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Abstract

Title: A Unique Examination of the Buffer Overflow Condition

Author: Gillette, Terry Bruce. (M. S., Computer Science)

Committee Chair:  James A. Whittaker, Ph.D.

Buffer overflows have been the most common form of security vulnerability for the last ten

years. More over, buffer overflow vulnerabilities enable the type of exploits that dominate remote network

penetration. As our reliance on commercial third party software is critical in the current computing envi-

ronment one must consider the question of how these vulnerabilities are discovered in released proprietary

software. 

This thesis presents research focused on the fundamental issues surrounding the buffer overflow

vulnerability. The objective is to analyze and understand the technical nature of this type of vulnerability

and, on the basis of this, develop an efficient generic method that can improve the detection of this soft-

ware flaw in released, proprietary software systems. The work is performed from the perspective of a

security auditor searching for a single vulnerability in a released program, a different approach compared

to the many previous studies that focus on both static source code analysis and run time fault injection.

First, for systems that include commercial off-the-shelf software components, we perform a systematic

review of buffer overflow exploit data and develop a classification hierarchy. The goal of this new taxon-

omy is to provide a tool to assist the auditor in developing the heuristic elements for exploratory testing.

Second, we propose that a signature analysis of a disassembled binary executable can lead to the discov-

ery of a buffer overflow vulnerability. In support of this argument we demonstrate a methodology that can

be used on closed source proprietary software where only the executable binary image is available. In this

case, the key selling point is not the potential rapid automated detection of a buffer overflow vulnerability

but the proof of concept that security flaws can be detected by binary scanning techniques. 
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Chapter 1

Introduction

Basic research is what I’m doing when I don’t
know what I am doing.

-  Wernher von Braun

This thesis explores the buffer overflow vulnerability as it exists in today's modern information

systems. We will then extend this knowledge by the design, implementation, and analysis of a novel

approach to the discovery of potential buffer overflow vulnerabilities in closed source, proprietary soft-

ware.

1.1 Motivation

Buffer overflows have been causing serious security problems for decades. In the last few years

the underlying cause of the majority of computer system and network exploits and vulnerabilities have

been the buffer overflow condition. As such, this represents or should represent a top security concern for

all entities associated with information security. Broadly speaking the buffer overflow can affect any sys-

tem where a static amount of space has been allocated for undefined dynamic input. The underlying archi-

tecture of modern computer systems makes all data handling processes susceptible to this condition. In the

past the buffer overflow was treated as a software bug that would, at the very worst, manifest itself as a

nuisance if it were to cause a running process to crash. With the arrival of time-sharing systems, buffer

overflows became an intellectual curiosity as a means to seize control of a machine in a laboratory setting.

The advent of computer networks has given rise to new computational environments and compu-

tational models. Remote execution, distributed computing, and code mobility are no longer constrained to

the research environment. These modern computational models bring great flexibility and new promises

to our everyday world of information technology. However, accompanying the expanded potential comes

a set of security implications that were not present when computation was carried out largely on local,

stand-alone machines. The buffer overflow represents perhaps the most insidious example of an emergent

security threat that scaled directly from a stand-alone problem to one of global significance.

Underlying architecture make all data handling processes susceptible to this condition. The key

to the buffer overflow exploit is its ability to allow for the execution of arbitrary code. In the Age of Infor-

mation and subsequent information warfare, the buffer overflow is analogous to the missile. Like its coun-
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terpart it can be used to leverage a tactical or strategic advantage across any information system in place

today. In this thesis we concentrate on the possibility of buffer overflow detection at run time using the

unique approach of binary disassembly. 

It is a fact that buffer overflows are caused by the poor implementation of high level program-

ming languages during the software development process. Today, the vast majority of software executing

on both commercial and government systems is untrusted, commercial off the shelf software. Unlike cus-

tom applications, which may in their specification include explicitly addressed security measures, docu-

mented third party source audits and rigorous testing, commercial software walks an often indistinct line

between what is secure enough and what will be profitable. When one considers security-hardened soft-

ware, it is usually in the context of the expense that would be incurred if it were to fail or if it were to be

exploited. The development costs of these custom applications are usually in direct proportion to the

potential liability that their failure or exploitation would cost. Consequently, this class of software is well

out of reach of the average consumer, available only to the deep pockets that governments or big business

can bring to the table. Even this does not guarantee error free, nonexploitable code. Widely published

examples of very expensive software gone wrong include the Ariane IV disaster, the failure of a 1 billion

US military space mission, and loss of life caused by a software controller for medical radiological equip-

ment to name a few. This class of software represents the best money can buy and illustrates in dramatic

fashion the serious challenges to complex software systems. 

With the development of and widespread use of high level programming languages such as C and

C++, dominant PC architectures, and dominant Operating Systems, the move has been away from hetero-

geneous custom software where a single customer funds development and is able to controls its destiny.

Today's software is available to homogeneous, global audience and is driven by a market economy. Com-

petitive market forces coupled with profitability margins serve to dictate when software is released to the

masses. In addition, because of its commercial nature, this software is a proprietary product that is, in

effect, secret from the very users who purchase it. The security risks inherent in using third party propri-

etary software are extremely important because today’s information systems are being built from increas-

ing amounts of reused and prepackaged code. A huge portion of the global information infrastructure has

been scaled up on this type of software.

The security analysis of complex software systems has always been and continues to be a serious

challenge with many unanswered research issues. Unfortunately, third party software serves only to com-

plicate matters. Code that is acquired from a vendor and delivered as an executable file with no source

code available makes some traditional analyses impossible. To offset the costs of rigorous testing, vendors

rely on the information hiding associated with an executable binary to provide a large portion of a pro-

grams security. The upshot is, that relying on today's third party software systems to ensure security is a
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risky proposition. This is especially true when such systems are designed to work over a network with glo-

bal extent. In fact, we have already witnessed the failure of this paradigm.

Current empirical evidence demonstrates that most external security violations are made possible

by flaws in software and the buffer overflow ranks as the most significant [73]. The key suppliers of oper-

ating systems, firewalls, and web-based applications invest considerable effort to find these types of

flaws. It is not just good enough that they find one or a few, they must find them all which is a demon-

strated impossibility with large complex programs. Once released into the real world this software is sub-

jected to an assault of global proportions as hackers both good and bad rush to exploit it. They are not

limited by release schedules, timelines and deadlines. Their only limitation is their ability and more signif-

icantly, they do not have to find every flaw....they only have to find one.

1.2 Problem Statement and Our Approach

The central problem we study in this thesis can be stated in summary as:

We seek a technique to rapidly find an instance of a potential buffer
overflow vulnerability in an executable binary. This technique will be
scalable to commercial third party software systems. 

Static Source Code Analysis is proposed by University of Virginia computer science researchers

as one such approach and focuses on the source structure, syntax and procedural design of the code [74].

This approach encompasses the use of search algorithms to find faulty coding constructs that could lead to

a potential buffer overflow. The effectiveness and accuracy of the methods associated with source code

analysis can be and have been well studied and are in fact well documented. Established techniques range

from line-by-line hand auditing to automated procedures. The fact is, that despite their use in today's

development environment, programming errors that lead to buffer overflows remain.

Run-Time Analysis or Black-Box Testing is another approach that is related to the input/output

domain of a particular program. This well described class of techniques, usually performed at run-time, is

highly dependent on the actual program input. Punishing automated testing tools [75] have been devel-

oped and are currently used in the software development process however buffer overflows continue to

appear.

Far from being two discrete means of testing which operate on parallel paths, these two

approaches are usually combined to form a third unified method to provide a more complete orthogonal

coverage of the software. These methods, when broadly considered, represent the testing process of soft-

ware in general. They are specifically used during the development cycle where access to the source code
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is an essential element in developing the overall testing methodology. Ongoing research associated with

these techniques is moving in the direction of capturing all errors in the development cycle. 

As it only takes one undiscovered exploitable buffer overflow to compromise a released program

we do not care about finding them all, we only concern ourselves with finding one. Thus the central ques-

tion we pose in this thesis is: “'Is there a technique that one can use to find an incidence of a buffer over-

flow vulnerability, with accuracy and efficiency, when applied to a commercial third party software?” The

research described here is an attempt to provide such a technique. Through a detailed examination of the

buffer overflow phenomenon we develop a technique called binary scanning, and demonstrate its effec-

tiveness for finding a single buffer overflow accurately and efficiently. Binary scanning is a novel method

for examining a disassembled binary executable for a unique signature related to a buffer overflow vulner-

ability. Our approach will investigate high-level code constructs that result in a buffer overflow. These

constructs will then be compiled into a binary then disassembled and examined for signatures in the

assembly code. Our ultimate goal will be to develop an algorithm that can search for and discover these

signatures. We note with interest that this general binary scanning approach yields its results in a manner

similar to the way released software is exploited. That is, a single vulnerability is discovered as quickly as

possible.

1.3 Brief Summary of Results and Contributions

We proposed binary scanning as a novel approach to locate potential buffer overflow vulnerabil-

ities in proprietary software. Here we briefly summarize the results and contributions resulting from our

research:

• Several binary scanning strategies have been identified and specific schemes have been devel-
oped. A substantial number of systematic empirical evaluations with the developed scanning
algorithm have been performed.

• The binary scanning strategies do show a linear scalability. Our studies show that the algo-
rithm that we have developed work from modest code constructs to small commercially
released software. We propose then demonstrate that this scalability is linear right up through
enterprise class software applications.

• The binary scanning strategies can outperform the other more common software testing tech-
niques for finding a single instance of a buffer overflow vulnerability with certain unique char-
acteristics. In the commercial software domains we studied, one can only assume that some
level of testing was performed prior to release. Our results show that the binary scanning
approach is a valid one.
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1.4 Organization of the Thesis

In Chapter 2 we provide a topical overview of the buffer overflow exploit. To give balance to our

investigations we explore the literature for the motivation behind exploits in general. To provide a tempo-

ral understanding, a chronology of the buffer overflow problem is presented.

In Chapter 3 we describe a taxonomy. The taxonomy provides a useful structure in which to

gather a wide diversity of vulnerabilities into a hierarchy of categories. The strategies behind the classifi-

cation scheme and conclusions resulting from the taxonomy are discussed.

To evaluate our proposed schemes and techniques, we performed a substantial review of the C

and C++ programming language which is summarized in Chapter 4. Particular consideration was given to

the standard library in the presentation of known dangerous functions. We extend this research by devel-

oping code constructs with known buffer overflow conditions to be used to baseline our vulnerability sig-

natures and act as a control during testing. The control group program and methodology used in the design

is described in Chapter 6.

In Chapter 5 we present how programs behave at compile time with a discussion of binary disas-

sembly and at run-time in a Win32 environment with a discussion of the PE File format. In addition, the

difficulties of reverse engineering and the legal implications of commercial product disassembly are sum-

marized.

 Using a baseline group of potential string primitives identified in Chapter 4, we will empirically

derive possible compile-time signatures for use in a technique of binary scanning. Once a signature has

been identified a binary scanning algorithm can be developed. Chapter 6 leads the reader through the con-

figuration of our test apparatus, algorithm development. Chapter 6 concludes with several commercial

proprietary binary files that are disassembled and scanned for a potential buffer overflow vulnerability. 

In Chapter 7 we conclude with a summary of our work and provide an evaluation as to the valid-

ity of the approach. In addition, we formulate pointers to potential future work as an extension of this tech-

nique. 
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Chapter 2                                                                                                                                       

A History of Buffer Overflow Vulnerabilities

All of physics is either impossible or trivial. It is
impossible until you understand it, and then it

becomes trivial.

- Ernest Rutherford

2.1 An Introduction to the Topic

As we enter the so-called ''information age'' of global networks, ubiquitous computing devices,

and electronic commerce, many businesses, consumers, and other users are becoming increasingly con-

cerned about computer security. Yet the current state of computer security is lamentably poor in practice.

One survey found that nearly 2/3 of Internet hosts are vulnerable to unsophisticated, well known, easy-to-

exploit attacks [1], and the number vulnerable to more clever or more recent attacks is presumably greater

still. Recent FBI studies have shown that business losses are large and increasing [2]. Anecdotally, break-

ins are rampant, and hackers discover new vulnerabilities almost every day. There are several causes for

these trends.

First, today's systems rely heavily on applications built in an age when security did not receive

the same attention it does today. The Internet, once populated almost exclusively by cooperating research-

ers, and local-area networks, populated exclusively by local co-workers, spawned many legacy applica-

tions that were originally designed for use only in a friendly environment. This legacy code is unlikely to

go away anytime soon, yet the threats it must defend against have changed dramatically: global networks

now expose us to a much broader array of adverse interests, including hackers, vandals, competitors, crim-

inals and other untrustworthy entities. Nonetheless, we need someway to protect our data from a growing

number of unfriendly and potentially malicious computer users even as we continue to rely on irreplace-

able legacy applications. This leaves us in an exposed position with no obvious solution.

A second contributing factor is that building secure systems is fundamentally hard, and today's

programming environments do not make the task any easier; in fact, they often make the task significantly

harder. 

• The operating system does not provide any way for applications to specify just the subset of
privileges they actually need, and as a result when an application is compromised, the intruder
typically obtains full access to the entire system. 
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• The Unix system-call interface does not provide any simple way to atomically query a system
object for permission information before performing some operation on that object, and as a
result exploitable race conditions are common. 

• The language almost invariably, C does not assure memory safety, and as a result it may be
easy to cause memory errors and force a security-critical application to crash or worse, execute
arbitrary code. 

• The standard C libraries provide string buffer management primitives that are unsafe, and as a
result our programs fall prey to buffer overrun vulnerabilities.

In all cases, it is in principle possible to code the desired functionality in a secure way, but the

secure way is often not the easiest, best-supported, most convenient, most portable, or standard way, and it

is not always feasible to fix problematic aspects of the programming environment. Of course, when the

standard library functions have security pitfalls, it becomes too easy for developers to inadvertently intro-

duce security holes where these functions are used. In addition, modern programming practice includes

the reuse of existing libraries. A symptom of this problem may be recognized in the frequency with which

programs are found to contain the same mistakes again and again.

A third common cause of insecurity is that many of our security-critical applications are large

and complicated. Complexity breeds subtle interactions, subtle bugs, and thus subtle security holes [3].

Moreover, sheer size can make the source code so unwieldy that it becomes very difficult to review the

application for potential security errors, or even to understand exactly what it is doing. As a result, large,

complex applications often go largely unscrutinized, despite their security-critical nature. One symptom

of this phenomenon can be found in the number of vulnerabilities that have lain dormant in poorly

reviewed source code for years before being discovered by the security community.

In essence, then, we have a software quality assurance problem with serious implications for

computer security: How do we deal with the fact that our most trusted software, even our security soft-

ware itself, often contains security vulnerabilities? Re-design and reimplementation of all security-critical

code of questionable quality does not appear to be a viable option at the moment; it is simply too costly to

be a general solution. As a consequence, we are stuck with an overwhelming amount of legacy and other

code of questionable security. As a consumer of this software with no access to the source code we have

no good way to check it for even the simplest, most common classes of coding errors.

At this point, some readers might suspect that the answer to these woes lies with the vendor to

perform a careful, manual review of all security-critical code prior to release. Indeed, we would certainly

agree that code inspection is essential to security. However, the root problem is that manual inspection is

extremely time-consuming, and the amount of legacy code that would require auditing is enormous. As a

result, code review is not applied as often or as thoroughly as it is needed. A second problem is that the

sort of common, mindless mistakes that are easy for a programmer to make are also typically easy for a
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reviewer to overlook, and thus we might hope for an even higher level of assurance than manual code

review can provide by itself. These comments suggest that we might do well to look for tools to help auto-

mate the process, to reduce the burden on the reviewer, to raise the assurance level, and in general to

reduce the cost of the security quality assurance process.

We have argued that assurance for security software is an important unsolved problem, and that

simple programming errors account for a surprisingly large proportion of security failures. Critical to this

entire discussion is the fact that a person looking to exploit a particular application needs to find only a

single instance of a vulnerability. Perhaps the best illustration of this phenomenon may be found in the

buffer overrun vulnerability, a variant of an array bounds violation error that forms one of the most prom-

inent causes of insecurity in modern software systems [4]. In this chapter we discuss the buffer overflow

paradigm and how it has manifested itself in the modern global software environment.

2.2 Motivation

Knowledge of the Buffer overflow condition is nothing new. In general, the theory surrounding

buffer overflows has been part of computer science since the beginning of digital data processing. Our

overwhelming use of the von Neumann architecture, where both data and programs are stored in the same

memory space [78], makes the possibility of a buffer overflow a constant. This is especially true when

using programming languages that do not perform bounds checking at compile time. In the past, on a sin-

gle stand alone machine, the buffer overflow represented at worst an annoyance. With the advent of time-

share systems beginning in the early 70's, the exploitation of the buffer overflow condition became a secu-

rity concern [77] as it could, in theory, be used to escalate system privilege. As the time-sharing paradigm

of the 1970's moved towards what we now know as computer networks the security implications of buffer

overflows grew dramatically. Now we could not only comprise our own machine, we could remotely gain

access on one belonging to someone else. We could use the buffer overflow condition to execute the code

of our choosing. As the size and diversity of the Internet grew throughout the 1980's, speculation

increased that a major security flaw would be exploited and as a result the Internet directly attacked. From

1986 to 1987 the size of the Internet grew almost 600 percent [76] and time was running out from the real-

ity of a widespread exploit crashing the Internet.

On November 3, 1988 on what has come to be called the Black Thursday event [5], system

administrators around the country came to work on that day only to find that their networks of computers

were laboring under a huge load. If they were able to log in and generate a system status listing, they saw

what appeared to be dozens or hundreds of “shell” (command interpreter) processes. If they tried to kill

the processes, they found that new processes appeared faster than they could kill them. Rebooting the

computer seemed to have no effect as within minutes after starting up again, these mysterious processes
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overloaded the machine. A worm had invaded these systems. The worm had taken advantage of lapses in

security on systems that were running 4.2 or 4.3 BSD UNIX or derivatives like the SunOS. These security

flaws allowed it to connect to machines across a network, bypass their login authentication, copy itself and

then proceed to attack still more machines. The massive system load was generated by multitudes of

worms trying to propagate the epidemic [5]. D. Bruce, MIT EECS Professor and Vice President for Infor-

mation Systems estimated that approximately 10% of 60,000 Internet hosts were exploited [6].

One of the methods used to gain access to these systems was a buffer overflow exploit of the

Unix service ''finger''. This hack involved co-opting the TCP finger service as a method to gain entry into

a system and it represented the first well documented, widespread buffer overflow exploit. The Finger ser-

vice reports information about a user on a host, usually including things like the user's first and last name,

the location of their office, the number of their phone extension and so on. The Berkeley version of the

finger server has been characterized as a really trivial program. It reads a request from the originating cli-

ent, stores that information in a 512 byte buffer on the host machine, runs the local finger program with

the request as an argument then ships the output back to the client. Unfortunately the finger server reads

the remote request with gets(), a notoriously dangerous function. This is a standard C library routine

that dates from the beginning of the language. The function has no parameter in which to perform bounds

checking and therefore does not check for overflow of the server's 512 byte request buffer on the stack.

The exploit is some VAX machine code that asks the system to execute the command interpreter sh  sup-

plied by the client as a 536 byte request to the finger server. This request is crafted to be specifically 24

bytes larger than the 512 byte buffer. This is just enough data to write over the server's stack frame for the

main routine. When the main routine of the finger server exits, the program counter of the calling function

should be restored from the stack, but the exploit wrote over this program counter with one that points to

the VAX code in the request buffer. The program then jumps to the worm's code, part of the request, and

runs the command interpreter, which the worm uses as a method to enter its bootstrap; a classic case of

overwriting the stack frame pointer.

Shortly after the worm was analyzed and reported to use this feature of gets() , patches were

released that replaced all instances of gets() in system code with code that maintained parameters

against the length of the buffer. The danger inherent in gets() was so great that some libraries were

modified by the complete removal of the gets() function. It is questionable why the function is man-

dated by the ANSI C standard and the answer must be backwards compatibility. This in itself speaks vol-

umes of it's widespread usage. Although no documented reports associated with the finger server bug exist

before the worm incident, in May 1988, students at UC Santa Cruz apparently penetrated security by

exploiting a different finger server with a similar bug. The system administrator sent mail to Berkeley, but

the seriousness of the problem was not appreciated as a major issue at the time. 
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Buffer overflow attacks remained relatively unheard of for many years following the Worm. One

known example came in November of 1994, when one of the first commercial Web servers, running HP-

UX, was successfully breached using a buffer overflow attack against the National Center for Supercom-

puting Applications (NCSA) 1.3 Web server [79]. As this Web server sat on the target's internal network

and could be connected to through the firewall, the attackers had unfettered access to the victim's internal

network. 

The event that really fueled the frequency of attacks was the November 1996 publication of a

paper entitled ''Smashing the Stack for Fun and Profit'', by Aleph One, in the on-line hacker magazine

Phrack [7]. Aleph One's paper (itself based on a paper written by Mudge of the L0pht, an independent

computer security think tank specializing in Windows NT) explains in detail how to write a buffer over-

flow exploit against a Unix system program. This moved the technical skills required from the graduate

level down to anyone who could follow directions well. This heralded the birth of the script kiddie.

As a result in 1997 and 1998, buffer overflow exploits became extremely common, mainly tar-

geting Unix systems, in particular the Open Source versions. While the Open Source organizations, like

the various Linux distributors or FreeBSD, were quick to release patches, the number of exploits was

astounding. To get a feel for the scope of this problem, an exact string search for “buffer overflow

exploits” on Google.com returned 6,000 matches. Buffer overflow exploits continued right into 1999,

2000, 2001, and show no signs of going away anytime soon. If anything, the incidence of buffer overrun

attacks has been increasing. See Figure 1 for data extracted from CERT advisories over the last decade. 

Figure 1: Frequency of buffer overrun vulnerabilities
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Derived from a classification of CERT advisories. The chart shows, for each year, the total 
number of CERT-reported vulnerabilities and the number that can be blamed primarily on 

buffer overruns

Figure 2 shows that buffer overruns account for up to 50% of today's vulnerabilities, and this

ratio seems to be increasing over time. A partial examination of other sources suggests that this estimate is

probably not too far off: buffer overruns account for 27% (55 of 207) of the entries in one vulnerability

database [8] and for 23% (43 of 189) in another database [9]. Finally, a detailed examination of three

months of the bugtraq archives (January to March, 1998) shows that 29% (34 of 117) of the vulnerabilities

reported are due to buffer overrun bugs [10].

Figure 2: Frequency of buffer overrun vulnerabilities by percentage

Derived from a classification of CERT advisories. The chart shows, for each year, percentage 
of CERT-reported vulnerabilities that were due to buffer overruns for each yea
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overflow in Windows 2000 indexing service1 . The Index Server is the built-in search engine in Windows

2000 that catalogues and indexes files and properties of the hard drive. Improper bounds checking on the

input buffers on the DLL file (%system32\idq.dll) allows additional characters to be forced into the pro-

cess space, overflowing the buffer and providing memory space for shell code insertion. As with all buffer

overflows, the shell code simply requires to launch and bind a command shell to listen on a specific port

and the attacker to connect to the port using netcat or telnet. All Windows products from NT4 forward are

exposed to the vulnerability. This vulnerability gained worldwide attention when the “Code Red” worm

exploited it. It was estimated that 359,000 hosts were exploited within the first 14 hours of its initial

release [11]. 

The second, a buffer overflow in a FrontPage server extension2. The FrontPage extensions ship

with IIS4 and IIS5, Office 2000 and Office XP, and extend the functionality of the IIS web server to sup-

port components used in the Visual Studio development suite. An optional feature of the FrontPage exten-

sions is Visual Studio, Remote Application Deployment (RAD) component that contains an unchecked

buffer vulnerability. The RAD feature allows developers to deploy custom COM components by allowing

authenticated authors to upload COM components onto the server. 

The unchecked buffer in the request processing routine allows a malformed command to insert

shell code into the FrontPage process space, yielding access at either IUSR_<hostname> or system-

level privileges. The buffer overflow occurs if fp30reg.dll receives a URL request that is longer than 258

bytes, exposed through a lack of length checking on the input string. By exploiting this vulnerability suc-

cessfully, an attacker can execute code with the privileges of IUSR_machinename and under certain

circumstances with the privileges of system. Visual Studio RAD component is not selected by default in

the installation options, as is actively alerted as not suitable for production systems during installation if

selected. 

Clearly we have demonstrated that the buffer overflow problem is a major security issue. Despite

a precise understanding for the last 15 years of the severity of the problem and of the programming prac-

tices that lead to this condition, it has not gone away. Now that we have developed a feel for the scope of

situation we will turn our attention to those persons who develop and use these exploitation techniques

and to investigate their potential motivations.

2.2.1 Benevolent Hacking: The White Hat 

In the beginning it was a core group of singular minded individuals who programmed operating

systems, examined core dumps, and basically spent their entire waking moments engrossed in the intrica-

1. Reference Case #10 in appendix C.
2. Reference Case #7 in appendix C.
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cies of digital computation. It was this original group who earned the moniker “Hackers”. These were the

pioneers of modern day computing. Hacking was originally characterized to convey the sense of `an

appropriate application of ingenuity'. Whether the result was a quick-and-dirty patchwork job or a care-

fully crafted work of art, it was the cleverness that went into it that determined the hack. Somewhere along

the lines the definition became confused and assumed the darker connotation that remains to this day. In

order to distinguish those who create these clever hacks the terms “White Hat” and “Black Hat” are being

used with the inference being obvious.

The white hat [80] has become the term for people who hack legitimately. These hackers devote

their careers to discovering software vulnerabilities and then post these discoveries to Internet list servers

or their own security related Internet homepages. Current motivation follows that by publicly posting vul-

nerabilities these hackers are forcing software companies to not only address these newly found problems

but to also fix them. This is the paradigm of attacking a system to secure it. Other white-hat hackers dis-

cover operating system vulnerabilities, i.e. Linux, and email their results to kernel developers who then

write and post software patches to mailing lists devoted to system vulnerabilities and Internet web sites

like www.slashdot.org.

The White Hat's operate on the premise that so called old-fashioned security controls such as

firewalls and intrusion-detection systems aren't enough. Their reasoning is that one must embrace the

methods and mind-set of the enemy. In the past, the White Hats were loosely aligned in ad hoc groups or

operated independently with the belief that the full disclosure of vulnerabilities was the quintessential

means of securing computer systems. Their success was closely aligned with the rapid growth of the com-

puter and network security industry. White-hat hackers have gone to become security consultants and are

now associated with computer security consulting organizations, like Foundstone, @stake Research Labs

and on-line security forums like bugtraq, www.securityfocus.com. Through their efforts, the software

vendors learned that security issues were important. They also learned that they were very expensive to

implement. 

As computer security continues to become big business, a $21 billion industry by 2005 according

to a International Data Corporation report, software vendors such as Microsoft seek to influence the past

practice of full vulnerability disclosure through close association with these new companies. This is set-

ting the stage for a new type of White Hat hacking as some view this as an intrusion by large corporations

not interested in the time, effort and expense of true software security. The current debate centers on this

new relationship between software vendor and security organization and the potential conflicts of interest.

Some view this as being a less expensive, public relations alternative to developing solid secure code. One

thing is sure to remain; third party software will continue to be under pressure from the moment of release

by those who align themselves with the White Hat approach.
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2.2.2 Malicious Hacking: The Black Hat 

The Black Hat [81] has become the term for people who hack at the bounds of what is legal to

those who are clearly breaking the law. The motivations common to those who would commit or attempt

to commit computer-related crime are diverse, but hardly new. In general, criminals are driven by time-

honored motivations, the most obvious of which are power, greed, revenge, lust, adventure, and even the

desire to taste “forbidden fruit”. Computer crime makes no distinction to this general classification with

computer criminals being no different. The ability to make an impact on large global systems from a

remote location may, as an act of power, be gratifying in and of itself. The desire to inflict damage or loss

on another may have roots in revenge as a motive, as when a disgruntled employee shuts down an

employer's computer network, or to ideology, as when one defaces the web site of an organization or insti-

tution that one regards as against their beliefs or as abhorrent. Current activity on the so called ‘electronic

frontier’ entails an element of adventure, the exploration of the unknown. This is especially true for the

disaffected youth raised in the age of information. The very fact that some activities in cyberspace are ille-

gal or likely to elicit official condemnation is enough to attract the rebellious, defiant, or the irresistibly

curious. In some cases, given the degree of technical competence and skill required to commit many com-

puter-related crimes, there is a unique motivational dimension worth mentioning here. This is, of course,

the intellectual challenge of mastering a system with a high level of complexity. 

Unauthorized hacking is a felony crime in the United States and many other countries. Clearly

there exists an ongoing information war with the Black Hat seen as the enemy. The profile of the Black

Hat runs from the 12 year old script kiddie with the time and persistence to get automated well docu-

mented exploit scripts to work to the government sanctioned hacker a well funded computer expert work-

ing for an intelligence organization with military objectives. For the Black Hat, the buffer overflow is of

critical importance as it is one of the primary means of obtaining root access on a system. As the profile of

the Black Hat is so wide we will categorize the malicious hacker, by stereotype, into three groups.

The Script Kiddie: The script kiddie practices hacking using scripts and programs written by oth-

ers, often without an understanding of the exploit they are using. These are the hackers with limited tech-

nical expertise who, using easy-to-operate, pre-configured, and/or automated tools; conduct disruptive

activities against networked systems. There are about 30,000 hacker-oriented sites on the Internet, bring-

ing hacking and all the associated tools within the reach of anyone who may have an interest. As an exam-

ple the Rootshell web site has a database of 690 exploit scripts [12]. Fyodor's Playhouse contains 383

attacks [13] and the Legacy hacking site has 556 exploits [14].

The malicious activity caused by the script kiddie is usually limited to Web Site defacement with

the motivation being the social status that this type of conquest brings. Script kiddies can work alone or in
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loosely knit ad hoc groups and often communicate using Internet Relay Chat (IRC) channels. For these

practitioners their hacking is a social activity and Internet Relay Chat their communications link.

The script kiddies are not out for specific information or targeting a specific company. Their goal

is to gain root the easiest way possible. This is accomplished by focusing on a small number of well-doc-

umented exploits, and then using automated scanning techniques, search the entire Internet for that vulner-

ability. Some of the more advanced users may use more specialized tools to leave behind sophisticated

backdoors. Most have no idea what they are doing and only know how enter rudimentary input the com-

mand prompt. The common strategy is to randomly search for a specific weakness, and then exploit that

weakness. It is this random selection of targets along with their large numbers that make the script kiddie

such a dangerous threat. 

Most of the tools available to the script kiddie are easy to use, widely distributed and well-docu-

mented allowing use by anyone. The script kiddie methodology is a simple one. Scan huge tracts of Inter-

net address space for a specific weakness, when that weakness is found, it is exploited. The most coveted

remote exploits that are in use by the script kiddie are the ones associated with the buffer overflow.

Mafia Hackers:  Russian hackers first captured the world's imagination in 1994, when a young

mathematician, Vladimir Levin, hacked into the computers of Citibank and transferred $12 million to the

bank accounts of his friends around the world. Levin was arrested, but his case inspired other hackers, for

example, Ilya Hoffman, a talented viola student at the Moscow Conservatory, who was detained in 1998

on charges of stealing $97,000 over the Internet. Another group of Russians stole more than $630,000 by

hacking into Internet retailers and grabbing credit card numbers [82]. Numbers this large certainly attract

the attention of organized crime and hacking associated with this element has been traditionally centered

in Eastern Europe. Recently the Russian mafia has been implicated in hacks involving the theft of up to

one million sets of credit card details.

The FBI, in response to an expanding number of instances in which criminals have targeted

major components of information and economic infrastructure systems, has established the National Infra-

structure Protection Center (NIPC). Based on FBI investigations, classified sources and other information,

the NIPC has observed that there has recently been a dramatic increase in organized hacker activity specif-

ically targeting U.S. systems associated with e-commerce and other Internet-hosted sites. The majority of

the intrusions have occurred on networks using the Microsoft Windows NT operating system. In these

cases the hackers are exploiting known buffer overflow vulnerabilities to gain unauthorized access and

download propriety information [15]. 

Government Sanctioned Hacking: The U.S. Government Accounting Office estimates that 120

countries or groups have or are developing information warfare systems. There are many reported Penta-

gon intrusions to have surely come from abroad. The United States acknowledged their involvement in
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1998 when it was announced that the CIA was devising a computer application that could attack the infra-

structure of other countries. One can only imagine the importance of the buffer overflow as an exploit tool

to gain remote access in the development of this classified program.

A series of sophisticated attempts to break into Pentagon computers has continued for more than

three years according to a member of the National Security Agency's advisory board. Officials at the Pen-

tagon and NSA have called the intrusions “massive” and said they caused significant disruptions. In the

Middle East government supported cyber attacks are becoming more prevalent and more methodical.

There is documentation that supports the existence of a coordinated campaign on the pro-Palestinian side

to identify vulnerable Israeli sites and gain root access using buffer overflow exploits [16].

With our current good guy versus bad guy, exploit and patch model of computer security unpub-

lished exploits are highly coveted in the hacker subculture and may be considered state secrets within gov-

ernments. The power of a single remote exploit that is unknown to vendors allows a single person to

potentially break into thousands of machines, often times with no recognizable trace of how it was done.

Many Intrusion Detection Systems (IDS) will not recognize the fingerprints of these new exploits. The

hackers with knowledge of these exploits typically do not deface web pages. This knowledge is held for

high dollar gain or as a tool for true information warfare. The last thing a hacker with this type of informa-

tion wants is to bring attention to themselves or their methods. In some cases unpublished exploits can cir-

culate in the underground for up to a year before being disclosed to the masses. The damage caused by a

dozen hackers have such an exploit while actively using it over a one year period is often never reported to

the extent that it makes the public media. 

With individuals and corporations increasingly relying on software with demonstrated security

flaws and the Internet to manage everything from their finances to their personal health records, incidents

of malicious hacking continue to increase. More than 7,000 computer security violations were reported in

the first three months of 2001, more than in all of 1998, according to the CERT Coordination Center, a

security research group at Carnegie-Mellon University in Pittsburgh [62].

Just how do these hackers find the buffer overflow vulnerabilities that lead to system exploits?

As the majority of the exploited software is closed soured, third party applications, source code auditing is

not an option. Are the buffer overflow conditions found simply by brute force or is there a more methodi-

cal step-by-step method that can be used. It is this premise that our thesis will attempt to address as we

develop a methodical approach to finding these types of vulnerabilities in closed source applications.

2.3 Chronology of Buffer Overflow Exploits

Hacking has been around for more than a century. While many would assume that hacking is a

rather recent phenomenon, the practice has a rather long and varied history. As early as the 1870s, an
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activity that we would call hacking today was occurring on the new United States phone system. Since the

turn of the century, the meaning of the term hacker has evolved. A subculture has grown up around the

practitioners and this has seeped into popular culture over the last two decades. As information technology

continues to play an increasingly important role in our society so will the hacker continue to make his

presence felt.

We present a general chronology of computer hacking and where appropriate, particular attention

is paid to the buffer overflow exploit. How did hacking begin and how was it integrated into the overall

development of modern digital computing? 

Without the real programmers, computers, computing, networks, the Internet and the buffer over-

flow would not exist. The history of digital hacking begins with John W. Mauchly and J. Presper Eckert.

These two men collaborated on what was to become an icon in computer science. This was one of the first

truly digital computers, the ENIAC or Electronic Numerical Integrator and Computer. ENIAC was built in

1946 and was designed with over 17,000 vacuum tubes, 30,000 resisters and covered over 1500 square

feet of floor space. Despite it’s size it was only capable of 1000 calculations per second. Compare that to

the computers of today that are capable of tens of millions of calculations per second. The ENIAC was the

first digital machine to be able to perform an “if-then” statement or a “branch conditional statement” [83].

In 1949 Presper and Mauchly also launched the BINAC or Binary Automatic Computer, a computer that

stored data using magnetic tape.

The next major milestone in the history of hacking is the UNIVAC computer. The UNIVAC was

first commercial computing project commissioned for the US Census Bureau and was another of Mauchly

and Presper's efforts. This was the first so-called solid state computer and could handle both alphabetic

and numerical information. This development was important in that it represented a significant move

toward the miniaturization of the computer. With the UNIVAC, the transistor replaced the vacuum tube

and the computer shrunk down to the size of a room.  

One of the first organized groups of hackers to be formed emerged from the Massachusetts Insti-

tute of Technology in 1961. They were members of MIT's Tech Model Railroad and possessed an obses-

sion with the PDP-1 computer. The Tech Model Railroad Club programmed the PDP-1 to control their

complex model railroad track and switches. From these humble beginnings MIT would achieve critical

acclaim with a world renowned Artificial Intelligence department. No chronology could be considered as

complete without including a brief history of the Unix operating system. Unix has been recognized as the

quintessential operating system. 

Unix was developed in 1969 at AT&T Bell Labs as part of an effort to build an internal operating

system to be integrated into their telephone business. The birth of Unix was based on the need of Dennis

Ritchie, Ken Thompson and others to produce a programming environment that could support multiple



18

users. Within this environment they identified a need for a tree structured file system and easy access to

devices from within the OS plus a user level command interpreter. From these specialized needs Unix was

conceived. It is important to note that Unix also gave rise to another major milestone in hacker history, the

C programming language. With the advent of C, the original Unix kernel was rewritten to make it machine

independent, or portable, thus making Unix the OS the choice for academic research. Particularly impor-

tant from the aspect of this thesis are the function libraries within the C language. When used incorrectly,

several standard C functions are directly related to the existence of the buffer overflow vulnerability. The

C programming language is by far the worst offender leading to this security issue. 

Table 1: 
A Chronology of Buffer Overflow Exploits1 

Year(s) Event

1940’s-1970’s The era of the huge mainframes (Catman).

1946 J. Presper Eckert and John W. Mauchly created one of the first digital, general pur-
pose computers: the Electronic Numerical Integrator and Computer (ENIAC) (Wil-
liams).

1949 J. Presper Eckert and John W. Mauchly created the first computer that stored its 
data on magnetic tape: the Binary Automatic Computer (BINAC) (Williams).

1950’s J. Presper Eckert and John W. Mauchly created the UNIVAC computer, which was 
the first computer that could handle alphanumeric information. It was also smaller 
than the previous computers--the first step to making computers smaller (Will-
iams).

Some of the first hackers of this time were Peter Deutsch, Bill Gosper, Richard 
Greenblatt, Tom Knight, and Jerry Sussman. (Brunvand). This was the "Golden 
Age" of hacking. This was when hackers made some of the largest and most impor-
tant discoveries on computers. The hackers of this time are respected by the hackers 
of today because the computers they worked on were so cumbersome and they only 
had a few tools to help them learn about these machines (Brunvand).

1960’s Hacker culture spread to the general culture as the computers did. Centers of hacker 
culture had by now spread from MIT to Carnegie Mellon University, and Stanford 
University. Some of the famous hackers of this time were Ed Fredkin, Brian Reid, 
Jim Gosling, Brian Kernighan, Dennis Ritchie, and Richard Stallman (Brunvand).

1961 TMRC used the PDP-1, the "first commercially successful computer on the mar-
ket," [MIT got these computers] to program their model train tracks and switches. 
Thus began the hackers and the AI Lab (Williams).
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1961 MIT began using the computer PDP-1, which were the "first commercially success-
ful computer on the market" (Williams). The Tech Model Railroad Club (TMRC) 
at MIT, who had moved from programming the complicated wiring and switches of 
their model trains to programming computers, "adopted the machine as their favor-
ite tech-toy and invented programming tools, slang, and an entire surrounding cul-
ture that is still recognizably with us today" (Catman). This group was the first to 
adopt the term "hacker" (Catman).

1940’s-1970’s Era of the mainframes (Catman).

1946 J. Presper Eckert and John W. Mauchly created one of the first digital, general pur-
pose computers: the Electronic Numerical Integrator and Computer (ENIAC) (Wil-
liams).

1949 J. Presper Eckert and John W. Mauchly created the first computer that stored its 
data on magnetic tape: the Binary Automatic Computer (BINAC) (Williams).

1950’s J. Presper Eckert and John W. Mauchly created the UNIVAC computer, which was 
the first computer that could handle alphanumeric information. It was also smaller 
than the previous computers--the first step to making computers smaller (Will-
iams).

Some of the first hackers of this time were Peter Deutsch, Bill Gosper, Richard 
Greenblatt, Tom Knight, and Jerry Sussman. (Brunvand). This was the "Golden 
Age" of hacking. This was when hackers made some of the largest and most impor-
tant discoveries on computers. The hackers of this time are respected by the hackers 
of today because the computers they worked on were so cumbersome and they only 
had a few tools to help them learn about these machines (Brunvand).

1960’s Hacker culture spread to the general culture as the computers did. Centers of hacker 
culture had by now spread from MIT to Carnegie Mellon University, and Stanford 
University. Some of the famous hackers of this time were Ed Fredkin, Brian Reid, 
Jim Gosling, Brian Kernighan, Dennis Ritchie, and Richard Stallman (Brunvand).

1961 TMRC used the PDP-1, the "first commercially successful computer on the mar-
ket," [MIT got these computers] to program their model train tracks and switches. 
Thus began the hackers and the AI Lab (Williams).

1961 MIT began using the computer PDP-1, which were the "first commercially success-
ful computer on the market" (Williams). The Tech Model Railroad Club (TMRC) 
at MIT, who had moved from programming the complicated wiring and switches of 
their model trains to programming computers, "adopted the machine as their favor-
ite tech-toy and invented programming tools, slang, and an entire surrounding cul-
ture that is still recognizably with us today" (Catman). This group was the first to 
adopt the term "hacker" (Catman).

Table 1: 
A Chronology of Buffer Overflow Exploits 1  (Continued)

Year(s) Event
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1962-1969 The Department of Defense's Advanced Research Project Agency (ARPA) creates 
the network ARPANET. They intended for researchers to use. The first universities 
to use the ARPANET were Stanford Research Institute, UCLA, UC Santa Barbara, 
and the University of Utah (PBS).

1969 The creation of the ARPANET. This was the first computer network linking "uni-
versities, defense contractors, and research laboratories"Hacker Ken Thompson 
created the operating system UNIX. Hacker Dennis Ritchie created the program-
ming language C. Both of these creations became popular across most computers, 
which allowed hackers to use on set of tools to hack into many different machines 
(Catman).

1972 The InterNetworking Working Group is founded to govern the standards of the 
developing network. Vinton Cerf is the chairman and is known as a "Father of the 
Internet" (PBS)

1973 "ARPANET goes international" (PBS).

1974-1981 ARPANET moves away from its research and military beginnings and becomes 
commercialized (PBS).

1974 "Bolt, Beranek, and Newman opens Telnet, the first commercial version of the 
ARPANET" (PBS).

1975 First portable computer was marketed (Catman).

1977 Steve Jobs and Steve Wozniak created Apple Computers (Neupart & Munkedal).

1979 The first USENET groups are created by Tom Truscott and Jim Ellis; now people 
from all over can join discussion groups (PBS).

1980 USENT bulletin board began broadcasting information. USENET was a network of 
UNIX machines that could talk to each other (Catman).

1981 IBM creates its own personal computer (Neupart & Munkedal).

1982-1987 The ARPANET is recognized as an internet. The language of computers on the 
Internet, TCP/IP is created (PBS).

1982 UNIX hackers from Berkeley began Sun Microsystems; they put UNIX on less 
expensive workstations (Catman).

1983 The hacker film War Games was released (Catman).

1984 The hacker magazine 2600: The Hacker Quarterly was created (Neupart & 
Munkedal).

1984 AT&T made a version of UNIX (Catman).

Mid-1980’s Personal computers make accessing the Internet cheap and easy (PBS).

Table 1: 
A Chronology of Buffer Overflow Exploits 1  (Continued)

Year(s) Event
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1986  The "Computer Fraud and Abuse Act, and the Electronic Communications Privacy 
Act" (Neupart & Munkedal) was passed.

1988-1990 Hackers on the Internet become a concern (PBS).

1988 The computer worm created by the hacker Robert Morris crashes 6,000 computers 
on the Internet (Neupart & Munkedal).

1988 The Computer Emergency Response Team (CERT) is created to address network 
security (PBS).

1989 The Cuckoos Egg is written after Clifford Stoll, a system administrator, catches 
hackers who had broken in to his system (PBS).

1990 ARPANET is closed (PBS).

1990 The Secret Service cracks down on hackers during Operation Sun Devil (Neupart & 
Munkedal).

1991 The gopher is created, which is "the first point-and-click way of navigating the files 
of the Internet" (PBS).

1991 The Michelangelo virus was scheduled to crash computers, but nothing happened 
(Livingston).

1993 The first graphics-based Web browser is created (PBS).

1994 Russian Vladimir Levin creates a hacker group that hacks into Citibank (Neupart & 
Munkedal).

1995 Kevin Mitnick incarcerated on charges of "wire fraud and illegal possession of 
computer files stolen from such companies as Motorola and Sun Microsystems" 
(Christensen).

1995 The movies Hackers and The Net are released (Neupart & Munkedal).

1996 "Hackers alter the websites of the U.S. Justice Department . . . , the CIA . . . , and 
the Air Force" (Livingston).

1996 "Approximately 40 million people are connected to the Internet" (PBS).

1996 “Smashing the Stack for Fun and Profit” by Aleph One UNIX Buffer overflows

1997 "A 15-year-old Croation youth penetrated computers at a U.S. Air Force base in 
Guam" (Christensen).

1998 The New York Times website was defaced to show the anger for the imprisonment 
of Kevin Mitnick (Livingston).

1998 Two hackers in China were sentenced to death for hacking into a bank and stealing 
money (Livingston).

Table 1: 
A Chronology of Buffer Overflow Exploits 1  (Continued)

Year(s) Event
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1. The following is a listing of cited works used in developing this table.

Brunvand, Erik. “The Herioc Hacker: Legends of the Computer Age” Department of Com-
puter Science October 15, 1996. February 22, 2000. http://www.cs.utah.edu/~elb/folklore/afs-
paper/afs-paper.htm

Catman “Hacker History.” March 11,2000. http://www.thefuturesite.com/catman/history

Christensen, John. “The Trials of Kevin Mitnick.” CNN.com March 18,1999. February 9, 
2000. http://www.cnn.com/SPECIALS/1999/mitnick.background

Levy, Stephen, and Brad Stone. “Hunting the Hackers” Newsweek.com February 21, 2000. 
March 11, 2000. http://www.newsweek.com/nw-srv/printed/us/st/a16375-2000feb13.htm

Livingston, Brian. “Project Against Trojan Horses” CNN.com January 17, 2000. March 11, 
2000. http://cnn.com/2000/TECH/computing/01/17/trojan.horse.idg/index.htm

1998 "U.S. Attorney General Janet Reno announces National Infrastructure Protection 
Center" (Neupart & Munkedal).

1998 The Pentagon was hacked by an Israeli teenager (Neupart & Munkedal).

1998 The hacker group L0pht speaks to the Senate about network security issues (Neu-
part & Munkedal).

1998 Win32 Exploits by Barnaby Jack

1999 Kelly Air Force Base was attacked by hackers, but the hackers were detected and 
stopped (Livingston).

1999 The United States Information Agency was hacked (Livingston).

1999 President Clinton announces he has set aside $1.46 billion for a plan to improve 
government computer security (Livingston).

1999 "Unidentified hackers seized control of a British military communication satellite 
and demanded money in return for control of the satellite (Christensen).

2000 Russian hacker "stole credit card numbers from an Internet music retailer and 
posted them on a website after an attempt to extort money from the company 
failed" ("Rebuffed Internet Extortionist Posts Stolen Credit Card Data").

2000 The following sites were attacked by hackers using denial of service: Yahoo, eBay, 
CNN.com, Amazon.com, Buy.com, ZDNet, E*Trade, and Datek (Levy).

2000 Kevin Mitnick is released from prison.

2001 Plug and play shell code for Win32 available over the Internet

2001 Code Red and Nimda worms exploit Win32 buffer overflows

Table 1: 
A Chronology of Buffer Overflow Exploits 1  (Continued)

Year(s) Event
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Neupart & Munkedal. “Hacker History-Soceity and Hackers in an Historical Perspective.” 
March 11, 2000. http://www.n-m.com/english/security/hackhistory.htm

P.B.S. “PBS Life on the Internet.” March 11, 2000. http://www.pbs.org/internet/timeline

Williams, Jim. “Hacker History-The Real Programmers” About.com April 26, 1999. February 
28, 2000. http://netsecurity.about.com/compute/netsecurity/library/weekly/
aa042699.htm?rnk=r&terms=%22The+Real+Programmers%22
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Chapter 3

Buffer Overflows-A Taxonomy

The most exciting phrase to hear in science, the
one that herolds new discoveries, is not

“Eureka!” (I found it!) but “Thats funny”...

- Isaac Asimov

3.1 Introduction

We have demonstrated the omnipresent nature of Computer vulnerabilities. In every operating

system fielded, in every important network application released, programming errors which result in the

buffer overflow vulnerability have allowed unauthorized users to enter systems, or authorized users to

take unauthorized actions. In recent years we have seen the development of sophisticated vulnerability

databases and vulnerability exploitation tools by the so-called “computer underground”. Detailed descrip-

tions of how to find vulnerable states have appeared in various periodicals such as PHRACK and 2600,

and on the USENET [17]. A large subset of these discussions essentially show how to probe a system for

clues that indicate the system is running software known to be vulnerable to a buffer overflow exploit, or

that it is being administered in such a way as to allow an attacker to run a buffer overflow attack. 

 Some of these tools are capable of automating the exploitation of vulnerabilities that were

thought to require considerable expertise, including the buffer overflow. These tools, ready-made and of

considerable complexity [18], are freely and widely available, and pose a significant threat that cannot be

ignored. The celebrated Kevin Mitnick is an early example of a vandal who used such tools and databases

to penetrate hundreds of computers before being caught [19]. Our study clearly demonstrates that with the

widespread use of computers today, and increased computer knowledge in the hands of people whose

objective is to obtain access to unauthorized systems and resources, it is no longer possible or desirable to

implement security through obscurity [20].

Efforts to eliminate buffer overflow security flaws have failed miserably; indeed, sometimes

attempts to patch such a vulnerability have increased the danger. Further, designers and implementers

rarely learn from the mistakes of others. We see the recurrence of the buffer overflow as a case in point as

it is an easily preventable security hole that can, for the most part, be eliminated through proper program-

ming practice. Part of the complication is, that in the past, the buffer overflow problem was rarely docu-

mented in a format to allow for the creation of a database of characteristics related to the exploit
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mechanism itself. A search of the literature demonstrated this with two broad categories of associated

information. The first category involved numerous examples of what could be termed 'underground how

to manuals' associated with a particular buffer overflow exploit [7][45][47][49][50][58]. The second con-

cerned the hundreds of security advisories that alert users that a particular vulnerability exists along with

details on the affected software release and the patch information. A well ordered systematic global

description of the buffer overflow vulnerability does not exist. 

In this research we are concerned with finding these types of vulnerabilities in released third

party software and we want to find them quickly. When a product is released it is subject to potential

attack from a global community. This is in effect equivalent to the exploratory testing of the software on a

massive scale. As a security auditor, a single entity, we must ask how can we gain an advantage over the

global community in testing the product. The testing performed by the global community can be charac-

terized as a random and chaotic process, certainly with no defined plan. Each element within the commu-

nity explores the product according to their own particular goals and is limited by individual expertise.

One way to gain significant advantage is to leverage this haphazard testing process in our favor. We can

do this by developing a methodology that consists of specific tasks, objectives and documentation, that

make finding both those software systems and the individual domains within those systems, that may con-

tain an exploitable buffer overflow, a systematic process. In this approach we first identify, at a top level,

the potential areas of a system that enable this type of vulnerability. This allows us to identify candidate

target software. Once the target has been selected we use a similar approach at a more detailed level to

perform directed interactive testing or more commonly, exploratory testing.

In operational terms, exploratory testing is an interactive process of concurrent product explora-

tion, test design, and test execution. The outcome of an exploratory testing session is a set of notes about

the product, failures found, and a concise record of how the product was tested. When practiced in a rigor-

ous methodical fashion, it yields consistently valuable and auditable results. Key to our approach is an

abstraction of the buffer overflow exploit problem in terms that can be applied by the security auditor to

develop the heuristic elements which define and are integrated into the actual exploratory test plan.

To effectively test and ensure that computer systems are secure against malicious attacks we

need to analyze and understand the characteristics of faults that can subvert security mechanisms. A clas-

sification scheme can aid in the understanding of the types of buffer overflows that cause security

breaches by categorizing and grouping faults that share common external characteristics. Knowing how

systems have failed can help us build systems that resist failure. Petroski [21] makes this point eloquently

in the context of engineering design, and although software failures may be less visible than those of the

bridges he describes, they can be equally damaging as we discussed in chapter two.
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In this chapter we formulate a classification strategy then collect and organize1 a number of

actual buffer overflow exploits that have caused failures. We will establish a framework for a database

format, so that designers, programmers, analysts and auditors may do their work with a more precise

knowledge of what has gone before. The buffer overflows we examined were able to cause conditions or

circumstances that resulted in denial of service, unauthorized disclosure, unauthorized destruction of data,

or unauthorized modification of data and included most modern operating systems and ancillary software.

There is perhaps a legitimate concern that this kind of information could assist those who would attack

computer systems. Partly for this reason, we have limited the cases described here to those that already

have been publicly documented elsewhere and are relatively old. We do not suggest that we have assem-

bled a representative random sample of all known buffer overflows, but we have tried to include a wide

variety.

Using our collection we then classify the buffer overflow vulnerability along axiomatic lines and

present our findings as a taxonomy. The unique contribution of this work is an analysis of the problem in

a new way which will allow for an improvement of security in existing systems, and will provide a frame-

work for exploratory software testing that highlights those areas prone to exploitable buffer overflow

security flaws. This contrasts the work to [22], which argued that a preventative approach using formal

methods to design secure systems is appropriate. We emphatically agree; however, as nonsecure systems

continue to be used, our work is presented with the hope it will guide maintainers and software imple-

menters to improve the security of these flawed systems and software. We offer the taxonomy for the use

of those who are presently responsible for auditing released software and identifying exploitable flaws.

We feel that buffer overflow vulnerability data, organized this way and abstracted, could be used to iden-

tify the heuristic elements critical for successful interactive product testing and resultant identification of

exploitable security flaws.

In addition, our taxonomy attempts to organize information about buffer overflows so that, as

new vulnerabilities are reported, readers will gain a fuller understanding of which parts of systems and

which parts of the system operational cycle are more susceptible to vulnerabilities than others. This infor-

mation should be useful not only to those faced with the difficult task of assessing the security of a system

already built, but also to software designers. To accurately assess the security of a computer system, an

analyst must find its flaws. To do this, the analyst must back up and understand the system at a global

level and recognize that buffer overflow vulnerabilities that threaten computer security exist in unique

areas of the system. The issue of how to find the underlying vulnerabilities in the first place is of para-

mount importance in any exploratory test plan. 

1. See Appendix C for a collection of (20) case studies
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This chapter presents a brief discussion of the characteristics that are desired in any effective tax-

onomy. This is followed by a brief review of current taxonomies in the computer and network security

field. These taxonomies in present use include lists of categories, lists of terms, empirical lists, results cat-

egories, and matrices. As large global classifications of vulnerabilities they all suffer from a lack the focus

on our particular problem. A proposed, highly specific, taxonomy for the buffer overflow exploit is then

presented. Our taxonomy was developed from the criticisms of the taxonomies that have been published

and from using a process or operational viewpoint of ways, means, and ends. When one uses this view-

point, an attacker on computers or networks can be seen as attempting to reach or “link” to ultimate objec-

tives. This link is the buffer overflow exploit and is established through a defined operational sequence of

access, tools, and results that allows these attackers to connect to their objectives. 

3.2 An Effective Taxonomy

Classification of information is as much an art form as it is a science especially when classifying

computer security vulnerabilities. Systems that immediately come to mind are the library classification

systems such as the Library of Congress Classification (LCC) or the Dewey Decimal Classification

(DDC). These were developed to arrange printed matter in topical or disciplinary categories (i.e. to posi-

tion books related to the same or similar subjects next to each other). Our subject is much more abstract

and as a result we must go much further in developing a classification strategy for the buffer overflow vul-

nerability. 

A taxonomy can be broadly described as a system of classification allowing one to uniquely

identify something. The best-known example, the science of systematics, classifies animals and plants

into groups showing the relationship between each. Further, the classification is unique, so two of the

same animal will always be classified with the same groups. That is, if one considers the hierarchy to be a

tree structure with each branch uniquely numbered, each species of animal or plant is uniquely identified

by an exhaustive and unambiguous 6-tuple (kingdoms, phylums, classes, orders, family, genus). This bio-

logical hierarchy is repeatable regardless of who is doing the classifying, widely accepted and provides

useful insight on each particular instance of classification. Any taxonomy we wish to use to in an attempt

to describe buffer overflow vulnerabilities should provide the same benefits. The primary goal of our tax-

onomy is to enable a security auditor to focus on those areas where the potential for an exploitable condi-

tion may exist in order to develop test heuristics. Other specific objectives include the specification of a

historical record of buffer overflow exploits in a form that system designers and implementers can use to

anticipate flaws in their systems. In other words we look for a way to describe the buffer overflow in a

form useful for database characterization as well as an improved method of showing common characteris-

tics in related buffer overflow exploits for prevention and elimination.
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A taxonomy similar to the biological classification of plants and animals will accomplish these.

Such a taxonomy allows one to classify each vulnerability as a unique ordered tuple. This is essential, as it

will allow the security auditor to narrow the search domain when attempting to detect new vulnerabilities.

Perhaps more importantly, it allows us to determine how many instances of externally similar exploits are

known, which in turn suggests where efforts to reduce or eliminate the flaws should be focused. It also

allows us to characterize conditions under which the flaw arises, suggesting ways to detect new instances

of the flaw. 

3.2.1 Characteristics of a Satisfactory Taxonomy

We use our buffer overflow exploit analysis to devise a classification, or set of classifications,

that enable the analyst to abstract the information desired from a set of system properties. This informa-

tion may be a set of services, used as an intrusion mechanism to transport the buffer overflow “code”; a set

of environment conditions necessary for an attacker to exploit the vulnerability; a set of characteristics

common to a particular end result; or other data. The specific data used to classify a vulnerability is very

important and highly dependent upon the specific goals of the classification. This explains why multiple

classification schemes are extant. Each serves the needs of the community or communities to which its

classifier belongs.

Our problem of interest is to discover buffer overflow vulnerabilities before attackers can exploit

them therefore our classification will focus on the external system level domain where these flaws tend to

exist. As we are using the biological classification model our taxonomy should follow and have classifica-

tion categories with the following characteristics: 

• Mutually exclusive  - The categories do not overlap with classification in one category exclud-
ing classification in all others. In other words similar vulnerabilities are classified similarly.
For example, all buffer overflow exploits using TCP packets should be grouped together.
However, we do not require that they be distinct from other attacks. For example, a vulnerabil-
ity involving a TCP packet may be used by many different services. Hence it should also be
grouped with the particular destination service. As a result, exploits may fall into multiple
classes. Because a buffer overflow can rarely be characterized in exactly one way, a realistic
classification scheme must take the multiple characteristics common to each attack into
account. This allows some structural redundancy in that different buffer overflow exploits may
lie in the same class; but we expect (and indeed desire) this overlap. 

• Exhaustive - When one considers the universe set of that being classified, when taken together,
the categories are inclusive across all possibilities. 

• Accepted - Classifications should be logical and intuitive so that they become generally
approved for widespread use. 
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• Unambiguous - Regardless of who is classifying the rule set is clear and precise so that classi-
fication is not uncertain. This implies that our classification should be primitive. Determining
whether an exploit falls into a class requires a 'yes' or 'no' answer. This means each subclass
has exactly one property. For example, the question “does the vulnerability manifest itself in
the UNIX operating system or Windows NT” is ambiguous; the answer could be either, or
both. For our scheme, this question would be two distinct questions: “is the vulnerability spe-
cific to UNIX” and “is the vulnerability specific to Windows NT”. Both can be answered 'yes'
or 'no' and there is no ambiguity to the answers. 

• Repeatable - Regardless of who is classifying, repeated applications of the rule set result in the
same classification. This means that our classification terms should be well-defined. For exam-
ple: What is the reason for a buffer overflow attack? One can argue that the classification “rea-
son for” is simply an alternate manifestation of the classification “intent”. However the
classifier “reason for” is much more subjective and may include an attempt by the classifier to
define the personal motives of the attacker. Where as the classification “intent” is limited to the
specific objectives of the buffer overflow attack. For this reason the term “reason for” would
not be considered as a valid classification term.

These distinctions represent useful tools that can be used to evaluate possible taxonomies. It

should be expected, however, that a satisfactory taxonomy would be limited in some of these discrimina-

tors. It is important not to loose sight of the fact that a taxonomy is only an approximation of reality, one

that is used to leverage a greater understanding in a field of study. It is important to note that this is only an

approximation, and as such, it may fall short in some categories. This may be particularly the case when

the characteristics of the data being classified are widely divergent, imprecise and uncertain, as was the

data collected for this study. In fact it can be demonstrated that this is a characteristic of the buffer over-

flow in general. Nevertheless, we believe that our classification approach is valid and is an important and

necessary process for the systematic study of the buffer overflow. 

3.3 Previous Efforts

Faults in operating system software and application software associated with bounds checking

can lead to the security breaches associated with the buffer overflow exploit. A systematic knowledge of

this class of faults, their general characteristics, and how they enter the system is important to ensure

secure operation and to preserve the integrity of stored information. Previous work includes other taxono-

mies [23], [24], [25] that have recently been developed for organizing data about software defects and

anomalies of all kinds. These are primarily oriented toward collecting data during the software develop-

ment process for the purpose of improving it. Other classifications are more oriented towards a broad

ordering of security vulnerabilities in general. Past work, while not suitable for our particular effort,

allows us insight to the approach required to correctly abstract difficult software flaws.

We are primarily concerned with a unique security flaw that is detected only after the software

has been released for operational use and includes both operating systems and applications. Our taxon-

omy, while not incompatible with these efforts, reflects this perspective. Our goals are more limited than
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those of these earlier efforts in that we seek primarily to provide an understandable record of a singular

type of security flaw that has occurred. They are also more ambitious, in that we seek to categorize a vul-

nerability that is difficult to characterize and define. We will attempt to classify not only the details of the

exploit, but also the mechanism of the attack, the place it entered the system, and the attackers intent.

3.3.1 Protection Analysis (PA) Project

The Protection Analysis (PA) Project conducted research on protection errors in operating sys-

tems during the mid-1970s. The group published a series of papers, each of which described a specific

type of protection error and presented techniques for finding those errors. The proposed detection tech-

niques were based on pattern-directed evaluation methods, and used formalized patterns to search for cor-

responding errors [27]. The results of the study were intended for use by personnel working in the

evaluation or enhancement of the security of operating systems [28]. The objective of this study was to

enable anyone with little or no knowledge about computer security to discover security errors in the sys-

tem by using the pattern-directed approach. The final report of the PA project proposed four representa-

tive categories of faults [26]. These were designed to group faults based on their syntactic structure as

follows:

• Domain errors, including errors of exposed representation, incomplete destruction of data,
incomplete destruction of content, and incomplete destruction of context

• Validation errors, including boundary condition errors and failure to validate operands

• Naming errors, including aliasing and incomplete revocation of access to a deallocated object.

• Serialization errors, including multiple reference errors and interrupted atomic operations

The PA project's classification is too broad and nonspecific to be useful for our purposes, how-

ever the group's research was an important foundation in helping us understand the formalized process of

fault classification.

3.3.2 The Research in Secured Operating Systems (RISOS) Project

The RISOS project was a study of computer security and privacy conducted in the mid-1970s

[29]. The project was aimed at understanding security problems in existing operating systems and to sug-

gest ways to enhance their security. The systems whose security features were studied included IBM's OS/

MVT, UNIVAC's 1100 Series operating system, and the TENEX system for the PDP-10. The final report

of the project discussed several issues related to data security in general. It suggested administrative

actions that could prevent unauthorized access to the system and methods to prevent disclosure of infor-

mation. The main contribution of the study was a classification of integrity flaws found in the operating

systems studied. The fault categories proposed by researchers of RISOS [29] are the following:



31

• Incomplete parameter validation

• Inconsistent parameter validation

• Implicit sharing of privileged/confidential data

• Asynchronous-validation/Inadequate-serialization

• Asynchronous-validation/Inadequate-serialization

• Inadequate identification/authentication/authorization

• Violable prohibition/limit

• Exploitable logic errors

The fault categories proposed in the RISOS project are general enough to classify faults from

several operating systems, but the generality of the fault categories prevents the type of fine-grain specific

classification that we require for our unique security flaw. 

3.3.3 The Landwehr Taxonomy

Landwehr et al. [30] published a collection of security flaws in different operating systems and

classified each flaw according to its genesis, or the time it was introduced into the system, or the section of

code where each flaw was introduced. This study was motivated by the observation that the history of

software failures is largely undocumented. The research also compared the frequency of security incidents

against the taxonomies with the goal of helping software programmers and system administrators “...to

focus their efforts to remove and eventually prevent the introduction of security flaws...” [30]. The authors

remark that: “...knowing how systems have failed can help us build systems that resist failure....” The

objective of Landwehr taxonomy was to describe how security flaws are introduced, when they are intro-

duced, and where the security flaws can be found. An outline of the three categories in the taxonomy is

presented below:

1) By Genesis:

a. Non-malicious 

validation errors
domain errors
serialization/aliasing errors
errors that result from inadequate identification/authentication
boundary condition errors
logic errors

b. Malicious

viruses
worms
trojan horse
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time bombs
trap doors

2) By time of introduction: 

a. Development

b. Maintenance

c. Operation

3) By location:

a. Operating system routines

b. Support software

c. User programs

The Landwehr security flaw taxonomy by genesis extended the previous research of the PA and

RISOS groups with the introduction of a new category of flaws, intentional flaws. Intentional flaws are

flaws that are introduced deliberately into a program so that they can be exploited at a later time. Trap-

doors, Trojan horses, time bombs, and covert channels are examples of intentional flaws. Inadvertent

flaws in the Landwehr taxonomy were similar to the flaw taxonomies found in the PA and RISOS

projects. The Landwehr security flaw taxonomy by time of introduction characterized security flaws by

when they were introduced into a system. The Landwehr study was the first to describe when security

flaws were introduced during the software development life cycle (SDLC). The Landwehr security flaw

taxonomy by location characterized security flaws by where the security flaw occurred. This taxonomy

differentiated security flaws as either hardware or software and subdivided the software category into

operating system, support, and application flaws.

The Landwehr taxonomies extended security flaw research by providing multiple classification

hierarchies for characterizing security flaws. The realization that security flaws cannot be simply

described by a single attribute was an important contribution and one that we will choose to follow in our

analysis. Of the three taxonomies discussed so far, only the by location taxonomy is germane to our clas-

sification of the buffer overflow flaw.

3.3.4 The Marick Survey

Brian Marick [31] published a survey of software fault studies from the software engineering lit-

erature. Most of the studies reported faults that were discovered in production quality software. Although

the results of the study are insightful, the classification scheme provided is more appropriate to the survey
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format that Marick used. For this reason we find it not suitable for the organization and classification of

buffer overflow exploit data.

3.3.5 The Bishop Taxonomy

Bishop studied flaws in the UNIX operating system and proposed a flaw taxonomy for the UNIX

operating system [32]. Rather than describe security flaws using a single set of categories, Bishop pro-

posed that security flaws should be described using a single taxonomy that is composed of several collec-

tions of categories or axes. The proposed axes were:

• Nature of the flaw; 

• Time of introduction; 

• Exploitation domain; effect domain; 

• Minimum number of components; 

• Source of the identification of the vulnerability

Although this study extended security flaw taxonomy research by including a number of criteria

that we previously had not considered, we find it too narrow and specific for our purposes. 

3.3.6 Aslam's Taxonomy 

Aslam's study [33], [34], as extended by Krsul [35], approached classification slightly differ-

ently, through software fault analysis. Aslam proposed to classify the faults found in the UNIX operating

system in a manner complementary to Bishop [32]. The objective of this taxonomy was to unambiguously

classify security faults and provide a theoretical basis for the data organization of a vulnerability database.

Selection criteria were provided for each subclass so that all fault categories are specific and distinct. The

Aslam taxonomy contained the following major categories:

• Coding Faults: These are flaws introduced during software development. Coding faults were
further subdivided into:

• Condition validation errors and

• Synchronization errors.

• Emergent Faults: Flaws that result from improper installation of software, unexpected integra-
tion incompatibilities, and when a programmer fails to completely understand the limitations
of the run-time modules. Emergent faults were subdivided into:

• Configuration errors 

• Environmental errors.
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The Aslam taxonomy was used as the theoretical basis for the Crosbie et.al. vulnerability data-

base that was used in the Intrusion Detection In Our Time (IDIOT) IDS [36].

The classification suffers from flaws similar to those of the PA and RISOS studies and upon

close analysis breaks down when considering different levels of abstraction. For these reasons we find it

inappropriate for the classification of our singular security flaw.

3.3.7 The Lindquist Taxonomy

Lindquist and Jonsson proposed two taxonomies that differed from previous work in that charac-

terized security flaws as attacks. The classification was based on the technique used and the result of the

attack. The objectives of Lindquist and Jonsson research were threefold: (1) to establish a framework for

the systematic study of computer attacks; (2) to establish a structure for reporting computer incidents to

incident response team; and, (3) to provide a mechanism for assessing the severity of an attack [37].

The Lindquist Intrusion Technique Taxonomy is based on previous research by Neumann and

Parker [38] and divided intrusive techniques into three principal categories:

1) Bypassing Intended Controls: This category includes attempts to attack passwords, spoof
privileged programs, and attack programs utilizing weak authentication.

2) Active Misuse of Resources: This category includes active attacks such as buffer overflows
as well as exploitation of world writeable system objects.

3) Passive Misuse of Resources: This category includes all probing attacks that attempt to iden-
tify weaknesses in the scanned system [37].

The Lindquist Intrusion Result Taxonomy is based on the Confidentially, Integrity, and Avail-

ability (CIA) model. It divided intrusion results into three categories:

1) Exposure: These are attacks against system confidentially and are subdivided into disclosure
of confidential information and service to unauthorized entities.

2) Denial of Service: These are attacks against system availability and are subdivided into
selective, unselective, and transmitted attacks. Transmitted attacks are attacks that affect the
service delivered by other systems to their users, not the service delivered by our system to
other systems.

3) Erroneous Output: These are attacks against system integrity and are subdivided into selec-
tive, unselective, and transmitted attacks [37].

The Lindquist Intrusion Result Taxonomy use of the widely respected CIA model provides a

good theoretical foundation for the classification of system attacks. Intrusion results are an important

component of the buffer overflow vulnerability as each exploit is tailored to the attack. As such, the

Lindquist Intrusion Result Taxonomy will be used as a model for our analysis in developing a proposed

buffer overflow exploit taxonomy.
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3.3.8 The Fisch Damage Control and Assessment Taxonomy

A review of literature reveals only one dedicated intrusion response taxonomy - the Fisch DC&A

taxonomy [39]. The Fisch DC&A taxonomy classified the intrusion response according to:

• When the intrusion was detected (during the attack or after the attack);

• The response goal (active damage control, passive damage control, damage assessment, or
damage recovery). 

While the categories covered by the Fisch taxonomy should be components of any intrusion

based taxonomy, additional components are necessary to more accurately classify our unique exploit as an

attack.

3.3.9 Summary of Previous Methods 

Our research into security taxonomies has allowed us to view the body of doctrine in order for us

to develop our own approach for the classification of the buffer overflow exploit as an attack. With per-

haps the exception of the Lindquist Taxonomy, previous security taxonomy research has been too

focused, not focused enough, or focused on intrusion response. Another problem with existing classifica-

tion techniques is that they all rely on independent discriminators by using a single category for each class

of flaw. The Lindquist Taxonomy we found to be an approach that we could model although it remains

too broad for our purposes and converges on the independent classifier approach. In addition, it did not

consider the type of attack, type of service being attacked, sensitivity of the information being attacked, or

the environmental constraints required for a successful exploit. The next section addresses these open

research issues within the context of developing a new taxonomy of buffer overflow exploits.

3.4 A Taxonomy of Buffer Overflow Exploits

The classification of security flaws, vulnerabilities, and intrusions has received much attention in

the past as we have demonstrated in the proceeding section. However, this previous work does not directly

carry over into the area of classifying buffer overflow exploits as attacks. Hierarchies are the most com-

mon structure for organizing large collections of data. Current classification methods used by those who

track buffer overflow exploits [10], [40], [41], [42] can be described as being a flattened class space. That

is one class for every leaf in the hierarchy. If any structure exists at all in the current classification of

buffer overflow exploit data it is by date of occurrence and by the effected operating system or applica-

tion. 

Discovering the natural structure that underlies a field of inquiry is a challenging and interesting

problem. First, we must examine the buffer overflow within the context of a security issue. Most buffer

overflow attack scripts are not general purpose and require a very specific target. They generally require
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application X version Y running on operating system Z. This breadth of targets and approaches makes it

difficult for to accurately define a classification taxonomy based on independent discriminators. To gener-

alize, we call the set of buffer overflow exploits attacks. It is clear that buffer overflow exploits have the

potential to be extremely dangerous, however researchers are doing little work to understand the nature of

these attacks. What are the characteristics? How have attacks changed over time? What level of sophisti-

cation is required to use documented exploits? In what areas of existing systems are these attacks occur-

ring? More importantly within the context of this thesis, can we develop a heuristic foundation for

exploratory testing? 

We propose to answer these questions by creating a taxonomy of buffer overflow attacks as clas-

sified by a set of dependent classifiers. To do this we will abstract the buffer overflow in a hierarchal man-

ner beginning at the most elementary level and working upward. At the most basic state the buffer

overflow represents a programming flaw of common occurrence. At the next level we can look at the

buffer overflow as a potential security vulnerability succeeded by the buffer overflow as an attack. At the

top level of the hierarchy, the buffer overflow can represent a security incident. Before discussing vulner-

ability, attack and incident classification schemes, we define our terminology:

• Vulnerability: A misconfigured or faulty element of a computer system that can be exploited
for unauthorized use of the computer.

• Attack: An attack is simply a single use of a buffer overflow exploit in an attempt to gain unau-
thorized access, or an attempt to gain unauthorized use, regardless of success. The attack is
characterized by a script or set of instructions which format the buffer overflow exploit that an
intruder puts into action to accomplish the unauthorized enterprise.

• Incident: Any event when an attacker, by methods or actions, uses or attempts to use an attack
exploit against a target. An incident can be characterized by grouping like attacks that can be
distinguished from other incidents because of the degree of similarity of objectives, tech-
niques, and timing and the distinctive signature of the attackers. 

As buffer overflow incidents are made up of attacks, we propose that it is appropriate to develop

a taxonomy based within the context of the attack itself. This can then be extended to include the broader

classification of incidents. A taxonomy of attacks is, however, more useful than the higher level global

classification of incidents. When one considers buffer overflow incidents, the usefulness of an attack tax-

onomy remains constant across the entire universe set of incidents and therefore includes all attacks. We

believe that such an attack taxonomy is useful both in the evaluation of existing systems as well as in the

development of new systems. By comparing well defined categories of attack mechanisms against the

details of the target system of interest, one can begin to establish a system for classification. From our

review of existing vulnerability classification research we concluded that existing taxonomies do not

directly apply to our attack classification scheme. This is because attacks have features that do not exist in

security flaws or vulnerabilities:
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• Goals,

• Specifications for the attacking host,

• Transmission methods by which the attacker reaches the target, and

• Requirements the attacker must meet in order to launch the attack.

In addition, unlike vulnerability classification schemes, attack classification schemes are not nec-

essarily concerned with identifying the specific exploited flaw. This is particularly useful as we are lim-

ited to a single known flaw, the buffer overflow. When one considers the class of successful buffer

overflow exploits several homogeneous features exist:

• The buffer overflow exploits more than one vulnerability

• The buffer overflow may uses more than one transmission mode

• The buffer overflow results in different goals 

The existing vulnerability classification systems strive to use independent classifiers. This is dis-

similar from our attack based classification scheme as we rely on dependent classifiers. Dependent classi-

fiers allow one to choose multiple categories within a class while independent classifiers force one to

choose a single category for each class. Using the buffer overflow as our definition of an attack, there

exists a buffer overflow that no attack classification scheme that uses independent classifiers can uniquely

classify. The reason is that our definition of an attack does not specify how many vulnerabilities the attack

can exploit, how many goals the attack may achieve, or how many transmission methods it can use. No

reasonable scheme of independent classifiers will uniquely classify an attack that is the union of all exist-

ing attacks.

The class of buffer overflow exploits contains many scripts that have multiple goals, multiple

delivery methods, work against multiple targets, from multiple platforms, and that exercise multiple vul-

nerabilities. As a result of the wide diversity of attack scripts, a taxonomy that uses independent classifiers

is difficult. Our approach is to use a classification scheme that is fine grained enough to yield interesting

results but broad enough to allow us to quickly characterize attacks. We classify each attack within the

following (6) major categories each of which is a classification hierarchy in itself:

1) Intent 

2) Target Hardware

3) Offensive Platforms 

4) Transmission Protocol 

5) Offensive Requirements

6) Target Software 
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Figure 3: The (6) major classification categories

These six major categories establish the overall dimensions of the classification state space (i.e. a

given buffer overflow exploit attack is either in or out of a given category). Classes that are higher in a

hierarchy can mean “other”, “all”, or a subset of the lower classes. Given the dimensions of the space and

the exploit information, any person should be able to recreate the overall state space. Within each major

class there exists a hierarchy of subclasses. Some of the dimensions of this subspace will be classifications

that will be self-sustained, consistent, objective, and capable of distinguishing important features that can

be used to find patterns of and dependencies that might help us better understand the nature of buffer over-

flow exploits.

3.4.1 Offensive Access Requirements

A buffer overflow attack can be classified according to the access requirements needed to exploit

the target system. These form the most part are self explanatory with the exception of the category “Host

Accesses Attacker Client”. This represents an emergent area of so-called ''pushed'' exploits where the tar-

get of the attack must access the attacker’s information in order for the attacker to launch the attack. This

is most common with web sites that attack users that visit. 

Figure 4: Hierarchy of Offensive Requirements

 
BUFFER 

OVERFLOW 
EXPLOIT 

Intent 
Offensive 
Access 

Requirement

Delivery 
Strategy 

Target 
Hardware

Offensive 
Platform 

Target 
Software 

 O F F E N S I V E  
A C C E S S  

R E Q U I R E M E N T S 

User  Account  
o n  Hos t  

Appl ica t ion  
Accoun t  on  

Hos t  

Standard  
Network  
Acces s  

Hos t  
Acces se s  
At t acke r  

C l i e n t 

She l l  
A c c o u n t  
Network  
Acces s  



39

3.4.2 Intent

This broad category does not attempt to discriminate each possible malicious objective of a par-

ticular attach rather, it focuses on a system-based classification. At a top level the buffer overflow exploit

can be utilized to cause a denial of service (DOS)1 or more commonly to penetrate the system to some

degree. The hierarchy of intent is shown below.

Figure 5: Hierarchy of Intent
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1. See Appendix 3 Exploit 1A as an example

 

  D O S   

Penetrate 

I N T E N T 

 Other  

crash/freeze 
a p p  

crash/freeze  
host  

 

other 
crash/freeze  

a p p 

crash/freeze
host  

 

other 

Remote  

illegal disk  
write  

get root get info  o t h e r 
get 

privilege  
 

 

Remote  

illegal disk  
write  

get  root get info o t h e r get 
pr iv i lege 

 

 

Loca l 

Local 



40

services or operating system the target platform is running that requires a unique offensive platform. In

practice, it is common knowledge that the offensive platform of choice is typically running a variant of

Linux.

Figure 6: Offensive Platform Requirements

3.4.4 Delivery Strategy

This represents the connection between the attackers and their objectives. The buffer overflow is

characterized by an input of excess data into a process. In order to reach the desired process an attacker

must inject a payload of malicious code and to do this the attacker must take advantage of some sort of
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gory, as it is the key discriminator used in this taxonomy. It allows differentiation between the hundreds of

known buffer overflow exploits and is an important classification tool for the development of exploratory
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Figure 7: Delivery Strategy

(1) See Appendix B for listing of common ports
(2) See Appendix A for listing common Multipurpose Internet Mail Extensions (MIME) types

3.4.5 Target Hardware

Under target hardware, we mark the type the machine that the attack abuses. As we defined,

classes that are higher in a hierarchy can mean “other”, “all”, or a subset of the lower classes. What this

means for example, is that checking the target type Unix could mean that the attack effects all Unix hosts,
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Figure 8: Target Hardware

3.4.6 Target Software

Under attack software, we identify the software that the attack abuses. Often, it is difficult to

determine whether a daemon process is running as part of an application or part of the OS. Our solution is

to attempt classification along the lines of application (that may use an OS daemon) and OS software. 

Figure 9: Target Software
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All of the cases documented here reflect actual flaws in released software. As we are concerned

primarily with proprietary closed source Operating Systems and applications we have selected our data set

as representative of those exploits common to the Windows family of platforms. For each case, a source

(usually with a reference to a publication) is cited, the software/hardware system in which the flaw

occurred is identified, the flaw and its effects are briefly described, and the flaw is categorized according

to the taxonomy. Where it has been difficult to determine with certainty the exact category of an exploit

feature, the most probable category (in the judgment of the author) has been chosen, and the uncertainty is

indicated by the annotation ‘?’. In some cases, a buffer overflow exploit is not fully categorized. 

Our taxonomy allows us to group cases according to the systems on which they occurred how-

ever, since we are focused on the Windows platform our data set would reflect this preference. It is impor-

tant to note that Unix systems exhibit an approximate equal number of exploited buffer overflow

vulnerabilities when compared to Windows systems, especially in recent years. Since readers may not be

familiar with the technical details of all of the elements included in the taxonomy, brief introductory dis-

cussions of relevant details are provided as appropriate.

3.6 Summary

In this chapter we presented a buffer overflow exploit classification scheme that helps in the

unambiguous classification of buffer overflow attacks that is suitable for data organization and process-

ing. A representative database of exploits using this classification was implemented and is being used to

aid in our fundamental understanding of the buffer overflow exploit throughout the remainder of this the-

sis. This taxonomy was not meant to be a complete one and is certainly open for modification. We believe

that our scheme can be easily expanded because the criteria used for the taxonomy does not rely on soft-

ware implementation details and is designed to encompass the general external characteristics of the

buffer overflow exploit. Also, our existing categories can be extended to include any new exploits that

cannot be classified into the existing categories, should any be found.

We used a small database that also needs to be extended with more exploits. The database cur-

rently has 20 significant buffer overflows across Windows systems only. We believe that there exists data

to extend the collection to over 400 cataloged buffer overflows and would include other systems such as

UNIX as well as routers and switches. Once this is complete, a more complex evaluation of the database

can be performed for some of our original research goals: building heuristic test elements, guide software

design and testing, and monitor the evolving characteristics of the buffer overflow exploit.
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Chapter 4

The Buffer Overflow Exploit-Technical Discussion

For every complex problem, there is a solution
that is simple, neat, and wrong.

-  Henry L. Menken

4.1 General Description

A buffer overflow occurs in a program anytime the program writes more information in an array,

the buffer, than the space allocated in memory for it. This causes the adjacent area, the areas above the

direction of buffer growth, to be overwritten. When this occurs all previously stored values are corrupted.

Buffer overflows are defined as programming errors that are typically introduced into a program as a

result of the programmer failing to enforce boundary conditions on the data being copied into the buffer.

Unfortunately, as we shall soon demonstrate, buffer overflow programming flaws are quite common as a

direct result of certain widely used and dangerous C library functions, those that handle strings in particu-

lar. Once a buffer overflow vulnerability has been coded into a program testing may not uncover it, so that

the vulnerability may exist in the program undiscovered, hidden and silent for years. The potential then

becomes one of the program being the target of a sudden attack in which the vulnerability is exploited to

gain unauthorized access to a system. 

A buffer overflow may occur by accident during the execution of a program. With this type of

circumstance, the chances are very unlikely that it will lead to a security compromise of the system. Most

often the information that is clobbered, in areas adjacent to the buffer, will only cause the program to crash

or produce results that are obviously incorrect. On the other hand, in a buffer overflow attack, it is the

objective of the attacker is to use the vulnerability to corrupt information in a carefully controlled way in

order to execute malicious code designed by the attacker. If this succeeds, the attacker effectively hijacked

the control of the system. Once control is transferred to the malicious code, it carries out the instructions

of the attacker, usually the granting of complete unauthorized system access. 

In particular, many attacks have been successful against Windows NT and Windows 2000 sys-

tems [45] [56] [58] [47] [59]. We remark, that although this thesis is concerned with proprietary software

and we have limited our discussion to Windows systems, buffer overflows are applicable to most Operat-

ing Systems. Axelsson [55] compared the security of Windows NT and UNIX systems against known

types of attack, and found them to be roughly equally vulnerable. 
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A buffer overflow attack may be local or remote. In a local attack the attacker already has access

to the system and may be interested in escalating his/her access privilege. A remote attack is delivered

through a network port, and may achieve both simultaneously by gaining unauthorized access and maxi-

mum access privilege. 

Summarizing, we see that a buffer overflow attack usually consists of three parts: 

1) The planting of the attack code into the target program; 

2) The actual copying into the buffer which overflows it and corrupts adjacent data structures; 

3) The hijacking of control to execute the attack code; 

We now examine in more detail the technical mechanism of buffer overflow attacks. 

4.1.1 The Hardware/Software Interface

To understand the characteristics of most buffer overflows, we first must understand the way

memory is structured and organized within the machine when a typical program runs. On many systems,

virtual address space is dedicated to each process and that space is somehow mapped to real memory. In

this discussion we will describe memory organization and layout and explain the relationship between a

function and memory space. We will outline the processes that are, in theory, allowed to address big

chunks of continuous memory. We will show how parts of this memory can be potentially abused. 

4.1.1.1 What defines a program?

In general terms we can view a program as an instruction set, expressed in machine code (regard-

less of the language used to write it) and it is this program that we commonly call a binary or an execut-

able. To arrive at this binary file, the high level source language that includes all variables, constants and

instructions is processed by the compiler. In effect then, this binary file is a compile time object. This sec-

tion presents the memory layout within the different parts of the binary.

4.1.1.2 Memory Organization

In order to understand what goes on while executing a binary, we need to have a look at the orga-

nization of virtual memory. It relies on different well defined areas for segmenting tasks between user and

kernel process space. A Windows (in this case NT) process embodies many things such as, amongst oth-

ers, a running program, one or more threads of execution, the process' virtual address space and the

dynamic link libraries (DLLs) the binary uses. The process has 4 GB of virtual address space to use. Half

of this is, from address 0x00000000 to 0x7FFFFFFF, private address space where the program, its DLLs

and stack (or stacks in the case of a multithreaded program) are found. The other half, address

0x80000000 to 0xFFFFFFFF is the system address space where such things as NTOSKRNL.EXE, the



46

(kernel program) and the (hardware abstraction layer) HAL are loaded (ref. figure 10). When a program is

run, NT creates a new process. It loads the program's instructions and the DLLs the program uses into a

private address space (the text area). This area is read-only and it is shared between every process associ-

ated with running a given binary. Attempting to write into this area causes a segmentation violation error.

The first thread is started and a stack is initialized.

Figure 10: Windows NT Memory Layout

This represents the default behavior. It can be changed as of to assign 3 GB as private address space and 1 GB as system 
address space. This is to boost the performance of programs, such as databases, the require large amounts of memory. 
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they are declared. Variable types can be char, int, double, or memory addresses in the case of pointers.  On

a machine utilizing the Intel architecture, the pointer is a word and represents a 32bit integer address

within memory. With the use of pointers, the size of the area pointed to is obviously unknown at the time

of compilation. To explicitly allocate a memory area, a dynamic variable is used. This variable is really a

pointer pointing to that allocated address space. It is also important to note that global/local, static/

dynamic variables can be combined without complications.

With this understanding, let's go back to the memory organization for a given process. The data

area stores the initialized global static data (the value is provided at compile time), while the bss segment

holds the uninitialized global data. The machine is able to reserve memory space at compile time since the

size of the data is defined according to the objects they hold.

This memory space, reserved at compile time for program execution, that contains the grouping

of both local and dynamic variables, is known as the user stack frame. We know that our high level lan-

guages allow us to invoke functions in a recursive manner. As a result, the number of instances of a local

variable is not known in advance. The concept of the stack allows for this functionality by pushing the val-

ues required by each instance of the function onto the stack. 

The stack is located on top of the highest addresses within the user address space or user frame,

grows in a downward direction, and works according to a LIFO model (Last In, First Out). The bottom of

the user frame area is reserved for allocation of dynamic variables. This region is called heap, it grows in

a upward direction and contains the memory areas addressed by pointers and the dynamic variables. When

a variable is declared, the associated pointer (a 32bit variable) is either in BSS or in the stack and does not

point to any valid address. When a process allocates dynamic memory (i.e. using malloc) the address of

the first byte of that memory (also 32bit number) is put into the pointer. 

4.1.1.3 The Stack and the Heap

Each time a function is called, a new environment must be created within memory space for local

variables and the function's parameters. We use the term ‘environment’ to define all the elements appear-

ing while a function is executing. That is, all arguments, local variables, as well as the return address

within the execution stack. The ESP (extended stack pointer) register holds the top stack address, which is

at the bottom as in our representation the stack grows downward. The ESP stack pointer, because of the

last in first out implementation, points to the last element added to the stack. It is important to note that the

ESP is architecture dependent and may sometimes point to the first free space in the stack. The ESP can

be changed in a number of ways both indirectly and directly. When something is pushed onto the stack the

ESP increases accordingly. When something is POPed off of the stack the ESP shrinks. The PUSH and
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POP operations modify the ESP indirectly. The ESP can be manipulated directly, with an assembly code

instruction of "SUB ESP, 04h" which pushes the stack out by four bytes or one word.

We could express the address of a local variable within the stack as an offset relative to ESP.

However, because items are being continuously added or removed to and from the stack, the offset of each

variable would then need readjustment, a very inefficient proposition. The use of a second register allows

to improve on our efficiency. To do this we use register EBP (extended base pointer) to hold the start

address of the environment of the current function. Therefore, it's enough to express the offset related to

the value in this register. It stays constant while the function is executed. Now we have a easy method to

find the parameters or the local variables within a function.

The basic unit used within the stack is a word. On i386 CPU architectures it is (32) bits long or

(4) bytes. This value is different across other architectures. As an example, on Alpha CPUs a word is (64)

bits. The stack only manages words, and what this means is that every allocated variable uses the same

word size. The stack is usually manipulated with just 2 CPU instructions:

1) PUSH value: This instruction puts the value at the top of the stack. As stack growth is down-
ward, the push reduces ESP by a word to allow us to get the address of the next word avail-
able in the stack. The stored value is given as an argument within that word; 

2) POP destination: This instruction puts the item from the top of the stack into the ‘destina-
tion’. In other words, it puts the value held at the address pointed to by ESP in the destina-
tion and increases the ESP register. In effect, nothing is really removed from the stack. Just
the value of the pointer to the top of the stack changes. 

4.1.1.4 The Registers1

The registers are a designated series of storage areas that hold exactly one word (4 bytes), while

the memory space itself is made of a series of words. Each time the machine places a new value within a

register, the old value is lost. Registers are designed to allow direct communication between memory and

CPU. As a point of interest, the first 'e' appearing in the registers name designates a register for use within

a 32bit architecture and means ‘extended’. This feature indicates the evolution between old 16bit and

present 32bit architectures. The registers can be divided into 4 categories:

1) general registers: EAX, EBX, ECX and EDX are all used to manipulate data; 

2) segment registers: the 16bit registers CS, DS, ESX and SS, all hold the first part of a mem-
ory address; 

3) offset registers: these indicate an offset related to segment registers: 

a. EIP (Extended Instruction Pointer): indicates the address of the next instruction to

1. This discussion centers around the x86 intel architecture, other systems (alpha, sparc, etc) 
have registers with different names but similar functionality.
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be executed; 

b. EBP (Extended Base Pointer): indicates the beginning of the local environment for

a function; 

c. ESI (Extended Source Index): holds the data source offset in an operation using a

memory block; 

d. EDI (Extended Destination Index): holds the destination data offset in an operation

using a memory block; 

e. ESP (Extended Stack Pointer): the top of the stack; 

4) special registers: they are only used by the CPU and will not be covered in this thesis. 

To summarize our process memory, first we have the code or text segment with all data in this

segment represented by assembler instructions that are executed by the processor. The execution of this

code is non-linear, it can skip code, jump, and call functions depending on certain conditions. For this rea-

son we have a pointer called EIP, or instruction pointer to keep track of where in the execution path we

are. The address to where EIP points to always contains the address of the code that will be executed

next. Second we have the data segment, a space for variables and dynamic buffers. Last we have the stack

segment, which is used to pass data (arguments) to functions and as a space for variables local to those

functions. The bottom or start of the stack usually resides at the very end of the virtual memory of a page,

and grows in a downward direction. The assembler command PUSH will add a word to the top of the

stack, and POP will remove one word from the top of the stack and put it in a register. To allow for direct

access to stack memory, there is the stack pointer ESP that points at the top of the stack or lowest memory

address within the stack frame.

Now that we have developed a familiarity with the organization of memory and it’s association

with our binary at run time we will turn our attentions to how a executable behaves from start to finish

within the context of the i86 architecture. 

4.1.2 Binary Execution at Run Time

In this section we will present the behavior of a program at run time from call to finish. A pro-

gram is typically made up of functions ranging from the simple to the complex. At run time these func-

tions are called then executed according to the flow of the program. Each time a function is called stack

space is automatically allocated. The stack holds all information required within the context of the current

function call for all function calls including the function call to main(). We can view this as a container
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of information unique to each function call that is a continuous block of storage. We call this container a

activation record or, alternatively, a stack frame. There are many things can go into an activation record.

These contents, laid down at compile time, are generally both architecture-dependent and compiler-depen-

dent. Some of the common items placed in stack frames, as we have seen, include values for the non-static

local variables of the function, the arguments passed to a function (actual parameters), saved register

information, and the address to which the program should jump when the function returns. We have

shown that many of these items are kept in machine registers instead of on the stack, mainly for reasons of

added efficiency (a compiler-dependent factor).

 The purpose of this section is to detail the behavior of the stack and the registers during function

execution. The buffer overflow exploit tries to interrupt the normal behavior of the function at run time.

To understand this attack, it's useful to know what the normal behavior is. Executing a function is divided

into three distinct steps:

1) the prologue: when entering a function two requirements must be accomplished. First the
state of the stack must be saved before entering the function. Second the amount of memory
required for running the function must be reserved.

2) the function call: when a function is called, its parameters are pushed onto the stack and the
instruction pointer (IP) is saved to allow the remainder of the program to resume execution
from the correct place after the function has completed it’s execution; 

3) the function return: restores the organization of memory to the state immediately prior to
calling the function. In this section we'll demonstrate using the following example:

4.1.2.1 The Prolog

When looking at the assembly instructions, a function always starts with the instructions: 

 void foo(int I, int j)  
{  
   char str[5]; 
   int k = 3; 
   return;   
}  
int main(int argc, char **argv)  
{ 
   int i = 1; 
   foo (1, 2); 
   i = 0; 
   printf(“i = %d\n” , I);  
} 
 

4.1.2 Example 1 
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• PUSH    EBP

• MOV        EBP,  ESP

• PUSH  ESP,  0Ch       //where 0Ch is program dependent 

The combination of these three instructions together make what is called the prolog. The follow-

ing figures detail our example program, specifically the way the foo() function works by detailing the

stack mechanics associated with the handling of the local variables (char str [5]=abcde; and k=3).

In addition we demonstrate the operations of the EBP and ESP registers:

Figure 11: Elementary Stack Behavior at Run Time - The Prolog
 

Last entry 

X  Y - 1w 

%ebp 

%esp 

 
Address X 

 
Address Y 

0x7fff fffe 

0x0001 0000 

E B P E S P 

REGISTERS 

PROLOG: 
push %ebp 

Initially, %ebp  points in the memory to any X address. %esp  is lower in 
the stack, at some Y address and points to the last stack entry. When 
entering a function, you must save the beginning of the "current 
environment", that is %ebp . Since %ebp  is put into the stack, %esp  
decreases by a memory word. 

 

This second instruction allows building a new "environment" for the 
function, by putting %ebp on the top of the stack. %ebp and %esp are then 
pointing to the same memory word which holds the address of the previous 
environment. 

 
Address X  

 
Address Y 

0x7fff fffe 

0x0001 0000 

%ebp 

%esp 

EBP ESP 
Y - 1w Y - 1w 

REGISTERS 

add new env
  PROLOG: 

       push %ebp 
       move %ebp, %esp  
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Figure 11: Elementary Stack Behavior at Run Time - The Prolog (Continued)

Although the mechanism itself is important, what we really want to remember here is the posi-

tion of the local variables. We notice that the local variables have a negative offset when related to EBP.

This is illustrated by the i=0 instruction in the main() function. The assembly code detailed below

demonstrates the use of indirect addressing to access the variable (i):

00401060:    MOV     dword ptr [epb-4],  0

What this line of assembly instructions means is move the source value 0, into the destination

variable found at ‘minus 4 bytes’ relatively to the EBP register. The main() function contains only one

local variable, variable ( i), because it is the only one as well as the first one, its address is 4 bytes (i.e. inte-

ger size) ‘below’ the EBP register.

4.1.2.2 The Call

Similar to the way the prolog of a function prepares its environment, the function call allows the

function to receive its arguments. In addition, once the function is terminated, program execution is

allowed to resume at the exact place in the program which originally called the function. Using our exam-

ple, let's take the foo(1, 2) function call in main().

 

REGISTER
S 

Now the stack space for local variables has to be reserved. The character 
array is defined with 5 items and needs 5 bytes (a char is one byte). 
However the stack only manages words, and can only reserve multiples 
of a word (1 word, 2 words, 3 words, ...). To store 5 bytes in the case of a 
4 bytes word, you must use 8 bytes (that is 2 words). The grayed part 
could be used, even if it is not really part of the string. The k integer uses 
4 bytes. This space is reserved by decreasing the value of %esp by 0xc 
(12 in hexadecimal). The local variables use 8+4=12 bytes (i.e. 3 words). 

X 

EBP ESP 

X Y - 3w 

d   c   b   a

 
Address X 

 
Address Y 

0x7fff fffe 

0x0001 0000 

%ebp 

%esp 

  PROLOG: 
       push %ebp 
       move  %ebp, %esp 
       subl  %esp, $0xc 

 

e 

3 
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Figure 12: Elementary Stack Behavior at Run Time - The Call

Once we are within the body of the function, the arguments as well as the return address have a

positive offset when related to EBP, since the next instruction pushes this register onto the top of the stack.

The j=0 instruction in the foo() function illustrates this. The Assembly code, detailed below, once

again uses indirect addressing to access the j  variable. 

0040103E:    MOV     dword ptr [epb+0Ch],  0

The 0Ch represents the +12 integer in hexadecimal (0xc). The notation used means put the

source value 0 in the destination memory location found at “+12 bytes” relative to the EBP register. The

variable (j) is the second argument to the function and it is located at 12 bytes ‘on top’ of the EBP register.

 

CALL: 
push $0x2 
push $0x1 

Before calling a function, the arguments it needs are stored in the stack. In 
our example, the two constant integers 1 and 2 are first stacked, beginning 
with the last one. The %eip register holds the address of the next 
instruction to execute, in this case the function call. 

X Y - 2w 
EBP ESP 

REGISTERS 

EIP  
Z 

 

 
Address X 

 
Address Y  

0x7fff fffe 

0x0001 0000 

%ebp  

%esp 
2  

        1  

 

EIP  

X Y - 2w 
EBP ESP  

REGISTERS 

push %ebp 

CALL: 
push $0x2 
push $0x1 
call <foo> 

2 

Address X 

Address Y  

0x7fff fffe 

0x0001 0000 

%ebp 

%esp 
1 

Z+5  

When executing the call instruction, %eip takes the address value of the following instruction found 5 bytes after (call 
is a 5 byte instruction - every instruction doesn't use the same space depending on the CPU). The call then saves the 
address contained in %eip to be able to go back to the execution after running the function. This "backup" is done from 
an implicit instruction putting the register in the stack :  

    push %eip  
 
The value given as an argument to call corresponds to the address of the first prolog instruction from the foo() 
function. This address is then copied to %eip, thus it becomes the next instruction to execute. 



54

We arrive at 12 bytes in the following manner, 4 bytes for the instruction pointer backup, 4 bytes for the

first argument and 4 bytes for the second argument. We will illustrate this in the next section; the return.

4.1.2.3 The Return

Leaving a function is accomplished using just two steps. First, our environment that was created

for the function, must be cleaned up. This means putting EBP and EIP back in their original state as they

were immediately before the call. Once this is accomplished, the stack must be checked in order to get the

information related to the function we are just coming out of. The first step is done while we are still

within the function. The instructions to accomplish this are:

• leave (which is really made up of the instructions: MOV ESP, EBP  and  POP EBP)

• ret

The second step is accomplished within the function where the subject call took place. This step

consists of cleaning up the stack from the arguments of the called function. We demonstrate this by

extending the previous example of the foo() function.

Figure 13: Elementary Stack Behavior at Run Time - The Return

 

 RETURN: 

Here we describe the initial situation before the call and the prolog. 
Before the call, %ebp was at address X and %esp at address Y . >From 
there we stacked the function arguments, saved %eip and %ebp and 
reserved some space for our local variables. The next executed instruction 
will be leave. 

EIP  

Y-4w %epb-3w 
EBP ESP 

REGISTERS 

leave X 
e 

d   c   b   a 
3 

 
Address X 

 
Address Y 

0x7fff fffe 

0x0001 0000 

%ebp 

%esp 

Z+5 
1 
0 
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Figure 13: Elementary Stack Behavior at Run Time - The Return (Continued)

 

X 
e 

d   c   b   a 
3 
3 

 
Address X 

 
Address Y 

0x7fff fffe 

0x0001 0000 

Z+5 
1 
0 

%esp 

%ebp 

EIP 

X Y-2w 
EBP ESP 

REGISTERS 

Z+5 

 RETURN: 
       leave 
       ret 

The ret instruction restores %eip in such a way that the calling function execution 
starts back where it should, that is after the function we are leaving. For  this, it's 
enough to unstack the top of the stack in %eip.  

We are not yet back to the initial situation since the function arguments are still 
stacked. Removing them will be the next instruction, represented with its Z+5 address 
in %eip (notice the instruction addressing is increasing as opposed to what's 
happening on the stack). 

 

 RETURN: 
leave 
ret 

foo( ) 
 
main ( ) 

add 0x8, %esp 

EIP  

X Y 
EBP ESP 

REGISTERS 

Z+8 

X 
e 

d   c   b   a 

3 
3 

 
Address X 

 
Address Y 

0x7fff fffe 

0x0001 0000 

Z+5 
1 
0 

%esp 

%ebp 

The stacking of parameters is done in the calling function, so is it for 
unstacking. This is illustrated in the opposite diagram with the separator 
between the instructions in the called function and the add 0x8, %esp in 
the calling function. This instruction takes %esp back to the top of the stack, 
as many bytes as the foo() function parameters used. The %ebp and %esp  
registers are now in the situation they were before the call. On the other hand, 
the %eip instruction register moved up.  
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4.1.2.4 The Disassembly

We load up our first example (chap4_ex1.c) in the Microsoft Developer Studio 97 and compile

using Visual C++ version 5. This build results in 79 KB executable binary file. The following disassembly

of the binary has been highlighted to indicate the locations of the prolog, call and return utilized in our

previous discussion of stack mechanics.

 

 PROLOG for function foo 

 RETURN from printf 

 

 

 

 

 

 

RETURN  from  function foo  

RETURN from function foo 

PROLOG for function main  

CALL printf  

RETURN from main function  

CALL function foo  

-- C:\Program Files\DevStudio\MyProjects\chap4\chap4_ex1.c  
-- 
1:    /* test1.c */ 
2: 
3:    void foo(int i, int j) 
4:    { 
00401020   push        ebp 
00401021   mov         ebp,   esp 
00401023   sub         esp,   0Ch 
5:      char str[5] = "abcde"; 
00401026   mov         eax,   [00410A30] 
0040102B   mov         dword ptr [ebp-8],eax 
0040102E   mov         cl,  byte ptr ds:[00410A34h] 
00401034   mov         byte ptr [ebp-4],  cl 
6:      int k = 3; 
00401037   mov         dword ptr [ebp-0Ch],  3 
7:      j = 0; 
0040103E   mov         dword ptr [ebp+0Ch],  0 
8:      return; 
9:    } 
00401045   mov         esp,   ebp 
00401047   pop         ebp 
00401048   ret 
10: 
11:   int main(int argc, char **argv) 
12:   { 
00401049   push        ebp 
0040104A   mov         ebp,   esp 
0040104C   push        ecx 
13:     int i = 1; 
0040104D   mov         dword ptr [ebp-4],  1 
14:     foo(1, 2); 
00401054   push        2 
00401056   push        1 
00401058   call        00401000 
0040105D   add         esp,   8 
15:     i = 0; 
00401060   mov         dword ptr [ebp-4],  0 

16:     printf("i=%d\n",i); 
00401067   mov         eax,   dword ptr [ebp-4] 
0040106A   push        eax 
0040106B   push        410A38h 
00401070   call        004010A0 
00401075   add         esp,   8 
17:   } 
00401078   mov         esp,   ebp 
0040107A   pop         ebp 
0040107B   ret 
--------------------- No source file  -------------------- 
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4.1.3 Assessing Stack Overflow Vulnerabilities

4.1.3.1 The Activation Record

The main problem with buffer overflows, from an exploit point of view, is finding the security-

critical region to overwrite in a manner consistent with the desired attack. With stack overflows we can

demonstrate that there is always something security-critical to overwrite on the stack and that is the return

address. In this section we will review some mechanics in assessing an overflowing stack to further our

understanding of the buffer overflow condition. To demonstrate this we will create a stack-allocated

buffer then overflow it in a manner that will allow us to overwrite the return address located in the stack

frame. To implement this sample plan, we first have to figure out which buffers, in a program we can

overflow as well as the characteristics of the overflow itself. As we have demonstrated, in general there

are two types of stack-allocated data which exist. These two types of data include non-static local vari-

ables and parameters to functions. 

We ask the question, “can we overflow both types of data?”. The answer is dependent on the

stack location of the data. We can only overflow those data items with a lower memory address than the

return address. With this in mind, our first order of business will to be to select some function then ‘map’

the stack. By mapping the stack we will be able to find out where the parameters and local variables are

located relative to the return address we're interested in. In this method we will use both program output

and binary disassembly to delineate our stack. We will start with the following simple C program:

The test function we will be using has one local parameter and one statically allocated buffer. In

order to allow us to look at the memory addresses where these two variables are located (relative to each

other), we'll modify our code slightly: 

 void test(int i)  
{  
   char buf[12];  
}  
int main()  
{ 
   test(12);  
} 
 

4.1.3 Example 1 
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We compile then execute our modified code with the following results observed in the output: 

Now we are able to look in the general vicinity of these data, and determine if we see anything

that looks like a potential return address. We will start by looking eight bytes above buf, and stop looking

past the end of integer (i)eight bytes. In order to accomplish this, we will again modify our code as fol-

lows: 

Notice that in order to get eight bytes beyond the start of the variable i we had to cast the vari-

able's address to a char*. The reason for this is because when C adds eight to an address, it is really add-

 void test(int i)  
{  
   char buf[12];  
   printf("&i = %p\n", &i);  
   printf("&buf[0] = %p\n", buf);  
}  
int main()  
{ 
   test(12);  
} 
 

4.1.3 Example 2 

 &i = 0x0064FDF4  
&buf[0] = 0x0064FDE0 

 /* Assign char *j as a global variable, 
so we don't add anything to the stack 
*/ 
  
char *j; 
void test(int i)  
{  
   char buf[12];  
   printf("&i = %p\n", &i);  
   printf("&buf[0] = %p\n", buf);  
   for(j=buf-8;j<((char *)&i)+8;j++)  
      printf("%p: 0x%x\n", j, 
*(unsigned char *)j);  
}  
int main()  
{  
   test(12);  
} 
 

4.1.3 Example 3  
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ing eight times the size of the data type it believes is stored at the memory address. What this means is,

that by adding eight to an integer pointer we will increase the memory address by 32 bytes instead of the

desired eight bytes. For this reason we use the char*  variable type. Here is a typical output from our new

program: 

The question that we really need to focus our attention on is, “does anything in the output look

like a return address?”. Remember, a memory address is one word or four bytes, and our output is repre-

sented by the single byte char *, as a result we are only looking at things one byte at a time. How can

we figure out the range where the return address will be located? We want to start by looking at the things

that we know. One thing we know for sure is that the program will return to the main() function.

Accordingly if we can get the address of the main() function and then look for a pattern of four

 C:\WINDOWS\Desktop>test2 
 
&i = 0064FDF4 
&buf[0] = 0064FDE0 
 
0064FDD8: 0x3c 
0064FDD9: 0xfd 
0064FDDA: 0x64 
0064FDDB: 0x0 
0064FDDC: 0x0 
0064FDDD: 0x0 
0064FDDE: 0x0 
0064FDDF: 0x0 
0064FDE0: 0x40 
0064FDE1: 0xe1 
0064FDE2: 0x40 
0064FDE3: 0x0 
0064FDE4: 0x84 
0064FDE5: 0x0 
0064FDE6: 0x0 
0064FDE7: 0x0 
0064FDE8: 0x3 
0064FDE9: 0x0 
 

0064FDEA: 0x0 
0064FDEB: 0x0 
0064FDEC: 0xf8 
0064FDED: 0xfd 
0064FDEE: 0x64 
0064FDEF: 0x0 
0064FDF0: 0x9d 
0064FDF1: 0x10 
0064FDF2: 0x40 
0064FDF3: 0x0 
0064FDF4: 0xc 
0064FDF5: 0x0 
0064FDF6: 0x0 
0064FDF7: 0x0 
0064FDF8: 0x38 
0064FDF9: 0xfe 
0064FDFA: 0x64 
0064FDFB: 0x0 
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consecutive bytes that are quite close to this address we will locate our return address. To find the entry

address for the main() function we will disassemble our binary:

From the disassembly we note that he entry to the function main is found at 0x004010A5.

Therefore in our output, we would expect to see three consecutive bytes, where the first is0x00 the sec-

ond 0x40, and the third 0x10. We expect this because we can demonstrate that the code from the start

of main() to where the test returns is just a few bytes long. It is important to note that the ix86 architec-

ture stores some multibyte primitive types in a way that seems strange. Data storage in memory is some-

what unusual in that it is stored last byte first and first byte last. Whenever we use data, as output for

example, they are treated the right way. For instance if we print out one byte at a time, the individual bytes

print ‘right side up’ however, when we look at four bytes that are consecutive in memory, they're in

reverse order. With the reverse order of consecutive bytes in memory in mind, let's look for the main func-

tion's pattern of four bytes. We'll begin by locating those sections where the two most significant bytes are

0x0 and 0x40. This is because the most significant bytes are the last two in the set of four. In our output

we find the following candidate: 

This memory fits our requirements perfectly. When we reassemble these four bytes, we get

0x0040109d, which is 8 bytes past the start of main(). 

 00401091   pop         ebp 
00401092   ret 
12:   int main() 
13:   { 
00401093   push        ebp 
00401094   mov         ebp,esp 
14:      test(12); 
00401096   push        0Ch 
00401098   call        00401005 
0040109D   add         esp,4 
15:   } 
004010A0   pop         ebp 
004010A1   ret 
 

 0064FDF0: 0x9d 
0064FDF1: 0x10 
0064FDF2: 0x40 
0064FDF3: 0x0 
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Figure 14: Stack Map of Example 4.1.3
 

0x0064fdfc 
0x0064fdfb 
0x0064fdfa 
0x0064fdf9 
0x0064fdf8 
0x0064fdf7 
0x0064fdf6 
0x0064fdf5 
0x0064fdf4 
0x0064fdf3 
0x0064fdf2 
0x0064fdf1 
0x0064fde0 
0x0064fdef 
0x0064fdee 
0x0064fded 
0x0064fdec 
0x0064fdeb 
 
 
 
0x0064fde0 
 

0x38 
0x00 
0x00 
0x00 

0xfe 

0x0c 

0x40 
0x00 

0x10 
0x9d 

0x64 
0x00 

0xfd 
0xf8 

unassigned 

 
unassigned 

0x00 
0x64 

 push ebp 0x0040193 

 int main() 
{ 
  test (12);

Call  00401005 

push  0Ch 

 

int main() 
{ 
  test (12);

0x00401096 

sub  esp, 0Ch 

 Void test (int i) { 
  char buf [12];

0x00401023 

 push ebp 0x00401020 

 Void test (int i) 
{ 
  char buf [12];
  

Return address  

Stack (data area) 

Code (text area) 
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So now let's map out the entire stack, starting at the beginning of the main() function. The first

PUSH onto the stack is 0x0064fe38 which becomes the base for this stack frame:

The second PUSH onto the stack is our integer int i which is passed the value of (12) in our

main function. This (32) bit word is represented by the hexadecimal value of 0x000000c

The next four bytes, starting at 0x0064fdf0, constitute the return address. The next PUSH

onto the stack (0x0064fdf8)is the base pointer for the void test () function.

The last (12) words on our stack represent our char buf [ ] and have been unassigned.

We now have a good picture of what our stack frame looks like. The stack grows downwards

toward memory address 0x00000000. This stack frame contains, listed in order, the function parameters,

the return address of the calling function, the previous frame pointer, and finally our stack variable buffer

[ ]. As the stack space for our local variables moves towards higher memory locations we can see that if

we overflow these variables we will overwrite the return address for the function that we are in. In addi-

tion, as our buffer growth is towards higher memory locations and our stack growth downward, it

becomes possible to overwrite the return address in the stack frame below us. 

4.1.3.2 The Stack Smashing Buffer Overflow Exploit

In it’s most general form, this security attack achieves two primary goals: 

1) The first is the injection of attack code into memory. This is typically a small sequence of
machine op code instructions that spawns a shell, into a running process. 

2) Change the path of execution of the running process to execute the attack code. 

  
0x0064fdfb – 0x0064fdf8 Bottom of Stack (Frame Base for main ()) 

  
Ox0064fdf7 – 0x0064fdf4   Parameters  

  
0x0064fdef – 0x0064fdec Previous Frame Pointer 

  
0x0064fdeb – 0x0064fde0 Buffer [ ] 
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It is important to note that these two goals share a mutual dependence. It can be demonstrated

that injecting attack code without the means to execute it is not necessarily a security vulnerability. If the

buffer overflows and the overflow is long enough the return address will be corrupted, (as well as every-

thing else in between). If the return address is overwritten by the buffer overflow so as to point to the

attack code, this will be executed when the function returns and represents a change in the execution path

of the running process. Thus, in this type of attack, the return address on the stack is used to hijack the

control of the program. 

Overwriting the return address, as explained above, gives the attacker the means of hijacking the

control of the program as well as providing a mechanism to inject and store unique attack code. Most

commonly the attack code is stored in what was the original buffer. Thus, the information which is copied

into the buffer will contain both the binary machine language attack code as well as the address of this

code which will overwrite the return address. This is by far, the most popular form of buffer overflow

exploitation and is sometimes referred to as “smashing the stack”. As we will show below, the reason for

this popularity is because by overflowing stack buffers in this manner one can achieve both goals of attack

code injection and execution path change simultaneously. 

We briefly mention another type of buffer overflow attack which has been exploited and is

known as the heap smashing attack. This is an attack associated with buffers that reside on the heap (a

similar attack involves buffers residing in data space). Heap smashing attacks are much more difficult to

exploit, for the simple reason that it is difficult to change the execution path of a dynamic running process

by overflowing heap buffers. Although the potential as a security vulnerability exists, because of the diffi-

culty involved, heap smashing attacks are far less prevalent. 

A complete C program to demonstrate the so called stack smashing attack is presented below and

was used by Leavy [7] in his landmark article which went on to demonstrate the exploit in great detail. 
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 Figure 15 detailed below illustrates the memory address space of a process undergoing this type

of attack. The process stack after executing the initialization code and entering the main() function is

illustrated in Figure 15(a) The process stack has been frozen in time at a point before executing any of the

instructions. We pay particular attention to the structure of the top stack frame. This is the stack frame for

the main() function. Common to all stack frames, this stack frame contains, in order, the function

parameters, the return address of the calling function, the previous frame pointer, and finally our stack

variable buffer. 

char attackcode [] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\
xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\
x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];
int i;
long *long_ptr;

int main() {
char buffer[96];

long_ptr = (long *)large_string;
for (i=0; i<32; i++)
*(long_ptr+i) = (int)buffer;

for (i=0; i<(int)strlen(attackcode); i++)
large_string[i] = attackcode[i];

strcpy(buffer, large_string);
return 0;

}

char attackcode [] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\
xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\
x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];
int i;
long *long_ptr;

int main() {
char buffer[96];

long_ptr = (long *)large_string;
for (i=0; i<32; i++)
*(long_ptr+i) = (int)buffer;

for (i=0; i<(int)strlen(attackcode); i++)
large_string[i] = attackcode[i];

strcpy(buffer, large_string);
return 0;

}
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Figure 15: A Stack Smashing Buffer Overflow Exploit1

Looking at Levy’s program in the above example, the sequence of instructions for spawning a

shell is stored in a string variable called char attackcode [] . This attackcode is the op code equiv-

alent to executing exec(``/bin/sh'') on a UNIX system. Similar Op code can be crafted for Win-

dows systems with more difficulty however, primarily due to the unique call format involved. Within the

main() function, the two for loops prepare the attack code by writing two sequences of bytes to

large_string. Starting on line 16, the first for loop writes the (future) starting address of the attack

1. Figure from ARASH BARATLOO, NAVJOT SINGH; “Transparent Run-Time Defense 
Against Stack Smashing Attacks”; http://www.research.avayalabs.com/project/libsafe/doc/
usenix00/paper.html
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code. Starting on line~18 the second for loop copies the attack code (excluding the terminating null char-

acter). On line 20 the stack is completely smashed by the strcpy() function. 

Figure 15(b) illustrates the stack space after executing the strcpy() call. It is important to note

how the unsafe use of strcpy() simultaneously achieves both requirements of the stack smashing

attack. First it injects the attack code by writing it on the stack space of the running process. Second by

overwriting the return address with the address of where the attack code is located, it effectively instru-

ments the stack to change the path of execution. The attack is completed once the return statement on line

21 is executed. At this point the instruction pointer “jumps” and the machine starts executing the attack

code. We illustrate this step Figure 15(c). 

In a real security attack, the attack code would normally come from user input. In the worst case

scenario the attack would be originated remotely and transmitted over a network connection. A successful

attack on a running process would give the attacker an interactive shell. This shell would be at the same

access privilege as the process that was smashed. On a UNIX based system a successful exploit of a root

process would result in an interactive shell with a user-ID of root commonly referred to as a root shell.

Although this paper focuses on buffer overflow vulnerabilities involving Windows operating systems, we

choose a UNIX type example to illustrate this type of attack. This is due to the relative complexity of the

Win32 Applications Programming Interface (API) in comparison with the more simple Unix system calls.

As a result of this complexity relatively few people have had a sufficient understanding of the intricacies

of the Windows API at an assembly level in the past to exploit a buffer overflow in such a controlled fash-

ion. Thus, while we can demonstrate that it is trivial to exploit a buffer overflow so as to make a Windows

program or service crash (perhaps being effective as a Denial of Service attack, DOS), it is not a trivial

case to exploit a buffer overflow in order to attain access and/or increased privileges on a Windows sys-

tem. Thus, few examples exist which can easily demonstrate the general case of buffer overflow exploits

within Windows software. 

That said, buffer overflows on Windows systems are becoming widely exploited. We know that,

buffer overflows existed in Unix-like operating systems for many years before they were well understood,

documented and exploited. There currently exists a generalized framework for identifying and exploiting

buffer overflows in Windows operating systems [45]. For a time it was believed that many buffer over-

flow vulnerabilities in Windows were ‘purely theoretical’1 - We have seen that with time, a little skill and

some creativity that more and more people have made the theoretical practical. 

1. This is a reference to a claim Microsoft made about a vulnerability in some of its software The 
l0pht then went and produced working exploit code. 
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4.1.3.3 Other Variants of the Buffer Overflow Exploit

All of these methods seek to alter the program’s control flow so that the program will jump to the

attack code. The basic method is to overflow a buffer that has weak or non-existent bounds checking on its

input with a goal of corrupting the state of an adjacent part of the program’s state, e.g. adjacent pointers,

etc. By overflowing the buffer, the attacker can overwrite the adjacent program state with a near-arbitrary1

sequence of bytes, resulting in an arbitrary bypass of C’s type system2  and the victim program’s logic.

What we are interested in here is the kind of program state that the attacker’s buffer overflow

seeks to corrupt. In principle, the corrupted state can be any kind of state. For instance, the original Morris

Worm [5], used a buffer overflow against the fingerd program to corrupt the name of a file that fing-

erd would execute. In practice, most buffer overflows found in ‘the wild’ seek to corrupt code pointers:

program state that points at code. The distinguishing factors among buffer overflow attacks is the kind of

state corrupted, and where in the memory layout the state is located.

Activation Records: As we have demonstrated, each time a function is called, it lays down an

activation record on the stack [54] that includes, among other things, the return address that the program

should jump to when the function exits. Attacks that corrupt activation record return addresses overflow

automatic variables as detailed in figure 15. By corrupting the return address in the activation record, the

attacker causes the program to jump to attack code when the victim function returns and dereferences the

return address. This form of buffer overflow, we know from the previous section, is called a “stack smash-

ing attack” [7] [46] [47] [48] [49] and constitute a majority of current buffer overflow attacks.

Function Pointers: ‘void (* foo)()’ declares the variable foo which is of type ‘pointer to

function returning void’. Function pointers can be allocated anywhere (stack, heap, static data area) and so

the attacker need only find an overflowable buffer adjacent to a function pointer in any of these areas and

overflow it to change the function pointer. Some time later, when the program makes a call through this

function pointer, it will instead jump to the attacker's desired location. An example of this kind of attack

appeared in an attack against the superprobe program for Linux.

Longjump buffers: C includes a simple checkpoint/roll-back system called setjmp/longjmp. The

idiom is to say “setjmp(buffer)” to checkpoint, and say “longjmp(buffer)” to go back to the

check-point. However, if the attacker can corrupt the state of the buffer, then “longjmp(buffer)” will

jump to the attacker's code instead. Like function pointers, longjump buffers can be allocated anywhere,

so the attacker need only find an adjacent overflowable buffer. An example of this form of attack appeared

1. There are some bytes that are hard to inject, such as control characters and null bytes that have 
special meaning to I/O libraries, and thus may be filtered before they reach the program’s 
memory.

2. Certainly an indication of the weakness of C’s type system.
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against Perl 5.003. The attack first corrupted a longjump buffer used to recover when buffer overflows are

detected, and then induces the recovery mode, causing the Perl interpreter to jump to the attack code.

What are the different ways of combining code injection and control flow corruption techniques?

The simplest and most common form of buffer overflow attack combines an injection technique with an

activation record corruption in a single string. The attacker locates an overflowable automatic variable,

feeds the program a large string that simultaneously overflows the buffer to change the activation record,

and contains the injected attack code. This is the template for an attack outlined by Levy [7]. Because the

C idiom of allocating a small local buffer to get user or parameter input is so common, there are a lot of

instances of code vulnerable to this form of attack.

The injection and the corruption do not have to happen in one action. In the case of the frame

pointer overwrite [50], the attacker can inject code into one buffer without overflowing it, and overflow a

different buffer to corrupt a code pointer. This is typically done if the overflowable buffer does have

bounds checking on it, but gets it wrong, so the buffer is only overflowable up to a certain number of

bytes. The attacker does not have room to place code in the vulnerable buffer, so the code is simply

inserted into a different buffer of sufficient size.

If the attacker is trying to use already-resident code instead of injecting it, they typically need to

parameterize the code. For instance, there are code fragments in libc (linked to virtually every C program)

that do ‘exec(something)’ where ‘something’ is a parameter. The attacker then uses buffer over-

flows to corrupt the argument, and another buffer overflow to corrupt a code pointer to point into libc at

the appropriate code fragment.

4.1.3.4 Attack Code

Although this thesis is concerned with the buffer overflow flaw in general and is specifically

moving in the direction of finding these flaws at run time we would be careless to neglect the characteris-

tics of the exploitcode used in attacks. The so called “arbitrary” code used in most buffer overflow

exploits is known as shell code. Shell code is raw code in opcode format that will spawn a shell. Opcode is

presented as strings of characters that represent format, register identifiers and machine instructions. On

UNIX type systems the normal and most common type of shell code is a straight /bin/sh execve()

call. This code calls execve() to execute /bin/sh which obviously spawns a shell. A key characteristic

of shell code is it’s complete lack of portability between systems. There are many papers on writing shell

code all geared to exploiting buffer overflows primarily in UNIX systems [52], [53]. The real art of pro-

ducing working shell code is crafting it in a way that avoids any binary zeroes in the code. For the most

part, the buffers that we will be overflowing are char [] buffers. As such, any null bytes located in the

shell code will be considered as the end of input and the copy will be terminated. 



69

The Windows API environment complicates the crafting of shell code and was responsible for

the lag time in Windows system exploit rates. With the recent release of “plug and play” shell code [51]

for the Windows system it is no surprise to see the acceleration of reported exploits increasing. 

4.2 Discussion of the C and C++ Programming Language

The C programming language was devised in the early 1970s as a system implementation lan-

guage for what was to become the Unix operating system. The first high level language implemented

under the early UNIX systems was B. The B language, like it’s predecessor BCPL, was a typeless lan-

guage. Being untyped meant that all data was considered as machine words and while being extremely

simple it lead to many complications. As a result, a new typed language was developed which evolved

into C [44].

BCPL, B, and C all fit firmly within the traditional procedural family and include other typical

languages such as Fortran and Algol 60. The ‘C’ type languages are particularly oriented towards system

programming as this was their heritage. They are small and compactly described, and are amenable to

translation by simple compilers. They can be characterized as being `close to the machine' in that the

abstractions they encompass are readily grounded in the native data types and operations supplied by con-

ventional computer architectures. Another feature is the fact that they rely on standard library routines for

input-output and other interactions with the operating system. Abstractions within the C language lie at a

sufficiently high enough level that, with proper use, portability between machines can be achieved. For

these reasons C has become one of the dominant languages of today.

4.2.1 The Standard Library

Within the C programming language there exists an entire class of ‘pre-packed’ software that is

supplied for use by every C compiler. Collectively, this class of software is known as the C Standard

Library. This library consists of categories of functions used for programming tasks we will want to per-

form and perform often. We access these library functions within our programs by including library

header files. The preprocessor directive ‘#include’ performs this task. A preprocessor include directive

causes the preprocessor to replace the directive with the contents of the specified file. Using the library

header information, the preprocessor searches the for the place that contains the source files which are

then included with the program at compile time. These header files are used to group functions together

which perform similar or related tasks. As an example, the header file string.h provides access to a range

of functions dealing with strings (i.e. arrays of characters). Similarly, the header file stdio.h  provides

access to a whole range of functions to do with inputting and outputting data from programs. An example

of a programming task that we usually want to perform on a repetitive basis is getting text data into our
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programs for subsequent processing, a name or password for instance. Using this example, we can use the

gets() function which is supplied in the standard input/output library and accessed via the stdio.h

header file: 

gets(s): reads the next input line of text into character arrays. It takes, as a single parameter, the 
start address of an user defined area of memory which one hopes is suitable to hold the input. The 
complete input line is read in and stored in the memory area as a null-terminated string. Our reasoning 
for using gets( )  as an example will become painfully obvious as we proceed. 

Another example of a common programming task is outputting text data from our programs. For

this, we have used the printf() function, also accessed via the stdio.h  header file: 

printf(char *format, ...): prints formatted output on the output device. The function 
takes a variable number of arguments. Format is a required argument which contains the text to be 
printed as well as any required conversion specifications. The remaining arguments specify the data 
to be converted to textual output for display. 

The C Standard Library contains 18 standard headers that include hundreds of defined function

routines. Most buffer overflow problems in C can be traced directly back to the standard C library. Per-

haps the worst class of functions are the ones associated with the string operations that perform no argu-

ment checking (strcpy, strcat, sprintf, gets). 

4.2.2 Unsafe String Primitives

Buffer overflows are so common because C is inherently unsafe. Array and pointer references are

not automatically bounds-checked, so it is up to the programmer to do the checks themselves. More

importantly, many of the string operations supported by the standard C library are unsafe. The program-

mer is responsible for checking that these operations cannot overflow buffers, and programmers often get

those checks wrong or omit them altogether. As a result, we are left with many legacy applications that

use the unsafe string primitives in a unsafe manner. This problem is made worse by the reuse of existing

code libraries. In addition, programs written today still use the unsafe operations because they are famil-

iar. 

4.2.2.1 The gets() Function

This function reads a line of user-typed text from the standard input. It does not stop reading text

until it sees an EOF character or a newline character. This represents the classic example of an unsafe

string primitive. The gets() function performs no bounds checking at all. It is always possible to over-

flow any buffer using the gets() function. 
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4.2.2.2 The str*() Functions

The str*() functions include strcpy() and strcat(). The strcpy() function copies a

source string into a destination buffer. No specific number of characters will be copied and it is this fea-

ture that leads to problems. The number of characters copied is directly dependent on how many charac-

ters are in the source string. If our source string happens to come from user input, and we don't explicitly

restrict its size, we could potentially overflow the destination buffer. The strcat() function is very

similar to strcpy(), except it concatenates one string onto the end of a buffer and again if we don't

explicitly restrict its size, we could potentially overflow the destination buffer. Both of these functions

have so called safe alternatives with strncpy() and strncat(). Unfortunately, programs that use

just the “safe” subset of the C string API are not necessarily safe, because the “safe” string primitives have

their own pitfalls. The strncpy() function may leave the target buffer unterminated. Using

strncpy() has performance implications because it zero fills all the available space in the target buffer

after the ‘\0’ terminator. For example, a strncpy()  of a 13-byte buffer into a 2048-byte buffer over-

writes the entire memory space. Both strncpy()  and strncat() encourage off-by-one bugs. for

example strncat(dst, src, sizeof dst-strlen(dst)-1) is the correct syntax while omit-

ting the -1 results in an off-by-one error.

4.2.2.3 The Format Family Functions 

A number of format functions are defined in the ANSI C definition which we will call the “for-

mat string”. A format function represents a special kind of ANSI C function. These functions take a vari-

able number of arguments, one of which is from the so called format string. When a function from the

format family evaluates the format string, it evaluates the extra parameters given to the function. The addi-

tional parameter is used as a conversion type function, and is used to represent primitive C data types in a

string representation that is human readable. This family of functions are used in nearly every C program,

to output information, print error messages or process strings. In general, a format string is an ASCII

string that contains text and format parameters. As an example:

printf (“You have entered the following incorrect data: %s\n”,

dataBuf);

The text to be printed is “You have entered the following incorrect data:”, followed by a format

parameter ‘%s’, that is replaced with the user character data in dataBuf. Therefore the output looks like:

“You have entered the following incorrect data: <user data>. Some format parameters include:
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There are some basic format string functions (printf() and sprintf()) on which more

complex functions are based. It is important to note that some of these are not part of the standard library

but are widely available. The functions fprintf(), printf(), sprintf(), snprintf(),

vfprintf(), vprintf(), vsprintf(), vsnprintf(),  are all versatile functions used to

convert the simple datatypes that exist within the C language to a string representation. 

• fprintf - prints to a FILE stream

• printf - prints to the ‘stdout’ stream

• sprintf - prints into a string

• snprintf - prints into a string with length checking

• vfprintf - print to a FILE stream from a va_arg structure

• vprintf - prints to ‘stdout’ from a va_arg structure

• vsprintf - prints to a string from a va_arg structure

• vsnprintf - prints to a string with length checking from a va_arg structure

By using the format parameters shown above, the programmer can specify the format of the data

being represented and process the resulting string output to stderr, stdout, syslog, etc. The format string

controls both the behavior of the function as well as the specification of the type of parameters that should

be printed. These parameters are saved on the stack (pushed) and are saved either directly (by value), or

indirectly (by reference).

Table 2: ANSI C Format Parameters

PARAMETER OUTPUT PASSED AS

%d decimal (int) value

%n number of bytes written so far, (* int) reference

%s string ((const) (unsigned) char *) reference

%u unsigned decimal (unsigned int) value

%x hexadecimal (unsigned int) value
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4.2.2.4 Stack Behavior During a Format String Function Call

 The behavior of the format function is controlled by the format string that it calls as an argu-

ment. The function retrieves those data parameters requested by the format string from the stack. As an

example: 

printf (“%d has no address, number %d has: %08x\n”, i, a, &a);

From within the printf function the stack looks like:

Figure 16: Stack Frame at a printf() Call

The format function now parses the format string ‘A’, by reading a character a time. If it is not

‘%’, the character is copied to our output. In case it is, the character behind the ‘%’ specifies the type of

data parameter that should be evaluated. In addition, the string “%%” has a special meaning and is used to

Table 3: Format String Stack Values

A address of format string

i value of the variable i

a value of the variable a

&a address of the variable i
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print the escape character ‘%’ itself. Every other parameter relates to data, which is located on the stack,.

formatting it then storing it into a buffer. 

These functions are often used to mimic the behavior of strcpy() in a fairly straight forward

way. For this reason, it is just as easy to create a buffer overflow error to a program using sprintf()

and vsprintf() as with strcpy() for instance. Since sprintf() can expand an arbitrary string

using the ‘%s’ format character, any call to sprintf() or vsprintf() which expands dynamic data

into a fixed-size buffer has to be considered suspicious. As we will see the sprinf() function is often

used in error messages where the error message is in the form of a string literal with user data being read

by the format character. The user data is appended to the string literal and all placed into a destination

buffer.

 In addition, with the inclusion of the format parameter in this family of functions we create the

potential for an entire new class of recently discovered vulnerabilities known as “Format String” vulnera-

bilities. In this class of vulnerabilities, the format parameter in combination with the user supplied input

are implemented as two different types of information channels, the control channel and the data channel.

The control channel is actively parsed while the data channel information is just copied. These two differ-

ent types of information are merged into one using special escape characters or sequences to determine

which channel is currently in a active state. The problem occurs when the format string is partially or com-

pletely undersupplied through incorrect programming practice. In the general case, when this occurs the

data string passed for a straight copy is scanned for format characters. As we can control the behavior of

our input and now insert the format characters we can potentially change memory address space by indi-

rection using these function parameters. This presents us with an entire new method of exploitation. For

this reason, when incorrectly used, the “format family” represents a class of truly dangerous functions.

The exact mechanisms associated with the various format string exploits are outside the scope of the

research however the reader is encouraged to read the excellent paper on the subject by Halvar Flake [61].

4.2.2.5 The *scanf() Family

The scanf family of functions is also poorly designed. In this case, destination buffers can be

overflowed by dynamic data. As *scanf() parses data of dynamic origin into fixed buffers by using the

‘%s’ format character, any *scanf() call which targets a fixed-size buffer with a ‘%s’ format character

is suspect and may point to a potential buffer overflow.

4.2.2.6 Other Functions

Other potential dangerous functions include streadd() and stercpy(). While not every

compiler has support for these calls, programmers who have these functions available within their code
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library should be cautious when using them. They have the same inherently dangerous features previously

discussed. These functions translate a string that might possess unreadable characters into a representation

that is printable. Another less common function is strtrns(), since many compilers do not support it.

The function strtrns() takes, as its arguments, three strings and a destination buffer into which the

resulting string is stored. The first string is basically copied into the destination buffer. A character gets

copied from the first string to the destination buffer, unless that character appears within the second string.

If this occurs, then a character at the same index in the third string gets substituted instead. 

In summary, we have reviewed a subset of common C library functions that are susceptible to

buffer overflow problems. There are certainly many more problematic functions and this is not intended to

be a complete survey of every function within every common library. A partial listing of problematic calls

is provided in the following table:

Table 4: C Library Functions Associated with Buffer Overflows

Function                   Severity                                     Solution 

gets  Extreme Risk
Use fgets(buf, size, stdin). This is almost 
always a big problem! 

strcpy High Risk Use strncpy instead. 

strcat High Risk Use strncat instead. 

sprintf High Risk 
Use snprintf instead, or use specifiers to pro-
vide length precision. 

scanf High Risk 
Use specifiers to provide length precision, or 
do your own parsing. 

sscanf High Risk 
Use specifiers to provide length precision, or 
do your own parsing. 

fscanf High Risk
Use specifiers to provide length precision, or 
do your own parsing. 

vfscanf High Risk 
Use specifiers to provide length precision, or 
do your own parsing. 

vsprintf High Risk 
Use vsnprintf instead, or use specifiers to pro-
vide length precision

vscanf High Risk 
Use specifiers to provide length precision, or 
do your own parsing. 

vsscanf High Risk 
Use specifiers to provide length precision, or 
do your own parsing. 

streadd High Risk 
Verify you allocate 4 times the size of the 
source parameter as the size of the destina-
tion. 
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strecpy High Risk
Verify you allocate 4 times the size of the 
source parameter as the size of the destina-
tion. 

strtrns Moderate Risk 
Manually check to see that the destination is 
at least the same size as the source string. 

realpath 
High Risk (or less, depending 
on the implementation) 

Allocate your buffer to be of size MAX-
PATHLEN. Also, manually check arguments 
to ensure the input argument is no larger than 
MAXPATHLEN. 

syslog 
High Risk (or less, depending 
on the implementation) 

 Before passing strings to this function, trun-
cate all string inputs at a reasonable size. 

getopt 
High Risk (or less, depending 
on the implementation) 

Before passing strings to this function, trun-
cate all string inputs at a reasonable size. 

getopt_long 
High Risk (or less, depending 
on the implementation) 

Before passing strings to this function, trun-
cate all string inputs at a reasonable size. 

getpass 
High Risk (or less, depending 
on the implementation) 

Before passing strings to this function, trun-
cate all string inputs at a reasonable size. 

getchar Moderate Risk 
If using this function in a loop, make sure to 
check your buffer boundaries. 

fgetc Moderate Risk 
If using this function in a loop, make sure to 
check your buffer boundaries.

getc Moderate Risk 
If using this function in a loop, make sure to 
check your buffer boundaries. 

read Moderate Risk 
If using this function in a loop, make sure to 
check your buffer boundaries. 

bcopy Low Risk 
Verify that your destination buffer is as large 
as you say it is. 

fgets Low Risk 
Verify that your destination buffer is as large 
as you say it is. 

memcpy Low Risk 
Verify that your destination buffer is as large 
as you say it is. 

snprintf Low Risk 
Verify that your destination buffer is as large 
as you say it is. 

Table 4: C Library Functions Associated with Buffer Overflows
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Chapter 5

Binary Reverse Engineering to Locate Security Flaws

Science is a way of trying not to fool yourself.

-  Richard P. Feynmann

5.1 Introduction

This is a research that is motivated by problems of old technology, and by problems of new tech-

nology. In the past program maintenance has always depended on reverse engineering to some extent,

especially when one considers the huge amounts of legacy code without detailed documentation. As the

maintenance of legacy code continues there is a new problem which effects code that has no documenta-

tion available to the user and that is security. Security, until very recently, was taken for granted in the

development of most software designated for mainstream usage. As this code is predominantly third party

and propriety, we seek a means to satisfy an important curiosity. How secure is our program? Without the

source code to serve as our documentation, do we trust the vendor? Experience has shown that a decision

to trust would be most unwise. It is our aim to investigate a method that may provide an automatic detec-

tion of not-so-obvious security flaws in a binary file and borrowing from those who maintain legacy code

systems, we will use reverse engineering. We believe that these flaws exist as patterns which can be rec-

ognized at the assembly level. The detection of these patterns requires the investigation of a range of sub-

jects, from the basics of reverse engineering, to the behavior of higher level code constructs, to the

representation of patterns at the assembly level as well as the tools and methods for detection. In broad

terms, reverse engineering can be a daunting undertaking that spans across all disciplines of computer sci-

ence. The best approach, like eating an elephant, is a small byte at a time.

5.2 Binary Image Basics

Before considering the reverse engineering of our executable image to find suspicious high level

code constructs, the relations between the static binary code of the program and the actions performed at

run-time to actually implement the program are presented. The representation of objects in a binary pro-

gram are dependent on compiler design and the elementary data types such as characters, integers and

reals. These are often represented by an equivalent data object that resides within the architecture of the

machine (i.e. a fixed size number of bytes). This can be contrasted with aggregate objects such as struc-

tures, strings and arrays that can be represented in various different ways.
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In order to discuss the concepts presented in this chapter in a manner that is unambiguous to the

reader we will establish the following nomenclature. The word subroutine will be used as a generic term

to denote either a function or a procedure. When we are certain as to what the subroutine really represents

we will use the term ‘procedure’. This for a subroutine that does not return a value. We will use the term

‘function’ for a subroutine that returns a value. Likewise we use the terms binary executable, binary

image, and binary file interchangeably as all representing a compiled ready to run program.

5.2.1 Compiling, Linking and Libraries 

One major stumbling block common in the disassembly of programs written in modern high

level languages, such as C, is the time wasted to identify then isolate library functions. We consider this

time as lost because it does not bring us closer to gaining knowledge of the targeted application. It can be

viewed as only a mandatory step that allows us to continue our analysis of the program in a effort to reach

the more meaningful algorithms. In addition, it is an unfortunate fact to the reverse engineer that this pro-

cess has to be repeated for each and every new disassembly. It can be shown how the disassembly of even

the simplest programs can result in the generation numerous superfluous subroutines that result from the

linkage of object and library files. A general understanding of compiling, linking and loading is important

to the reverse engineer when analyzing a disassembled executable image as many subroutines can be dis-

counted as a consequence of these processes. 

5.2.1.1 Compiling

Simply stated compiling consists of translating human readable C source code into an assembly

file. The compiler accomplishes this by converting source files into object files when building the execut-

able image. Each object file contains instructions in machine code that correspond to statements in the

high level source programming language. In general, these object files are broken into a collection of dis-

tinctive sections each corresponding to different parts of the source program. When the compiler is

invoked, it scans the program for simple syntax errors. If it finds problems, it interrupts the build and typ-

ically lists each problem it finds along with a terse message and the line number associated with the syntax

error. One of the import things to note is that behavior of the program can be different when one uses dif-

ferent compilers. The implications of this characteristic are that different compilers produce different exe-

cutable images on any given machine. There are four basic steps to the compilation of C code. They are

commonly described as preprocessing, compilation, assembly, and linking.

1) Preprocessing occurs during the first pass of any C compilation. It processes any include-
files, conditional compilation instructions and macros. 

2) Compilation is actually performed during the second pass. It utilizes the output of the pre-
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processor, and the source code, then generates assembler source code. 

3) Assembly is the third stage of compilation. It takes the assembly source code produced dur-
ing compilation and creates an assembly listing with offsets. This assembler output is stored
within an object file. 

4) Linking is the final stage of compilation. It receives one or more object files and or libraries
as input then combines them to produce a single executable file.

5.2.1.2 Linking

To build an executable file, the linker is tasked with the collection of all object files and libraries.

The primary function of the linker is to bind symbolic names to memory addresses. The process of linking

involves scanning the compiler output, the object files then concatenating all the object file sections to

form one large file (data sections of all object files are concatenated, text sections are concatenated, and so

on). It then scans the resulting file a second time to bind the symbol names to real memory addresses.

5.2.1.3 Libraries

 When considering binary disassembly it is to our advantage to have a basic foundation in the

methods associated with libraries. Any disassembled binary will have artifacts that reflect the library file

representation. It is therefore important to the reverse engineer to have insight into this representation.

There are two distinct types of library files and it is important that any disassembler we decide to use can

recognize the difference and produce a disassembly that makes sense.

Within any higher level programming language there are many useful predefined routines, or

functions, that are used repeatedly within the programming environment. To improve modularity and

reusability one is able to group these commonly used functions into files called libraries. As we demon-

strated in the previous chapter most, if not all, our dangerous C functions reside within these libraries. A

library contains a set of object files used to implement subroutines and functions that in turn can be linked

either statically or dynamically with other object files to produce a complete executable program. Static

library files are linked at compile time with user defined routines (object files) to build complete execut-

able programs or libraries can be linked dynamically at run time.

When a static library is referenced it is included during program linking. At compile time the

linker makes a pass through the library file then adds all the code and data corresponding to the symbols

used in the source program. Therefore whenever the linker includes a static library in a program, it copies

data from the library to the target program where it remains as part of the executable image. Static librar-

ies are easy to create and implement, but they come at a cost with a number of issues associated with

resource utilization and software maintenance. Whenever we copy the contents of a static library into the

target program it wastes memory and disk space. For example, if a copy of the C library was included in
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every executable on a system the resident disk space of these programs would increase dramatically, and

when active, they would each store their copies of the library functions within system memory, a consid-

erable waste of resource. As far as software maintenance is concerned, whenever a change to a static

library is required, everything linked using that library must be rebuilt in order for the changes to propa-

gate through all released code.

Current practice has greatly reduced the maintenance and resource problems of static libraries.

This is accomplished by using shared libraries or dynamic link libraries (DLLs). The main difference

between static and dynamically linked libraries is that using dynamically linked libraries delays the actual

task of linking to runtime, where it is accomplished by a dynamic linker-loader. Using this technique, a

program and its libraries remain as separate entities until the program actually runs. This means that if an

error, such as a buffer overflow flaw, is found in a commonly used library, the dll can be corrected then

substituted for the original one and applications that formerly exhibited the flaw will be repaired without

the need to re-compile and re-link applications referring to the library in question. In addition, system

level optimizations are possible. If many programs are running and a large portion of them include the

same library (e.g., the C library for example), the operating system can then load a single instance of the

library's instructions into physical memory. This significantly reduces the use of memory resources and

improves overall system performance. 

5.2.2 Loading

All high-level language programs are composed of one or more subroutines and are referred to as

user subroutines. The corresponding binary program is composed of all the user subroutines, any library

routines that were called by the user program, and any other subroutines required to provide support for

the compiler and linked in by the linker at run-time. When a program that is linked with shared libraries

runs, program execution does not begin immediately with that program's first statement. Instead, the oper-

ating system loads the required environment that includes execution of the dynamic linker. The dynamic

linker then scans the list of library names embedded within the executable. 

The general format of the binary image of a program is shown in Figure 17. The execution of a

binary file at run time can be summarized as follows:

• The program begins by calling the compiler start-up subroutines that create the environment
for the compiler.

• Next the subroutine for the user's main program executes, which invokes library routines
linked in by the linker.

• Execution is finalized by a series of compiler subroutines that restore the original state of the
machine before program termination. 
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Figure 17: General Format of a Binary Program

5.3 A Unique Executable File Format-Win32 PE

We are concerned with the type of programming flaws that manifest themselves as a buffer over-

flow. In addition we are concerned with third party programs and applications that operate within the

modern enterprise environment. For this reason we look at with special interest, the family of software

products that surround the Windows operating system. Common to these products is the Win32 portable

executable file (PE) format. When the reverse engineer analyzes a Win32 disassembly a general under-

standing of the PE format is important.

5.3.1 PE File Background

Immediately prior to the PC’s acceptance as ‘the’ enterprise computing tool, the architecture

commonly used across industry were minicomputers or mainframes that used VAX VMS or UNIX oper-

ating systems. This is where the expertise was, so it is no secret that when Microsoft came along much of

this heritage technology went into the Windows operating system. When the time came to design Win-

dows NT, it made sense to use existing technology and incorporate previously written and tested tools in a

effort to minimize things like the OS bootstrap time. The COFF (Common Object File Format) became

the executable and object module format that the heritage technology tools produced. Artifacts of this past

technology can be seen such as things within the COFF as references in octal format. A modern operating

system such as Windows NT has little use for octal references, so while the basic COFF format was a

good as a starting point, it needed to be further extended. As a result the COFF was updated to reflect cur-
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rent requirements and ultimately became what is known as the Portable Executable format. This portabil-

ity is maintained across all implementations of Windows NT on various platforms with x86, MIPS, Alpha,

and so on all using the same executable format.

5.3.2 PE File Layout

There are a few concepts which are fundamental to the layout and design of a PE file. We can use

the term “module” to define all the things that are loaded into memory when one runs a executable file or

a DLL. These ‘things’ include the code and data that the program uses directly as well as the all the data

structures that are used by Windows to determine where in memory the code and date are to be located.

5.3.2.1  PE File Header

These data structures are defined in the Win32 PE header file. Common with all other executable

file formats, the PE file has, at a reserved location, a collection of fields that describe the appearance of the

rest of the file. This is known as the header and the information it contains includes the sizes and locations

of the code and data areas, the initial stack size, the type operating system the file is intended for and other

pieces of information that are vital to the loading and execution of the module.

 Counterintuitively, the main header isn't located at the very beginning of the file, a trait that the

PE format shares with other Microsoft executable formats. Within a typical PE file the header is preceded

by a MS-DOS stub program which occupies the first few hundred bytes. This small program prints “This

program cannot be run in MS-DOS mode.” If a Win32 program is run within an environment that doesn't

support Win32, one will see this informative error message. After the Win32 loader maps a PE file in

memory, the first byte of the mapped file is the first byte of this MS-DOS stub. 



83

Figure 18: The PE File Format1

5.3.2.2 PE File Concepts

A key concept in the understanding of the PE file is that the executable image on disk mirrors

what the module will look like in memory after Windows has loaded it. In other words, the Windows

loader doesn't expend much effort when creating a process from the file on disk. A memory-mapped file

mechanism is used by the loader to map the appropriate sections of the file into the virtual address space.

In general, the PE file is essentially mapped into place in one piece, followed by a small amount of work

to link it up to the associated DLL’s. Ease of loading applies to any PE-format file, including PE-format

DLLs. Once the module has been loaded, it’s behavior is consistent with any other memory-mapped file.

For Win32, all one needs to know is where in memory the loader mapped the file as all the memory used

by the module for data, code, resources, import tables, export tables, and other required module data struc-

1. From: “Peering Inside the PE: A Tour of the Win32 Portable Executable File Format .”; Matt 
Pietrek; March 1994 
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tures is in one contiguous block. By following pointers that are stored as part of the image, one can easily

find all the various pieces of the module.

A second concept one should be acquainted with is the Relative Virtual Address (RVA). Many of

the fields within PE files are given in terms of RVAs. An RVA is nothing more than the offset of some

item relative to where in memory the file is mapped. As an example, if the loader maps a PE file into

memory starting at address 0x20000 within virtual address space and a certain table within the image

starts at address 0x20464, then the table's RVA is given as 0x464. Conversely, simply add the RVA to the

modules base address to convert an RVA into a usable pointer. With this concept in mind, one can appre-

ciate the importance of the base address or the starting address of a memory-mapped EXE or DLL in

Win32. 

The final concept that one should be familiar with when working with PE files is sections. A sec-

tion within a PE file can be considered as equivalent to the resources or a segment in an 16-bit file. Sec-

tions can contain either data or code. Sections are blocks of contiguous memory and unlike segments have

no size constraints. Some sections contain data or code that your program declared for direct use, while

other data sections are created by the linker working with libraries, and contain information necessary for

use by the operating system. 

5.3.2.3 Sections

The content of the PE file that we are most concerned with is divided into blocks called sections.

The PE file section represents the code and/or the data representation. The representation for code is just

code, however there are multiple representations for data. When one considers data one usually thinks in

terms of read/write program data (such as global variables). Within the PE file there are other types of data

as well which support the Win32 environment. The other types of data found in the PE sections include

resources, and relocations as well as the API import and export tables. Common in-memory attributes are

associated with each section and include not only basic read/write or read-only attributes but whether the

data located within the section is shared between all processes that use the executable. In general all code

or data within a section shares a common logical relationship and there are usually at least two sections,

one for code the other for data, within a PE file. 

5.3.2.4 Offsets and Alignment 

As we will be analyzing disassembled PE files we must have a knowledge on how the file as well

as the code and data sections are loaded and aligned in memory. The following represents a very simpli-

fied summarization of the loading of a PE file into memory that is appropriate for our discussion.
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• When the PE file is invoked, the PE loader first scans the DOS MZ header for the offset value
of the PE header. When found, it jumps to the PE header. 

• The PE loader then checks to verify that the PE header is valid. If so, it jumps to the end of the
header.

• The section table immediately follows the PE header. The PE header scans the information
associated with the sections which are mapped into memory using file mapping. It also assigns
to each section the attributes that are specified in the section table.

• After the memory mapping of the PE file is complete, the PE loader works elements such as
the import table that are associated with the logical portions of the PE file. 

The PE file header specifies two values associated with alignment of PE file sections, one value

within the disk file and the other value within memory. It is important to note that each of these values can

differ. The base of each section starts at an offset that is a given multiple of the alignment value. As an

example, in the PE file, a typical alignment value would be 0x200. Therefore, every section mapped into

memory starts at a file offset that's a multiple of 0x200. In addition, every section mapped into memory

will always start on at least a page boundary. In other words, when a PE section is mapped into memory,

the first byte of each section corresponds to a memory page. When considering the x86 architecture, pages

are aligned at 4KB boundaries. 

The reverse engineer is most concerned with the alignment and offset of the .text and .data sec-

tions of the PE file. The .text section is located at offset 0x400 within the PE file and will be located

0x1000 bytes above the KERNEL32 load address in memory. The .data section is located at file offset

0x74C00 and will be aligned 0x76000 bytes above the KERNEL32 load address in memory.

The preceding discussion can not, by any sense of the imagination, be seen as complete nor can it

convey the true depth of the subject itself. It was meant to provide the minimal background in the format

and behavior of the executable files that we will be working with. A wealth of knowledge exists on this

subject as represented by a rich set of reports, articles and books that all await the more adventurous

reader.

5.4 Reverse Engineering 

Reverse engineering of software systems has been defined as the analysis of a subject system to

identify the system’s components and their interrelationships, and to create a representation of the system

in another form or at a higher level of abstraction [63]. The aim of reverse engineering of software sys-

tems is to gain a level of understanding of the system and its structure for the purposes, in the broad sense

of the word, of maintenance. We use the term broadly because maintenance in the context of reverse engi-

neering has meant everything from documenting legacy systems and patching bugs in existing programs

to cracking copy protection schemes, and outright intellectual proprietary theft. The case of software
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reverse engineering is unlike the case of hardware reverse engineering where the system is disassembled

and analyzed in a effort to make a duplicate copy of it. Most of the reverse engineering environments

reported in the literature either concentrate on the removal of software copy protection, with the genera-

tion of graphical representations, the recovery of high-level specifications based on missing original high-

level source code or design documentation. 

In this thesis, we present a partially automated reverse engineering environment for the recovery

of targeted information from binary code (i.e. executable or application code)[70][71][72]. To provide a

workable reverse engineering environment we are mainly concerned with disassembly technology and the

types of tools that are available. In general a disassembler is a program that reads an executable program

(binary file) and translates it into an equivalent assembler program. 

When reverse engineering a binary file, the program to be translated is any arbitrary program

compiled from any high-level language, in our case C. In broad terms, the disassembler parses the binary

image of the program then translates it to assembler or some representation that is equivalent. Almost all

disassemblers follow a conventional approach:

• Machine instructions are parsed starting at the entry point of the program then following all
paths from this point. 

• Whenever a transfer of control is reached, the new path is followed until an end of path instruc-
tion (e.g. a return of subroutine) is met. 

• The target address of indirect and indexed jumps or calls is, in many times, hard to determine
in a static disassembler. This is because these instructions do not provide complete information
on the range of possible values at such an instruction. In these cases backwards slicing [64][65]
analysis is sometimes capable of determining the range of values available at the indirect or
indexed instruction. Using this method it possible to continue parsing instructions along that
path(s).

5.4.1 Software Reverse Engineering - A Dispiriting Adventure 

Reverse engineering within the traditional engineering disciplines involves end products which

were designed under the limitations of the physical world. Within these disciplines, real world behavior is

described by the language of physics that includes basic dimensions (length, time, charge, and mass) that

are applied to a generic rule set to describe the physical universe. By specializing the equations used to

calculate the concepts associated with natural phenomena, engineers, in the traditional sense, are able to

design end products for real world application.These engineers are able to face the disorder of the real

world without changing the concepts themselves. The primary means by which this is accomplished is a

principled method of understanding when close enough is good enough in approximating real world

events. In effect when we attempt to reverse engineer a traditional product we have formal, well under-
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stood concepts that act as boundaries to our set of possible solutions. In other words, we are constrained

by the laws of physics.

5.4.1.1 The Human Element

Software engineering is entirely a human activity. A program is created and intimately associated

with the cognitive abstractions used by the programmer and can be defined in terms of behavioral charac-

teristics.When dealing with cognitive or behavioral activities we have no physical laws that act as a

boundary to our set of possible solutions. In our higher level programming languages we have made an

attempt to add a universal understanding to the semantics of the language itself but this is not enough to

describe the complexity issues that one will encounter when attempting the reverse engineering of soft-

ware. This is a primary reason that methods of internal program documentation have been developed and

have gained wide acceptance. The source code, depending on the language, can communicate the compu-

tational intent to a large extent and more importantly flow of execution but it cannot communicate the pre-

cise conceptual intent. In addition it is very poor at telling us how conceptual intent is related to the

objectives of the software system in the context of a domain. If we remove the human element from the

system, the static source code of a given higher level language without internal documentation does not

communicate the programmers intent in a straight forward manner to other human beings. 

With a binary executable the picture is even bleaker. With a binary file our only option in reverse

engineering the product is to disassemble the file into assembly language instructions. In this situation the

program has to be understood in the absence of the person who has created it and with no documentation

internal or semantic. It gets worse, in the absence of any semantic information we are unable to make any

assumptions associated with flow of execution. This is the fundamental reason why understanding a disas-

sembled binary file is so difficult. Of course other reasons why reverse engineering in general is so diffi-

cult include large size, enormous complexity and the fact that product design documentation is either

inadequate, non-existing or both.

5.4.2 Analysis Methods in Binary Disassembly

When considering binary disassembly in order to recover targeted high level programming infor-

mation one should have a least a nominal understanding of the way disassemblers work. Currently avail-

able tools used for binary disassembly utilize the following techniques to recover information and present

it in a human understandable form.
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5.4.2.1 Analysis of Data Flow 

Analysis of data flow is used to recover high-level language statements and expressions (other

than so-called control transfer statements), function return values, actual parameters, and to remove any

hardware references from the assembly code, such as pipeline references, stack references and registers.

This analysis aims at techniques that are machine-independent for solving this problem and is used prima-

rily on CISC and RISC architectures.

5.4.2.2 Analysis of Control Flow

Analysis of control flow is used to recover control flow structure information, such as condi-

tional statements and loops, as well as their level of nesting. Recovery of the control structure information

in a program is a problem associated with graph theory. In assembly code, control transfer is performed

using conditional or unconditional jumps, procedure calls and returns. It is a known fact that potentially all

jumps (conditional and unconditional) can be implemented by goto statements. This is one of the main

reasons we moved away from BASIC and FORTRAN towards C++ and JAVA as a high level program-

ming language. With control flow analysis we can determine whether such jumps are redundant, induce a

loop, or will require goto statements. The aim is to minimize the number of goto statements thereby reduc-

ing the paths used throughout the code without increasing the complexity of the program. Analysis of flow

control acts to improve the quality of the generated code.

5.4.2.3 Analysis of Type 

Analysis of type analysis is used to recover high-level type information for function return types,

actual and formal parameter types, and variables. Type analysis deals specifically with the recovery of the

data type information of a given high level language. This is traditionally an area that has been studied and

reported in the literature as being associated with the functional and untyped object-oriented languages. In

these languages, the data type associated with a variable is inferred based on the variables context of  use.

It is important to note that type analysis has not been studied to any great degree within the context of

translations from assembly code to a higher level language. It can be demonstrated that it is clearly desir-

able to regenerate high level language 

code that makes use of base data types (e.g. byte, char, integer, and real) in the process. This can

be extended to the more complex compound types (e.g.array, structure or record, and class) and is even

more important when one considers regeneration of assembly to the object oriented languages. As we will

demonstrate, this represents a weakness in our proposed method of binary disassembly. Many applications

store data in large structures which are passed around between functions. The information about the layout

of these structures is lost during the compilation.
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5.4.3 Limitations 

The main problem one must face with binary disassembly derives from the representation of

instructions (code) and data in the Von Neumann architecture: they are indistinguishable. Thus, instruc-

tions can be located at random in between data. This is especially a concern with the many implementa-

tions of case or indexed jump tables. The nature of this representation along with self modifying code

practices and idioms make it hard to disassemble an executable program without error. It is interesting to

note that the separation of data and instructions is a problem that is unsolvable in general. In summary, if

one could describe an algorithm to determine such separation, this algorithm would also solve the halting

problem [67]. A second problem is the large amount of subroutines introduced by the inherent mecha-

nisms of the compiler and the linker. These subroutines are bound in the executable program at compile

time. The compiler produces start-up subroutines that establish the execution environment, and runtime

support routines that are produced whenever required. These routines are usually written in assembler and

in most cases cannot be translated into a higher-level representation. A third problem lies within the oper-

ating system itself. Some operating systems, such as Windows NT, have library routines that are main-

tained in separate files and linked dynamically at run time. This approach can help the reverse engineer as

the library routines are referenced through a dynamic linkage table within the executable image. In operat-

ing systems that do not provide this type of mechanism to share libraries, executable programs are self-

contained (statically linked) and library routines are bound into each executable image. Statically linked

library routines are written in either the language the compiler was written in or assembler. This has major

implications for the reverse engineer as the executable program contains not only the routines written by

the programmer, but all the other static library routines linked in by the linker. 

A thread common to every high level language program is the great number of standard library

functions that are used, sometimes even up to 95% of all the functions called are standard functions. To

give the reader a feel for the magnitude of this problem, the ubiquitous “hello world” program compiled in

Borland C generates:

• Library functions       -       58

• Function main()         -       1

When one disassembles this example, one is only interested in the main() subroutine and not the

other 58 or so subroutines. Of course, this example is an artificial one but it is a fact that real life programs

contain 50% library functions on average. This is the primary reason that the reverse engineer who uses a

disassembler is forced to waste better than half of his time isolating those library functions. 
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5.5 Legal Considerations

Several questions have been raised in the last years regarding the legality of reverse engineering.

A debate between supporters of reverse engineering who claim fair competition is possible with the use of

decompilation tools, and the opponents of reverse engineering who claim copyright is infringed by reverse

engineering, is currently being held; in fact, this debate has been reported in the literature since 1984 [68].

The law in different countries is being modified to determine in which cases reverse engineering is lawful.

At present, commercial software is being sold with software agreements that ban the user from disassem-

bling or reverse engineering the product. For example, part of the End-User License Agreement (EULA)

for Microsoft Office 2000 reads like this:

“Limitations on Reverse Engineering, Decompilation, and Disassem-
bly. You may not reverse engineer, decompile, or disassemble the
SOFTWARE PRODUCT, except and only to the extent that such activ-
ity is expressly permitted by applicable law notwithstanding this limi-
tation”.

The final form of the Digital Millennium Copyright Act (DMCA) includes exceptions to copy-

right protections, such as the EULA, for the following reasons:

•  Reverse engineering for interoperability

•  Encryption research

•  Security testing

It is not the purpose of this chapter to debate the legal implications of reverse engineering. This

topic is not further covered in this thesis.

5.6 Recovery of High Level Abstractions From the Binary

Reverse engineering has its origins within the established engineering disciplines. When one

considers the traditional model of reverse engineering a picture of the analysis of hardware for commer-

cial or military advantage emerges. The concept behind reverse engineering is to deduce the original

design decisions from the end product. This is often performed with little or no additional knowledge

about the design requirements, design process, and manufacturing techniques involved in the original pro-

duction.

The same approach can be applied to proprietary software systems. That is, without prior insight

into the design process, the end product, in our case a binary executable, can be analyzed in order to cap-

ture higher level design of the product. As with the traditional model, software reverse engineering can

also be used for industrial or defense ends. It can also be used as a tool to recover incorrect and incomplete

artifacts within the original source or recover otherwise unavailable documentation. Broadly speaking,
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software reverse engineering is a field of research that is devoted to developing methodologies and tools

to aid in the understanding and management of released software systems. We are interested in the more

practical aspects of software reverse engineering in that we wish to reverse engineer targeted products to

recover a targeted defect. 

The recovery of high-level abstractions from machine and assembly code is a field of study that

has not been widely researched in recent years. This is partly due to the complexity of the problem and

partly due to the negative connotation of software disassembly in general. Most of the techniques avail-

able in this field are widely published as tutorials associated with the cracking of software copy protec-

tion. 

In the context of identifying buffer overflows, we have demonstrated that many organizations

rely on proprietary closed source software. Enterprise class applications and operating systems are being

delivered with little apparent review of the source code for security vulnerabilities. The end users have no

access to the source code for their independent assessment or security audit. These facts point to the need

for research into ways of translating machine and assembly code to the high-level language constructs

which lead to security vulnerabilities. Work associated with the reassembling of data structures has been

performed Halvar Flake one of the underground experts involved with binary auditing techniques[57]. 

Any reverse engineering effort typically consists of gathering the best understanding of the target

software system that is possible. It starts with existing information such as marketing information, trial or

beta copies of the software, user manuals, on-line help and news group postings. Depending on the copy-

right or security concerns, where any detailed design information is closely held, social engineering tech-

niques may become an option.

Although many sources of information may be available, the actual code, the ultimate description

of the current state of the system is, for all intents and purposes, unavailable. Hence the crux of the reverse

engineering process is the problem of program understanding without the program. A difficult but not

hopeless situation.
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Chapter 6                                                                                                                                          

A Novel Approach to The Discovery of Buffer Overflows in a Binary Image

What I can not create I can not understand.
- Richard Feynman

6.1 Introduction 

In this chapter I describe the implementation of a novel method of locating an instance of a buffer

overflow within a binary image. As the binary image, or executable, represents the deliverable product

from the software vendor to the consumer, the technique presented is applicable to all third party propri-

etary software sold as a executable binary file.

As discussed in chapter 1, the software environment at the enterprise level is dominated by x86

architectures running Microsoft products. For this reason I have implemented the technique using a Win-

dows OS platform. This allows for extension across most all applications running within the Windows

environment. 

The approach to the problem was a simple one and was grounded on the following observation.

That is, all buffers that are created on the stack have a unique sequence of operations that create the stack

space and as a result can be identified by this unique signature. In addition, all calls to library functions

will have a unique signature. This includes the set of so-called “dangerous C functions” that were dis-

cussed in chapter 4. These signatures, represented as a series of assembly instructions, are created at com-

pile time and therefore become a part of the binary image. By disassembling the executable file we

propose that one might be able to locate certain types of buffer overflow vulnerabilities.

Based on the discussions in the previous chapters, the following goals have been identified to

allow us to evaluate the success of our technique. 

• Fast, as the original premise was to find a single instance of a buffer overflow vulnerability as
rapidly as possible.

• The accurate identification of potential overflow conditions while rejecting false positives

• Demonstrate scalability from simple test programs to enterprise class software applications.

6.2 Tools

The tools we used in this thesis included compilers, disassemblers and text editors. We will cap-

ture the version used as well as a description to allow for an exact record of the configuration used.
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6.2.1 Disassembler

This tool was the key in enabling the entire effort behind this thesis and as such deserves special

attention. In general, a disassembler will take a binary executable file as an input then convert it into read-

able assembly language. The better tools will also include additional information like cross-references  for

subroutine calls and jumps. String literals, that exist within the high level program, will be shown as part

of the output. The best disassemblers will also maintain a reference listing of API calls (e.g. the Win32

API associated with Windows). Whenever the application calls one of the native API routines, it will be

displayed along with the right parameters that are passed to the routine. The output of a good disassembler

will make our life much easier by giving us enough information to allow for the retrieval of program logic.

Popular disassemblers include:

• Wdasm32 Windows Disassembler: This is a shareware class Windows program for disassem-
bling Win32 programs. It is a decent disassembler that is easier to use than most and this fea-
ture makes it a good choice for beginners. The distribution includes a program called hilevel.
This program can transform the assembler output into a structured format that includes defini-
tion of local variables and procedures. The output is what you see is what you get which pre-
sents a severe limitation for our purposes. 

• Sourcer by V Communications: This is commercial program used for disassembling x86 bina-
ries (PE, NE and EXE). Sourcer automatically detects code and data fragments and provides
fairly good output. 

These are characteristic of the class of disassemblers in general. The output is entirely dependent

on the various algorithms internal to the disassembler and represents a best guess analysis of the binary

image. 

6.2.1.1 IDA (Interactive Disassembler) Pro

IDA, written by Ilfak Guilfanov, is a commercial program used for disassembling a wide selec-

tion of file types supporting the architectures of over 30 microprocessors. Supported binary file formats

include: EXE, PE, COFF, NE, LX, LE, and OMF. When it comes to reverse engineering a binary or

library file, IDA Pro is the most advanced tool available to the consumer. IDA has seen widespread use by

intelligence agencies, security analysts, hackers as well as by Fortune 500 companies. 

There are several reasons why this tool has enabled this research. IDA’s internal FLIRT (Fast

Library Identification and Recognition Technology) module identifies statically linked library functions

from most of the common compilers. In chapter 5 we discussed the difference between static and dynamic

library calls and therefore recognize the significance of this feature. This means that all of our dangerous

function calls will be identified when statically linked providing a huge savings over hand auditing. IDA

is interactive and allows the user, as logic is revealed, to modify elements within the disassembly then

propagate these changes back through the entire disassembled file. In other words, the human is in charge
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of the disassembly and is able to use intuitive adjustments to the output. IDA includes a powerful scripting

language, similar to C, which will allow us to automate the search for buffer overflow vulnerabilities. In

addition a very effective plug-in interface is available for full fledged C programs. For this thesis we will

be using IDA Pro version 4.17. 

6.2.2 Other Tools

The configuration that we used to perform our testing was accomplished on a single stand-alone

machine (Pentium II 400MHz; 128MRam) running Windows 98 Second edition. A client server relation-

ship was established using Microsoft Personal Web Server 2.0 along with a telnet daemon (Microsoft Tel-

net 1.0). Other tools that were required include:

• A C compiler; Microsoft Developer Studio 97; Visual C++ 5.0

•  Text editor, Microsoft Notepad

6.3 Approach

What if it were possible to identify buffer overflow vulnerabilities within a binary image? Where

would this leave you? You would know that the possibility for a buffer overflow existed within the binary

file and little else. For instance, how would you trace it back to a point in the actual running program

where the user provides input, what I call the program entry point? It is possible to trace back through the

disassembly by hand to a look-up table that references commands used within the application itself. This

is what “Barnaby Jack” demonstrated in his paper Win32 Buffer Overflows (Location, Exploitation and

Prevention)[58]. This a tedious process to say the least, with no guarantee of success. The reverse engi-

neer could easily spend several days tracing code through paths leading nowhere. Our original concept

was to find an instance of a buffer overflow vulnerability as fast as possible and a hand audit of a disas-

sembly is not what we had in mind. Lets stop and think for a minute about some of the so-called danger-

ous C functions. We have a disassembler that can identify these calls within the disassembly which is a

great advantage. 
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6.3.1 The gets() function

The gets() function, if one can find it still being used, will not provide us much in the way of

insight into where in the running application the user input is passed to the function. We can demonstrate

this with the following simple program:

gets() sample program

The disassembly really leaves us without clues as to where in the application the user input

would be provided. A target buffer of 256 bytes is pushed onto the stack as var_100 however any other

information as to the context of the function within the running program will require hand auditing of the

disassembly. The disassembly of the gets() sample program is provided below:

Disassembly of gets() function:

6.3.2 The strn*()

The strn*() family of functions for the most part manipulate the contents of two buffers, a

source and a destination. Poor implementation in the handling of two buffers may result in a security flaw,

however within the disassembly there will be little to point us to a entry point in the program. For example

 /* gets example */ 
#include <stdio.h> 
 
int main() 
{ 
  char string [256]; 
  printf ("Insert your full address: "); 
  gets (string); 
  printf ("Your address is: %s\n",string); 
  return 0; 
} 

 add     esp, 4 
lea     eax, [ebp+var_100] //target buffer 256 bytes 
push    eax 
call    _gets 
add     esp, 4                 
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lets look at a simple strcpy() program. This program copies a source buffer into a destination buffer of

bytes. The example is provided below: 

Simple strcpy() program.

Again the disassembly really leaves us without clues as to where in the application the user input

would be provided. A target buffer of 256 bytes is pushed onto the stack as var_100 however any other

information as to the context of the function within the running program will require hand auditing of the

disassembly. The disassembly of the strcpy() program sample is provided below:

Disassembly of strcpy() function.

6.3.3 The Format Family

When one thinks of the format family one usually thinks of the printf() function which prints

to a stream. There also several that print formatted input to memory. Functions such as snprintf()  and

 /* strcpy example */ 
#include <stdio.h> 
#include <string.h> 
 
int main () 
{ 
  char str1[]="Sample string"; 
  char str2[40]; 
  char str3[40]; 
  strcpy (str2,str1); 
  strcpy (str3,"copy successful"); 
  printf ("str1: %s\nstr2: %s\nstr3: %s\n",str1,str2,str3); 
  return 0; 
} 

 lea     ecx, [ebp+var_10] // source   
push    ecx             ; const char * 
lea     edx, [ebp+var_38] //target buffer 40 bytes (destination) 
push    edx             ; char * 
call    _strcpy 
add     esp, 8 
push    offset aCopySuccessful ; const char * // source string 
lea     eax, [ebp+var_60] // target buffer 40 bytes (destination) 
push    eax             ; char * 
call    _strcpy 
add     esp, 8 
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vsnprintf() all print formatted input to memory however as they both include strict bounds checking

on the target buffer these really do not have implications associated with buffer overflows. There is one

function that is a member of the format family that prints to memory and has no feature to enforce target

buffer size limitations. That function is the sprintf() function, which has seen widespread use. Not

only is this function responsible for many of the buffer overflow security flaws it‘s incorrect use is respon-

sible for the so-called format string security vulnerability. The sprintf() function is unique, in that it

is used with a string literal in many cases that, depending on how it is used, provides us with a ready made

entry point to the program. The following sprintf()  program demonstrates this characteristic: 

   Sample sprintf()  program.

The disassembly demonstrates the how the string literal is represented along with the format

specifier. This gives a solid clue, in many cases, as to where in the running program the function is called.

 /* sprintf example */ 
#include <stdio.h> 
#include <stdlib.h> 
int main () 
{ 
  char buf1 [50]; 
  char buf2[25]; 
  printf("Enter a string less than 25 characters: \n"); 
  scanf("%s", buf2); 
    if (strlen(buf2)>20) // do not want to overflow!! 
 { 
   printf("Stringlength is greater than 25 characters"); 
   exit(1); 
 } 
    else 
 { 
//** string literal entry point 
      sprintf (buf1, "\nThis is our input: %s \n", buf2); point 
 
      printf ("%sIt represents a program entry point\n\n",buf1); 
 } 
  return 0; 
} 
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A target buffer of 50 bytes is pushed onto the stack as var_34 along with the string literal “This is our

input”. The disassembly of the sprintf() program sample is provided below:

 Disassembly of sprintf() function.

With a function that inherently dangerous and at the same time may provide us with a entry point

for user input to a running application, sprintf() will be the foundation for the algorithm that we use

to search the binary image.

6.4 Search Algorithm

IDA Pro provides a powerful scripting language, similar to C, that provides over 200 unique

functions appropriate for use within the disassembly environment1 . The algorithm we will develop will

utilize this capability. We know that we will be performing our analysis based on the sprintf() func-

tion. As a review, since a call to a sprintf() function can expand an arbitrary string using the “%s”

format variable, any call to this function which expands dynamic user input data into a buffer of fixed size

shall be considered suspicious. With this in mind we will want to verify that the call to sprintf() con-

tains a “%s” format character and that it targets a static buffer on the stack. In addition we want to identify

the target buffer by name and provide the string literal as output. The algorithm will be constructed in (4)

modules or user defined functions:

1) A main program which accepts user input in the form of either a direct address to the
sprintf() call or as a indirect address to the sprintf() call then calls the analysis
module passing it the address value. 

2) An analysis  function which calls the return value module then cleans up the string argu-
ments returned by the value module as an offset address of our string literal. It calls the
string module that returns the string literal then scans the string for the presence of a “%s”
format character and prints output. 

3) A return value  function which returns the values to the analysis module that have been
pushed onto the stack for use by the sprintf() function. Of particular interest is the value
at the nth  PUSH before the call as it represents the target buffer.

1. A listing of the functions used in the search algorithm is provided in Appendix D.

 lea     edx, [ebp+var_50] 
push    edx 
push    offset aThisIsOurInput ; "\nThis is our input: %s \n" 
lea     eax, [ebp+var_34] 
push    eax 
call    _sprintf 
add     esp, 0Ch 
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4) A string function which builds our string literal a byte at a time and returns it as a argument
to the analysis module.

Figure 19: Program Layout and Data Passing

6.4.1 Main

The main function will accept user input in the form of an address of a sprintf() call. A call

may either be direct, as will always be the case with statically linked library calls, or indirect. A indirect

call results from referencing a dynamically linked library (i.e. msvcrt.dll) for the function code. This indi-

rect call is referenced within the i.data segment of the PE file and contains all cross references to the

call within the.text or code segment of the PE file. For this reason, we need the capability to run our

analysis using either of the direct or indirect calls. To accomplish this we will use two loops, one for a

direct call and one for a indirect call. For the direct call to sprintf()  we will simply pass that address

to our GetAnalysis() function. For the indirect call we will loop through all the references to

sprintf() within the code section of the program, returning each of these values to the GetAnaly-

sis() function. Both loops will terminate when the address value goes to -1 (FFFFFFFF).
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Figure 20: Program Flow: Main()

When performing an analysis of a given program or application the user must find all occur-

rences of the sprintf() function by address. To accomplish this the user selects from IDA’s tool bar

(search --> text) and enters sprintf(). 

The main function will rely heavily on IDA’s built in cross referencing functions or xrefs. These

functions are particularly useful when traversing either up or down in address space within the execution

stack from a known point of reference. For the interested reader, a listing of all xref functions has been

provided in appendix D. Special attention should be given to the use of IDA’s xref functions to traverse up

and down the assembly listing in the context of the sprint_scan.idc program. In addition for direct calls,
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similar technique is used with the DnextB function to exit the second loop for all indirect calls. The

heavily commented code listing for main() is presented below.

Program Listing for Main()

6.4.2  GetAnalysis

The GetAnalysis() function can be viewed as a central switchboard, calling then passing

data as arguments to other functions. The GetAnalysis() function is responsible for getting our target

buffer value by address, retrieving our string literal in addition to cleaning up our arguments and printing

our output. The GetAnalysis() function operates through the use of conditional statements as shown

in the following flow chart.

 static main() 
{ 
     auto SprintfAddr, reference; // assign variables 
     SprintfAddr = AskAddr(-1, "Enter address:"); // ask user for sprintf() address 
     reference = (SprintfAddr); // assign point of reference to sprintf() address 
 
//*** enter first loop for direct call to sprintf()  ***// 
     while(reference != -1) // while our address is not FFFFFFFF 
     { 
          if(GetMnem(reference) == "call") // is the mnemonic of the instruction a "call"?  
               GetAnalysis(reference); // if it is a call, it is a direct reference; pass reference address to GetAnalysis 
          reference = Rnext(SprintfAddr, reference); // make any reference address FFFFFFFF exiting first 
loop 
     } 
 
reference = DfirstB(SprintfAddr); // get first indirect reference to sprintf() call 
 
//*** enter second loop for indirect call to sprintf() ***//  
     while(reference != -1) 
     { 
          if(GetMnem(reference) == "call") // is the mnemonic of the instruction a "call"?  
               GetAnalysis(reference); // if it is a call, it is a indirect reference; pass reference address to GetAnalysis 
          reference = DnextB(SprintfAddr, reference); // do this until FFFFFFFF 
     } 
} 
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Figure 21: Program Flow: GetAnalysis()

The code listing for GetAnalysis(), presented below, utilizes several of IDA’s string related

commands such as strlen, strstr and substr. First we call the GetReturnValue() function

and pass it an address and a integer value. GetReturnValue() then returns the first two arguments to

the sprintf() call. That is, the value pushed into our target buffer and the pushed offset value of our

string literal. Using a substring search combined with a conditional we check to see if the word “offset” is

part of our second pushed argument. If it is then we use the substring command to remove it. This second

argument is now in a format to return a location address of the string literal itself. We then call the Get-
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String() function with the offset address of the string literal and GetString()  returns the literal

string in character format. A nested conditional then checks, first for the presence of the “%s” format char-

acter and if it exists, for the existence of “var_” as a stack buffer value which indicates fixed size. If both

conditions are met we have the potential for a buffer overflow condition by expanding string input with

the “%s” format character into a stack buffer of fixed size. Our output information is printed within IDA’s

output screen and utilizes format characters in the Message command whose methods are similar to that

of printf().

Program Listing for GetAnalysis()

6.4.3 GetReturnValue

We are interested in the value that is pushed onto the stack immediately prior to the call to

sprintf() as this is the value associated with the target buffer. The pushed value will be either in the

form of a pushed register or a pushed offset value. We are also interested in the other arguments that are

pushed onto the stack in preparation of the call to sprintf(). In GetReturnValue() we retrieve

the n th PUSH before the call using a looping structure. If a register is pushed, we trace back up through the

disassembly to find where the register was last accessed and return that value. If an immediate offset was

pushed we return that value. This accomplished with a conditional statement and another looping structure

as exhibited in the following figure.

 static GetAnalysis(push) 
{ 
     auto literalString, literalStrAddr, targetBuffer; // assign variables 
      
     targetBuffer = GetReturnValue(push, 1); // pass ref address + interger value (1) to GetReturnValue 
     literalString = GetReturnValue(push, 2); // pass ref address + interger value (2) to GetReturnValue 
  
     if(strstr(literalString, "offset") != -1) // does our l iteral string contain the word “offset:”?  
          literalString = substr(literalString, 7, -1); // if so, remove it 
 
     literalStrAddr = LocByName(literalString); // get the address of our literal string 
     literalString = GetString(literalStrAddr); // pass the address of our literal string to GetString 
 
//***  if conditions are met, print warning 
    if(strstr(literalString, "%s") != -1) // does our literal string contain a “%s” format character 
        if(strstr(targetBuffer, "var_") != -1) // if so, is the associated stack buffer variable in length 
     Message("\n%lx --> POTENTIAL OVERFLOW? Target Buffer is: " + targetBuffer + " 
                   String Literal is: \"%s\"\n\n\n", push, literalString);  
 
} 
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Figure 22: Program Flow: GetReturnValue()

The code listing for GetReturnValue() demonstrates the use of two while loops and a con-

ditional statement. The first loop retrieves the nth  PUSH before the call using the integer value n=1 passed
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goes to zero causing the loop to be terminated. A conditional checks to see if the first operand of the

PUSH instruction is of type “register”. If the operand represents a register, we create temporary storage to

hold the identity of the pushed register. We then enter a while loop that traces upward through each line of

the disassembly until we find the line that last accessed our register. This accomplished by a line by line

comparison with the stored register identity until a match occurs. When we find a match we return the text

representation of the second operand, which is the value stored in the register, to GetAnalysis(). If

the value of the n th PUSH is not a register, we simply return the immediate value or the text representation

of the first operand. 

Program Listing for GetReturnValue()

6.4.4 GetString

IDA does not include a function for string reassembly. For this reason we must construct a func-

tion that will reconstruct a string a byte at a time. The GetString() function performs this task after

being passed the offset address of the string literal. The function creates temporary storage then reassem-

bles the string a byte at a time using a looping structure until a null or 0xFF value byte is reached. A flow-

chart for GetString() follows.

 static GetReturnValue(push, n) 
{ 
     auto temporaryRegister; // initialize variables 
 
//*** get nth push before call 
     while(n > 0) 
     {   
          push = RfirstB(push);  
          if(GetMnem(push) == "push") 
               n = n-1; 
     } 
 
 
//*** is a register pushed 
     if(GetOpType(push, 0) == 1) // 1==a GetOpType register 
     { 
          temporaryRegister = GetOpnd(push, 0); // create storage to hold the pushed register (i.e. eax,esi)  
          push = RfirstB(push); // get previous instruction 
 
 
//*** while the pushed operand != our pushed register, keep looking until it does 
          while(GetOpnd(push, 0) != temporaryRegister) 
               push = RfirstB(push); //get next previous instruction  
          return(GetOpnd(push, 1)); // return the value pushed into the register 
     } 
     else return(GetOpnd(push, 0)); // if nth push was an immediate offset return it 
} 



106

Figure 23:  Program Flow: GetString()

The following code for GetString() is fairly straight forward. GetString() is called

within GetAnalysis() and is passed the offset address of the literal string. The function first creates a

empty string to receive the characters a byte at a time. After the first byte is read the function enters a

while loop and continues reading the string a byte at a time appending each character to our temporary

string. When we reach a null or 0xFF byte the loop exits and the function returns the literal string to Get-

Analysis().

 
offset address  

of string  
 literal from  

 GetAnalysis  

create empty  
temp string 

get a byte  

while there are 
chars between 

0 & FF  

format our byte  
into string temp 

get a byte +  1  
in posit ion 

return literal 
string 

get a byte 

true  



107

Program Listing for GetString()

6.4.5 Summary

We have developed a algorithm to locate potential buffer overflow vulnerabilities using a dan-

gerous function call, sprintf(), within the context of the IDA disassembler. IDA provides a powerful

scripting language which we have used along with our algorithm to develop a program1, sprintf_scan.idc,

to search a binary image for certain signatures of potentially dangerous sprintf() coding constructs

within the disassembly. Now that we have a program, the next step will be the development of a small,

simple test program to demonstrate how well the scanning technique performs.

6.5 Initial Testing

In order to assess the performance of our binary scanning technique we require a simple program

with a known flaw in the use of the sprintf() function. This flaw should include a static buffer of

fixed size located on the stack and a string literal combined with the format character “%s” that expands

user input into a string. This will validate the two key features of our method:

1) Finding the value of the fixed buffer on the stack

2) Identification of the string literal for use as a program entry point.

To have a technique that performs well as measured by what it can identify is not enough. The

technique should also be measured by what it does not identify as being suspicious. That is, there should

be minimal false positives when the sprintf() call is used in a safe manner. 

1. For a complete listing of the program reference Appendix E.

 static GetString(ourString) 
{ 
     auto  temporaryString, character; // assign variables 
     temporaryString = ""; // create empty string 
     character = Byte(ourString); //get the 1

st
 byte at the offset address 

 
//*** while loop to read a character at a time and append each to our empty string 
     while((character != 0)&&(character != 0xFF)) //read while we have bytes to read  
    { 
          temporaryString = form("%s%c", temporaryString, character); //format our empty string 
          ourString = ourString + 1; // move to the next position 
          character = Byte(ourString); // get the next byte 
     } 
 
     return(temporaryString); //return the literal string to GetAnalysis() 
} 
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6.5.1 sprintf_crasher.c

Our test program1 uses (3) calls to sprintf(), two are considered safe while the third is used

in a manner that causes a buffer overflow from excessive user input. This is a command line application

that scans user input into buffers of different sizes. The first call to sprintf() receives the scanned user

input of up to 100 character into x.bufLarge a [100] character buffer. By using the format character

“.3%s” only the first (3) characters are read into x.bufSmall a [60] character buffer. This represents the

safe use of the sprintf() function. In the second call to sprintf(), a (3) character string literal is

read directly into newBuf, a [25] character buffer. This also represents safe coding practice.

 In the last call to sprintf(), x.bufLarge a [100] character buffer, receives up to 100 charac-

ters of user input. This input is formatted into bufGlobal, a [50] element buffer, along with the string lit-

eral “Can’t open the following URL for reading? %s” of [42] characters. The format character “%s” will

read every character in x.bufLarge[100] and attempt to write each one to bufGlobal[50]. The

sprint_crasher.c program  was compiled using Microsoft Developer Studio 97; Visual C++. The following

discussion will reference figure 24. 

Figure 24: Test Program Stack Behavior

1. The code for sprintf_crasher.c is presented in Appendix F.
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As the first 42 elements within bufGlobal are already occupied with the string literal it only takes

(8) additional characters to begin overflowing the bufGlobal[50]. We write to memory a word at a time (4

bytes) and in bufGlobal[50] the character at element [50], the 7th character of user input, is in the middle

of a word boundary. User supplied characters 8 & 9 complete the word with character (10) starting the

corruption of the stack base pointer (ebp) causing the program to crash. With (17) user supplied characters

we have completely overwritten the instruction pointer (eip).

Running the program, we first enter a string of (25) capital A’s and see that only (3) of the char-

acters have been copied into memory by the first (2) safe sprintf() functions.

Exhibit 1: Test Program with (2) Safe Sprintf() returns

 We then enter the following URL “http://AAAAAAAAAA”, a string of (17) characters, and

notice that we get the following message:

Exhibit 2: Test Program Page Fault
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The error log shows that both ebp and eip have been over written with capital A’s, (0x41) in

hexadecimal notation. 

Exhibit 3: Test Program Showing String Literal

It is also important to note how our string literal is returned after the call to sprintf(). “Can’t

open the following URL for reading?”, with the user supplied string of “http://AAAAAAAAAA”. 

6.5.2 First Binary Scan

To perform our first binary scan using our program sprintf_scan.idc we load our test program

into the disassembler and observe the following screen.

 eax=00000000     ebx=00540000      ecx=00414100  
edx=00413fb0     esi=817e6de4      edi=00000000 
eip=41414141     esp=0064fe00      ebp=41414141 
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Exhibit 4: Disassembly of (2) Safe Sprintf() Calls in Test Program

We see the first two, so-called “safe”, calls to sprintf() along with the associated arguments

that are pushed onto the stack. For the first call, we see that ecx is pushed onto the stack as the nth PUSH

before the call. As the pushed value is a register, we need to find where it was last accessed. Register ecx

is accessed in the next previous step and we note that ecx is being loaded with var_110. Similar behavior

is observed with the second call to sprintf().

The other call that we are interested in is the third call to sprintf(). This is the call that con-

tains the programming error that leads to a potential buffer overflow vulnerability. The nth PUSH before

this call is register edx and it is accessed in the next previous step where it is loaded with var_34.

Exhibit 5: Disassembly of Flawed Sprintf() Calls in Test Program 
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We perform a search for all the sprinf() references within the disassembly and observe the

following addresses:

1) call #1-.text:0040113c

2) call#2-.text:00401164

3) call#3-.text:0040121f

Exhibit 6: Address Values for Sprintf() Calls in Test Program

The three addresses are direct references which means that the sprintf() function code is

from a statically linked library call. We performed a scan on all three references with the first two showing

no results, as expected. On the third scan the following results are obtained.

Exhibit 7: sprintf_scan.idc Input Dialogue with Address of Flawed Sprintf()  Call
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Exhibit 8: sprintf_scan.idc Output for Flawed Sprintf() Call 

This identifies a potential overflow at address 0x0040121f with a target buffer variable of var_34

and a string literal of “Can’t open the following URL for reading? %s”. When we look at the stack refer-

ence for var_34 we observe a buffer size of approximately 52 bytes which is very close to our allocated

length of [50] elements.

Exhibit 9: Test Program Stack Showing [52] Byte Target Buffer

  

6.5.3 Summary of Initial Test Results

The sprint_scan.idc program performed according to our original design intent. This success was

demonstrated using a small scale test program (sprint_crasher.c) with three calls to sprintf(). Two

using correct programming practice, and one call to sprintf() with a known buffer overflow code

flaw. This accomplishment exceeded our original specification of identifying certain instances of a buffer

overflow vulnerability as fast as possible 1. This enhanced level of performance was illustrated when the

scanning program failed to identify identical functions, being used in a similar manner, as being possible

security flaws. This selective identification enhanced the reliability of the scanning technique as it elimi-

nated concerns associated with false positive results. We will move to extend the range of this technique

by scanning third party, proprietary, software applications. We will begin with shareware class software

1. On a x86 800Mhz machine running Windows 2000 Professional the scan speed using 
sprint_scan.idc against sprintf_crasher.c was under (1) second.



114

as we believe that these types of programs are released with little regard for secure coding practices. We

will move linearly up to enterprise class server products in an attempt to demonstrate the scalability of our

technique.

6.6 Extended Testing

The testing methodology used to demonstrate the scalability of our technique was simple and

straight forward. A target program was identified then the appropriate binary file was selected and

scanned. If positive results were obtained, program documentation, specifications, RFC’s etc. were

obtained in order to gain insight into user input data format requirements, as well as methods related to

how the user data would be passed to the target program. Several general techniques for remote passing of

data streams to the host program were immediately identified. These included:

• Passing data strings within the web browser.

• Making a telnet connection to the proper port and transmitting data according to the related
protocol.

• Using netcat, a simple utility which is used to read and write data across network connections.

Once the data format issues were addressed and one of the above techniques selected for passing

user input, we attempted to exploit the identified buffer overflow vulnerability by trying to crash the pro-

gram with excessive input. Success would be demonstrated when the target program stopped responding

and two potential levels of achievement were identified.

1) Simple page fault error with no instruction pointer (eip) overwrite. This type of failure
would indicate a strong possibility of creating a DOS condition at exploit time

2) Page fault error with complete instruction pointer overwrite. This type of failure would indi-
cate a strong potential for the ability to remotely execute arbitrary instructions on the host
machine. 

 It is important to note that each file tested involved unique protocols and peculiarities associated

with how user data was formatted and passed to the program. In many instances, where an apparent over-

flow condition was identified, we simply did not have the time resources to learn all the program nuances

to be able to demonstrate exploitability. In these cases we rapidly moved on to the next target. Target pro-

gram candidates were identified based on the following criteria:

• Remotely accessed program with clear client host relationship

• Application with well known and documented buffer overflow vulnerability

With these ground rules in place, we attempted to start small with shareware class software pro-

gressing to enterprise class server products.
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6.6.1 Shareware Testing

The idea behind shareware was that by being low cost solution it was also a high risk solution

from a secure programming point of view. We approached this testing with the belief that little or no secu-

rity audits are performed prior to release. This, despite the fact that the products identified share privileged

process space on the host server.

6.6.1.1  Seattle Lab Internet Mail Server version 2.5.0.1065

The early versions of this shareware program were notorious for having numerous buffer over-

flow vulnerabilities. The buffer overflows were well documented with even a walk through disassembly

in the paper “Win32 Buffer Overflows (Location, Exploitation and Prevention)” [58]. The binary file

slmail.exe was loaded into the IDA disassembler and scanned with sprint_scan.idc. The disassembly con-

tainer 350 references to the sprintf() function. Analysis results are provided below.

Exhibit 10: sprintf_scan.idc Output: SLMail
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Several addresses are immediately recognizable as accepting long strings of user data along with

a corresponding program entry point. The two most promising addresses include:

1) 00422529: A long string could be supplied at some point in the program that looks up a user

2) 00424826: A long string could be supplied at some point in the program that handles
addresses.

We played around with the program for quite a while, and without success, looking for these

error messages to give us a clue as to where in the program they resulted from user input. In addition

because numerous buffer overflows existed in the product, several being documented as being directly

related to the poor implementation of the strcpy() function and often used in conjunction with a

sprintf() call, it was felt that any buffer overflow found in this application would be inconclusive.

6.6.1.2 CesarFTP version 0.0.9.61

This shareware program is reported as having a buffer overflow vulnerability associated with the

“HELP” command. The binary file CesarFTP.exe was loaded into the IDA disassembler and exhibited

(22) references to the sprintf() function which is dynamically linked through msvcrt.dll. The results

of the binary scan are given below.

Exhibit 11: sprintf_scan.idc Output: CesarFTP

While we get positive returns associated with two addresses, the parameters that are read by

“%s” appear to by internally generated. 

6.6.1.3 Winamp version 2.6.0.0

This shareware audio file player has several reported buffer overflow vulnerabilities associated

with the earlier versions. While this application is not known for supporting any type of client host rela-

tionship, it is able to download MP3 music files directly from the internet using the AudioSoft AIP file

format. These .aip files are parsed by winamp and a specially crafted file is able to overflow memory

1. Reference Appendix C: Case 3
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space. Since these .aip files can be transferred across the internet and directly downloaded without user

intervention the winamp application represents a unique case. Other reported buffer overflows leave us

with the feeling that this program was not released with any concern for potential security issues.

Winamp.exe was loaded into the IDA disassembler and (173) references to sprintf() were noted as

dynamically linked imports from user.dll. The binary image was scanned with the results of the analysis

presented below.

Exhibit 12: sprintf_scan.idc Output: WinAmp
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Address 0042390e “http://<user input>” as read by “%s” certainly looks promising. A URL

string is accepted as part of the playlist functionality however extensive testing using strings of various

length failed to crash the program.

6.6.1.4 OmniHTTPd version 1.01

The image map CGI that is distributed with OmniHTTPd has a buffer overflow associated with

the server side extension imagemap.exe. The binary file Imagemap.exe was loaded into the IDA disas-

sembler and (2) references to the sprintf()  function were noted. The file was scanned with no positive

results. 

6.6.2 Enterprise Class Server Applications 

6.6.2.1 fp30reg.dll1 version 4.0.2.3406

This is the .dll within Microsoft’s FrontPage 2000 server extensions that was exploited by the

code red worm. According to published information, fp30reg.dll parses client input and in the case where

fp30reg.dll receives an invalid parameter (method), the following message was returned: “The server is

unable to perform the method <parameter provided by the user> at this time”. The <parameter provided

by the user> we hoped to be a sprintf() “%s” write to memory. As a matter of fact published docu-

mentation included the statement “...fp30reg.dll calls USER32.wsprintfA() to form the return mes-

sage.”[69]. We really had our hopes up on this one as it represented a contemporary enterprise class server

application however, when we performed our analysis with sprintf_scan.idc, it returned no results.

6.6.2.2 Microsoft ftp Client version 5.0.2134.1

FTP programs have a reputation for exploitable buffer overflows. Although no direct information

was available for this particular version as to the presence of a buffer overflow vulnerability the following

information led us to believe that indeed a vulnerability exists. The file was obtained from a corporate

implementation of Windows 2000 where the file had been globally removed as part of a system wide

security audit. The binary file was loaded into the IDA disassembler where (7) references to the

sprintf() function were noted. The scan of the file returned no positive results.

6.6.2.3 Microsoft Frontpage 2000 Server Extensions 

Two components of FrontPage 97, 98 and 2000 Server Extensions, htimage.exe and

imagemap.exe are documented as containing buffer overflow vulnerabilities with htimage being reported

to crash with the string “http://myserver/cgi-bin/htimage.exe/<741 A’s>?0,0”. It is important to note that

1. Reference Appendix C: Case 7
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there is no documentation associated with Microsoft’s imagemap.exe other than the basic report that a

vulnerability exists.

 Image mapping allows for the attachment of a hyperlink to a image within a web page. As an

example, a web site might display a picture of a football team, and by clicking on an individual player it

might lead to a page showing his family or interests. When you select a point on the active image, the x

and y position (in pixels) are sent to the specified URL, using the GET method, as a query string, like this:

GET /cgi-bin/program/example?62,58 with the top left corner being 0,0.

 The technique of integrating the image with the hyperlink is known as image mapping. Most

contemporary browsers support client side image mapping. That is the browser can display the image and

integrate the hyperlink natively. However, with legacy browsers (for example, NCSA’s Mosaic or the

early Internet Explorer versions) client side image mapping was not supported and components on the

server side were required to allow this functionality. The two components, htimage.exe and

imagemap.exe, perform this function to maintain cross compatibility with the two original specifications,

CERN's and NCSA's. 

The binary file imagemap.exe was loaded into the IDA disassembler with (3) references to

sprintf() being noted.An analysis was performed using sprintf_scan.idc and the following results

returned.

Exhibit 13: sprintf_scan.idc Output: imagemap.exe

 The string literal “Couldn’t open configuration file: <user input>” with user input being read by

“%s” and written to memory certainly looks interesting. As imagemap.exe is a server side program we

need to run it within the context of host application that receives client input. To accomplish this we will

run the application from Microsoft’s Personal Web Server version 2.0 within Windows 98. This configu-

ration is similar to the Microsoft’s IIs server products. Imagemap.exe is installed in the .../cgi-bin direc-

tory and accepts query strings through the client browser in the form of “http://<myserver>/cgi-bin/

imagemap.exe/<other directory>/<query string>?(map coordinates) (i.e. 0,0). 

We start the Personal Web Server Service, the server name is johnnyutah, and pass the query

string “http://johnnyutah/imagemap.exe/~/AAAAAAAAAAAAAAAAAAAAA?0,0” to imagemap.exe

with the following results.
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Exhibit 14: Imagemap Server Error with String Literal

 We have found our string literal reference and the format character is reading our dynamic input

and writing it to memory. This is demonstrated by the screen message “Couldn’t open configuration file:

C\Inetpub\wwwroot\~\AAAAAAAAAAAAAAAAAAAAA”. We look within the disassembly at the

sprintf() call referenced in our output results; address 0040166e.

Exhibit 15: Imagemap.exe Disassembly Showing Flawed Sprintf()  Call

We observe that the target buffer PUSH is register EAX  with the corresponding register load rep-

resented by variable [var_C0C]. When we explore the stack we observe that var_C0C represents a static

stack buffer of 500 bytes.

“user input read by “%s”String Literal
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Exhibit 16: Imagemap.exe Stack Space Showing Target Buffer

We now have a high confidence that imagemap.exe contains a buffer overflow vulnerability. As

there is quite a bit of buffer space allocated above var_C0C we anticipate quite a large string (>2500 char-

acters) will be required to corrupt the ebp register and create a anomaly within the running application.

The client browser that we are using, Microsoft Internet Explorer 5 version 5.00.2614.3500, truncates a

URL entry at about 2000 characters and we are forced to use a different method to query the server. This

will be accomplished through a telnet connection to port 80 where we will use the HTTP GET method to

submit the query string to the server.

Exhibit 17: Telnet Session to Port 80 Localhost with <~2700 character string>
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The above represents our telnet request to the Personal Web Server (localhost 127.0.0.1). We are

using the HTTP GET method to pass the following query string to the server: GET /cgi-bin/

imagemap.exe/~/<2565A’s>?0,0. We observe the following page fault error message:

Exhibit 18: Imagemap.exe Page Fault Message

 In addition to the error message the server stops responding. We believe this to be a fully

exploitable buffer overflow as eip has been completely over written.
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Chapter 7                                                                                                                                     

Conclusion

The real problem is not whether machines
 think but whether men do.

-  B. F. Skinner

With the explosive growth of computer and networking technology information we have become

almost totally reliant these systems to manage all of our information including that which is privileged and

sensitive. This technology has enabled information management on a grand and global scale and has been

the key driver in the huge increases in productivity over the last 15 years. The acceleration of information

technology, being propelled by Moores law1, has come at a price. Those who got in early are now the

dominant players across an entire industry. Not only do they provide the products that serve as a founda-

tion in information management they, in effect, have become entrusted with protecting our most sensitive

information. One would think this an awesome responsibility however in light of continuing security

flaws, in our most trusted software, nothing could be further from the truth. Perhaps the most frightening

reality associated with our trust in just a few vendors providing the majority of our critical software is that

there is no simple method for the consumer to verify that the product they rely on is secure. Instead, we

rely on the relentless assault of hackers to break released systems and hope we can patch our system

before any real damage is done. I have demonstrated a technique that can be used as a tool to identify

security flaws in proprietary software, one that could scan a binary image and tell us if there was a poten-

tial problem. Not only would we avoid the product, but the software vendors would soon have to confront

the fact that lousy code cannot be obscured from the user.

1. The observation that the logic density of silicon integrated circuits has closely followed the 
curve (bits per square inch) = 2^(t - 1962) where t is time in years; that is, the amount of infor-
mation storable on a given amount of silicon has roughly doubled every year since the tech-
nology was invented. This relation, first uttered in 1964 by semiconductor engineer Gordon 
Moore (who co-founded Intel four years later) held until the late 1970s, at which point the 
doubling period slowed to 18 months. The doubling period remained at that value through 
time of writing (late 1999). From: http://www.tuxedo.org/~esr/jargon/html/entry/Moore's-
Law.html
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7.1 Results and Contributions

We propose binary scanning as an approach for finding certain instances of the buffer overflow

vulnerability as fast as possible in proprietary software. We make this bold assertion with little knowledge

of the behavior of the buffer overflow post compile time or an understanding of the difficulties associated

with reverse engineering using the disassembled binary as our only guide. For these reasons, our approach

encompassed a journey through the body of knowledge associated with software security flaws in general

and the characteristics of such flaws, as manifest in the binary image, specifically. Additionally, we have

been treated to a healthy helping of assembly language, C programming and runtime stack behavior.

Along the way we were able to propose a unique classification strategy for the buffer overflow vulnerabil-

ity. 

Traditionally the buffer overflow is viewed as a programming flaw. For our classification

scheme we viewed the buffer overflow as an attack. This allows our taxonomy to be unique in that it clas-

sifies across two vectors. That is, it uses a two dimensional approach of system dependencies as well as

attack dependencies to create a rich interwoven classification technique. We populate a select group of

buffer overflow vulnerabilities within our classification scheme. 

Armed with this knowledge we are able to leverage insight to develop a technique, based on

reverse engineering, to find security flaws in the binary image without benefit of source code. The main

contribution of this thesis is that the concept of scanning the binary image to find security faults is a valid

technique that can be applied to proprietary software.

Our reverse engineering scheme allows us to focus directly on those areas of the disassembly that

have the greatest potential for security related flaws such as the buffer overflow vulnerability. We investi-

gated several of the so-called dangerous C functions and came to the conclusion that a suspicious ‘buffer

overflow’  signature is present and identifiable within a disassembly for each of the functions reviewed.

Extending this conclusion, we developed a scanning algorithm based on the sprintf() function call. It

was our insight into the use of sprintf(), with it's associated string literal providing a possible pro-

gram entry point, that allowed us to demonstrate the success of this technique in a relatively short period

of time. With a good idea of the context of user data being passed, combined with criteria that identifies a

function as being suspicious, we were able to develop a compact and efficient scanning routine. 

A substantial number of experiments were performed to systematically validate the implementa-

tion of our concept. We successfully demonstrated our technique, first on a simple test program where we

illustrated two capabilities:

1) We identified a known buffer overflow security flaw that involved the unsafe use of
sprintf()

2) We eliminated the concern with false positive identification by failing to identify those loca-
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tions where sprintf() was used in a safe manner.

We then extended our technique to include contemporary enterprise class applications. We iden-

tified a potential buffer overflow vulnerability in the binary image of a contemporary Microsoft server

application then went on to successfully demonstrate that vulnerability in the actual running application. 

The main characteristic of this technique is the speed at which certain instances of a buffer over-

flow vulnerability can be identified. This distinguishes our method from other testing schemes and brute

forcing techniques. While our method is not advocated over the traditional source review, it is able to

make a bold statement. When one is able to find an instance of a certain type of fully exploitable buffer

overflows in under (1) second, major developers of retail software should take notice. Programming flaws

can be detected by much simpler methods than binary disassembly and reverse engineering when one has

access to the source code. Despite this fact it is clear that these steps are, for the most part, being

neglected. The fact that we were able to discover a security flaw, in a major application, using this tech-

nique speaks volumes not only of the lack attention paid to the security aspects of modern software devel-

opment but to the power of reverse engineering. The success of this technique should not be measured by

the fact that we were able to find a buffer overflow in a contemporary, server class product, it should be

measured by the success of the concept itself. 

7.1.1 Technique Limitations

The technique we present is limited in that it can only find buffer overflow vulnerabilities that are

tied to the sprintf() function that is reading dynamic user input with the format character %s. We

believe that the concept of binary scanning however can be extended to include wide range of security

applications where the original source code is unavailable. The main limitation is that by scanning a disas-

sembly, a compile time object, one will miss the vulnerabilities that are tied to the run time environment.    

7.2 Research Directions

Reverse engineering a disassembled binary image is a very powerful technique with the main

limitations being the potential time required, the expanded size of the disassembly and the level of exper-

tise required. All three of these constraints scale well when machine automated, a fact we demonstrated

with our simple program. We believe that other programs could be developed to cope with the more chal-

lenging problems associated with other abused C functions such as strcpy() and strncpy(). The

challenge with these functions quickly becomes one of structure reconstruction when attempting to tease

critical details from a disassembly. 
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7.2.1 Structure Reconstruction

Applications store their data not in discrete variables but in large structures that are passed

around between functions. Many overflows happen within the context of the structure and without know-

ing what we are overwriting it is very hard to determine if the condition is an exploitable one. In addition,

most overflows and security related problems occur within dynamic memory, on the heap. This memory

region is used to hold large structures that contain connection data, error strings etc. In order to check

function calls such as strncpy() one has to be able to estimate the size of each individual structure

member. We believe that when one is able to rebuild the actual structures within a disassembly a much

better picture will emerge as to how and where user input finds it way into a function. Structure recon-

struction becomes an even bigger issue when reverse engineering C++ object oriented programs. 

7.2.2 Class Reconstruction

Within the C++ programming language structures play a big part of object definition, after all a

class is nothing more than a collection of functions that all use the same structure and all are completely

lost at compile time. Many classes have an associated vtable  or listing of memory locations associated

with the properties and methods implemented in the class interface. In other words, this table can provide

the reverse engineer a listing of all functions that access a given structure (i.e. the class itself). With this

information is certainly possible to imagine that automated techniques may exist for the reconstruction of

class data structures and with it the reconstruction of individual member boundaries. As we move more

towards a more object oriented approach where large structures are defined as part of the object itself,

structure reconstruction becomes a key element in the reverse engineering of contemporary code.

7.3 Final Thoughts

We have focused on a single security issue based on a small set of library functions that handled

single variables and were able to demonstrate a security auditing concept using the power of reverse engi-

neering. The area we focused on, the buffer overflow vulnerability, is a vanishing species, as the problem

has been documented for over (10) years and for the most part is trivial to exploit. The push is on across

the major suppliers of software to put an end to this type of programming flaw. Yes, there is legacy code,

but a whole new frontier awaits the reverse engineer. 

The modern program paradigm is a move to embrace object oriented design. Therefore new

code, for the most part, is object oriented C++, that makes extensive use of the Standard Template Library

(STL) for string, stream and container manipulation. We propose that there exists undiscovered exploit-

able security pitfalls within the family of STL constructs, as they manipulate user input, and that these

new security flaws will manifest themselves as heap overruns. Heap overruns, due to their elusive nature,
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will make stress testing useless and therefore it will be the reverse engineers with the advantage. As heap

overflows are almost entirely compiler specific, the reverse engineers will have the advantage as they will

be able to document the nuances of their compiler behavior for themselves. Then there is the area of writ-

ing exploits themselves. As the new CPU architectures move to non-executable data pages as a standard

feature, shell code will become a thing of the past. The future attacker will not insert a new subroutine

within corrupted stack space, they will subvert the logic of the application itself (i.e. bool paswrdVali-

dated == true). In attempting to corrupt application logic the advantage will again go to the reverse engi-

neer. Without this skill, exploitation of future proprietary applications will be close to impossible. 

Automated binary disassembly must certainly be an area of interest within the intelligence and

security community due its ability to open doors that would otherwise be shut. We have forwarded the

premise that vendors hide their security flaws, or lack of security, by labeling their code as a trade secret,

releasing only a compiled binary file. At the same time we can extend this reasoning to developers of our

most secure software, the software based security systems themselves. All of these systems are based on

the principle of “security by obscurity” as well. The concepts on which these programs are based are hid-

den within the program logic itself, logic which we believe can and will be corrupted in future attacks. All

that is needed is a piece of binary code and a disassembler, assembler code cannot be made more difficult.

It can be encrypted, obfuscated or made difficult in general but at some point the machine has to be able to

read the instructions and if the machine can so can the reverse engineer: you can run but you can’t hide.

“Where do you want to go today?.......” 
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Appendix A
Archive/Compressed Archives
Gnu tar format gtar application/x-gtar
4.3BSD tar format tar application/x-tar
POSIX tar format ustar application/x-ustar
Old CPIO format bcpio application/x-bcpio
POSIX CPIO format cpio application/x-cpio
UNIX sh shell archive shar application/x-shar
DOS/PC - Pkzipped archive zip application/zip
Macintosh Binhexed archive hqx application/mac-binhex40
Macintosh Stuffit Archive sit sea application/x-stuffit
Fractal Image Format fif application/fractals
Binary, UUencoded bin uu application/octet-stream
PC executable exe application/octet-stream
WAIS "sources" src wsrc application/x-wais-source
NCSA HDF data format hdf application/hdf

Downloadable Program/Scripts
Javascript program js ls mocha text/javascript

application/x-javascript
VBScript program text/vbscript
UNIX bourne shell program sh application/x-sh
UNIX c-shell program csh application/x-csh
Perl program pl application/x-perl
Tcl (Tool Control Language) program tcl application/x-tcl
Atomicmail program scripts (obsolete) application/atomicmail
Slate documents - executable enclosures (BBN ) application/slate
Undefined binary data (often executable progs) application/octet-stream
RISC OS Executable programs (ANT Limited ) application/riscos

Animation/Multimedia
Andrew Toolkit inset application/andrew-inset
FutureSplash vector animation (FutureWave ) spl application/futuresplash
mBED multimedia data (mBED ) mbd application/mbedlet
Macromedia Shockwave (Macromedia) application/x-director
Sizzler  real-time video/animation application/x-sprite
PowerMedia multimedia (RadMedia ) rad application/x-rad-powermedia

Presentation 
PowerPoint presentation (Microsoft ) ppz application/mspowerpoint
PointPlus presentation data (Net Scene ) css application/x-pointplus
ASAP WordPower (Software Publishing Corp.) asp application/x-asap
Astound Web Player multimedia data (GoldDisk ) asn application/astound

Special Embedded Object 
OLE script e.g. Visual Basic (Ncompass) axs application/x-olescript
OLE Object (Microsoft/NCompass ) ods application/x-oleobject
OpenScape OLE/OCX objects (Business@Web) opp x-form/x-openscape
Visual Basic objects (Amara ) wba application/x-webbasic
Specialized data entry forms (Alpha Software) frm application/x-alpha-form
client-server objects (Wayfarer Communications) wfx x-script/x-wfxclient

General Applications
Undefined binary data (often executable progs) application/octet-stream
CALS (U.S. D.O.D data format - RFC 1895) application/cals-1840
Pointcast news data (Pointcast ) pcn application/x-pcn
Excel spreadsheet (Microsoft) application/vnd.ms-excel

application/x-msexcel
application/ms-excel

PowerPoint (Microsoft ) ppt application/vnd.ms-powerpoint
application/ms-powerpoint

Microsoft Project (Microsoft) application/vnd.ms-project
Works data (Microsoft ) application/vnd.ms-works
MAPI data (Microsoft) application/vnd.ms-tnef
Artgallery data (Microsoft) application/vnd.artgalry
SourceView document (Dataware Electronics ) svd application/vnd.svd
Truedoc (Bitstream) application/vnd.truedoc



134

MPEG audio mpa abs mpega audio/x-mpeg
MPEG-2 audio mp2a mpa2 audio/x-mpeg-2
compressed speech (Echo Speech  Corp. ) es audio/echospeech
Toolvox speech audio (Voxware ) vox audio/voxware
RapidTransit compressed audio (Fast Man) lcc application/fastman
Realaudio (Progressive Networks) ra ram application/x-pn-realaudio
NIFF music notation data format application/vnd.music-niff
MIDI music data mmid x-music/x-midi
Koan music data (SSeyo) skp application/vnd.koan

application/x-koan
Speech synthesis data (MVP Solutions ) talk text/x-speech

Video Types
MPEG video mpeg mpg mpe video/mpeg
MPEG-2 video mpv2 mp2v video/mpeg-2
Macintosh Quicktime qt mov video/quicktime
Microsoft video avi video/x-msvideo
SGI Movie format movie video/x-sgi-movie
VDOlive streaming video (VDOnet) vdo video/vdo
Vivo streaming video (Vivo software) viv video/vnd.vivo

video/vivo

Special HTTP/Web Application Types
Proxy autoconfiguration (Netscape  browsers) pac application/x-ns-proxy-autoconfig

application/x-www-form-urlencoded
application/x-www-local-exec

 (Netscape  extension) multipart/x-mixed-replace
multipart/form-data

Netscape Cooltalk chat data (Netscape ) ice x-conference/x-cooltalk
Interactive chat (Ichat) application/x-chat

Application Types
Text-Related
PostScript ai eps ps application/postscript
Microsoft Rich Text Format rtf application/rtf
Adobe  Acrobat PDF pdf application/pdf

application/x-pdf
Maker Interchange Format (FrameMaker ) mif application/vnd.mif

application/x-mif
Troff document t tr roff application/x-troff
Troff document with MAN macros man application/x-troff-man
Troff document with ME macros me application/x-troff-me
Troff document with MS macros ms application/x-troff-ms
LaTeX document latex application/x-latex
Tex/LateX document tex application/x-tex
GNU TexInfo document texinfo texi application/x-texinfo
TeX dvi format dvi application/x-dvi
MacWrite document ?? application/macwriteii
MS word document ?? application/msword
WordPerfect 5.1 document ?? application/wordperfect5.1
SGML application (RFC 1874) application/sgml
Office Document Architecture oda application/oda
Envoy Document evy application/envoy
Wang Info. Tranfer Format (Wang) application/wita
DEC Document Transfer Format (DEC ) application/dec-dx
IBM Document Content Architecture (IBM ) application/dca-rft
CommonGround Digital Paper (No Hands Software ) application/commonground
FrameMaker Documents (Frame ) doc fm frm frame application/vnd.framemaker

application/x-framemaker
Remote printing at arbitrary printers (RFC 1486) application/remote-printing
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Net Install - software install (20/20 Software ) ins application/x-net-install
Carbon Copy - remote control/access (Microcom ) ccv application/ccv
Spreadsheets ( Visual Components ) vts workbook/formulaone
Cybercash digital money (Cybercash ) application/cybercash
Format for sending generic Macintosh files application/applefile
Active message -- connect to active mail app. application/activemessage
X.400 mail message body part (RFC 1494) application/x400-bp
USENET news message id (RFC 1036) application/news-message-id
USENET news message (RFC 1036) application/news-transmission

Multipart Types (mostly email)
Messages with multiple parts multipart/mixed
Messages with multiple, alternative parts multipart/alternative
Message with multiple, related parts multipart/related
Multiple parts are digests multipart/digest
For reporting of email status (admin.) multipart/report
Order of parts does not matter multipart/parallel
Macintosh file data multipart/appledouble
Aggregate messages; descriptor as header multipart/header-set
Container for voice-mail multipart/voice-message
HTML FORM data (see Ch. 9 and App. B) multipart/form-data
Infinite multiparts - See Chapter 9 (Netscape) multipart/x-mixed-replace

Message Types (mostly email)
MIME message message/rfc822
Partial message message/partial
Message containing external references message/external-body
Message containing USENET news message/news
HTTP message message/http

2D/3D Data/Virtual Reality Types
WIRL - VRML data (VREAM) x-world/x-vrml
Play3D 3d scene data (Play3D ) vrw x-world/x-vream
Viscape Interactive 3d world data (Superscape ) p3d application/x-p3d
WebActive 3d data (Plastic  Thought ) svr x-world/x-svr
QuickDraw3D scene data (Apple ) wvr x-world/x-wvr

3dmf x-world/x-3dmf
Scientific/Math/CAD Types
Chemical types --  information about chemical models chemical/* (several subtypes)
Mathematica notebook ma application/mathematica
Computational meshes for numerical simulations msh x-model/x-mesh
Vis5D 5-dimensional data v5d application/vis5d
IGES models-CAD/CAM (CGM) data igs application/iges
Autocad WHIP vector drawings dwf drawing/x-dwf

Largely Platform-Specific Types
Silicon Graphics Specific Types

Showcase Presentations
showcase slides sc sho 
show application/x-showcase

Insight Manual pages ins insight application/x-insight
Iris Annotator data ano application/x-annotator
Directory Viewer dir application/x-dirview
Software License lic application/x-enterlicense
Fax manager file faxmgr application/x-fax-manager
Fax job data file faxmgrjob application/x-fax-manager-job
IconBook data icnbk application/x-iconbook
? wb application/x-inpview
Installable software in 'inst' format inst application/x-install
Mail folder mail application/x-mailfolder
? pp ppages application/x-ppages
Data for printer (via lpr) sgi-lpr application/x-sgi-lpr
Software in 'tardist' format tardist application/x-tardist
Software in compressed 'tardist' format ztardist application/x-ztardist
WingZ spreadsheet wkz application/x-wingz
Open Inventor 3-D scenes iv graphics/x-inventor
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Appendix B  

 
1 tcpmux 
5 rje 
7 echo 
9 discard 
11 systat 
13 daytime 
15 netstat 
17 qotd 
18 send/rwp 
19 chargen 
20 ftp-data 
21 ftp 
22 ssh, pcAnywhere 
23 Telnet 
25 SMTP 
27 ETRN 
29 msg-icp 
31 msg-auth 
33 dsp 
37 time 
38 RAP 
39 rlp 
42 nameserv, WINS 
43 whois, nickname 
49 TACACS, Login Host Protocol 
50 RMCP, re-mail-ck 
53 DNS 
57 MTP 
59 NFILE 
63 whois++ 
66 sql*net 
67 bootps 
68 bootpd/dhcp 
69 Trivial File Transfer Protocol (tftp) 
70 Gopher 
79 finger 
80 www-http 
88 Kerberos, WWW 
95 supdup 
96 DIXIE 
98 linuxconf 
101 HOSTNAME 
102 ISO, X.400, ITOT 
105 cso 
106 poppassd 
109 POP2 
110 POP3 
111 Sun RPC Portmapper 

 

113 identd/auth 
115 sftp 
117 uucp 
119 NNTP 
120 CFDP 
123 NTP 
124 SecureID 
129 PWDGEN 
133 statsrv 
135 loc-srv/epmap 
137 netbios-ns 
138 netbios-dgm (UDP) 
139 NetBIOS 
143 IMAP 
144 NewS 
152 BFTP 
153 SGMP 
161 SNMP 
175 vmnet 
177 XDMCP 
178 NextStep Window Server 
179 BGP 
180 SLmail admin 
199 smux 
210 Z39.50 
218 MPP 
220 IMAP3 
259 ESRO 
264 FW1_topo 
311 Apple WebAdmin 
350 MATIP type A 
351 MATIP type B 
363 RSVP tunnel 
366 ODMR (On-Demand Mail Relay) 
387 AURP (AppleTalk Update-Based Routing Protocol) 
389 LDAP 
407 Timbuktu 
434 Mobile IP 
443 ssl 
444 snpp, Simple Network Paging Protocol 
445 SMB 
458 QuickTime TV/Conferencing 
468 Photuris 
500 ISAKMP, pluto 
512 biff, rexec 
513 who, rlogin 
514 syslog, rsh 
515 lp, lpr, line printer 

 

PORT NUMBER   SERVICE PORT NUMBER   SERVICE 
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517 talk 
520 RIP (Routing Information Protocol) 
521 RIPng 
522 ULS 
531 IRC 
543 KLogin, AppleShare over IP 
545 QuickTime 
548 AFP 
554 Real Time Streaming Protocol 
555 phAse Zero 
563 NNTP over SSL 
575 VEMMI 
581 Bundle Discovery Protocol 
593 MS-RPC 
608 SIFT/UFT 
626 Apple ASIA 
631 IPP (Internet Printing Protocol) 
635 mountd 
636 sldap 
642 EMSD 
648 RRP (NSI Registry Registrar Protocol) 
655 tinc 
660 Apple MacOS Server Admin 
666 Doom 
674 ACAP 
687 AppleShare IP Registry 
700 buddyphone  
705 AgentX for SNMP 
901 swat, realsecure 
993 s-imap 
995 s-pop 
1062 Veracity 
1080 SOCKS 
1085 WebObjects 
1227 DNS2Go 
1243 SubSeven 
1338 Millennium Worm 
1352 Lotus Notes 
1381 Apple Network License Manager 
1417 Timbuktu 
1418 Timbuktu 
1419 Timbuktu 
1433 Microsoft SQL Server 
1434 Microsoft SQL Monitor 
1494 Citrix ICA, MS Terminal Server 
1503 T.120 
1521 Oracle SQL 
1525 prospero 
1526 prospero 

 

1527 tlisrv 
1604 Citrix ICA, MS Terminal Server 
1645 RADIUS Authentication 
1646 RADIUS Accounting 
1680 Carbon Copy 
1701 L2TP/LSF 
1717 Convoy 
1720 H.323/Q.931 
1723 PPTP control port 
1755 Windows Media .asf  
1758 TFTP multicast 
1812 RADIUS server 
1813 RADIUS accounting 
1818 ETFTP 
1973 DLSw DCAP/DRAP 
1985 HSRP 
1999 Cisco AUTH 
2001 glimpse 
2049 NFS 
2064 distributed.net 
2065 DLSw 
2066 DLSw 
2106 MZAP 
2140 DeepThroat 
2301 Compaq Insight Management Web Agents 

2327 Netscape Conference 
2336 Apple UG Control 
2427 MGCP gateway 
2504 WLBS 
2535 MADCAP 
2543 sip 
2592 netrek 
2727 MGCP call agent 
2628 DICT 
2998 ISS Real Secure Console Service Port 
3000 Firstclass 
3031 Apple AgentVU 
3128 squid 
3130 ICP 
3150 DeepThroat 
3264 ccmail 
3283 Apple NetAssitant 
3288 COPS 
3305 ODETTE 
3306 mySQL 
3389 NT Terminal Server 
3521 netrek 
4000 icq, command-n-conquer 
4321 rwhois 

 

PORT NUMBER   SERVICE PORT NUMBER   SERVICE 
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4333 mSQL 
4827 HTCP 
5004 RTP 
5005 RTP 
5010 Yahoo! Messenger 
5060 SIP 
5190 AIM 
5500 securid 
5501 securidprop 
5423 Apple VirtualUser 
5631 PCAnywhere data 
5632 PCAnywhere 
5800 VNC 
5801 VNC 
5900 VNC 
5901 VNC 
6000 X Windows 
6112 BattleNet 
6502 Netscape Conference 
6667 IRC 
6670 VocalTec Internet Phone, DeepThroat 
6699 napster 
6776 Sub7 
6970 RTP 
7007 MSBD, Windows Media encoder 
7070 RealServer/QuickTime 
7778 Unreal 
7648 CU-SeeMe 
7649 CU-SeeMe 
8010 WinGate 2.1 
8080 HTTP 
8181 HTTP 
8383 IMail WWW 
8875 napster 
8888 napster 
10008 cheese worm 
11371 PGP 5 Keyserver 
13223 PowWow 
13224 PowWow 
14237 Palm 
14238 Palm 
18888 LiquidAudio 
21157 Activision 
23213 PowWow 
23214 PowWow 
23456 EvilFTP 
26000 Quake 
27001 QuakeWorld 
27010 Half-Life 
 

27015 Half-Life 
27960 QuakeIII 
30029 AOL Admin 
31337 Back Orifice 
32777 rpc.walld 
40193 Novell 
41524 arcserve discovery 
45000 Cisco NetRanger postofficed 
Multicast hidden 
ICMP Type hidden 
32773 rpc.ttdbserverd 
32776 rpc.spray 
32779 rpc.cmsd 
38036 timestep 
 

PORT NUMBER   SERVICE PORT NUMBER   SERVICE 
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Appendix C 

Case: 1

All-Mail multiple SMTP buffer overflows

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-0985 (under review);
bugtraq 1789 

Description:
Nevis System All-Mail version 1.1 is vulnerable to multiple buffer overflows. All-Mail is a mail server
written for Windows. By sending long commands such as "mail from" or "rcpt to" a remote attacker can
overflow a buffer and execute arbitrary code on the system. Several static buffers in the SMTP component
are susceptable. Overflow input is sent remotely to TCP port 25.    

Intent:
a) Penetrate; Remote: get root

b) DOS; Remote

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 25; SMPT

Target Hardware:
Windows: 2000, NT4

Target Software:
Application; All-Mail (1.1)
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Case: 2

CesarFTP long command buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0826 (under review);
bugtraq id 2972  

Description:
CasesarFTP is a Windows FTP server from ACLogic. By sending a long string of characters argumenting
any of several FTP commands, an attacker can cause a stack overflow. A remote user could supply a prop-
erly-structured argument to an affected command, designed to exceed the maximum length of the input
buffer. The values stored in this buffer can overflow onto the stack, potentially overwriting the calling
functions' return address with values that can alter the program's flow of execution. 

Intent:
a) Penetrate; Remote: get root

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 21; FTP

Target Hardware:
Windows: NT

Target Software:
Application; ACLogic Caesar FTP 0.98b; server.exe
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Case: 3

CiscoSecure ACS CSAdmin buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2000-1054; bugtraq id  1705

Description:
CiscoSecure ACS for Windows NT versions 2.4.2 and earlier are vulnerable to a buffer overflow in the
CSAdmin software module. By sending an oversized packet to TCP port 2002, an unauthenticated remote
attacker can overflow the buffer and execute arbitrary code or cause the CSAdmin software module to
crash. The effects of this vulnerability vary, depending on the exact versions of Windows NT and CiscoS-
ecure ACS on the server.

Intent:
a) Penetrate; Remote: get info?; illegal disk write b) DOS Remote

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 2002;  

Target Hardware:
Windows: NT

Target Software:
Application; CiscoSecure ACS for Windows NT versions 2.4.2 and earlier
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Case: 4

EFTP '.lnk' file buffer overflow

Source: 
bugtraq 3330 

Description:
Encrypted FTP (EFTP) is a client/server program developed by Khamil Landross and Zack Jones that
allows users to transfer files securely and is based on the 448bit Blowfish Encryption Algorithm and the
FTP protocol. EFTP version 2.0.7.337 is vulnerable to a buffer overflow. After uploading a *.lnk file con-
taining a large amount of "A" characters and issuing a LIST command, a remote attacker can overflow a
buffer and execute arbitrary commands on the system or launch a denial of service attack.

Intent:
a) Penetrate; Remote: get root

b) DOS; Remote

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 23; FTP

Target Hardware:
Windows: 95, 98, 2000, ME, NT4; Cisco iCDN 2.0

Target Software:
Application; Khamil Landross and Zack Jones EFTP 2.0.7.337
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Case: 5

DocumentDirect GET buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-0826 (under review);
bugtraq id 1657   

Description:
A number of unchecked static buffers exist in Mobius' DocumentDirect for the Internet program. Depend-
ing on the data entered, arbitrary code execution or a denial of service attack could be launched under the
privilege level of the corresponding service. 

Buffer Overflow #1 - Issuing the following GET request will overflow DDICGI.EXE: GET/ddrint/bin/
ddicgi.exe?[string at least 1553 characters long]=X HTTP/1.0

Buffer Overflow #2 - Entering a username consisting of at least 208 characters in the web authorization
form will cause DDIPROC.EXE to overflow. If random data were to be used, a denial of service attack
would be launched against the DocumentDirect Process Manager which would halt all services relating to
it. 

Buffer Overflow #3 - Issuing the following GET request will cause an access validation error in
DDICGI.EXE:GET /ddrint/bin/ddicgi.exe HTTP/1.0\r\nUser-Agent: [long string of characters]\r\n\r\n

Intent:
a) Penetrate; Remote: get privilege

b) DOS; Remote

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows:  NT4

Target Software:
Application; Mobius DocumentDirect for the Internet 1.2
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Case: 6

FrontPage 98 Server Extensions DVWSSR.DLL file buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-0260 (under review);
bugtraq id 1109  

Description:
Microsoft FrontPage 98 Server Extensions installs the file DVWSSR.DLL in the /_vti_bin/_vti_aut direc-
tory on Windows 95/98 and Windows NT Web servers. This file is normally used to connect to the site
with the Microsoft InterDev program. A malicious user could overflow an unchecked buffer in the
DVWSSR.DLL file to crash the server and execute arbitrary code.

Intent:
a) Penetrate; Remote: get privilege

b) DOS; Remote

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Microsoft FrontPage 98 Server Extensions for IIS, Microsoft FrontPage 98, Microsoft IIS 4.0,
Microsoft NT Option Pack for NT 4.0, Microsoft InterDev 1.0, Microsoft Windows NT 4.0

Target Software:
Application; Microsoft FrontPage 98 Server Extension Dynamic Link Library (.DLL) File: dvwssr.dll 
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Case: 7

FrontPage Server Extensions Visual Studio RAD Support sub-component buffer 
overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2001-0341; bugtraq id 2906

Description:
Microsoft FrontPage Server Extensions (FPSE) for Windows NT and Windows 2000 is vulnerable to a
buffer overflow in the Visual Studio RAD (Remote Application Deployment) Support sub-component.
FrontPage Server Extensions are components used in Microsoft Internet Information Server (IIS) versions
4.0 and 5.0. If the Visual Studio RAD Support sub-component is installed, a remote attacker can send a
specially-crafted packet to the server to overflow a buffer. When fp30reg.dll receives a URL request that
is longer than 258 bytes, a stack buffer overflow will occur. An attacker could exploit this vulnerability to
execute arbitrary code on the system and possibly gain complete control over the affected Web server.

Intent:
a) Penetrate; Remote: get root

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: FrontPage 2000 Server Extensions: All Versions, Microsoft IIS 4.0, Microsoft IIS 5.0, Win-
dows 2000 Advanced Server, Windows 2000 Server, Windows 2000: All Versions, Windows NT 4.0

Target Software:
Application; Microsoft FrontPage 2000 Server Extension  Dynamic Link Library (.DLL) File : fp30reg.dll 
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Case: 8

GuildFTPD SITE command buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0770

Description:
GuildFTPD is a free Windows FTP server. GuildFTPD version 0.97 is vulnerable to a buffer overflow in
the SITE command. By sending a SITE command containing 261 bytes or more, a remote attacker can
overflow a buffer in ‘sitecmd.dll’ to execute arbitrary code on the system.

Intent:
a) Penetrate; Remote: get privilege

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 21; FTP

Target Hardware:
Windows: All versions

Target Software:
Application; GuildFTPD version 0.97 File: sitecmd.dll 
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Case: 9

IIS buffer overflow in HTR requests can allow remote code execution

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-1999-0874; bugtraq id 0307

Description:
Microsoft Internet Information Server (IIS) version 4.0 is vulnerable to a denial of service attack caused
by a buffer overflow involving the way that .HTR, .STM, and .IDC files are processed. IIS version 4.0 can
perform various server-side processing with specific file types. Requests for files ending with .HTR,
.STM, and .IDC extensions are passed to the appropriate external DLL for processing. By sending a mal-
formed request, an attacker can overflow a buffer and cause the service to crash. It may be possible for an
attacker to use this vulnerability to execute arbitrary code on the system.

Intent:
a) Penetrate; Remote: get privilege

b) DOS; crash vulnerable IIs processes

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Microsoft IIS 4.0 ; Cisco Building Broadband Service Manager 5.0; Cisco Call Manger 1.0;
Cisco Call Manger 2.0; Cisco Call Manger 3.0; Cisco ICS 7750; Cisco IP/VC 3540; Cisco Unity Server
2.0; Cisco Unity Server 2.2; Cisco Unity Server 2.3; Cisco Unity Server 2.4; Cisco uOne 1.0; Cisco uOne
2.0; Cisco uOne 3.0; Cisco uOne 4.0; Microsoft BackOffice 4.0; Microsoft BackOffice 4.5; Microsoft
Windows NT 4.0 Option Pack 

Target Software:
Application; Microsoft IIS 4.0 Server File: ism.dll
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Case: 10

IIS idq.dll ISAPI extension buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2001-0500; 

Description:
Microsoft Internet Information Server (IIS) versions 4.0, 5.0, and 6.0 beta are vulnerable to a buffer over-
flow in the handling of ISAPI (Internet Services Application Programming Interface) extensions. An
unchecked buffer in the code that handles idq.dll ISAPI extensions in the Indexing Service for IIS could
allow a remote attacker to overflow a buffer and execute code by sending a specially-crafted Indexing Ser-
vice request. An attacker could exploit this vulnerability to gain complete control over the affected server.

This vulnerability is exploitable via the "Code Red" and "Code Red II" worm. The "Code Red" worm is a
self-propagating worm that scans random IP addresses on port 80 searching for vulnerable Web servers.
Once a vulnerable Web server is found, the worm performs malicious activity before propagating to other
vulnerable hosts. The "Code Red II" worm does not deface Web sites, as the original version of the worm
did, but it carries a more serious threat -- it contains a Trojan Horse payload, which could allow any
remote attacker to further compromise infected systems. The "Code Red II" worm also has the ability to
scan for vulnerable hosts much faster than previous versions, which has already been reported to cause
failures in certain network components by overloading them with network traffic.

Intent:
a) Penetrate; Remote: get root

b) DOS; Remote

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Microsoft IIS 4.0; Microsoft IIS 5.0; Microsoft IIS 6.0 beta; Microsoft Index Server 2.0;
Microsoft Indexing Service All versions; Windows 2000: All Versions; Windows NT 4.0; Windows NT:
All Versions; Windows XP beta

Target Software:
Application; Microsoft Internet Information Server (IIS) File: idq.dll ISAPI extension
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Case: 11

IIS 5.0 ISAPI Internet Printing Protocol extension buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2001-0241; bugtraq id 2674

Description:
Microsoft Internet Information Server (IIS) version 5.0 installed on Microsoft Windows 2000 is vulnera-
ble to a buffer overflow in the handling of ISAPI (Internet Services Application Programming Interface)
extensions. An unchecked buffer exists in the code that handles input parameters for the Internet Printing
Protocol (IPP) ISAPI extension. Windows 2000 Internet printing ISAPI extension contains msw3prt.dll
which handles user requests. Due to an unchecked buffer in msw3prt.dll, the following maliciously
crafted HTTP .printer request will allow the execution of arbitrary code. GET /NULL.printer HTTP/1.0
Host: [buffer] . Where [buffer] is aprox. 420 characters. Typically a web server would stop responding in a
buffer overflow condition; however, once Windows 2000 detects an unresponsive web server it automati-
cally performs a restart. Therefore, the administrator will be unaware of this attack. An attacker can use
this vulnerability to gain complete control over the affected server.

Intent:
a) Penetrate; Remote: get privilege

Offensive Access Requirements: 
Standard Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Microsoft IIS 5.0: Microsoft Windows 2000 Advanced Server; Microsoft Windows 2000
Advanced Server SP1; Microsoft Windows 2000 Advanced Server SP2; Microsoft Windows 2000 Data-
center Server SP1; Microsoft Windows 2000 Datacenter Server SP2; Microsoft Windows 2000 Profes-
sional; Microsoft Windows 2000 Professional SP1; Microsoft Windows 2000 Professional SP2; Microsoft
Windows 2000 Server; Microsoft Windows 2000 Server SP1; Microsoft Windows 2000 Server SP2

Target Software:
Application; Microsoft IIS 5.0 Server File: msw3prt.dll
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Case: 12

IIS remote FTP buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-1999-0349; bugtraq id 0192

Description:
There is a Denial of Service / Buffer Overflow condition in Microsoft IIS4 FTP service when using the
Name List (NLST) command. A user having user or anonymous access to the FTP server may initiate this
attack. Connecting to the FTP server and issuing an ls command with 316 characters will cause the inet-
info.exe service to crash (and the connection to be reset). Passing more than 316 characters will cause the
stack to be overwritten. Up to 505 characters may be passed.

Intent:
a) DOS; Remote: crash/freeze host

Offensive Access Requirements: 
Server must either have anonymous access rights or an attacker must have an account

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 21; FTP

Target Hardware:
Windows: Microsoft IIS 3.0; Microsoft IIS 4.0; Microsoft Personal Web Server 1.0; Windows NT: All
Versions

Target Software:
Application; Microsoft IIS (Internet Information Server) FTP service File: inetinfo.exe
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Case: 13

IIS specially-crafted SSI directives buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0506; bugtraq id 3190

Description:
Microsoft Internet Information Server (IIS) versions 4.0 and 5.0 are vulnerable to a buffer overflow in the
ssinc.dll code that processes Server Side Include (SSI) directives. By loading a file to the Web server that
contains a specially-crafted SSI directive, an attacker can overflow a buffer, that is limited to 2550 bytes,
once the user requests the vulnerable file. An attacker can use this vulnerability to execute arbitrary com-
mands on the system to gain local system level privileges.

Intent:
a) Penetrate; Remote: get local system level privilege

Offensive Access Requirements: 
Attacker must have write access to the web root of the target web server

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Microsoft IIS 4.0; Microsoft IIS 5.0; Windows 2000: All Versions; Windows NT: All Versions

Target Software:
Application; Microsoft IIS (Internet Information Server) Server Side Include (SSI) directive File: ssinc.dll
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Case: 14

InterScan RegGo.dll buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0678; bugtraq id 2907

Description:
Trend Micro InterScan VirusWall for Windows NT 3.5 prior to version 3.51 Build 1349 and InterScan
WebManager version 1.2 are vulnerable to a buffer overflow in the reggo.dll file. This file is used to sup-
port a web management console feature in InterScan WebManage. By using a long string containing 820
characters, an attacker can overflow a buffer to execute arbitrary code on the system.

Intent:
a) Penetrate; Local: get  privilege

Offensive Access Requirements: 
Attacker must have local access

Offensive Platform:
Windows: Windows 2000; Windows NT 4.0; Windows NT 3.5 (for VirusWall).

Delivery Strategy:
a) Local Access

Target Hardware:
Windows: Windows 2000; Windows NT 4.0; Windows NT 3.5 (for VirusWall).

Target Software:
a) Application; InterScan VirusWall 3.51; InterScan WebManager 1.2 File: reggo.dll

b) OS; Windows NT 3.5-4.0; Windows 2000
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Case: 15

InterScan WebManager HttpSave.dll buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0761; bugtraq id 2959

Description:
Trend Micro InterScan WebManager version 1.2 is an application that inspects http traffic flowing into a
network for known malicious code. This application also has the capability to restrict access to adult/
unproductive web sites, manage and monitor web usage, monitor and control http traffic, and provide dig-
ital certificate revocation checking in SSL connections. If a secure Web site's digital certificate has been
revoked, InterScan WebManager has the capability to terminate the transaction. A remotely exploitable
buffer overflow exists in the RegGo dynamic link library module included in Trend Micro InterScan Web-
Manager. This module provides management features for the system administrator over an http interface.
By sending a long argument to a particular configuration parameter in the HttpSave.dll file, a remote
attacker can overflow a buffer and execute arbitrary code on the system with system privileges.

Intent:
a) Penetrate; Remote: get  privilege; get info

Offensive Access Requirements: 
Attacker must have account access (?)

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; HTTP

Target Hardware:
Windows: Windows 2000; Windows NT 4.0 

Target Software:
a) Application; InterScan WebManager 1.2 File: HttpSave.dll

b) OS; Windows NT 4.0; Windows 2000
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Case: 16

Windows Media Player .ASF marker buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0719; bugtraq id 3156

Description:
Microsoft Windows Media Player is a multimedia player for many formats of music and video files. Win-
dows Media Player versions 6.4, 7.0, 7.1 ans XP are vulnerable to a buffer overflow in the processing of
.ASF video files. By sending a specially-crafted .ASF file containing an overly long marker, a remote
attacker can overflow a buffer and crash the application or execute arbitrary code on the user’s computer.

Intent:
a) Penetrate; Remote get  privilege; get info

b)DOS; Remote crash/freeze app

Offensive Access Requirements: 
Host must open file

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 80; .asf file

Target Hardware:
Windows: All

Target Software:
a) Application; Windows Media Player 6.4; Windows Media Player 7.0; Windows Media Player 7.1;
Microsoft Windows Media Player XP

b) OS; Windows All
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Case: 17

Microsoft Media Player .ASX buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2000-1113; CAN-2001-0242;
bugtraq id 1980, 2677, 2686

Description:
Microsoft Windows Media Player is a multimedia player for many formats of music and video files. Ver-
sions 6.4 and 7.0 are vulnerable to a buffer overflow in the code that parses Active Stream Redirector
(.ASX) files. The ASX enables a user to play streaming media residing on an intranet or external site.
.ASX files are metafiles that redirect streaming media content from a browser to Windows Media Player.
The contents of ASX files, when being interpreted by Windows Media Player, are copied into memory
buffers for run-time use. When this data is copied, it is not ensured that the amount of data copied is
within the predefined size limits. As a result, any extraneous data will be copied over memory boundaries
and can overwrite neighbouring memory on the program's stack. Depending on the data that is copied, a
denial of service attack could be launched or arbitrary code could be executed on the target host. Windows
Media Player runs in the security context of the user currently logged on, therefore arbitrary code would
be run at the privilege level of that particular user. If random data were entered into the buffer, the applica-
tion would crash and restarting the application is required in order to regain normal functionality. If a user
was misled to download a hostile .ASX file to the local machine, they would only have to single click on
the file within Windows Explorer to activate the code. This is due to the 'Web View' option that is used by
Windows Explorer to preview web documents automatically while browsing (this feature is enabled by
default). In addition, a malformed .ASX file could be embedded into a HTML document and be config-
ured to execute when opened via a browser or HTML compliant email client.

Intent:
a) Penetrate; Remote get  privilege; get info

b)DOS; Remote crash/freeze app

Offensive Access Requirements: 
Host must open file

Offensive Platform:
Any

Delivery Strategy:
a) a) IP; TCP; port 80; .asx file

Target Hardware:
Windows: All

Target Software:
a) Application; Windows Media Player 6.4; Windows Media Player 7.0

b) OS; Windows All
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Case: 18

Netscape Directory Server RCPT TO excessive quotes buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CAN-2001-0164

Description:
Netscape Directory Server versions 4.1 and 4.12 are vulnerable to a buffer overflow. By default, Netscape
Directory Server is installed as part of Netscape Messaging Server version 4.15SP3. A remote attacker can
connect to the SMTP service and insert into the "RCPT TO" field a specially-crafted name containing
excessive quote (Hex 0x22) characters to overflow a buffer and execute arbitrary code on the server or
cause a denial of service attack.

Intent:
a) Penetrate; Remote get  privilege; get info

b)DOS; Remote crash/freeze app

Offensive Access Requirements: 
Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 25; SMTP

Target Hardware:
Windows NT: All Versions

Target Software:
a) Application; Netscape Directory Server 4.1; Netscape Directory Server 4.12 File: libslapd.dll 

b) OS; Windows NT
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Case: 19

CASSANDRA NNTP server buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-2000-0341; bugtraq id 1156

Description:
The Cassandra NNTP v1.10 server by Atrium Software is vulnerable to denial of service attack caused by
a buffer overflow. Cassandra NNTP is a Windows-based newsgroup server that can be accessed and con-
figured by a remote user. A remote attacker can telnet to port 119 and overflow the login buffer by enter-
ing a long username containing 10,000 characters or more.

Intent:
a)DOS; Remote crash/freeze app/server

Offensive Access Requirements: 
Network Access

Offensive Platform:
Any

Delivery Strategy:
a) IP; TCP; port 119; NNTP

Target Hardware:
Windows: Windows 95: All Versions; Windows 98: All Versions; Windows NT: All Versions

Target Software:
a) Application; CASSANDRA NNTPServer 1.10

b) OS; Windows 95: All Versions; Windows 98: All Versions; Windows NT: All Versions
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Case: 20

Windows NT RAS client contains an exploitable buffer overflow

Source: 
Common Vulnerabilities and Exposures (CVE); http://cve.mitre.org/; CVE-1999-0715; bugtraq id 1156

Description:
The portion of the Remote Access Service (RAS) client for Windows NT 4.0 that processes phone book
entries is vulnerable to a denial of service attack caused by a buffer overflow. With the RAS service
comes RASSRV.EXE, which implements the Remote Access Server service and is used for accepting
incoming calls, RASMAN.EXE which implements the RAS Autodial Manager and RAS Connection
Manager services which are used to dial out. RASPHONE.EXE is the application used when a user man-
ual dials out, as well as editing the Phone Book. RASDIAL.EXE is also used to dial out. RASSRV.EXE
and RASMAN.EXE are system processes and run in the security context of the system where as RAS-
PHONE.EXE and RASDIAL.EXE normally run in the security context of the user who starts the process.
The buffer overruns occur because the RAS API functions, such as RasGetDialParams( ), perform no
bounds checking and fill structures that contain character arrays. For instance, when the Autodial Manager
dials out it uses the RasDailGetParams ( ) function to read in such things as the telephone number from the
Phonebook, rasphone.pbk. It places these into the RASDIALPARAMS structure that contains characters
arrays. Because no bounds checking is performed if the rasphone.pbk contains an overly long telephone
number it will cause RASMAN.EXE to access violate. If the phone number is over 299 characters in
length we overwrite the processor's EIP and can completely change the programs order of execution and
execute arbitary code, though more on this later. By default rasphone.pbk gives Everybody the Change
NTFS permission meaning that anyone with access to this file may edit its contents and cause the buffer
overflow. 

Intent:
a)Penetrate; Local; get privilege

Offensive Access Requirements: 
Local Access

Offensive Platform:
Windows NT: all versions; Windows 2000: all versions

Delivery Strategy:
Local Access

Target Hardware:
Windows: Windows NT: all versions; Windows 2000: all versions

Target Software:
a) OS; Windows NT: all Versions; Windows 2000: all versions; Remote Access Service (RAS) File:
rasfil32.dll earlier than April 28th 1999   
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Appendix D 

IDC language

IDC: variables

All variables in IDC are automatic local variables (sic!). A variable can contain: - a 32-bit signed long

integer - a character string (max 255 characters long) - a floating point number (extra precision, up to 25

decimal digits)

A variable is declared in this way:

auto var;

This declaration introduces a variable named 'var'. It can contain a string or a number. All C and C++ key-

words are reserved and cannot be used as a variable name. The variable is defined up to the end of the

function. 

NOTE: to emulate global scope variables you may use array functions and create global persistent arrays.
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IDC: Functions 

A function in IDC returns a value. There are 2 kinds of functions:

  - built-in functions

  - user-defined functions

A user-defined function is declared in this way:

static func(arg1,arg2,arg3)
  {
    statements ...
  }

where arg1,arg2,arg3 are the function parameters,'func' is the function name. It is not nesessary to specify

the types of the parameters because any variable can contain a string or a number. All necessary type con-

versions are handled automatically.

IDC: Statements

In IDC there are the following statements:

  expression;        (expression-statement)
  if (expression) statement
  if (expression) statement else statement
  for ( expr1; expr2; expr3 ) statement
  while (expression) statement
  do statement while (expression);
  break;
  continue;
  return <expr>;
  return;              the same as 'return 0;'
  { statements... }
  ;                    (empty statement) 
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IDC: Expressions 

In the IDC expressions you can use almost all C operations except:

  complex assigment operations as '+='
  , (comma operation)

You can use the following construct in the expressions:

  [ s, o ]

This means to calculate linear (effective) address for segment 's' offset 'o'. The calculation is made using

the following formula:

  (s << 4) + o

If a string constant is specified as 's', it denotes a segment by its name.

There are 3 type conversion operations:

  long( expr )          float number is truncated during conversion
  char( expr )
  float( expr )

However, all type conversions are made automatically:

  - addition:
        if both operands are strings,
          string addition is performed (strings are concatenated);
        if floating point operand exists,
          both operands are converted to floats;
        otherwise
          both operands are converted to longs;
  - subtraction/multiplication/division:
        if floating point operand exists,
          both operands are converted to floats;
        otherwise
          both operands are converted to longs;
  - comparisions (==,!=, etc):
        if both operands are strings, string comparision is performed;
        if floating point operand exists,
          both operands are converted to floats;
        otherwise
          both operands are converted to longs;
  - all other operations:
        operand(s) are converted to longs;
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List of IDC functions used in algorithm

Asks

char    AskStr             (char defval,char prompt); // ask a string
char    AskFile            (long forsave,char mask,char prompt);   // ask a file name
long    AskAddr         (long defval,char prompt); // BADADDR - no or bad input
long    AskLong         (long defval,char prompt); // -1 - no or bad input
long    AskSeg           (long defval,char prompt); // BADSEL - no or bad input
char    AskIdent         (char defval,char prompt);
long    AskYN            (long defval,char prompt); // -1:cancel,0-no,1-ok
void    Message         (char format,...); // show a message in msg window
void    Warning         (char format,...); // show a warning a dialog box
void    Fatal                (char format,...); // exit IDA immediately 

Byte

// Get value of program byte
//      ea - linear address
// returns: value of byte. If byte has not a value then returns 0xFF
 
long    Byte            (long ea);              // get a byte at ea

form

// Return a formatted string.
//      format - printf-style format string.
//               %a - means address expression.
//               floating point values are output only in one format
//                regardless of the character specified (f,e,g,E,G)
//               %p is not supported.
// The resulting string must be less than 255 characters
 
char    form            (char format,...);      // works as sprintf
                                                                 // The resulting string should
                                                                 // be less than 255 characters.



163

GetMnem

 // Get mnemonics of instruction
//      ea - linear address of instruction
// returns: "" - no instruction at the specified location
// note: this function may not return exactly the same mnemonics
// as you see on the screen.
 
char    GetMnem         (long ea);              // get instruction name

GetOpnd

// Get operand of an instruction
//      ea - linear address of instruction
//      n  - number of operand:
//                  0 - the first operand
//                  1 - the second operand
// returns: the current text representation of operand 
char    GetOpnd         (long ea,long n);          // get instruction operand
                                                                            // n=0 - first operand

GetOpType

// Get type of instruction operand
//      ea - linear address of instruction
//      n  - number of operand:
//              0 - the first operand
//              1 - the second operand
// returns:
//      -1      bad operand number passed
//      0       None
//      1       General Register (al,ax,es,ds...)
//      2       Memory Reference
//      3       Base + Index
//      4       Base + Index + Displacement
//      5       Immediate
//      6       Immediate Far Address
//      7       Immediate Near Address
//      8       FPP register
//      9       386 control register
//      10      386 debug register
//      11      386 trace register
//      12      Condition (for Z80)
//      13      bit (8051)
//      14      bitnot (8051)
 
long    GetOpType       (long ea,long n);       // get operand type



164

LocByName

// Get linear address of a name
//        from - the referring address.
//               Allows to retrieve local label addresses in functions.
//               If a local name is not found, then address of a global name is returned.
//        name - name of program byte
// returns: address of the name
//          BADADDR - no such name
 

long    LocByName       (char name);
long    LocByNameEx     (long from, char name); 

strlen 

// Return length of a string in bytes
//      str - input string
// Returns: length (0..n)

 
long    strlen          (char str);             // calculate length

strstr 
// Search a substring in a string
//      str    - input string
//      substr - substring to search
// returns: 0..n - index in the 'str' where the substring starts
//          -1   - if the substring is not found

 
long    strstr          (char str,char substr); // find a substring, -1 - not found

substr
// Return substring of a string
//      str - input string
//      x1  - starting index (0..n)
//      x2  - ending index. If x2 == -1, then return substring
//            from x1 to the end of string.

 
char    substr          (char str,long x1,long x2); // substring [x1..x2-1]
                                                               // if x2 == -1, then till end of line
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Xrefs

 //      Flow types:
#define fl_CF   16               // Call Far
#define fl_CN   17              // Call Near
#define fl_JF   18                // Jump Far
#define fl_JN   19               // Jump Near
#define fl_US   20              // User specified
#define fl_F    21                // Ordinary flow
                                                          // Mark exec flow 'from' 'to'
void    AddCodeXref(long From,long To,long flowtype);
long    DelCodeXref(long From,long To,int undef);// Unmark exec flow 'from' 'to'
                                                         // undef - make 'To' undefined if no
                                                         //        more references to it
                                                         // returns 1 - planned to be
                                                         // made undefined
 
// The following functions include the ordinary flows:
long    Rfirst  (long From);                          // Get first xref from 'From'
long    Rnext   (long From,long current); // Get next xref from
long    RfirstB (long To);                           // Get first xref to 'To'
long    RnextB  (long To,long current);   // Get next xref to 'To'
 
// The following functions don't take into account the ordinary flows:
long    Rfirst0 (long From);
long    Rnext0  (long From,long current);
long    RfirstB0(long To);
long    RnextB0 (long To,long current);
 
//      Data reference types:
#define dr_O    1                          // Offset
#define dr_W    2                        // Write
#define dr_R    3                         // Read
#define dr_T    4                         // Text (names in manual operands)
 
void    add_dref(long From,long To,long drefType);      // Create Data Ref
void    del_dref(long From,long To);    // Unmark Data Ref
 
long    Dfirst  (long From);            // Get first refered address
long    Dnext   (long From,long current);
long    DfirstB (long To);              // Get first referee address
long    DnextB  (long To,long current);

long    XrefType(void);                  // returns type of the last xref
                                                          // obtained by [RD]first/next[B0]
                                                          // functions. Return values
                                                         // are fl_... or dr_...
 
// set number of displayed xrefs
#define XrefShow(x)             SetCharPrm(INF_XREFNUM,x)
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xtol 

// Convert ascii string to a binary number.
// (this function is the same as hexadecimal 'strtol' from C library) 
long    xtol            (char str);             // ascii hex -> number
                                                            // (use long() for atol)
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Appendix E

sprintf_scan.idc

 static main() 
{ 
     auto SprintfAddr, reference;  
     SprintfAddr = AskAddr(-1, "Enter address:");  
     reference = (SprintfAddr); 
  
     while(reference != -1)  
     { 
          if(GetMnem(reference) == "call")  
               GetAnalysis(reference);  
          reference = Rnext(SprintfAddr, reference);  
     } 
 
     reference = DfirstB(SprintfAddr); 
 
     while(reference != -1) 
     { 
          if(GetMnem(reference) == "call") 
               GetAnalysis(reference); 
          reference = DnextB(SprintfAddr, reference); 
     } 
} 
 
 
static GetAnalysis(push) 
{ 
     auto literalString, literalStrAddr, targetBuffer;      
     targetBuffer = GetReturnValue(push, 1); 
     literalString = GetReturnValue(push, 2); 
  
     if(strstr(literalString, "offset") != -1)  
          literalString = substr(literalString, 7, -1); 
 
     literalStrAddr = LocByName(literalString); 
     literalString = GetString(literalStrAddr); 
 
     if(strstr(literalString, "%s") != -1) 
          if(strstr(targetBuffer, "var_") != -1) 
       Message("\n%lx --> POTENTIAL OVERFLOW? Target Buffer is: " + targetBuffer + "   String 
                       Literal is: \"%s\"\n\n\n",  push, literalString); 
 
} 
 
 
static GetString(ourString) 
{ 
     auto  temporaryString, character; 
     temporaryString = ""; 
     character = Byte(ourString); 
 
     while((character != 0)&&(character != 0xFF)) 
     { 
          temporaryString = form("%s%c", temporaryString, character); 
          ourString = ourString + 1; 
          character = Byte(ourString); 
     } 
     return(temporaryString); 
} 
 
 
static GetReturnValue(push, n) 
{ 
     auto temporaryRegister; 
     while(n > 0) 
     {   
          push = RfirstB(push);  
          if(GetMnem(push) == "push") 
               n = n-1; 
     } 
 
     if(GetOpType(push, 0) == 1) 
     { 
          temporaryRegister = GetOpnd(push, 0); 
          push = RfirstB(push); 
 
          while(GetOpnd(push, 0) != temporaryRegister) 
               push = RfirstB(push);  
          return(GetOpnd(push, 1)); 
     } 
     else return(GetOpnd(push, 0)); 
} 
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Appendix F

sprintf_crasher.c

 ////////////////////////////////////////////////////////////////////////////////////////// 
//                               ** sprintf() Crasher **                                // 
//                                                                                      // 
//  THIS PROGRAM CREATES A SET OF BUFFERS ACCEPTING INPUT IN TWO CONTEXTS. WHEN THE     // 
//  sprintf() COMMAND IS INVOKED IT ATTEMPTS TO COPY THE CONTENTS FROM A LARGE BUFFER   // 
//  INTO A SMALLER BUFFER. THIS CAUSES A BUFFER OVERFLOW WHICH ALLOWS THE OVERWRITE OF  //  
//  FRAME POINTER.                                                                      // 
//                                                                                      // 
////////////////////////////////////////////////////////////////////////////////////////// 
 
#include <stdio.h> 
#include <stdlib.h> 
struct Buffer // buffer structure 
 { 
 char bufLarge[100];  
 char bufSmall[60]; 
 }; 
void Print(struct Buffer p)  // function to print contents of buffer structure 
 {  
 printf("             ***** LOAD LARGE BUFFER WITH CHAR STRING *****\n %s ", p.bufLarge); 
 printf("            ***** LOAD SMALL BUFFER WITH CHAR STRING *****\n %s", p.bufSmall); 
} 
 
main() 
{ 
 
    char bufGlobal[50]; // create third buffer instance two run in a second context 
    char newBuf[25]; 
    struct Buffer test= {"                       !!!  Large BUFFER Up  !!!\n\n", 
                         "                       !!!  Small BUFFER Up  !!!\n\n"};  
  
 struct Buffer x; // second instance of struct Buffer 
 Print(test);  // prints contents of bufLarge and bufSmall using print function  
 
    printf("|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\n"); 
    printf("| A large string to be truncated to (3) chars by safe sprintf() call that |\n"); 
    printf("|     copies bufLarge into bufSmall. Enter large string into bufLarge:    |\n"); 
    printf("|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\n\n"); 
 
 scanf("%s", x.bufLarge); 
    if (strlen(x.bufLarge)>99) 
 { 
   printf("String length is greater than [100] character x.bufLarge"); 
   exit(1); 
 } 
    else 
 { 
        sprintf(x.bufSmall,"%.3s", x.bufLarge); //safe sprintf() #1; only reads first (3) chars  
        printf("\nSAFE SPRINTF() #1: A maximum of (3) characters in bufSmall: %s\n", x.bufSmall); 
        sprintf(newBuf,"AAA"); //safe sprintf() #2; only (3) chars 
 } 
 
    printf("SAFE SPRINTF() #2:Only (3) A's in newBuf: %s\n", newBuf); 
    printf("\n\n\n\n\n\n");     
    printf("|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\n"); 
    printf("|||  THIS MIMICS A SERVER SIDE PROGRAM WHICH ACCCEPTS CLIENT INPUT IN   |||\n"); 
    printf("|||                       THE FORM OF A URL                             |||\n"); 
    printf("|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\n\n");  
    printf("Enter Internet URL: "); 
 
 scanf("%s", x.bufLarge); 
    if (strlen(x.bufLarge)>99) 
 { 
   printf("String length is greater than [100] character size of x.bufLarge"); 
   exit(1); 
 } 
    else  
 { 
 sprintf(bufGlobal,"\nCan't open the following URL for reading? %s",x.bufLarge); // copy string into bufGlobal  
        printf("%s\n", bufGlobal); // local print contents of bufGlobal 
        printf("\n|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\n\n"); 
 } 
  return 0; 
} 


