HEAT: Runtime interception of Win32 functions

Michael M Andrews
Computer Science Department
Florida Institute of Technology

150 West University Blvd.
Melbourne, Florida 32904
mike@se.fit.edu

Introduction

When researching in any field, it is aways importart to build upon existing work. In
most research disciplines, the core base is well defined and widely documented.
However, the basis of innovative research in computer science, especialy at the systems
level, can often be propriety information. This canbe a major problem as unless you
have source code available you must be granted access to the propriety information (by
usually signing non-disclosure documents) which comes with barriers on access,
ownership and the ability to publish results.

As anexample, Microsoft’s Windows operating system (all versions) can be a good base
for research asit isa“real world” environment with rich usage patterns and any potential
advances made would benefit a large number of people. However, access to the
Windows operating system is closely guarded viaa number of API’s (Application
Programming Interfaces) along with the fact that Microsoft jealously guards it source
code'. Therefore, the ability to easily tie into and extend the functionality of applications
and operating systems where source code is not available is a necessity.

With thisin mind, researchers at the Florida Institute of Technology created HEAT —
Hostile Environment for Application Testing. The goal of this research was initialy to
create a tool that would create hard to reproduce environments (like low or corrupt
memory, insufficient disk space, slow network, etc) to help uncover defects in software.
To achieve this it was clear that HEAT would have to tie into both the operating system
and the application under test.

Interception technique

The general term used for tying into existing functionality is hooking for whichthere are
anumber of techniques available. HEAT uses a technique known as binary code
rewriting which, as shown infigure 1, works by rewriting a function' s instructions to call
an “imposter” function that executes instead of the original function. Other interception
techniques work by simply overwriting the original function with imposter code but it is
important to preserve the original functiorality so that it can be utilized later in the
executionif required.

! Access to the Windows NT source code is available to select researchers after signing Microsoft Windows
NT source code access license.

+ Imposter

Function

g te 4o
;

Motes

@ Firstinstruction iz stored and replaced with
uncordiioral jurmp to start addre=s of mposter
funiction

@ Whenfunction i called, cortrd diverts to
Imposter function.

Execitable program

@ Iforignal nctiorality iz required, the stored irst
instruction is emecoted and a jump back to sart
address pluslengh ofreplaced instrudion is
exacited

@ Orgina function executes nommalby

On rebum of origiral function, control is gwen back
to Imposter fncion

@ Onretum of imposter function, the crginal
program reggins control and can execirte nommally

Figure 1 Binary code rewriting

Architecture

The architecture that HEAT is based on isasingle dynamically linked library file
(heat.dll) and an API. To use HEAT, aprogram would include the API (whichisa C++
class called CHeatApp), have the API’s precompiled source code as a dependency
(HeatApi.lib), and have the main library (Heat.dll) available. It isthen asimple task of
creating a CHeatApp object and calling the relevant member functions to create or attach
to the target process that we want to intercept functionality. We will discuss HEAT's
API functions later in this document but the next sections are dedicated to how the API
and the library communicate as well asthe library’ s main tasks.

When the AP is initialized, one of the main tasksisto load the HEAT library. Within the
library is the mechanism to intercept functions and a lookup table of all the functions so
far intercepted (see later). To avoid any mechanisms the operating system might have in
protecting code from modification, the HEAT library must become part of the process we

wish to intercept so that it has the same privilege level. This technique is known as dll
injection and is documented by Jeffrey Ritcher in his article “Load Y our 32-bit DLL into
Another Process's Address Space Using INJLIB” (Microsoft Systems Journal, May
1994). Once loaded, the library then has to form a communication path back to the
HEAT API. Thisisachieved by creating a named pipe called “ HeatDataPipepid”
where pid is the process | D of our program and allows for multiple copies of HEAT to
be active without interfering with each other. Across this communication pipe, the
HEAT API sends commands to the library about which functions to intercept or to
withdraw (unintercept) from.

Fitercaption program's
mposter finctions
L
-
wocdl Motes:
@ Progamindudes the HEAT AP source code
Programthat requires @ hen executing, the pogram calls the HEAT AP
nterception techrology ® nitialization mutine
conkmller)
. Mkile initidizing, the HEAT AP linjects bath it=elf,
[4] and the controlers intercapt functions into the
———————————————| I tamget programprocess
g @ The controller uses the APl to say wha @Erga
E fnctions to intercept and the names ofts
= mposter fnctions. This nibnmation is

communicated to the HEAT OLL which performs

| 1Y

g thie mquired mod fications
d @ The controller uses the AP to control the target's
Pmgraniprocess tha 2 emecition (g g. s, pause, temminae)
nieeds to bie intence pted o
[Emet) o 5 @ hen unctons are calked within the tangat
> o | process they ame diverted tothe required impaoster
i k] furctions

L I
———— m
Heatdl |&
l——— =)
& r

Figure 2 HEAT architecture

In order to intercept a function, we perform binary modifications on the instructionsin a
similar method shown in figure 1. However, this method assumes that al instructions are
the same size and that we know the addresses of both the original function and the stored
instruction. Firstly, if we consider a mechanism whereby we store the addresses of all the
functions intercepted along with their saved instructions, we have a solutionwhereby a
single function that utilizes a jump table can be used to divert execution off to the
required imposter function. This enables us to access the origina function from our
imposter function by simply calling its function again and not having to remember any
addresses or dlias function names. Further, as all the interceptions are achieved viajump
instructions, the stack is preserved and function parameters are available by name as they
were in the original function.

Finally, asinstructions on the Intel processor are not afixed size, smply replacing an
arbitrary instruction with a jump instruction is not atrivia task. To achieve this we look
at the first 5 bytes” of the original function to seeif it ends on an instruction boundary. If
we are not on an instruction boundary, we simply carry on reading a byte at atime until a
boundary is discovered. At this point we can store the origina 5 bytes (along with any
additional bytes up to the instruction boundary) and rewrite it with ajump instruction into
our interception jump table.

[T
® i Motes
iTrrp table c @ Fundtion Acallsfundtion B which has bean
§ irtercapted
& g
® = @ Theinitia irstrctions of fonction B have been
miadified to jump to an imposter lookup fanction
w
TE @ F=the retum addresziz not that ofthe imposter
Periorm lockup E % ﬁncﬁnndajurrptnme impaster function is
i o b
& |imp b+ offet r 2
Fudm - @ Ktheimposter incion wantsto usa the aigina
o function, it simphycals the orgiral function (in the
I ﬂ;ﬁﬁffddfjr b3 —————— =ame waytha fundion Adid). Once again
'E'L jimp stored :TF' tiore _. [SE |] 5 function Bis dverted to the lookup fanction iStep)
hul
%‘ elE:e imrooster b g @ Thistimethe ratum addness isthe imposter
il I estEr E function 3 jump to the modided nstnaction is
EL — anacited
@ Oncethe modied instrucions hawe been
exzoitted, 3 jump to the orignal funcion pls the

sige ofthe stored instnucions is exsarted o that
Cal b the jump o the lookup Lnction i awided

The next step required is to load the HEAT library into the target process so that it can
perform the binary modifications required to intercept arbitrary functions. Depending on
the processes status, the functions del ayedl nj ect (when the process in uninitialized, e.g
afterinitializeApp isused) orforcel nject (after the process has been created e.g.
whenat t achToApp has been used) will perform the injection.

Often, the next step is to perform the interceptions. Thisis smply achieved with the
functioni nt er cept Func which takes four parameters: the function to intercept, the
library that the function is within, the function that we wish to call instead (our imposter
function) and finally, the library that our imposter function is within. 1t is possible to
omit the 2" parameter, whereupon HEAT will search through all the libraries loaded and
intercept all functions with the given name.

After al the interceptions have been specified, it istimeto run the program. HEAT
provides four functions for controlling the program —r unApp, pauseApp, r esuneApp and
t ermi nat eApp —which are al quite self explanatory.

As all the interceptions on a program are carried out in memory, when the program has
finished or we want to stop it, it is quite acceptable to let it terminate naturaly or via
deinitiali zeApp. Thisisbecause any interceptions are performed on an execution-by-
execution basis and therefore modificatiors are temporary for a given execution.
However, sometimes it is desirable to withdraw any interceptiors gracefully from a
program, for example when the target program has to carry on running (i.e. a process that
should not be shutdown like explorer or aservice like I1S). Interceptions can be removed
singularly using unl nt er cept Func, passing once again the first two parameters from

i nt er cept Func to un-intercept the function. The final task isto remove the HEAT
library from the process by calling the function det achFr omApp which will remove any
remaining interceptions before completing.

Related work

The idea of tying into existing functionality, or hooking, is not entirely new [refs]. A
previous, similar technigue known as code patching has existed since the beginnings of
digital computing when modifying a progran s binary source was considered more
practical than recompiling the entire application [ref]. Modern tools employing these
techniques include EEL [ref] and Etch [ref] which generally take a binary program and an
instrumentation script to produce a new, instrumented binary. However, this technique is
often not suitable as modifications can only be undone by restoring the original binary.
The only exception within this technique is DyninstAPI [ref] which performs binary
rewriting dynamically. However, because of the insertions into the binary, the stack and
register values are not always preserved, therefore making calls to the uninstrumented
function difficult.

Of the available techniques remaining, import address redirection is the most common
and receives the most discussion[refs]. The basic technique, as show in figure 4, isto
alter the DLL’ s import address table — the start address lookup table for exported
functions within the DLL. Therefore, when a function within a redirected DLL is called,
the start address of the imposter function is used instead of the address of the original
function. This technique works equally well with object-oriented code by modifying the
program’s virtual function table — a table that maps functions that can be overridden to
their code base location

DLL
— Obje s Wirtual Function Function
Furcioe s e Tables Names
Frogram »
Wehicle —> “ehicle::isetiieighb’)

—» “ehicle:Selieight)

vian - % ¢ Wehicle: i etiieightD
’: = [“ehicle::Setiteighi))

fully-fledged debugger, this process could ssmply execute the imposter function and
resume the target program.

' m " Mlotes:
E ! \0’@ Procedure san with the debagge rprocezs and
z @ : @ aroimes the BQetpooess bas beey bakd
B e
Debingge roame £ origha e mcton and rpBce:
® e ® W H DESpoht e cion JNTH
Deboagger Exchedn ks the debigee oo 22
2c ® mbi%gtesmepnn E exectid I:?;ugp LT
a
oM
- ¥ @& ey tiebr T hirachon b esconiiered, 3
ﬁ H D'% SQIEIEEEIEEEJD,I'HE procesLar
E -
B e | |. @ T opmmEtg s‘-ﬁtm thz ap the Zialand
2 a —unak | |® ok e feglee ed debagger pritess
o - o
SH asl . ®
g5E e ié DeboagQer pocess RO Lk 5 Control atwhich polit
i oE i fEca the b execre the RO Red MpoEe Gt
: 88

Conclusions

Aswe have seen, the HEAT AP is both a powerful and an easy to use interception
mechanism. |ts success has been clear: over the past 4 years, HEAT has been abasis for
a number research projects at Florida Tech, has been incorporated into tools used
extensively at Microsoft, Rational, IBM, and has evolved into a mature technology.

