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ABSTRACT 
 We investigate potential simulation artifacts and their effects 
on the evaluation of network anomaly detection systems in the 
1999 DARPA/MIT Lincoln Labs off-line intrusion detection 
evaluation data set.  A statistical comparison of the simulated 
background and training traffic with real traffic collected from a 
university departmental server suggests the presence of artifacts 
that could allow a network anomaly detection system to detect 
some novel intrusions based on idiosyncrasies of the underlying 
implementation of the simulation, with an artificially low false 
alarm rate.  The evaluation problem can be mitigated by mixing 
real traffic into the simulation.  We compare three anomaly 
detection algorithms, SPADE, PHAD, and LERAD, on simulated 
and mixed traffic.  On mixed traffic they detect fewer attacks, but 
the explanations for these detections are more plausible. 

1. INTRODUCTION 
 The DARPA/MIT Lincoln Labs (LL) off-line intrusion 
detection evaluation data set [17] is probably the most widely used 
set for developing and testing intrusion detection systems.  Prior 
to the development of the two sets in 1998 and 1999, researchers 
had to laboriously construct their own tests using exploits against 
live targets under controlled conditions.  Such results were 
normally not reproducible because the background data (network 
traffic, audit logs, etc.) would contain private data that could not 
be released.  The LL data, which simulates a network with 
multiple targets under attack by published exploits, solves the 
privacy problem by simulating the background network traffic 
using a mix of public and synthesized data and custom software to 
make it appear as if the traffic originates from a much larger 
collection of hosts and users. 
 The LL data is useful because it allows a variety of methods to 
be tested against a wide range of exploits and targets.  The 1999 
set alone consists of 5 weeks of network traffic, audit logs, system 
call (BSM) logs, nightly file system dumps, and directory listings 
collected from targets running four different operating systems 
(Solaris, SunOS, Linux, and Windows NT) attacked 244 times 
using variations of 58 published exploits ranging from probes and 
denial of service attacks to root shell exploits and backdoors.  
Systems can detect these attacks using either host based or 
network based methods, and either signature detection (modeling 
known attacks) or anomaly detection (modeling normal behavior 
to detect new attacks).  These sets have been used to test a number 
of important systems [4, 6, 7, 12, 16, 18, 20, 21, 22, 24, 30, 32, 
33, 34, 35, 36, 37].  In addition, the 1998 network traffic is the 
basis of the 1999 KDD cup machine learning competition [5], 
which had 25 participants, and it continues to be used to test 
intrusion detection methods [28, 38]. 

 We are concerned with the realism of the background Internet 
traffic, which is important to the proper evaluation of network 
anomaly detection systems which use this traffic to model normal 
(non-hostile) behavior.  Internet traffic is vastly complex, and very 
difficult to simulate properly [10].  Some post-evaluation work on 
the 1999 LL data suggests the presence of simulation artifacts that 
allow hostile traffic to be distinguished based on idiosyncrasies of 
the simulation.  For example, during development of PHAD [20], 
it was discovered that many attacks can be detected simply 
because the packets have a TTL value of 253.  It was concluded 
that this was probably due to the network configuration used in 
the simulation.  A similar problem occurred with the TCP window 
size field in NETAD [18]. 
 The most serious questions are raised by the large number of 
attacks detected by anomalous source (remote) addresses by 
NETAD, and two other systems, ALAD [22] and LERAD [21].  
Source addresses are monitored by most network intrusion 
detection systems, and form the basis of firewall policy, along 
with destination addresses and port numbers.  An anomaly would 
seem to indicate a novel user, which for a password protected 
service such as SSH or telnet, would be considered suspicious.  
However most of the attacks detected by these systems in the LL 
data are on public services: HTTP, SMTP, DNS, and anonymous 
FTP.  This does not make sense. 
 McHugh [23] criticized the LL data because of the 
unrealistically high rate of malicious attacks, a compromise 
needed to keep the data set to a reasonable size.  Although some 
have suspected there are problems with the LL background traffic 
(as suggested by anonymous reviewers of our other papers), we 
are not aware of a detailed analysis of this data. 
 The rest of this paper is organized as follows.  In Section 2 we 
review the LL evaluation and related work in network anomaly 
detection, traffic collection and synthesis.  In Section 3 we 
introduce a simple anomaly detection system called SAD, 
intended to motivate our approach to finding and correcting 
artifacts.  In Section 4, we statistically compare the LL 
background data with some real traffic, which we find to be less 
predictable and "dirtier" at many protocol levels.  In Section 5 we 
propose a strategy for making the LL evaluation more realistic by 
mixing real traffic into the simulated off-line data.  In Section 6 
we test the mixed data on three systems, SPADE [13], PHAD, and 
LERAD, and show that most of the questionable detections are 
removed.  In Section 7, we conclude. 

2. RELATED WORK 
 Our goal is to examine differences in the LL (simulated) and 
real background traffic from the point of view of network anomaly 
detection systems.  We review some of those systems, how the LL 



 

evaluation was conducted, and problems with collecting or 
synthesizing background traffic. 

2.1.  The 1999 LL Evaluation 
 The 1998 and 1999 LL data sets were originally used in blind 
evaluations before the data was released.  In 1999, eight groups 
participated, submitting 18 different systems.  Participants were 
given 3 of the 5 weeks worth of data in advance in order to 
develop their systems.  One week (week 2) had 43 labeled 
instances of 18 of the 58 test attacks.  The other two weeks (weeks 
1 and 3) were attack-free background traffic which could be used 
to train anomaly detection systems.  The data included traffic from 
two sniffers (inside and outside the Internet router), audit logs, 
nightly file system dumps and directory listings, and Solaris 
system call traces (BSM). 
 Four months later, the developers were given the two weeks of 
test data (weeks 4 and 5) and asked to use their systems to identify 
the 201 attacks, some of which were modified to be stealthy to 
defeat signature detection systems (e.g. by slowing down a port 
scan or disguising suspicious commands).  Participants had to 
identify each attack by time (within 60 seconds) and target IP 
address, and report a numeric score or ranking indicating a 
confidence level in the alarm.  Systems were evaluated by the 
number of attacks detected out of the number of in-spec attacks 
(those they are designed to detect based on the data they examine) 
at a scoring threshold allowing 100 false alarms.  The best systems 
used a combination of methods, both host and network based, and 
both signature detection (modeling known attacks) and anomaly 
detection (modeling normal behavior to detect new attacks).  The 
top four systems [17] detected 40% to 55% of those attacks, as 
shown in Table 1. 
 

System In-spec attacks Detected at 100 FA 
Expert 1 169 85 (50%) 
Expert 2 173 81 (47%) 
Dmine 102 41 (40%) 
Forensics 27 15 (55%) 

 
Table 1.  Top 4 results from the 1999 LL evaluation [17]. 

2.2.  Traffic Collection and Synthesis 
 The LL developers put much effort into making the 
background traff ic appear as realistic as possible. Traff ic was 
generated using custom software running on a small  number of 
hosts to emulate hundreds of programmers, secretaries, managers, 
and other types of users running common UNIX or Windows 
applications on thousands of hosts and websites.  The distribution 
of services (web, mail , telnet, FTP, etc.) was matched to the actual 
distribution measured on a small Air Force base network in 1998.  
Traff ic rates are highest during normal working hours, as with real 
traff ic.  Email messages were taken from public maili ng lists or 
synthesized using English word bigram statistics.  Some traff ic 
that was too complex to synthesize was generated manually. 
 Nevertheless, it is extremely diff icult to simulate the Internet 
accurately.  The diff iculty comes not just from modeling human 
behavior, but also from modeling thousands of versions of various 
operating systems, servers, and clients.  Much of the "crud" found 
in real traff ic [25] could originate from faulty versions of this 
software.  For example, in real traff ic that we collected on a 
university departmental server, we have found reserved TCP flags 
set, fragmented IP packets with the "don't fragment" flag set, TCP 

retransmissions with inconsistent payloads, invalid application 
protocol commands, undocumented protocols, and so on. 
 A solution to this problem would be to collect real traff ic 
rather than synthesize it.  However, this raises privacy issues.  
Public collections of real traff ic such as the Internet Traff ic 
Archive [27], and the University of New Mexico data set [10], are 
stripped of much of the data useful to anomaly detection, 
including all of the application payload data. 

2.3.  Network Anomaly Detection 
 Many older network anomaly detection systems, such as those 
surveyed by [3], are based on modeling normal user behavior to 
detect unauthorized users.  To that end, these systems model 
features that are controlled by the user, such as the destination IP 
address and service (port number), and attributes that identify the 
user, e.g. the source address.  Unusual combinations of these 
attributes are often hostile. For example, attempted accesses to 
nonexistent ports might signal a port scan.  An unusual source 
address connecting to an authenticated service such as SSH might 
indicate a password guessing attack.  ADAM [31], NIDES [2], 
eBayes [35], and SPADE are all systems that model addresses and 
ports.  For example, one mode of SPADE assigns an anomaly 
score to inbound TCP SYN packets of 1/P(source address, 
destination address, destination port), i.e. higher scores to packets 
with combinations of these three attributes that appear less 
frequently. 
 User modeling differs from host based anomaly detection 
systems that model program behavior to detect when a server or 
operating system component has been compromised.  Forrest [9] 
showed that such systems make unusual sequences of system calls 
when attacked.  This can happen in a buffer overflow attack where 
the compromised program is executing code supplied by the 
attacker, but another possibilit y is that the attacker is exploiting a 
vulnerabilit y in a rarely used feature of the program.  Because 
vulnerabiliti es are bugs, they are most likely to occur in poorly 
tested code.  Thus, another approach to anomaly detection is to 
look for unusual inputs to a program that would invoke seldom 
used features.  For example, attacks such as teardrop and pod 
(ping of death) exploit errors in IP packet reassembly code that 
cause the target to crash when it receives fragmented IP packets 
that cannot be reassembled properly.  Because IP fragmentation is 
rare, an anomaly detector that flags all fragmented traff ic, whether 
legitimate or not, is li kely to detect these attacks, albeit at the cost 
of some false alarms. 
 Systems like PHAD and LERAD are program modelers.  They 
differ from user modelers in two respects.  First, they greatly 
extend the number of attributes monitored in order to cover many 
of the protocols that might be exploited.  PHAD (Packet Header 
Anomaly Detector), which monitors both inbound and outbound 
packets, models 34 fields in the Ethernet, IP, TCP, UDP, and 
ICMP headers.  LERAD (LEarning Rules for Anomaly 
Detection), which monitors inbound client to server TCP streams, 
models addresses, ports, length, duration, opening and closing 
TCP flags, and the first 8 words in the application payload. 
 Second, in order to cope with the bursty nature of network 
traff ic over a wide range of time scales [15, 26], these systems use 
a time-based model rather than a frequency-based model.  In a 
frequency based model such as SPADE, the probabilit y P(A = v) 
that attribute A has value v is estimated by nv/n, where nv is the 
number of times v is observed, and n is the total number of 
observations.  The assumption is that rare events are more likely to 



 

be hostile.  Thus, these systems assign an anomaly score of 
1/P(A=v) = n/nv or something similar. 
 PHAD, ALAD, LERAD, and NETAD model novel events, 
where nv = 0 in training.  They use the anomaly score tn/r where t 
is the time since a novel value was last observed, n is the total 
number of observations, and r is the number of anomalies that 
occur in training, i.e. the size of the set of allowed values.  For 
instance, given the training sequence ababc, there are n = 5 
observations and r = 3 allowed values (a, b, and c).  Given the test 
sequence aadad, only the two d's would generate anomalies.  (We 
assume separate training and test phases, although the system 
could remain in training mode at all ti mes like SPADE).  The last 
anomaly before the first d is c, so t = 3.  The last anomaly before 
the second d is the first one, so t = 2.  Thus, the first anomaly 
score would be 3*5/3 = 5, and the second would be 2*5/3 = 3.33.  
If the sum of anomaly scores over all attributes exceeds a 
threshold, then an alarm is signaled. 
 Note that tn/r has the form of an inverse probabilit y 1/P.  
First, the average rate of anomalies in training is r/n, thus this 
model assumes that this rate will continue.  However, because the 
set of allowed values is not allowed to grow after training, we 
need another term to discount repeat occurrences of the same 
anomaly.  This term is t.  This is a good model of bursty behavior, 
and also quite intuitive.  The assumption is that the probabilit y of 
an event is inversely proportional to the time since it last occurred. 

3. SIMULATION ARTIFACT DETECTION 
 To motivate our investigation of simulation artifacts in the LL 
data, we develop a very simple anomaly detection system that 
could not possibly work.  We call our system SAD (Simple 
Anomaly Detector, available at [19]).  SAD examines only 
inbound TCP SYN network packets (destination address 
172.16.x.x).  It looks at just one byte of the packet, specified as a 
parameter, for example the TTL field (time to live – an 8-bit 
counter used to expire packets caught in misconfigured router 
loops).  During training, SAD records which of the 256 possible 
values are seen at least once and which are not.  During testing, it 
detects an anomaly if this byte has a value that was never seen in 
training.  If there have been no other anomalies in the last 60 
seconds, then it outputs an alarm with a score of 1 warning that 
the packet is hostile. 
 We train SAD on the inside sniffer traff ic from week 1 and 
test it on week 2, which contains 43 attacks.  This data (with truth 
labels) was available in advance to the original participants in the 
1999 evaluation.  We evaluate SAD (using EVAL [19], our 
implementation of the LL detection criteria) and identify several 
promising SAD variations, which we define as any variation that 
detects at least one attack for every 10 false alarms (Table 2, 
second column).  Then we evaluate these variants on the actual 
test data by training them on inside week 3, and testing on weeks 4 
and 5, which contain 177 of the 201 attacks used in the published 
evaluation results.  Almost all of these variations would have done 
well i n this evaluation (Table 2, third column).  The best SAD 
variant, which examines the third byte of the source IP address, 
detects 79 of 177 attacks (45%), with 43 false alarms.  This result 
is competitive with the top systems in the original evaluation. 
 However, these results are misleading.  To test how SAD 
might behave in a real network, we mix the 146 hours of training 
traff ic from week 3 and 197 hours of test traff ic from weeks 4-5 
with equal durations of (presumably attack-free) traff ic collected 
from a university departmental server on a large network.  We mix 

the traff ic by shifting the timestamps to make it appear as if the 
web server is part of the home network.  No other fields (e.g. IP 
addresses) are changed.  The mixed traff ic contains 154,057 
simulated and 125,834 real inbound TCP SYN packets.   
 As we should expect, the results are quite poor (Table 2, last 
column).  Very few attacks are detected, and the false alarm rate is 
much higher.  But a more detailed analysis shows that these results 
make more sense.  For example, on the simulated data SAD 
detects source address anomalies in attacks on public web servers 
(apache2, back, crashiis, and phf), mail servers (mailbomb, 
sendmail),. DNS (ls_domain), and anonymous FTP (guessftp, 
warez), where novel addresses should be normal.  However, on 
the mixed data, the only attack detected is neptune, which spoofs 
the source address with an unassigned portion of the IP address 
space (10 or 11 in the first byte).  Likewise, most of the other 
packet header anomalies detect only attacks that require the 
attacker to write (usually arbitrary) values into those fields. 
 But why did SAD do so well i n the first place?  In the next 
section, we compare the simulated training traff ic with our real 
traff ic to shed some light on this question. 
  

SAD Byte  Det/FA Wks 1-2 Wks 3-5 Mixed 
IP packet size, low byte 4/0 15/2 0/1 
TTL 25/36 24/4 5/43 
Source IP address, 1st byte 13/7 64/41 4/0 
Source IP address, 2nd byte 13/7 67/42 0/0 
Source IP address, 3rd byte 16/15 79/43 0/0 
Source IP address, 4th byte 17/14 71/16 0/0 
Source port, high byte 2/0 13/0 0/0 
Destination port, high byte 4/24 4/0 4/1664 
Destination port, low byte 5/6 0/0 0/0 
TCP header size 4/0 15/2 0/5 
TCP window size high byte 5/1 15/2 7/112 
TCP window size, low byte 3/1 7/1 4/29 
TCP options, bytes 1, 2, 3 4/4 15/2 0/1 
TCP options, byte 4 4/4 15/2 0/255 

 
Table 2.  SAD detections and false alarms (Det/FA) for 
variants that do well on the 43 attacks in weeks 1-2 of the 1999 
LL IDS evaluation inside sniffer traffic.  Detections and false 
alarms are shown for weeks 1-2 (43 attacks), weeks 3-5 (177 
attacks) and for weeks 3-5 mixed with real traffic. 

4. SIMULATED VS. REAL TRAFFIC 
 In this section, we compare the LL training data (inside sniffer 
weeks 1 and 3) with real traff ic collected from a similar 
environment, a university Solaris machine which is the main 
server for the CS department, with several faculty user accounts 
and serving several thousand web pages.  We look for differences 
in the distributions of attributes that an anomaly detection system 
might monitor.  We examine many traff ic types, but especially the 
types most commonly exploited: inbound TCP client to server 
traff ic.   
 We are primarily interested in differences that could lead to 
evaluation errors in typical anomaly detection systems.  One type 
of error could occur if values that appear only in hostile traff ic in 
simulation actually occur in normal, benign traff ic.  This would 
cause those attacks to be missed.  Another type of error could 
occur if rare or novel values occur at a higher rate in real traff ic 
because there are a wider range of values.  This would either lead 



 

to a higher false alarm rate, or possibly some adaptive process to 
turn off the rule, resulting in a lower detection rate. 
 We collected two sets of data from the server, a small set 
consisting of two traces of one milli on packets each (several 
hours), and a larger set of 100 milli on packets sampled over 10 
weeks.  The large set was filtered to allow quicker analysis by 
extracting only the 1.6 milli on most interesting packets: truncated 
inbound client to server sessions. 

4.1. Analysis of Packets and Protocols 
 The simulated and real networks are similar in that there are 
two routers, one to a large local network with hundreds of hosts, 
and a second to the Internet.  However, the real network differs in 
that it uses an Ethernet switch rather than a hub, so only traff ic to 
and from the local host is visible.  Also, our data was collected 2-3 
years after the LL data was synthesized, during which time some 
new protocols probably came into use and others were expanded.  
There are some dynamically assigned IP addresses, and a 
portmapper service to assign ports for RPC and NFS, which are 
not found in the simulation.  The only TCP application protocols 
that are found in suff icient quantity to allow comparison are 
HTTP, SMTP, and SSH.  Some traff ic is blocked by a firewall , 
such as unreachable ports and IP packets with options.  Although 
this probably blocked most port scans (there were probably many), 
we did find some apparently malicious HTTP and SMTP traff ic in 
the real data. 
 The traff ic was collected on www.cs.fit.edu.  The smaller set 
consists of two traces of 1 milli on packets each, collected on Nov. 
4, 2001 from 17:40 to 04:43 local (Eastern) time the following day 
(11 hours), and Nov. 6, 2001 from 10:25 to 12:05 (100 minutes).  
Packets were truncated to 68 bytes.  Table 3 compares the 
distribution of protocols with that of inside week 3 in the LL set.  
In general, the real traff ic is more complex in that there are more 
protocols present at every level.  At the transport layer there is 
somewhat more TCP and ICMP and less UDP, but all three are 
represented in suff icient quantities to allow comparison (and later, 
mixing). 
 

Attribute LL inside week 3 Real, unfiltered set 
Packets, n 12,814,738 2,000,000 
Ethernet. 
protocols 

4 (IPv4, ARP, hub 
test, loopback) 

45 (many 
undocumented) 

IP protocols 3 (TCP, UDP, 
ICMP) 

6 (also OSPFIGP, 
IGMP, PIM) 

IP packets 99.2% of Ethernet 94.8% of Ethernet 
TCP packets 83.4% of IP 94.6% of IP 
UDP packets 16.4% of IP 3.5% of IP 
ICMP packets 0.056% of IP 0.268% of IP 
TCP protocols 
(in order of 
descending 
session 
frequency) 

HTTP, SMTP, 
FTP, telnet, ssh, 
finger, auth, 
epmap, printer 

HTTP, printer, POP3, 
NFS, SMTP, RMI, 
IMAP, nbsession, 
42239, ssh, auth, dsp, 
4045, X-font, portmap 

UDP protocols 
(by descending 
packet 
frequency) 

DNS, NTP, router, 
nbname, 
nbdatagram, syslog 

756, NTP, portmap, 
DNS, syslog, 
nbdatagram, nbname, 
isakmp, xdmcp 

 
Table 3.  Protocols found in LL inside sniffer week 3 and in the 
unfiltered real data set. 

4.2. Analysis of Fields 
 In this section, we compare the simulated training data from 
the inside sniffer weeks 1 and 3 with the larger set of real traff ic 
collected over 10 weeks.  To reduce the workload of analyzing 
these huge data sets, we filtered them to extract just the data that a 
network intrusion detection system would most likely monitor: the 
initial portions of inbound client to server requests. 

4.2.1. Data Set 
 Most of our analyses are based on the large sample of 100 
milli on packets.  This consists 50 traces of 2 milli on packets each 
collected on Monday through Friday over 10 weeks from Sept. 30 
through Oct. 25 and Nov. 4 through Dec. 13, 2002.  Each trace 
was started at 00:01 local time and ended when 2 milli on packets 
were collected, usually about 10 to 15 hours later.  Packets were 
truncated to 200 bytes (134-146 bytes of TCP payload). 
 To reduce the volume of data to a manageable level, the large 
sample set was filtered.  This filter removes the following data, 
leaving 1,663,608 packets (1.6%). 
• All non-IP packets. 
• All outbound packets.  A packet is inbound if the destination 

address is 172.16.x.x or 192.168.x.x (simulated eyrie.af.mil ) 
or exactly the IP address of the real server (163.118.135.1). 

• UDP packets to high numbered ports (over 1023), which are 
normally server responses back to clients. 

• TCP ACK, SYN-ACK, FIN-ACK, and PSH-ACK packets 
unless within the first 100 payload bytes of a SYN packet 
(i.e. only the first 100 bytes of an inbound client request are 
passed, and none of the server's response). 

• Any packet where more than 16 have been passed to the same 
IP address/port/protocol (TCP/UDP/ICMP) combination in 
the last 60 seconds.  A 4K hash table is used, so there are a 
small number of drops due to colli sions. 

Most of the data of interest remains present after filtering.  
Filtering both weeks 1 and 3 of the simulated inside sniffer traff ic 
reduces this set from about 20M packets to about 1.6M packets. 
 To compare application protocols, we reassemble TCP streams 
from the filtered traff ic.  Because these packets are truncated, we 
use only the first 134 bytes of the first payload packet.  For 
interactive protocols such as SMTP, this method only allows the 
first inbound command to be captured.  However, this is suff icient 
for our analysis. 

4.2.2. Measurements 
 We are primarily interested in the rate of novel values in each 
attribute that an anomaly detection system might monitor.  The 
higher this rate, the higher the false alarm rate will be, and the 
greater the chance that a genuine anomaly will l ater be masked.  
We define the following four statistics: 

• r – the number of observed values. 
• r1 – the fraction of r consisting of values seen exactly 

once. 
• rh – the fraction of values seen for the first time in the 

second half of the data. 
• rt – the fraction of data needed for r to reach half its final 

value. 
For example, given the sequence ABCABD, r = 4 (the size of the 
set { A,B,C,D} ), r1 = 2/4 = 0.5 (C and D occur once), rh = 1/4 
(only D is seen for the first time in the second half), and rt = 2/6 



 

(because we observe r/2 = 2 letters in the first 2/6 of the 
sequence). 
 The statistic r is significant because it directly counts novel 
events in the training data (which would be false alarms if they 
occurred during testing), and is also used to compute the anomaly 
score in time-based systems (i.e. tn/r).  For Poisson processes 
(where events are independent), r1 is a Good-Turing [11] estimate 
of the probabilit y that the next value will be novel.  For network 
processes which are bursty with long range dependencies, r1 is 
usually an underestimate.  However rh and rt measure the rate of 
novel values directly, either over the second half of the data (rh) or 
the second half of the novel values (rt).  Because there are gaps in 
the data collection, we use packet counts rather than real time to 
compute the fraction of data seen. 
 The rh and rt statistics give us two points on the growth curve 
of r over time.  For many attributes, r will grow rapidly at first, 
and then level off as all of the possible values are observed.  We 
are interested in both the initial growth rate, given by rt, and the 
recent growth rate, given by rh.  Often rh will be 0, so we need rt to 
make meaningful comparisons in cases of slowly growing r. 
 If an attribute has a Zipf distribution [39], then r1 = rh = rt = 
0.5, and r grows without bound at a constant rate.  A Zipf 
distribution is a special case of a power law or Pareto distribution, 
which occurs in many natural processes, for example, the 
distribution of words in English, city populations, file sizes, or 
website requests [1, 14].  We find that many network attributes in 
the real traff ic, but not in the simulated traff ic, are approximately 
Zipf, for example, client addresses and client versions. 
 For binary attributes, we list the percentage of occurrences.  
We consider it significant if an event occurs at any rate in one set 
but never in the other.  For continuous attributes we list the range 
of values, although it is unclear when a larger range becomes 
significant. 

4.2.3.  Comparison at Low Level Protocols 
 We first compare the training traff ic (inside sniffer weeks 1 
and 3) with the large, 10 week data set, both after filtering.  In 
most of the attributes we examined, the rate of anomalies is higher 
in the real traff ic, as indicated by higher values of r, r1, rh and rt 
(li sted as four consecutive values in Table 4a), even after taking 
into account the larger size of the real data set.  Where the 
difference is significant (a somewhat subjective judgment), the 
higher values are highlighted in italics.  These fields include the 
Ethernet source address, TTL, TOS, TCP options, UDP 
destination port, and ICMP type. 
 The following binary events occur only in the real traff ic: 
fragmented IP packets (with the "don't fragment" flag set), TCP 
and ICMP checksum errors, nonzero bits in TCP reserved fields 
and reserved flags, and nonzero data in the urgent pointer when 
the URG flag is not set.  These events are present even after 
removing TCP packets with bad checksums. 
 For all continuous attributes we measured, the range is higher 
in real traff ic.  This includes packet size, UDP payload size, TCP 
header size, urgent pointer, and window size.  However it is 
diff icult to judge the significance of these differences based on 
range alone. 
 Most attributes are less predictable in real traff ic than in 
simulation.  However the situation is opposite for TCP ports.  The 
rate of novel values is lower in the real traff ic.  Most of the 
simulated TCP ports are high numbered FTP data ports negotiated 
during FTP sessions.  The real traff ic has a much lower rate of 

FTP sessions.  Also, some real ports may be blocked by the 
firewall . 
 

r, r1, rt, rh Simulated Real 
Ethernet source addr 8, 0, 0, .00001 76, .01, .11, .03 
IP source addr 1023,.26, .71, .73 27632, .08, .53,.53 
IP destination addr. 32, 0, 0, .0002 1, 0, 0, 0 
TCP header size 2, 0, 0, .000003 19, .16, .05, .024 
ICMP types 3, 0, 0, .001 7, .14, .14, .16 
TTL 9, 0, .1, .00002 177, .04, .12, .023 
TOS 4, 0, 0, .0003 44, .07, .64, .53 
TCP dest port 8649,.35, .66, .65 32855,.001,.002,.3 
TCP flags 8, 0, 0, .00002 13, 3, 0, .00009 
TCP options 4 bytes 2, 0, 0, .00002 104, .22, .31, .18 
UDP dest port 7, 0, 0, .0001 31, .52, .55, .45 

 
Percent Simulated Real 
Packets n = 658,801 n = 1,663,608 
IP options None None 
IP fragments 0 0.45% 
Don't fragment (DF) 52% set 90% set 
DF set in fragment No fragments 100% bad 
IP checksum No errors No errors 
TCP checksum No errors 0.017% bad 
UDP checksum No errors No errors 
ICMP checksum No errors 0.020% bad 
TCP reserved flags Always 0 0.093% bad 
TCP reserved field Always 0 0.006% bad 
Urgent data, no flag None 0.022% bad 

 
Range Simulated Real 
IP packet size (38-1500) (24-1500) 
TCP window size (0-32737) (0-65535) 
TCP header size (20-24) (20-48) 
Urgent pointer (0-1) (0-65535) 
UDP packet size (25-290) (25-1047) 

 
Table 4.  Comparison of inside sniffer weeks 1 and 3 
(simulated) with 10 weeks of real traffic after filtering (real).  
(a) r, r1, rh and rt for discrete attributes, (b) percent true for 
binary attributes, (c), ranges of continuous attributes. 
 
 In Table 5 we compare inbound TCP SYN packets in the 
simulated and real traff ic.  This exposes some potential artifacts 
that were not apparent in the larger set of all filtered packets.  The 
most striking difference is in IP source addresses.  The number 
and rate of novel addresses is thousands of times higher in real 
traff ic than in simulation.  This is not the case when UDP and 
ICMP traff ic (or outbound TCP)  is included. 
 Other differences include TCP options (which determine 
packet size and TCP header size) and window size.  Every 
inbound TCP SYN packet uses the exact same four TCP option 
bytes, which set the maximum segment size (MSS) to 1500.  In 
reality, the number of options, their order, and the option types 
and values varies widely.   
 Window size (used to quench return traff ic) is allowed to 
range from 0 to 65535.  The full range of values is seen only in 
real traff ic.  Simulated traff ic is highly predictable, always one of 
several values.  A difference in range is also observed in source 



 

ports (selected randomly by the client) and high numbered 
destination ports (often negotiated).  One other type of anomaly 
seen only in real traff ic is a nonzero value in the acknowledgment 
field, even though the ACK flag is not set. 
 We have now accounted for all of the SAD attributes that 
detect attacks.  They all appear to be artifacts.  These fall i nto two 
categories.  Either the simulated range is too low, allowing 
detections of attacks that would otherwise be masked (e.g. window 
size, source port), or the rate of false alarms is too low (e.g. source 
address, TTL, TCP options).  This does not mean that SAD did 
not legitimately detect any attacks.  For example, it detects 
neptune by an anomalous source address that does not appear in 
real traff ic either. 
 

Attribute Simulated Real 
Packets, n 50650 210297 + 6 errors 
Source address 
r, r1, rh, rt 

29, 0, .03, .001 24924, .45, .53, .49 

Dest addr, r 17 1 (163.118.135.1) 
Src port, r 13946 (20-33388) 45644 (21-65534) 
Dest port,r 4781 (21-33356) 1173 (13-65427) 
IP pkt size, r 1 (44, 4 option bytes) 8 (40-68) 
TCP options,r 1 (MSS=1500) 103 in first 4 bytes 
Window size,r 7 (512-32120) 523 (0-65535) 
TCP ack Always 0 0.02% bad 

 
Table 5.  Comparison of simulated and real inbound TCP SYN 
packets (excluding TCP checksum errors). 

4.2.4.  Comparison at Application Protocols 
 We compare HTTP requests in the simulated data (weeks 1 
and 3) with 10 weeks of real traff ic.  Because the real packets were 
truncated to 200 bytes (usually 134-146 bytes of payload), we 
examine only the first 134 bytes in both sets.  Table 6 summarizes 
the differences we found. 
 

Inbound HTTP Requests Simulated Real 
Number of requests, n 16089 82013 
Different URLs requested, r, r1 660, .12 21198, .58 
HTTP versions, r 1 (1.0) 2 (1.0, 1.1) 
Commands (GET, POST...), r 1 (GET) 8 
Options, r 6 72 
User-agents, r, r1 5, 0 807, .44 
Hosts, r 3 13 

 
Table 6.  Comparison of HTTP requests in simulated traffic 
(inside weeks 1 and 3) and 10 weeks of real traffic. 
 
 There are two simulated web servers (hume and marx).  
However, the one real web server receives more traff ic and has 
more web pages.  The distribution of real URLs is approximately 
Zipf, consistent with findings by Adamic [1].  A characteristic of a 
Zipf distribution is that about half of all values occur exactly once.  
The simulated URLs are distributed somewhat more uniformly.  
Many of the singletons are failed requests which were simulated 
by replacing the last 4 characters of the file name (e.g. html) with 
xxxx.   

There is a huge disparity in the number of user-agents (client 
types).  The simulated traff ic has only five, all versions of Mozilla 
(Netscape or Internet Explorer).  Real web servers are frequently 

accessed by search engines and indexing services.  We found the 
top five user-agents in the real data to be (in descending order) 
Scooter/3.2, googlebot/2.1, ia_archiver, Mozilla/3.01, and 
http://www.almaden.ibm.com/cs/crawler.  They also have a Zipf 
distribution. 
 The only simulated HTTP command is GET, which requests a 
web page.  The real traff ic has 8 different commands: GET (99% 
of requests), HEAD, POST, OPTIONS, PROPFIND, LINK, and 
two malformed requests, No and tcp_close,.  There is also a much 
wider variety of options, although some of these are due to the 
introduction of HTML/1.1.  Nevertheless there is wide variation in 
capitalization and spacing.  In the simulated traff ic, HTTP options 
invariably have the form Keyword: value, with the keyword 
capitalized, no space before the colon and one space afterwards.  
This is usually but not always the case in real traff ic.  
Furthermore, we occasionally find spelli ng variations, such as 
Referrer: (it is normally misspelled Referer:) or the even more 
bizarre Connnection: with three n's.  Some keywords are clearly 
malformed, such as XXXXXXX: or ~~~~~~~:.  A few requests end 
with a linefeed rather than a carriage-return and linefeed as 
required by HTTP protocol.  Finally there are some requests 
which are clearly suspicious.  We found 33 requests similar to the 
following two examples. 
 

GET /scripts/..%255c%255c../winnt/system32/cmd.exe?/c+dir 
GET /MSADC/root.exe?/c+dir HTTP/1.0 
 

Undoubtedly this did not accomplish much on a UNIX host. 
 We look only briefly at SMTP (mail ) and SSH (secure shell ).  
These are the only other TCP application protocols besides HTTP 
that exist in suff icient quantity in both data sets to do a useful 
comparison.  Like HTTP, we once again find that real traff ic is 
"messy", high in benign anomalies.  Table 7 summarizes the 
results. 
 

Inbound Request Simulated Real 
SMTP requests, n 18241 12911 
First command, r 2  7 
HELO hosts, r, r1 3, 0 1839, .69 
EHLO hosts, r, r1 24, .04 1461, .58 
No initial HELO or EHLO 0 3% 
Lower case commands 0 0.05% 
Binary data in argument 0 0.1% 
SSH requests, n 214 666 
SSH versions, r, r1 1, 0 32, .36 

 
Table 7.  Comparison of inside sniffer weeks 1 and 3 with 10 
weeks of real inbound SMTP and SSH requests. 
 
 A normal SMTP session starts with HELO or EHLO (echo 
hello), but these are optional.  In the simulated traff ic, every 
session starts with one of these two commands.  However, about 
3% of real sessions start with something else, usually RSET, but 
also QUIT, NOOP, EXPN, or CONNECT.  About 0.2% of real 
commands are lower case.  One command (EXPN root) is 
suspicious. 
 The number of simulated remote hosts sending and receiving 
mail (arguments to HELO and EHLO) is clearly unrealistic.  This 
is also reflected in the small number of source IP addresses in 
general.  The simulated traff ic has one malformed command, an 



 

EHLO with no argument.  The real traffic does too, and a variety 
of other malformed arguments, including binary strings (1-21 
bytes, probably too short to be a buffer overflow).  The host name 
arguments are roughly Zipf distributed, with over half appearing 
only once. 
 An SSH session opens with the client version string.  The 
simulated traffic uses a single client version.  In real traffic there 
are many versions, again Zipf distributed. 

4.3. Potential Source of Artifacts 
 In the previous section we saw that many attributes have a 
wider range of values (higher r) in real traffic than in simulation, 
and a higher growth rate (r1, rh, and rt), which would make them 
harder to model.   Why is this? 
 One possibility is that the various traffic sources (hardware, 
software, and people) are modeled incorrectly with r too small and 
static, i.e. too predictable.  A second possibility is that individual 
sources display the correct ranges of values, but their timing is 
wrong, resulting in an incorrect growth rate for r.  A third 
possibility is that the individual sources are correct in both values 
and timing, but there are too few sources to simulate the diversity 
of real traffic. 

4.3.1.  Source Hosts 
 To investigate the first possibility, we compare single sources 
in the simulated and real traffic.  In the first two columns of Table 
8, we compare TCP SYN packets originating from the simulated 
Solaris host (pascal) with the real host, which also runs Solaris.  
We see nearly identical behavior.  Both sources produce highly 
predictable values, especially for attributes such as window size, 
TTL, and TCP options, fields that we previously identified as 
artifacts. 
 In the rightmost two columns, we compare inbound TCP SYN 
packets, which represent aggregate sources.  In this case, we see 
(as before) that r is higher in real traffic.  The simulated aggregate 
traffic bears a greater resemblance to the simulated single source 
than to real aggregate traffic.  This effect is most noticeable for 
TCP options and packet size (Ethernet, IP and TCP header), but 
also for TTL and window size. 
 

r (values) Sim out Real out Sim in Real in 
Packets n=3165 n=6932 n=29263 n=7063 
Ether size 1 (60) 1 (58) 1 (60) 6 (60-82) 
IP length 1 (44) 1 (44) 1 (44) 6 (44-68) 
TOS 1 (0) 1 (0) 3(0,8,16) 4 (0-3) 
DF 1 (1) 1 (1) 2 (0-1) 2 (0-1) 
TTL 1 (255) 1 (255) 7 65 
Header 1 (24) 1 (24) 1 (24) 6 (24-48) 
Window 
size 

2 (8760-
24820) 

1 (24820) 7 (512-
32120) 

40 (512-
65535) 

Urg ptr 1 (0) 1 (0) 1 (0) 2 (0-1738) 
Options 1 (MSS) 1 (MSS) 1 (MSS) 20 

 
Table 8.  Number (r) and range of values in outbound (from 
Solaris) and inbound TCP SYN packets in week 3 and the 
small real data set. 

4.3.2.  Self-Similarity 
 Although the evidence suggests that the source of simulation 
artifacts is too few sources, we cannot yet rule out a lack of 
burstiness or self-similarity as another source.  We know that 

many types of network events tend to occur in bursts separated by 
long gaps, regardless of time scale (self-similarity) [15, 26].  If 
individual sources were instead modeled as Poisson processes 
(independent events, lacking long gaps), then in an aggregate 
process we would expect to see all possible values within a short 
period of time.  On the other hand, if individual sources produced 
bursts of events with long gaps, then r would continue to grow as 
new sources are seen for the first time.  Furthermore, because gaps 
can be arbitrarily long, r should grow throughout any arbitrarily 
long trace. 
 We first observe that both the simulated and real traffic are 
bursty.  When we examine the distribution of intervals between 
successive events, we find that the distribution is heavy tailed 
compared to a Poisson distribution, i.e. lots of short and long 
gaps.  We found this to be true for many packet types: Ethernet, 
ARP, ICMP, UDP, TCP, TCP SYN, HTTP SYN, and SMTP 
SYN.  Although these are all aggregate processes, the results hold 
because the sum of Poisson processes is a Poisson process, but the 
sum of self-similar processes tends to remain self-similar. 
 We also measured the Hurst parameter [15], a measure of how 
rapidly the burstiness "smoothes out" as the time scale increases.  
One measure of burstiness is the standard deviation of events per 
time interval, e.g. packets per second or packets per minute.  As 
we increase the time scale by a factor of M (e.g. 60), we would 
expect the relative standard deviation to decrease by a factor of 
M1/2 for a Poisson process.  For a purely self-similar process, there 
is no decrease at all, i.e. M0.  A process is said to have a Hurst 
parameter of H if the standard deviation decreases by a factor of 
M1-H, where H = 0.5 indicates a Poisson process and H = 1 
indicates a purely self-similar process.   Many network events 
have Hurst parameters of 0.7 to 0.9. 
 We compared Hurst parameters in the simulated and real 
traffic for all of the packet types mentioned above.  We measured 
H by computing the relative standard deviation of the event rate at 
sampling intervals of M = 1, 10, 100, and 1000 seconds.  We then 
estimated the Hurst parameter between successive values of M as 
 
 HM-10M = 1 + log10((σ10M/µ10M) / (σM/µM)) 
 
where HM-10M is the Hurst parameter estimate between sampling 
rate M and 10M, σM is the sample standard deviation for samples 
over M seconds, and µM is the sample mean.  Because measuring 
H requires a contiguous trace, we compared each of the two small 
traces of one million packets with two real traces taken from the 
first million packets of simulated week 3, days 1 and 7. 
 We found that in most cases, the simulated traffic has similar 
or higher Hurst parameters than real traffic.  This is true for both 
individual and aggregate processes.  Table 9 shows two examples, 
where we compare outbound and inbound TCP SYN packets from 
the first of two real traces with the first million packets of week 3, 
day 1.  Although the number and rate of simulated outbound 
packets is small, we obtained similar values with longer traces. 
 
 
 
 
 
 
 
 
 



 

 Sim out Real out Sim in Real in 
Packets 235 5892 2265 5387 
Packets./sec. .0108 .148 .104 .135 
H, 1-10 sec. .547 .610 .594 .670 
H, 10-100 s. .614 .484 .630 .694 
H, 100-1000 s. .719 .617 .694 .747 

 
Table 9.  Packets, packet rates, and Hurst parameter estimates 
over the range 1 to 1000 seconds for outbound (from the 
Solaris host) and inbound TCP SYN rates for simulated and 
real traffic. 
 
 This evidence seems to rule out the first two possibiliti es that 
individual sources are modeled incorrectly either in range of 
values or in timing.  Instead, we conclude that a li kely source of 
artifacts is that there are too few independent sources of traff ic to 
duplicate the complexity of Internet traff ic. 

4.4.  Summary 
 We found what appear to be simulation artifacts at every layer 
of the protocol stack from the data link layer to the application 
layer.  These are of two types.  First, the simulated data lacks 
"crud", anomalous but mostly benign events that might trigger 
false alarms during testing, such as checksum errors, IP fragments 
with the "don't fragment" flag set, TCP retransmissions with 
inconsistent or partially overlapping payloads, or data in the TCP 
reserved fields, urgent pointer, or acknowledgment field when the 
corresponding flags are not set.  These anomalies make up about 
0.01% of real packets. 
 Second, many attributes that have a small and static range of 
values in simulation would actually have a much wider range in 
practice (often with a power law or Zipf distribution), and this 
range would grow at a constant rate, introducing a huge disparity 
in the rate of novel events.  The problem occurs in Ethernet and IP 
protocols and source addresses, TOS, TTL, TCP options and 
window size, HTTP and SMTP commands and arguments, and 
HTTP and SSH client versions.  The problem is especially severe 
for source IP addresses for inbound (but not outbound) TCP SYN 
packets.  This attribute is monitored by nearly all network 
intrusion detection systems.  The simulated rate of novel addresses 
(and thus the false alarm rate) is too low by a factor of many 
thousands. 
 Finally, we compared individual traff ic sources in the 
simulated and real traff ic, and these appear to be modeled 
correctly, both in range of values and in timing.  We believe the 
problem is due to too few sources. 

5. EVALUATION WITH MIXED TRAFFIC 
 The evidence presented in Sections 3 and 4 suggest a problem 
with the LL data.  However, this data was generated at great 
expense and could not easily be replaced.  We would prefer a 
solution that fixes the data as it exists now, rather than require that 
a new set be created. 
 We believe it is impractical to synthesize Internet traff ic 
accurately due to its vast complexity.  However, we believe that 
attacks can be – and for the most part were – simulated correctly.  
Thus we propose to use real traff ic (with all the usual implications 
about privacy and security) as background and training data, but 
to continue to use the labeled, simulated attacks as before. 
 Our proposal is to add real traff ic to the LL data to make it 
appear as if it were being sent and received during the simulation.  

We believe it is not necessary to remove the simulated background 
traff ic because the combination should be similar (in the statistical 
sense of Section 4) to the real traff ic alone.  To see this, let AS be 
the set of values of attribute A seen in simulation up to the present 
time, and let AR be the corresponding set of values seen in real 
traff ic.  Then the set of values AM seen in merged traff ic would be 
at all ti mes: 
 
 AM = AS ∪ AR 
 
Note that the r statistic for attribute AS, which we denote rS is 
simply |AS|.  Likewise, we define rR = |AR| and rM = |AM|.  
Therefore, we have at all ti mes: 
 
 max(rS, rR) 

���
M 
���

S + rR 
 
In cases where we suspect r is an artifact, we have rS << rR, and 
therefore rM � rR, so removing the simulated traffic would have 
little effect.  Furthermore, because this is true at all times, rM and 
rR would have similar growth rates. 
 A problem can occur when AR is too small or empty, i.e. there 
is little or no real traffic of types where A is defined to mix with 
the simulation.  In this case, rM ��� S, and the artifact, if there is 
one, would not be removed.  One such example is the destination 
address of incoming traffic, where there are rS = 16 simulated 
hosts and rR = 1 real host.  We are unable to test whether the 
destination address is an artifact in the simulation (although we 
have no reason to believe that it would be).  Other untestable 
attributes are those of FTP and telnet payloads, because there is 
little FTP and no telnet traffic in our real data.  (Remote login and 
FTP are available only via the SSH protocol). 
 We wish to evaluate network anomaly detection systems on 
mixed data.  Our approach is as follows.  First, we analyze the 
system to determine which attributes are monitored.  Then we test 
the simulated and real data to determine which attributes are 
present in the simulation, but absent or rare in the real data.  Then 
we either modify the system to ignore these attributes (e.g. remove 
rules for FTP and telnet), or we modify the real data to remove the 
discrepancy (e.g. modify destination IP addresses in the real 
traffic).  We illustrate the process with three systems, SPADE, 
PHAD, and LERAD. 

5.1. Data Preparation 
 For our mixed traffic, we use the same large, filtered data set 
as described in Section 4.  We have 579 hours of traffic, which is 
more than enough to mix into the 146 hours of traffic in inside 
sniffer week 3 plus the 198 hours in weeks 4 and 5.  We mix the 
traffic in a 1:1 ratio, i.e. one hour of simulated traffic is mixed 
with one hour of real traffic.  Other ratios would be possible by 
stretching or compressing the real traffic, but we do not do this. 
 We mix the traffic to make it appear as if all of the collected 
data occurs during the simulation.  We do this by adjusting the 
time stamp of the first real packet to match the time stamp of the 
first simulated packet, then maintain the relative times of the other 
real packets, excluding gaps in the two collections.  This is 
illustrated in Figure 1.  Time reads from left to right. 



 

 
Figure 1.  Mapping real time into simulation time when there 
are gaps in collection in both data sets. 
 
The real traff ic consists of 50 traces, divided into 10 weeks.  We 
mix these into weeks 3 (training), 4, and 5 (test) of the inside 
sniffer data to prepare three mixed data sets, which we label A, B, 
and C as shown in Table 10.  Prior to mixing, both the simulated 
and real traff ic are filtered as described in Section 4.2.1 to pass 
only truncated and rate limited inbound client to server requests.  
We denote the unmixed data (after filtering) as set S. 
 

Set Training data Test data 
S LL inside week 3 LL inside weeks 4-5 
A S + real weeks 1-3 S + real weeks 4-7 
B S + real weeks 4-6 S + real weeks 7-10 
C S + real weeks 7-9 S + real weeks 1-4 

 
Table 10.  Mixed data sets used for evaluation.  All data is 
filtered. 
 
 The results for SAD in Section 3 were obtained with sets S 
and C.  However sets A and B give results similar to C.  In this 
case, filtering has littl e effect because most inbound TCP SYN are 
passed through. 

5.2.  Algorithm Preparations 
 In this section we describe how we modify SPADE, PHAD, 
and LERAD to meet the requirement that it not test any attributes 
where rR << rS.  We can do this either by modifying the data 
(SPADE), the algorithm (LERAD), or determining that no 
modification is needed (PHAD). 

5.2.1. SPADE Modifications 
 SPADE is a frequency based model of inbound TCP SYN 
packet addresses and port numbers.  It has four probabilit y modes 
(0-3), which assign scores to every such packet as follows: 
0. 1/P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP) 
1. 1/P(DA, DP, SA, SP) 
2. 1/P(DA, DP, SA) 
3. 1/P(DA, DP)  (default) 
where the joint probabiliti es are based on counts up through the 
current packet, and SA, SP, DA, and DP denote source address, 
source port, destination address, and destination port, respectively. 
 All probabilit y modes include the destination address (DA), 
which implies that SPADE would build separate models for the 
simulated and real hosts.  To prevent this from happening, we 
randomly replace all real destination IP addresses with one of the 
four main targets in the simulation (pascal, hume, marx, or zeno), 
making it appear as if the real traff ic were on these hosts instead. 

5.2.2. PHAD Modifications 

 PHAD is a time-based global model of packet header fields.  If 
any packet (inbound or outbound, client or server) displays a 
value never seen in training, then PHAD assigns a score of Σ tn/r, 
where t is the time since the previous anomaly, n is the number of 
training packets, and r is the number of allowed values, and the 
sum is over all of the anomalous attributes. 
 There are 34 attributes corresponding to the various 1 to 4 
byte fields in the Ethernet, IP, TCP, UDP, and ICMP packet 
headers.  The conditions for these fields to be present, is that the 
packet be of the corresponding type.  From Table 3 (Section 4.1) 
we see that all five types of packets are available in comparable 
quantities in both the simulated and real traff ic.  Thus, no rules 
need to be removed from PHAD. 

5.2.3. LERAD Modifications 
 LERAD is a time-based model, li ke PHAD, assigning a score 
of Σ tn/r to novel attribute values.  It creates conditional rules of 
the form  
 
 if A1 = v1 and A2 = v2 and ... then Ak ∈ { vk, vk+1, ... vk+r-1}  
 
where A1 through Ak are arbitrary attributes and the vi are values.  
The rules are randomly selected such that they are always satisfied 
in training and have high n/r.   
 LERAD models inbound TCP streams from client to server. 
The attributes are date, time, single bytes of the source and 
destination address, source and destination ports, TCP flags of the 
first, next to last or last packet, duration, length, and the first 8 
words in the application payload. 
 There are many potential rules that could exclude real traff ic, 
for example "if DA = pascal and DP = FTP then ...".  Rather than 
modify LERAD to avoid such rules, we modify it to record the 
number of simulated and real training instances that satisfy the 
rule antecedent, then weight each rule by the fraction of real traff ic 
when computing the anomaly score.  This has the effect of 
removing rules that depend only on the simulated traff ic. 

5.3. Evaluation Criteria 
 We evaluate SPADE, PHAD, and LERAD on the LL data 
with and without real traff ic mixed in.  This serves two purposes.   
First, we wish to know if we successfully removed the artifacts.  
Second, we wish to predict how these systems would work on real 
traff ic.  Although the rate of attacks in the LL data is artificially 
high (except possibly for probes), we can still use these results to 
estimate the probabilit y of detecting an attack given any false 
alarm rate (e.g. 10 per day), on the type of traff ic that we add to 
the data. 
 To test whether artifacts are removed, we look at each attack 
and the attributes that lead to its detection with and without 
mixing.  If, based on the attack's description, the detection is 
suspect, then we would expect it to be missed when real traff ic is 
added.  For example, we would expect that HTTP or SMTP 
attacks detected by source address in simulated traff ic would be 
missed in mixed traff ic.  However, if the feature is genuine, for 
example, neptune's forged source address, then the attack would 
still be detected, although it could still be missed due to a higher 
false alarm rate.  In general, we will use the following somewhat 
subjective guidelines to determine whether a detection is 
legitimate. 

• Source address is legitimate for denial of service (DOS) 
attacks that spoof it, or if the attack is on an 

Real 

Simulated 



 

authenticated service (e.g. telnet, auth, SSH, POP3, 
IMAP, SNMP, syslog, etc), and the system makes such 
distinctions.  FTP is anonymous in the LL data, so we 
consider it public. 

• Destination address is legitimate for probes that scan 
addresses, e.g. ipsweep. 

• Destination port is legitimate for probes that scan or 
access unused ports, e.g. portsweep, mscan, satan.  It is 
debatable whether it is legitimate for attacks on a single 
port, but we will allow them. 

• TCP state anomalies (flags, duration) are legitimate for 
DOS attacks that disrupt traff ic (arppoison, tcpreset), or 
crash the target (ntfsdos, dosnuke). 

• IP fragmentation is legitimate in attacks that generate 
fragments (teardrop, pod). 

• Packet header anomalies other than addresses and ports 
are legitimate if a probe or DOS attack requires raw 
socket programming, where the attacker must put 
arbitrary values in these fields. 

• Application payload anomalies are legitimate in attacks 
on servers (usually R2L (remote to local) attacks, but 
may be probes or DOS). 

• TCP stream length is legitimate for buffer overflows. 
• No feature should legitimately detect a U2R (user to 

root) or Data attack (security policy violation). 

5.4. Evaluation Procedure 
 We use the EVAL program (available at [19]) to test whether 
an attack is detected.  EVAL uses the same criteria as the original 
1999 LL evaluation as described in [17].  However we have had to 
make some assumptions where the description is ambiguous.  
 EVAL counts an attack as detected if there is at least one 
alarm that correctly identifies the target IP address (or one target if 
there is more than one) and if the alarm occurs within 60 seconds 
of any point within any segment of the attack.  Attack segments 
are derived from the start times, durations, and destination 
addresses from the LL master detection truth table [17], when 
(with three exceptions), the destination is a local address 
(172.16.x.x or 192.168.x.x in the LL set).  The three exceptions 
allowed by EVAL are two instances of httptunnel and one 
instance of portsweep which have no segments with a local 
destination address.  In these cases, the local address from the LL 
master identification list [17] is used instead. 
 Systems are evaluated based on the number of "in-spec" 
attacks detected for a given number of false alarms as the scoring 
threshold is varied.  An attack is in-spec if the system is designed 
to detect it, based on the attack type, input data, target operating 
system, and whether the attack is new or stealthy.  Each attack 
instance during week 4 or 5 is labeled with this information so that 
the scoring is unambiguous.  For this paper, we consider an attack 
in-spec if there is evidence for the attack in the inside sniffer data 
on which we test it.  There are 177 such instances out of 201 in 
weeks 4 and 5. 
 An alarm is counted as a false alarm if it falls outside of all 
attack segments by more than 60 seconds, whether or not that 
segment is in-spec.  If an alarm occurs during two overlapping 
attacks, then EVAL counts both attacks as detected.  For a given 
false alarm rate, EVAL sets the threshold as low as possible 
without exceeding that rate.  In other words, if the limit is 100 
false alarms, then detections between the 100'th and 101'st highest 
scoring false alarms are included.  In case of tie scores, alarms are 

ranked in the order they are input, with the first alarm ranking 
highest. 
 It is often possible to decrease the number of false alarms 
without affecting detections by consolidating bursts of alarms.  
We use the program AFIL.PL (also available at [19]) to do this 
prior to all our evaluations.  AFIL.PL divides the alarm sequence 
into one-minute intervals, then discards any alarm if there is a 
higher scoring alarm in the same interval that identifies the same 
target. 

6.  EVALUATION RESULTS WITH MIXED 
TRAFFIC 
 Based on the evaluation criteria and procedures described in       
Section 5, we obtained the following results for SPADE, PHAD,       
and LERAD. 

6.1. SPADE 
 We tested SPADE version v092200.1, which is built i nto 
SNORT 1.7 Win32 [29].  We used sets S, A, B, and C, which 
were further modified as in Section 5.2 to randomly substitute real 
destination addresses with simulated ones.  All SPADE options 
were set to their default values, and all SNORT rules other than 
SPADE were turned off .  SPADE does not have separate training 
and test modes, so we ran it on weeks 3 through 5 continuously, 
discarding all alarms in week 3.  SPADE uses an adaptive 
threshold with various parameters to control alarm reporting.  
However we used the raw score reported by SPADE instead.  The 
default threshold allows thousands of false alarms so we do not 
believe that any were lost. 
 Results are shown in Table 11 for each of the four probabilit y 
modes.  We used a threshold of 200 false alarms rather than 100 
because the numbers are low.  SPADE detects about half as many 
attacks at 100 false alarms. 
 

SPADE detections at 200 FA S A, B, C 
0: P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP) 6 6, 6, 7 
1: P(DA, DP, SA, SP) 1 0, 0, 0 
2: P(DA, DP, SA) 6 2, 1, 1 
3: P(DA, DP) (default) 8 9, 8, 7 

 
Table 11.  Attacks detected by SPADE at 200 false alarms 
according to EVAL on filtered inside sniffer weeks 3-5 (S) and 
when mixed with real traffic (A, B, C) in each probability 
mode. 
 
 Probabilit y modes 0 and 1 include the source port (SP), which 
is normally picked randomly by the client and would not be 
expected to yield useful information.  The six attacks detected in 
mode 0 on set S are insidesniffer, syslogd, mscan, tcpreset, 
arppoison, and smurf.  All but mscan are probably coincidental 
because the others generate no TCP SYN packets.  However, all 
but syslogd target multiple hosts, increasing the likelihood of a 
coincidental alarm for one of the targets. 
 However modes 2 and 3 show the effects of mixing clearly.  
We have previously identified source address (SA) as an artifact.  
We now find that adding real data removes most of the detections 
from mode 2, which uses SA, but not from mode 3, which does 
not.  On S, mode 2 detects guest, syslogd, insidesniffer, perl, 
mscan, and crashiis.  By our previously mentioned criteria, guest 
(telnet password guessing) could legitimately be detected by SA, 



 

and mscan (a probe for multiple vulnerabilities on a range of 
hosts) by destination address or port (DA or DP).  We do not 
count syslogd or insidesniffer (no TCP traffic), perl (a U2R 
attack), or crashiis (an HTTP attack). 
 SPADE detects only mscan on all three mixed sets.  On A, it 
also detects portsweep, which also can legitimately be detected by 
DP.  Thus, our results are consistent with the claim that SA (but 
not DP) is an artifact and that the artifact is removed in mixed 
traffic.  When real traffic is added, the fraction of legitimate 
detections goes from 2/6 to 1/1 (or 2/2). 

6.2. PHAD 
 Although it is not necessary to modify PHAD to test it on 
mixed traffic, we modified it to include the TTL field.  This field 
was removed in the original version because it was believed to be 
an artifact.  We wish to see whether adding real traffic will remove 
it. 
 On sets S, A, B, and C, PHAD detects 76, 18, 32, and 25 in-
spec attacks respectively at 100 false alarms according to EVAL.  
The median mixed result is for C, so we restrict our detailed 
analysis to S and C.  However, A and B give similar results. 
 In Table 12, we list the attacks detected in sets S and C 
grouped by the attribute that contributes the most to the detection.  
We classify each detection as legitimate or not according to the 
criteria at the beginning of this section.  We list the number of 
legitimate and total detections separated by a slash, then list the 
legitimate and non-legitimate detection types also separated by a 
slash.  For example, out of the 36 attacks detected in S by TTL, we 
classify only the 7 instances of portsweep as legitimate, because 
this is the only attack which requires the attacker to fill in this 
field. 
 

Attribute Legitimate/Detected in S In C 
TTL 7/36: portsweep / apache2, 

back, casesen, crashiis, 
ffbconfig, guessftp, guesstelnet, 
ipsweep, mailbomb, named, 
neptune, netbus, 
netcat_breakin, ntinfoscan, 
ppmacro, sechole, smurf, yaga 

1/2: portsweep 
/ ffbconfig 

Ether-DA 0/1: mscan 0/1: mscan 
Dest. IP 
address 

1/5: portsweep / ncftp, 
guesstelnet 

0/3: ncftp 

IP frag 7/8: pod, teardrop / 
insidesniffer 

5/5: teardrop, 
pod 

Source IP 
address 

0/5: xlock, portsweep, ncftp, 
processtable, sendmail 

0/0 

Checksums 1/6: udpstorm / smurf, apache2 0/0 
TCP flags 6/6: portsweep, queso 9/9: queso, 

portsweep, 
dosnuke 

Urgent ptr 4/4: dosnuke 1/1: dosnuke 
UDP DP 5/5: satan, portsweep, udpstorm 0/0 
Packet size 0/0 1/2:satan/ncftp 
Window  0/0 2/2: portsweep 
Total 31/76 (41%) 19/25 (76%) 

 
Table 12.  Attacks detected by PHAD attributes at 100 false 
alarms in sets S and C. 
 

 When we add real traffic, the percentage of legitimate 
detections increases from 41% to 76%.  Furthermore, of the 6 
remaining detections we classify as not legitimate, 3 are 
destination address anomalies, which we are unable to remove 
because there is only one new destination address in the real 
traffic.  One other (ffbconfig) is detected because it overlaps 
portsweep and is detected by the same alarm.  If we ignore these 4 
cases, then the fraction of legitimate detections increases to 19/21 
or 90%. 

6.3. LERAD 
 We modified LERAD to weight rules by the fraction of real 
traffic satisfying the antecedent in training.  However, we find in 
practice that this weighting has very little effect.  Almost all of the 
rules are satisfied by a significant fraction of real traffic, and the 
effect is to decrease the number of detections by less than 3%. 
 We also modified the TCP stream reassembly algorithm to 
handle truncated and filtered traffic as described in Section 4.2.1.  
The LL data contains complete packets, allowing streams to be 
reassembled completely.  However, truncated TCP packets would 
leave gaps.  Thus, we truncate the stream after the first 134 bytes 
of the first payload packet to match the maximum payload size of 
the filtered traffic.   Our filter removes closing TCP flags.  
Therefore we also modify the TCP flag attributes to be the flags of 
the last three packets up through the payload, instead of the first 
and last two packets in the completely reassembled stream.  The 
modified reassembly is also applied to the simulated traffic. 
 

Attribute Legitimate/Detected in S In C 
Source 
address 

8/26: dict, guesstelnet, guest, 
sshprocesstable, sshtrojan / 
casesen, crashiis, fdformat, 
ffbconfig, guessftp, netbus, 
netcat_setup, perl, ps, 
sechole, sqlattack, xterm, 
warezclient, warezmaster 

0/0 

Dest. 
address 

1/6: mscan / ncftp, 
guesstelnet 

1/6: mscan / 
ncftp, guesstelnet 

Dest. port 14/14: ftpwrite, guesspop, 
imap, ls_domain, satan, 
named, neptune, netcat, 
netcat_breakin 

11/11: ftpwrite, 
ls_domain, satan, 
named, netcat, 
netcat_breakin,  

Payload 22/29: apache2, back, 
crashiis, imap, mailbomb, 
ntinfoscan, phf, satan, 
sendmail / guesstelnet, 
portsweep, yaga 

8/8: back, imap, 
ntinfoscan, phf, 
satan, sendmail 

Duration 0/1: insidesniffer 0/0 
Length 0/2: netbus, ppmacro 1/1: sendmail 
TCP 
flags 

4/9: dosnuke / back, 
loadmodule, sendmail 

4/4: dosnuke 

Total 49/87 (56%) 25/30 (83%) 
 
Table 13.  Attacks detected by LERAD at 100 false alarms on 
sets S and C. 
 
 LERAD uses a randomized rule generation algorithm.  In 5 
runs on set S, EVAL detects 87, 88, 80, 85, and 91 detections.  
(The lost of detections, compared to about 114 on unfiltered 
traffic, is due mostly to the loss of TCP flags and some of the 
payload).  On one run each on sets A, B, and C, the modified 



 

LERAD detects 29, 30, and 30 in-spec attacks.  Thus, we confine 
our detailed analysis to the middle values of each group, the run 
detecting 87 attacks in S, compared with C.  As with PHAD, we 
categorize each detection as legitimate or not, and list the results 
in Table 13. 
 Once again, we find that adding real data reduces the fraction 
of questionable detections.  The fraction we allow as legitimate 
increases from 56% to 83%.  Of the 5 questionable detections in 
C, all are detected by destination address, which is unaffected by 
the real traff ic. 

6.4. Results Summary 
 We tested SPADE, PHAD, and LERAD on mixed data, and 
found by an analysis of the detected attacks that suspected 
simulation artifacts were removed.  In particular, two strong 
artifacts were removed: TTL from PHAD, and source address 
from SPADE and LERAD. 
 We also reached similar conclusions in tests on ALAD and 
NETAD, although we omit the detailed analysis.  We modified 
both programs so that no rule depends exclusively on simulated 
data.  
 ALAD models TCP streams like LERAD, but uses fixed rather 
than learned rules.  We modified these rules to remove 
dependencies on the destination address, which would distinguish 
the real traff ic.  We also removed rules for application payloads 
other than HTTP, SMTP, and SSH.  We used LERAD's modified 
TCP stream reassembly algorithm.  The result was to increase the 
fraction of legitimate detections, mostly by removing detections by 
source address. 
 NETAD models packets, li ke PHAD, but for several types 
such as inbound TCP, inbound TCP SYN, HTTP, SMTP, telnet, 
and FTP.  We removed the telnet and FTP rules.  Again, the 
fraction of legitimate detections was increased, mostly by 
removing source address and TCP window size anomalies. 
 The results are summarized in Table 14.  The original number 
of detections is the number reported in the literature at 100 false 
alarms when trained on inside week 3 and tested on weeks 4-5 
before the data is filtered or the algorithm is modified.  For sets S 
and C we show the number of legitimate and total detections, and 
the percentage legitimate.  Set C generally resulted in a number of 
detections between those of sets A and B, and is therefore the 
most representative of the mixed results.  In every case, the 
fraction of legitimate detections increases when mixed data is 
used. 
 

System Orig Legit/S (pct) Legit/C (pct) 
SPADE, mode 2  2/6 (33%) 1/1 (100%) 
PHAD, no TTL 54 31/51 (61%) 19/23 (83%) 
ALAD 59 16/47 (34%) 10/12 (83%) 
LERAD (avg.) 114 49/87 (56%) 25/30 (83%) 
NETAD 132 61/128 (48%) 27/41 (67%) 

 
Table 14.  Legitimate and total detections at 100 false alarms 
on sets S and C.  The original results (orig) are the published 
results based on the unmodified algorithm on unfiltered data 
(inside weeks 3-5). 

7. CONCLUSIONS AND FUTURE WORK 
 We analyzed the attack-free portions of the 1999 LL inside 
sniffer traff ic by comparing it with one source of real traff ic from 
the point of view of attributes that are important to anomaly 

detection.  We discovered many attributes that have a small , fixed 
range in simulation, but a large and growing range in real traff ic, 
in particular, remote client addresses, TTL, TCP options and TCP 
window size.  The simulated traff ic also lacks "crud", such as IP 
fragments, garbage data in unused TCP fields, bad checksums, and 
malformed application commands and arguments.   
 While these differences are of no consequence to a signature 
detection system, they could be to an anomaly detection system, 
which is designed to be sensitive to unusual events.  The LL 
background underestimates the frequency of these events, which 
would otherwise generate false alarms in many systems.  It also 
allows the systems to detect attacks based on idiosyncrasies that 
would normally be masked. 
 We propose solving these problems by adding real traff ic to 
the simulation.  This requires careful analysis to ensure that the 
system cannot distinguish the real traff ic from the simulation, and 
that it does not monitor traff ic types for which no real data is 
available.  We did this for five systems and showed that many 
attacks that appear to be detected by suspected simulation artifacts 
are no longer detected when real traff ic is added. 
 Although we tested only the 1999 inside sniffer traff ic, we 
believe the problem exists in the outside traff ic and the 1998 
traff ic because they were generated by the same methodology.  We 
do not believe that the host based data (BSM, audit logs, etc.) are 
affected by artifacts because this data was generated by real 
hardware and software, rather than simulated. 
 Our analysis is based on a single source of real network traff ic.  
Obviously every environment is different, so we must be cautious 
about drawing general conclusions.  Our results need to be 
confirmed using other sources of real traff ic.  Also, we do not 
know the effects of changing the proportion of simulated and real 
traff ic, which could be done by squeezing, stretching, or sampling 
the real data, or by using other sources with different rates.  Our 
analysis assumes that the real traff ic is attack-free, but we know 
that this is not the case.  Finding and removing (or labeling) all  of 
the hostile traff ic would be diff icult. 
 Evaluations using real traff ic are usually not repeatable 
because privacy and security concerns usually prohibit the release 
of this data off-line.  Furthermore, as hardware gets faster, 
software gets more complex, and new protocols are introduced, 
real traff ic will l ook less and less like the LL data.  It is more 
common now for data to be encrypted and inaccessible.  These are 
diff icult problems that remain to be solved. 
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