

HEAT: Runtime interception of Win32 functions
Michael M Andrews

Computer Science Department
Florida Institute of Technology

150 West University Blvd.
Melbourne, Florida 32904

mike@se.fit.edu

Introduction
When researching in any field, it is always important to build upon existing work. In
most research disciplines, the core base is well defined and widely documented.
However, the basis of innovative research in computer science, especially at the systems
level, can often be propriety information. This can be a major problem as unless you
have source code available you must be granted access to the propriety information (by
usually signing non-disclosure documents) which comes with barriers on access,
ownership and the ability to publish results.

As an example, Microsoft’s Windows operating system (all versions) can be a good base
for research as it is a “real world” environment with rich usage patterns and any potential
advances made would benefit a large number of people. However, access to the
Windows operating system is closely guarded via a number of API’s (Application
Programming Interfaces) along with the fact that Microsoft jealously guards it source
code1. Therefore, the ability to easily tie into and extend the functionality of applications
and operating systems where source code is not available is a necessity.

With this in mind, researchers at the Florida Institute of Technology created HEAT –
Hostile Environment for Application Testing. The goal of this research was initially to
create a tool that would create hard to reproduce environments (like low or corrupt
memory, insufficient disk space, slow network, etc) to help uncover defects in software.
To achieve this it was clear that HEAT would have to tie into both the operating system
and the application under test.

Interception technique
The general term used for tying into existing functionality is hooking for which there are
a number of techniques available. HEAT uses a technique known as binary code
rewriting which, as shown in figure 1, works by rewriting a function’s instructions to call
an “imposter” function that executes instead of the original function. Other interception
techniques work by simply overwriting the original function with imposter code but it is
important to preserve the original functionality so that it can be utilized later in the
execution if required.

1 Access to the Windows NT source code is available to select researchers after signing Microsoft Windows
NT source code access license.

Figure 1 Binary code rewriting

Architecture
The architecture that HEAT is based on is a single dynamically linked library file
(heat.dll) and an API. To use HEAT, a program would include the API (which is a C++
class called CHeatApp), have the API’s precompiled source code as a dependency
(HeatApi.lib), and have the main library (Heat.dll) available. It is then a simple task of
creating a CHeatApp object and calling the relevant member functions to create or attach
to the target process that we want to intercept functionality. We will discuss HEAT’s
API functions later in this document but the next sections are dedicated to how the API
and the library communicate as well as the library’s main tasks.

When the API is initialized, one of the main tasks is to load the HEAT library. Within the
library is the mechanism to intercept functions and a lookup table of all the functions so
far intercepted (see later). To avoid any mechanisms the operating system might have in
protecting code from modification, the HEAT library must become part of the process we

wish to intercept so that it has the same privilege level. This technique is known as dll
injection and is documented by Jeffrey Ritcher in his article “Load Your 32-bit DLL into
Another Process's Address Space Using INJLIB” (Microsoft Systems Journal, May
1994). Once loaded, the library then has to form a communication path back to the
HEAT API. This is achieved by creating a named pipe called “HeatDataPipepid”
where pid is the process ID of our program and allows for multiple copies of HEAT to
be active without interfering with each other. Across this communication pipe, the
HEAT API sends commands to the library about which functions to intercept or to
withdraw (unintercept) from.

Figure 2 HEAT architecture

In order to intercept a function, we perform binary modifications on the instructions in a
similar method shown in figure 1. However, this method assumes that all instructions are
the same size and that we know the addresses of both the original function and the stored
instruction. Firstly, if we consider a mechanism whereby we store the addresses of all the
functions intercepted along with their saved instructions, we have a solution whereby a
single function that utilizes a jump table can be used to divert execution off to the
required imposter function. This enables us to access the original function from our
imposter function by simply calling its function again and not having to remember any
addresses or alias function names. Further, as all the interceptions are achieved via jump
instructions, the stack is preserved and function parameters are available by name as they
were in the original function.

Finally, as instructions on the Intel processor are not a fixed size, simply replacing an
arbitrary instruction with a jump instruction is not a trivial task. To achieve this we look
at the first 5 bytes2 of the original function to see if it ends on an instruction boundary. If
we are not on an instruction boundary, we simply carry on reading a byte at a time until a
boundary is discovered. At this point we can store the original 5 bytes (along with any
additional bytes up to the instruction boundary) and rewrite it with a jump instruction into
our interception jump table.

Figure 3 Calling intercepted functions

[how function locations/names are looked up]

Using the HEAT API
Now that we have discussed the mechanisms HEAT uses to intercept functions, all that is
left is to describe the actual API. HEAT’s API is very simple, only consisting of 12
functions. As mentioned above, to use HEAT, a programmer includes the API’s header
function (heatapp.h) and links against the precompiled source code (heatapi.lib). The
programmer now has the class CHeatApp and its member functions available for use.

Once an object of CHeatApp is created, the program/process to perform interception on
has to be specified. This can be achieved in two ways. Firstly, calling the function
initializeApp with the program’s path and executable as parameters will load the
program off the disk, create a process for it and set it to a suspended state ready for
instrumentation. Alternatively, a running program can be attached to by calling
attachToApp with either a process information structure or the processes ID.

2 This is the size of the jump function that is going to be written in the original instruction’s place so there
is no point in starting any smaller

The next step required is to load the HEAT library into the target process so that it can
perform the binary modifications required to intercept arbitrary functions. Depending on
the processes status, the functions delayedInject (when the process in uninitialized, e.g
after initializeApp is used) or forceInject (after the process has been created e.g.
when attachToApp has been used) will perform the injection.

Often, the next step is to perform the interceptions. This is simply achieved with the
function interceptFunc which takes four parameters: the function to intercept, the
library that the function is within, the function that we wish to call instead (our imposter
function) and finally, the library that our imposter function is within. It is possible to
omit the 2nd parameter, whereupon HEAT will search through all the libraries loaded and
intercept all functions with the given name.

After all the interceptions have been specified, it is time to run the program. HEAT
provides four functions for controlling the program – runApp, pauseApp, resumeApp and
terminateApp – which are all quite self explanatory.

As all the interceptions on a program are carried out in memory, when the program has
finished or we want to stop it, it is quite acceptable to let it terminate naturally or via
deinitializeApp. This is because any interceptions are performed on an execution-by-
execution basis and therefore modifications are temporary for a given execution.
However, sometimes it is desirable to withdraw any interceptions gracefully from a
program, for example when the target program has to carry on running (i.e. a process that
should not be shutdown like explorer or a service like IIS). Interceptions can be removed
singularly using unInterceptFunc, passing once again the first two parameters from
interceptFunc to un-intercept the function. The final task is to remove the HEAT
library from the process by calling the function detachFromApp which will remove any
remaining interceptions before completing.

Related work

The idea of tying into existing functionality, or hooking, is not entirely new [refs]. A
previous, similar technique known as code patching has existed since the beginnings of
digital computing when modifying a program’s binary source was considered more
practical than recompiling the entire application [ref]. Modern tools employing these
techniques include EEL [ref] and Etch [ref] which generally take a binary program and an
instrumentation script to produce a new, instrumented binary. However, this technique is
often not suitable as modifications can only be undone by restoring the original binary.
The only exception within this technique is DyninstAPI [ref] which performs binary
rewriting dynamically. However, because of the insertions into the binary, the stack and
register values are not always preserved, therefore making calls to the uninstrumented
function difficult.

Of the available techniques remaining, import address redirection is the most common
and receives the most discussion [refs]. The basic technique, as show in figure 4, is to
alter the DLL’s import address table – the start address lookup table for exported
functions within the DLL. Therefore, when a function within a redirected DLL is called,
the start address of the imposter function is used instead of the address of the original
function. This technique works equally well with object-oriented code by modifying the
program’s virtual function table – a table that maps functions that can be overridden to
their code base location.

Figure 4 Import address modification

Unfortunately, there are problems with this method. Any pointer references to functions
must be obtained after the address table has been modified or they will return the
locations of the original functions. As libraries can be loaded at any time in a program’s
execution, it is difficult to tell when to modify addresses. Therefore, the functions that
load libraries should also be modified to ensure any address rewrites are made as libraries
are loaded. The other obvious problems are that any functions that are not visible outside
the DLLs (helper functions for example) or non-virtual functions do not appear within the
function address tables as this is a common performance optimization made by
compilers. Consequently, the number of functions that can be intercepted using this
technique is reduced.

A final technique worthy of discussion is breakpoint trapping. In contrast to modifying
either the function or calling method in any way, breakpoint trapping utilizes a
debugger’s behavior. At the start of a target function, a debugging breakpoint can be
inserted (an interrupt 3 in Intel 80x86 architecture via the operating system’s debugging
API or by direct binary replacement) which, when encountered, diverts control to the
operating system’s registered debug process. Rather than the debug process being a

fully-fledged debugger, this process could simply execute the imposter function and
resume the target program.

Figure 5 Interception via breakpoints

Using this technique however can incur a huge performance penalty. On an interrupt 3,
all application threads are suspended, an exception is thrown and picked up in an
operating system process. In order to catch this interrupt and route it to the correct
destination, five context switches between the program, operating system and the
debugger are needed (figure 5) which makes this technique prohibitively expensive.
MuTek’s BugTrapper [ref] circumvents this performance hit by modifying the method in
which the operating system captures the breakpoint exception and looks for the debugger
process. This modification (within the operating system’s
KiUserExceptionDispatcher function) effectively reflects the exception back into the
target process and into what is the equivalent of an imposter function. Unfortunately, not
only is this technique relatively operating system architecture dependent, but also is
patented by MuTek [ref] and therefore unavailable.

To our knowledge, there is only one comparable tool to HEAT – Microsoft Research’s
Detours. Developed independently around the same time as HEAT, Detours employs
similar techniques to HEAT in its interception mechanism, but can use static (compile
time) imposter functions as well as dynamic ones. In addition to API differences,
Detours supports the calling of an intercepted function differently from HEAT in what it
terms “trampoline” functions. In essence, rather than replacing the target function’s
initial instructions with a jump to HEAT’s imposter lookup function, Detours performs a
jump directly to the required imposter function. Although this technique may have a
slight performance gain, it is countered with additional complexity in managing the
original functionality, removing interception when it is not required, and a less friendly
API.

Conclusions
As we have seen, the HEAT API is both a powerful and an easy to use interception
mechanism. Its success has been clear: over the past 4 years, HEAT has been a basis for
a number research projects at Florida Tech, has been incorporated into tools used
extensively at Microsoft, Rational, IBM, and has evolved into a mature technology.

