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Introduction 
When researching in any field, it is always important to build upon existing work.  In 
most research disciplines, the core base is well defined and widely documented. 
However, the basis of innovative research in computer science, especially at the systems 
level, can often be propriety information.  This can be a major problem as unless you 
have source code available you must be granted access to the propriety information (by 
usually signing non-disclosure documents) which comes with barriers on access, 
ownership and the ability to publish results. 
 
As an example, Microsoft’s Windows operating system (all versions) can be a good base 
for research as it is a “real world” environment with rich usage patterns and any potential 
advances made would benefit a large number of people.  However, access to the 
Windows operating system is closely guarded via a number of API’s (Application 
Programming Interfaces) along with the fact that Microsoft jealously guards it source 
code1.  Therefore, the ability to easily tie into and extend the functionality of applications 
and operating systems where source code is not available is a necessity. 
 
With this in mind, researchers at the Florida Institute of Technology created HEAT – 
Hostile Environment for Application Testing.  The goal of this research was initially to 
create a tool that would create hard to reproduce environments (like low or corrupt 
memory, insufficient disk space, slow network, etc) to help uncover defects in software.  
To achieve this it was clear that HEAT would have to tie into both the operating system 
and the application under test.   
 

Interception technique 
The general term used for tying into existing functionality is hooking for which there are 
a number of techniques available.  HEAT uses a technique known as binary code 
rewriting which, as shown in figure 1, works by rewriting a function’s instructions to call 
an “imposter” function that executes instead of the original function.  Other interception 
techniques work by simply overwriting the original function with imposter code but it is 
important to preserve the original functionality so that it can be utilized later in the 
execution if required. 

 
                                                 
1 Access to the Windows NT source code is available to select researchers after signing Microsoft Windows 
NT source code access license. 



 

 

Figure 1 Binary code rewriting 

 

 

Architecture 
The architecture that HEAT is based on is a single dynamically linked library file 
(heat.dll) and an API.  To use HEAT, a program would include the API (which is a C++ 
class called CHeatApp), have the API’s precompiled source code as a dependency 
(HeatApi.lib), and have the main library (Heat.dll) available.  It is then a simple task of 
creating a CHeatApp object and calling the relevant member functions to create or attach 
to the target process that we want to intercept functionality.  We will discuss HEAT’s 
API functions later in this document but the next sections are dedicated to how the API 
and the library communicate as well as the library’s main tasks. 
 
When the API is initialized, one of the main tasks is to load the HEAT library. Within the 
library is the mechanism to intercept functions and a lookup table of all the functions so 
far intercepted (see later).  To avoid any mechanisms the operating system might have in 
protecting code from modification, the HEAT library must become part of the process we 



 

wish to intercept so that it has the same privilege level.  This technique is known as dll 
injection and is documented by Jeffrey Ritcher in his article “Load Your 32-bit DLL into 
Another Process's Address Space Using INJLIB” (Microsoft Systems Journal, May 
1994).  Once loaded, the library then has to form a communication path back to the 
HEAT API.  This is achieved by creating a named pipe called “HeatDataPipe$pid$” 
where $pid$ is the process ID of our program and allows for multiple copies of HEAT to 
be active without interfering with each other.  Across this communication pipe, the 
HEAT API sends commands to the library about which functions to intercept or to 
withdraw (unintercept) from. 
 
 

 

Figure 2 HEAT architecture 

 
In order to intercept a function, we perform binary modifications on the instructions in a 
similar method shown in figure 1. However, this method assumes that all instructions are 
the same size and that we know the addresses of both the original function and the stored 
instruction.  Firstly, if we consider a mechanism whereby we store the addresses of all the 
functions intercepted along with their saved instructions, we have a solution whereby a 
single function that utilizes a jump table can be used to divert execution off to the 
required imposter function.  This enables us to access the original function from our 
imposter function by simply calling its function again and not having to remember any 
addresses or alias function names.  Further, as all the interceptions are achieved via jump 
instructions, the stack is preserved and function parameters are available by name as they 
were in the original function.  
 



 

Finally, as instructions on the Intel processor are not a fixed size, simply replacing an 
arbitrary instruction with a jump instruction is not a trivial task.  To achieve this we look 
at the first 5 bytes2 of the original function to see if it ends on an instruction boundary.  If 
we are not on an instruction boundary, we simply carry on reading a byte at a time until a 
boundary is discovered.  At this point we can store the original 5 bytes (along with any 
additional bytes up to the instruction boundary) and rewrite it with a jump instruction into 
our interception jump table.   
 

 

Figure 3 Calling intercepted functions 

[how function locations/names are looked up] 

Using the HEAT API 
Now that we have discussed the mechanisms HEAT uses to intercept functions, all that is 
left is to describe the actual API.  HEAT’s API is very simple, only consisting of 12 
functions.  As mentioned above, to use HEAT, a programmer includes the API’s header 
function (heatapp.h) and links against the precompiled source code (heatapi.lib).  The 
programmer now has the class CHeatApp and its member functions available for use. 
 
Once an object of CHeatApp is created, the program/process to perform interception on 
has to be specified.  This can be achieved in two ways.  Firstly, calling the function 
initializeApp with the program’s path and executable as parameters will load the 
program off the disk, create a process for it and set it to a suspended state ready for 
instrumentation.  Alternatively, a running program can be attached to by calling 
attachToApp with either a process information structure or the processes ID. 

                                                 
2 This is the size of the jump function that is going to be written in the original instruction’s place so there 
is no point in starting any smaller 



 

 
The next step required is to load the HEAT library into the target process so that it can 
perform the binary modifications required to intercept arbitrary functions.  Depending on 
the processes status, the functions delayedInject (when the process in uninitialized, e.g 
after initializeApp is used) or forceInject (after the process has been created e.g. 
when attachToApp has been used) will perform the injection. 
 
Often, the next step is to perform the interceptions.  This is simply achieved with the 
function interceptFunc which takes four parameters: the function to intercept, the 
library that the function is within, the function that we wish to call instead (our imposter 
function) and finally, the library that our imposter function is within.  It is possible to 
omit the 2nd parameter, whereupon HEAT will search through all the libraries loaded and 
intercept all functions with the given name. 
 
After all the interceptions have been specified, it is time to run the program.  HEAT 
provides four functions for controlling the program – runApp, pauseApp, resumeApp and 
terminateApp – which are all quite self explanatory. 
 
As all the interceptions on a program are carried out in memory, when the program has 
finished or we want to stop it, it is quite acceptable to let it terminate naturally or via 
deinitializeApp.  This is because any interceptions are performed on an execution-by-
execution basis and therefore modifications are temporary for a given execution.  
However, sometimes it is desirable to withdraw any interceptions gracefully from a 
program, for example when the target program has to carry on running (i.e. a process that 
should not be shutdown like explorer or a service like IIS).  Interceptions can be removed 
singularly using unInterceptFunc, passing once again the first two parameters from 
interceptFunc to un-intercept the function.  The final task is to remove the HEAT 
library from the process by calling the function detachFromApp which will remove any 
remaining interceptions before completing. 
 

Related work 

The idea of tying into existing functionality, or hooking, is not entirely new [refs].  A 
previous, similar technique known as code patching has existed since the beginnings of 
digital computing when modifying a program’s binary source was considered more 
practical than recompiling the entire application [ref].  Modern tools employing these 
techniques include EEL [ref] and Etch [ref] which generally take a binary program and an 
instrumentation script to produce a new, instrumented binary.  However, this technique is 
often not suitable as modifications can only be undone by restoring the original binary.  
The only exception within this technique is DyninstAPI [ref] which performs binary 
rewriting dynamically.  However, because of the insertions into the binary, the stack and 
register values are not always preserved, therefore making calls to the uninstrumented 
function difficult. 
 



 

Of the available techniques remaining, import address redirection is the most common 
and receives the most discussion [refs].  The basic technique, as show in figure 4, is to 
alter the DLL’s import address table – the start address lookup table for exported 
functions within the DLL.  Therefore, when a function within a redirected DLL is called, 
the start address of the imposter function is used instead of the address of the original 
function.  This technique works equally well with object-oriented code by modifying the 
program’s virtual function table – a table that maps functions that can be overridden to 
their code base location. 
 

 

Figure 4 Import address modification 

 
Unfortunately, there are problems with this method.  Any pointer references to functions 
must be obtained after the address table has been modified or they will return the 
locations of the original functions.  As libraries can be loaded at any time in a program’s 
execution, it is difficult to tell when to modify addresses.  Therefore, the functions that 
load libraries should also be modified to ensure any address rewrites are made as libraries 
are loaded.  The other obvious problems are that any functions that are not visible outside 
the DLLs (helper functions for example) or non-virtual functions do not appear within the 
function address tables as this is a common performance optimization made by 
compilers.  Consequently, the number of functions that can be intercepted using this 
technique is reduced. 
 
A final technique worthy of discussion is breakpoint trapping.  In contrast to modifying 
either the function or calling method in any way, breakpoint trapping utilizes a 
debugger’s behavior.  At the start of a target function, a debugging breakpoint can be 
inserted (an interrupt 3 in Intel 80x86 architecture via the operating system’s debugging 
API or by direct binary replacement) which, when encountered, diverts control to the 
operating system’s registered debug process.  Rather than the debug process being a 



 

fully-fledged debugger, this process could simply execute the imposter function and 
resume the target program. 
 

 

Figure 5 Interception via breakpoints 

 
Using this technique however can incur a huge performance penalty.  On an interrupt 3, 
all application threads are suspended, an exception is thrown and picked up in an 
operating system process.  In order to catch this interrupt and route it to the correct 
destination, five context switches between the program, operating system and the 
debugger are needed (figure 5) which makes this technique prohibitively expensive.  
MuTek’s BugTrapper [ref] circumvents this performance hit by modifying the method in 
which the operating system captures the breakpoint exception and looks for the debugger 
process.  This modification (within the operating system’s 
KiUserExceptionDispatcher function) effectively reflects the exception back into the 
target process and into what is the equivalent of an imposter function.  Unfortunately, not 
only is this technique relatively operating system architecture dependent, but also is 
patented by MuTek [ref] and therefore unavailable. 
 
To our knowledge, there is only one comparable tool to HEAT – Microsoft Research’s 
Detours.  Developed independently around the same time as HEAT, Detours employs 
similar techniques to HEAT in its interception mechanism, but can use static (compile 
time) imposter functions as well as dynamic ones.  In addition to API differences, 
Detours supports the calling of an intercepted function differently from HEAT in what it 
terms “trampoline” functions.  In essence, rather than replacing the target function’s 
initial instructions with a jump to HEAT’s imposter lookup function, Detours performs a 
jump directly to the required imposter function.  Although this technique may have a 
slight performance gain, it is countered with additional complexity in managing the 
original functionality, removing interception when it is not required, and a less friendly 
API. 



 

 

Conclusions 
As we have seen, the HEAT API is both a powerful and an easy to use interception 
mechanism.  Its success has been clear: over the past 4 years, HEAT has been a basis for 
a number research projects at Florida Tech, has been incorporated into tools used 
extensively at Microsoft, Rational, IBM, and has evolved into a mature technology.   
 


