languages that do not perform bounds checking at compile time. In the past, on asin-
gle stand alone machine, the buffer overflow represented at worst an annoyance. With the advent of time-
share systems beginning in the early 70's, the exploitation of the buffer overflow condition became a secu-
rity concern [77] asit could, in theory, be used to escalate system privilege. As the time-sharing paradigm
of the 1970's moved towards what we now know as computer networks the security implications of buffer
overflows grew dramatically. Now we could not only comprise our own machine, we could remotely gain
access on one belonging to someone else. We could use the buffer overflow condition to execute the code
of our choosing. As the size and diversity of the Internet grew throughout the 1980's, speculation
increased that a major security flaw would be exploited and as a result the Internet directly attacked. From
1986 to 1987 the size of the Internet grew almost 600 percent [76] and time was running out from the real -
ity of awidespread exploit crashing the Internet.

On November 3, 1988 on what has come to be called the Black Thursday event [5], system
administrators around the country came to work on that day only to find that their networks of computers
were laboring under a huge load. If they were able to log in and generate a system status listing, they saw
what appeared to be dozens or hundreds of “shell” (command interpreter) processes. If they tried to kill
the processes, they found that new processes appeared faster than they could kill them. Rebooting the

computer seemed to have no effect as within minutes after starting up again, these mysterious processes

9
overloaded the machine. A worm had invaded these systems. The worm had taken advantage of lapsesin
security on systems that were running 4.2 or 4.3 BSD UNIX or derivatives like the SunOS. These security
flaws allowed it to connect to machines across anetwork, bypass their login authentication, copy itself and
then proceed to attack still more machines. The massive system load was generated by multitudes of
worms trying to propagate the epidemic [5]. D. Bruce, MIT EECS Professor and Vice President for Infor-
mation Systems estimated that approximately 10% of 60,000 Internet hosts were exploited [6].

One of the methods used to gain access to these systems was a buffer overflow exploit of the
Unix service "finger". This hack involved co-opting the TCP finger service as a method to gain entry into
asystem and it represented the first well documented, widespread buffer overflow exploit. The Finger ser-
vice reports information about a user on a host, usually including things like the user's first and last name,
the location of their office, the number of their phone extension and so on. The Berkeley version of the
finger server has been characterized as areally trivial program. It reads a request from the originating cli-
ent, stores that information in a 512 byte buffer on the host machine, runs the local finger program with
the request as an argument then ships the output back to the client. Unfortunately the finger server reads
the remote request with get s(), a notoriously dangerous function. Thisis a standard C library routine
that dates from the beginning of the language. The function has no parameter in which to perform bounds
checking and therefore does not check for overflow of the server's 512 byte request buffer on the stack.
The exploit is some VAX machine code that asks the system to execute the command interpreter sh sup-
plied by the client as a 536 byte request to the finger server. This request is crafted to be specifically 24
bytes larger than the 512 byte buffer. Thisisjust enough data to write over the server's stack frame for the
main routine. When the main routine of the finger server exits, the program counter of the calling function
should be restored from the stack, but the exploit wrote over this program counter with one that points to
the VAX code in the request buffer. The program then jumps to the worm's code, part of the request, and
runs the command interpreter, which the worm uses as a method to enter its bootstrap; a classic case of
overwriting the stack frame pointer.

Shortly after the worm was analyzed and reported to use this feature of get s() , patches were
released that replaced all instances of get s() in system code with code that maintained parameters
against the length of the buffer. The danger inherent in get s() was so great that some libraries were
modified by the complete removal of the get s() function. It is questionable why the function is man-
dated by the ANSI C standard and the answer must be backwards compatibility. Thisin itself speaks vol-
umes of it's widespread usage. Although no documented reports associated with the finger server bug exist
before the worm incident, in May 1988, students at UC Santa Cruz apparently penetrated security by
exploiting a different finger server with asimilar bug. The system administrator sent mail to Berkeley, but

the seriousness of the problem was not appreciated as a magjor issue at the time.

10

Buffer overflow attacks remained relatively unheard of for many years following the Worm. One
known example came in November of 1994, when one of the first commercial Web servers, running HP-
UX, was successfully breached using a buffer overflow attack against the National Center for Supercom-
puting Applications (NCSA) 1.3 Web server [79]. As this Web server sat on the target's internal network
and could be connected to through the firewall, the attackers had unfettered access to the victim's internal
network.

The event that really fueled the frequency of attacks was the November 1996 publication of a
paper entitled "Smashing the Stack for Fun and Profit", by Aleph One, in the on-line hacker magazine
Phrack [7]. Aleph One's paper (itself based on a paper written by Mudge of the LOpht, an independent
computer security think tank specializing in Windows NT) explains in detail how to write a buffer over-
flow exploit against a Unix system program. This moved the technical skills required from the graduate
level down to anyone who could follow directions well. This heralded the birth of the script kiddie.

As aresult in 1997 and 1998, buffer overflow exploits became extremely common, mainly tar-
geting Unix systems, in particular the Open Source versions. While the Open Source organizations, like
the various Linux distributors or FreeBSD, were quick to release patches, the number of exploits was
astounding. To get a feel for the scope of this problem, an exact string search for “buffer overflow
exploits’ on Google.com returned 6,000 matches. Buffer overflow exploits continued right into 1999,
2000, 2001, and show no signs of going away anytime soon. If anything, the incidence of buffer overrun

attacks has been increasing. See Figure 1 for data extracted from CERT advisories over the last decade.
Figure 1: Frequency of buffer overrun vulnerabilities

CERT Advisory % Buffer Overflows by Year
60% O percentage Buffer Overflows _
50% 4 [T
40% — =
30%
20%

10% -

]

0% T T T T T T T T T T T T T 1
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

11

Derived from a classification of CERT advisories. The chart shows, for each year, the total

number of CERT-reported vulnerabilities and the number that can be blamed primarily on

buffer overruns

Figure 2 shows that buffer overruns account for up to 50% of today's vulnerabilities, and this
ratio seemsto be increasing over time. A partial examination of other sources suggests that this estimateis
probably not too far off: buffer overruns account for 27% (55 of 207) of the entries in one vulnerability
database [8] and for 23% (43 of 189) in another database [9]. Finally, a detailed examination of three
months of the bugtraq archives (January to March, 1998) shows that 29% (34 of 117) of the vulnerabilities

reported are due to buffer overrun bugs [10].

Figure 2: Frequency of buffer overrun vulnerabilities by percentage

CERT Advisory by Year

30 o
O Total

O Buffer Overflows 1

25
20 =
154
107

LS

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Derived from aclassification of CERT advisories. The chart shows, for each year, percentage
of CERT-reported vulnerabilities that were due to buffer overruns for each yea

The only big change in the original problem is that it now includes Microsoft products. One rea-
son why Microsoft products were not initially attacked is that the techniques required are somewhat dif-
ferent and more importantly the code is closed source. This represents an especially alarming situation as
the majority of enterprise wide information solutions are based on Microsoft products and associated third
party applications and add-ons.

Windows 2000 has already patched several buffer overflow vulnerabilitiesin it's enterprise class

of Operating System products with aleast two being reported as a major security issues. Thefirst, abuffer

12

overflow in Windows 2000 indexing service!. The Index Server is the built-in search engine in Windows
2000 that catalogues and indexes files and properties of the hard drive. Improper bounds checking on the
input buffers on the DLL file (Y%system32\idg.dll) allows additional characters to be forced into the pro-
cess space, overflowing the buffer and providing memory space for shell code insertion. Aswith all buffer
overflows, the shell code simply requires to launch and bind a command shell to listen on a specific port
and the attacker to connect to the port using netcat or telnet. All Windows products from NT4 forward are
exposed to the vulnerability. This vulnerability gained worldwide attention when the “Code Red” worm
exploited it. It was estimated that 359,000 hosts were exploited within the first 14 hours of its initial

release [11].

The second, a buffer overflow in a FrontPage server extension?. The FrontPage extensions ship
with [1$4 and 11S5, Office 2000 and Office XP, and extend the functionality of the 11S web server to sup-
port components used in the Visual Studio development suite. An optional feature of the FrontPage exten-
sions is Visual Studio, Remote Application Deployment (RAD) component that contains an unchecked
buffer vulnerability. The RAD feature allows devel opers to deploy custom COM components by allowing
authenticated authors to upload COM components onto the server.

The unchecked buffer in the request processing routine allows a malformed command to insert
shell code into the FrontPage process space, yielding access at either | USR_<host nanme> or system-
level privileges. The buffer overflow occursif fp30reg.dil receives a URL request that is longer than 258
bytes, exposed through alack of length checking on the input string. By exploiting this vulnerability suc-
cessfully, an attacker can execute code with the privileges of | USR_nachi nename and under certain
circumstances with the privileges of system. Visual Studio RAD component is not selected by default in
the installation options, as is actively alerted as not suitable for production systems during installation if
selected.

Clearly we have demonstrated that the buffer overflow problem is amajor security issue. Despite
a precise understanding for the last 15 years of the severity of the problem and of the programming prac-
tices that lead to this condition, it has not gone away. Now that we have developed a feel for the scope of
situation we will turn our attention to those persons who develop and use these exploitation techniques

and to investigate their potential motivations.

2.2.1 Benevolent Hacking: The White Hat

In the beginning it was a core group of singular minded individuals who programmed operating

systems, examined core dumps, and basically spent their entire waking moments engrossed in the intrica-

1. Reference Case #10 in appendix C.
2. Reference Case #7 in appendix C.

13
cies of digital computation. It was this original group who earned the moniker “Hackers’. These were the
pioneers of modern day computing. Hacking was originally characterized to convey the sense of “an
appropriate application of ingenuity'. Whether the result was a quick-and-dirty patchwork job or a care-
fully crafted work of art, it was the cleverness that went into it that determined the hack. Somewhere along
the lines the definition became confused and assumed the darker connotation that remains to this day. In
order to distinguish those who create these clever hacks the terms “White Hat” and “Black Hat” are being
used with the inference being obvious.

The white hat [80] has become the term for people who hack legitimately. These hackers devote
their careers to discovering software vulnerabilities and then post these discoveries to Internet list servers
or their own security related Internet homepages. Current motivation follows that by publicly posting vul-
nerabilities these hackers are forcing software companies to not only address these newly found problems
but to also fix them. Thisis the paradigm of attacking a system to secure it. Other white-hat hackers dis-
cover operating system vulnerahilities, i.e. Linux, and email their results to kernel developers who then
write and post software patches to mailing lists devoted to system vulnerabilities and Internet web sites
like www.slashdot.org.

The White Hat's operate on the premise that so called old-fashioned security controls such as
firewalls and intrusion-detection systems aren't enough. Their reasoning is that one must embrace the
methods and mind-set of the enemy. In the past, the White Hats were loosely aligned in ad hoc groups or
operated independently with the belief that the full disclosure of vulnerabilities was the quintessential
means of securing computer systems. Their success was closely aligned with the rapid growth of the com-
puter and network security industry. White-hat hackers have gone to become security consultants and are
now associated with computer security consulting organizations, like Foundstone, @stake Research Labs
and on-line security forums like bugtrag, www.securityfocus.com. Through their efforts, the software
vendors learned that security issues were important. They also learned that they were very expensive to
implement.

As computer security continues to become big business, a $21 billion industry by 2005 according
to a International Data Corporation report, software vendors such as Microsoft seek to influence the past
practice of full vulnerability disclosure through close association with these new companies. This is set-
ting the stage for a new type of White Hat hacking as some view this as an intrusion by large corporations
not interested in the time, effort and expense of true software security. The current debate centers on this
new relationship between software vendor and security organization and the potential conflicts of interest.
Some view this as being aless expensive, public relations alternative to developing solid secure code. One
thing is sure to remain; third party software will continue to be under pressure from the moment of release

by those who align themselves with the White Hat approach.

14
2.2.2 MaliciousHacking: TheBlack Hat

The Black Hat [81] has become the term for people who hack at the bounds of what is legal to
those who are clearly breaking the law. The motivations common to those who would commit or attempt
to commit computer-related crime are diverse, but hardly new. In general, criminals are driven by time-
honored motivations, the most obvious of which are power, greed, revenge, lust, adventure, and even the
desire to taste “forbidden fruit”. Computer crime makes no distinction to this general classification with
computer criminals being no different. The ability to make an impact on large global systems from a
remote location may, as an act of power, be gratifying in and of itself. The desire to inflict damage or loss
on another may have roots in revenge as a motive, as when a disgruntled employee shuts down an
employer's computer network, or to ideology, as when one defaces the web site of an organization or insti-
tution that one regards as against their beliefs or as abhorrent. Current activity on the so called ‘ electronic
frontier’ entails an element of adventure, the exploration of the unknown. This is especially true for the
disaffected youth raised in the age of information. The very fact that some activitiesin cyberspace areille-
gal or likely to elicit official condemnation is enough to attract the rebellious, defiant, or the irresistibly
curious. In some cases, given the degree of technical competence and skill required to commit many com-
puter-related crimes, there is a unique motivational dimension worth mentioning here. Thisis, of course,
the intellectual challenge of mastering a system with a high level of complexity.

Unauthorized hacking is a felony crime in the United States and many other countries. Clearly
there exists an ongoing information war with the Black Hat seen as the enemy. The profile of the Black
Hat runs from the 12 year old script kiddie with the time and persistence to get automated well docu-
mented exploit scriptsto work to the government sanctioned hacker awell funded computer expert work-
ing for an intelligence organization with military objectives. For the Black Hat, the buffer overflow is of
critical importance asit is one of the primary means of obtaining root access on a system. Asthe profile of
the Black Hat is so wide we will categorize the malicious hacker, by stereotype, into three groups.

The Script Kiddie: The script kiddie practices hacking using scripts and programs written by oth-
ers, often without an understanding of the exploit they are using. These are the hackers with limited tech-
nical expertise who, using easy-to-operate, pre-configured, and/or automated tools; conduct disruptive
activities against networked systems. There are about 30,000 hacker-oriented sites on the Internet, bring-
ing hacking and all the associated tools within the reach of anyone who may have an interest. As an exam-
ple the Rootshell web site has a database of 690 exploit scripts [12]. Fyodor's Playhouse contains 383
attacks [13] and the Legacy hacking site has 556 exploits [14].

The malicious activity caused by the script kiddie is usually limited to Web Site defacement with
the motivation being the socia status that this type of conquest brings. Script kiddies can work alone or in

15
loosely knit ad hoc groups and often communicate using Internet Relay Chat (IRC) channels. For these
practitioners their hacking is asocial activity and Internet Relay Chat their communications link.

The script kiddies are not out for specific information or targeting a specific company. Their goal
isto gain root the easiest way possible. Thisis accomplished by focusing on a small number of well-doc-
umented exploits, and then using automated scanning techniques, search the entire Internet for that vulner-
ability. Some of the more advanced users may use more specialized tools to leave behind sophisticated
backdoors. Most have no idea what they are doing and only know how enter rudimentary input the com-
mand prompt. The common strategy is to randomly search for a specific weakness, and then exploit that
weakness. It is this random selection of targets along with their large numbers that make the script kiddie
such a dangerous threat.

Most of the tools available to the script kiddie are easy to use, widely distributed and well-docu-
mented allowing use by anyone. The script kiddie methodology is a simple one. Scan huge tracts of Inter-
net address space for a specific weakness, when that weakness is found, it is exploited. The most coveted
remote exploits that are in use by the script kiddie are the ones associated with the buffer overflow.

Mafia Hackers: Russian hackers first captured the world's imagination in 1994, when a young
mathematician, Vladimir Levin, hacked into the computers of Citibank and transferred $12 million to the
bank accounts of his friends around the world. Levin was arrested, but his case inspired other hackers, for
example, llya Hoffman, atalented viola student at the Moscow Conservatory, who was detained in 1998
on charges of stealing $97,000 over the Internet. Another group of Russians stole more than $630,000 by
hacking into Internet retailers and grabbing credit card numbers [82]. Numbers this large certainly attract
the attention of organized crime and hacking associated with this element has been traditionally centered
in Eastern Europe. Recently the Russian mafia has been implicated in hacks involving the theft of up to
one million sets of credit card details.

The FBI, in response to an expanding number of instances in which criminals have targeted
major components of information and economic infrastructure systems, has established the National Infra-
structure Protection Center (NIPC). Based on FBI investigations, classified sources and other information,
the NIPC has observed that there has recently been a dramatic increase in organized hacker activity specif-
ically targeting U.S. systems associated with e-commerce and other Internet-hosted sites. The mgjority of
the intrusions have occurred on networks using the Microsoft Windows NT operating system. In these
cases the hackers are exploiting known buffer overflow vulnerabilities to gain unauthorized access and
download propriety information [15].

Government Sanctioned Hacking: The U.S. Government Accounting Office estimates that 120
countries or groups have or are developing information warfare systems. There are many reported Penta-

gon intrusions to have surely come from abroad. The United States acknowledged their involvement in

16
1998 when it was announced that the CIA was devising a computer application that could attack the infra-
structure of other countries. One can only imagine the importance of the buffer overflow as an exploit tool
to gain remote access in the development of this classified program.

A series of sophisticated attempts to break into Pentagon computers has continued for more than
three years according to a member of the National Security Agency's advisory board. Officials at the Pen-
tagon and NSA have called the intrusions “massive” and said they caused significant disruptions. In the
Middle East government supported cyber attacks are becoming more prevalent and more methodical.
There is documentation that supports the existence of a coordinated campaign on the pro-Palestinian side
to identify vulnerable Israeli sites and gain root access using buffer overflow exploits [16].

With our current good guy versus bad guy, exploit and patch model of computer security unpub-
lished exploits are highly coveted in the hacker subculture and may be considered state secrets within gov-
ernments. The power of a single remote exploit that is unknown to vendors allows a single person to
potentially break into thousands of machines, often times with no recognizable trace of how it was done.
Many Intrusion Detection Systems (IDS) will not recognize the fingerprints of these new exploits. The
hackers with knowledge of these exploits typically do not deface web pages. This knowledge is held for
high dollar gain or as atool for true information warfare. The last thing a hacker with thistype of informa-
tion wantsisto bring attention to themselves or their methods. In some cases unpublished expl oits can cir-
culate in the underground for up to a year before being disclosed to the masses. The damage caused by a
dozen hackers have such an exploit while actively using it over aone year period is often never reported to
the extent that it makes the public media.

With individuals and corporations increasingly relying on software with demonstrated security
flaws and the Internet to manage everything from their finances to their personal health records, incidents
of malicious hacking continue to increase. More than 7,000 computer security violations were reported in
the first three months of 2001, more than in al of 1998, according to the CERT Coordination Center, a
security research group at Carnegie-Mellon University in Pittsburgh [62].

Just how do these hackers find the buffer overflow vulnerabilities that lead to system exploits?
Asthe magjority of the exploited softwareis closed soured, third party applications, source code auditingis
not an option. Are the buffer overflow conditions found simply by brute force or is there a more methodi-
cal step-by-step method that can be used. It is this premise that our thesis will attempt to address as we

develop a methodical approach to finding these types of vulnerabilities in closed source applications.

2.3 Chronology of Buffer Overflow Exploits

Hacking has been around for more than a century. While many would assume that hacking is a

rather recent phenomenon, the practice has a rather long and varied history. As early as the 1870s, an

17
activity that we would call hacking today was occurring on the new United States phone system. Since the
turn of the century, the meaning of the term hacker has evolved. A subculture has grown up around the
practitioners and this has seeped into popular culture over the last two decades. As information technology
continues to play an increasingly important role in our society so will the hacker continue to make his
presence felt.

We present ageneral chronology of computer hacking and where appropriate, particular attention
is paid to the buffer overflow exploit. How did hacking begin and how was it integrated into the overall
development of modern digital computing?

Without the real programmers, computers, computing, networks, the Internet and the buffer over-
flow would not exist. The history of digital hacking begins with John W. Mauchly and J. Presper Eckert.
These two men collaborated on what was to become an icon in computer science. This was one of the first
truly digital computers, the ENIAC or Electronic Numerical Integrator and Computer. ENIAC was builtin
1946 and was designed with over 17,000 vacuum tubes, 30,000 resisters and covered over 1500 square
feet of floor space. Despiteit’s size it was only capable of 1000 calculations per second. Compare that to
the computers of today that are capable of tens of millions of calculations per second. The ENIAC was the
first digital machine to be able to perform an “if-then” statement or a*“branch conditional statement” [83].
In 1949 Presper and Mauchly also launched the BINAC or Binary Automatic Computer, a computer that
stored data using magnetic tape.

The next major milestone in the history of hacking is the UNIVAC computer. The UNIVAC was
first commercial computing project commissioned for the US Census Bureau and was another of Mauchly
and Presper's efforts. This was the first so-called solid state computer and could handle both al phabetic
and numerical information. This development was important in that it represented a significant move
toward the miniaturization of the computer. With the UNIVAC, the transistor replaced the vacuum tube
and the computer shrunk down to the size of aroom.

One of the first organized groups of hackers to be formed emerged from the Massachusetts | nsti-
tute of Technology in 1961. They were members of MIT's Tech Model Railroad and possessed an obses-
sion with the PDP-1 computer. The Tech Model Railroad Club programmed the PDP-1 to control their
complex model railroad track and switches. From these humble beginnings MIT would achieve critical
acclaim with aworld renowned Artificial Intelligence department. No chronology could be considered as
complete without including a brief history of the Unix operating system. Unix has been recognized as the
quintessential operating system.

Unix was developed in 1969 at AT& T Bell Labs as part of an effort to build an internal operating
system to be integrated into their telephone business. The birth of Unix was based on the need of Dennis

Ritchie, Ken Thompson and others to produce a programming environment that could support multiple

18
users. Within this environment they identified a need for a tree structured file system and easy access to
devices from within the OS plus a user level command interpreter. From these specialized needs Unix was
conceived. It isimportant to note that Unix also gave rise to another major milestone in hacker history, the
C programming language. With the advent of C, the original Unix kernel was rewritten to make it machine
independent, or portable, thus making Unix the OS the choice for academic research. Particularly impor-
tant from the aspect of this thesis are the function libraries within the C language. When used incorrectly,
several standard C functions are directly related to the existence of the buffer overflow vulnerability. The
C programming language is by far the worst offender leading to this security issue.

Table 1:
A Chronology of Buffer Overflow Exploitst

Year(s) Event

1940's-1970’s | The eraof the huge mainframes (Catman).

1946 J. Presper Eckert and John W. Mauchly created one of the first digital, general pur-
pose computers: the Electronic Numerical Integrator and Computer (ENIAC) (Wil-
liams).

1949 J. Presper Eckert and John W. Mauchly created the first computer that stored its

data on magnetic tape: the Binary Automatic Computer (BINAC) (Williams).

1950's J. Presper Eckert and John W. Mauchly created the UNIVAC computer, which was
the first computer that could handle alphanumeric information. It was also smaller
than the previous computers--the first step to making computers smaller (Will-
iams).

Some of the first hackers of this time were Peter Deutsch, Bill Gosper, Richard
Greenblatt, Tom Knight, and Jerry Sussman. (Brunvand). This was the "Golden
Age" of hacking. Thiswas when hackers made some of the largest and most impor-
tant discoveries on computers. The hackers of thistime are respected by the hackers
of today because the computers they worked on were so cumbersome and they only
had afew tools to help them learn about these machines (Brunvand).

1960's Hacker culture spread to the general culture asthe computers did. Centers of hacker
culture had by now spread from MIT to Carnegie Mellon University, and Stanford
University. Some of the famous hackers of this time were Ed Fredkin, Brian Reid,
Jim Gosling, Brian Kernighan, Dennis Ritchie, and Richard Stallman (Brunvand).

1961 TMRC used the PDP-1, the "first commercially successful computer on the mar-
ket," [MIT got these computers] to program their model train tracks and switches.
Thus began the hackers and the Al Lab (Williams).

19

Table 1:
A Chronology of Buffer Overflow Exploits® (Continued)
Year(s) Event
1961 MIT began using the computer PDP-1, which were the "first commercially success-

ful computer on the market" (Williams). The Tech Model Railroad Club (TMRC)
at MIT, who had moved from programming the complicated wiring and switches of
their model trains to programming computers, "adopted the machine as their favor-
ite tech-toy and invented programming tools, slang, and an entire surrounding cul-
ture that is still recognizably with us today" (Catman). This group was the first to
adopt the term "hacker" (Catman).

1940's-1970’s

Era of the mainframes (Catman).

1946

J. Presper Eckert and John W. Mauchly created one of the first digital, general pur-
pose computers: the Electronic Numerical Integrator and Computer (ENIAC) (Wil-
liams).

1949

J. Presper Eckert and John W. Mauchly created the first computer that stored its
data on magnetic tape: the Binary Automatic Computer (BINAC) (Williams).

1950’s

J. Presper Eckert and John W. Mauchly created the UNIVAC computer, which was
the first computer that could handle alphanumeric information. It was also smaller
than the previous computers--the first step to making computers smaller (Will-
iams).

Some of the first hackers of this time were Peter Deutsch, Bill Gosper, Richard
Greenblatt, Tom Knight, and Jerry Sussman. (Brunvand). This was the "Golden
Age" of hacking. This was when hackers made some of the largest and most impor-
tant discoveries on computers. The hackers of thistime are respected by the hackers
of today because the computers they worked on were so cumbersome and they only
had a few tools to help them learn about these machines (Brunvand).

1960’s

Hacker culture spread to the general culture asthe computers did. Centers of hacker
culture had by now spread from MIT to Carnegie Mellon University, and Stanford
University. Some of the famous hackers of this time were Ed Fredkin, Brian Reid,
Jim Gosling, Brian Kernighan, Dennis Ritchie, and Richard Stallman (Brunvand).

1961

TMRC used the PDP-1, the "first commercially successful computer on the mar-
ket," [MIT got these computers] to program their model train tracks and switches.
Thus began the hackers and the Al Lab (Williams).

1961

MIT began using the computer PDP-1, which were the "first commercially success-
ful computer on the market" (Williams). The Tech Model Railroad Club (TMRC)
at MIT, who had moved from programming the complicated wiring and switches of
their model trains to programming computers, "adopted the machine as their favor-
ite tech-toy and invented programming tools, slang, and an entire surrounding cul-
ture that is still recognizably with us today" (Catman). This group was the first to
adopt the term "hacker" (Catman).

20

Table 1:
A Chronology of Buffer Overflow Exploits® (Continued)

Year(s) Event

1962-1969 The Department of Defense's Advanced Research Project Agency (ARPA) creates
the network ARPANET. They intended for researchersto use. Thefirst universities
to use the ARPANET were Stanford Research Institute, UCLA, UC Santa Barbara,
and the University of Utah (PBS).

1969 The creation of the ARPANET. Thiswas the first computer network linking "uni-
versities, defense contractors, and research |aboratories'Hacker Ken Thompson
created the operating system UNIX. Hacker Dennis Ritchie created the program-
ming language C. Both of these creations became popular across most computers,
which allowed hackersto use on set of tools to hack into many different machines
(Catman).

1972 The InterNetworking Working Group is founded to govern the standards of the
developing network. Vinton Cerf is the chairman and is known as a"Father of the
Internet” (PBS)

1973 "ARPANET goesinternationa" (PBS).

1974-1981 ARPANET moves away from its research and military beginnings and becomes
commercialized (PBS).

1974 "Bolt, Beranek, and Newman opens Telnet, the first commercial version of the
ARPANET" (PBS).

1975 First portable computer was marketed (Catman).

1977 Steve Jobs and Steve Wozniak created Apple Computers (Neupart & Munkedal).

1979 Thefirst USENET groups are created by Tom Truscott and Jim Ellis; now people
from all over can join discussion groups (PBS).

1980 USENT bulletin board began broadcasting information. USENET was a hetwork of
UNIX machines that could talk to each other (Catman).

1981 IBM creates its own personal computer (Neupart & Munkedal).

1982-1987 The ARPANET isrecognized as an internet. The language of computers on the
Internet, TCP/IP is created (PBS).

1982 UNIX hackers from Berkeley began Sun Microsystems; they put UNIX on less
expensive workstations (Catman).

1983 The hacker film War Games was released (Catman).

1984 The hacker magazine 2600: The Hacker Quarterly was created (Neupart &
Munkedal).

1984 AT&T made aversion of UNIX (Catman).

Mid-1980's Personal computers make accessing the Internet cheap and easy (PBS).

21

Table 1:
A Chronology of Buffer Overflow Exploits® (Continued)

Year(s) Event

1986 The"Computer Fraud and Abuse Act, and the Electronic Communications Privacy
Act" (Neupart & Munkedal) was passed.

1988-1990 Hackers on the Internet become a concern (PBS).

1988 The computer worm created by the hacker Robert Morris crashes 6,000 computers
on the Internet (Neupart & Munkedal).

1988 The Computer Emergency Response Team (CERT) is created to address network
security (PBS).

1989 The Cuckoos Egg is written after Clifford Stoll, a system administrator, catches
hackers who had broken in to his system (PBS).

1990 ARPANET isclosed (PBS).

1990 The Secret Service cracks down on hackers during Operation Sun Devil (Neupart &
Munkedal).

1991 The gopher is created, which is"thefirst point-and-click way of navigating the files
of the Internet" (PBS).

1991 The Michelangel o virus was scheduled to crash computers, but nothing happened
(Livingston).

1993 The first graphics-based Web browser is created (PBS).

1994 Russian Vladimir Levin creates a hacker group that hacksinto Citibank (Neupart &
Munkedal).

1995 Kevin Mitnick incarcerated on charges of "wire fraud and illegal possession of
computer files stolen from such companies as Motorola and Sun Microsystems'
(Christensen).

1995 The movies Hackers and The Net are released (Neupart & Munkedal).

1996 "Hackers alter the websites of the U.S. Justice Department . . ., theCIA .. ., and
the Air Force" (Livingston).

1996 "Approximately 40 million people are connected to the Internet” (PBS).

1996 “Smashing the Stack for Fun and Profit” by Aleph One UNIX Buffer overflows

1997 "A 15-year-old Croation youth penetrated computers at aU.S. Air Force basein
Guam” (Christensen).

1998 The New Y ork Times website was defaced to show the anger for the imprisonment
of Kevin Mitnick (Livingston).

1998 Two hackers in Chinawere sentenced to death for hacking into a bank and stealing

money (Livingston).

22

Table 1:
A Chronology of Buffer Overflow Exploits® (Continued)

Year(s) Event

1998 "U.S. Attorney General Janet Reno announces National Infrastructure Protection
Center" (Neupart & Munkedal).

1998 The Pentagon was hacked by an Israeli teenager (Neupart & Munkedal).

1998 The hacker group LOpht speaks to the Senate about network security issues (Neu-
part & Munkedal).

1998 Win32 Exploits by Barnaby Jack

1999 Kelly Air Force Base was attacked by hackers, but the hackers were detected and
stopped (Livingston).

1999 The United States Information Agency was hacked (Livingston).

1999 President Clinton announces he has set aside $1.46 billion for a plan to improve
government computer security (Livingston).

1999 "Unidentified hackers seized control of a British military communication satellite
and demanded money in return for control of the satellite (Christensen).

2000 Russian hacker "stole credit card numbers from an Internet music retailer and
posted them on a website after an attempt to extort money from the company
failed" ("Rebuffed Internet Extortionist Posts Stolen Credit Card Data").

2000 The following sites were attacked by hackers using denial of service: Y ahoo, eBay,
CNN.com, Amazon.com, Buy.com, ZDNet, E* Trade, and Datek (Levy).

2000 Kevin Mitnick is released from prison.

2001 Plug and play shell code for Win32 available over the Internet

2001 Code Red and Nimda worms exploit Win32 buffer overflows

1. Thefollowing isalisting of cited works used in developing thistable.

Brunvand, Erik. “The Herioc Hacker: Legends of the Computer Age” Department of Com-
puter Science October 15, 1996. February 22, 2000. http://www.cs.utah.edu/~elb/folklore/afs-
paper/af s-paper.htm

Catman “Hacker History.” March 11,2000. http://www.thefuturesite.com/catman/history

Christensen, John. “The Trials of Kevin Mitnick.” CNN.com March 18,1999. February 9,
2000. http://www.cnn.com/SPECIAL S/1999/mitnick.background

Levy, Stephen, and Brad Stone. “Hunting the Hackers” Newsweek.com February 21, 2000.
March 11, 2000. http://www.newsweek.com/nw-srv/printed/us/st/al6375-2000feb13.htm

Livingston, Brian. “Project Against Trojan Horses” CNN.com January 17, 2000. March 11,
2000. http://cnn.com/2000/TECH/computing/01/17/trojan.horse.idg/index.htm

Neupart & Munkedal. “Hacker History-Soceity and Hackersin an Historical Perspective.”
March 11, 2000. http://www.n-m.com/english/security/hackhistory.htm

P.B.S. “PBS Life on the Internet.” March 11, 2000. http://www.pbs.org/internet/timeline
Williams, Jim. “Hacker History-The Real Programmers’ About.comApril 26, 1999. February

28, 2000. http://netsecurity.about.com/compute/netsecurity/library/weekly/
aa042699.htm?rnk=r& terms=%22The+Real +Programmers%22

23

Chapter 3

Buffer Overflows-A Taxonomy

The most exciting phrase to hear in science, the
one that herolds new discoveries, is not
“Eurekal” (I found it!) but “ Thats funny” ...

- Isaac Asimov

31 I ntroduction

We have demonstrated the omnipresent nature of Computer vulnerabilities. In every operating
system fielded, in every important network application released, programming errors which result in the
buffer overflow vulnerability have allowed unauthorized users to enter systems, or authorized users to
take unauthorized actions. In recent years we have seen the development of sophisticated vulnerability
databases and vulnerability exploitation tools by the so-called “computer underground”. Detailed descrip-
tions of how to find vulnerable states have appeared in various periodicals such as PHRACK and 2600,
and on the USENET [17]. A large subset of these discussions essentially show how to probe a system for
clues that indicate the system is running software known to be vulnerable to a buffer overflow exploit, or
that it is being administered in such away as to alow an attacker to run a buffer overflow attack.

Some of these tools are capable of automating the exploitation of vulnerabilities that were
thought to require considerable expertise, including the buffer overflow. These tools, ready-made and of
considerable complexity [18], are freely and widely available, and pose a significant threat that cannot be
ignored. The celebrated Kevin Mitnick is an early example of avandal who used such tools and databases
to penetrate hundreds of computers before being caught [19]. Our study clearly demonstrates that with the
widespread use of computers today, and increased computer knowledge in the hands of people whose
objective is to obtain access to unauthorized systems and resources, it is no longer possible or desirable to
implement security through obscurity [20].

Efforts to eliminate buffer overflow security flaws have failed miserably; indeed, sometimes
attempts to patch such a vulnerability have increased the danger. Further, designers and implementers
rarely learn from the mistakes of others. We see the recurrence of the buffer overflow as acase in point as
it is an easily preventable security hole that can, for the most part, be eliminated through proper program-
ming practice. Part of the complication is, that in the past, the buffer overflow problem was rarely docu-

mented in a format to allow for the creation of a database of characteristics related to the exploit
24

25
mechanism itself. A search of the literature demonstrated this with two broad categories of associated
information. The first category involved numerous examples of what could be termed 'underground how
to manuals' associated with a particular buffer overflow exploit [7][45][47][49][50][58]. The second con-
cerned the hundreds of security advisories that alert users that a particular vulnerability exists along with
details on the affected software release and the patch information. A well ordered systematic global
description of the buffer overflow vulnerability does not exist.

In this research we are concerned with finding these types of vulnerabilities in released third
party software and we want to find them quickly. When a product is released it is subject to potential
attack from a global community. Thisisin effect equivalent to the exploratory testing of the software on a
massive scale. As a security auditor, a single entity, we must ask how can we gain an advantage over the
global community in testing the product. The testing performed by the global community can be charac-
terized as a random and chaotic process, certainly with no defined plan. Each element within the commu-
nity explores the product according to their own particular goals and is limited by individual expertise.
One way to gain significant advantage is to leverage this haphazard testing process in our favor. We can
do this by developing a methodology that consists of specific tasks, objectives and documentation, that
make finding both those software systems and the individual domains within those systems, that may con-
tain an exploitable buffer overflow, a systematic process. In this approach we first identify, at atop level,
the potential areas of a system that enable this type of vulnerability. This allows us to identify candidate
target software. Once the target has been selected we use a similar approach at a more detailed level to
perform directed interactive testing or more commonly, exploratory testing.

In operational terms, exploratory testing is an interactive process of concurrent product explora-
tion, test design, and test execution. The outcome of an exploratory testing session is a set of notes about
the product, failures found, and a concise record of how the product was tested. When practiced in arigor-
ous methodical fashion, it yields consistently valuable and auditable results. Key to our approach is an
abstraction of the buffer overflow exploit problem in terms that can be applied by the security auditor to
develop the heuristic elements which define and are integrated into the actual exploratory test plan.

To effectively test and ensure that computer systems are secure against malicious attacks we
need to analyze and understand the characteristics of faults that can subvert security mechanisms. A clas-
sification scheme can aid in the understanding of the types of buffer overflows that cause security
breaches by categorizing and grouping faults that share common external characteristics. Knowing how
systems have failed can help us build systems that resist failure. Petroski [21] makes this point eloquently
in the context of engineering design, and although software failures may be less visible than those of the

bridges he describes, they can be equally damaging as we discussed in chapter two.

26

In this chapter we formulate a classification strategy then collect and organize! a number of
actual buffer overflow exploits that have caused failures. We will establish a framework for a database

format, so that designers, programmers, analysts and auditors may do their work with a more precise

knowledge of what has gone before. The buffer overflows we examined were able to cause conditions or
circumstances that resulted in denial of service, unauthorized disclosure, unauthorized destruction of data,
or unauthorized modification of data and included most modern operating systems and ancillary software.
There is perhaps a legitimate concern that this kind of information could assist those who would attack
computer systems. Partly for this reason, we have limited the cases described here to those that already
have been publicly documented elsewhere and are relatively old. We do not suggest that we have assem-
bled a representative random sample of all known buffer overflows, but we have tried to include a wide
variety.

Using our collection we then classify the buffer overflow vulnerability along axiomatic lines and
present our findings as ataxonomy. The unique contribution of this work is an analysis of the problem in
anew way which will allow for an improvement of security in existing systems, and will provide aframe-
work for exploratory software testing that highlights those areas prone to exploitable buffer overflow
security flaws. This contrasts the work to [22], which argued that a preventative approach using formal
methods to design secure systems is appropriate. We emphatically agree; however, as nonsecure systems
continue to be used, our work is presented with the hope it will guide maintainers and software imple-
menters to improve the security of these flawed systems and software. We offer the taxonomy for the use
of those who are presently responsible for auditing released software and identifying exploitable flaws.
We feel that buffer overflow vulnerability data, organized this way and abstracted, could be used to iden-
tify the heuristic elements critical for successful interactive product testing and resultant identification of
exploitable security flaws.

In addition, our taxonomy attempts to organize information about buffer overflows so that, as
new vulnerabilities are reported, readers will gain a fuller understanding of which parts of systems and
which parts of the system operational cycle are more susceptible to vulnerabilities than others. Thisinfor-
mation should be useful not only to those faced with the difficult task of assessing the security of a system
aready built, but also to software designers. To accurately assess the security of a computer system, an
analyst must find its flaws. To do this, the analyst must back up and understand the system at a global
level and recognize that buffer overflow vulnerabilities that threaten computer security exist in unique
areas of the system. The issue of how to find the underlying vulnerabilities in the first place is of para-

mount importance in any exploratory test plan.

1. See Appendix C for acollection of (20) case studies

27

This chapter presents a brief discussion of the characteristics that are desired in any effective tax-

onomy. This is followed by a brief review of current taxonomies in the computer and network security
field. These taxonomiesin present use include lists of categories, lists of terms, empirical lists, results cat-
egories, and matrices. Aslarge global classifications of vulnerabilities they all suffer from alack the focus
on our particular problem. A proposed, highly specific, taxonomy for the buffer overflow exploit is then
presented. Our taxonomy was developed from the criticisms of the taxonomies that have been published
and from using a process or operational viewpoint of ways, means, and ends. When one uses this view-
point, an attacker on computers or networks can be seen as attempting to reach or “link” to ultimate objec-
tives. Thislink is the buffer overflow exploit and is established through a defined operational sequence of

access, tools, and results that allows these attackers to connect to their objectives.

3.2 An Effective Taxonomy

Classification of information is as much an art form asit is a science especially when classifying
computer security vulnerabilities. Systems that immediately come to mind are the library classification
systems such as the Library of Congress Classification (LCC) or the Dewey Decimal Classification
(DDC). These were developed to arrange printed matter in topical or disciplinary categories (i.e. to posi-
tion books related to the same or similar subjects next to each other). Our subject is much more abstract
and as aresult we must go much further in devel oping a classification strategy for the buffer overflow vul-
nerability.

A taxonomy can be broadly described as a system of classification allowing one to uniquely
identify something. The best-known example, the science of systematics, classifies animals and plants
into groups showing the relationship between each. Further, the classification is unique, so two of the
same animal will always be classified with the same groups. That is, if one considers the hierarchy to be a
tree structure with each branch uniquely numbered, each species of animal or plant is uniquely identified
by an exhaustive and unambiguous 6-tuple (kingdoms, phylums, classes, orders, family, genus). This bio-
logical hierarchy is repeatable regardiess of who is doing the classifying, widely accepted and provides
useful insight on each particular instance of classification. Any taxonomy we wish to use to in an attempt
to describe buffer overflow vulnerabilities should provide the same benefits. The primary goal of our tax-
onomy is to enable a security auditor to focus on those areas where the potential for an exploitable condi-
tion may exist in order to develop test heuristics. Other specific objectives include the specification of a
historical record of buffer overflow exploitsin aform that system designers and implementers can use to
anticipate flaws in their systems. In other words we look for a way to describe the buffer overflow in a
form useful for database characterization as well as an improved method of showing common characteris-

ticsin related buffer overflow exploits for prevention and elimination.

28

A taxonomy similar to the biological classification of plants and animals will accomplish these.

Such ataxonomy allows oneto classify each vulnerability as a unique ordered tuple. Thisis essential, asit
will allow the security auditor to narrow the search domain when attempting to detect new vulnerahilities.
Perhaps more importantly, it allows us to determine how many instances of externally similar exploits are
known, which in turn suggests where efforts to reduce or eliminate the flaws should be focused. It also
allows usto characterize conditions under which the flaw arises, suggesting ways to detect new instances

of the flaw.

3.21 Characteristicsof a Satisfactory Taxonomy

We use our buffer overflow exploit analysis to devise a classification, or set of classifications,
that enable the analyst to abstract the information desired from a set of system properties. This informa-
tion may be a set of services, used as an intrusion mechanism to transport the buffer overflow “code’; a set
of environment conditions necessary for an attacker to exploit the vulnerability; a set of characteristics
common to a particular end result; or other data. The specific data used to classify a vulnerability is very
important and highly dependent upon the specific goals of the classification. This explains why multiple
classification schemes are extant. Each serves the needs of the community or communities to which its
classifier belongs.

Our problem of interest is to discover buffer overflow vulnerabilities before attackers can exploit
them therefore our classification will focus on the external system level domain where these flaws tend to
exist. Aswe are using the biological classification model our taxonomy should follow and have classifica-

tion categories with the following characteristics:

« Mutually exclusive - The categories do not overlap with classification in one category exclud-
ing classification in al others. In other words similar vulnerabilities are classified similarly.
For example, al buffer overflow exploits using TCP packets should be grouped together.
However, we do not require that they be distinct from other attacks. For example, a vulnerabil-
ity involving a TCP packet may be used by many different services. Hence it should also be
grouped with the particular destination service. As a result, exploits may fall into multiple
classes. Because a buffer overflow can rarely be characterized in exactly one way, a realistic
classification scheme must take the multiple characteristics common to each attack into
account. This allows some structural redundancy in that different buffer overflow exploits may
lie in the same class; but we expect (and indeed desire) this overlap.

< Exhaustive - When one considers the universe set of that being classified, when taken together,
the categories are inclusive across all possibilities.

» Accepted - Classifications should be logical and intuitive so that they become generally
approved for widespread use.

29

« Unambiguous - Regardless of who is classifying the rule set is clear and precise so that classi-
fication is not uncertain. This implies that our classification should be primitive. Determining
whether an exploit falls into a class requires a 'yes or 'no' answer. This means each subclass
has exactly one property. For example, the question “does the vulnerability manifest itself in
the UNIX operating system or Windows NT” is ambiguous; the answer could be either, or
both. For our scheme, this question would be two distinct questions: “is the vulnerability spe-
cific to UNIX” and “is the vulnerability specific to Windows NT”. Both can be answered 'yes
or 'no’ and there is no ambiguity to the answers.

« Repeatable - Regardless of who is classifying, repeated applications of the rule set result in the
same classification. This meansthat our classification terms should be well-defined. For exam-
ple: What is the reason for a buffer overflow attack? One can argue that the classification “rea-
son for” is simply an alternate manifestation of the classification “intent”. However the
classifier “reason for” is much more subjective and may include an attempt by the classifier to
define the personal motives of the attacker. Where as the classification “intent” islimited to the
specific objectives of the buffer overflow attack. For this reason the term “reason for” would
not be considered as a valid classification term.

These distinctions represent useful tools that can be used to evaluate possible taxonomies. It
should be expected, however, that a satisfactory taxonomy would be limited in some of these discrimina-
tors. It isimportant not to loose sight of the fact that a taxonomy is only an approximation of reality, one
that is used to leverage agreater understanding in afield of study. It isimportant to note that thisisonly an
approximation, and as such, it may fall short in some categories. This may be particularly the case when
the characteristics of the data being classified are widely divergent, imprecise and uncertain, as was the
data collected for this study. In fact it can be demonstrated that this is a characteristic of the buffer over-
flow in general. Nevertheless, we believe that our classification approach isvalid and is an important and

necessary process for the systematic study of the buffer overflow.

33 Previous Efforts

Faults in operating system software and application software associated with bounds checking
can lead to the security breaches associated with the buffer overflow exploit. A systematic knowledge of
this class of faults, their general characteristics, and how they enter the system is important to ensure
secure operation and to preserve the integrity of stored information. Previous work includes other taxono-
mies [23], [24], [25] that have recently been developed for organizing data about software defects and
anomalies of all kinds. These are primarily oriented toward collecting data during the software develop-
ment process for the purpose of improving it. Other classifications are more oriented towards a broad
ordering of security vulnerabilities in general. Past work, while not suitable for our particular effort,
alows usinsight to the approach required to correctly abstract difficult software flaws.

We are primarily concerned with a unique security flaw that is detected only after the software
has been released for operational use and includes both operating systems and applications. Our taxon-

omy, while not incompatible with these efforts, reflects this perspective. Our goals are more limited than

30
those of these earlier efforts in that we seek primarily to provide an understandable record of a singular
type of security flaw that has occurred. They are also more ambitious, in that we seek to categorize a vul-
nerability that is difficult to characterize and define. We will attempt to classify not only the details of the

exploit, but also the mechanism of the attack, the place it entered the system, and the attackers intent.

3.3.1 Protection Analysis (PA) Project

The Protection Analysis (PA) Project conducted research on protection errors in operating sys-
tems during the mid-1970s. The group published a series of papers, each of which described a specific
type of protection error and presented techniques for finding those errors. The proposed detection tech-
nigues were based on pattern-directed evaluation methods, and used formalized patterns to search for cor-
responding errors [27]. The results of the study were intended for use by personnel working in the
evaluation or enhancement of the security of operating systems [28]. The objective of this study was to
enable anyone with little or no knowledge about computer security to discover security errorsin the sys-
tem by using the pattern-directed approach. The final report of the PA project proposed four representa-
tive categories of faults [26]. These were designed to group faults based on their syntactic structure as

follows:

< Domain errors, including errors of exposed representation, incomplete destruction of data,
incompl ete destruction of content, and incomplete destruction of context

« Validation errors, including boundary condition errors and failure to validate operands
« Naming errors, including aliasing and incompl ete revocation of access to a deallocated object.
« Serialization errors, including multiple reference errors and interrupted atomic operations

The PA project's classification is too broad and nonspecific to be useful for our purposes, how-
ever the group's research was an important foundation in helping us understand the formalized process of

fault classification.

3.3.2 TheResearch in Secured Operating Systems (RI1SOS) Project

The RISOS project was a study of computer security and privacy conducted in the mid-1970s
[29]. The project was aimed at understanding security problems in existing operating systems and to sug-
gest waysto enhance their security. The systems whose security features were studied included IBM's OS/
MVT, UNIVAC's 1100 Series operating system, and the TENEX system for the PDP-10. The final report
of the project discussed several issues related to data security in general. It suggested administrative
actions that could prevent unauthorized access to the system and methods to prevent disclosure of infor-
mation. The main contribution of the study was a classification of integrity flaws found in the operating

systems studied. The fault categories proposed by researchers of RISOS [29] are the following:

31
 Incomplete parameter validation
« Inconsistent parameter validation
 Implicit sharing of privileged/confidential data
« Asynchronous-validation/Inadequate-serialization
¢ Asynchronous-validation/I nadequate-serialization
* Inadequate identification/authentication/authorization
« Violable prohibition/limit
< Exploitable logic errors
The fault categories proposed in the RISOS project are general enough to classify faults from

several operating systems, but the generality of the fault categories prevents the type of fine-grain specific

classification that we require for our unique security flaw.

3.3.3 TheLandwehr Taxonomy

Landwehr et al. [30] published a collection of security flaws in different operating systems and
classified each flaw according to its genesis, or the time it was introduced into the system, or the section of
code where each flaw was introduced. This study was motivated by the observation that the history of
software failuresislargely undocumented. The research also compared the frequency of security incidents
against the taxonomies with the goal of helping software programmers and system administrators “...to
focustheir effortsto remove and eventually prevent the introduction of security flaws...” [30]. The authors
remark that: “...knowing how systems have failed can help us build systems that resist failure....” The
objective of Landwehr taxonomy was to describe how security flaws are introduced, when they are intro-
duced, and where the security flaws can be found. An outline of the three categories in the taxonomy is

presented below:

1) By Genesis:
a Non-malicious

validation errors

domain errors

serialization/aliasing errors

errors that result from inadequate i dentification/authentication
boundary condition errors

logic errors

b. Malicious

viruses
worms
trojan horse

32

time bombs
trap doors

2) By time of introduction:

a. Development
b. Maintenance
c. Operation

3) By location:

a. Operating system routines
b. Support software

c. User programs

The Landwehr security flaw taxonomy by genesis extended the previous research of the PA and
RISOS groups with the introduction of a new category of flaws, intentional flaws. Intentional flaws are
flaws that are introduced deliberately into a program so that they can be exploited at a later time. Trap-
doors, Trojan horses, time bombs, and covert channels are examples of intentional flaws. Inadvertent
flaws in the Landwehr taxonomy were similar to the flaw taxonomies found in the PA and RISOS
projects. The Landwehr security flaw taxonomy by time of introduction characterized security flaws by
when they were introduced into a system. The Landwehr study was the first to describe when security
flaws were introduced during the software development life cycle (SDLC). The Landwehr security flaw
taxonomy by location characterized security flaws by where the security flaw occurred. This taxonomy
differentiated security flaws as either hardware or software and subdivided the software category into
operating system, support, and application flaws.

The Landwehr taxonomies extended security flaw research by providing multiple classification
hierarchies for characterizing security flaws. The realization that security flaws cannot be simply
described by a single attribute was an important contribution and one that we will choose to follow in our
analysis. Of the three taxonomies discussed so far, only the by location taxonomy is germane to our clas-

sification of the buffer overflow flaw.

3.34 TheMarick Survey

Brian Marick [31] published a survey of software fault studies from the software engineering lit-
erature. Most of the studies reported faults that were discovered in production quality software. Although

the results of the study are insightful, the classification scheme provided is more appropriate to the survey

33
format that Marick used. For this reason we find it not suitable for the organization and classification of

buffer overflow exploit data.

3.3.5 TheBishop Taxonomy

Bishop studied flaws in the UNIX operating system and proposed a flaw taxonomy for the UNIX
operating system [32]. Rather than describe security flaws using a single set of categories, Bishop pro-
posed that security flaws should be described using a single taxonomy that is composed of several collec-

tions of categories or axes. The proposed axes were:

* Nature of the flaw;

¢ Time of introduction;

« Exploitation domain; effect domain;

e Minimum number of components;

« Source of the identification of the vulnerability

Although this study extended security flaw taxonomy research by including a number of criteria

that we previously had not considered, we find it too narrow and specific for our purposes.

3.3.6 Adam'sTaxonomy

Aslam's study [33], [34], as extended by Krsul [35], approached classification slightly differ-
ently, through software fault analysis. Aslam proposed to classify the faults found in the UNIX operating
system in a manner complementary to Bishop [32]. The objective of this taxonomy was to unambiguously
classify security faults and provide atheoretical basis for the data organization of a vulnerability database.
Selection criteria were provided for each subclass so that all fault categories are specific and distinct. The
Aslam taxonomy contained the following major categories:

* Coding Faults: These are flaws introduced during software development. Coding faults were
further subdivided into:

» Condition validation errors and
e Synchronization errors.

« Emergent Faults: Flaws that result from improper installation of software, unexpected integra-
tion incompatibilities, and when a programmer fails to completely understand the limitations
of the run-time modules. Emergent faults were subdivided into:

» Configuration errors

¢ Environmental errors.

34
The Aslam taxonomy was used as the theoretical basis for the Croshie et.al. vulnerability data-
base that was used in the Intrusion Detection In Our Time (IDIOT) IDS[36].
The classification suffers from flaws similar to those of the PA and RISOS studies and upon
close analysis breaks down when considering different levels of abstraction. For these reasons we find it

inappropriate for the classification of our singular security flaw.

3.3.7 ThelLindquist Taxonomy

Lindquist and Jonsson proposed two taxonomies that differed from previous work in that charac-
terized security flaws as attacks. The classification was based on the technique used and the result of the
attack. The objectives of Lindquist and Jonsson research were threefold: (1) to establish a framework for
the systematic study of computer attacks; (2) to establish a structure for reporting computer incidents to
incident response team; and, (3) to provide a mechanism for assessing the severity of an attack [37].

The Lindquist Intrusion Technique Taxonomy is based on previous research by Neumann and

Parker [38] and divided intrusive techniques into three principal categories:

1) Bypassing Intended Controls. This category includes attempts to attack passwords, spoof
privileged programs, and attack programs utilizing weak authentication.

2) Active Misuse of Resources. This category includes active attacks such as buffer overflows
aswell as exploitation of world writeable system objects.

3) Passive Misuse of Resources: This category includes all probing attacks that attempt to iden-
tify weaknesses in the scanned system [37].
The Lindquist Intrusion Result Taxonomy is based on the Confidentially, Integrity, and Avail-
ability (CIA) model. It divided intrusion results into three categories:

1) Exposure: These are attacks against system confidentially and are subdivided into disclosure
of confidential information and service to unauthorized entities.

2) Denia of Service: These are attacks against system availability and are subdivided into
selective, unselective, and transmitted attacks. Transmitted attacks are attacks that affect the
service delivered by other systems to their users, not the service delivered by our system to
other systems.

3) Erroneous Output: These are attacks against system integrity and are subdivided into selec-
tive, unselective, and transmitted attacks [37].

The Lindquist Intrusion Result Taxonomy use of the widely respected CIA model provides a
good theoretical foundation for the classification of system attacks. Intrusion results are an important
component of the buffer overflow vulnerability as each exploit is tailored to the attack. As such, the
Lindquist Intrusion Result Taxonomy will be used as a model for our analysis in developing a proposed

buffer overflow exploit taxonomy.

35
3.3.8 TheFisch Damage Control and Assessment Taxonomy

A review of literature reveals only one dedicated intrusion response taxonomy - the Fisch DC& A

taxonomy [39]. The Fisch DC& A taxonomy classified the intrusion response according to:

« When the intrusion was detected (during the attack or after the attack);

» The response goal (active damage control, passive damage control, damage assessment, or
damage recovery).

While the categories covered by the Fisch taxonomy should be components of any intrusion
based taxonomy, additional components are necessary to more accurately classify our unique exploit as an

attack.

3.3.9 Summary of Previous M ethods

Our research into security taxonomies has allowed usto view the body of doctrine in order for us
to develop our own approach for the classification of the buffer overflow exploit as an attack. With per-
haps the exception of the Lindquist Taxonomy, previous security taxonomy research has been too
focused, not focused enough, or focused on intrusion response. Another problem with existing classifica-
tion techniques is that they all rely on independent discriminators by using a single category for each class
of flaw. The Lindquist Taxonomy we found to be an approach that we could model although it remains
too broad for our purposes and converges on the independent classifier approach. In addition, it did not
consider the type of attack, type of service being attacked, sensitivity of the information being attacked, or
the environmental constraints required for a successful exploit. The next section addresses these open

research issues within the context of developing a new taxonomy of buffer overflow exploits.

3.4 A Taxonomy of Buffer Overflow Exploits

The classification of security flaws, vulnerabilities, and intrusions has received much attention in
the past as we have demonstrated in the proceeding section. However, this previous work does not directly
carry over into the area of classifying buffer overflow exploits as attacks. Hierarchies are the most com-
mon structure for organizing large collections of data. Current classification methods used by those who
track buffer overflow exploits [10], [40], [41], [42] can be described as being a flattened class space. That
is one class for every leaf in the hierarchy. If any structure exists at all in the current classification of
buffer overflow exploit data it is by date of occurrence and by the effected operating system or applica-
tion.

Discovering the natural structure that underlies afield of inquiry is a challenging and interesting
problem. First, we must examine the buffer overflow within the context of a security issue. Most buffer

overflow attack scripts are not general purpose and require a very specific target. They generally require

36
application X version Y running on operating system Z. This breadth of targets and approaches makes it
difficult for to accurately define a classification taxonomy based on independent discriminators. To gener-
alize, we call the set of buffer overflow exploits attacks. It is clear that buffer overflow exploits have the
potential to be extremely dangerous, however researchers are doing little work to understand the nature of
these attacks. What are the characteristics? How have attacks changed over time? What level of sophisti-
cation is required to use documented exploits? In what areas of existing systems are these attacks occur-
ring? More importantly within the context of this thesis, can we develop a heuristic foundation for
exploratory testing?

We propose to answer these questions by creating a taxonomy of buffer overflow attacks as clas-
sified by a set of dependent classifiers. To do thiswe will abstract the buffer overflow in a hierarchal man-
ner beginning at the most elementary level and working upward. At the most basic state the buffer
overflow represents a programming flaw of common occurrence. At the next level we can look at the
buffer overflow as a potential security vulnerability succeeded by the buffer overflow as an attack. At the
top level of the hierarchy, the buffer overflow can represent a security incident. Before discussing vulner-

ability, attack and incident classification schemes, we define our terminology:

e Vulnerability: A misconfigured or faulty element of a computer system that can be exploited
for unauthorized use of the computer.

« Attack: An attack issimply asingle use of abuffer overflow exploit in an attempt to gain unau-
thorized access, or an attempt to gain unauthorized use, regardless of success. The attack is
characterized by a script or set of instructions which format the buffer overflow exploit that an
intruder puts into action to accomplish the unauthorized enterprise.

« Incident: Any event when an attacker, by methods or actions, uses or attempts to use an attack
exploit against a target. An incident can be characterized by grouping like attacks that can be
distinguished from other incidents because of the degree of similarity of objectives, tech-
niques, and timing and the distinctive signature of the attackers.

As buffer overflow incidents are made up of attacks, we propose that it is appropriate to develop
ataxonomy based within the context of the attack itself. This can then be extended to include the broader
classification of incidents. A taxonomy of attacks is, however, more useful than the higher level global
classification of incidents. When one considers buffer overflow incidents, the usefulness of an attack tax-
onomy remains constant across the entire universe set of incidents and therefore includes all attacks. We
believe that such an attack taxonomy is useful both in the evaluation of existing systems as well as in the
development of new systems. By comparing well defined categories of attack mechanisms against the
details of the target system of interest, one can begin to establish a system for classification. From our
review of existing vulnerability classification research we concluded that existing taxonomies do not
directly apply to our attack classification scheme. Thisis because attacks have features that do not exist in

security flaws or vulnerabilities:

37
* Goals,

« Specifications for the attacking host,
» Transmission methods by which the attacker reaches the target, and
» Requirements the attacker must meet in order to launch the attack.

In addition, unlike vulnerability classification schemes, attack classification schemes are not nec-
essarily concerned with identifying the specific exploited flaw. Thisis particularly useful as we are lim-
ited to a single known flaw, the buffer overflow. When one considers the class of successful buffer

overflow exploits severa homogeneous features exist:

» The buffer overflow exploits more than one vulnerability

* The buffer overflow may uses more than one transmission mode

¢ The buffer overflow resultsin different goals

The existing vulnerability classification systems strive to use independent classifiers. Thisis dis-
similar from our attack based classification scheme as we rely on dependent classifiers. Dependent classi-
fiers allow one to choose multiple categories within a class while independent classifiers force one to
choose a single category for each class. Using the buffer overflow as our definition of an attack, there
exists abuffer overflow that no attack classification scheme that uses independent classifiers can uniquely
classify. The reason isthat our definition of an attack does not specify how many vulnerabilities the attack
can exploit, how many goals the attack may achieve, or how many transmission methods it can use. No
reasonabl e scheme of independent classifiers will uniquely classify an attack that is the union of all exist-
ing attacks.

The class of buffer overflow exploits contains many scripts that have multiple goals, multiple
delivery methods, work against multiple targets, from multiple platforms, and that exercise multiple vul-
nerabilities. Asaresult of the wide diversity of attack scripts, ataxonomy that uses independent classifiers
is difficult. Our approach is to use a classification scheme that is fine grained enough to yield interesting
results but broad enough to allow us to quickly characterize attacks. We classify each attack within the

following (6) major categories each of which is a classification hierarchy in itself:

1) Intent

2) Target Hardware

3) Offensive Platforms

4) Transmission Protocol
5) Offensive Requirements

6) Target Software

38
Figure 3: The (6) major classification categories

BUFFER
OVERFLOW

EXPLOIT

Intent ngggsl\ée Ofiznsive Delivery Target VEEIef2
. Platform Strategy Hardware Software
Requirement

These six mgjor categories establish the overall dimensions of the classification state space (i.e. a
given buffer overflow exploit attack is either in or out of a given category). Classes that are higher in a
hierarchy can mean “other”, “all”, or a subset of the lower classes. Given the dimensions of the space and
the exploit information, any person should be able to recreate the overall state space. Within each major
classthere exists a hierarchy of subclasses. Some of the dimensions of this subspace will be classifications
that will be self-sustained, consistent, objective, and capable of distinguishing important features that can
be used to find patterns of and dependencies that might help us better understand the nature of buffer over-

flow exploits.

3.4.1 Offensive Access Requirements

A buffer overflow attack can be classified according to the access requirements needed to exploit
the target system. These form the most part are self explanatory with the exception of the category “Host
Accesses Attacker Client”. This represents an emergent area of so-called "pushed” exploits where the tar-
get of the attack must access the attacker’s information in order for the attacker to launch the attack. This

is most common with web sites that attack users that visit.

Figure 4: Hierarchy of Offensive Requirements

OFFENSIVE
ACCESS
REQUIREMENTS

R Shell Host
Application Standard
User AHccount Account on QZFV?SPI: Network ’:cceskses
on Host Host Access tte}c er
Access Client

39
3.4.2 Intent

This broad category does not attempt to discriminate each possible malicious objective of a par-

ticular attach rather, it focuses on a system-based classification. At atop level the buffer overflow exploit

can be utilized to cause a denial of service (DOS)! or more commonly to penetrate the system to some

degree. The hierarchy of intent is shown below.

Figure 5: Hierarchy of Intent

INTENT

Remote
[crashlfreeze

crash/freeze
app (other W [app 1 other
crash/freeze crash/freeze
host host

[Remote

. illegal disk get
et root
[9 ‘ [get info] [e [other [privilege

Penetrate

Local

[get root] get info] [lllega!dlsk} [other ’ [_ggt]
write privilege

This hierarchy considers all daemons to be applications or services unique to a particular OS. Since we also consid-
ered the network protocol stack to be separate from the OS, this means that usually only local attacks can abuse the
OS. Thiswas part of our reasoning for the local and remote attack intent classifications.

3.4.3 Offensive Platform

For the most part, buffer overflow exploits are machine independent when one considers the

offensive platform requirements. In some cases however, there may be dependencies associated with the

1. See Appendix 3 Exploit 1A as an example

40
services or operating system the target platform is running that requires a unique offensive platform. In
practice, it is common knowledge that the offensive platform of choice is typically running a variant of
Linux.

Figure 6. Offensive Platform Requirements

OFFENSIVE
PLATFORMS

3.4.4 Ddlivery Strategy

This represents the connection between the attackers and their objectives. The buffer overflow is
characterized by an input of excess data into a process. In order to reach the desired process an attacker
must inject a payload of malicious code and to do this the attacker must take advantage of some sort of
delivery mechanism. For the remote buffer overflow exploit, thisis akey part of the attack mechanism. In

most cases a remote attack centers on a particular host service or application and can be distinguished by:

¢ A processthat is listening on a open communications port

» The process accepts client side supplied input

» Relies on standard communications protocols

The hierarchy associated with transmission of the buffer overflow exploit represents a meta-cate-
gory, asit isthe key discriminator used in thistaxonomy. It allows differentiation between the hundreds of
known buffer overflow exploits and is an important classification tool for the development of exploratory
test heuristics. It contains the mgjority of information associated with services, applications, port numbers

and communications protocols.

41
Figure 7: Delivery Strategy

DELIVERY
STRATEGY

(1) See Appendix B for listing of common ports
(2) See Appendix A for listing common Multipurpose Internet Mail Extensions (MIME) types

345 Target Hardware

Under target hardware, we mark the type the machine that the attack abuses. As we defined,
classes that are higher in a hierarchy can mean “other”, “al”, or a subset of the lower classes. What this
means for example, is that checking the target type Unix could mean that the attack effects all Unix hosts,
asubset of the Unix operating systems listed, or acompletely different Unix operating system not listed.

42
Figure 8: Target Hardware

TARGET
HARDWARE

Windows UNIX

[2000][CE] l Linux l[HP/UX H BSD][IRIX][Solaris]

—
©o
a

—
©
s3]

J

—
z

=
| S—,

3.4.6 Target Software

Under attack software, we identify the software that the attack abuses. Often, it is difficult to
determine whether a daemon process is running as part of an application or part of the OS. Our solution is

to attempt classification along the lines of application (that may use an OS daemon) and OS software.

Figure 9: Target Software

TARGET
SOFTWARE

Applieaten

The following case studies exemplify the types of security flaws resulting from buffer overflows.

35 Case Studies

Without making claims as to the completeness or representativeness of this set of examples, we believe
they will help the programmer to know where the areas in a completed program are prone to buffer over-
flow exploit. More importantly, we believe that the data when classified in this manner will assist the

security auditor to develop targeted exploratory test heuristics.

43

All of the cases documented here reflect actual flaws in released software. As we are concerned
primarily with proprietary closed source Operating Systems and applications we have selected our data set
as representative of those exploits common to the Windows family of platforms. For each case, a source
(usually with a reference to a publication) is cited, the software/hardware system in which the flaw
occurred isidentified, the flaw and its effects are briefly described, and the flaw is categorized according
to the taxonomy. Where it has been difficult to determine with certainty the exact category of an exploit
feature, the most probable category (in the judgment of the author) has been chosen, and the uncertainty is
indicated by the annotation ‘ ?'. In some cases, a buffer overflow exploit is not fully categorized.

Our taxonomy allows us to group cases according to the systems on which they occurred how-
ever, since we are focused on the Windows platform our data set would reflect this preference. It isimpor-
tant to note that Unix systems exhibit an approximate equal number of exploited buffer overflow
vulnerabilities when compared to Windows systems, especially in recent years. Since readers may not be
familiar with the technical details of all of the elements included in the taxonomy, brief introductory dis-

cussions of relevant details are provided as appropriate.

3.6 Summary

In this chapter we presented a buffer overflow exploit classification scheme that helps in the
unambiguous classification of buffer overflow attacks that is suitable for data organization and process-
ing. A representative database of exploits using this classification was implemented and is being used to
aid in our fundamental understanding of the buffer overflow exploit throughout the remainder of this the-
sis. Thistaxonomy was not meant to be a complete one and is certainly open for modification. We believe
that our scheme can be easily expanded because the criteria used for the taxonomy does not rely on soft-
ware implementation details and is designed to encompass the general external characteristics of the
buffer overflow exploit. Also, our existing categories can be extended to include any new exploits that
cannot be classified into the existing categories, should any be found.

We used a small database that also needs to be extended with more exploits. The database cur-
rently has 20 significant buffer overflows across Windows systems only. We believe that there exists data
to extend the collection to over 400 cataloged buffer overflows and would include other systems such as
UNIX as well as routers and switches. Once this is complete, a more complex evaluation of the database
can be performed for some of our original research goals: building heuristic test elements, guide software

design and testing, and monitor the evolving characteristics of the buffer overflow exploit.

Chapter 4

The Buffer Overflow Exploit-Technical Discussion

For every complex problem, there is a solution
that is simple, neat, and wrong.

- Henry L. Menken

4.1 General Description

A buffer overflow occurs in a program anytime the program writes more information in an array,
the buffer, than the space alocated in memory for it. This causes the adjacent area, the areas above the
direction of buffer growth, to be overwritten. When this occurs all previously stored values are corrupted.
Buffer overflows are defined as programming errors that are typically introduced into a program as a
result of the programmer failing to enforce boundary conditions on the data being copied into the buffer.
Unfortunately, as we shall soon demonstrate, buffer overflow programming flaws are quite common as a
direct result of certain widely used and dangerous C library functions, those that handle strings in particu-
lar. Once a buffer overflow vulnerability has been coded into a program testing may not uncover it, so that
the vulnerability may exist in the program undiscovered, hidden and silent for years. The potential then
becomes one of the program being the target of a sudden attack in which the vulnerahility is exploited to
gain unauthorized access to a system.

A buffer overflow may occur by accident during the execution of a program. With this type of
circumstance, the chances are very unlikely that it will lead to a security compromise of the system. Most
often the information that is clobbered, in areas adjacent to the buffer, will only cause the program to crash
or produce results that are obviously incorrect. On the other hand, in a buffer overflow attack, it is the
objective of the attacker is to use the vulnerability to corrupt information in a carefully controlled way in
order to execute malicious code designed by the attacker. If this succeeds, the attacker effectively hijacked
the control of the system. Once control is transferred to the malicious code, it carries out the instructions
of the attacker, usually the granting of complete unauthorized system access.

In particular, many attacks have been successful against Windows NT and Windows 2000 sys-
tems [45] [56] [58] [47] [59]. We remark, that although this thesis is concerned with proprietary software
and we have limited our discussion to Windows systems, buffer overflows are applicable to most Operat-
ing Systems. Axelsson [55] compared the security of Windows NT and UNIX systems against known
types of attack, and found them to be roughly equally vulnerable.

44

45

A buffer overflow attack may be local or remote. In alocal attack the attacker already has access

to the system and may be interested in escalating his’her access privilege. A remote attack is delivered

through a network port, and may achieve both simultaneously by gaining unauthorized access and maxi-
mum access privilege.

Summarizing, we see that a buffer overflow attack usually consists of three parts:

1) The planting of the attack code into the target program;
2) Theactual copying into the buffer which overflowsit and corrupts adjacent data structures;
3) The hijacking of control to execute the attack code;

We now examine in more detail the technical mechanism of buffer overflow attacks.

411 TheHardware/Software Interface

To understand the characteristics of most buffer overflows, we first must understand the way
memory is structured and organized within the machine when atypical program runs. On many systems,
virtual address space is dedicated to each process and that space is somehow mapped to real memory. In
this discussion we will describe memory organization and layout and explain the relationship between a
function and memory space. We will outline the processes that are, in theory, allowed to address big

chunks of continuous memory. We will show how parts of this memory can be potentially abused.

4.1.1.1 What defines a program?

In general terms we can view aprogram as an instruction set, expressed in machine code (regard-
less of the language used to write it) and it is this program that we commonly call a binary or an execut-
able. To arrive at this binary file, the high level source language that includes all variables, constants and
instructions is processed by the compiler. In effect then, this binary file is a compile time object. This sec-

tion presents the memory layout within the different parts of the binary.

4.1.1.2 Memory Organization

In order to understand what goes on while executing a binary, we need to have alook at the orga-
nization of virtual memory. It relies on different well defined areas for segmenting tasks between user and
kernel process space. A Windows (in this case NT) process embodies many things such as, amongst oth-
ers, a running program, one or more threads of execution, the process virtual address space and the
dynamic link libraries (DLLs) the binary uses. The process has 4 GB of virtual address space to use. Half
of thisis, from address 0x00000000 to Ox7FFFFFFF, private address space where the program, its DLLs
and stack (or stacks in the case of a multithreaded program) are found. The other half, address
0x80000000 to OXFFFFFFFF is the system address space where such things as NTOSKRNL.EXE, the

46
(kernel program) and the (hardware abstraction layer) HAL are loaded (ref. figure 10). When aprogram is
run, NT creates a new process. It loads the program's instructions and the DLLs the program uses into a
private address space (the text area). This areais read-only and it is shared between every process associ-
ated with running a given binary. Attempting to write into this area causes a segmentation violation error.

Thefirst thread is started and a stack isinitialized.

Figure 10: Windows NT Memory Layout

Oxffff ffff
Reserved for kernel

0x8000 0000 Not accessible guard page-out of
OXT7Fff fEff bounds pointer references

Can be mapped by program

Stack
(grows down)

Stack

Frame
Heap
(grows up)

BSS

Data

Text area (user code)

Can be mapped by program

0x0000 ffff
Reserved for NULL pointer

assignments (64K B)

0x0000 0000

Memory L ayout

This represents the default behavior. It can be changed as of to assign 3 GB as private address space and 1 GB as system
address space. Thisisto boost the performance of programs, such as databases, the require large amounts of memory.

Before attempting any further explanation, let's recall afew things about variablesin C. The glo-

bal variables are used throughout the entire program while the local variables are only used within the

function where they are declared. The static variables have a defined size depending on their type, when

47
they are declared. Variable types can be char, int, double, or memory addresses in the case of pointers. On
a machine utilizing the Intel architecture, the pointer is a word and represents a 32bit integer address
within memory. With the use of pointers, the size of the area pointed to is obviously unknown at the time
of compilation. To explicitly allocate a memory area, a dynamic variable is used. Thisvariableisredly a
pointer pointing to that allocated address space. It is also important to note that global/local, static/
dynamic variables can be combined without complications.

With this understanding, let's go back to the memory organization for agiven process. Thedat a
area storestheinitialized global static data (the value is provided at compiletime), whilethebss segment
holds the uninitialized global data. The machineis able to reserve memory space at compile time since the
size of the datais defined according to the objects they hold.

This memory space, reserved at compile time for program execution, that contains the grouping
of both local and dynamic variables, is known as the user stack frame. We know that our high level lan-
guages allow us to invoke functions in a recursive manner. As aresult, the number of instances of alocal
variable is not known in advance. The concept of the stack allows for this functionality by pushing the val-
ues required by each instance of the function onto the stack.

The stack is located on top of the highest addresses within the user address space or user frame,
grows in adownward direction, and works according to a LIFO model (Last In, First Out). The bottom of
the user frame area is reserved for allocation of dynamic variables. Thisregion is called heap, it growsin
aupward direction and contains the memory areas addressed by pointers and the dynamic variables. When
avariable is declared, the associated pointer (a 32bit variable) is either in BSS or in the stack and does not
point to any valid address. When a process allocates dynamic memory (i.e. using malloc) the address of

the first byte of that memory (also 32bit number) is put into the pointer.

4.1.1.3 The Stack and the Heap

Each time afunction is called, a new environment must be created within memory space for local
variables and the function's parameters. We use the term ‘environment’ to define all the elements appear-
ing while a function is executing. That is, all arguments, local variables, as well as the return address
within the execution stack. The ESP (extended stack pointer) register holds the top stack address, which is
at the bottom as in our representation the stack grows downward. The ESP stack pointer, because of the
last in first out implementation, points to the last element added to the stack. It isimportant to note that the
ESP is architecture dependent and may sometimes point to the first free space in the stack. The ESP can
be changed in a number of ways both indirectly and directly. When something is pushed onto the stack the
ESP increases accordingly. When something is POPed off of the stack the ESP shrinks. The PUSH and

48
POP operations modify the ESP indirectly. The ESP can be manipulated directly, with an assembly code
instruction of "SUB ESP, 04h" which pushes the stack out by four bytes or one word.

We could express the address of a local variable within the stack as an offset relative to ESP.
However, because items are being continuously added or removed to and from the stack, the offset of each
variable would then need readjustment, a very inefficient proposition. The use of a second register allows
to improve on our efficiency. To do this we use register EBP (extended base pointer) to hold the start
address of the environment of the current function. Therefore, it's enough to express the offset related to
the value in this register. It stays constant while the function is executed. Now we have a easy method to
find the parameters or the local variables within afunction.

The basic unit used within the stack is aword. On i386 CPU architectures it is (32) bits long or
(4) bytes. Thisvalueis different across other architectures. As an example, on Alpha CPUs aword is (64)
bits. The stack only manages words, and what this means is that every allocated variable uses the same

word size. The stack is usually manipulated with just 2 CPU instructions:

1) PUSHvalue: Thisinstruction puts the value at the top of the stack. As stack growth is down-
ward, the push reduces ESP by aword to allow us to get the address of the next word avail-
able in the stack. The stored value is given as an argument within that word,;

2) POP destination: This instruction puts the item from the top of the stack into the ‘ destina-
tion’. In other words, it puts the value held at the address pointed to by ESP in the destina-
tion and increases the ESP register. In effect, nothing is really removed from the stack. Just
the value of the pointer to the top of the stack changes.

4.1.1.4 The Registerst

The registers are a designated series of storage areas that hold exactly one word (4 bytes), while
the memory space itself is made of a series of words. Each time the machine places a new value within a
register, the old value is lost. Registers are designed to allow direct communication between memory and
CPU. Asapoint of interest, the first '€ appearing in the registers name designates a register for use within
a 32bit architecture and means ‘extended’. This feature indicates the evolution between old 16bit and

present 32bit architectures. The registers can be divided into 4 categories:

1) generd registers: EAX, EBX, ECX and EDX are all used to manipulate data;

2) segment registers: the 16bit registers CS, DS, ESX and SS, all hold the first part of a mem-
ory address;

3) offset registers. these indicate an offset related to segment registers:

a El P (Extended Instruction Pointer): indicates the address of the next instruction to

1. Thisdiscussion centers around the x86 intel architecture, other systems (alpha, sparc, etc)
have registers with different names but similar functionality.

49

be executed;

b. EBP (Extended Base Pointer): indicates the beginning of the local environment for

afunction;

c. ESI (Extended Source Index): holds the data source offset in an operation using a

memory block;

d. EDI (Extended Destination Index): holds the destination data offset in an operation

using amemory block;
e. ESP (Extended Stack Pointer): the top of the stack;

4) special registers: they are only used by the CPU and will not be covered in thisthesis.

To summarize our process memory, first we have the code or text segment with all datain this
segment represented by assembler instructions that are executed by the processor. The execution of this
code is non-linear, it can skip code, jump, and call functions depending on certain conditions. For thisrea-
son we have a pointer called EI P, or instruction pointer to keep track of where in the execution path we
are. The address to where El P points to always contains the address of the code that will be executed
next. Second we have the data segment, a space for variables and dynamic buffers. Last we have the stack
segment, which is used to pass data (arguments) to functions and as a space for variables local to those
functions. The bottom or start of the stack usually resides at the very end of the virtual memory of a page,
and grows in a downward direction. The assembler command PUSH will add a word to the top of the
stack, and POP will remove one word from the top of the stack and put it in aregister. To allow for direct
access to stack memory, thereisthe stack pointer ESP that points at the top of the stack or lowest memory
address within the stack frame.

Now that we have developed a familiarity with the organization of memory and it’'s association
with our binary at run time we will turn our attentions to how a executable behaves from start to finish

within the context of the i86 architecture.

4.1.2 Binary Execution at Run Time

In this section we will present the behavior of a program at run time from call to finish. A pro-
gram is typically made up of functions ranging from the simple to the complex. At run time these func-
tions are called then executed according to the flow of the program. Each time a function is called stack
space is automatically allocated. The stack holds all information required within the context of the current

function call for al function calls including the function call to mai n() . We can view this as a container

50
of information unique to each function call that is a continuous block of storage. We call this container a
activation record or, aternatively, a stack frame. There are many things can go into an activation record.
These contents, laid down at compile time, are generally both architecture-dependent and compiler-depen-
dent. Some of the common items placed in stack frames, as we have seen, include values for the non-static
local variables of the function, the arguments passed to a function (actual parameters), saved register
information, and the address to which the program should jump when the function returns. We have
shown that many of these items are kept in machine registersinstead of on the stack, mainly for reasons of
added efficiency (a compiler-dependent factor).
The purpose of this section isto detail the behavior of the stack and the registers during function
execution. The buffer overflow exploit tries to interrupt the normal behavior of the function at run time.
To understand this attack, it's useful to know what the normal behavior is. Executing a function is divided

into three distinct steps:

1) the prologue: when entering a function two requirements must be accomplished. First the
state of the stack must be saved before entering the function. Second the amount of memory
required for running the function must be reserved.

2) thefunction call: when afunction is called, its parameters are pushed onto the stack and the
instruction pointer (IP) is saved to allow the remainder of the program to resume execution
from the correct place after the function has completed it’s execution;

3) the function return: restores the organization of memory to the state immediately prior to
calling the function. In this section we'll demonstrate using the following example:

void foo(int I, int j)
{

char str[5];

int k = 3;

return;
}
int main(int argc, char **argv)
{

int i = 1;

foo (1, 2);

i = 0;

printf(“i = %\n" , I);
}

4.1.2 Example 1

4.1.2.1 The Prolog

When looking at the assembly instructions, a function always starts with the instructions:

« PUSH EBP

« MOV EBP, ESP

« PUSH ESP, 0Ch

/Iwhere OCh is program dependent

51

The combination of these three instructions together make what is called the prolog. The follow-

ing figures detail our example program, specifically the way the f oo() function works by detailing the

stack mechanics associated with the handling of thelocal variables(char str [5] =abcde; andk=3).

In addition we demonstrate the operations of the EBP and ESP registers:

Figure 11: Elementary Stack Behavior at Run Time - The Prolog

ox7fff fffe

]

Address X

<— %ebp

REGISTERS

EBP ESP
X Y - 1w

Last entry |« %esp

Address Y

 / 0x0001 0000

Ox7fff f:‘/e_//—
REGISTERS
Address X EBP ESP
Y - 1w Y - 1w
%ebp
add new_env <
Address Y — %esp PROL OG:
push %ebp
™ nove %ebp, %esp
'—’/'-I;_second instruction allows building a new "environment" for the
v 0x0001 0000 function, by putting %ebp on the top of the stack. %ebp and %esp arethen

PROL OG:
—= push %ebp

Initially, %ebp pointsin the memory to any X address. %esp is lower in
the stack, at some Y address and points to the last stack entry. When
entering a function, you must save the beginning of the "current

envir

onment", that is %ebp. Since %ebp is put into the stack, %esp

decreases by a memory word.

pointing to the same memory word which holds the address of the previous

environment.

52
Figure 11: Elementary Stack Behavior at Run Time - The Prolog (Continued)

ox7fff fff//—
REGISTER
Address X EBP ESP
X Y -3w
X le— Y0ebp
T PROLOG
AddressY f.--.--.- e
dcb 4 push Y%ebp
3 e nove Y%ebp, Y%esp
S T subl %esp, $Oxc
Now the stack space for local variables hasto be reserved. The character
| | 0x0001 0000 array isdefined with 5 items and needs 5 bytes (a char is one byte).

However the stack only manages words, and can only reserve multiples
of aword (1 word, 2words, 3 words, ...). To store 5 bytesin the case of a
4 bytes word, you must use 8 bytes (that is 2 words). The grayed part
could be used, eveniif it isnot really part of the string. Thek integer uses
4 bytes. This spaceiis reserved by decreasing the value of %esp by Oxc
(12 in hexadecimal). The locd variables use 8+4=12 bytes (i.e. 3 words).

Although the mechanism itself is important, what we really want to remember here is the posi-
tion of the local variables. We notice that the local variables have a negative offset when related to EBP.
This isillustrated by the i =0 instruction in the mai n() function. The assembly code detailed below

demonstrates the use of indirect addressing to access the variable (i):

00401060: MOV dword ptr [epb-4], O

What this line of assembly instructions means is move the source value 0, into the destination
variable found at ‘minus 4 bytes' relatively to the EBP register. The mai n() function contains only one
local variable, variable (i), because it isthe only one aswell asthefirst one, its addressis 4 bytes (i.e. inte-

ger size) ‘below’ the EBP register.

4.1.2.2 The Cal

Similar to the way the prolog of a function prepares its environment, the function call allows the
function to receive its arguments. In addition, once the function is terminated, program execution is
allowed to resume at the exact place in the program which originally called the function. Using our exam-

ple, let'stakethef oo(1, 2) function call inmai n() .

53
Figure 12: Elementary Stack Behavior at Run Time - The Call

Wﬂffﬂfi/////— REGISTERS
EBP ESP
< oebp X Y - 2w
Address X EIP
z
<+ %esp
AddressY 2 CALL:
1 .
push $0x2
///— ™ push $0x1
Before calling a function, the arguments it needs are stored in the stack. In

v 0x0001 0000 our example, the two constant integers 1 and 2 are first stacked, beginning
with the last one. The %ei p register holds the address of the next
instruction to execute, in this case the function call.

ox7fff fffe
©]
Address X < g0ebp REGISTERS
EBP ESP
X Y - 2w
Address Y 2 < gesp EIP
z{rs push %ebp
///— CALL:
push $0x2
Y o0x0001 0000 _ push $0x1

When executing the call instruction, %eip takes the address value of the following instruction found 5 bytes after (call
is a5 byte instruction - every instruction doesn't use the same space depending on the CPU). The call then saves the

address contained in %eip to be able to go back to the execution after running the function. This "backup" is done from
an implicit instruction putting the register in the stack :

push %eip

The value given as an argument to call corresponds to the address of the first prolog instruction from the foo()
function. This address is then copied to %eip, thus it becomes the next instruction to execute.

Once we are within the body of the function, the arguments as well as the return address have a
positive offset when related to EBP, since the next instruction pushes this register onto the top of the stack.
The j =0 instruction in the f oo() function illustrates this. The Assembly code, detailed below, once
again uses indirect addressing to accessthe j variable.

0040103E: MOV dword ptr [epb+0Ch], 0

The OCh represents the +12 integer in hexadecimal (0xc) . The notation used means put the
source value 0 in the destination memory location found at “+12 bytes” relative to the EBP register. The
variable (j) is the second argument to the function and it is located at 12 bytes ‘on top’ of the EBP register.

54
We arrive at 12 bytes in the following manner, 4 bytes for the instruction pointer backup, 4 bytes for the

first argument and 4 bytes for the second argument. We will illustrate this in the next section; the return.

4.1.2.3 The Return

Leaving a function is accomplished using just two steps. First, our environment that was created
for the function, must be cleaned up. This means putting EBP and El P back in their original state as they
were immediately before the call. Once thisis accomplished, the stack must be checked in order to get the
information related to the function we are just coming out of. The first step is done while we are still

within the function. The instructions to accomplish this are:

« |leave (which isrealy made up of theinstructions; MOV ESP, EBP and POP EBP)

o ret

The second step is accomplished within the function where the subject call took place. This step
consists of cleaning up the stack from the arguments of the called function. We demonstrate this by

extending the previous example of thef oo() function.

Figure 13: Elementary Stack Behavior at Run Time - The Return

ox7fff fffe

Address X
REGISTERS
Adrecs Y EBP ESP
ress 0 Y -4w %epb-3w
1 EIP
Z+5
X [— %ebp leave
e
dcbha
3 <— %esp RETURN:
' Herewe describe the initial situation before the call and the prolog.
0x0001 0000 Before the call, %ebp was at address X and %esp at address Y . >From

there we stacked the function arguments, saved %eip and %ebp and
reserved some space for our local variables. The next executed instruction
will beleave.

Y

Figure 13: Elementary Stack Behavior at Run Time - The Return (Continued)

ox7fff fffe

Address X

Address Y

55

] REGISTERS
<+ %
P EBP ESP
X Y-2w
EIP
0 Z+5
1
Z+5 <—%ep
X
= RETURN
_dcba | eave
3 = ret
_//T;}e r et ingtruction restores %gi p in such away that the calling function execution

0x0001 0000

ox7fff fffe

Address X

Address Y

starts back where it should, thet is after the function we are leaving. For this, it's
enough to unstack the top of the stack in %&i p.

We are not yet back to theinitia situation since the function arguments are ill

stacked. Removing them will be the next instruction, represented with its Z+5 address

in%ei p (notice the ingtruction addressing isincreasing as opposed to what's
happening onthe stack).

REGISTERS
EBP ESP
/ X Y
<€— %ebp EIP
Z+8
<€4—%esp
0
N RETURN:
745 | e?ve
re
X
s eem_____foo(l)___
dchba mai n ()
3 —m add 0x8, Y%esp

0x0001 0000

_///T;e stacking of parametersisdonein the calling function, soisit for

unstacking. Thisisillustrated in the opposite diagram with the separator

between the instructions in the called function and theadd 0x8, %esp in
the calling function. Thisinstruction takes %esp back to the top of the stack,
as many bytes asthef oo() function parameters used. The %ebp and %esp
registers are now in the situation they were before the call. On the other hand,

the %ei p instruction register moved up.

56
4.1.2.4 The Disassembly

We load up our first example (chap4_ex1.c) in the Microsoft Developer Studio 97 and compile
using Visual C++ version 5. Thisbuild resultsin 79 KB executable binary file. The following disassembly
of the binary has been highlighted to indicate the locations of the prolog, call and return utilized in our

previous discussion of stack mechanics.

-- C\Program Fil es\DevStudi o\ MyProj ect s\ chap4\ chap4_exl.c

1 /* testl.c */
2:
3. void foo(int i, int j)
4. {
00401020 push ebp
00401021 nov ebp, esp PROLOG for function foo
00401023 sub esp, 0Ch
5: char str[5] = "abcde";
00401026 nov eax, [00410A30]
0040102B nov dword ptr [ebp-8], eax
0040102E nov cl, byte ptr ds:[00410A34h]
00401034 nov byte ptr [ebp-4], cl
6: int k = 3;
00401037 mv dword ptr [ebp-0Ch], 3
7. j = 0;
0040103E nov dword ptr [ebp+0OCh], O
8: return;
9:
00401045 nov esp, ebp .
00401047 pop ebp RETURN from functionfoo
00401048 ret
10:
11: int main(int argc, char **argv)
12: {
00401049 push ebp
0040104A nov ebp, esp PROL for function main
0040104C push ecx OOl it o i)
13: int i = 1;
0040104D nov dword ptr [ebp-4], 1
14: foo(1l, 2);
00401054 push 2)
00401056 push 1 CALL function foc
00401058 call 00401000
30540105'3 _ addo esp, 8 RETURN from function foo
: i = 0;
00401060 nov dword ptr [ebp-4], O
16: printf("i=%\n",i);
00401067 nmv eax, dword ptr [ebp-4]
0040106A push eax)
0040106B push 410A38h CALL printf
00401070 call 004010A0
3%40107? add esp, 8 RETURN from printf
00401078 nov esp, ebp .)
0040107A pop ebp RETURN from mainfunction

0040107B ret
--------------------- No source file ---------mmmmmoonnn-

57
4.1.3 Assessing Stack Overflow Vulnerabilities

4.1.3.1 The Activation Record

The main problem with buffer overflows, from an exploit point of view, is finding the security-
critical region to overwrite in a manner consistent with the desired attack. With stack overflows we can
demonstrate that there is always something security-critical to overwrite on the stack and that is the return
address. In this section we will review some mechanics in assessing an overflowing stack to further our
understanding of the buffer overflow condition. To demonstrate this we will create a stack-allocated
buffer then overflow it in a manner that will allow us to overwrite the return address located in the stack
frame. To implement this sample plan, we first have to figure out which buffers, in a program we can
overflow as well as the characteristics of the overflow itself. As we have demonstrated, in general there
are two types of stack-allocated data which exist. These two types of data include non-static local vari-
ables and parameters to functions.

We ask the question, “can we overflow both types of data?’. The answer is dependent on the
stack location of the data. We can only overflow those data items with a lower memory address than the
return address. With thisin mind, our first order of business will to be to select some function then ‘map’
the stack. By mapping the stack we will be able to find out where the parameters and local variables are
located relative to the return address we're interested in. In this method we will use both program output

and binary disassembly to delineate our stack. We will start with the following simple C program:

void test(int i)

char buf[12];
}

int main()

test(12);

4.1.3 Example 1

The test function we will be using has one local parameter and one statically allocated buffer. In
order to allow usto look at the memory addresses where these two variables are |ocated (relative to each

other), we'll modify our code slightly:

58

void test(int i)

{
char buf[12];
printf("& = %\n", &);
printf("&uf[0] = %\ n", buf);
}
int main()
{

test(12);

4.1.3 Example 2

We compile then execute our modified code with the following results observed in the output:

& = O0x0064FDF4
&buf[0] = 0x0064FDED

Now we are able to look in the general vicinity of these data, and determine if we see anything
that looks like a potential return address. We will start by looking eight bytes above buf , and stop looking
past the end of integer (i) eight bytes. In order to accomplish this, we will again modify our code as fol-

lows:

/* Assign char *j as a global variabl e,
so we don't add anything to the stack
*/

char *j;

void test(int i)

{
char buf[12];
printf("& = %\n", &i);
printf("&buf[0] = %p\n", buf);
for(j=buf-8;j<((char *)&i)+8;]j++)

printf("%: Ox%\n", j,
*(unsi gned char *)j);

}

int main()

test (12);

4.1.3 Example 3

Notice that in order to get eight bytes beyond the start of the variable i we had to cast the vari-

able'saddresstoa char * . The reason for thisis because when C adds eight to an address, it isreally add-

59

ing eight times the size of the data type it believes is stored at the memory address. What this means is,

that by adding eight to an integer pointer we will increase the memory address by 32 bytes instead of the

desired eight bytes. For this reason we use the char * variable type. Here is atypical output from our new

program:

C: \ W NDOWB\ Deskt op>t est 2

& = 0064FDF4

&buf[0] =

0064FDD8:
0064 FDD9:
0064 FDDA:
0064 FDDB:
0064 FDDC:
0064 FDDD:
0064 FDDE:
0064 FDDF:
0064 FDEO:
0064FDE1L:
0064FDE2:
0064 FDES:
0064 FDE4:
0064 FDES:
0064 FDEG:
0064FDE7:
0064FDES:
0064 FDE9:

0064FDEO

0x3c 0064 FDEA:
Oxfd 0064 FDEB:
0x64 0064FDEC:
0x0 0064 FDED:
0x0 0064 FDEE:
0x0 0064 FDEF:
0x0 0064FDFO:
0x0 0064FDF1:
0x40 0064FDF2:
Oxel 0064FDF3:
0x40 0064FDF4:
0x0 0064FDF5:
0x84 0064FDF6:
0x0 0064FDF7:
0x0 0064FDF8:
0x0 0064FDF9:
0x3 0064 FDFA:
0x0 0064FDFB:

0x0
0x0
Oxf 8
Oxf d
0x64
0x0
0x9d
0x10
0x40
0x0
Oxc
0x0
0x0
0x0
0x38
Oxf e
0x64
0x0

The question that we really need to focus our attention on is, “does anything in the output look

like a return address?’. Remember, a memory address is one word or four bytes, and our output is repre-

sented by the single byte char

* asaresult we are only looking at things one byte at atime. How can

we figure out the range where the return address will be located? We want to start by looking at the things

that we know. One thing we know for sure is that the program will return to the mai n() function.

Accordingly if we can get the address of the mai n() function and then look for a pattern of four

60

00401091 pop ebp
00401092 r et

12: int main()

13: {

00401093 push ebp
00401094 nov ebp, esp
14: test(12);

00401096 push 0Ch
00401098 cal l 00401005
0040109D add esp, 4
15: }

004010A0 pop ebp

004010A1 ret

consecutive bytes that are quite close to this address we will locate our return address. To find the entry
addressfor the mai n() function we will disassemble our binary:

From the disassembly we note that he entry to the function mai n is found at 0x004010A5.
Therefore in our output, we would expect to see three consecutive bytes, where the first isOx00 the sec-
ond 0x40, and the third 0x10. We expect this because we can demonstrate that the code from the start
of mai n() towherethetest returnsisjust afew byteslong. It isimportant to note that the ix86 architec-
ture stores some multibyte primitive types in a way that seems strange. Data storage in memory is some-
what unusual in that it is stored last byte first and first byte last. Whenever we use data, as output for
example, they are treated the right way. For instance if we print out one byte at atime, theindividual bytes
print ‘right side up’ however, when we look at four bytes that are consecutive in memory, they're in
reverse order. With the reverse order of consecutive bytesin memory in mind, let'slook for the main func-
tion's pattern of four bytes. We'll begin by locating those sections where the two most significant bytes are
0x0 and 0x40. This is because the most significant bytes are the last two in the set of four. In our output
we find the following candidate:

0064FDF0: 0x9d
0064FDF1: 0x10

0064FDF2: 0x40
0064FDF3: 0x0

This memory fits our requirements perfectly. When we reassemble these four bytes, we get
0x0040109d, which is 8 bytes past the start of mai n() .

Figure 14: Stack Map of Example 4.1.3

0x0064f df c
0x0064fdf b
0x0064f df a

0x0064f df 9
0x0064f df 8

0x0064f df 7

0x0064f df 6
0x0064f df 5

0x0064f df 4

0x0064f df 3
0x0064f df 2

0x0064f df 1
0x0064f de0

0x0064f def

0x0064f dee
0x0064f ded

0x0064f dec

0x0064f deb

0x0064f deO

Stack (data area)

/‘

0x00

0x64

Oxfe

0x38

0x00

0x00

0x00

0x0c

0x00
0x40
0x10
0x9d
0x00
0x64
oxfd
oxf 8
unassi gned

unassi gned

f

Return address

i nt

mai n()

test (12);

/ push ebp 0x0040193

int main()

test (12);

push 0Ch 0x00401096
Cal | 00401005

Void test (int i)

{
char buf [12];

push ebp 0x00401020

Void test (int i)

{
char buf [12];

l sub esp, 0Ch 0x00401023

Code (text area)

62

So now let's map out the entire stack, starting at the beginning of the mai n() function. Thefirst
PUSH onto the stack is 0x0064f e38 which becomes the base for this stack frame:

0x0064f df b — 0x0064f df 8 Bottom of Stack (Frame Basefor mai n ())

The second PUSH onto the stack isour integer i nt i which is passed the value of (12) in our
main function. This (32) bit word is represented by the hexadecimal value of 0x000000c

Ox0064f df 7 — 0x0064f df 4 Parameters

The next four bytes, starting at 0x0064f df O, constitute the return address. The next PUSH
onto the stack (0x0064f df 8) isthe base pointer for thevoi d test () function.

0x0064f def — 0x0064f dec Previous Frame Pointer

The last (12) words on our stack represent our char buf [] and have been unassigned.

0x0064f deb — 0x0064f de0 Buffer[]

We now have a good picture of what our stack frame looks like. The stack grows downwards
toward memory address 0x00000000. This stack frame contains, listed in order, the function parameters,
the return address of the calling function, the previous frame pointer, and finally our stack variable buffer
[1. Asthe stack space for our local variables moves towards higher memory locations we can see that if
we overflow these variables we will overwrite the return address for the function that we are in. In addi-
tion, as our buffer growth is towards higher memory locations and our stack growth downward, it

becomes possible to overwrite the return address in the stack frame below us.
4.1.3.2 The Stack Smashing Buffer Overflow Exploit
Init’s most general form, this security attack achieves two primary goals:

1) Thefirst isthe injection of attack code into memory. This is typically a small sequence of
machine op code instructions that spawns a shell, into a running process.

2) Change the path of execution of the running process to execute the attack code.

63

It is important to note that these two goals share a mutual dependence. It can be demonstrated
that injecting attack code without the means to execute it is not necessarily a security vulnerability. If the
buffer overflows and the overflow is long enough the return address will be corrupted, (as well as every-
thing else in between). If the return address is overwritten by the buffer overflow so as to point to the
attack code, this will be executed when the function returns and represents a change in the execution path
of the running process. Thus, in this type of attack, the return address on the stack is used to hijack the
control of the program.

Overwriting the return address, as explained above, gives the attacker the means of hijacking the
control of the program as well as providing a mechanism to inject and store unique attack code. Most
commonly the attack code is stored in what was the original buffer. Thus, the information which is copied
into the buffer will contain both the binary machine language attack code as well as the address of this
code which will overwrite the return address. This is by far, the most popular form of buffer overflow
exploitation and is sometimes referred to as “ smashing the stack”. As we will show below, the reason for
this popularity is because by overflowing stack buffersin this manner one can achieve both goals of attack
code injection and execution path change simultaneously.

We briefly mention another type of buffer overflow attack which has been exploited and is
known as the heap smashing attack. This is an attack associated with buffers that reside on the heap (a
similar attack involves buffers residing in data space). Heap smashing attacks are much more difficult to
exploit, for the simple reason that it is difficult to change the execution path of a dynamic running process
by overflowing heap buffers. Although the potential as a security vulnerability exists, because of the diffi-
culty involved, heap smashing attacks are far less prevalent.

A complete C program to demonstrate the so called stack smashing attack is presented below and

was used by Leavy [7] in hislandmark article which went on to demonstrate the exploit in great detail.

64
cnar attackcoae || =

"\ xeb\ x1f\ x5e\ x89\ x76\ x08\ x31\ xcO\ x88\ x46\ x07\ x89\ x46\ x0c\
xbO0\ x0b"

"\ x89\ xf 3\ x8d\ x4e\ x08\ x8d\ x56\ x0c\ xcd\ x80\ x31\ xdb\ x89\ xd8\
x40\ xcd"
"\ x80\ xe8\ xdc\ xff \ xf f\ xff/ bi n/sh";

char large_string[128];
int i;
long *I ong_ptr;

int main() {
char buffer[96];

long_ptr = (long *)l arge_string;
for (i=0; i<32; i++)
*(long_ptr+i) = (int)buffer;
for (i=0; i<(int)strlen(attackcode); i++)
large_string[i] = attackcode[i];
strcpy(buffer, large_string);
return O;

Figure 15 detailed below illustrates the memory address space of a process undergoing this type
of attack. The process stack after executing the initialization code and entering the mai n() function is
illustrated in Figure 15(a) The process stack has been frozen in time at a point before executing any of the
instructions. We pay particular attention to the structure of the top stack frame. Thisis the stack frame for
the mai n() function. Common to all stack frames, this stack frame contains, in order, the function
parameters, the return address of the calling function, the previous frame pointer, and finally our stack

variable buffer.

Figure 15: A Stack Smashing Buffer Overflow Exploit!

65

/\ /\ environmentalvariables|
envionmental variables envionmenial variables bottom ofstack
botom of bottom of siack _ pammetes
parameters parameters retum address
retumaddress retum address -
_— stack _— prev. frame pir
. frame ftame0 . frame -
_PovTemew _Proviamepr stack eriables
stack variables stackvariables WE F’?CE;
- o theretum /H—\
sack bufer . sack buffer TN
growth growth . growth growth a |
parameters stackpointer—>| | —
{ - | ——ﬁ addr of the
retum address addr of the attack cnde
_— aftack rnde
prev. frame ptr instrucion @—— || —————— > mtfﬂ?f
framepointe—> | ——— frame pointer—> >. bufter overiow
steck overflow
} framefor
main () attack
tuffer [96] attack code
code
J \ SV J
stack pointer— stack pointe—>
\/ \/ Stack Address Space
Stack Address Space Stack Address Space
int nain() {
int main() { int main() { char buffer[96];
char buffer[96]; char buffer[96];
strepy(buffer,
strepy(buffer, strcpy(buffer, instruction Iargefstriong);
large string); f - large string); X —1» return O;
return O; “5"90“0“—-, return 0O; pointer
pointer
executed code seament
executed oode soment executed code seament
(@ beforethe attack (b) after injecting the atteck code (9 exentingtheattack code

Looking at Levy’s program in the above example, the sequence of instructions for spawning a
shell isstored in astring variable called char at t ackcode [] . Thisattackcodeisthe op code equiv-
alent to executing exec ("~ "/ bi n/sh' ") onaUNIX system. Similar Op code can be crafted for Win-
dows systems with more difficulty however, primarily due to the unique call format involved. Within the
mai n() function, the two for loops prepare the attack code by writing two sequences of bytes to

| ar ge_stri ng. Starting on line 16, the first for loop writes the (future) starting address of the attack

1. Figure from ARASH BARATLOO, NAVJOT SINGH; “Transparent Run-Time Defense
Against Stack Smashing Attacks”; http://www.research.avayal abs.com/project/libsafe/doc/
usenix00/paper.html

66
code. Starting on line~18 the second for loop copies the attack code (excluding the terminating null char-
acter). On line 20 the stack is completely smashed by thest r cpy() function.

Figure 15(b) illustrates the stack space after executing thest r cpy () call. It isimportant to note
how the unsafe use of strcpy() simultaneously achieves both requirements of the stack smashing
attack. First it injects the attack code by writing it on the stack space of the running process. Second by
overwriting the return address with the address of where the attack code is located, it effectively instru-
ments the stack to change the path of execution. The attack is completed once the return statement on line
21 is executed. At this point the instruction pointer “jumps’ and the machine starts executing the attack
code. Weillustrate this step Figure 15(c).

In area security attack, the attack code would normally come from user input. In the worst case
scenario the attack would be originated remotely and transmitted over a network connection. A successful
attack on a running process would give the attacker an interactive shell. This shell would be at the same
access privilege as the process that was smashed. On a UNIX based system a successful exploit of aroot
process would result in an interactive shell with a user-1D of root commonly referred to as a root shell.
Although this paper focuses on buffer overflow vulnerabilities involving Windows operating systems, we
choose a UNIX type example to illustrate this type of attack. Thisis due to the relative complexity of the
Win32 Applications Programming Interface (API) in comparison with the more simple Unix system calls.
As aresult of this complexity relatively few people have had a sufficient understanding of the intricacies
of the Windows API at an assembly level in the past to exploit a buffer overflow in such a controlled fash-
ion. Thus, while we can demonstrate that it istrivial to exploit a buffer overflow so as to make a Windows
program or service crash (perhaps being effective as a Denia of Service attack, DOS), it is not atrivial
case to exploit a buffer overflow in order to attain access and/or increased privileges on a Windows sys-
tem. Thus, few examples exist which can easily demonstrate the general case of buffer overflow exploits
within Windows software.

That said, buffer overflows on Windows systems are becoming widely exploited. We know that,
buffer overflows existed in Unix-like operating systems for many years before they were well understood,
documented and exploited. There currently exists a generalized framework for identifying and exploiting

buffer overflows in Windows operating systems [45]. For a time it was believed that many buffer over-

flow vulnerabilities in Windows were ‘ purely theoretical’ 1 - We have seen that with time, a little skill and

some creativity that more and more people have made the theoretical practical.

1. Thisisareferenceto aclaim Microsoft made about avulnerability in some of its software The
I0pht then went and produced working exploit code.

67
4.1.3.3 Other Variants of the Buffer Overflow Exploit

All of these methods seek to alter the program’s control flow so that the program will jump to the
attack code. The basic method isto overflow abuffer that has weak or non-existent bounds checking on its

input with a goal of corrupting the state of an adjacent part of the program’s state, e.g. adjacent pointers,
etc. By overflowing the buffer, the attacker can overwrite the adjacent program state with a near-arbitrary*

sequence of bytes, resulting in an arbitrary bypass of C's type system? and the victim program’s logic.

What we are interested in here is the kind of program state that the attacker’s buffer overflow
seeks to corrupt. In principle, the corrupted state can be any kind of state. For instance, the original Morris
Worm [5], used a buffer overflow against thef i nger d program to corrupt the name of afilethatf i ng-
er d would execute. In practice, most buffer overflows found in ‘the wild’ seek to corrupt code pointers:
program state that points at code. The distinguishing factors among buffer overflow attacks is the kind of
state corrupted, and where in the memory layout the state is located.

Activation Records: As we have demonstrated, each time a function is called, it lays down an
activation record on the stack [54] that includes, among other things, the return address that the program
should jump to when the function exits. Attacks that corrupt activation record return addresses overflow
automatic variables as detailed in figure 15. By corrupting the return address in the activation record, the
attacker causes the program to jump to attack code when the victim function returns and dereferences the
return address. Thisform of buffer overflow, we know from the previous section, is called a*“ stack smash-
ing attack” [7] [46] [47] [48] [49] and constitute a majority of current buffer overflow attacks.

Function Pointers: ‘voi d (* foo0) ()’ declares the variable foo which is of type ‘pointer to
function returning void’. Function pointers can be allocated anywhere (stack, heap, static data area) and so
the attacker need only find an overflowable buffer adjacent to a function pointer in any of these areas and
overflow it to change the function pointer. Some time later, when the program makes a call through this
function pointer, it will instead jump to the attacker's desired location. An example of this kind of attack
appeared in an attack against the superprobe program for Linux.

Longjump buffers: C includes a simple checkpoint/roll-back system called setjmp/longjmp. The
idiomistosay “setj np(buf fer)” to checkpoint, and say “I ongj np(buf f er)” to go back to the
check-point. However, if the attacker can corrupt the state of the buffer, then “I ongj mp(buf f er) " will
jump to the attacker's code instead. Like function pointers, longjump buffers can be allocated anywhere,

so the attacker need only find an adjacent overflowable buffer. An example of thisform of attack appeared

1. There are some bytesthat are hard to inject, such as control characters and null bytesthat have
specia meaning to 1/O libraries, and thus may be filtered before they reach the program’s
memory.

2. Certainly an indication of the weakness of C’s type system.

68
against Perl 5.003. The attack first corrupted alongjump buffer used to recover when buffer overflows are
detected, and then induces the recovery mode, causing the Perl interpreter to jump to the attack code.

What are the different ways of combining code injection and control flow corruption techniques?
The simplest and most common form of buffer overflow attack combines an injection technique with an
activation record corruption in a single string. The attacker locates an overflowable automatic variable,
feeds the program a large string that simultaneously overflows the buffer to change the activation record,
and contains the injected attack code. Thisisthe template for an attack outlined by Levy [7]. Because the
C idiom of allocating a small local buffer to get user or parameter input is so common, there are a lot of
instances of code vulnerable to this form of attack.

The injection and the corruption do not have to happen in one action. In the case of the frame
pointer overwrite [50], the attacker can inject code into one buffer without overflowing it, and overflow a
different buffer to corrupt a code pointer. This is typically done if the overflowable buffer does have
bounds checking on it, but gets it wrong, so the buffer is only overflowable up to a certain number of
bytes. The attacker does not have room to place code in the vulnerable buffer, so the code is simply
inserted into a different buffer of sufficient size.

If the attacker is trying to use already-resident code instead of injecting it, they typically need to
parameterize the code. For instance, there are code fragmentsin libc (linked to virtually every C program)
that do ‘exec(somret hi ng) ' where ‘something’ is a parameter. The attacker then uses buffer over-
flows to corrupt the argument, and another buffer overflow to corrupt a code pointer to point into libc at

the appropriate code fragment.

4.1.3.4 Attack Code

Although this thesis is concerned with the buffer overflow flaw in general and is specifically
moving in the direction of finding these flaws at run time we would be careless to neglect the characteris-
tics of the exploitcode used in attacks. The so called “arbitrary” code used in most buffer overflow
exploitsisknown as shell code. Shell code israw codein opcode format that will spawn ashell. Opcodeis
presented as strings of characters that represent format, register identifiers and machine instructions. On
UNIX type systems the normal and most common type of shell code isastraight / bi n/ sh execve()
call. Thiscode calls execve() to execute /bin/sh which obviously spawns a shell. A key characteristic
of shell codeisit’s complete lack of portability between systems. There are many papers on writing shell
code all geared to exploiting buffer overflows primarily in UNIX systems [52], [53]. The real art of pro-
ducing working shell code is crafting it in a way that avoids any binary zeroes in the code. For the most
part, the buffers that we will be overflowing are char [] buffers. Assuch, any null byteslocated in the

shell code will be considered as the end of input and the copy will be terminated.

69
The Windows API environment complicates the crafting of shell code and was responsible for
the lag time in Windows system exploit rates. With the recent release of “plug and play” shell code [51]

for the Windows system it is no surprise to see the accel eration of reported exploits increasing.

4.2 Discussion of the C and C++ Programming L anguage

The C programming language was devised in the early 1970s as a system implementation lan-
guage for what was to become the Unix operating system. The first high level language implemented
under the early UNIX systems was B. The B language, like it's predecessor BCPL, was a typeless lan-
guage. Being untyped meant that all data was considered as machine words and while being extremely
simple it lead to many complications. As a result, a new typed language was developed which evolved
into C [44].

BCPL, B, and C al fit firmly within the traditional procedural family and include other typical
languages such as Fortran and Algol 60. The ‘C’ type languages are particularly oriented towards system
programming as this was their heritage. They are small and compactly described, and are amenable to
translation by simple compilers. They can be characterized as being “close to the machine' in that the
abstractions they encompass are readily grounded in the native data types and operations supplied by con-
ventional computer architectures. Another feature is the fact that they rely on standard library routines for
input-output and other interactions with the operating system. Abstractions within the C language lie at a
sufficiently high enough level that, with proper use, portability between machines can be achieved. For

these reasons C has become one of the dominant languages of today.

4.2.1 TheStandard Library

Within the C programming language there exists an entire class of ‘pre-packed’ software that is
supplied for use by every C compiler. Collectively, this class of software is known as the C Standard
Library. This library consists of categories of functions used for programming tasks we will want to per-
form and perform often. We access these library functions within our programs by including library
header files. The preprocessor directive* #i ncl ude’ performsthistask. A preprocessor include directive
causes the preprocessor to replace the directive with the contents of the specified file. Using the library
header information, the preprocessor searches the for the place that contains the source files which are
then included with the program at compile time. These header files are used to group functions together
which perform similar or related tasks. As an example, the header file string.h provides access to a range
of functions dealing with strings (i.e. arrays of characters). Similarly, the header file stdio.h provides
access to a whole range of functions to do with inputting and outputting data from programs. An example

of a programming task that we usually want to perform on a repetitive basis is getting text data into our

70
programs for subsequent processing, a name or password for instance. Using this example, we can use the
get s() function which is supplied in the standard input/output library and accessed via the stdio.h
header file:

get s(s) : readsthe next input line of text into character arrays. It takes, as a single parameter, the
start address of an user defined area of memory which one hopes is suitable to hold the input. The
completeinput lineisread in and stored in the memory area as a null-terminated string. Our reasoning
for using gets() as an example will become painfully obvious as we proceed.

Another example of acommon programming task is outputting text data from our programs. For
this, we have used the pri nt f () function, also accessed viathe stdio.h header file:

printf(char *format, ...): printsformatted output on the output device. The function
takes a variable number of arguments. Format is a required argument which contains the text to be
printed as well as any required conversion specifications. The remaining arguments specify the data
to be converted to textual output for display.

The C Standard Library contains 18 standard headers that include hundreds of defined function
routines. Most buffer overflow problems in C can be traced directly back to the standard C library. Per-
haps the worst class of functions are the ones associated with the string operations that perform no argu-

ment checking (st rcpy, strcat, sprintf, gets).

4.2.2 Unsafe String Primitives

Buffer overflows are so common because C isinherently unsafe. Array and pointer references are
not automatically bounds-checked, so it is up to the programmer to do the checks themselves. More
importantly, many of the string operations supported by the standard C library are unsafe. The program-
mer is responsible for checking that these operations cannot overflow buffers, and programmers often get
those checks wrong or omit them altogether. As a result, we are left with many legacy applications that
use the unsafe string primitives in a unsafe manner. This problem is made worse by the reuse of existing
code libraries. In addition, programs written today still use the unsafe operations because they are famil-

iar.
4.2.2.1Theget s() Function

This function reads a line of user-typed text from the standard input. It does not stop reading text
until it sees an EOF character or a newline character. This represents the classic example of an unsafe
string primitive. The get s() function performs no bounds checking at all. It is always possible to over-

flow any buffer using the get s() function.

71
4.2.2.2Thestr *() Functions

Thestr* () functionsinclude strcpy() andstrcat (). Thestrcpy() function copiesa
source string into a destination buffer. No specific number of characters will be copied and it is this fea-
ture that leads to problems. The number of characters copied is directly dependent on how many charac-
ters are in the source string. If our source string happens to come from user input, and we don't explicitly
restrict its size, we could potentially overflow the destination buffer. The strcat () function is very
similar to st rcpy(), except it concatenates one string onto the end of a buffer and again if we don't
explicitly restrict its size, we could potentially overflow the destination buffer. Both of these functions
have so called safe aternatives with st rncpy() and strncat (). Unfortunately, programs that use
just the “safe” subset of the C string API are not necessarily safe, because the “ safe” string primitives have
their own pitfalls. The strncpy() function may leave the target buffer unterminated. Using
st rncpy() hasperformance implications because it zero fills all the available space in the target buffer
after the ‘\O' terminator. For example, a st rncpy() of a 13-byte buffer into a 2048-byte buffer over-
writes the entire memory space. Both strncpy() and strncat () encourage off-by-one bugs. for
examplestrncat (dst, src, sizeof dst-strlen(dst)-1)isthecorrect syntax while omit-

ting the -1 results in an off-by-one error.

4.2.2.3 The Format Family Functions

A number of format functions are defined in the ANSI C definition which we will call the “for-
mat string”. A format function represents a special kind of ANSI C function. These functions take a vari-
able number of arguments, one of which is from the so called format string. When a function from the
format family evaluates the format string, it evaluates the extra parameters given to the function. The addi-
tional parameter is used as a conversion type function, and is used to represent primitive C datatypesin a
string representation that is human readable. This family of functions are used in nearly every C program,
to output information, print error messages or process strings. In general, a format string is an ASCII
string that contains text and format parameters. As an example:

printf (“You have entered the followi ng incorrect data: %\n”,
dat aBuf) ;

The text to be printed is “ Y ou have entered the following incorrect data:”, followed by a format
parameter ‘%s', that is replaced with the user character data in dataBuf. Therefore the output looks like:

“Y ou have entered the following incorrect data: <user data>. Some format parameters include:

72

Table 2: ANSI C Format Parameters

PARAMETER OUTPUT PASSED AS
%d decimal (int) value
%n number of bytes written so far, (* int) reference
%s string ((const) (unsigned) char *) reference
%u unsigned decimal (unsigned int) value
%X hexadecimal (unsigned int) value

There are some basic format string functions (pri ntf () and sprintf ()) on which more
complex functions are based. It isimportant to note that some of these are not part of the standard library
but are widely available. The functions f printf (), printf(), sprintf(), snprintf(),
viprintf(), vprintf(), vsprintf(), vsnprintf(), areall versatile functions used to
convert the simple datatypes that exist within the C language to a string representation.

o fprintf - printsto a FILE stream

« printf - printsto the *stdout’ stream

* sprintf - printsinto astring

« snprintf - printsinto a string with length checking

« vfprintf - print to a FILE stream from ava_arg structure

* vprintf - printsto ‘stdout’ from ava_arg structure

« vsprintf - printsto a string from ava_arg structure

« vsnprintf - prints to a string with length checking from ava_arg structure

By using the format parameters shown above, the programmer can specify the format of the data
being represented and process the resulting string output to stderr, stdout, syslog, etc. The format string
controls both the behavior of the function as well as the specification of the type of parameters that should
be printed. These parameters are saved on the stack (pushed) and are saved either directly (by value), or

indirectly (by reference).

73
4.2.2.4 Stack Behavior During a Format String Function Call

The behavior of the format function is controlled by the format string that it calls as an argu-
ment. The function retrieves those data parameters requested by the format string from the stack. As an

example:
printf (“% has no address, nunber % has: %©98x\n”, i, a, &a);

From within the printf function the stack looks like:

Figure 16: Stack Frameat apri ntf () Call
ox7fff fffe

e

<&a>
<a>
<i>

f

Y 0x0001 0000

Table 3: Format String Stack Values

A address of format string

i value of the variablei

value of the variable a

&a address of the variablei

The format function now parses the format string ‘A’, by reading a character atime. If it is not
‘98, the character is copied to our output. In case it is, the character behind the ‘9% specifies the type of

data parameter that should be evaluated. In addition, the string “%84 has a special meaning and is used to

74
print the escape character ‘9% itself. Every other parameter relates to data, which is located on the stack,.
formatting it then storing it into a buffer.

These functions are often used to mimic the behavior of st r cpy() inafairly straight forward
way. For thisreason, it is just as easy to create a buffer overflow error to a program using spri nt f ()
and vsprintf () aswithstrcpy() forinstance. Since spri ntf () can expand an arbitrary string
using the ‘%’ format character, any call to spri ntf () orvspri ntf () which expands dynamic data
into a fixed-size buffer has to be considered suspicious. As we will seethe spri nf () function is often
used in error messages where the error message is in the form of a string literal with user data being read
by the format character. The user data is appended to the string literal and all placed into a destination
buffer.

In addition, with the inclusion of the format parameter in this family of functions we create the
potential for an entire new class of recently discovered vulnerabilities known as “Format String” vulnera-
bilities. In this class of vulnerahilities, the format parameter in combination with the user supplied input
are implemented as two different types of information channels, the control channel and the data channel.
The control channel is actively parsed while the data channel information is just copied. These two differ-
ent types of information are merged into one using special escape characters or sequences to determine
which channel is currently in aactive state. The problem occurs when the format string is partially or com-
pletely undersupplied through incorrect programming practice. In the general case, when this occurs the
data string passed for a straight copy is scanned for format characters. As we can control the behavior of
our input and now insert the format characters we can potentially change memory address space by indi-
rection using these function parameters. This presents us with an entire new method of exploitation. For
this reason, when incorrectly used, the “format family” represents a class of truly dangerous functions.
The exact mechanisms associated with the various format string exploits are outside the scope of the

research however the reader is encouraged to read the excellent paper on the subject by Halvar Flake [61].

4.2.25The*scanf () Family

The scanf family of functions is also poorly designed. In this case, destination buffers can be
overflowed by dynamic data. As* scanf () parsesdataof dynamic origin into fixed buffers by using the
‘U’ format character, any * scanf () call which targets afixed-size buffer with a‘%s’ format character

is suspect and may point to a potential buffer overflow.

4.2.2.6 Other Functions

Other potential dangerous functions include st r eadd() and st ercpy(). While not every

compiler has support for these calls, programmers who have these functions available within their code

75
library should be cautious when using them. They have the same inherently dangerous features previously
discussed. These functions translate a string that might possess unreadabl e charactersinto a representation
that is printable. Another less common functionisst rt rns(), since many compilers do not support it.
The function strtrns() takes, as its arguments, three strings and a destination buffer into which the
resulting string is stored. The first string is basically copied into the destination buffer. A character gets
copied from the first string to the destination buffer, unless that character appears within the second string.
If this occurs, then a character at the same index in the third string gets substituted instead.

In summary, we have reviewed a subset of common C library functions that are susceptible to
buffer overflow problems. There are certainly many more problematic functions and thisis not intended to
be a complete survey of every function within every common library. A partial listing of problematic calls

is provided in the following table:

Table 4: C Library Functions Associated with Buffer Overflows

Function Severity Solution

gets Extreme Risk Use fgets(t_auf, size, stdin). Thisis amost
aways abig problem!

strcpy High Risk Use strncpy instead.

strcat High Risk Use strncat instead.

sprintf High Risk U_se snprintf mst_ez_ad, or use specifiersto pro-
vide length precision.

scanf High Risk Use specifiersto prowde length precision, or
do your own parsing.

sscanf High Risk Use specifiersto prowde length precision, or
do your own parsing.

fscanf High Risk Use specifiersto prowde length precision, or
do your own parsing.

vscanf High Risk Use specifiersto prowde length precision, or
do your own parsing.

vsprintf High Risk U_se vsnprintf m_st_ead, or use specifiersto pro-
vide length precision

vscanf High Risk Use specifiersto prowde length precision, or
do your own parsing.

vsscanf High Risk Use specifiersto prowde length precision, or
do your own parsing.
Verify you allocate 4 times the size of the

streadd High Risk source parameter as the size of the destina-
tion.

76

Table 4: C Library Functions Associated with Buffer Overflows

Verify you allocate 4 times the size of the

strecpy High Risk source parameter as the size of the destina-
tion.
. Manually check to see that the destination is
strirns Moderate Risk at |east the same size as the source string.
Allocate your buffer to be of size MAX-
High Risk (or less, depending PATHLEN. Also, manually check arguments
real path
on the implementation) to ensure the input argument is no larger than
MAXPATHLEN.
do High Risk (or less, depending Before passing strings to this function, trun-
ysiog on the implementation) cate all string inputs at a reasonable size.
etopt High Risk (or less, depending Before passing strings to this function, trun-
getop on the implementation) cate all string inputs at a reasonable size.
etont lon High Risk (or less, depending Before passing strings to this function, trun-
getopt_tong on the implementation) cate all string inputs at a reasonable size.
etpass High Risk (or less, depending Before passing strings to this function, trun-
getp on the implementation) cate all string inputs at a reasonable size.
getchar Moderate Risk If using this functionin alloop, make sure to
check your buffer boundaries.
. If using this function in aloop, make sure to
fgetc Moderate Risk check your buffer boundaries.
getc Moderate Risk If using this functionin a I_oop, make sure to
check your buffer boundaries.
read Moderate Risk If using this functionin alloop, make sure to
check your buffer boundaries.
beopy Low Risk Verify that_ypur destination buffer is as large
asyou say itis.
fgets Low Risk Verify that_y_our destination buffer is aslarge
asyou say itis.
memcpy Low Risk Verify that.ypur destination buffer is as large
asyou say itis.
snprintf Low Risk Verify that your destination buffer is aslarge

asyou say itis.

Chapter 5

Binary Reverse Engineering to L ocate Security Flaws

Scienceis a way of trying not to fool yourself.
- Richard P. Feynmann

51 I ntroduction

Thisisaresearch that is motivated by problems of old technology, and by problems of new tech-
nology. In the past program maintenance has always depended on reverse engineering to some extent,
especially when one considers the huge amounts of legacy code without detailed documentation. As the
mai ntenance of legacy code continues there is a new problem which effects code that has no documenta-
tion available to the user and that is security. Security, until very recently, was taken for granted in the
development of most software designated for mainstream usage. As this code is predominantly third party
and propriety, we seek a means to satisfy an important curiosity. How secure is our program? Without the
source code to serve as our documentation, do we trust the vendor? Experience has shown that a decision
to trust would be most unwise. It is our aim to investigate a method that may provide an automatic detec-
tion of not-so-obvious security flaws in a binary file and borrowing from those who maintain legacy code
systems, we will use reverse engineering. We believe that these flaws exist as patterns which can be rec-
ognized at the assembly level. The detection of these patterns requires the investigation of arange of sub-
jects, from the basics of reverse engineering, to the behavior of higher level code constructs, to the
representation of patterns at the assembly level as well as the tools and methods for detection. In broad
terms, reverse engineering can be a daunting undertaking that spans across all disciplines of computer sci-

ence. The best approach, like eating an elephant, is a small byte at atime.

52 Binary ImageBasics

Before considering the reverse engineering of our executable image to find suspicious high level
code constructs, the relations between the static binary code of the program and the actions performed at
run-time to actually implement the program are presented. The representation of objects in a binary pro-
gram are dependent on compiler design and the elementary data types such as characters, integers and
reals. These are often represented by an equivalent data object that resides within the architecture of the
machine (i.e. afixed size number of bytes). This can be contrasted with aggregate objects such as struc-

tures, strings and arrays that can be represented in various different ways.

77

78

In order to discuss the concepts presented in this chapter in a manner that is unambiguous to the

reader we will establish the following nomenclature. The word subroutine will be used as a generic term
to denote either afunction or a procedure. When we are certain as to what the subroutine really represents
we will use the term ‘procedure’. This for a subroutine that does not return a value. We will use the term
‘function’ for a subroutine that returns a value. Likewise we use the terms binary executable, binary

image, and binary file interchangeably as all representing a compiled ready to run program.

5.2.1 Compiling, Linking and Libraries

One major stumbling block common in the disassembly of programs written in modern high
level languages, such as C, is the time wasted to identify then isolate library functions. We consider this
time as lost because it does not bring us closer to gaining knowledge of the targeted application. It can be
viewed as only a mandatory step that allows us to continue our analysis of the program in a effort to reach
the more meaningful algorithms. In addition, it is an unfortunate fact to the reverse engineer that this pro-
cess has to be repeated for each and every new disassembly. It can be shown how the disassembly of even
the simplest programs can result in the generation numerous superfluous subroutines that result from the
linkage of object and library files. A general understanding of compiling, linking and loading is important
to the reverse engineer when analyzing a disassembled executable image as many subroutines can be dis-

counted as a consequence of these processes.

5.2.1.1 Compiling

Simply stated compiling consists of translating human readable C source code into an assembly
file. The compiler accomplishes this by converting source files into object files when building the execut-
able image. Each object file contains instructions in machine code that correspond to statements in the
high level source programming language. In general, these object files are broken into a collection of dis-
tinctive sections each corresponding to different parts of the source program. When the compiler is
invoked, it scans the program for simple syntax errors. If it finds problems, it interrupts the build and typ-
ically lists each problem it finds along with aterse message and the line number associated with the syntax
error. One of the import things to note is that behavior of the program can be different when one uses dif-
ferent compilers. The implications of this characteristic are that different compilers produce different exe-
cutable images on any given machine. There are four basic steps to the compilation of C code. They are
commonly described as preprocessing, compilation, assembly, and linking.

1) Preprocessing occurs during the first pass of any C compilation. It processes any include-
files, conditional compilation instructions and macros.

2) Compilation is actually performed during the second pass. It utilizes the output of the pre-

79

processor, and the source code, then generates assembler source code.

3) Assembly isthe third stage of compilation. It takes the assembly source code produced dur-
ing compilation and creates an assembly listing with offsets. This assembler output is stored
within an object file.

4) Linking isthefinal stage of compilation. It receives one or more object files and or libraries
as input then combines them to produce a single executable file.

5.2.1.2 Linking

To build an executable file, the linker istasked with the collection of all object filesand libraries.
The primary function of the linker is to bind symbolic names to memory addresses. The process of linking
involves scanning the compiler output, the object files then concatenating all the object file sections to
form one large file (data sections of all object files are concatenated, text sections are concatenated, and so

on). It then scans the resulting file a second time to bind the symbol names to real memory addresses.

5.2.1.3 Libraries

When considering binary disassembly it is to our advantage to have a basic foundation in the
methods associated with libraries. Any disassembled binary will have artifacts that reflect the library file
representation. It is therefore important to the reverse engineer to have insight into this representation.
There are two distinct types of library files and it isimportant that any disassembler we decide to use can
recognize the difference and produce a disassembly that makes sense.

Within any higher level programming language there are many useful predefined routines, or
functions, that are used repeatedly within the programming environment. To improve modularity and
reusability one is able to group these commonly used functions into files called libraries. As we demon-
strated in the previous chapter most, if not all, our dangerous C functions reside within these libraries. A
library contains a set of object files used to implement subroutines and functions that in turn can be linked
either statically or dynamically with other object files to produce a complete executable program. Static
library files are linked at compile time with user defined routines (object files) to build complete execut-
able programs or libraries can be linked dynamically at run time.

When a static library is referenced it is included during program linking. At compile time the
linker makes a pass through the library file then adds all the code and data corresponding to the symbols
used in the source program. Therefore whenever the linker includes a static library in a program, it copies
data from the library to the target program where it remains as part of the executable image. Static librar-
ies are easy to create and implement, but they come at a cost with a number of issues associated with
resource utilization and software maintenance. Whenever we copy the contents of a static library into the

target program it wastes memory and disk space. For example, if a copy of the C library was included in

80
every executable on a system the resident disk space of these programs would increase dramatically, and
when active, they would each store their copies of the library functions within system memory, a consid-
erable waste of resource. As far as software maintenance is concerned, whenever a change to a static
library is required, everything linked using that library must be rebuilt in order for the changes to propa-
gate through all released code.

Current practice has greatly reduced the maintenance and resource problems of static libraries.
This is accomplished by using shared libraries or dynamic link libraries (DLLS). The main difference
between static and dynamically linked librariesis that using dynamically linked libraries delays the actual
task of linking to runtime, where it is accomplished by a dynamic linker-loader. Using this technique, a
program and its libraries remain as separate entities until the program actually runs. This means that if an
error, such as a buffer overflow flaw, is found in a commonly used library, the dll can be corrected then
substituted for the original one and applications that formerly exhibited the flaw will be repaired without
the need to re-compile and re-link applications referring to the library in question. In addition, system
level optimizations are possible. If many programs are running and a large portion of them include the
same library (e.g., the C library for example), the operating system can then load a single instance of the
library's instructions into physical memory. This significantly reduces the use of memory resources and

improves overall system performance.

5.2.2 Loading

All high-level language programs are composed of one or more subroutines and are referred to as
user subroutines. The corresponding binary program is composed of al the user subroutines, any library
routines that were called by the user program, and any other subroutines required to provide support for
the compiler and linked in by the linker at run-time. When a program that is linked with shared libraries
runs, program execution does not begin immediately with that program's first statement. Instead, the oper-
ating system loads the required environment that includes execution of the dynamic linker. The dynamic
linker then scans the list of library names embedded within the executable.

The general format of the binary image of a program is shown in Figure 17. The execution of a
binary file at run time can be summarized as follows:

« The program begins by calling the compiler start-up subroutines that create the environment

for the compiler.

¢ Next the subroutine for the user's main program executes, which invokes library routines
linked in by the linker.

« Execution is finalized by a series of compiler subroutines that restore the original state of the
machine before program termination.

81

Figure 17: General Format of a Binary Program

start-up code

user program
(including library
subroutines)

exit code

5.3 A Unique Executable File Format-Win32 PE

We are concerned with the type of programming flaws that manifest themselves as a buffer over-
flow. In addition we are concerned with third party programs and applications that operate within the
modern enterprise environment. For this reason we look at with special interest, the family of software
products that surround the Windows operating system. Common to these products is the Win32 portable
executable file (PE) format. When the reverse engineer analyzes a Win32 disassembly a general under-

standing of the PE format is important.

5.3.1 PE FileBackground

Immediately prior to the PC's acceptance as ‘the’ enterprise computing tool, the architecture
commonly used across industry were minicomputers or mainframes that used VAX VMS or UNIX oper-
ating systems. This is where the expertise was, so it is no secret that when Microsoft came along much of
this heritage technology went into the Windows operating system. When the time came to design Win-
dows NT, it made sense to use existing technology and incorporate previously written and tested toolsin a
effort to minimize things like the OS bootstrap time. The COFF (Common Object File Format) became
the executable and object module format that the heritage technology tools produced. Artifacts of this past
technology can be seen such as things within the COFF as references in octal format. A modern operating
system such as Windows NT has little use for octal references, so while the basic COFF format was a

good as a starting point, it needed to be further extended. As aresult the COFF was updated to reflect cur-

82
rent requirements and ultimately became what is known as the Portable Executable format. This portabil-
ity ismaintained across all implementations of Windows NT on various platforms with x86, MIPS, Alpha,

and so on al using the same executable format.

5.3.2 PE FileLayout

There are afew concepts which are fundamental to the layout and design of a PE file. We can use
the term “modul€e” to define all the things that are loaded into memory when one runs a executable file or
aDLL. These ‘things include the code and data that the program uses directly as well as the al the data

structures that are used by Windows to determine where in memory the code and date are to be located.

5.3.2.1 PEFile Header

These data structures are defined in the Win32 PE header file. Common with all other executable
file formats, the PE file has, at areserved location, a collection of fields that describe the appearance of the
rest of the file. Thisis known as the header and the information it contains includes the sizes and locations
of the code and data areas, the initial stack size, the type operating system the file isintended for and other
pieces of information that are vital to the loading and execution of the module.

Counterintuitively, the main header isn't located at the very beginning of the file, atrait that the
PE format shares with other Microsoft executable formats. Within atypical PE file the header is preceded
by a MS-DOS stub program which occupies the first few hundred bytes. This small program prints “ This
program cannot be run in MS-DOS mode.” If aWin32 program is run within an environment that doesn't
support Win32, one will see this informative error message. After the Win32 loader maps a PE file in
memory, the first byte of the mapped file is the first byte of this MS-DOS stub.

83
Figure 18: The PE File Format!

Code View Debug Information
COFF Symbols
COFF Line Numbers
1l
reloc
idata
.edata
e Sections
data
Jtext
{
Section Table [array of
> IMAGE_SECTION_
HEADERS]
Data Directory
IMAGE_OPTIONAL _
HEADER
IMAGE_NT_HEADERS
IMAGE FILE HEADER
“PE 1010° PE Signature
‘MZ' MS-DOS Header

Offset0

5.3.2.2 PE File Concepts

A key concept in the understanding of the PE file is that the executable image on disk mirrors
what the module will look like in memory after Windows has loaded it. In other words, the Windows
loader doesn't expend much effort when creating a process from the file on disk. A memory-mapped file
mechanism is used by the loader to map the appropriate sections of the file into the virtual address space.
In general, the PE file is essentially mapped into place in one piece, followed by a small amount of work
to link it up to the associated DLL’s. Ease of loading applies to any PE-format file, including PE-format
DLLs. Once the module has been loaded, it’'s behavior is consistent with any other memory-mapped file.
For Win32, all one needs to know is where in memory the loader mapped the file as all the memory used

by the module for data, code, resources, import tables, export tables, and other required modul e data struc-

1. From: “Peering Inside the PE: A Tour of the Win32 Portable Executable File Format.”; Matt
Pietrek; March 1994

84
turesisin one contiguous block. By following pointers that are stored as part of the image, one can easily
find al the various pieces of the module.

A second concept one should be acquainted with isthe Relative Virtual Address (RVA). Many of
the fields within PE files are given in terms of RVAs. An RVA is nothing more than the offset of some
item relative to where in memory the file is mapped. As an example, if the loader maps a PE file into
memory starting at address 0x20000 within virtual address space and a certain table within the image
starts at address 0x20464, then the table's RVA is given as 0x464. Conversely, simply add the RV A to the
modules base address to convert an RVA into a usable pointer. With this concept in mind, one can appre-
ciate the importance of the base address or the starting address of a memory-mapped EXE or DLL in
Win32.

The final concept that one should be familiar with when working with PE filesis sections. A sec-
tion within a PE file can be considered as equivalent to the resources or a segment in an 16-hit file. Sec-
tions can contain either data or code. Sections are blocks of contiguous memory and unlike segments have
no size constraints. Some sections contain data or code that your program declared for direct use, while
other data sections are created by the linker working with libraries, and contain information necessary for

use by the operating system.

5.3.2.3 Sections

The content of the PE file that we are most concerned with is divided into blocks called sections.
The PE file section represents the code and/or the data representation. The representation for code is just
code, however there are multiple representations for data. When one considers data one usually thinks in
terms of read/write program data (such as global variables). Within the PE file there are other types of data
as well which support the Win32 environment. The other types of data found in the PE sections include
resources, and relocations as well as the APl import and export tables. Common in-memory attributes are
associated with each section and include not only basic read/write or read-only attributes but whether the
data located within the section is shared between all processes that use the executable. In general all code
or data within a section shares a common logical relationship and there are usually at least two sections,

one for code the other for data, within a PE file.

5.3.2.4 Offsets and Alignment

Aswe will be analyzing disassembled PE files we must have a knowledge on how the file as well
as the code and data sections are loaded and aligned in memory. The following represents a very simpli-

fied summarization of the loading of a PE file into memory that is appropriate for our discussion.

85

* When the PE file is invoked, the PE |oader first scans the DOS MZ header for the offset value
of the PE header. When found, it jumps to the PE header.

¢ The PE loader then checks to verify that the PE header is valid. If so, it jumps to the end of the
header.

» The section table immediately follows the PE header. The PE header scans the information
associated with the sections which are mapped into memory using file mapping. It also assigns
to each section the attributes that are specified in the section table.

« After the memory mapping of the PE file is complete, the PE loader works elements such as
the import table that are associated with the logical portions of the PE file.

The PE file header specifies two values associated with alignment of PE file sections, one value
within the disk file and the other value within memory. It isimportant to note that each of these values can
differ. The base of each section starts at an offset that is a given multiple of the alignment value. As an
example, in the PE file, atypical alignment value would be 0x200. Therefore, every section mapped into
memory starts at a file offset that's a multiple of 0x200. In addition, every section mapped into memory
will always start on at least a page boundary. In other words, when a PE section is mapped into memory,
thefirst byte of each section corresponds to a memory page. When considering the x86 architecture, pages
arealigned at 4KB boundaries.

The reverse engineer is most concerned with the alignment and offset of the .text and .data sec-
tions of the PE file. The .text section is located at offset 0x400 within the PE file and will be located
0x1000 bytes above the KERNEL 32 load address in memory. The .data section is located at file offset
0x74C00 and will be aligned 0x76000 bytes above the KERNEL 32 load address in memory.

The preceding discussion can not, by any sense of the imagination, be seen as complete nor can it
convey the true depth of the subject itself. It was meant to provide the minimal background in the format
and behavior of the executable files that we will be working with. A wealth of knowledge exists on this
subject as represented by a rich set of reports, articles and books that all await the more adventurous
reader.

54 ReverseEngineering

Reverse engineering of software systems has been defined as the analysis of a subject system to
identify the system’s components and their interrelationships, and to create a representation of the system
in another form or at a higher level of abstraction [63]. The aim of reverse engineering of software sys-
temsisto gain alevel of understanding of the system and its structure for the purposes, in the broad sense
of the word, of maintenance. We use the term broadly because maintenance in the context of reverse engi-
neering has meant everything from documenting legacy systems and patching bugs in existing programs

to cracking copy protection schemes, and outright intellectual proprietary theft. The case of software

86
reverse engineering is unlike the case of hardware reverse engineering where the system is disassembled
and analyzed in a effort to make a duplicate copy of it. Most of the reverse engineering environments
reported in the literature either concentrate on the removal of software copy protection, with the genera-
tion of graphical representations, the recovery of high-level specifications based on missing original high-
level source code or design documentation.

In thisthesis, we present a partially automated reverse engineering environment for the recovery
of targeted information from binary code (i.e. executable or application code)[70][71][72]. To provide a
workable reverse engineering environment we are mainly concerned with disassembly technology and the
types of tools that are available. In general a disassembler is a program that reads an executable program
(binary file) and translates it into an equivalent assembler program.

When reverse engineering a binary file, the program to be translated is any arbitrary program
compiled from any high-level language, in our case C. In broad terms, the disassembler parses the binary
image of the program then translates it to assembler or some representation that is equivalent. Almost all

disassemblers follow a conventional approach:

¢ Machine instructions are parsed starting at the entry point of the program then following all
paths from this point.

* Whenever atransfer of control isreached, the new path isfollowed until an end of path instruc-
tion (e.g. areturn of subroutine) is met.

» Thetarget address of indirect and indexed jumps or callsis, in many times, hard to determine
in astatic disassembler. Thisis because these instructions do not provide compl ete information
on the range of possible values at such an instruction. In these cases backwards slicing [64][65]
analysis is sometimes capable of determining the range of values available at the indirect or
indexed instruction. Using this method it possible to continue parsing instructions along that
path(s).

5.4.1 Software Reverse Engineering - A Dispiriting Adventure

Reverse engineering within the traditional engineering disciplines involves end products which
were designed under the limitations of the physical world. Within these disciplines, real world behavior is
described by the language of physics that includes basic dimensions (length, time, charge, and mass) that
are applied to a generic rule set to describe the physical universe. By speciaizing the equations used to
calculate the concepts associated with natural phenomena, engineers, in the traditional sense, are able to
design end products for real world application.These engineers are able to face the disorder of the real
world without changing the concepts themselves. The primary means by which this is accomplished is a
principled method of understanding when close enough is good enough in approximating real world

events. In effect when we attempt to reverse engineer a traditional product we have formal, well under-

87
stood concepts that act as boundaries to our set of possible solutions. In other words, we are constrained

by the laws of physics.

5.4.1.1 The Human Element

Software engineering is entirely a human activity. A program is created and intimately associated
with the cognitive abstractions used by the programmer and can be defined in terms of behavioral charac-
teristics.When dealing with cognitive or behavioral activities we have no physical laws that act as a
boundary to our set of possible solutions. In our higher level programming languages we have made an
attempt to add a universal understanding to the semantics of the language itself but this is not enough to
describe the complexity issues that one will encounter when attempting the reverse engineering of soft-
ware. Thisis aprimary reason that methods of internal program documentation have been devel oped and
have gained wide acceptance. The source code, depending on the language, can communicate the compu-
tational intent to alarge extent and more importantly flow of execution but it cannot communicate the pre-
cise conceptua intent. In addition it is very poor at telling us how conceptual intent is related to the
objectives of the software system in the context of a domain. If we remove the human element from the
system, the static source code of a given higher level language without internal documentation does not
communicate the programmers intent in a straight forward manner to other human beings.

With abinary executable the picture is even bleaker. With abinary file our only option in reverse
engineering the product is to disassemble the file into assembly language instructions. In this situation the
program has to be understood in the absence of the person who has created it and with no documentation
internal or semantic. It gets worse, in the absence of any semantic information we are unable to make any
assumptions associated with flow of execution. Thisisthe fundamental reason why understanding a disas-
sembled binary fileis so difficult. Of course other reasons why reverse engineering in general is so diffi-
cult include large size, enormous complexity and the fact that product design documentation is either

inadequate, non-existing or both.

54.2 AnalysisMethodsin Binary Disassembly

When considering binary disassembly in order to recover targeted high level programming infor-
mation one should have aleast a nominal understanding of the way disassemblers work. Currently avail-
able tools used for binary disassembly utilize the following techniques to recover information and present

it in ahuman understandable form.

88
5.4.2.1 Analysis of Data Flow

Analysis of data flow is used to recover high-level language statements and expressions (other
than so-called control transfer statements), function return values, actual parameters, and to remove any
hardware references from the assembly code, such as pipeline references, stack references and registers.
Thisanalysis aims at techniques that are machine-independent for solving this problem and is used prima-

rily on CISC and RISC architectures.

5.4.2.2 Analysis of Control Flow

Analysis of control flow is used to recover control flow structure information, such as condi-
tional statements and loops, as well astheir level of nesting. Recovery of the control structure information
in a program is a problem associated with graph theory. In assembly code, control transfer is performed
using conditional or unconditional jumps, procedure calls and returns. It isaknown fact that potentially all
jumps (conditional and unconditional) can be implemented by goto statements. This is one of the main
reasons we moved away from BASIC and FORTRAN towards C++ and JAVA as a high level program-
ming language. With control flow analysis we can determine whether such jumps are redundant, induce a
loop, or will require goto statements. The aim is to minimize the number of goto statements thereby reduc-
ing the paths used throughout the code without increasing the complexity of the program. Analysis of flow

control actsto improve the quality of the generated code.

5.4.2.3 Analysis of Type

Analysis of type analysisis used to recover high-level type information for function return types,
actual and formal parameter types, and variables. Type analysis deals specifically with the recovery of the
datatype information of agiven high level language. Thisistraditionally an areathat has been studied and
reported in the literature as being associated with the functional and untyped object-oriented languages. In
these languages, the data type associated with a variable is inferred based on the variables context of use.
It is important to note that type analysis has not been studied to any great degree within the context of
translations from assembly code to a higher level language. It can be demonstrated that it is clearly desir-
able to regenerate high level language

code that makes use of base data types (e.g. byte, char, integer, and real) in the process. This can
be extended to the more complex compound types (e.g.array, structure or record, and class) and is even
more important when one considers regeneration of assembly to the object oriented languages. As we will
demonstrate, this represents a weakness in our proposed method of binary disassembly. Many applications
store datain large structures which are passed around between functions. The information about the layout

of these structuresislost during the compilation.

89
5.4.3 Limitations

The main problem one must face with binary disassembly derives from the representation of
instructions (code) and data in the Von Neumann architecture: they are indistinguishable. Thus, instruc-
tions can be located at random in between data. Thisis especially a concern with the many implementa-
tions of case or indexed jump tables. The nature of this representation along with self modifying code
practices and idioms make it hard to disassemble an executable program without error. It is interesting to
note that the separation of data and instructions is a problem that is unsolvable in general. In summary, if
one could describe an algorithm to determine such separation, this algorithm would also solve the halting
problem [67]. A second problem is the large amount of subroutines introduced by the inherent mecha-
nisms of the compiler and the linker. These subroutines are bound in the executable program at compile
time. The compiler produces start-up subroutines that establish the execution environment, and runtime
support routines that are produced whenever required. These routines are usually written in assembler and
in most cases cannot be translated into a higher-level representation. A third problem lies within the oper-
ating system itself. Some operating systems, such as Windows NT, have library routines that are main-
tained in separate files and linked dynamically at run time. This approach can help the reverse engineer as
the library routines are referenced through a dynamic linkage table within the executable image. In operat-
ing systems that do not provide this type of mechanism to share libraries, executable programs are self-
contained (statically linked) and library routines are bound into each executable image. Statically linked
library routines are written in either the language the compiler was written in or assembler. This has major
implications for the reverse engineer as the executable program contains not only the routines written by
the programmer, but all the other static library routines linked in by the linker.

A thread common to every high level language program is the great number of standard library
functions that are used, sometimes even up to 95% of all the functions called are standard functions. To
givethe reader afeel for the magnitude of this problem, the ubiquitous “hello world” program compiledin

Borland C generates:

e Library functions - 58

 Function main() - 1

When one disassembl es this example, one is only interested in the main() subroutine and not the
other 58 or so subroutines. Of course, thisexampleisan artificial onebut it isafact that real life programs
contain 50% library functions on average. Thisisthe primary reason that the reverse engineer who uses a

disassembler isforced to waste better than half of histime isolating those library functions.

90
55 Legal Considerations

Several questions have been raised in the last years regarding the legality of reverse engineering.
A debate between supporters of reverse engineering who claim fair competition is possible with the use of
decompilation tools, and the opponents of reverse engineering who claim copyright isinfringed by reverse
engineering, is currently being held; in fact, this debate has been reported in the literature since 1984 [68].
Thelaw in different countries is being modified to determine in which cases reverse engineering is lawful.
At present, commercial software is being sold with software agreements that ban the user from disassem-
bling or reverse engineering the product. For example, part of the End-User License Agreement (EULA)

for Microsoft Office 2000 reads like this:

“ Limitations on Reverse Engineering, Decompilation, and Disassem-
bly. You may not reverse engineer, decompile, or disassemble the
SOFTWARE PRODUCT, except and only to the extent that such activ-
ity is expressly permitted by applicable law notwithstanding this limi-
tation” .

The final form of the Digital Millennium Copyright Act (DMCA) includes exceptions to copy-

right protections, such asthe EULA, for the following reasons:

» Reverse engineering for interoperability

¢ Encryption research

» Security testing

It is not the purpose of this chapter to debate the legal implications of reverse engineering. This

topic is not further covered in this thesis.

56 Recovery of High Level Abstractions From the Binary

Reverse engineering has its origins within the established engineering disciplines. When one
considers the traditional model of reverse engineering a picture of the analysis of hardware for commer-
cial or military advantage emerges. The concept behind reverse engineering is to deduce the original
design decisions from the end product. This is often performed with little or no additional knowledge
about the design requirements, design process, and manufacturing techniques involved in the original pro-
duction.

The same approach can be applied to proprietary software systems. That is, without prior insight
into the design process, the end product, in our case a binary executable, can be analyzed in order to cap-
ture higher level design of the product. As with the traditional model, software reverse engineering can
also be used for industrial or defense ends. It can also be used as atool to recover incorrect and incomplete

artifacts within the original source or recover otherwise unavailable documentation. Broadly speaking,

91
software reverse engineering is afield of research that is devoted to developing methodologies and tools
to aid in the understanding and management of released software systems. We are interested in the more
practical aspects of software reverse engineering in that we wish to reverse engineer targeted products to
recover atargeted defect.

The recovery of high-level abstractions from machine and assembly code is afield of study that
has not been widely researched in recent years. This is partly due to the complexity of the problem and
partly due to the negative connotation of software disassembly in general. Most of the techniques avail-
able in this field are widely published as tutorials associated with the cracking of software copy protec-
tion.

In the context of identifying buffer overflows, we have demonstrated that many organizations
rely on proprietary closed source software. Enterprise class applications and operating systems are being
delivered with little apparent review of the source code for security vulnerabilities. The end users have no
access to the source code for their independent assessment or security audit. These facts point to the need
for research into ways of translating machine and assembly code to the high-level language constructs
which lead to security vulnerabilities. Work associated with the reassembling of data structures has been
performed Halvar Flake one of the underground experts involved with binary auditing techniques[57].

Any reverse engineering effort typically consists of gathering the best understanding of the target
software system that is possible. It starts with existing information such as marketing information, trial or
beta copies of the software, user manuals, on-line help and news group postings. Depending on the copy-
right or security concerns, where any detailed design information is closely held, social engineering tech-
niques may become an option.

Although many sources of information may be available, the actual code, the ultimate description
of the current state of the systemis, for al intents and purposes, unavailable. Hence the crux of the reverse
engineering process is the problem of program understanding without the program. A difficult but not

hopeless situation.

Chapter 6

A Novel Approach to The Discovery of Buffer Overflowsin aBinary Image

What | can not create | can not under stand.
- Richard Feynman
6.1 Introduction

In this chapter | describe the implementation of anovel method of |ocating an instance of a buffer
overflow within a binary image. As the binary image, or executable, represents the deliverable product
from the software vendor to the consumer, the technique presented is applicable to all third party propri-
etary software sold as a executable binary file.

Asdiscussed in chapter 1, the software environment at the enterprise level is dominated by x86
architectures running Microsoft products. For this reason | have implemented the technique using a Win-
dows OS platform. This allows for extension across most all applications running within the Windows
environment.

The approach to the problem was a simple one and was grounded on the following observation.
That is, al buffers that are created on the stack have a unique sequence of operations that create the stack
space and as a result can be identified by this unique signature. In addition, all calls to library functions
will have a unique signature. This includes the set of so-called “dangerous C functions’ that were dis-
cussed in chapter 4. These signatures, represented as a series of assembly instructions, are created at com-
pile time and therefore become a part of the binary image. By disassembling the executable file we
propose that one might be able to locate certain types of buffer overflow vulnerabilities.

Based on the discussions in the previous chapters, the following goals have been identified to

allow us to evaluate the success of our technique.

 Fast, asthe original premise was to find a single instance of a buffer overflow vulnerability as
rapidly as possible.

» The accurate identification of potential overflow conditions while rejecting false positives
» Demonstrate scalability from simple test programs to enterprise class software applications.

6.2 Tools

The tools we used in this thesis included compilers, disassemblers and text editors. We will cap-

ture the version used as well as a description to allow for an exact record of the configuration used.

92

93
6.2.1 Disassembler

This tool was the key in enabling the entire effort behind this thesis and as such deserves special
attention. In general, adisassembler will take a binary executable file as an input then convert it into read-
able assembly language. The better tools will aso include additional information like cross-references for
subroutine calls and jumps. String literals, that exist within the high level program, will be shown as part
of the output. The best disassemblers will also maintain a reference listing of API calls (e.g. the Win32
API associated with Windows). Whenever the application calls one of the native API routines, it will be
displayed along with the right parameters that are passed to the routine. The output of agood disassembler
will make our life much easier by giving us enough information to allow for the retrieval of program logic.

Popular disassemblers include:

¢ Wdasm32 Windows Disassembler: Thisis a shareware class Windows program for disassem-
bling Win32 programs. It is a decent disassembler that is easier to use than most and this fea-
ture makes it a good choice for beginners. The distribution includes a program called hilevel.
This program can transform the assembler output into a structured format that includes defini-
tion of local variables and procedures. The output is what you see is what you get which pre-
sents a severe limitation for our purposes.

» Sourcer by V Communications: Thisis commercial program used for disassembling x86 bina-
ries (PE, NE and EXE). Sourcer automatically detects code and data fragments and provides
fairly good output.

These are characteristic of the class of disassemblersin general. The output is entirely dependent
on the various algorithms internal to the disassembler and represents a best guess analysis of the binary

image.

6.2.1.1 IDA (Interactive Disassembler) Pro

IDA, written by Ilfak Guilfanov, is a commercial program used for disassembling a wide selec-
tion of file types supporting the architectures of over 30 microprocessors. Supported binary file formats
include: EXE, PE, COFF, NE, LX, LE, and OMF. When it comes to reverse engineering a binary or
library file, IDA Pro isthe most advanced tool available to the consumer. IDA has seen widespread use by
intelligence agencies, security analysts, hackers as well as by Fortune 500 companies.

There are several reasons why this tool has enabled this research. IDA’s internal FLIRT (Fast
Library ldentification and Recognition Technology) module identifies statically linked library functions
from most of the common compilers. In chapter 5 we discussed the difference between static and dynamic
library calls and therefore recognize the significance of this feature. This means that all of our dangerous
function calls will be identified when statically linked providing a huge savings over hand auditing. IDA
is interactive and allows the user, as logic is revealed, to modify elements within the disassembly then

propagate these changes back through the entire disassembled file. In other words, the human isin charge

94
of the disassembly and is able to useintuitive adjustments to the output. IDA includes a powerful scripting
language, similar to C, which will allow us to automate the search for buffer overflow vulnerahilities. In
addition a very effective plug-in interface is available for full fledged C programs. For this thesis we will

be using IDA Pro version 4.17.

6.2.2 Other Tools

The configuration that we used to perform our testing was accomplished on a single stand-alone
machine (Pentium I 400MHz; 128M Ram) running Windows 98 Second edition. A client server relation-
ship was established using Microsoft Personal Web Server 2.0 along with a telnet daemon (Microsoft Tel-
net 1.0). Other tools that were required include:

« A C compiler; Microsoft Developer Studio 97; Visual C++ 5.0

e Text editor, Microsoft Notepad
6.3 Approach

What if it were possible to identify buffer overflow vulnerabilities within a binary image? Where
would this leave you? Y ou would know that the possibility for a buffer overflow existed within the binary
file and little else. For instance, how would you trace it back to a point in the actual running program
where the user provides input, what | call the program entry point? It is possible to trace back through the
disassembly by hand to alook-up table that references commands used within the application itself. This
is what “Barnaby Jack” demonstrated in his paper Win32 Buffer Overflows (Location, Exploitation and
Prevention)[58]. This a tedious process to say the least, with no guarantee of success. The reverse engi-
neer could easily spend several days tracing code through paths leading nowhere. Our original concept
was to find an instance of a buffer overflow vulnerability as fast as possible and a hand audit of a disas-
sembly is not what we had in mind. Lets stop and think for a minute about some of the so-called danger-
ous C functions. We have a disassembler that can identify these calls within the disassembly which is a

great advantage.

95
6.3.1 Theget s() function
The get s() function, if one can find it still being used, will not provide us much in the way of

insight into where in the running application the user input is passed to the function. We can demonstrate

thiswith the following simple program:

/* gets exanple */
#incl ude <stdio. h>

int main()

{
char string [256];
printf ("lInsert your full address: ");
gets (string);
printf ("Your address is: %\n",string);
return O;

get s() sample program

The disassembly really leaves us without clues as to where in the application the user input
would be provided. A target buffer of 256 bytes is pushed onto the stack as var_100 however any other
information as to the context of the function within the running program will require hand auditing of the

disassembly. The disassembly of the get s() sample program is provided below:

add esp, 4

| ea eax, [ebp+var_100] //target buffer 256 bytes
push eax

cal _gets

add esp, 4

Disassembly of get s() function:

6.32 Thestrn*()

The st rn* () family of functions for the most part manipulate the contents of two buffers, a
source and a destination. Poor implementation in the handling of two buffers may result in a security flaw,

however within the disassembly there will be little to point usto aentry point in the program. For example

96
letslook at asimplest r cpy() program. This program copies a source buffer into a destination buffer of

bytes. The example is provided below:

[* strcpy example */
#i ncl ude <stdio. h>
#incl ude <string. h>

int main ()
{
char strl[]="Sanple string";
char str2[40];
char str3[40];
strcpy (str2,strl)
strcpy (str3,"copy successful");
printf ("strl: %\nstr2: %\nstr3: %\ n",strl,str2,str3);
return O;

Simplestrcpy() program.

Again the disassembly really leaves us without clues as to where in the application the user input
would be provided. A target buffer of 256 bytes is pushed onto the stack as var_100 however any other
information as to the context of the function within the running program will require hand auditing of the

disassembly. The disassembly of the st r cpy () program sampleis provided below:

| ea ecx, [ebp+var_10] // source

push ecx ; const char *

| ea edx, [ebp+var_38] //target buffer 40 bytes (destination)
push edx ; char *

call _strcpy

add esp, 8
push of fset aCopySuccessful ; const char * // source string

| ea eax, [ebp+var_60] // target buffer 40 bytes (destination)
push eax ; char *
call _strcpy

add esp, 8

Disassembly of st r cpy() function.

6.3.3 TheFormat Family

When one thinks of the format family one usually thinks of the pri nt f () function which prints

to astream. There also several that print formatted input to memory. Functionssuch as snpri ntf () and

97
vsnprintf () al print formatted input to memory however as they both include strict bounds checking
on the target buffer these really do not have implications associated with buffer overflows. There is one
function that is a member of the format family that prints to memory and has no feature to enforce target
buffer size limitations. That function isthe spri nt f () function, which has seen widespread use. Not
only isthisfunction responsible for many of the buffer overflow security flawsit‘sincorrect use is respon-
sible for the so-called format string security vulnerability. The spri nt f () functionisunique, in that it
isused with astring literal in many cases that, depending on how it is used, provides us with aready made

entry point to the program. The following spri nt f () program demonstrates this characteristic:

[* sprintf exanmple */
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
int main ()

char bufl [50];
char buf 2[25];
printf("Enter a string |l ess than 25 characters: \n");
scanf ("%", buf?2);
if (strlen(buf2)>20) // do not want to overfl ow !
{
printf("Stringlength is greater than 25 characters");
exit(1l);
}

el se

/[1** string literal entry point
sprintf (bufl, "\nThis is our input: % \n", buf2); point

printf ("%lt represents a programentry point\n\n", bufl);

}

return O;

}

Sample sprintf () program.

The disassembly demonstrates the how the string literal is represented along with the format

specifier. This gives asolid clue, in many cases, as to where in the running program the function is called.

98
A target buffer of 50 bytes is pushed onto the stack as var_34 along with the string literal “This is our

input”. The disassembly of the spri nt f () program sampleis provided below:

| ea edx, [ebp+var_50]

push edx

push of fset aThislsQurlinput ; "\nThis is our input: % \n"
| ea eax, [ebp+var_34]

push eax

cal | _sprintf

add esp, 0Ch

Disassembly of spri nt f () function.

With afunction that inherently dangerous and at the same time may provide us with aentry point
for user input to a running application, spri nt f () will be the foundation for the algorithm that we use

to search the binary image.

6.4 Search Algorithm

IDA Pro provides a powerful scripting language, similar to C, that provides over 200 unique

functions appropriate for use within the disassembly environment®. The algorithm we will develop will
utilize this capability. We know that we will be performing our analysis based on the spri ntf () func-
tion. Asareview, sinceacall toa spri ntf () function can expand an arbitrary string using the “%s’
format variable, any call to this function which expands dynamic user input datainto a buffer of fixed size
shall be considered suspicious. With thisin mind we will want to verify that the call to spri ntf () con-
tainsa“%s’ format character and that it targets a static buffer on the stack. In addition we want to identify
the target buffer by name and provide the string literal as output. The algorithm will be constructed in (4)

modules or user defined functions:

1) A main program which accepts user input in the form of either a direct address to the
sprintf() cal or asaindirect address to the spri ntf () call then calls the analysis
module passing it the address value.

2) An analysis function which calls the return value module then cleans up the string argu-
ments returned by the value module as an offset address of our string literal. It calls the
string module that returns the string literal then scans the string for the presence of a “%s”
format character and prints output.

3) A return value function which returns the values to the analysis module that have been
pushed onto the stack for use by thespri nt f () function. Of particular interest isthe value
at the n PUSH before the call asit represents the target buffer.

1. A listing of the functions used in the search algorithm is provided in Appendix D.

99

4) A string function which builds our string literal a byte at atime and returns it as a argument
to the analysis module.

Figure 19: Program Layout and Data Passing

MAIN |
offset address,
address int=n
I<— RETURN
I ANALYSIS
STRING string VALUE
literal argum ent

values

C_ OUTPUT D

6.41 Main

The main function will accept user input in the form of an addressof aspri ntf () call. A call
may either be direct, as will always be the case with statically linked library calls, or indirect. A indirect
call results from referencing a dynamically linked library (i.e. msvert.dll) for the function code. This indi-
rect call is referenced within the i . dat a segment of the PE file and contains all cross references to the
call within the. t ext or code segment of the PE file. For this reason, we need the capability to run our
analysis using either of the direct or indirect calls. To accomplish this we will use two loops, one for a
direct call and one for aindirect call. For the direct call to spri ntf () wewill simply pass that address
to our Get Anal ysi s() function. For the indirect call we will loop through all the references to
sprintf () within the code section of the program, returning each of these values to the Get Anal y-

si s() function. Both loops will terminate when the address value goes to -1 (FFFFFFFF).

100
Figure 20: Program Flow: Mai n()

(:j> user input ‘i:>

~t

Direct Calll oop

false true

true

if address call

=="call” Analysis(address)
GetAnalysis() I

while address
\=FFFFFFFE

Address
= FFFFFFFF

Indirect Call Loop

get indirect address

while address
\=FFFFFFFE

call
Analysis(address)

if address
=="call”

—t

get indirect address

GetAnalysis() I

When performing an analysis of a given program or application the user must find all occur-

rences of the spri nt f () function by address. To accomplish this the user selects from IDA’s tool bar
(search -->text) and enters spri ntf ().

The main function will rely heavily on IDA’s built in cross referencing functions or xrefs. These
functions are particularly useful when traversing either up or down in address space within the execution
stack from a known point of reference. For the interested reader, alisting of all xref functions has been
provided in appendix D. Special attention should be given to the use of IDA’ s xref functionsto traverse up
and down the assembly listing in the context of the sprint_scan.idc program. In addition for direct calls,

we use the Rnext functionto forcether ef er ence variable to -1 (FFFFFFFF) to exit the first loop. A

similar technique is used with the Dnext B function to exit the second loop for all indirect calls.

heavily commented code listing for main() is presented below.

101
The

static main()

{
auto SprintfAddr, reference; // assgnvariables
SprintfAddr = AskAddr(-1, "Enter address:"); // askuser for sprintf() address
reference = (SprintfAddr); // assignpointof referenceto sprintf() address

IP*** enter first loop for direct call to sprintf() ***//
whil e(reference != -1) //whileour addressisnot FFFFFFFF
{
if(CGetMen(reference) == "call") //isthemnemonic of theinstruction a"cal"?
Get Anal ysi s(reference); /ifitisacal, itisadirect reference; passreference addressto GetAndysis
reference = Rnext(SprintfAddr, reference); // makeany reference address FFFFFFFF exiting first
loop

}
reference = DfirstB(SprintfAddr); // getfirstindirect referenceto sprintf() call

1I*** enter second loop for indirect call to sprintf() ***//
while(reference = -1)

i f (Get Mhen{reference) == "call") //isthemnemonic of theinstruction a"cal"?
Get Anal ysi s(reference); /ifitisacal,itisaindirect reference; pass reference addressto GetAnalysis
reference = DnextB(SprintfAddr, reference); // do thisuntl FFFFFFFF

Program Listing for Mai n()

6.4.2 GetAnalysis

The Get Anal ysi s() function can be viewed as a central switchboard, calling then passing

data as arguments to other functions. The Get Anal ysi s() function isresponsible for getting our target

buffer value by address, retrieving our string literal in addition to cleaning up our arguments and printing

our output. The Get Anal ysi s() function operates through the use of conditional statements as shown

in the following flow chart.

102
Figure 21: Program Flow: Get Anal ysi s()

Linear address
from main()

[
| address, n=1 L

[targetBuff GetReturnValue()
operand value
L
address, n=2
=1 GetReturnValue()
IString .

operand value J

true

if offset in string remove “offset:”

—
-

get offset location
address

| offset address
of string —

—
—

get literal string
GetString ()

—
—

string literal

If
“%s” format
character

true if
stack
variable

true

Print:
Overflow?

The code listing for Get Anal ysi s(), presented below, utilizes several of IDA’s string related
commands such as strl en,strstr and substr. First we call the Get Ret ur nVal ue() function
and passit an address and ainteger value. Get Ret ur nVal ue() then returns the first two arguments to
thesprintf () cal. That is, the value pushed into our target buffer and the pushed offset value of our
string literal. Using a substring search combined with a conditional we check to seeif the word “offset” is
part of our second pushed argument. If it is then we use the substring command to remove it. This second

argument is now in aformat to return a location address of the string literal itself. We then call the Get -

103
String() function with the offset address of the string literal and Get St ri ng() returns the literal
string in character format. A nested conditional then checks, first for the presence of the “%s’ format char-
acter and if it exists, for the existence of “var_" as a stack buffer value which indicates fixed size. If both
conditions are met we have the potential for a buffer overflow condition by expanding string input with
the “%s" format character into a stack buffer of fixed size. Our output information is printed within IDA’s
output screen and utilizes format charactersin the Message command whose methods are similar to that

of printf().

static Get Anal ysi s(push)
{

auto literalString, literal StrAddr, targetBuffer; //assignvaiables

target Buf fer = Get ReturnVal ue(push, 1); // passref address + interger vaue (1) to GetReturnValue
literal String = GetReturnVal ue(push, 2); //passref address+ interger value (2) to GetReturnVaue

if(strstr(literal String, "offset") !=-1) //doesour litera string contain the word “offset:”?
literal String = substr(literal String, 7, -1); //ifso, removeit

literal StrAddr = LocByNane(literal String); //gettheaddressof our literal string
literal String = GetString(literal StrAddr); // passtheaddressof our literal string to GetString

/l¥** if conditions are met, print warning
if(strstr(literal String, "9%") !=-1) //doesour literal string containa“%s’ format character
if(strstr(targetBuffer, "var_") !=-1) //ifso,istheassociated stack buffer variable in length
Message("\n% x --> POTENTI AL OVERFLOW? Target Buffer is: " + targetBuffer + "
String Literal is: \"%\"\n\n\n", push, literal String);

Program Listing for Get Anal ysi s()
6.4.3 GetReturnValue

We are interested in the value that is pushed onto the stack immediately prior to the call to
sprintf () asthisisthe value associated with the target buffer. The pushed value will be either in the
form of a pushed register or a pushed offset value. We are also interested in the other arguments that are
pushed onto the stack in preparation of the call to sprintf (). In Get Ret urnVal ue() weretrieve

the n!" PUSH before the call using alooping structure. If aregister is pushed, we trace back up through the
disassembly to find where the register was last accessed and return that value. If an immediate offset was
pushed we return that value. This accomplished with a conditional statement and another looping structure

as exhibited in the following figure.

104
Figure 22: Program Flow: Get Ret ur nVal ue()

[
—

address, intn
from GetAnalysis

Get n"push before call

Get pushed value

is aregister
pushed?

return 1% operand
to GetAnalysis

store T operand in
temporary register

|

| O

get previous
address

-«

Get pushed reqister value

—
-

1% operand =

to tmp reg get next address

return 2°
operand
to GetAnalysis

The code listing for Get Ret ur nVal ue() demonstrates the use of two while loops and a con-

ditional statement. The first loop retrieves the ni» PUSH before the call using the integer value n=1 passed
to Get Ret ur nVal ue() by Get Anal ysi s(). When the first PUSH is located, n is decremented and

105
goes to zero causing the loop to be terminated. A conditional checks to see if the first operand of the
PUSH instruction is of type “register”. If the operand represents a register, we create temporary storage to
hold the identity of the pushed register. We then enter awhile loop that traces upward through each line of
the disassembly until we find the line that last accessed our register. This accomplished by aline by line
comparison with the stored register identity until amatch occurs. When we find a match we return the text

representation of the second operand, which is the value stored in the register, to Get Anal ysi s() . If

the value of the n" PUSH is not a register, we simply return the immediate value or the text representation

of the first operand.

static Get Ret ur nVal ue(push, n)
{

auto tenporaryRegi ster; /initidizevariables

IP#** get ri" push before call

while(n > 0)
{
push = RfirstB(push);
i f (Get Mhen(push) == "push")
n =n-1;

I*** is aregister pushed
if(GetOpType(push, 0) == 1) //1==aGetOpTyperegister
{

t enpor aryRegi ster = Get Qond(push, 0); // createstorageto hold the pushed register (i.e. eax,esi)
push = RfirstB(push); //getpreviousinstruction

II*** while the pushed operand != our pushed register, keep looking until it does
whi | e(Get Opnd(push, 0) != tenporaryRegister)
push = RfirstB(push); //getnextpreviousinstruction
return(Get Qond(push, 1)); // returnthe value pushed into the register

el se return(Get Qnd(push, 0)); //if nth pushwasanimmediate offset return it

Program Listing for Get Ret ur nVal ue()
6.4.4 GetString

IDA does not include a function for string reassembly. For this reason we must construct a func-
tion that will reconstruct a string a byte at atime. The Get St ri ng() function performs this task after
being passed the offset address of the string literal. The function creates temporary storage then reassem-
bles the string a byte at atime using alooping structure until anull or OXFF value byte is reached. A flow-

chart for Get Stri ng() follows.

106
Figure 23: Program Flow: Get Stri ng()

offset address
of string

literal from

GetAnalysis

create empty
temp string

|
L get a byte]

—

~
while there are true format our byte
chars between into string temp
0 & FE

getabyte+ 1
in position
J
~
get a byte
Y g

return literal
string

The following code for Get St ri ng() is fairly straight forward. Get Stri ng() is called

within Get Anal ysi s() and is passed the offset address of the literal string. The function first creates a
empty string to receive the characters a byte at a time. After the first byte is read the function enters a
while loop and continues reading the string a byte at a time appending each character to our temporary
string. When we reach anull or OxFF byte the loop exits and the function returns the literal string to Get -

Anal ysi s().

107

static Get String(ourString)
{

auto tenporaryString, character; //assgnvaidles
tenporaryString = ""; //cresteempty stri
character = Byte(our String); //getthel bytea theoffset address

[I*** whileloop to reed acharacter & atime and gopend each to our empty string
whi | e((character != 0)& character != OxFF)) //reedwhilewehavebytestoread

{
temporaryString = forn{"%9%", tenporaryString, character); //formatourempty string
ourString = ourstring + 1; //movetothenext postion
character = Byte(ourString); //getthenextbyte
}

return(tenporaryString); /returntheliterd stringto GetAndyss()

Program Listing for Get Stri ng()
6.45 Summary

We have developed a algorithm to locate potential buffer overflow vulnerabilities using a dan-
gerous function call, spri nt f (), within the context of the IDA disassembler. IDA provides a powerful
scripting language which we have used along with our algorithm to develop a program?, sprintf_scan.idc,
to search a binary image for certain signatures of potentially dangerous spri ntf () coding constructs
within the disassembly. Now that we have a program, the next step will be the development of a small,

simple test program to demonstrate how well the scanning technique performs.

6.5 Initial Testing

In order to assess the performance of our binary scanning technique we require asimple program
with a known flaw in the use of the spri nt f () function. This flaw should include a static buffer of
fixed size located on the stack and a string literal combined with the format character “%s” that expands
user input into a string. Thiswill validate the two key features of our method:

1) Finding the value of the fixed buffer on the stack
2) Identification of the string literal for use as a program entry point.

To have atechnique that performs well as measured by what it can identify is not enough. The
technique should also be measured by what it does not identify as being suspicious. That is, there should

be minimal false positives when the spri nt f () call isused in asafe manner.

1. For acomplete listing of the program reference Appendix E.

108
6.5.1 sprintf_crasher.c

Our test program? uses (3) callsto spri nt f (), two are considered safe while the third is used
in a manner that causes a buffer overflow from excessive user input. This is a command line application
that scans user input into buffers of different sizes. Thefirst call to spri nt f () receives the scanned user
input of up to 100 character into x.bufLarge a [100] character buffer. By using the format character
“.3%s” only the first (3) characters are read into x.bufSmall a [60] character buffer. This represents the
safe use of the spri nt f () function. In the second call tospri ntf (), a(3) character string literal is
read directly into newBuf, a[25] character buffer. This also represents safe coding practice.

Inthelast call tosprintf (), x.bufLarge a[100] character buffer, receives up to 100 charac-
ters of user input. Thisinput is formatted into bufGlobal, a [50] element buffer, along with the string lit-
eral “Can’t open the following URL for reading? %s” of [42] characters. The format character “%s” will
read every character in x.bufLarge[100] and attempt to write each one to bufGlobal[50]. The
sprint_crasher.c program was compiled using Microsoft Developer Studio 97; Visual C++. The following

discussion will reference figure 24.

Figure 24: Test Program Stack Behavior

Alalale +4 bytesto
overwrite eip
A|lAJALA
+4 bytesto
ALAL T |/ overwrite ebp
/ / plt]t \
+2 bytesto
complete the h ?19
word
n|ijJd]ja
elr r
ol f L
F|]L a
BufGlobal[50]

nlifwl]o
| | Joff

efhjt

nyge o}
) t
njajc])\ /

Ox00€4fdfc

1. The code for sprintf_crasher.c is presented in Appendix F.

109
Asthefirst 42 elements within bufGlobal are already occupied with the string literal it only takes
(8) additional characters to begin overflowing the bufGlobal[50]. We write to memory aword at atime (4

bytes) and in bufGlobal[50] the character at element [50], the 71" character of user input, is in the middle
of a word boundary. User supplied characters 8 & 9 complete the word with character (10) starting the
corruption of the stack base pointer (ebp) causing the program to crash. With (17) user supplied characters
we have completely overwritten the instruction pointer (eip).

Running the program, we first enter a string of (25) capital A’s and see that only (3) of the char-

acters have been copied into memory by thefirst (2) safe spri nt f () functions.

Exhibit 1: Test Program with (2) Safe Spri nt f () returns

wwett JLOAD LARGE BUFFER WITH CHAR STRING *%*+*
11 Large BUFFER Up !!!

wxtsdt LOAD SMALL BUFFER WITH CHAR STRING *+*®*
11 Small BUFFER Up 11!

by =safe spri
e strin

SAFE SPRINTFO) Fl: A maximum of (3) characters in bufsmall:
SAFE SPRINTF(O) #2:0nly (3) A"s 1n newBuf: AAA

III
HI THIS WINICS SERVER SIDE PRDGRM 'HICH ACCCEPTS CLTIENT INFPUT IN III
11 11

III
Enter Internet URL:

We then enter the following URL “http://AAAAAAAAAA”, a string of (17) characters, and
notice that we get the following message:

Exhibit 2: Test Program Page Fault

Program Error

sprint_crasher._exe haz generated errors and will be closed by
windows, vou will heed to restart the program.

An eror log iz being created.

110

The error log shows that both ebp and eip have been over written with capital A’s, (0x41) in

hexadecimal notation.

eax=00000000 ebx=00540000 ecx=00414100
edx=00413f b0 esi =817e6de4 edi =00000000
ei p=41414141 esp=0064f e00 ebp=41414141

Exhibit 3: Test Program Showing String Literal

JDocuments and Settings®, illetl:e"-.,[)esl(l:up'r..‘-,,_

Teets | OAD LARGE BUFFER WITH
11 Large BUFFER Up 11

Teres LOAD SHﬁLL BUFFER WITH CHAR STRING EEEET
1 Small BUFFER Up L]

SAFE SPRINTF() #1: A maximum of (3) characters in bufSmall:
SAFE SPRINTF(Q) FZ:0nly (3) A's in newBuf: AAA

II THIS MIMICS SERVER S5IDE PROGRAM WHICH ACCCEPTS CLIENT INPUT IN III
II |||===
Enter Intermet URL: http://AARAARARAA

Can't open the following URL for reading? http:z//AARARARARAR
Tererenennnnnnen et

It is also important to note how our string literal isreturned after thecall to spri ntf ().“Can’'t

open the following URL for reading?’, with the user supplied string of “http://AAAAAAAAAA”.

6.5.2 First Binary Scan

To perform our first binary scan using our program sprintf_scan.idc we load our test program

into the disassembler and observe the following screen.

lea
push
push
lea
push
call
add
lea
push
push
call
add
push
lea
push
call
add

111
Exhibit 4: Disassembly of (2) Safe Spri nt f () Callsin Test Program

; CODE XREF: main+1897Tj
eax, [ebp+var_174]
eax
offset a_3s ; "%.3s"
ecx, [ebp+var_118]
ecx
_sprintf
esp, BCh
edx, [ebp+var 118]
edx
offset aSafeSprintf1aH ; "\nSAFE SPRINMTF{) #1: A maximum of (3} ch"...
_printf
esp, 8
offset off B 413058
eax, [ebp+var_198]

eax
_sprintf
esp, 8

We see the first two, so-called “safe”, callsto spri nt f () along with the associated arguments

that are pushed onto the stack. For the first call, we see that ecx is pushed onto the stack as the nt" PUSH

before the call. Asthe pushed value is aregister, we need to find where it was last accessed. Register ecx

is accessed in the next previous step and we note that ecx is being loaded with var_110. Similar behavior

isobserved with the second call to spri ntf ().

The other call that we are interested in is the third call to spri nt f (). Thisisthe call that con-

tains the programming error that leads to a potential buffer overflow vulnerability. The n" PUSH before

this call isregister edx and it is accessed in the next previous step where it isloaded with var_34.

lea
push
push
lea
push
call
add
lea
push
push
call
add
push
call
add

Exhibit 5: Disassembly of FlawedSpri nt f () Callsin Test Program
; CODE XREF: main+1EFTj

ecx, [ebp+uar_174]
BCH
of fset aCanTOpenTheFol ; "\nCan't open the following URL for readi®...
edx, [ebptvar 34]
edx
_sprintf
esp, HCh
eax, [ebp+uvar 34]
eax
offset as 1 ;oURsh\n
_printf
esp, 8
offset asc_B_WI3F60 ; "o [[LIEITELEROECEREEREEERERTEREREERTET™ - - -
_printf
esp, 4

112

We perform a search for al the spri nf () references within the disassembly and observe the

following addresses:

1) call #1-.text:0040113c

2) call#2-.text:00401164

3) call#3-.text:0040121f

Exhibit 6: Address Valuesfor Spri nt f () Callsin Test Program

texk:0040113C call _sprintf

text:0040114B push offzet aSafeSprintflab ; "nSAFE SPRINTF[) #1: & masimum of [3] ch'...
Sfest: 00401164 call _sprintf

ext 00401173 puzh offzet a5 afeSprintf20n ; "SAFE SPRIMTF[] #2:0nly [3] &'z in newBu®...
text 00401 21F call _=zprintf

tewt: 00401360 ; [000000FA BYTES: COLLAPSED FURCTIOMN _sprintf. PRESS KEYPAD "+ TO EXPAND]
_rdata: 004711060 aFormatMull - db format 1= MULL.O ; DATA =REF: _printf+1510 _sprintf+45]1a ...

rdata: 00411070 aSprintf_c db ‘zprintf.c’.0 cDATA XREF: _sprintf+24la _sprintf+4E]a ..
.rdata:00471107C aStingMull db'sting = HULL'.O ; DATA XREF: _sprintf+1Blo

.rdata: 004711230 awfzprintfa db 'weprintid!' 0 ;DATA REF: _ CrtDbgReport+BElo

.rdata:00411E38 avzprintl_c db “wsprintf.c, 0 DATA XREF: __wenprintf+1Elo0

.data: 00413000 aSafeSprintf1akd db Odh

CDATA REF: _main+146l0

.data: 00413054 aSafeSprintf20n db 'SAFE SPRIMTF(] #2:0nly [3) Fh.'z in newBuf: %' 0dh 0

The three addresses are direct references which means that the spri ntf () function code is
from astatically linked library call. We performed a scan on all three references with the first two showing

no results, as expected. On the third scan the following results are obtained.
Exhibit 7: sprintf_scan.idc Input Dialogue with Address of Flawed Spri nt f () Call

Please enter an address x|

Enter address;

2]

(] Cancel |

113
Exhibit 8: sprintf_scan.idc Output for Flawed Spri nt f () Call

Compiling file 'CiNFrogram FileshDataRescuehIDA Pro w4, 178 idchsprintf_scan.idc'...
Executing function 'main'...

40121f --» POTENTIAL OVERFLOW? Target Butfer is: [ebp+war_34]
String Literal is:
Can't open the following URL for reading? %s

Thisidentifies apotential overflow at address 0x0040121f with atarget buffer variable of var_34
and a string literal of “Can’t open the following URL for reading? %s’. When we look at the stack refer-
ence for var_34 we observe a buffer size of approximately 52 bytes which is very close to our allocated

length of [50] elements.

Exhibit 9: Test Program Stack Showing [52] Byte Target Buffer

=

Structs Fields Edit Search

O x| Tat| =]

FFFFFFCC var_34 db 52 dup(?) |
aepeanse v db 4 dup(?)

A080880BY arge dd 7 il
A08BA0B8 argu dd 7 -
4I I 3
|SP4+0000015C e

6.5.3 Summary of Initial Test Results

The sprint_scan.idc program performed according to our original design intent. This success was
demonstrated using a small scale test program (sprint_crasher.c) with three callsto sprintf (). Two
using correct programming practice, and one call to spri nt f () with a known buffer overflow code

flaw. This accomplishment exceeded our original specification of identifying certain instances of a buffer

overflow vulnerability as fast as possible!. This enhanced level of performance was illustrated when the
scanning program failed to identify identical functions, being used in a similar manner, as being possible
security flaws. This selective identification enhanced the reliability of the scanning technique as it elimi-
nated concerns associated with false positive results. We will move to extend the range of this technique

by scanning third party, proprietary, software applications. We will begin with shareware class software

1. On ax86 800Mhz machine running Windows 2000 Professional the scan speed using
sprint_scan.idc against sprintf_crasher.c was under (1) second.

114
as we believe that these types of programs are released with little regard for secure coding practices. We
will move linearly up to enterprise class server products in an attempt to demonstrate the scal ability of our

technique.

6.6 Extended Testing

The testing methodology used to demonstrate the scalability of our technique was simple and
straight forward. A target program was identified then the appropriate binary file was selected and
scanned. If positive results were obtained, program documentation, specifications, RFC's etc. were
obtained in order to gain insight into user input data format requirements, as well as methods related to
how the user data would be passed to the target program. Several general techniques for remote passing of

data streams to the host program were immediately identified. These included:

* Passing data strings within the web browser.

e Making a telnet connection to the proper port and transmitting data according to the related
protocol.

« Using netcat, a simple utility which is used to read and write data across network connections.
Once the data format issues were addressed and one of the above techniques selected for passing
user input, we attempted to exploit the identified buffer overflow vulnerability by trying to crash the pro-
gram with excessive input. Success would be demonstrated when the target program stopped responding
and two potential levels of achievement were identified.
1) Simple page fault error with no instruction pointer (€ip) overwrite. This type of failure
would indicate a strong possibility of creating a DOS condition at exploit time

2) Pagefault error with complete instruction pointer overwrite. This type of failure would indi-
cate a strong potential for the ability to remotely execute arbitrary instructions on the host
machine.

It isimportant to note that each file tested involved unique protocols and peculiarities associated
with how user data was formatted and passed to the program. In many instances, where an apparent over-
flow condition was identified, we simply did not have the time resources to learn all the program nuances
to be able to demonstrate exploitability. In these cases we rapidly moved on to the next target. Target pro-

gram candidates were identified based on the following criteria:

« Remotely accessed program with clear client host relationship
» Application with well known and documented buffer overflow vulnerability

With these ground rules in place, we attempted to start small with shareware class software pro-

gressing to enterprise class server products.

115
6.6.1 SharewareTesting

The idea behind shareware was that by being low cost solution it was also a high risk solution
from a secure programming point of view. We approached this testing with the belief that little or no secu-
rity audits are performed prior to release. This, despite the fact that the products identified share privileged

process space on the host server.

6.6.1.1 Seattle Lab Internet Mail Server version 2.5.0.1065

The early versions of this shareware program were notorious for having numerous buffer over-
flow vulnerabilities. The buffer overflows were well documented with even a walk through disassembly
in the paper “Win32 Buffer Overflows (Location, Exploitation and Prevention)” [58]. The binary file
simail.exe was loaded into the IDA disassembler and scanned with sprint_scan.idc. The disassembly con-

tainer 350 referencesto thespri nt f () function. Analysis results are provided below.

Exhibit 10: sprintf_scan.idc Output: SLMail

Compiling file 'C:“Program FileshDataRescue IDA Fro wd.l7Nidochsprintf_scan.idc'...
Executing function 'main'...

40358 —-> POTENTIAL OVERFLOW? Target Buffer is: [espt+l7Sh+var_16C]
STtring Literal is: %5 wkes

40ebd4? —--x FOTENTIAL OVERFLOW? Target Buffer is: [esp+Sdh+war_d4]
String Literal is: %5 wersion s

40T54bh —-> POTENTIAL OVERFLOW? Target Buffer is: [esp+0OEOh+wvar_Cs]
STtring Literal is: %5 wkes

41zbcz --> FOTENTIAL OVERFLOW? Target Buffer is: [ebp+war_48s8]
String Literal is: mx-request-s1mail-resolwve-%s

4130a7 —-> POTENTIAL OVERFLOW? Target Buffer is: [ebp+war_514]
String Literal is: nSmtpM=_RequestRemoteId; %s,%d,%d

421582 —--» POTENTIAL OVERFLOW? Target Buffer is: [espt+ld40h+var_D4]
String Literal is: MailboxAccess-%s

422529 —-x POTENTIAL OVERFLOW? Target Buffer is: [esp+&F8h+wvar_7C4]
String Literal is: User %5@%s 15 unknown.

424526 —--> POTENTIAL OVERFLOW? Target Buffer is: [esp+40Ch+var_1F4]
String Literal is: Inwalid address found: #s

4z6bbe —-x POTENTIAL OVERFLOW? Target Buffer is: [espt+ld4oh+wvar_105]
String Literal is: %5 wis

42ccae —-» POTENTIAL OVERFLOW? Target Buffer is: [esp+82Ch+var_414]
String Literal is: The system was unable to find the mailing list configurationd
for the file: ms.0

o
This file has been renamed to %s0
to avoid this again in the future.o

4312d1l --> POTENTIAL OVERFLOW? Target Buffer is: [esptlBd4h+war_Do]
String Literal is: MET®%04x: %-85 %5

424f2C —--» POTENTIAL OVERFLOW? Target Buffer is: [esp+llOh+var_po]
String Literal is: «<%5.%s@8%s»>

43578 —-x FOTENTIAL OVERFLOW? Target EBuffer is: [esp+lEsSh+war_13C]
String Literal is: From: Mailer-Daemon<MATILER-DAEMONESSs>0

To: HWE<H5:

42E5CE7 —-» POTENTIAL OVERFLOW? Target Buffer is: [esp+2lOh+var_z200]
String Literal is: ujxs;®s;xs;xs

435chs —-> POTENTIAL OVERFLOW? Target Buffer is: [esp+z00h+war_zo00]
String Literal is: ajxs

425d1t --> POTENTIAL OVERFLOW? Target Buffer is: [esp+200h+var_z2o00]
String Literal is: fi;us

435d7a --> FOTENTIAL OVERFLOW? Target Buffer is: [esp+z00h+war_z00]
String Literal is: rjxs;Hxs

435ddf —--> POTENTIAL OVERFLOW? Target Buffer is: [esp+20Ch+var_z200]
STring Literal is: 1;%5;%5;%s

441983 --x FOTENTIAL OVERFLOW? Target Buffer is: [esp+0adsh+war_s534]
String Literal is: %5

441417 —--» POTENTIAL OVERFLOW? Target Buffer is: [esp+0addh+war_sS34]
String Literal is: %5

441a49 --> FOTENTIAL OVERFLOW? Target Buffer is: [esp+0oadsh+war_g31]
String Literal is: %5

441a79 —-> POTENTIAL OVERFLOW? Target Buffer is: [esp+0add4h+war_418]
String Literal is: %5

441aaa —--> POTENTIAL OVERFLOW? Target Buffer is: [esp+0aldh+war_eg30]
String Literal is: %&

44ladld —--> POTENTIAL OVERFLOW? Target Buffer is: [esp+0ald4h+war_53C]
String Literal is: %5

441b00 —--> POTENTIAL OVERFLOW? Target Buffer is: [esp+0aloh+war_424]
String Literal is: %&

441b3d —-> POTENTIAL OWVERFLOWT Euffer

Target pt0alChtwar 545

116
Several addresses are immediately recognizable as accepting long strings of user data along with

a corresponding program entry point. The two most promising addresses include:

1) 00422529: A long string could be supplied at some point in the program that looks up a user

2) 00424826: A long string could be supplied at some point in the program that handles
addresses.

We played around with the program for quite a while, and without success, looking for these
error messages to give us a clue as to where in the program they resulted from user input. In addition
because numerous buffer overflows existed in the product, several being documented as being directly
related to the poor implementation of the st rcpy() function and often used in conjunction with a

sprintf () cal,itwasfelt that any buffer overflow found in this application would be inconclusive.

6.6.1.2 CesarFTP version 0.0.9.61

This shareware program is reported as having a buffer overflow vulnerability associated with the
“HELP’ command. The binary file CesarFTP.exe was loaded into the IDA disassembler and exhibited
(22) referencesto the spri nt f () function which is dynamically linked through msvcrt.dil. The results

of the binary scan are given below.

Exhibit 11: sprintf_scan.idc Output: CesarFTP

Compiling Tile 'CiyProgram FileshwbDataRescuehIDAa Fro wd. 17sidchsprintf_scan.idc'...
ExecUuting function 'main'...
Compiling file '<C:iwProgram FileswbDataRescuenIDA Pro wé, 17 idochsprintf_scan.idc'...
Executing function 'main'...

40beE S ——= POTENTIAL OVERFLOW? Target Butfer is: [esp+l7d4h+wvar_10C]
String Literal is: RUNning on %s processor(s) at s

40be74 ——= POTEMTIAL OVERFLOW? Target Butfer is: [esp+l7oh+wvar_10C]
String Literal is: RUnning on %s processor(s]

40be34 ——= POTENTIAL OVERFLOW? Target Butffer is: [esp+l7oh+wvar_10C]
string Literal is: TCPAIP Stack: s

While we get positive returns associated with two addresses, the parameters that are read by
“%s" appear to by internally generated.

6.6.1.3 Winamp version 2.6.0.0

This shareware audio file player has several reported buffer overflow vulnerabilities associated
with the earlier versions. While this application is not known for supporting any type of client host rela-
tionship, it is able to download MP3 music files directly from the internet using the AudioSoft AIP file

format. These .aip files are parsed by winamp and a specially crafted file is able to overflow memory

1. Reference Appendix C: Case 3

117
space. Since these .aip files can be transferred across the internet and directly downloaded without user
intervention the winamp application represents a unique case. Other reported buffer overflows leave us
with the feeling that this program was not released with any concern for potential security issues.
Winamp.exe was loaded into the IDA disassembler and (173) referencesto spri nt f () were noted as
dynamically linked imports from user.dll. The binary image was scanned with the results of the analysis

presented below.

Exhibit 12: sprintf_scan.idc Output: WinAmp

compiling file 'C:%Program FileshDataRescue IDA FPro w4, l74idchsprintf _scan.idoc'...
Executing function 'main'...

405531 --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_z10]
Sstring Literal is: smswinamp.lnk

40555e ——> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_zia0]
String Literal is: #mshwhat's new.1nk

4055Ce —-—>= POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_zilo]
String Literal is: #shUninstall wWinamp.Ink

406303 —--> FPOTENTIAL OWERFLOW?T Target Buffer is: [esp+&Cd4h+wvar_400]
String Literal is: wmshwiscolor. o<t

40559 ——» POTENTIAL OWERFLOW? Target Buffer is: [esp+4loh+wvar_400]
String Literal is: &shWks

40e94e —--x POTENTIAL OWERFLOW? Target eBuffer is: [ebp+war_s54]
String Literal is: Balance: xdxx %5

40edbt --> FPOTENTIAL OWERFLOW? Target Buffer is: [ebp+war_sc]
String Literal is: EQ: %5: Hsmd.wd db

40T31bh ——» POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_40s]
String Literal is: &shWks

40ffe? -->= POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_1zF4]
Sstring Literal is: GET %5 HTTP/SLl.00

User-Agent: wWinamp/20

Host: =0

ACCept: */+%0

1]

41053917 ——> POTENTIAL OWERFLOW? Target Buffer is: [esp+0BOh+wvar_r7C]

String Literal is: hi.xs

411h35 --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_408]

Sstring Literal dis: htop:Awew.winamp. comsupdate/update]inks. jhtml 71 =scaw=5s Lr=5C
41d27d —-—> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_z2<Cs]

String Literal is: winamp base skin wis

42015d -—->= POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_z&C]

String Literal is: s [#s]
420475 —--> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_z258]
String Literal is: s [#%5

]
420bez —-x POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_1za0]
String Literal is: &shWks
420293 -—> POTENTIAL OWERFLOW? Target Buffer is: [ebpt+war_Fr4]
String Literal is: #shWks
420f54 —--> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_F74]
String Literal is: s [%=]
421453 —-> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_13&C]
String Literal is: &shWks
421667 --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_Dso]
String Literal is: #shWwks
423414 —--> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_418]
String Literal is: sshHs
423202 ——> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_1z24]
String Literal is: http:/ /&=
4250d5 --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_104]
String Literal is: xssks
4250e% ——> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_104]
String Literal is: s
4257bC ——> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_t5as]
String Literal is: #shWiks
42920bh --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_5&50]
String Literal is: ®s4WHs
42955h ——> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_110]
String Literal is: ®s“Wks
429931 --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_110]
String Literal is: #shWks
4z2cl1f5 --> PFOTENTIAL OWERFLOW? Target Buffer is: [ebp+war_s54]
String Literal is: Balance: Hdsss s
42cd44c ——x» POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_415]
String Literal is: &shWks
4zcefa -—= POTENTIAL OWERFLOWT? Target Buffer is: [ebp+war_540]
String Literal is: http:/Awe. winamp. conss
d4zcfzz --> POTENTIAL OWERFLOW? Target Buffer is: [ebp+war_EDO]
String Literal is: GET %5 HTTRA1.00
User—-agent: wWinamp/s20
Host: weasa.winamp. comi
ACCEpLI ¥%0
1]

118
Address 0042390e “http://<user input>" as read by “%s’ certainly looks promising. A URL
string is accepted as part of the playlist functionality however extensive testing using strings of various

length failed to crash the program.

6.6.1.4 OmniHTTPd version 1.01

The image map CGI that is distributed with OmniHTTPd has a buffer overflow associated with
the server side extension imagemap.exe. The binary file Imagemap.exe was loaded into the IDA disas-
sembler and (2) referencestothe spri nt f () function were noted. The file was scanned with no positive

results.

6.6.2 EnterpriseClass Server Applications
6.6.2.1 fp30reg.dilt version 4.0.2.3406

This is the .dIl within Microsoft’s FrontPage 2000 server extensions that was exploited by the
code red worm. According to published information, fp30reg.dll parses client input and in the case where
fp30reg.dil receives an invalid parameter (method), the following message was returned: “The server is
unable to perform the method <parameter provided by the user> at this time”. The <parameter provided
by the user> we hoped to bea spri ntf () “%s” write to memory. As a matter of fact published docu-
mentation included the statement “...fp30reg.dil calls USER32.wsprintfA() to form the return mes-
sage.”[69]. We really had our hopes up on thisone as it represented a contemporary enterprise class server

application however, when we performed our analysis with sprintf_scan.idc, it returned no results.

6.6.2.2 Microsoft ftp Client version 5.0.2134.1

FTP programs have areputation for exploitable buffer overflows. Although no direct information
was available for this particular version as to the presence of a buffer overflow vulnerability the following
information led us to believe that indeed a vulnerability exists. The file was obtained from a corporate
implementation of Windows 2000 where the file had been globally removed as part of a system wide
security audit. The binary file was loaded into the IDA disassembler where (7) references to the

sprint f () functionwere noted. The scan of the file returned no positive results.

6.6.2.3 Microsoft Frontpage 2000 Server Extensions

Two components of FrontPage 97, 98 and 2000 Server Extensions, htimage.exe and
imagemap.exe are documented as containing buffer overflow vulnerabilities with htimage being reported

to crash with the string “ http://myserver/cgi-bin/htimage.exe/<741 A’s>?0,0". It is important to note that

1. Reference Appendix C: Case 7

119
there is no documentation associated with Microsoft’'s imagemap.exe other than the basic report that a
vulnerability exists.

Image mapping alows for the attachment of a hyperlink to a image within a web page. As an
example, aweb site might display a picture of afootball team, and by clicking on an individual player it
might lead to a page showing his family or interests. When you select a point on the active image, the x
and y position (in pixels) are sent to the specified URL, using the GET method, as a query string, like this:
GET /cgi-bin/program/example?62,58 with the top left corner being 0,0.

The technique of integrating the image with the hyperlink is known as image mapping. Most
contemporary browsers support client side image mapping. That is the browser can display the image and
integrate the hyperlink natively. However, with legacy browsers (for example, NCSA’'s Mosaic or the
early Internet Explorer versions) client side image mapping was not supported and components on the
server side were required to alow this functionality. The two components, htimage.exe and
imagemap.exe, perform this function to maintain cross compatibility with the two original specifications,
CERN'sand NCSA's.

The binary file imagemap.exe was loaded into the IDA disassembler with (3) references to
sprintf() being noted.An analysis was performed using sprintf_scan.idc and the following results

returned.

Exhibit 13: sprintf_scan.idc Output: imagemap.exe

Zompiling file 'C:iwProgram FileshsDatarescuenIDA Pro wd,17Midossprintf_scan.idc'...
Zxecuting function 'main'...

10lcee —-= POTENTIAL OVERFLOW? Target Buffer is: [ebp+wvar_Z0C]
string Literal is: Couldn't open configuration file: %s

The string literal “ Couldn’t open configuration file: <user input>" with user input being read by
“%¢s” and written to memory certainly looks interesting. As imagemap.exe is a server side program we
need to run it within the context of host application that receives client input. To accomplish this we will
run the application from Microsoft’s Personal Web Server version 2.0 within Windows 98. This configu-
ration is similar to the Microsoft’s |1s server products. Imagemap.exe is installed in the .../cgi-bin direc-
tory and accepts query strings through the client browser in the form of “http://<myserver>/cgi-bin/
imagemap.exe/<other directory>/<query string>?(map coordinates) (i.e. 0,0).

We start the Personal Web Server Service, the server name is johnnyutah, and pass the query
string “http://johnnyutah/imagemap.exe/~/AAAAAAAAAAAAAAAAAAAAA),Q” to imagemap.exe

with the following results.

120
Exhibit 14: Imagemap Server Error with String Literal

; M apping Server Emor - Microzoft Internet E xplorer
|| Fle Edt View Favoites Tooks Help
| & -7 -8 @ 4 <

_ Back Fq?:{ Smp Refresh Horre A Ses
]'ﬁ-ﬁdlm Iﬂ hittp: S Aahrrgatsh/egi-bin/ imagemap exdwe /™ /A8 08 A MMM AN AMAA AL

Mapping Server Error

This server encountered an error

Couldn't -::-lptn configuration file; CAInetpub'wwwroot\--\A A A A AL
b

String Literal “user input read by “%¢s’

We have found our string literal reference and the format character is reading our dynamic input

and writing it to memory. This is demonstrated by the screen message “Couldn’t open configuration file:

C\Inetpub\wwwroot\~\AAAAAAAAAAAAAAAAAAAAA”. We look within the disassembly at the

sprintf () call referenced in our output results; address 0040166e.

lea
push
push
call
pop
mou
test
pop
jnz
lea
push
lea
push
push
call
add
lea
call

Exhibit 15: Imagemap.exe Disassembly Showing Flawed Spri nt f () Cdl

; CODE XREF: _main+CoTj
; _mains+DBTj§ ...
eax, [ebp+uvar_B2L
offset aR o S
eax
ds:fopen
BCX
[ebp+var_C], eax
eax, eax
ecx
short loc_8 481682
eax, [ebp+uvar_B824]
eax
eax, [ebp+var CBC] ; target buffer register load
offset aCouldnTOpenCon ; "Couldn't open configuration fFile: %s"
eax ; target buffer push register eax
ds:sprintf
esp, BCh
ecx, [ebp+var_CHC]
sub_8 481CD1

We observe that the target buffer PUSH is register EAX with the corresponding register load rep-

resented by variable [var_COC]. When we explore the stack we observe that var_COC represents a static

stack buffer of 500 bytes.

FFFFEDBY4
FFFFEDBEY
FFFFEDBC
FFFFF3F4
FFFFFSER
FFFFF7DC
FFFFF9DA
FFFFFBCY
FFFFFDER
FFFFFDBE
FFFFFDDA
FFFFFDDB
FFFFFDDC
FFFFFDDD
FFFFFFDA
FFFFFFDE
FFFFFFESB
FFFFFFES
FFFFFFF4
FFFFFFF8
FFFFFFFC
BoaBoBaoa
BoapoanYy
doeBoeans
goBBooBaac
goaaaRia
goagoe1y
aoaaaa1L

121

Exhibit 16: Imagemap.exe Stack Space Showing Target Buffer

var_ 124G
var_1244
var_ CAC
var_A18
var_824
var_638
var_ 43c
var_ 248
uar_ 242

var_224
var_223
var_38
var_28
var_ 28
var_ 18
var_C
var 8
var_4

5

g

argc
argv
enup

dq
dq
db]
db
db
db
db
db
dd
db
db
db

>

199 dup(?}

588 dup(?) ; target buffer
580 dup{?) suspicious sprintf{)
588 dup(?) call

588 dup({?)

588 dup{?)

6 dup{?)

7 dup{?)

? :; undefined

? : undefined

¥

499 dup(?)

o
o
b
12 dup(?)
>
b
b

4 dup(?)

L4 dup(?)

7

7 : ofFfset (FFFFFFFF)
7 ; offset {(FFFFFFFF)

: end of stack variables

We now have a high confidence that imagemap.exe contains a buffer overflow vulnerability. As

thereis quite abit of buffer space allocated above var_COC we anticipate quite alarge string (>2500 char-

acters) will be required to corrupt the ebp register and create a anomaly within the running application.

The client browser that we are using, Microsoft Internet Explorer 5 version 5.00.2614.3500, truncates a

URL entry at about 2000 characters and we are forced to use a different method to query the server. This

will be accomplished through atelnet connection to port 80 where we will use the HTTP GET method to

submit the query string to the server.

Exhibit 17: Telnet Session to Port 80 Localhost with <~2700 character string>

M Telnet - 127.0.0.1

Connect Edit Temninal Help

122

The above represents our telnet request to the Personal Web Server (localhost 127.0.0.1). We are

using the HTTP GET method to pass the following query string to the server: GET /cgi-bin/
imagemap.exe/~/<2565A’ s>?0,0. We observe the following page fault error message:

Exhibit 18: Imagemap.exe Page Fault Message

Thiz program haz perffarmed an illegal operation Close
and will be shut down. —

it

If the problem persigts, contact the program Di=sbug
wendor. o
Detailss: ¥

IMAGEMAFP caused an inwvalid page fanlt in

module Sunknowns at 0084:41414141.

Begisters:

Eax=00583fez8 C2=015f EIP=41414141 EFLGE=00000Z485
EEX=00&83fez8 B232=01&67 ESP=00540100 EEP=005401Z0
ECK=005401a4 DE=01l&c7? EEI=2179zZ6cc FE=zz07
El=bff7E6859 ES=01c7? EDI=00E5401lcc GE=0000

Bytes at CS:EIP:

S

L

In addition to the error message the server stops responding. We believe this to be a fully

exploitable buffer overflow as eip has been completely over written.

Chapter 7

Conclusion

The real problemis not whether machines
think but whether men do.

- B. F. Skinner

With the explosive growth of computer and networking technology information we have become
almost totally reliant these systems to manage all of our information including that which is privileged and
sensitive. This technology has enabled information management on a grand and global scale and has been

the key driver in the huge increases in productivity over the last 15 years. The acceleration of information

technology, being propelled by Moores law?!, has come at a price. Those who got in early are now the
dominant players across an entire industry. Not only do they provide the products that serve as a founda-
tion in information management they, in effect, have become entrusted with protecting our most sensitive
information. One would think this an awesome responsibility however in light of continuing security
flaws, in our most trusted software, nothing could be further from the truth. Perhaps the most frightening
reality associated with our trust in just a few vendors providing the mgjority of our critical softwareisthat
there is no simple method for the consumer to verify that the product they rely on is secure. Instead, we
rely on the relentless assault of hackers to break released systems and hope we can patch our system
before any real damage is done. | have demonstrated a technique that can be used as a tool to identify
security flaws in proprietary software, one that could scan a binary image and tell usif there was a poten-
tial problem. Not only would we avoid the product, but the software vendors would soon have to confront

the fact that lousy code cannot be obscured from the user.

1. The observation that the logic density of silicon integrated circuits has closely followed the
curve (bits per square inch) = 2/(t - 1962) wheret istimein years; that is, the amount of infor-
mation storable on a given amount of silicon has roughly doubled every year since the tech-
nology was invented. This relation, first uttered in 1964 by semiconductor engineer Gordon
Moore (who co-founded Intel four years later) held until the late 1970s, at which point the
doubling period slowed to 18 months. The doubling period remained at that value through
time of writing (late 1999). From: http://www.tuxedo.org/~esr/jargon/html/entry/Moore's-
Law.html

123

124
7.1 Results and Contributions

We propose hinary scanning as an approach for finding certain instances of the buffer overflow
vulnerability asfast as possiblein proprietary software. We make this bold assertion with little knowledge
of the behavior of the buffer overflow post compile time or an understanding of the difficulties associated
with reverse engineering using the disassembled binary as our only guide. For these reasons, our approach
encompassed a journey through the body of knowledge associated with software security flaws in general
and the characteristics of such flaws, as manifest in the binary image, specifically. Additionally, we have
been treated to a healthy helping of assembly language, C programming and runtime stack behavior.
Along the way we were able to propose a unique classification strategy for the buffer overflow vulnerabil-
ity.

Traditionally the buffer overflow is viewed as a programming flaw. For our classification
scheme we viewed the buffer overflow as an attack. This allows our taxonomy to be uniquein that it clas-
sifies across two vectors. That is, it uses a two dimensional approach of system dependencies as well as
attack dependencies to create a rich interwoven classification technique. We populate a select group of
buffer overflow vulnerabilities within our classification scheme.

Armed with this knowledge we are able to leverage insight to develop a technique, based on
reverse engineering, to find security flaws in the binary image without benefit of source code. The main
contribution of thisthesisis that the concept of scanning the binary image to find security faultsisavalid
technique that can be applied to proprietary software.

Our reverse engineering scheme allows us to focus directly on those areas of the disassembly that
have the greatest potential for security related flaws such as the buffer overflow vulnerability. We investi-
gated several of the so-called dangerous C functions and came to the conclusion that a suspicious * buffer
overflow' signature is present and identifiable within a disassembly for each of the functions reviewed.
Extending this conclusion, we developed a scanning algorithm based on the spri nt f () function call. It
was our insight into the use of sprintf (), with it's associated string literal providing a possible pro-
gram entry point, that allowed us to demonstrate the success of this technique in arelatively short period
of time. With agood idea of the context of user data being passed, combined with criteriathat identifies a
function as being suspicious, we were able to develop a compact and efficient scanning routine.

A substantial number of experiments were performed to systematically validate the implementa-
tion of our concept. We successfully demonstrated our technique, first on asimple test program where we

illustrated two capabilities:

1) We identified a known buffer overflow security flaw that involved the unsafe use of
sprintf()

2) We eliminated the concern with false positive identification by failing to identify those loca-

125

tionswherespri nt f () wasused in asafe manner.

We then extended our technique to include contemporary enterprise class applications. We iden-
tified a potential buffer overflow vulnerability in the binary image of a contemporary Microsoft server
application then went on to successfully demonstrate that vulnerability in the actual running application.

The main characteristic of this technique is the speed at which certain instances of a buffer over-
flow vulnerability can be identified. This distinguishes our method from other testing schemes and brute
forcing techniques. While our method is not advocated over the traditional source review, it is able to
make a bold statement. When one is able to find an instance of a certain type of fully exploitable buffer
overflowsin under (1) second, major developers of retail software should take notice. Programming flaws
can be detected by much simpler methods than binary disassembly and reverse engineering when one has
access to the source code. Despite this fact it is clear that these steps are, for the most part, being
neglected. The fact that we were able to discover a security flaw, in a major application, using this tech-
nique speaks volumes not only of the lack attention paid to the security aspects of modern software devel-
opment but to the power of reverse engineering. The success of this technique should not be measured by
the fact that we were able to find a buffer overflow in a contemporary, server class product, it should be

measured by the success of the concept itself.

7.1.1 TechniqueLimitations

Thetechnique we present islimited in that it can only find buffer overflow vulnerabilities that are
tied to the spri nt f () function that is reading dynamic user input with the format character %s. We
believe that the concept of binary scanning however can be extended to include wide range of security
applications where the original source code is unavailable. The main limitation is that by scanning a disas-

sembly, acompile time object, one will miss the vulnerabilities that are tied to the run time environment.

7.2 Resear ch Directions

Reverse engineering a disassembled binary image is a very powerful technique with the main
limitations being the potential time required, the expanded size of the disassembly and the level of exper-
tise required. All three of these constraints scale well when machine automated, a fact we demonstrated
with our simple program. We believe that other programs could be devel oped to cope with the more chal-
lenging problems associated with other abused C functions such as st rcpy() and st rncpy() . The
challenge with these functions quickly becomes one of structure reconstruction when attempting to tease

critical detailsfrom adisassembly.

126
7.2.1 Structure Reconstruction

Applications store their data not in discrete variables but in large structures that are passed
around between functions. Many overflows happen within the context of the structure and without know-
ing what we are overwriting it is very hard to determine if the condition is an exploitable one. In addition,
most overflows and security related problems occur within dynamic memory, on the heap. This memory
region is used to hold large structures that contain connection data, error strings etc. In order to check
function calls such as st rncpy() one has to be able to estimate the size of each individua structure
member. We believe that when one is able to rebuild the actual structures within a disassembly a much
better picture will emerge as to how and where user input finds it way into a function. Structure recon-

struction becomes an even higger issue when reverse engineering C++ object oriented programs.

7.2.2 Class Reconstruction

Within the C++ programming language structures play a big part of object definition, after all a
class is nothing more than a collection of functions that all use the same structure and all are completely
lost at compile time. Many classes have an associated vtable or listing of memory locations associated
with the properties and methods implemented in the class interface. In other words, this table can provide
the reverse engineer alisting of all functions that access a given structure (i.e. the class itself). With this
information is certainly possible to imagine that automated techniques may exist for the reconstruction of
class data structures and with it the reconstruction of individual member boundaries. As we move more
towards a more object oriented approach where large structures are defined as part of the object itself,

structure reconstruction becomes a key element in the reverse engineering of contemporary code.

7.3 Final Thoughts

We have focused on a single security issue based on a small set of library functions that handled
single variables and were able to demonstrate a security auditing concept using the power of reverse engi-
neering. The area we focused on, the buffer overflow vulnerability, is a vanishing species, as the problem
has been documented for over (10) years and for the most part is trivial to exploit. The push is on across
the mgjor suppliers of software to put an end to this type of programming flaw. Yes, there is legacy code,
but awhole new frontier awaits the reverse engineer.

The modern program paradigm is a move to embrace object oriented design. Therefore new
code, for the most part, is object oriented C++, that makes extensive use of the Standard Template Library
(STL) for string, stream and container manipulation. We propose that there exists undiscovered exploit-
able security pitfalls within the family of STL constructs, as they manipulate user input, and that these

new security flaws will manifest themselves as heap overruns. Heap overruns, due to their elusive nature,

127
will make stress testing useless and therefore it will be the reverse engineers with the advantage. As heap
overflows are almost entirely compiler specific, the reverse engineers will have the advantage as they will
be able to document the nuances of their compiler behavior for themselves. Then there is the area of writ-
ing exploits themselves. As the new CPU architectures move to non-executable data pages as a standard
feature, shell code will become a thing of the past. The future attacker will not insert a new subroutine
within corrupted stack space, they will subvert the logic of the application itself (i.e. bool paswrdVali-
dated == true). In attempting to corrupt application logic the advantage will again go to the reverse engi-
neer. Without this skill, exploitation of future proprietary applications will be close to impossible.

Automated binary disassembly must certainly be an area of interest within the intelligence and
security community due its ability to open doors that would otherwise be shut. We have forwarded the
premise that vendors hide their security flaws, or lack of security, by labeling their code as a trade secret,
releasing only a compiled binary file. At the same time we can extend this reasoning to devel opers of our
most secure software, the software based security systems themselves. All of these systems are based on
the principle of “security by obscurity” as well. The concepts on which these programs are based are hid-
den within the program logic itself, logic which we believe can and will be corrupted in future attacks. All
that is needed is a piece of binary code and a disassembl er, assembler code cannot be made more difficult.
It can be encrypted, obfuscated or made difficult in general but at some point the machine hasto be able to

read the instructions and if the machine can so can the reverse engineer: you can run but you can't hide.

“Where do you want to go today?.......

(1

(2

(3]

(4

(9]

(6]

(7]

(8]

(9]
(10]

(11]

[12]
(13]
(14]

[15]

(16]

(17]

(18]

(19]

References

D. FARMER. Abstract: “Shall we dust Moscow?” (Security survey of key internet hosts &
various semi-relevant reactions), December 1996. Published on-line at http://www.fish.com/
survey/.

Computer Security Institute. Issues and trends: “2000 CSI/FBI computer crime and security
survey” , March 2000.

WILLIAM R. CHESWICK and STEVEN M. BELLOVIN. Firewalls and Internet Security:
Repelling the Wily Hacker. Addison-Wesley, 1994.

CRISPIN COWAN, PERRY WAGLE, CALTON PU, STEVE BEATTIE, and JONATHAN
WALPOLE. “Buffer overflows: Attacks and defenses for the vulnerability of the decade” . In
Proc. 2000 DARPA Information Survivability Conf. and Exp. (DISCEX '00), pages 154{ 163.
IEEE Comp. Soc., 1999.

M.W. EICHIN, JA. ROCHLIS, “ With microscope and tweezers: an analysis of the Internet
virus of Nov. 1988,” 1989 IEEE Symp. Security and Privacy.

JEFF COLLYER. “Risks of unchecked input in C programs”. Forum on Risks to the Publicin
Computers and Related Systems, ACM Committee on Computers and Public Policy, Volume
7, Issue 74 (10 Nov 1988), lines 200--231.

ELIASLEVY (Aleph One). “ Smashing the stack for fun and profit” . On-line. Phrack Online.
Volume 7, Issue 49, File 14 of 16. Available: www.fc.net/phrack/, November 9 1996.

G. HELMER, “ Incomplete list of Unix vulnerabilities’ , http://www.cs.iastate.edu/~ghelmer/
unixsecurity/unix_vuln.html.

http://www.infilsec.com/vulnerabilities/.
The bugtrag mailing list, http://www.securityfocus.com/

Caida.org, “CAIDA Analysis of Code-Red” , http://www.caida.org/analysis/security/code-red/ ,
August 2001.

Rootshell, http://www.rootshell.com
Fyodor's Playhouse, http://www.insecure.org
Legacy Hacker Ste http://www.jabukie.com/The_Legacy_Main_Page.htm

Nipc.gov, “E-CommerceVulnerabilities’ , http://www.nipc.gov/warnings/advisories/2001/01-
003.htm

idefense.com, "'Israeli-Palestinian Cyber Conflict (IPCC)", www.idefense.com

DAN FARMER AND WIETSE VENEMA, “Improving the Security of Your Ste by Breaking
Into It”, USENET posting (Dec. 1993)

TSUTOMU SHIMOMURA and JOHN MARKOFF. “Takedown” . Hyperion Books, 1996.

KATIE HAFNER and JOHN MARKOFF. “Cyberpunk: Outlaws and Hackers on the Com-
puter Frontier” . Touchstone, 1992.

128

[20]

[21]

[22]

(23]

[24]

(23]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[39]

129

SIMSON GARFINKEL and EUGENE SPAFFORD. “Practical Unix and Internet Security’.
O'Reily and Associates, second edition, 1996.

PETROSKI, H. 1992. “To Engineer is Human: The Role of Failure in Successful Design”.
Vintage Books, New York, NY, 1992.

PETER G. NEUMANN, “Computer System Security Evaluation” , 1978 National Computer
Conference Proceedings(AFIPS Conference Proceedings 47), pp. 1087-1095, June 1978

BREHMER,C.L.AND CARL, J. R. 1993. “Incorporating | EEE Standard 1044 into your
anomaly tracking process’ . CrossTalk, J. Defense Software Engineering, 6, (Jan. 1993), 9-16.

CHILLAREGE, R., BHANDARI, I. S., CHAAR, J. K., HALLI-DAY, M. J, MOEBUS, D. S.,
RAY ,B.K.,AND WONG, M-Y. 1992. “Orthogonal defect classification—a concept for in-
process measurements’ . IEEE Trans. on Software Engineering 18, 11, (Nov. 1992), 943-956.

FLORAC, W. A. 1992. “Software Quality Measurement: A Framework for Counting Prob-
lems and Defects’ . CMU/SEI-92-TR-22, Software Engineering Institute, Pittsburgh, PA,
(Sept.).

R. BISBEY Il and D. HOLLINGSWORTH, “Protection Analysis Project Final Report” , 1SI/
RR-78-13, DTIC AD A056816, USC/Information Sciences Institute (May, 1978).

JM CARLSTEAD, RICHARD BIBSEY I, and GERALD POPEK. “Pattern-directed protec-
tion evaluation” . Technical report, Information Sciences Institue,University of Southern Cali-
fornia, June 1975.

RICHARD BIBSEY, GERALD POPEK, and JIM CARLSTEAD. “Inconsistency of a single
data value overtime” . Technical report, Information Sciences Institute,University of Southern
California, December 1975.

R.P. ABBOTt et al. “ Security Analysis and Enhancements of Computer Operating Systems” .
Technical Report NBSIR 76-1041, Institute for Computer Science and Technology, National
Bureau of Standards, 1976.

CARL LANDWHER et a. “ A taxonomy of computer program security flaws’ . Technical
report, Naval Research Laboratory, November 1993.

BRIAN MARICK. “A survey of software fault surveys’. Technical Report UIUCDCS-R-90-
1651, University of Illinois at Urbana-Champaign, December 1990.

M. BISHOP, “ A Taxonomy of UNIX System and Network Vulnerabilities,” Tech. Rep. CSE-
95-10, Purdue University, May 1995.

T. ASLAM, “ A Taxonomy of Security Faultsin the Unix Operating System,” M.S. Thesis,
Purdue University, West Lafayette, IN, 1995.

T. ASLAM, “ Use of a Taxonomy of Security Faults,” Tech. Rep. 96-05, COAST Laboratory,
Department of Computer Science, Purdue University, March 1996.

KRSUL, I., “Software Vulnerability Analysis,” Ph.D. Thesis, Department of Computer Sci-
ences, Purdue University, West Lafayette, IN (1998).

[36]

[37]

(38]

[39]

[40]
[41]
[42]

[43]

[44]

[49]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

130

M. CROSBIE, B. DOLE, T. ELLIS, I. KRSUL, and E. H. SPAFFORD, “ IDIOT - User's
Guide,” Tech. Rep. TR-96-050, COAST Laboratory, Purdue University, September 4, 1996.

U. LINDQUIST and E. JONSSON, “How to Systematically Classify Computer Security Intru-
sions,” Proc. 1997 IEEE Symp. on Security and Privacy, Oakland, CA, May 4-7, 1997, pp.
154 - 163.

P. G. NEUMANN and D. B. PARKER, “A Summary of Computer Misuse Techniques,” Proc.
of the 13th National Computer Security Conference, Baltimore, MD, October 10-13, 1989, pp.
396-407.

E. A. FISCH, “ Intrusion Damage Control and Assessment: A Taxonomy and | mplementation
of Automated Responses to Intrusive Behavior,” Ph.D. Dissertation, Texas A&M University,
College Station, TX, 1996.

http://icat.nist.gov/icat.cfm
http://www.cert.org/
http://www.neohapsis.com/

JOHN HOWARD, “An Analysis of Security Incidents on the Internet 1989-1995,” Carnegie
Mellon University, April 1997

B. W. KERNIGHAN and D. M. RITCHIE, “The C Programming Language” , Prentice-Hall:
Englewood Cliffs, NJ, 1978. Second edition, 1988

DILDOG, “ The Tao of Windows Buffer Overflows” , http://www.newhackcity.net/
win_buff_overflow/

CRISPIN COWAN, CALTON PU, DAVE MAIER, HEATHER HINTON, PEAT BAKKE,
STEVE BEATTIE, AARONGRIER, PERRY WAGLE, and QIAN ZHANG. “SackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks’ . In 7th USENIX
Security Conference, pages 63-77, San Antonio, TX, January 1998.

MUDGE. How to Write Buffer Overflows. http://www.insecure.org/stf/
mudge_buffer_overflow_tutorial.html

ALFRED HUGER. Historical Bugtraq Question. Bugtrag mailing list, http://geek-girl.com/
bugtrag, September 30 1999.

MIXTER. Writing Buffer Overflow Exploits-a tutorial for beginners. http://mix-
ter.warrior2k.com/exploit.txt

KLOG. “The Frame Pointer Overwrite” . Online. Phrack Online. Volume 9, Issue 55, File 8 of
19. Available: www.fc.net/phrack/, September 9, 1999.

ZAN. “winnt/2k remote shellcode” . http://www.deepzone.org/editions/others/shell-e.pdf

SCUT/TESO. “Writing MIPS/IRIX Shellcod€e’. Online. Phrack Online. Volume 10, Issue 56,
File 15 of 16. Available: www.fc.net/phrack/, September 9, 1999.

SMILER. “The Art of Writing Shellcode’. Online. http://193.226.6.55/papers/Bufferoverflow/
art-shellcode.txt

(54]

(59]

[56]

[57]

(58]

[59]

[60]

(61]

(62]

[63]

(64]

(6]

[66]

(67]

(68]

[69]

[70]

131

ALFREDV. AHO, R.HOPCROFT, and JEFFREYD. ULLMAN. “Compilers: Principles,
Techniques and Tools’ . Addison-Wesley, Reading, Mass., 1985.

STEFAN AXELSSON, “A Comparison of the Security of Windows NT and UNIX", 1998
http://www.securityfocus.com/data/library/nt-vs-unix.pdf

NISHAD HERATH, (Joey_) “ Advanced Windows NT Security”, in Black Hat Asia Confer-
ence, 2000. http://www.blackhat.com/html/bh-asia-00/bh-europe-00-speakers.html#Joey

HALVAR FLAKE, “Auditing binaries for security vulnerabilities’in Black Hat Asia Confer-
ence, 2000. http://www.blackhat.com/html/bh-asi a-00/bh-europe-00-speakers.html

BARNABY JACK, aka (dark spyrit), “Win32 Buffer Overflows (Location, Exploitation, and
Prevention)”, Online. Phrack Online. Volume 9, Issue 55, File 15 of 19. Available: http://
www.fc.net/phrack/, September 9, 1999.

RYAN RUSSEL, RAIN FOREST PUPPY, ELIASLEVY, BLUEBOAR, DAN KAMINSKY,
OLIVER FRIEDRICHS, RILEY ELLER, GREG HOGLUND, JEREMY RAUCH, and
GEORGI GUNINSKI, “Hack Proofing Your Network Internet Tradecraft”, Syngress, 2000.

JOEL SCAMBRAY, STUART MCCLURE, GEORGE KURTZ, “ Hacking Exposed, Network
Security Secrets & Solutions” , Second Edition, Osborne/McGrawHill , 2001 Nishad Herath,
(Joey_) Advanced Windows NT Security, in Black Hat Asia Conference, 2000. http://
www.blackhat.com/html/

SCUT/TEAM TESO, “Exploiting Format String Vulnerabilities’, Available: http://
teso.scene.at/articles/formatstring/

http://www.cert.org

E. CHIKOFSKY and J. CROSS. “ Reverse engineering and design recovery: A taxonomy” .
|EEE Software, 7:13-17, Jan. 1990.

M.WEISER. “ Programdlicing” . |EEE Transactions on Software Engineering, 10(4):352-357,
July 1984.

T. BALL and J. LARUS.” Optimally profiling and tracing programs’ . Transactions of Pro-
gramming Languages and Systems, 16(4):1319-1360, July 1994.

L. FREEMAN. “ Don't let Missing Source Code stall your Year 2000 Project” . Y ear 2000 Sur-
vival Guide.

R.N. HORSPOOL and N. MAROVAC. “ An approach to the problem of detranslation of com-
puter programs’ . The Computer Journal, 23(3):223-229, 1979.

H. SWARTZ. “ The case for reverse engineering.” Business Computer Systems, 3(12):22-25,
December 1984.

http://www.nsfocus.com/english/homepage/sa01-03.htm

C. CIFUENTES and K.J. GOUGH. "Decompilation of binary programs" Software Practice
and Experience” , 25(7):811-829, July 1995.

[71]

[72]

(73]

[74]

[79]

[76]

[77]

(78]

[79]

(80]
(81]

(82]

(83]

132

CRISTINA CIFUENTES."Partial Automation of an Integrated Reverse Engineering Environ-
ment of Binary Code” , Research Paper

CRISTINA CIFUENTES. "Reverse Compilation Techniques', Ph.D. Disseration; Queensland
University of Technology. 1994

NICOLE LaROCK DECKER. “ Buffer Overflows: Why, How and Prevention.” Available
http://rr.sans.org/threats/buffer_overflow.php, November 13, 2000.

DAVID LAROCHELLE AND DAVID EVANS. “ Satically Detecting Likely Buffer Overflow
Vulnerabilities.” In 2001 USENIX Security Symposium, Washington, D. C., August 13-17,
2001.

http://dmoz.org/Computers/Programming/Software_Testing/Software_Testing_Tools/

“A Brief History of the Internet and Related Networks’; http://www.isoc.org/internet/history/
cerf.shtml

BRUCE SCHNEIER. “ The Process of Security.” ; http://www.infosecuritymag.convarticles/
april00/columns_cryptor hythms.shtml

ROBERT W. SEBESTA. “ Concepts of Programming Languages.” ; Addison-Wesley, 1999.

RIK FARROW. “ Blocking Buffer Overflow Attacks’. http://www.networkmagazine.com/arti-
cle/NMG20000511S0015

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci550882,00.html
http://searchsecurity .techtarget.com/sDefinition/0,,sid14_gci550815,00.html

COL. STANISLAV LUNEV. “Red Mafia Operating in the U.S. — Helping Terrorists’; http://
www.hewsmax.com/archives/articles/2001/9/28/90942.shtml

ALAN CLEMENTS. “Brief History of Microprocessors” ; http://wheelie.tees.ac.uk/users/
a.clements/History/History.htm

Appendix A

Ar chive/Compr essed Ar chives
Gnu tar format gtar application/x-gtar
4.3BSD tar format tar application/x-tar
POSIX tar format ustar application/x-ustar
Old CPIO format bepio application/x-bepic
POSIX CPIO format Cpio application/x-cpio
UNIX sh shell archive shar application/x-shar
DOS/PC - Pkzipped archive Zip application/zip
Macintosh Binhexed archive hax application/mac-binhex4C
Macintosh Stuffit Archive Sitsea application/x-stuffit
Fractal Image Format fif application/fractals
Binary, UUencodec binuu application/octet-stream
PC executable exe application/octet-stream
WAIS "sources' srcwsrc application/x-wais-source
NCSA HDF data format hdf application/hdf
Downloadable Program/Scripts
Javascript program jslsmocha text/javascript
application/x-javascript
VBScript program text/vbscript
UNIX bourne shell program il application/x-sh
UNIX c-shell program csh application/x-csh
Perl program ol application/x-perl
Tcl (Tool Control L anguage) program tcl application/x-tcl
Atomicmail program scripts (obsolete) application/atomicmail
Slate documents - executable enclosures (BBN) application/date
Undefined binary data (often executable progs) application/octet-stream
RISC OS Executable programs (ANT Limited) application/riscos
Animation/M ultimedia
Andrew Toolkit inset application/andrew-inset
FutureSplash vector animation (FutureWave) spl application/futuresplash
mMBED multimedia data (MBED) mbd application/mbediet
Macromedia Shockwave (Macromedia) application/x-director
SZer rea-time video/animation application/x-sprite
PowerMedia multimedia (RadMedia) rad application/x-rad-powermedia
Presentation
| PowerPoint presentation (Microsoft) ppz application/mspowerpoint
|PaintPlus bresentation data (Net Scene) Css application/x-pointplus
| ASAP WordPower (Software Publishing Corp.) asp application/x-asap
Astound Web Plaver multimedia data (GoldDisk) asn application/astound
Special Embedded Object
OLE script e.q. Visual Basic (Ncompass) axs application/x-olescript
OLE Object (Microsoft/NCompass) ods application/x-oleobject
OpenScape OL E/OCX objects (Business@Weh) opp x-form/x-openscape
Visual Basic objects (Amara) wha application/x-webbasic
Specialized data entry forms (Alpha Software) frm application/x-alpha-form
client-server objects (Wayfarer Communications) wix X-script/x-wxclient
General Applications
Undefined binary data (often executable progs) application/octet-stream
CALS(U.S. D.O.D dataformat - RFC 1895) application/cals-1840
Pointcast news data (Pointcast) pcn application/x-pcn
Excel spreadsheet (Microsoft) application/vnd.ms-excel
application/x-msexcel
application/ms-excel
PowerPoint (Microsoft) ppt application/vnd.ms-powerpoint
application/ms-powerpoint
Microsoft Project (Microsoft) application/vnd.ms-project
Works data (Microsoft) application/vnd.ms-works
MAPI data (Microsoft) application/vnd.ms-tnet
Artgallery data (Microsoft) application/vnd.artgalry
SourceView document (Dataware Electronics) svd application/vnd.svd
Truedoc (Bitstream) application/vnd.truedoc

133

MPEG audio mpaabs mpega audio/x-mpeg

MPEG-2 audio mp2ampa2 audio/x-mpeg-2

compressed speech (Echo Spesch Corp.) €s audio/echospeech

Toolvox speech audio (Voxwere) VOX audio/voxware

RapidTransit compressed audio (Fast Man) Icc gpplication/fastman

Realaudio (Progressive Networks) raram gpplication/x-pn-redaudio

NIFF music notation data formet application/'vnd.music-niff

MIDI music data mmid X-music/X-midi

Koan music data (SSeyo) skp gpplication/vnd.koan
gpplication/x-koan

Speech synthesis data (MVP Solutions) talk text/x-speech

Video Types

MPEG video mpeg mpg mpe video/mpeg

MPEG-2 video mpv2 mp2v video/mpeg-2

Macintosh Quicktime qt mov video/quicktime

Microsoft videc avi video/x-msvidec

Gl Movie forma movie video/x-sgi-movie

VDOlive streaming video (VDOnet) vdo video/vdo

Vivo streaming video (Vivo software) Viv video/vnd.vivo
videolvivc

Special HTTP/Web Application Types

Proxy autoconfiguration (Netscape browsers) pac application/x-ns-proxy-autoconfiq
gpplication/x-www-form-urlencoded
gpplication/x-www-loca -exec

(Netscape extension) multipart/x-mixed-replace

multipart/form-data

Netscape Cooltalk chat data (Netscape) ice x-conference/x-cooltalk

Interactive chat (Ichat) gpplication/x-chat

Application Types

Text-Related

PostScript aesps application/postcript

Microsoft Rich Text Format rtf application/rf

Adobe Acrobat PDF pdf appli cation/pdf
gpplication/x-pdf

Maker Interchange Format (FrameMaker) mif gpplication/vnd.mif
application/x-mif

Troff document t tr roff gpplication/x-troff

Troff document with MAN macros man application/x-troff-man

Troff document with ME macros me gpplication/x-troff-me

Troff document with MS meacros e application/x-troff-mg

LaTeX document latex gpplication/x-latex

Tex/LateX document tex gpplication/x-tex

GNU TexInfo document texinfo texi gpplication/x-texinfo

TeX dvi format dvi application/x-dvi

MacWrite document » gpplication/macwritdi

MS word document 7 gpplication/msword

WordPerfect 5.1 document ped gpplication/wordperfect5.1

SGML application (REC 1874) aoplication/sgml

Office Document Architecture oda gpplication/oda

Envoy Document ey gpplication/envoy

Wang Info. Tranfer Format (Wang) gpplication/wita

DEC Document Transfer Format (DEC) application/dec-dx

IBM Document Content Architecture (IBM) application/dearrft

CommonGround Digital Paper (No Hands Software) gpplication/commonground

FrameMaker Documents (Frame) doc fm frm frame gpplication/vnd.framemaker

gpplication/x-framemaker

Remote printing a arbitrary printers (RFC 1486)

application/remote-printing

134

INet Install - software install (20/20 Software) ins apolication/x-net-install |
ICarbon Copv - remote control/access (Microcom) ooy application/cay
|Soreadsheets (Visual Components) vis workbook/formulaone |
Cvbercash digital monev (Cybercash) apolication/cvbercash |
Earmat for sending generic Macintosh files — " | a0 anolication/apolefile |
1X.400 mail message bodv part (RFC 1494) apolication/x400-bp
JUSENET news message id (RFC 10361 application/news-message-id |
JUSENET news message (RFC 1036) anolication/news-transmission
Multipart Types (mostly email)
IMessages with multiple parts multipart/mixed
|Messages with multiple, alternative parts multipart/alternative
IMessage with multiple, related parts multipart/related
IMultiole parts are digests multipart/digest
|For reporting of email status (admin.) multipart/report
|Order of parts does not matter multipart/parallel
IMacintosh file data multipart/appledouble
|Acaregate messages: descriptor as header multipart/header-set |
|Container for voice-mail multipart/voice-message |
IHTML FORM data (see Ch. 9 and App, B) multipart/form-data
lInfinite multiparts - See Chapter 9 (Netscape) multipart/x-mixed-replace |
M essage Types (mostly email)
MIME message message/rfc822
|Partial message message/partjal
|Message containing USENET news message/news
IHTTP messaqe messaqge/htto
2D/3D Data/Virtual Reality Types
WIRL - VRMI data (VREAM) x-world/x-vrml|
|Plav3D 3d scene data (Play3D) VIW x-world/x-vream
Viscape Interactive 3d world data (SUperscape) n3d application/x-p3d
IWebActive 3d data (Plastic Thought) svr x-world/x-svi
lOuickDraw3D scene data (APPI€) Wyt X-world/x-wyr

3dmf x-world/x-3dmf
Scientific/Math/CAD Types
Chemical types -- information about chemical models chemical/* (several subtypes)
Mathematica notebook ma application/mathematice
|Compoutational meshes for numerical simulations msh x-model/x-mesh
1VisbD 5-dimensional data v5d apolication/visbd

" o P

|Autocad WHIP vector drawinas dwf drawina/x-dwi

L argely Platfor m-Specific Types

Silicon Graphics Specific Types

showcase slides sc sho

|Showcase Presentations show application/x-showease |
|lnsiaht Manual pages insinsight application/x-insight |
\Lris Annotator data ano application/x-annotator |
Directorv Viewer dir application/x-dirview

|Software License lic application/x-enterlicense |
|Fax manager file faxmar application/x-fax-manager |
|[Fax iob data file faxmariob apolication/x-fax-manaaer-iob

IconBook data icnbk application/x-iconbook

? wb application/x-inpview

Installable software in 'inst' format inst application/x-install

IMail folder mail application/x-mailfolder |
2 DD bpages application/x-ppages |
|Data for printer (vialor) sqi-lor application/x-sqi-lpr

|Software in 'tardist' format tardist application/x-tardist

Software in compressed 'tardist' format ztardist application/x-ztardist |
WinaZ spreadsheet wkz application/x-winaz

QOpen Inventor 3-D scenes iv araphics/x-inventor

135

FORTNUMBER SHRVICE

topmux

e

aho

discad

gydat

daytime

neidat

ootd

sendwp
chargen

ftp-data

fto

sh, p)cArvwwhere
Tdnet

MTP

ETRN

megicp
merauth

dyp

time

RAP

fp

namesav, WINS
whais, nickname

RMCP, re'mail-ck
DNS

MTP

NALE

whois++

of*ret

bootps
bootpd/dhco

Gopher

finger

ww-hitp
Kebaos WWW
Supaup

DIXIE

linuxconf
HOSINAME
1S0O, X400, ITOT

E88EBBIIBBAIRIBYIIS I BBUYBRBNRNBRIRRBBBERGEEC YR

EBRERE
333

Z
2
3
é

Appendix B

PORTNUMBER SERVICE

TACACS Login Host Protocdl

Trivid Fle Transfer Pratocdl (iftp)

136

BREcBBEBERBRBRERRE

210

BEREBEEESC88E8HEERERE

514

identd/auth

ftp

ucp

NNTP

CDP

NTP

SacuredlD

PAVDGEN

Satsv

loc-gv/gpmep

nethiosns

nethiosdgm (UDP)
NeBIOS

IMAP

NenS

BFTP

GMP

NMP

Vet

XDMCP

NextSgp Window Saver
BGP

S mail admin

MK

Z3950

MFP

IMAR3

ESRO

FW1 topo
AndeWebhAdmin
MATIPtypeA
MATIPtypeB
RSVPtund

ODMR (OnDemand Mal Rday)
AURP (AppleTalk Updste BassdRouing Protocdl)
LDAP

Timbuktu

MdhilelP

o

son, Smple Network Pacing Pratocol
VB

QuIckTime TV/Conferencing
Photuris

ISAKMP, pluto

hiff, rexec

who, rlogin

sydog rh

Ip, Ipr, line printer

PORT NUMBER SERVICE

517 talk

520 RIP (Routing Information Protocol)
521 RIPng

522 ULS

531 IRC

543 KLogin, AppleShare over IP
545 QuickTime

548 AFP

554 Real Time Streaming Protocol
555 phAse Zero

563 NNTPover SSL

575 VEMMI

581 Bundle Discovery Protocol

593 MSRPC

608 SIFT/UFT

626 Apple ASIA

631 IPP (Internet Printing Protocol)
635 mountd

636 sldap

642 EMSD

648 RRP (NS Registry Registrar Protocol)
655 tinc

660 Apple MacOS Server Admin
666 Doom

674 ACAP

687 AppleShare IP Registry

700 buddyphone

705 AcgentX for SNMP

901 swat, real secure

993 Simap

995 S-pop

1062 Veracity

1080 SOCKS

1085 WebObjects

1227 DNS2Go

1243 SubSeven

1338 Millennium Worm

1352 Lotus Notes

1381 Apple Network License Manager
1417 Timbuktu

1418 Timbuktu

1419 Timbuktu

1433 Microsoft SOL Server

1434 Microsoft SQL Monitor

1494 Citrix ICA, MS Terminal Server
1503 T.120

1521 Oracle SQL

1525 prospero

1526 prospero

137

PORT NUMBER SERVICE

1527
1604
1645
1646
1680
1701
1717
1720
1723
1755
1758
1812
1813
1818
1973
1985
1999
2001
2049
2064
2065
2066
2106
2140
2301
2327
2336
2427
2504
2535
2543
2592
2727
2628
2998
3000
3031
3128
3130
3150
3264
3283
3288
3305
3306
3389
3521

4321

tlisrv

Citrix ICA, MS Termina Server
RADIUS Authentication
RADIUS Accounting
Carbon Copy
L2TP/ILSF

Convoy

H.323/Q.931

PPTP control port
Windows Media .asf
TFTP multicast
RADIUS server
RADIUS accounting
ETFTP

DLSw DCAP/DRAP
HSRP

CiscoAUTH

glimpse

NFS

distributed.net

DLSw

DLSw

MZAP

DeepThroat

Compaq Insight Management Web Agents
Netscape Conference
Apple UG Control
MGCP aateway

WLBS

MADCAP

sip

netrek

MGCP cdl agent

DICT

ISS Real Secure Console Service Port
Firstclass

Apple AgentVU

squid

ICP

DeepThroat

ccmail
AppleNetAssitant
COPS

ODETTE

mySQL

NT Termina Server
netrek

icq, command-n-conquer
rwhois

PORT NUMBEFE SERVICE

4333
4827
5004
5005
5010
5060
5190
5500
5501
5423
5631
5632
5800
5801
5900
5901
6000
6112
6502
6667
6670
6699
6776
6970
7007
7070
7778
7648
7649
8010
8080
8181
8383
8875
8883
10008
11371
13223
13224
14237
14238
18888
21157
23213
23214
23456
26000
27001
27010

mSOL

HTCP

RTP

RTP

Y ahoo! Messenaer
SIP

AIM

securid
securidprop

Apple Virtuad User
PCAnywheredata
PCAnywhere
VNC

VNC

VNC

VNC

X Windows
BattleNet
Netscape Conference
IRC

VocaTec Internet Phone, DeepThroat
napster

Sub7

RTP

MSBD, Windows Media encoder
Real Server/QuickTime
Unreal

CU-SeeMe
CU-SeeMe
WinGate 2.1
HTTP

HTTP

IMail WWW
napster

naoster

cheese worm

PGP 5 Keyserver
PowWow
PowWow

Pam

Pam

LiquidAudio
Activision
PowWow
PowWow

EVilFTP

Quake
QuakeWorld
Half-Life

138

PORT NUMBER SERVICE

27015
27960
30029
31337
32777
40193
41524
45000
Multicast
ICMP Type
32773
32776
32779
38036

Half-Life
Quakelll

AOL Admin
Back Orifice
roc.walld

Novell

arcserve discovery
Cisco NetRanger postofficed
hidden

hidden
rpc.ttdbserverd
rpc.spray
rpc.cmsd
timestep

Appendix C

Case: 1

All-Mail multiple SMTP buffer overflows

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-0985 (under review);
bugtrag 1789

Description:

Nevis System All-Mail version 1.1 is vulnerable to multiple buffer overflows. All-Mail is a mail server
written for Windows. By sending long commands such as "mail from" or "rcpt to" a remote attacker can
overflow abuffer and execute arbitrary code on the system. Several static buffersin the SMTP component
are susceptable. Overflow input is sent remotely to TCP port 25.

Intent:
a) Penetrate; Remote: get root

b) DOS; Remote

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 25; SMPT

Target Hardware:
Windows: 2000, NT4

Target Software:
Application; All-Mail (1.1)

139

140
Case: 2

Cesar FTP long command buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0826 (under review);
bugtraq id 2972

Description:

CasesarFTP is a Windows FTP server from ACLogic. By sending along string of characters argumenting
any of several FTP commands, an attacker can cause a stack overflow. A remote user could supply a prop-
erly-structured argument to an affected command, designed to exceed the maximum length of the input
buffer. The values stored in this buffer can overflow onto the stack, potentially overwriting the calling
functions' return address with values that can alter the program's flow of execution.

Intent:
a) Penetrate; Remote: get root

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP;, TCP; port 21; FTP

Target Hardware:
Windows: NT

Target Software:
Application; ACLogic Caesar FTP 0.98b; server.exe

141
Case: 3

CiscoSecure ACS CSAdmin buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2000-1054; bugtraq id 1705

Description:

CiscoSecure ACS for Windows NT versions 2.4.2 and earlier are vulnerable to a buffer overflow in the
CSAdmin software module. By sending an oversized packet to TCP port 2002, an unauthenticated remote
attacker can overflow the buffer and execute arbitrary code or cause the CSAdmin software module to
crash. The effects of this vulnerability vary, depending on the exact versions of Windows NT and CiscoS-
ecure ACSon the server.

Intent:
a) Penetrate; Remote: get info?; illegal disk write b) DOS Remote

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 2002;

Target Hardware:
Windows: NT

Target Software:
Application; CiscoSecure ACS for Windows NT versions 2.4.2 and earlier

142
Case: 4

EFTP'.Ink' file buffer overflow

Sour ce:
bugtrag 3330

Description:

Encrypted FTP (EFTP) is a client/server program developed by Khamil Landross and Zack Jones that
allows users to transfer files securely and is based on the 448bit Blowfish Encryption Algorithm and the
FTP protocol. EFTP version 2.0.7.337 is vulnerable to a buffer overflow. After uploading a*.Ink file con-
taining a large amount of "A" characters and issuing a LIST command, a remote attacker can overflow a
buffer and execute arbitrary commands on the system or launch adenia of service attack.

Intent:
a) Penetrate; Remote: get root

b) DOS; Remote

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP;, TCP; port 23; FTP

Target Hardware:
Windows: 95, 98, 2000, ME, NT4; CiscoiCDN 2.0

Target Software:
Application; Khamil Landross and Zack Jones EFTP 2.0.7.337

143
Case: 5

DocumentDirect GET buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-0826 (under review);
bugtraq id 1657

Description:

A number of unchecked static buffers exist in Mobius DocumentDirect for the Internet program. Depend-
ing on the data entered, arbitrary code execution or adenial of service attack could be launched under the
privilege level of the corresponding service.

Buffer Overflow #1 - Issuing the following GET request will overflow DDICGI.EXE: GET/ddrint/bin/
ddicgi.exe?[string at least 1553 characters long]=X HTTP/1.0

Buffer Overflow #2 - Entering a username consisting of at least 208 characters in the web authorization
form will cause DDIPROC.EXE to overflow. If random data were to be used, a denial of service attack
would be launched against the DocumentDirect Process Manager which would halt all servicesrelating to
it.

Buffer Overflow #3 - Issuing the following GET request will cause an access validation error in
DDICGI.EXE:GET /ddrint/bin/ddicgi.exe HTTP/1.0\r\nUser-Agent: [long string of characters]\r\n\r\n

Intent:
a) Penetrate; Remote: get privilege

b) DOS; Remote

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows; NT4

Target Software:
Application; Mobius DocumentDirect for the Internet 1.2

144
Case: 6

FrontPage 98 Server Extensions DVWSSR.DLL file buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-0260 (under review);
bugtraqid 1109

Description:

Microsoft FrontPage 98 Server Extensions installs the file DVWSSR.DLL inthe/_vti_bin/_vti_aut direc-
tory on Windows 95/98 and Windows NT Web servers. This file is normally used to connect to the site
with the Microsoft InterDev program. A malicious user could overflow an unchecked buffer in the
DVWSSR.DLL fileto crash the server and execute arbitrary code.

Intent:
a) Penetrate; Remote: get privilege
b) DOS; Remote

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:

Windows. Microsoft FrontPage 98 Server Extensions for I1S, Microsoft FrontPage 98, Microsoft 11S 4.0,
Microsoft NT Option Pack for NT 4.0, Microsoft InterDev 1.0, Microsoft Windows NT 4.0

Target Software:

Application; Microsoft FrontPage 98 Server Extension Dynamic Link Library (.DLL) File: dvwssr.dll

145
Case: 7

FrontPage Server Extensions Visual Studio RAD Support sub-component buffer
over flow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2001-0341; bugtraq id 2906

Description:

Microsoft FrontPage Server Extensions (FPSE) for Windows NT and Windows 2000 is vulnerable to a
buffer overflow in the Visual Studio RAD (Remote Application Deployment) Support sub-component.

FrontPage Server Extensions are components used in Microsoft Internet Information Server (11S) versions
4.0 and 5.0. If the Visual Studio RAD Support sub-component is installed, a remote attacker can send a
specially-crafted packet to the server to overflow a buffer. When fp30reg.dil receives a URL request that
islonger than 258 bytes, a stack buffer overflow will occur. An attacker could exploit this vulnerability to
execute arbitrary code on the system and possibly gain complete control over the affected Web server.

Intent:
a) Penetrate; Remote: get root

Offensive Access Requirements:
Standard Network Access

Offensive Platfor m:
Any

Delivery Strategy:
a) |P;, TCP; port 80; HTTP

Target Hardware:
Windows:. FrontPage 2000 Server Extensions: All Versions, Microsoft 11S 4.0, Microsoft 1S 5.0, Win-
dows 2000 Advanced Server, Windows 2000 Server, Windows 2000: All Versions, Windows NT 4.0

Target Software:
Application; Microsoft FrontPage 2000 Server Extension Dynamic Link Library (.DLL) File: fp30reg.dil

146

Case: 8

GuildFTPD SITE command buffer overflow

Sour ce;

Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0770

Description:

GuildrFTPD is afree Windows FTP server. GuildFTPD version 0.97 is vulnerable to a buffer overflow in
the SITE command. By sending a SITE command containing 261 bytes or more, a remote attacker can
overflow a buffer in ‘sitecmd.dll’ to execute arbitrary code on the system.

Intent:
a) Penetrate; Remote: get privilege

Offensive Access Requirements:

Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP;, TCP; port 21; FTP

Target Hardware:
Windows: All versions

Target Software:

Application; GuildFTPD version 0.97 File: sitecrd.dll

147
Case 9

1S buffer overflow in HTR requests can allow remote code execution

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-1999-0874; bugtraq id 0307

Description:

Microsoft Internet Information Server (11S) version 4.0 is vulnerable to a denial of service attack caused
by abuffer overflow involving theway that . HTR, .STM, and .IDC files are processed. 1S version 4.0 can
perform various server-side processing with specific file types. Requests for files ending with .HTR,
.STM, and .IDC extensions are passed to the appropriate external DLL for processing. By sending a mal-
formed request, an attacker can overflow a buffer and cause the service to crash. It may be possible for an
attacker to use this vulnerability to execute arbitrary code on the system.

Intent:
a) Penetrate; Remote: get privilege

b) DOS; crash vulnerable I1s processes

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:

Windows: Microsoft 1S 4.0 ; Cisco Building Broadband Service Manager 5.0; Cisco Call Manger 1.0;
Cisco Call Manger 2.0; Cisco Call Manger 3.0; Cisco ICS 7750; Cisco IP/VC 3540; Cisco Unity Server
2.0; Cisco Unity Server 2.2; Cisco Unity Server 2.3; Cisco Unity Server 2.4; Cisco uOne 1.0; Cisco uOne
2.0; Cisco uOne 3.0; Cisco uOne 4.0; Microsoft BackOffice 4.0; Microsoft BackOffice 4.5; Microsoft
Windows NT 4.0 Option Pack

Target Software:
Application; Microsoft 11S 4.0 Server File: ism.dll

148
Case: 10

[1Sidq.dll ISAPI extension buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2001-0500;

Description:

Microsoft Internet Information Server (11S) versions 4.0, 5.0, and 6.0 beta are vulnerable to a buffer over-
flow in the handling of ISAPI (Internet Services Application Programming Interface) extensions. An
unchecked buffer in the code that handles idg.dll ISAPI extensions in the Indexing Service for |1S could
allow aremote attacker to overflow a buffer and execute code by sending a specially-crafted Indexing Ser-
vice request. An attacker could exploit this vulnerability to gain complete control over the affected server.

This vulnerahility is exploitable viathe "Code Red" and "Code Red |1" worm. The "Code Red" worm is a
self-propagating worm that scans random I P addresses on port 80 searching for vulnerable Web servers.
Once avulnerable Web server is found, the worm performs malicious activity before propagating to other
vulnerable hosts. The "Code Red I1" worm does not deface Web sites, asthe original version of the worm
did, but it carries a more serious threat -- it contains a Trojan Horse payload, which could allow any
remote attacker to further compromise infected systems. The "Code Red 11" worm also has the ability to
scan for vulnerable hosts much faster than previous versions, which has already been reported to cause
failures in certain network components by overloading them with network traffic.

Intent:
a) Penetrate; Remote: get root

b) DOS; Remote

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:

Windows: Microsoft 1S 4.0; Microsoft 11S 5.0; Microsoft 1S 6.0 beta; Microsoft Index Server 2.0;
Microsoft Indexing Service All versions; Windows 2000: All Versions, Windows NT 4.0; Windows NT:
All Versions, Windows XP beta

Target Software:
Application; Microsoft Internet Information Server (11S) File: idg.dll ISAPI extension

149
Case: 11

[1S5.0 ISAPI Internet Printing Protocol extension buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2001-0241; bugtraq id 2674

Description:

Microsoft Internet Information Server (11S) version 5.0 installed on Microsoft Windows 2000 is vulnera-
ble to a buffer overflow in the handling of ISAPI (Internet Services Application Programming Interface)
extensions. An unchecked buffer exists in the code that handles input parameters for the Internet Printing
Protocol (IPP) ISAPI extension. Windows 2000 Internet printing ISAPI extension contains msw3prt.dll
which handles user requests. Due to an unchecked buffer in msw3prt.dil, the following maliciously
crafted HTTP .printer request will alow the execution of arbitrary code. GET /NULL.printer HTTP/1.0
Host: [buffer] . Where [buffer] is aprox. 420 characters. Typically aweb server would stop responding in a
buffer overflow condition; however, once Windows 2000 detects an unresponsive web server it automati-
cally performs a restart. Therefore, the administrator will be unaware of this attack. An attacker can use
this vulnerability to gain complete control over the affected server.

Intent:
a) Penetrate; Remote: get privilege

Offensive Access Requirements:
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:

Windows: Microsoft 11S 5.0: Microsoft Windows 2000 Advanced Server; Microsoft Windows 2000
Advanced Server SP1; Microsoft Windows 2000 Advanced Server SP2; Microsoft Windows 2000 Data-
center Server SP1; Microsoft Windows 2000 Datacenter Server SP2; Microsoft Windows 2000 Profes-
sional; Microsoft Windows 2000 Professional SP1; Microsoft Windows 2000 Professional SP2; Microsoft
Windows 2000 Server; Microsoft Windows 2000 Server SP1; Microsoft Windows 2000 Server SP2

Target Software:
Application; Microsoft 11S 5.0 Server File: msw3prt.dll

150
Case: 12

[ISremote FTP buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-1999-0349; bugtraq id 0192

Description:

There is a Denial of Service / Buffer Overflow condition in Microsoft 11S4 FTP service when using the
Name List (NLST) command. A user having user or anonymous access to the FTP server may initiate this
attack. Connecting to the FTP server and issuing an Is command with 316 characters will cause the inet-
info.exe service to crash (and the connection to be reset). Passing more than 316 characters will cause the
stack to be overwritten. Up to 505 characters may be passed.

Intent:
a) DOS; Remote: crash/freeze host

Offensive Access Requirements:
Server must either have anonymous access rights or an attacker must have an account

Offensive Platform:
Any

Delivery Strategy:
a) IP;, TCP; port 21; FTP

Target Hardware:
Windows. Microsoft IS 3.0; Microsoft |1S 4.0; Microsoft Personal Web Server 1.0; Windows NT: All
Versions

Target Software:
Application; Microsoft 1S (Internet Information Server) FTP service File: inetinfo.exe

151

Case: 13

I1S specially-crafted SSI directives buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0506; bugtraq id 3190

Description:

Microsoft Internet Information Server (11S) versions 4.0 and 5.0 are vulnerable to a buffer overflow in the
ssinc.dll code that processes Server Side Include (SSI) directives. By loading afile to the Web server that
contains a specially-crafted SSI directive, an attacker can overflow a buffer, that is limited to 2550 bytes,
once the user requests the vulnerable file. An attacker can use this vulnerability to execute arbitrary com-
mands on the system to gain local system level privileges.

Intent:
a) Penetrate; Remote: get local system level privilege

Offensive Access Requirements:
Attacker must have write access to the web root of the target web server

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Microsoft I1S 4.0; Microsoft 11S 5.0; Windows 2000: All Versions; Windows NT: All Versions

Target Software:
Application; Microsoft 1S (Internet Information Server) Server Side Include (SSI) directive File: ssinc.dll

152
Case: 14

Inter Scan RegGo.dll buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0678; bugtraq id 2907

Description:

Trend Micro InterScan ViruswWall for Windows NT 3.5 prior to version 3.51 Build 1349 and InterScan
WebManager version 1.2 are vulnerable to a buffer overflow in the reggo.dil file. Thisfileis used to sup-
port aweb management console feature in InterScan WebManage. By using along string containing 820
characters, an attacker can overflow a buffer to execute arbitrary code on the system.

Intent:
a) Penetrate; Local: get privilege

Offensive Access Requirements:
Attacker must have local access

Offensive Platfor m:
Windows: Windows 2000; Windows NT 4.0; Windows NT 3.5 (for Viruswall).

Delivery Strategy:
a) Local Access

Target Hardware:
Windows: Windows 2000; Windows NT 4.0; Windows NT 3.5 (for Viruswall).

Target Software:
a) Application; InterScan Viruswall 3.51; InterScan WebManager 1.2 File: reggo.dll

b) OS; Windows NT 3.5-4.0; Windows 2000

153
Case: 15

Inter Scan WebM anager HttpSave.dll buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0761; bugtraq id 2959

Description:

Trend Micro InterScan WebManager version 1.2 is an application that inspects http traffic flowing into a
network for known malicious code. This application also has the capability to restrict access to adult/
unproductive web sites, manage and monitor web usage, monitor and control http traffic, and provide dig-

ital certificate revocation checking in SSL connections. If a secure Web site's digital certificate has been
revoked, InterScan WebManager has the capability to terminate the transaction. A remotely exploitable
buffer overflow exists in the RegGo dynamic link library module included in Trend Micro InterScan Web-

Manager. This module provides management features for the system administrator over an http interface.

By sending a long argument to a particular configuration parameter in the HttpSave.dll file, a remote
attacker can overflow a buffer and execute arbitrary code on the system with system privileges.

Intent:
a) Penetrate; Remote: get privilege; get info

Offensive Access Requirements:
Attacker must have account access (?)

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Windows 2000; Windows NT 4.0

Target Software:
a) Application; InterScan WebManager 1.2 File: HttpSave.dll

b) OS; Windows NT 4.0; Windows 2000

154
Case: 16

Windows M edia Player .ASF marker buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0719; bugtraq id 3156

Description:

Microsoft Windows Media Player is a multimedia player for many formats of music and video files. Win-
dows Media Player versions 6.4, 7.0, 7.1 ans XP are vulnerable to a buffer overflow in the processing of
ASF video files. By sending a specially-crafted .ASF file containing an overly long marker, a remote
attacker can overflow a buffer and crash the application or execute arbitrary code on the user’s computer.

Intent:
a) Penetrate; Remote get privilege; get info

b)DOS; Remote crash/freeze app

Offensive Access Requirements:
Host must open file

Offensive Platform:
Any

Delivery Strategy:
a) |P; TCP; port 80; .asf file

Target Hardware:
Windows: All

Target Software:
a) Application; Windows Media Player 6.4; Windows Media Player 7.0; Windows Media Player 7.1,
Microsoft Windows Media Player XP

b) OS; Windows All

155
Case: 17

Microsoft Media Player .ASX buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-1113; CAN-2001-0242;
bugtraq id 1980, 2677, 2686

Description:

Microsoft Windows Media Player is a multimedia player for many formats of music and video files. Ver-

sions 6.4 and 7.0 are vulnerable to a buffer overflow in the code that parses Active Stream Redirector
(\ASX) files. The ASX enables a user to play streaming media residing on an intranet or external site.

ASX files are metafiles that redirect streaming media content from a browser to Windows Media Player.

The contents of ASX files, when being interpreted by Windows Media Player, are copied into memory
buffers for run-time use. When this data is copied, it is not ensured that the amount of data copied is
within the predefined size limits. As aresult, any extraneous data will be copied over memory boundaries
and can overwrite neighbouring memory on the program's stack. Depending on the data that is copied, a
denial of service attack could be launched or arbitrary code could be executed on the target host. Windows
Media Player runs in the security context of the user currently logged on, therefore arbitrary code would
berun at the privilege level of that particular user. If random data were entered into the buffer, the applica-
tion would crash and restarting the application is required in order to regain normal functionality. If a user
was misled to download a hostile .ASX file to the local machine, they would only have to single click on
the file within Windows Explorer to activate the code. Thisis due to the 'Web View' option that is used by
Windows Explorer to preview web documents automatically while browsing (this feature is enabled by
default). In addition, a malformed .ASX file could be embedded into a HTML document and be config-
ured to execute when opened via a browser or HTML compliant email client.

Intent:
a) Penetrate; Remote get privilege; get info

b)DOS; Remote crash/freeze app

Offensive Access Requirements:
Host must open file

Offensive Platform:
Any

Delivery Strategy:
a) a) IP, TCP; port 80; .asx file

Target Hardware:
Windows: All

Target Software:
a) Application; Windows Media Player 6.4; Windows Media Player 7.0

b) OS; Windows All

156
Case: 18

Netscape Directory Server RCPT TO excessive quotes buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0164

Description:

Netscape Directory Server versions 4.1 and 4.12 are vulnerable to a buffer overflow. By default, Netscape
Directory Server isinstalled as part of Netscape Messaging Server version 4.15SP3. A remote attacker can
connect to the SMTP service and insert into the "RCPT TO" field a specially-crafted name containing
excessive quote (Hex 0x22) characters to overflow a buffer and execute arbitrary code on the server or
cause adenial of service attack.

Intent:
a) Penetrate; Remote get privilege; get info

b)DOS; Remote crash/freeze app

Offensive Access Requirements:
Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP, TCP; port 25; SMTP

Target Hardware:
Windows NT: All Versions

Target Software:
a) Application; Netscape Directory Server 4.1; Netscape Directory Server 4.12 File: libslapd.dl

b) OS; Windows NT

157
Case: 19

CASSANDRA NNTP server buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2000-0341; bugtraq id 1156

Description:

The CassandraNNTP v1.10 server by Atrium Software is vulnerable to denial of service attack caused by
abuffer overflow. Cassandra NNTP is a Windows-based newsgroup server that can be accessed and con-
figured by aremote user. A remote attacker can telnet to port 119 and overflow the login buffer by enter-
ing along username containing 10,000 characters or more.

Intent:
a)DOS; Remote crash/freeze app/server

Offensive Access Requirements:
Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 119; NNTP

Target Hardware:
Windows: Windows 95: All Versions; Windows 98: All Versions; Windows NT: All Versions

Target Software:
a) Application; CASSANDRA NNTPServer 1.10

b) OS; Windows 95: All Versions; Windows 98: All Versions, Windows NT: All Versions

158
Case: 20

Windows NT RAS client contains an exploitable buffer overflow

Sour ce:
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-1999-0715; bugtraq id 1156

Description:

The portion of the Remote Access Service (RAS) client for Windows NT 4.0 that processes phone book
entries is vulnerable to a denial of service attack caused by a buffer overflow. With the RAS service
comes RASSRV.EXE, which implements the Remote Access Server service and is used for accepting
incoming calls, RASMAN.EXE which implements the RAS Autodial Manager and RAS Connection
Manager services which are used to dial out. RASPHONE.EXE is the application used when a user man-
ual dials out, as well as editing the Phone Book. RASDIAL.EXE is also used to dial out. RASSRV.EXE
and RASMAN.EXE are system processes and run in the security context of the system where as RAS-
PHONE.EXE and RASDIAL.EXE normally run in the security context of the user who starts the process.
The buffer overruns occur because the RAS API functions, such as RasGetDialParams(), perform no
bounds checking and fill structuresthat contain character arrays. For instance, when the Autodial Manager
dialsout it usesthe RasDail GetParams (') function to read in such things as the telephone number from the
Phonebook, rasphone.pbk. It places these into the RASDIALPARAMS structure that contains characters
arrays. Because no bounds checking is performed if the rasphone.pbk contains an overly long telephone
number it will cause RASMAN.EXE to access violate. If the phone number is over 299 characters in
length we overwrite the processor's EIP and can completely change the programs order of execution and
execute arbitary code, though more on this later. By default rasphone.pbk gives Everybody the Change
NTFS permission meaning that anyone with access to this file may edit its contents and cause the buffer
overflow.

Intent:
a)Penetrate; Local; get privilege

Offensive Access Requirements:
Local Access

Offensive Platform:
Windows NT: all versions; Windows 2000: all versions

Delivery Strategy:
Local Access

Target Hardware:
Windows:. Windows NT: all versions; Windows 2000: all versions

Target Software:
a) OS; Windows NT: all Versions, Windows 2000: all versions, Remote Access Service (RAS) File:
rasfil32.dll earlier than April 28th 1999

Appendix D

|DC language

IDC: variables

All variables in IDC are automatic local variables (sic!). A variable can contain: - a 32-bit signed long
integer - a character string (max 255 characters long) - a floating point number (extra precision, up to 25

decimal digits)

A variable is declared in this way:

auto var;
This declaration introduces a variable named 'var'. It can contain a string or anumber. All C and C++ key-
words are reserved and cannot be used as a variable name. The variable is defined up to the end of the

function.

NOTE: to emulate global scope variables you may use array functions and create global persistent arrays.

159

160

IDC: Functions

A function in IDC returns avalue. There are 2 kinds of functions:
- built-in functions

- user-defined functions

A user-defined function is declared in this way:

static func(argl,arg2,arg3)
{

Statements ...

}

where argl,arg2,arg3 are the function parameters,'func' is the function name. It is not nesessary to specify
the types of the parameters because any variable can contain a string or anumber. All necessary type con-

versions are handled automatically.

IDC: Statements

In IDC there are the following statements:

expression; (expression-statement)
if (expression) statement

if (expression) statement el se statement
for (exprl; expr2; expr3) statement
while (expression) statement

do statement while (expression);

break;

continue;

return <expr>;

return; the same as 'return 0;'

{ statements... }

; (empty statement)

161
IDC: Expressions

In the IDC expressions you can use almost all C operations except:

complex assigment operations as '+='
, (comma operation)

Y ou can use the following construct in the expressions:

[s o]

This means to calculate linear (effective) address for segment 's' offset '0'. The calculation is made using
the following formula:

(s<<4)+o0

If astring constant is specified as's, it denotes a segment by its name.

There are 3 type conversion operations:

long(expr) float number is truncated during conversion
char(expr)
float(expr)

However, all type conversions are made automatically:

- addition:
if both operands are strings,
string addition is performed (strings are concatenated);
if floating point operand exists,
both operands are converted to floats;
otherwise
both operands are converted to longs;
- subtraction/multiplication/division:
if floating point operand exists,
both operands are converted to floats;

otherwise
both operands are converted to longs;
- comparisions (==,!=, etc):

if both operands are strings, string comparision is performed;
if floating point operand exists,
both operands are converted to floats;
otherwise
both operands are converted to longs;
- all other operations:
operand(s) are converted to longs;

162

List of IDC functions used in algorithm

Asks
char AskStr (char defval,char prompt); // ask a string
char AskFile (long forsave,char mask,char prompt); // ask afile name

long AskAddr (long defval,,char prompt); // BADADDR - no or bad input
long AskLong (long defval,char prompt); // -1 - no or bad input

long AskSeg (long defval,char prompt); // BADSEL - no or bad input
char Askldent (char defval,char prompt);

long AskYN (long defval,char prompt); // -1:cancel,0-no,1-ok
void Message (char format,...); // show a message in msg window
void Warning (char format,...); // show awarning a dialog box
void Fatal (char format,...); // exit IDA immediately

Byte

/I Get value of program byte
/I ea- linear address
I returns: value of byte. If byte has not a value then returns OxXFF

long Byte (long ea); /] get abyte at ea

form

/I Return aformatted string.
/I format - printf-style format string.

I %a - means address expression.

I floating point values are output only in one format
I regardless of the character specified (f,e,g,E,G)

I %p is not supported.

/I The resulting string must be less than 255 characters

char form (char format,...); // works as sprintf
/I The resulting string should
/I be less than 255 characters.

163

GetMnem

/I Get mnemonics of instruction

/I ea- linear address of instruction

/l returns: """ - no instruction at the specified location

// note: this function may not return exactly the same mnemonics
/l as you see on the screen.

char GetMnem (long ea); /I get instruction name

GetOpnd

/I Get operand of an instruction
/I ea- linear address of instruction
/I n - number of operand:

I 0 - the first operand

1 1 - the second operand

/I returns: the current text representation of operand

char GetOpnd (long ea,long n); /I get instruction operand

/I n=0 - first operand

GetOpType

/I Get type of instruction operand

/I ea- linear address of instruction
/" n - number of operand:

1 0 - thefirst operand

1 1 - the second operand

Il returns:

/I -1 bad operand number passed
1 None

1 General Register (al,ax,es,ds...)
1 Memory Reference

1 Base + Index

1 Base + Index + Displacement
1 Immediate

1 Immediate Far Address

1 Immediate Near Address

1 FPP register

1 386 control register

1 386 debug register

1 386 trace register

1 Condition (for Z80)

1 bit (8051)

1 bitnot (8051)

P Oooo~NOOULh WNEO

B R R R
MwNPRO

long GetOpType (long ealong n); /Il get operand type

LocByName

/I Get linear address of a name

1 from - the referring address.

1 Allows to retrieve local label addresses in functions.

1 If alocal nameis not found, then address of a global nameis returned.
I name - name of program byte

/I returns: address of the name

I BADADDR - no such name

long LocByName (char name);
long LocByNameEx (long from, char name);

strlen

/I Return length of astring in bytes
/[str - input string
/I Returns: length (0..n)

long strlen (char str); /I calculate length

Strstr

/l Search a substring in astring

/[str -inputstring

/I substr - substring to search

/I returns: 0..n - index in the 'str’ where the substring starts
1 -1 - if the substring is not found

long strstr (char str,char substr); // find a substring, -1 - not found

substr

/I Return substring of a string

/[str - input string

/I x1 - starting index (0..n)

/I x2 - ending index. If x2 == -1, then return substring
I from x1 to the end of string.

char substr (char str,long x1,long x2); // substring [x1..x2-1]
Il'if x2 == -1, then till end of line

164

Xrefs

/[Flow types:

#definefl_CF 16 /I Call Far
#definefl_CN 17 /I Call Near
#definefl_JF 18 /l Jump Far
#define fl_IN 19 I/ Jump Near
#define fl_US 20 /I User specified
#definefl_F 21 // Ordinary flow

/I Mark exec flow ‘from' 'to’
void AddCodeXref(long From,long To,long flowtype);

long DelCodeXref(long From,long To,int undef);// Unmark exec flow ‘from' 'to’

/l undef - make 'To' undefined if no
1 more references to it

/ returns 1 - planned to be

/I made undefined

/I The following functions include the ordinary flows:

long Rfirst (long From); I Get first xref from 'From’
long Rnext (long From,long current); // Get next xref from
long RfirstB (long To); Il Get first xref to 'To'

long RnextB (long To,long current); // Get next xref to 'To'

/I The following functions don't take into account the ordinary flows:
long RfirstO (long From);

long RnextO0 (long From,long current);

long RfirstBO(long To);

long RnextBO (long To,long current);

/I Datareference types:

#definedr O 1 /I Offset

#definedr W 2 /I Write

#definedr R 3 /l Read

#definedr T 4 /I Text (names in manual operands)

void add_dref(long From,long To,long drefType); // Create Data Ref
void del_dref(long From,long To); // Unmark Data Ref

long Dfirst (long From); I Get first refered address
long Dnext (long From,long current);
long DfirstB (long To); Il Get first referee address

long DnextB (long To,long current);

long XrefType(void); I/ returns type of the last xref
/I obtained by [RD]first/next[BO]
[l functions. Return values
/larefl_...ordr_...

/I set number of displayed xrefs
#define Xref Show(x) SetCharPrm(INF_XREFNUM ,x)

165

166

xtol

/I Convert ascii string to a binary number.
/I (this function is the same as hexadecimal 'strtol* from C library)
long xtol (char str); /I ascii hex -> number

I (uselong() for atol)

Appendix E

sprintf_scan.idc

static main()

aut o SprintfAddr, reference;
SprintfAddr = AskAddr(-1, "Enter address:");
reference = (SprintfAddr);

while(reference != -1)
if(GetMhenm(reference) == "call")

Get Anal ysi s(reference);
reference = Rnext (SprintfAddr, reference);

}

reference = DfirstB(SprintfAddr);

whil e(reference !'= -1)
if(GetMhem(reference) == "call")

Get Anal ysi s(reference);
reference = DnextB(SprintfAddr, reference);

static GetAnalysis(push)
{

aut o literal String, literal StrAddr, targetBuffer;
targetBuf fer = GetReturnVal ue(push, 1);
literal String = CetReturnVal ue(push, 2);

if(strstr(literal String, "offset") != -1)
literal String = substr(literal String, 7, -1);

literal StrAddr = LocByNane(literal String);
literal String = GetString(literal StrAddr);

if(strstr(literal String, "%") != -1)
if(strstr(targetBuffer, "var_") != -1)
Message("\n% x --> POTENTI AL OVERFLOW? Target Buffer is: " + targetBuffer + " String
Literal is: \"%\"\n\n\n", push, literalString);

static GetString(ourString)

auto tenporaryString, character;

tenporaryString = "";
character = Byte(ourString);

whi | e((character != 0)&&(character != OxFF))

{
tenmporaryString = form("%%", tenporaryString, character);
ourString = ourString + 1;
character = Byte(ourString);

return(tenporaryString);

static CetReturnVal ue(push, n)

auto t enpor ar yRegi ster;
while(n > 0)
{
push = RfirstB(push);
i f (Get Mnem(push) == "push")
n = n-1;

}
if(GetOpType(push, 0) == 1)
{

tenpor aryRegi ster = Get Opnd(push, 0);
push = RfirstB(push);

whi | e(Get Opnd(push, 0) != tenporaryRegister)
push = RfirstB(push);
return(Get Opnd(push, 1));

}
el se return(Get Opnd(push, 0));

167

Appendix F
sprintf_crasher.c

LTI T
11 ** gprintf() Gasher ** 11
/1 /1
/1 TH S PROERAM CREATES A SET GF BUFFERS AQCEPTING | NPUT | N TVD GONTEXTS. WEN THE /1
/1 sprintf() GOMWND IS INVGKED | T ATTEMPTS TO GPY THE GONTENTS FRIM A LAREE BIFFER //
/1 INTOA SWALLER BIFFER TH S CALBES A BUFFER OBRALONVWH CH ALLO/S THE OERR TE G- //
/1 FRAMVE PO NTER 11
/1 /1
LT T T

#include <stdio. h>

#incl ude <stdlib. h>

struct Buffer // buffer structure
{
char buf Lar ge[100] ;
char buf Shal | [60] ;

Iy
void Print(struct Buffer p) // function to print contents of buffer structure

{
printf(" *rkxx | OAD LARGE BUFFER WTH GAR STR NG *****\n 08 ", p. buf Large);
printf(" *axkx | OAD SVALL BUFFER WTH GHAR STR NG *****\n 96", p.buf Swal |);
}
nai n()
char buf Gobal [50]; // create third buffer instance two runin a second context
char newBuf [25];
struct Biffer test={" 11 Large BFFER P !!'I\n\n",
" e Sall BFFER W !I\n\n"};
struct Buffer x; // second instance of struct Buffer
Print(test); // prints contents of buflLarge and buf Sval | using print function
printfC LT TEEEPEEECPEEC PP EEEC PP EEEEC PR PP EEE PR ET] At
printf("| Alarge string to be truncated to (3) chars by safe sprintf() call that |\n");
pr!ntf("l copi es bufLarge irto bufSwal|. Enter large string into buf Large: 1\n");
printECHTTECECCENCEEEEEEEEE P EEEE PP EEEEE TP EEEE TR P EEEE R TP PP EEEET T ek n®)
scanf ("9%", Xx.bufLarge);
if (strlen(x.bufLarge)>99)
{
printf("Sring length is greater than [100] character x.bufLarge");
exit(1);
}
el se
sprintf(x.buf Swall,"%3s", x.buflLarge); //safe sprintf() #1; only reads first (3) chars
printf("\nSAFE SPRNTH) #1: A naxi numof (3) characters in bufSwall: 9%\n", x.bufSwall);
sprintf(newBuf,"AAA'); //safe sprintf() #2; only (3) chars
}
printf("SAFE SPRNTH) #2:nly (3) A's in nenBuf: 9%6\n", newBuf)
printf("\n\n\ n\n\n\ n");
pr!ntf('IIIIIIIIIIIIIIII|I||I||I||I||I|II||I||I||I||I||I|II||I||I||I||I||I|II||I||I\nf'),
printf("||]| ™S MMCS A SSRER S [E PRIGAM VW CH ACOEPTS Al BNT [1]\n");
printf("|]] THE FORMIGF A LRL [1]\n");
printf(" |II||II||II||II||II|||I|||II||II||II||II||II|||I|||II|I||I|I|I|I|I||||I|I|I\n\n)'
printf("Enter Internet URL: ");
scanf ("9%", x.bufLarge);
if (strlen(x.bufLarge)>99)
printf("Sring length is greater than [100] character size of x.bufLarge");
exit(1);
el se
{
sprintf(bufGobal,"\nCan't open the followng URL for readi ng? 9", x. buf Large); // copy string into buf G obal
printf("98\n", bufGobal); // local print contents of bufQ obal
}Drlntf(\nI|||I||||||||||I|||I||||||||||I|||I|||||||||||||II||||||||||||||I||||||||||\n\n)
return O;
}

