

An Analysis of the 1999 DARPA/Lincoln Laboratories
Evaluation Data for Network Anomaly Detection

Matthew V. Mahoney and Philip K. Chan

Dept. of Computer Sciences Technical Report CS-2003-02
 Florida Institute of Technology

Melbourne, Florida 32901
{mmahoney, pkc}@cs.fit.edu

ABSTRACT
 We investigate potential simulation artifacts and their effects
on the evaluation of network anomaly detection systems in the
1999 DARPA/MIT Lincoln Labs off-line intrusion detection
evaluation data set. A statistical comparison of the simulated
background and training traffic with real traffic collected from a
university departmental server suggests the presence of artifacts
that could allow a network anomaly detection system to detect
some novel intrusions based on idiosyncrasies of the underlying
implementation of the simulation, with an artificially low false
alarm rate. The evaluation problem can be mitigated by mixing
real traffic into the simulation. We compare three anomaly
detection algorithms, SPADE, PHAD, and LERAD, on simulated
and mixed traffic. On mixed traffic they detect fewer attacks, but
the explanations for these detections are more plausible.

1. INTRODUCTION
 The DARPA/MIT Lincoln Labs (LL) off-line intrusion
detection evaluation data set [17] is probably the most widely used
set for developing and testing intrusion detection systems. Prior
to the development of the two sets in 1998 and 1999, researchers
had to laboriously construct their own tests using exploits against
live targets under controlled conditions. Such results were
normally not reproducible because the background data (network
traffic, audit logs, etc.) would contain private data that could not
be released. The LL data, which simulates a network with
multiple targets under attack by published exploits, solves the
privacy problem by simulating the background network traffic
using a mix of public and synthesized data and custom software to
make it appear as if the traffic originates from a much larger
collection of hosts and users.
 The LL data is useful because it allows a variety of methods to
be tested against a wide range of exploits and targets. The 1999
set alone consists of 5 weeks of network traffic, audit logs, system
call (BSM) logs, nightly file system dumps, and directory listings
collected from targets running four different operating systems
(Solaris, SunOS, Linux, and Windows NT) attacked 244 times
using variations of 58 published exploits ranging from probes and
denial of service attacks to root shell exploits and backdoors.
Systems can detect these attacks using either host based or
network based methods, and either signature detection (modeling
known attacks) or anomaly detection (modeling normal behavior
to detect new attacks). These sets have been used to test a number
of important systems [4, 6, 7, 12, 16, 18, 20, 21, 22, 24, 30, 32,
33, 34, 35, 36, 37]. In addition, the 1998 network traffic is the
basis of the 1999 KDD cup machine learning competition [5],
which had 25 participants, and it continues to be used to test
intrusion detection methods [28, 38].

 We are concerned with the realism of the background Internet
traffic, which is important to the proper evaluation of network
anomaly detection systems which use this traffic to model normal
(non-hostile) behavior. Internet traffic is vastly complex, and very
difficult to simulate properly [10]. Some post-evaluation work on
the 1999 LL data suggests the presence of simulation artifacts that
allow hostile traffic to be distinguished based on idiosyncrasies of
the simulation. For example, during development of PHAD [20],
it was discovered that many attacks can be detected simply
because the packets have a TTL value of 253. It was concluded
that this was probably due to the network configuration used in
the simulation. A similar problem occurred with the TCP window
size field in NETAD [18].
 The most serious questions are raised by the large number of
attacks detected by anomalous source (remote) addresses by
NETAD, and two other systems, ALAD [22] and LERAD [21].
Source addresses are monitored by most network intrusion
detection systems, and form the basis of firewall policy, along
with destination addresses and port numbers. An anomaly would
seem to indicate a novel user, which for a password protected
service such as SSH or telnet, would be considered suspicious.
However most of the attacks detected by these systems in the LL
data are on public services: HTTP, SMTP, DNS, and anonymous
FTP. This does not make sense.
 McHugh [23] criticized the LL data because of the
unrealistically high rate of malicious attacks, a compromise
needed to keep the data set to a reasonable size. Although some
have suspected there are problems with the LL background traffic
(as suggested by anonymous reviewers of our other papers), we
are not aware of a detailed analysis of this data.
 The rest of this paper is organized as follows. In Section 2 we
review the LL evaluation and related work in network anomaly
detection, traffic collection and synthesis. In Section 3 we
introduce a simple anomaly detection system called SAD,
intended to motivate our approach to finding and correcting
artifacts. In Section 4, we statistically compare the LL
background data with some real traffic, which we find to be less
predictable and "dirtier" at many protocol levels. In Section 5 we
propose a strategy for making the LL evaluation more realistic by
mixing real traffic into the simulated off-line data. In Section 6
we test the mixed data on three systems, SPADE [13], PHAD, and
LERAD, and show that most of the questionable detections are
removed. In Section 7, we conclude.

2. RELATED WORK
 Our goal is to examine differences in the LL (simulated) and
real background traffic from the point of view of network anomaly
detection systems. We review some of those systems, how the LL

evaluation was conducted, and problems with collecting or
synthesizing background traffic.

2.1. The 1999 LL Evaluation
 The 1998 and 1999 LL data sets were originally used in blind
evaluations before the data was released. In 1999, eight groups
participated, submitting 18 different systems. Participants were
given 3 of the 5 weeks worth of data in advance in order to
develop their systems. One week (week 2) had 43 labeled
instances of 18 of the 58 test attacks. The other two weeks (weeks
1 and 3) were attack-free background traffic which could be used
to train anomaly detection systems. The data included traffic from
two sniffers (inside and outside the Internet router), audit logs,
nightly file system dumps and directory listings, and Solaris
system call traces (BSM).
 Four months later, the developers were given the two weeks of
test data (weeks 4 and 5) and asked to use their systems to identify
the 201 attacks, some of which were modified to be stealthy to
defeat signature detection systems (e.g. by slowing down a port
scan or disguising suspicious commands). Participants had to
identify each attack by time (within 60 seconds) and target IP
address, and report a numeric score or ranking indicating a
confidence level in the alarm. Systems were evaluated by the
number of attacks detected out of the number of in-spec attacks
(those they are designed to detect based on the data they examine)
at a scoring threshold allowing 100 false alarms. The best systems
used a combination of methods, both host and network based, and
both signature detection (modeling known attacks) and anomaly
detection (modeling normal behavior to detect new attacks). The
top four systems [17] detected 40% to 55% of those attacks, as
shown in Table 1.

System In-spec attacks Detected at 100 FA
Expert 1 169 85 (50%)
Expert 2 173 81 (47%)
Dmine 102 41 (40%)
Forensics 27 15 (55%)

Table 1. Top 4 results from the 1999 LL evaluation [17].

2.2. Traffic Collection and Synthesis
 The LL developers put much effort into making the
background traff ic appear as realistic as possible. Traff ic was
generated using custom software running on a small number of
hosts to emulate hundreds of programmers, secretaries, managers,
and other types of users running common UNIX or Windows
applications on thousands of hosts and websites. The distribution
of services (web, mail , telnet, FTP, etc.) was matched to the actual
distribution measured on a small Air Force base network in 1998.
Traff ic rates are highest during normal working hours, as with real
traff ic. Email messages were taken from public maili ng lists or
synthesized using English word bigram statistics. Some traff ic
that was too complex to synthesize was generated manually.
 Nevertheless, it is extremely diff icult to simulate the Internet
accurately. The diff iculty comes not just from modeling human
behavior, but also from modeling thousands of versions of various
operating systems, servers, and clients. Much of the "crud" found
in real traff ic [25] could originate from faulty versions of this
software. For example, in real traff ic that we collected on a
university departmental server, we have found reserved TCP flags
set, fragmented IP packets with the "don't fragment" flag set, TCP

retransmissions with inconsistent payloads, invalid application
protocol commands, undocumented protocols, and so on.
 A solution to this problem would be to collect real traff ic
rather than synthesize it. However, this raises privacy issues.
Public collections of real traff ic such as the Internet Traff ic
Archive [27], and the University of New Mexico data set [10], are
stripped of much of the data useful to anomaly detection,
including all of the application payload data.

2.3. Network Anomaly Detection
 Many older network anomaly detection systems, such as those
surveyed by [3], are based on modeling normal user behavior to
detect unauthorized users. To that end, these systems model
features that are controlled by the user, such as the destination IP
address and service (port number), and attributes that identify the
user, e.g. the source address. Unusual combinations of these
attributes are often hostile. For example, attempted accesses to
nonexistent ports might signal a port scan. An unusual source
address connecting to an authenticated service such as SSH might
indicate a password guessing attack. ADAM [31], NIDES [2],
eBayes [35], and SPADE are all systems that model addresses and
ports. For example, one mode of SPADE assigns an anomaly
score to inbound TCP SYN packets of 1/P(source address,
destination address, destination port), i.e. higher scores to packets
with combinations of these three attributes that appear less
frequently.
 User modeling differs from host based anomaly detection
systems that model program behavior to detect when a server or
operating system component has been compromised. Forrest [9]
showed that such systems make unusual sequences of system calls
when attacked. This can happen in a buffer overflow attack where
the compromised program is executing code supplied by the
attacker, but another possibilit y is that the attacker is exploiting a
vulnerabilit y in a rarely used feature of the program. Because
vulnerabiliti es are bugs, they are most likely to occur in poorly
tested code. Thus, another approach to anomaly detection is to
look for unusual inputs to a program that would invoke seldom
used features. For example, attacks such as teardrop and pod
(ping of death) exploit errors in IP packet reassembly code that
cause the target to crash when it receives fragmented IP packets
that cannot be reassembled properly. Because IP fragmentation is
rare, an anomaly detector that flags all fragmented traff ic, whether
legitimate or not, is li kely to detect these attacks, albeit at the cost
of some false alarms.
 Systems like PHAD and LERAD are program modelers. They
differ from user modelers in two respects. First, they greatly
extend the number of attributes monitored in order to cover many
of the protocols that might be exploited. PHAD (Packet Header
Anomaly Detector), which monitors both inbound and outbound
packets, models 34 fields in the Ethernet, IP, TCP, UDP, and
ICMP headers. LERAD (LEarning Rules for Anomaly
Detection), which monitors inbound client to server TCP streams,
models addresses, ports, length, duration, opening and closing
TCP flags, and the first 8 words in the application payload.
 Second, in order to cope with the bursty nature of network
traff ic over a wide range of time scales [15, 26], these systems use
a time-based model rather than a frequency-based model. In a
frequency based model such as SPADE, the probabilit y P(A = v)
that attribute A has value v is estimated by nv/n, where nv is the
number of times v is observed, and n is the total number of
observations. The assumption is that rare events are more likely to

be hostile. Thus, these systems assign an anomaly score of
1/P(A=v) = n/nv or something similar.
 PHAD, ALAD, LERAD, and NETAD model novel events,
where nv = 0 in training. They use the anomaly score tn/r where t
is the time since a novel value was last observed, n is the total
number of observations, and r is the number of anomalies that
occur in training, i.e. the size of the set of allowed values. For
instance, given the training sequence ababc, there are n = 5
observations and r = 3 allowed values (a, b, and c). Given the test
sequence aadad, only the two d's would generate anomalies. (We
assume separate training and test phases, although the system
could remain in training mode at all ti mes like SPADE). The last
anomaly before the first d is c, so t = 3. The last anomaly before
the second d is the first one, so t = 2. Thus, the first anomaly
score would be 3*5/3 = 5, and the second would be 2*5/3 = 3.33.
If the sum of anomaly scores over all attributes exceeds a
threshold, then an alarm is signaled.
 Note that tn/r has the form of an inverse probabilit y 1/P.
First, the average rate of anomalies in training is r/n, thus this
model assumes that this rate will continue. However, because the
set of allowed values is not allowed to grow after training, we
need another term to discount repeat occurrences of the same
anomaly. This term is t. This is a good model of bursty behavior,
and also quite intuitive. The assumption is that the probabilit y of
an event is inversely proportional to the time since it last occurred.

3. SIMULATION ARTIFACT DETECTION
 To motivate our investigation of simulation artifacts in the LL
data, we develop a very simple anomaly detection system that
could not possibly work. We call our system SAD (Simple
Anomaly Detector, available at [19]). SAD examines only
inbound TCP SYN network packets (destination address
172.16.x.x). It looks at just one byte of the packet, specified as a
parameter, for example the TTL field (time to live – an 8-bit
counter used to expire packets caught in misconfigured router
loops). During training, SAD records which of the 256 possible
values are seen at least once and which are not. During testing, it
detects an anomaly if this byte has a value that was never seen in
training. If there have been no other anomalies in the last 60
seconds, then it outputs an alarm with a score of 1 warning that
the packet is hostile.
 We train SAD on the inside sniffer traff ic from week 1 and
test it on week 2, which contains 43 attacks. This data (with truth
labels) was available in advance to the original participants in the
1999 evaluation. We evaluate SAD (using EVAL [19], our
implementation of the LL detection criteria) and identify several
promising SAD variations, which we define as any variation that
detects at least one attack for every 10 false alarms (Table 2,
second column). Then we evaluate these variants on the actual
test data by training them on inside week 3, and testing on weeks 4
and 5, which contain 177 of the 201 attacks used in the published
evaluation results. Almost all of these variations would have done
well i n this evaluation (Table 2, third column). The best SAD
variant, which examines the third byte of the source IP address,
detects 79 of 177 attacks (45%), with 43 false alarms. This result
is competitive with the top systems in the original evaluation.
 However, these results are misleading. To test how SAD
might behave in a real network, we mix the 146 hours of training
traff ic from week 3 and 197 hours of test traff ic from weeks 4-5
with equal durations of (presumably attack-free) traff ic collected
from a university departmental server on a large network. We mix

the traff ic by shifting the timestamps to make it appear as if the
web server is part of the home network. No other fields (e.g. IP
addresses) are changed. The mixed traff ic contains 154,057
simulated and 125,834 real inbound TCP SYN packets.
 As we should expect, the results are quite poor (Table 2, last
column). Very few attacks are detected, and the false alarm rate is
much higher. But a more detailed analysis shows that these results
make more sense. For example, on the simulated data SAD
detects source address anomalies in attacks on public web servers
(apache2, back, crashiis, and phf), mail servers (mailbomb,
sendmail),. DNS (ls_domain), and anonymous FTP (guessftp,
warez), where novel addresses should be normal. However, on
the mixed data, the only attack detected is neptune, which spoofs
the source address with an unassigned portion of the IP address
space (10 or 11 in the first byte). Likewise, most of the other
packet header anomalies detect only attacks that require the
attacker to write (usually arbitrary) values into those fields.
 But why did SAD do so well i n the first place? In the next
section, we compare the simulated training traff ic with our real
traff ic to shed some light on this question.

SAD Byte Det/FA Wks 1-2 Wks 3-5 Mixed
IP packet size, low byte 4/0 15/2 0/1
TTL 25/36 24/4 5/43
Source IP address, 1st byte 13/7 64/41 4/0
Source IP address, 2nd byte 13/7 67/42 0/0
Source IP address, 3rd byte 16/15 79/43 0/0
Source IP address, 4th byte 17/14 71/16 0/0
Source port, high byte 2/0 13/0 0/0
Destination port, high byte 4/24 4/0 4/1664
Destination port, low byte 5/6 0/0 0/0
TCP header size 4/0 15/2 0/5
TCP window size high byte 5/1 15/2 7/112
TCP window size, low byte 3/1 7/1 4/29
TCP options, bytes 1, 2, 3 4/4 15/2 0/1
TCP options, byte 4 4/4 15/2 0/255

Table 2. SAD detections and false alarms (Det/FA) for
variants that do well on the 43 attacks in weeks 1-2 of the 1999
LL IDS evaluation inside sniffer traffic. Detections and false
alarms are shown for weeks 1-2 (43 attacks), weeks 3-5 (177
attacks) and for weeks 3-5 mixed with real traffic.

4. SIMULATED VS. REAL TRAFFIC
 In this section, we compare the LL training data (inside sniffer
weeks 1 and 3) with real traff ic collected from a similar
environment, a university Solaris machine which is the main
server for the CS department, with several faculty user accounts
and serving several thousand web pages. We look for differences
in the distributions of attributes that an anomaly detection system
might monitor. We examine many traff ic types, but especially the
types most commonly exploited: inbound TCP client to server
traff ic.
 We are primarily interested in differences that could lead to
evaluation errors in typical anomaly detection systems. One type
of error could occur if values that appear only in hostile traff ic in
simulation actually occur in normal, benign traff ic. This would
cause those attacks to be missed. Another type of error could
occur if rare or novel values occur at a higher rate in real traff ic
because there are a wider range of values. This would either lead

to a higher false alarm rate, or possibly some adaptive process to
turn off the rule, resulting in a lower detection rate.
 We collected two sets of data from the server, a small set
consisting of two traces of one milli on packets each (several
hours), and a larger set of 100 milli on packets sampled over 10
weeks. The large set was filtered to allow quicker analysis by
extracting only the 1.6 milli on most interesting packets: truncated
inbound client to server sessions.

4.1. Analysis of Packets and Protocols
 The simulated and real networks are similar in that there are
two routers, one to a large local network with hundreds of hosts,
and a second to the Internet. However, the real network differs in
that it uses an Ethernet switch rather than a hub, so only traff ic to
and from the local host is visible. Also, our data was collected 2-3
years after the LL data was synthesized, during which time some
new protocols probably came into use and others were expanded.
There are some dynamically assigned IP addresses, and a
portmapper service to assign ports for RPC and NFS, which are
not found in the simulation. The only TCP application protocols
that are found in suff icient quantity to allow comparison are
HTTP, SMTP, and SSH. Some traff ic is blocked by a firewall ,
such as unreachable ports and IP packets with options. Although
this probably blocked most port scans (there were probably many),
we did find some apparently malicious HTTP and SMTP traff ic in
the real data.
 The traff ic was collected on www.cs.fit.edu. The smaller set
consists of two traces of 1 milli on packets each, collected on Nov.
4, 2001 from 17:40 to 04:43 local (Eastern) time the following day
(11 hours), and Nov. 6, 2001 from 10:25 to 12:05 (100 minutes).
Packets were truncated to 68 bytes. Table 3 compares the
distribution of protocols with that of inside week 3 in the LL set.
In general, the real traff ic is more complex in that there are more
protocols present at every level. At the transport layer there is
somewhat more TCP and ICMP and less UDP, but all three are
represented in suff icient quantities to allow comparison (and later,
mixing).

Attribute LL inside week 3 Real, unfiltered set
Packets, n 12,814,738 2,000,000
Ethernet.
protocols

4 (IPv4, ARP, hub
test, loopback)

45 (many
undocumented)

IP protocols 3 (TCP, UDP,
ICMP)

6 (also OSPFIGP,
IGMP, PIM)

IP packets 99.2% of Ethernet 94.8% of Ethernet
TCP packets 83.4% of IP 94.6% of IP
UDP packets 16.4% of IP 3.5% of IP
ICMP packets 0.056% of IP 0.268% of IP
TCP protocols
(in order of
descending
session
frequency)

HTTP, SMTP,
FTP, telnet, ssh,
finger, auth,
epmap, printer

HTTP, printer, POP3,
NFS, SMTP, RMI,
IMAP, nbsession,
42239, ssh, auth, dsp,
4045, X-font, portmap

UDP protocols
(by descending
packet
frequency)

DNS, NTP, router,
nbname,
nbdatagram, syslog

756, NTP, portmap,
DNS, syslog,
nbdatagram, nbname,
isakmp, xdmcp

Table 3. Protocols found in LL inside sniffer week 3 and in the
unfiltered real data set.

4.2. Analysis of Fields
 In this section, we compare the simulated training data from
the inside sniffer weeks 1 and 3 with the larger set of real traff ic
collected over 10 weeks. To reduce the workload of analyzing
these huge data sets, we filtered them to extract just the data that a
network intrusion detection system would most likely monitor: the
initial portions of inbound client to server requests.

4.2.1. Data Set
 Most of our analyses are based on the large sample of 100
milli on packets. This consists 50 traces of 2 milli on packets each
collected on Monday through Friday over 10 weeks from Sept. 30
through Oct. 25 and Nov. 4 through Dec. 13, 2002. Each trace
was started at 00:01 local time and ended when 2 milli on packets
were collected, usually about 10 to 15 hours later. Packets were
truncated to 200 bytes (134-146 bytes of TCP payload).
 To reduce the volume of data to a manageable level, the large
sample set was filtered. This filter removes the following data,
leaving 1,663,608 packets (1.6%).
• All non-IP packets.
• All outbound packets. A packet is inbound if the destination

address is 172.16.x.x or 192.168.x.x (simulated eyrie.af.mil)
or exactly the IP address of the real server (163.118.135.1).

• UDP packets to high numbered ports (over 1023), which are
normally server responses back to clients.

• TCP ACK, SYN-ACK, FIN-ACK, and PSH-ACK packets
unless within the first 100 payload bytes of a SYN packet
(i.e. only the first 100 bytes of an inbound client request are
passed, and none of the server's response).

• Any packet where more than 16 have been passed to the same
IP address/port/protocol (TCP/UDP/ICMP) combination in
the last 60 seconds. A 4K hash table is used, so there are a
small number of drops due to colli sions.

Most of the data of interest remains present after filtering.
Filtering both weeks 1 and 3 of the simulated inside sniffer traff ic
reduces this set from about 20M packets to about 1.6M packets.
 To compare application protocols, we reassemble TCP streams
from the filtered traff ic. Because these packets are truncated, we
use only the first 134 bytes of the first payload packet. For
interactive protocols such as SMTP, this method only allows the
first inbound command to be captured. However, this is suff icient
for our analysis.

4.2.2. Measurements
 We are primarily interested in the rate of novel values in each
attribute that an anomaly detection system might monitor. The
higher this rate, the higher the false alarm rate will be, and the
greater the chance that a genuine anomaly will l ater be masked.
We define the following four statistics:

• r – the number of observed values.
• r1 – the fraction of r consisting of values seen exactly

once.
• rh – the fraction of values seen for the first time in the

second half of the data.
• rt – the fraction of data needed for r to reach half its final

value.
For example, given the sequence ABCABD, r = 4 (the size of the
set { A,B,C,D}), r1 = 2/4 = 0.5 (C and D occur once), rh = 1/4
(only D is seen for the first time in the second half), and rt = 2/6

(because we observe r/2 = 2 letters in the first 2/6 of the
sequence).
 The statistic r is significant because it directly counts novel
events in the training data (which would be false alarms if they
occurred during testing), and is also used to compute the anomaly
score in time-based systems (i.e. tn/r). For Poisson processes
(where events are independent), r1 is a Good-Turing [11] estimate
of the probabilit y that the next value will be novel. For network
processes which are bursty with long range dependencies, r1 is
usually an underestimate. However rh and rt measure the rate of
novel values directly, either over the second half of the data (rh) or
the second half of the novel values (rt). Because there are gaps in
the data collection, we use packet counts rather than real time to
compute the fraction of data seen.
 The rh and rt statistics give us two points on the growth curve
of r over time. For many attributes, r will grow rapidly at first,
and then level off as all of the possible values are observed. We
are interested in both the initial growth rate, given by rt, and the
recent growth rate, given by rh. Often rh will be 0, so we need rt to
make meaningful comparisons in cases of slowly growing r.
 If an attribute has a Zipf distribution [39], then r1 = rh = rt =
0.5, and r grows without bound at a constant rate. A Zipf
distribution is a special case of a power law or Pareto distribution,
which occurs in many natural processes, for example, the
distribution of words in English, city populations, file sizes, or
website requests [1, 14]. We find that many network attributes in
the real traff ic, but not in the simulated traff ic, are approximately
Zipf, for example, client addresses and client versions.
 For binary attributes, we list the percentage of occurrences.
We consider it significant if an event occurs at any rate in one set
but never in the other. For continuous attributes we list the range
of values, although it is unclear when a larger range becomes
significant.

4.2.3. Comparison at Low Level Protocols
 We first compare the training traff ic (inside sniffer weeks 1
and 3) with the large, 10 week data set, both after filtering. In
most of the attributes we examined, the rate of anomalies is higher
in the real traff ic, as indicated by higher values of r, r1, rh and rt
(li sted as four consecutive values in Table 4a), even after taking
into account the larger size of the real data set. Where the
difference is significant (a somewhat subjective judgment), the
higher values are highlighted in italics. These fields include the
Ethernet source address, TTL, TOS, TCP options, UDP
destination port, and ICMP type.
 The following binary events occur only in the real traff ic:
fragmented IP packets (with the "don't fragment" flag set), TCP
and ICMP checksum errors, nonzero bits in TCP reserved fields
and reserved flags, and nonzero data in the urgent pointer when
the URG flag is not set. These events are present even after
removing TCP packets with bad checksums.
 For all continuous attributes we measured, the range is higher
in real traff ic. This includes packet size, UDP payload size, TCP
header size, urgent pointer, and window size. However it is
diff icult to judge the significance of these differences based on
range alone.
 Most attributes are less predictable in real traff ic than in
simulation. However the situation is opposite for TCP ports. The
rate of novel values is lower in the real traff ic. Most of the
simulated TCP ports are high numbered FTP data ports negotiated
during FTP sessions. The real traff ic has a much lower rate of

FTP sessions. Also, some real ports may be blocked by the
firewall .

r, r1, rt, rh Simulated Real
Ethernet source addr 8, 0, 0, .00001 76, .01, .11, .03
IP source addr 1023,.26, .71, .73 27632, .08, .53,.53
IP destination addr. 32, 0, 0, .0002 1, 0, 0, 0
TCP header size 2, 0, 0, .000003 19, .16, .05, .024
ICMP types 3, 0, 0, .001 7, .14, .14, .16
TTL 9, 0, .1, .00002 177, .04, .12, .023
TOS 4, 0, 0, .0003 44, .07, .64, .53
TCP dest port 8649,.35, .66, .65 32855,.001,.002,.3
TCP flags 8, 0, 0, .00002 13, 3, 0, .00009
TCP options 4 bytes 2, 0, 0, .00002 104, .22, .31, .18
UDP dest port 7, 0, 0, .0001 31, .52, .55, .45

Percent Simulated Real
Packets n = 658,801 n = 1,663,608
IP options None None
IP fragments 0 0.45%
Don't fragment (DF) 52% set 90% set
DF set in fragment No fragments 100% bad
IP checksum No errors No errors
TCP checksum No errors 0.017% bad
UDP checksum No errors No errors
ICMP checksum No errors 0.020% bad
TCP reserved flags Always 0 0.093% bad
TCP reserved field Always 0 0.006% bad
Urgent data, no flag None 0.022% bad

Range Simulated Real
IP packet size (38-1500) (24-1500)
TCP window size (0-32737) (0-65535)
TCP header size (20-24) (20-48)
Urgent pointer (0-1) (0-65535)
UDP packet size (25-290) (25-1047)

Table 4. Comparison of inside sniffer weeks 1 and 3
(simulated) with 10 weeks of real traffic after filtering (real).
(a) r, r1, rh and rt for discrete attributes, (b) percent true for
binary attributes, (c), ranges of continuous attributes.

 In Table 5 we compare inbound TCP SYN packets in the
simulated and real traff ic. This exposes some potential artifacts
that were not apparent in the larger set of all filtered packets. The
most striking difference is in IP source addresses. The number
and rate of novel addresses is thousands of times higher in real
traff ic than in simulation. This is not the case when UDP and
ICMP traff ic (or outbound TCP) is included.
 Other differences include TCP options (which determine
packet size and TCP header size) and window size. Every
inbound TCP SYN packet uses the exact same four TCP option
bytes, which set the maximum segment size (MSS) to 1500. In
reality, the number of options, their order, and the option types
and values varies widely.
 Window size (used to quench return traff ic) is allowed to
range from 0 to 65535. The full range of values is seen only in
real traff ic. Simulated traff ic is highly predictable, always one of
several values. A difference in range is also observed in source

ports (selected randomly by the client) and high numbered
destination ports (often negotiated). One other type of anomaly
seen only in real traff ic is a nonzero value in the acknowledgment
field, even though the ACK flag is not set.
 We have now accounted for all of the SAD attributes that
detect attacks. They all appear to be artifacts. These fall i nto two
categories. Either the simulated range is too low, allowing
detections of attacks that would otherwise be masked (e.g. window
size, source port), or the rate of false alarms is too low (e.g. source
address, TTL, TCP options). This does not mean that SAD did
not legitimately detect any attacks. For example, it detects
neptune by an anomalous source address that does not appear in
real traff ic either.

Attribute Simulated Real
Packets, n 50650 210297 + 6 errors
Source address
r, r1, rh, rt

29, 0, .03, .001 24924, .45, .53, .49

Dest addr, r 17 1 (163.118.135.1)
Src port, r 13946 (20-33388) 45644 (21-65534)
Dest port,r 4781 (21-33356) 1173 (13-65427)
IP pkt size, r 1 (44, 4 option bytes) 8 (40-68)
TCP options,r 1 (MSS=1500) 103 in first 4 bytes
Window size,r 7 (512-32120) 523 (0-65535)
TCP ack Always 0 0.02% bad

Table 5. Comparison of simulated and real inbound TCP SYN
packets (excluding TCP checksum errors).

4.2.4. Comparison at Application Protocols
 We compare HTTP requests in the simulated data (weeks 1
and 3) with 10 weeks of real traff ic. Because the real packets were
truncated to 200 bytes (usually 134-146 bytes of payload), we
examine only the first 134 bytes in both sets. Table 6 summarizes
the differences we found.

Inbound HTTP Requests Simulated Real
Number of requests, n 16089 82013
Different URLs requested, r, r1 660, .12 21198, .58
HTTP versions, r 1 (1.0) 2 (1.0, 1.1)
Commands (GET, POST...), r 1 (GET) 8
Options, r 6 72
User-agents, r, r1 5, 0 807, .44
Hosts, r 3 13

Table 6. Comparison of HTTP requests in simulated traffic
(inside weeks 1 and 3) and 10 weeks of real traffic.

 There are two simulated web servers (hume and marx).
However, the one real web server receives more traff ic and has
more web pages. The distribution of real URLs is approximately
Zipf, consistent with findings by Adamic [1]. A characteristic of a
Zipf distribution is that about half of all values occur exactly once.
The simulated URLs are distributed somewhat more uniformly.
Many of the singletons are failed requests which were simulated
by replacing the last 4 characters of the file name (e.g. html) with
xxxx.

There is a huge disparity in the number of user-agents (client
types). The simulated traff ic has only five, all versions of Mozilla
(Netscape or Internet Explorer). Real web servers are frequently

accessed by search engines and indexing services. We found the
top five user-agents in the real data to be (in descending order)
Scooter/3.2, googlebot/2.1, ia_archiver, Mozilla/3.01, and
http://www.almaden.ibm.com/cs/crawler. They also have a Zipf
distribution.
 The only simulated HTTP command is GET, which requests a
web page. The real traff ic has 8 different commands: GET (99%
of requests), HEAD, POST, OPTIONS, PROPFIND, LINK, and
two malformed requests, No and tcp_close,. There is also a much
wider variety of options, although some of these are due to the
introduction of HTML/1.1. Nevertheless there is wide variation in
capitalization and spacing. In the simulated traff ic, HTTP options
invariably have the form Keyword: value, with the keyword
capitalized, no space before the colon and one space afterwards.
This is usually but not always the case in real traff ic.
Furthermore, we occasionally find spelli ng variations, such as
Referrer: (it is normally misspelled Referer:) or the even more
bizarre Connnection: with three n's. Some keywords are clearly
malformed, such as XXXXXXX: or ~~~~~~~:. A few requests end
with a linefeed rather than a carriage-return and linefeed as
required by HTTP protocol. Finally there are some requests
which are clearly suspicious. We found 33 requests similar to the
following two examples.

GET /scripts/..%255c%255c../winnt/system32/cmd.exe?/c+dir
GET /MSADC/root.exe?/c+dir HTTP/1.0

Undoubtedly this did not accomplish much on a UNIX host.
 We look only briefly at SMTP (mail) and SSH (secure shell).
These are the only other TCP application protocols besides HTTP
that exist in suff icient quantity in both data sets to do a useful
comparison. Like HTTP, we once again find that real traff ic is
"messy", high in benign anomalies. Table 7 summarizes the
results.

Inbound Request Simulated Real
SMTP requests, n 18241 12911
First command, r 2 7
HELO hosts, r, r1 3, 0 1839, .69
EHLO hosts, r, r1 24, .04 1461, .58
No initial HELO or EHLO 0 3%
Lower case commands 0 0.05%
Binary data in argument 0 0.1%
SSH requests, n 214 666
SSH versions, r, r1 1, 0 32, .36

Table 7. Comparison of inside sniffer weeks 1 and 3 with 10
weeks of real inbound SMTP and SSH requests.

 A normal SMTP session starts with HELO or EHLO (echo
hello), but these are optional. In the simulated traff ic, every
session starts with one of these two commands. However, about
3% of real sessions start with something else, usually RSET, but
also QUIT, NOOP, EXPN, or CONNECT. About 0.2% of real
commands are lower case. One command (EXPN root) is
suspicious.
 The number of simulated remote hosts sending and receiving
mail (arguments to HELO and EHLO) is clearly unrealistic. This
is also reflected in the small number of source IP addresses in
general. The simulated traff ic has one malformed command, an

EHLO with no argument. The real traffic does too, and a variety
of other malformed arguments, including binary strings (1-21
bytes, probably too short to be a buffer overflow). The host name
arguments are roughly Zipf distributed, with over half appearing
only once.
 An SSH session opens with the client version string. The
simulated traffic uses a single client version. In real traffic there
are many versions, again Zipf distributed.

4.3. Potential Source of Artifacts
 In the previous section we saw that many attributes have a
wider range of values (higher r) in real traffic than in simulation,
and a higher growth rate (r1, rh, and rt), which would make them
harder to model. Why is this?
 One possibility is that the various traffic sources (hardware,
software, and people) are modeled incorrectly with r too small and
static, i.e. too predictable. A second possibility is that individual
sources display the correct ranges of values, but their timing is
wrong, resulting in an incorrect growth rate for r. A third
possibility is that the individual sources are correct in both values
and timing, but there are too few sources to simulate the diversity
of real traffic.

4.3.1. Source Hosts
 To investigate the first possibility, we compare single sources
in the simulated and real traffic. In the first two columns of Table
8, we compare TCP SYN packets originating from the simulated
Solaris host (pascal) with the real host, which also runs Solaris.
We see nearly identical behavior. Both sources produce highly
predictable values, especially for attributes such as window size,
TTL, and TCP options, fields that we previously identified as
artifacts.
 In the rightmost two columns, we compare inbound TCP SYN
packets, which represent aggregate sources. In this case, we see
(as before) that r is higher in real traffic. The simulated aggregate
traffic bears a greater resemblance to the simulated single source
than to real aggregate traffic. This effect is most noticeable for
TCP options and packet size (Ethernet, IP and TCP header), but
also for TTL and window size.

r (values) Sim out Real out Sim in Real in
Packets n=3165 n=6932 n=29263 n=7063
Ether size 1 (60) 1 (58) 1 (60) 6 (60-82)
IP length 1 (44) 1 (44) 1 (44) 6 (44-68)
TOS 1 (0) 1 (0) 3(0,8,16) 4 (0-3)
DF 1 (1) 1 (1) 2 (0-1) 2 (0-1)
TTL 1 (255) 1 (255) 7 65
Header 1 (24) 1 (24) 1 (24) 6 (24-48)
Window
size

2 (8760-
24820)

1 (24820) 7 (512-
32120)

40 (512-
65535)

Urg ptr 1 (0) 1 (0) 1 (0) 2 (0-1738)
Options 1 (MSS) 1 (MSS) 1 (MSS) 20

Table 8. Number (r) and range of values in outbound (from
Solaris) and inbound TCP SYN packets in week 3 and the
small real data set.

4.3.2. Self-Similarity
 Although the evidence suggests that the source of simulation
artifacts is too few sources, we cannot yet rule out a lack of
burstiness or self-similarity as another source. We know that

many types of network events tend to occur in bursts separated by
long gaps, regardless of time scale (self-similarity) [15, 26]. If
individual sources were instead modeled as Poisson processes
(independent events, lacking long gaps), then in an aggregate
process we would expect to see all possible values within a short
period of time. On the other hand, if individual sources produced
bursts of events with long gaps, then r would continue to grow as
new sources are seen for the first time. Furthermore, because gaps
can be arbitrarily long, r should grow throughout any arbitrarily
long trace.
 We first observe that both the simulated and real traffic are
bursty. When we examine the distribution of intervals between
successive events, we find that the distribution is heavy tailed
compared to a Poisson distribution, i.e. lots of short and long
gaps. We found this to be true for many packet types: Ethernet,
ARP, ICMP, UDP, TCP, TCP SYN, HTTP SYN, and SMTP
SYN. Although these are all aggregate processes, the results hold
because the sum of Poisson processes is a Poisson process, but the
sum of self-similar processes tends to remain self-similar.
 We also measured the Hurst parameter [15], a measure of how
rapidly the burstiness "smoothes out" as the time scale increases.
One measure of burstiness is the standard deviation of events per
time interval, e.g. packets per second or packets per minute. As
we increase the time scale by a factor of M (e.g. 60), we would
expect the relative standard deviation to decrease by a factor of
M1/2 for a Poisson process. For a purely self-similar process, there
is no decrease at all, i.e. M0. A process is said to have a Hurst
parameter of H if the standard deviation decreases by a factor of
M1-H, where H = 0.5 indicates a Poisson process and H = 1
indicates a purely self-similar process. Many network events
have Hurst parameters of 0.7 to 0.9.
 We compared Hurst parameters in the simulated and real
traffic for all of the packet types mentioned above. We measured
H by computing the relative standard deviation of the event rate at
sampling intervals of M = 1, 10, 100, and 1000 seconds. We then
estimated the Hurst parameter between successive values of M as

 HM-10M = 1 + log10((σ10M/µ10M) / (σM/µM))

where HM-10M is the Hurst parameter estimate between sampling
rate M and 10M, σM is the sample standard deviation for samples
over M seconds, and µM is the sample mean. Because measuring
H requires a contiguous trace, we compared each of the two small
traces of one million packets with two real traces taken from the
first million packets of simulated week 3, days 1 and 7.
 We found that in most cases, the simulated traffic has similar
or higher Hurst parameters than real traffic. This is true for both
individual and aggregate processes. Table 9 shows two examples,
where we compare outbound and inbound TCP SYN packets from
the first of two real traces with the first million packets of week 3,
day 1. Although the number and rate of simulated outbound
packets is small, we obtained similar values with longer traces.

 Sim out Real out Sim in Real in
Packets 235 5892 2265 5387
Packets./sec. .0108 .148 .104 .135
H, 1-10 sec. .547 .610 .594 .670
H, 10-100 s. .614 .484 .630 .694
H, 100-1000 s. .719 .617 .694 .747

Table 9. Packets, packet rates, and Hurst parameter estimates
over the range 1 to 1000 seconds for outbound (from the
Solaris host) and inbound TCP SYN rates for simulated and
real traffic.

 This evidence seems to rule out the first two possibiliti es that
individual sources are modeled incorrectly either in range of
values or in timing. Instead, we conclude that a li kely source of
artifacts is that there are too few independent sources of traff ic to
duplicate the complexity of Internet traff ic.

4.4. Summary
 We found what appear to be simulation artifacts at every layer
of the protocol stack from the data link layer to the application
layer. These are of two types. First, the simulated data lacks
"crud", anomalous but mostly benign events that might trigger
false alarms during testing, such as checksum errors, IP fragments
with the "don't fragment" flag set, TCP retransmissions with
inconsistent or partially overlapping payloads, or data in the TCP
reserved fields, urgent pointer, or acknowledgment field when the
corresponding flags are not set. These anomalies make up about
0.01% of real packets.
 Second, many attributes that have a small and static range of
values in simulation would actually have a much wider range in
practice (often with a power law or Zipf distribution), and this
range would grow at a constant rate, introducing a huge disparity
in the rate of novel events. The problem occurs in Ethernet and IP
protocols and source addresses, TOS, TTL, TCP options and
window size, HTTP and SMTP commands and arguments, and
HTTP and SSH client versions. The problem is especially severe
for source IP addresses for inbound (but not outbound) TCP SYN
packets. This attribute is monitored by nearly all network
intrusion detection systems. The simulated rate of novel addresses
(and thus the false alarm rate) is too low by a factor of many
thousands.
 Finally, we compared individual traff ic sources in the
simulated and real traff ic, and these appear to be modeled
correctly, both in range of values and in timing. We believe the
problem is due to too few sources.

5. EVALUATION WITH MIXED TRAFFIC
 The evidence presented in Sections 3 and 4 suggest a problem
with the LL data. However, this data was generated at great
expense and could not easily be replaced. We would prefer a
solution that fixes the data as it exists now, rather than require that
a new set be created.
 We believe it is impractical to synthesize Internet traff ic
accurately due to its vast complexity. However, we believe that
attacks can be – and for the most part were – simulated correctly.
Thus we propose to use real traff ic (with all the usual implications
about privacy and security) as background and training data, but
to continue to use the labeled, simulated attacks as before.
 Our proposal is to add real traff ic to the LL data to make it
appear as if it were being sent and received during the simulation.

We believe it is not necessary to remove the simulated background
traff ic because the combination should be similar (in the statistical
sense of Section 4) to the real traff ic alone. To see this, let AS be
the set of values of attribute A seen in simulation up to the present
time, and let AR be the corresponding set of values seen in real
traff ic. Then the set of values AM seen in merged traff ic would be
at all ti mes:

 AM = AS ∪ AR

Note that the r statistic for attribute AS, which we denote rS is
simply |AS|. Likewise, we define rR = |AR| and rM = |AM|.
Therefore, we have at all ti mes:

 max(rS, rR)

���
M
���

S + rR

In cases where we suspect r is an artifact, we have rS << rR, and
therefore rM � rR, so removing the simulated traffic would have
little effect. Furthermore, because this is true at all times, rM and
rR would have similar growth rates.
 A problem can occur when AR is too small or empty, i.e. there
is little or no real traffic of types where A is defined to mix with
the simulation. In this case, rM ��� S, and the artifact, if there is
one, would not be removed. One such example is the destination
address of incoming traffic, where there are rS = 16 simulated
hosts and rR = 1 real host. We are unable to test whether the
destination address is an artifact in the simulation (although we
have no reason to believe that it would be). Other untestable
attributes are those of FTP and telnet payloads, because there is
little FTP and no telnet traffic in our real data. (Remote login and
FTP are available only via the SSH protocol).
 We wish to evaluate network anomaly detection systems on
mixed data. Our approach is as follows. First, we analyze the
system to determine which attributes are monitored. Then we test
the simulated and real data to determine which attributes are
present in the simulation, but absent or rare in the real data. Then
we either modify the system to ignore these attributes (e.g. remove
rules for FTP and telnet), or we modify the real data to remove the
discrepancy (e.g. modify destination IP addresses in the real
traffic). We illustrate the process with three systems, SPADE,
PHAD, and LERAD.

5.1. Data Preparation
 For our mixed traffic, we use the same large, filtered data set
as described in Section 4. We have 579 hours of traffic, which is
more than enough to mix into the 146 hours of traffic in inside
sniffer week 3 plus the 198 hours in weeks 4 and 5. We mix the
traffic in a 1:1 ratio, i.e. one hour of simulated traffic is mixed
with one hour of real traffic. Other ratios would be possible by
stretching or compressing the real traffic, but we do not do this.
 We mix the traffic to make it appear as if all of the collected
data occurs during the simulation. We do this by adjusting the
time stamp of the first real packet to match the time stamp of the
first simulated packet, then maintain the relative times of the other
real packets, excluding gaps in the two collections. This is
illustrated in Figure 1. Time reads from left to right.

Figure 1. Mapping real time into simulation time when there
are gaps in collection in both data sets.

The real traff ic consists of 50 traces, divided into 10 weeks. We
mix these into weeks 3 (training), 4, and 5 (test) of the inside
sniffer data to prepare three mixed data sets, which we label A, B,
and C as shown in Table 10. Prior to mixing, both the simulated
and real traff ic are filtered as described in Section 4.2.1 to pass
only truncated and rate limited inbound client to server requests.
We denote the unmixed data (after filtering) as set S.

Set Training data Test data
S LL inside week 3 LL inside weeks 4-5
A S + real weeks 1-3 S + real weeks 4-7
B S + real weeks 4-6 S + real weeks 7-10
C S + real weeks 7-9 S + real weeks 1-4

Table 10. Mixed data sets used for evaluation. All data is
filtered.

 The results for SAD in Section 3 were obtained with sets S
and C. However sets A and B give results similar to C. In this
case, filtering has littl e effect because most inbound TCP SYN are
passed through.

5.2. Algorithm Preparations
 In this section we describe how we modify SPADE, PHAD,
and LERAD to meet the requirement that it not test any attributes
where rR << rS. We can do this either by modifying the data
(SPADE), the algorithm (LERAD), or determining that no
modification is needed (PHAD).

5.2.1. SPADE Modifications
 SPADE is a frequency based model of inbound TCP SYN
packet addresses and port numbers. It has four probabilit y modes
(0-3), which assign scores to every such packet as follows:
0. 1/P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP)
1. 1/P(DA, DP, SA, SP)
2. 1/P(DA, DP, SA)
3. 1/P(DA, DP) (default)
where the joint probabiliti es are based on counts up through the
current packet, and SA, SP, DA, and DP denote source address,
source port, destination address, and destination port, respectively.
 All probabilit y modes include the destination address (DA),
which implies that SPADE would build separate models for the
simulated and real hosts. To prevent this from happening, we
randomly replace all real destination IP addresses with one of the
four main targets in the simulation (pascal, hume, marx, or zeno),
making it appear as if the real traff ic were on these hosts instead.

5.2.2. PHAD Modifications

 PHAD is a time-based global model of packet header fields. If
any packet (inbound or outbound, client or server) displays a
value never seen in training, then PHAD assigns a score of Σ tn/r,
where t is the time since the previous anomaly, n is the number of
training packets, and r is the number of allowed values, and the
sum is over all of the anomalous attributes.
 There are 34 attributes corresponding to the various 1 to 4
byte fields in the Ethernet, IP, TCP, UDP, and ICMP packet
headers. The conditions for these fields to be present, is that the
packet be of the corresponding type. From Table 3 (Section 4.1)
we see that all five types of packets are available in comparable
quantities in both the simulated and real traff ic. Thus, no rules
need to be removed from PHAD.

5.2.3. LERAD Modifications
 LERAD is a time-based model, li ke PHAD, assigning a score
of Σ tn/r to novel attribute values. It creates conditional rules of
the form

 if A1 = v1 and A2 = v2 and ... then Ak ∈ { vk, vk+1, ... vk+r-1}

where A1 through Ak are arbitrary attributes and the vi are values.
The rules are randomly selected such that they are always satisfied
in training and have high n/r.
 LERAD models inbound TCP streams from client to server.
The attributes are date, time, single bytes of the source and
destination address, source and destination ports, TCP flags of the
first, next to last or last packet, duration, length, and the first 8
words in the application payload.
 There are many potential rules that could exclude real traff ic,
for example "if DA = pascal and DP = FTP then ...". Rather than
modify LERAD to avoid such rules, we modify it to record the
number of simulated and real training instances that satisfy the
rule antecedent, then weight each rule by the fraction of real traff ic
when computing the anomaly score. This has the effect of
removing rules that depend only on the simulated traff ic.

5.3. Evaluation Criteria
 We evaluate SPADE, PHAD, and LERAD on the LL data
with and without real traff ic mixed in. This serves two purposes.
First, we wish to know if we successfully removed the artifacts.
Second, we wish to predict how these systems would work on real
traff ic. Although the rate of attacks in the LL data is artificially
high (except possibly for probes), we can still use these results to
estimate the probabilit y of detecting an attack given any false
alarm rate (e.g. 10 per day), on the type of traff ic that we add to
the data.
 To test whether artifacts are removed, we look at each attack
and the attributes that lead to its detection with and without
mixing. If, based on the attack's description, the detection is
suspect, then we would expect it to be missed when real traff ic is
added. For example, we would expect that HTTP or SMTP
attacks detected by source address in simulated traff ic would be
missed in mixed traff ic. However, if the feature is genuine, for
example, neptune's forged source address, then the attack would
still be detected, although it could still be missed due to a higher
false alarm rate. In general, we will use the following somewhat
subjective guidelines to determine whether a detection is
legitimate.

• Source address is legitimate for denial of service (DOS)
attacks that spoof it, or if the attack is on an

Real

Simulated

authenticated service (e.g. telnet, auth, SSH, POP3,
IMAP, SNMP, syslog, etc), and the system makes such
distinctions. FTP is anonymous in the LL data, so we
consider it public.

• Destination address is legitimate for probes that scan
addresses, e.g. ipsweep.

• Destination port is legitimate for probes that scan or
access unused ports, e.g. portsweep, mscan, satan. It is
debatable whether it is legitimate for attacks on a single
port, but we will allow them.

• TCP state anomalies (flags, duration) are legitimate for
DOS attacks that disrupt traff ic (arppoison, tcpreset), or
crash the target (ntfsdos, dosnuke).

• IP fragmentation is legitimate in attacks that generate
fragments (teardrop, pod).

• Packet header anomalies other than addresses and ports
are legitimate if a probe or DOS attack requires raw
socket programming, where the attacker must put
arbitrary values in these fields.

• Application payload anomalies are legitimate in attacks
on servers (usually R2L (remote to local) attacks, but
may be probes or DOS).

• TCP stream length is legitimate for buffer overflows.
• No feature should legitimately detect a U2R (user to

root) or Data attack (security policy violation).

5.4. Evaluation Procedure
 We use the EVAL program (available at [19]) to test whether
an attack is detected. EVAL uses the same criteria as the original
1999 LL evaluation as described in [17]. However we have had to
make some assumptions where the description is ambiguous.
 EVAL counts an attack as detected if there is at least one
alarm that correctly identifies the target IP address (or one target if
there is more than one) and if the alarm occurs within 60 seconds
of any point within any segment of the attack. Attack segments
are derived from the start times, durations, and destination
addresses from the LL master detection truth table [17], when
(with three exceptions), the destination is a local address
(172.16.x.x or 192.168.x.x in the LL set). The three exceptions
allowed by EVAL are two instances of httptunnel and one
instance of portsweep which have no segments with a local
destination address. In these cases, the local address from the LL
master identification list [17] is used instead.
 Systems are evaluated based on the number of "in-spec"
attacks detected for a given number of false alarms as the scoring
threshold is varied. An attack is in-spec if the system is designed
to detect it, based on the attack type, input data, target operating
system, and whether the attack is new or stealthy. Each attack
instance during week 4 or 5 is labeled with this information so that
the scoring is unambiguous. For this paper, we consider an attack
in-spec if there is evidence for the attack in the inside sniffer data
on which we test it. There are 177 such instances out of 201 in
weeks 4 and 5.
 An alarm is counted as a false alarm if it falls outside of all
attack segments by more than 60 seconds, whether or not that
segment is in-spec. If an alarm occurs during two overlapping
attacks, then EVAL counts both attacks as detected. For a given
false alarm rate, EVAL sets the threshold as low as possible
without exceeding that rate. In other words, if the limit is 100
false alarms, then detections between the 100'th and 101'st highest
scoring false alarms are included. In case of tie scores, alarms are

ranked in the order they are input, with the first alarm ranking
highest.
 It is often possible to decrease the number of false alarms
without affecting detections by consolidating bursts of alarms.
We use the program AFIL.PL (also available at [19]) to do this
prior to all our evaluations. AFIL.PL divides the alarm sequence
into one-minute intervals, then discards any alarm if there is a
higher scoring alarm in the same interval that identifies the same
target.

6. EVALUATION RESULTS WITH MIXED
TRAFFIC
 Based on the evaluation criteria and procedures described in
Section 5, we obtained the following results for SPADE, PHAD,
and LERAD.

6.1. SPADE
 We tested SPADE version v092200.1, which is built i nto
SNORT 1.7 Win32 [29]. We used sets S, A, B, and C, which
were further modified as in Section 5.2 to randomly substitute real
destination addresses with simulated ones. All SPADE options
were set to their default values, and all SNORT rules other than
SPADE were turned off . SPADE does not have separate training
and test modes, so we ran it on weeks 3 through 5 continuously,
discarding all alarms in week 3. SPADE uses an adaptive
threshold with various parameters to control alarm reporting.
However we used the raw score reported by SPADE instead. The
default threshold allows thousands of false alarms so we do not
believe that any were lost.
 Results are shown in Table 11 for each of the four probabilit y
modes. We used a threshold of 200 false alarms rather than 100
because the numbers are low. SPADE detects about half as many
attacks at 100 false alarms.

SPADE detections at 200 FA S A, B, C
0: P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP) 6 6, 6, 7
1: P(DA, DP, SA, SP) 1 0, 0, 0
2: P(DA, DP, SA) 6 2, 1, 1
3: P(DA, DP) (default) 8 9, 8, 7

Table 11. Attacks detected by SPADE at 200 false alarms
according to EVAL on filtered inside sniffer weeks 3-5 (S) and
when mixed with real traffic (A, B, C) in each probability
mode.

 Probabilit y modes 0 and 1 include the source port (SP), which
is normally picked randomly by the client and would not be
expected to yield useful information. The six attacks detected in
mode 0 on set S are insidesniffer, syslogd, mscan, tcpreset,
arppoison, and smurf. All but mscan are probably coincidental
because the others generate no TCP SYN packets. However, all
but syslogd target multiple hosts, increasing the likelihood of a
coincidental alarm for one of the targets.
 However modes 2 and 3 show the effects of mixing clearly.
We have previously identified source address (SA) as an artifact.
We now find that adding real data removes most of the detections
from mode 2, which uses SA, but not from mode 3, which does
not. On S, mode 2 detects guest, syslogd, insidesniffer, perl,
mscan, and crashiis. By our previously mentioned criteria, guest
(telnet password guessing) could legitimately be detected by SA,

and mscan (a probe for multiple vulnerabilities on a range of
hosts) by destination address or port (DA or DP). We do not
count syslogd or insidesniffer (no TCP traffic), perl (a U2R
attack), or crashiis (an HTTP attack).
 SPADE detects only mscan on all three mixed sets. On A, it
also detects portsweep, which also can legitimately be detected by
DP. Thus, our results are consistent with the claim that SA (but
not DP) is an artifact and that the artifact is removed in mixed
traffic. When real traffic is added, the fraction of legitimate
detections goes from 2/6 to 1/1 (or 2/2).

6.2. PHAD
 Although it is not necessary to modify PHAD to test it on
mixed traffic, we modified it to include the TTL field. This field
was removed in the original version because it was believed to be
an artifact. We wish to see whether adding real traffic will remove
it.
 On sets S, A, B, and C, PHAD detects 76, 18, 32, and 25 in-
spec attacks respectively at 100 false alarms according to EVAL.
The median mixed result is for C, so we restrict our detailed
analysis to S and C. However, A and B give similar results.
 In Table 12, we list the attacks detected in sets S and C
grouped by the attribute that contributes the most to the detection.
We classify each detection as legitimate or not according to the
criteria at the beginning of this section. We list the number of
legitimate and total detections separated by a slash, then list the
legitimate and non-legitimate detection types also separated by a
slash. For example, out of the 36 attacks detected in S by TTL, we
classify only the 7 instances of portsweep as legitimate, because
this is the only attack which requires the attacker to fill in this
field.

Attribute Legitimate/Detected in S In C
TTL 7/36: portsweep / apache2,

back, casesen, crashiis,
ffbconfig, guessftp, guesstelnet,
ipsweep, mailbomb, named,
neptune, netbus,
netcat_breakin, ntinfoscan,
ppmacro, sechole, smurf, yaga

1/2: portsweep
/ ffbconfig

Ether-DA 0/1: mscan 0/1: mscan
Dest. IP
address

1/5: portsweep / ncftp,
guesstelnet

0/3: ncftp

IP frag 7/8: pod, teardrop /
insidesniffer

5/5: teardrop,
pod

Source IP
address

0/5: xlock, portsweep, ncftp,
processtable, sendmail

0/0

Checksums 1/6: udpstorm / smurf, apache2 0/0
TCP flags 6/6: portsweep, queso 9/9: queso,

portsweep,
dosnuke

Urgent ptr 4/4: dosnuke 1/1: dosnuke
UDP DP 5/5: satan, portsweep, udpstorm 0/0
Packet size 0/0 1/2:satan/ncftp
Window 0/0 2/2: portsweep
Total 31/76 (41%) 19/25 (76%)

Table 12. Attacks detected by PHAD attributes at 100 false
alarms in sets S and C.

 When we add real traffic, the percentage of legitimate
detections increases from 41% to 76%. Furthermore, of the 6
remaining detections we classify as not legitimate, 3 are
destination address anomalies, which we are unable to remove
because there is only one new destination address in the real
traffic. One other (ffbconfig) is detected because it overlaps
portsweep and is detected by the same alarm. If we ignore these 4
cases, then the fraction of legitimate detections increases to 19/21
or 90%.

6.3. LERAD
 We modified LERAD to weight rules by the fraction of real
traffic satisfying the antecedent in training. However, we find in
practice that this weighting has very little effect. Almost all of the
rules are satisfied by a significant fraction of real traffic, and the
effect is to decrease the number of detections by less than 3%.
 We also modified the TCP stream reassembly algorithm to
handle truncated and filtered traffic as described in Section 4.2.1.
The LL data contains complete packets, allowing streams to be
reassembled completely. However, truncated TCP packets would
leave gaps. Thus, we truncate the stream after the first 134 bytes
of the first payload packet to match the maximum payload size of
the filtered traffic. Our filter removes closing TCP flags.
Therefore we also modify the TCP flag attributes to be the flags of
the last three packets up through the payload, instead of the first
and last two packets in the completely reassembled stream. The
modified reassembly is also applied to the simulated traffic.

Attribute Legitimate/Detected in S In C
Source
address

8/26: dict, guesstelnet, guest,
sshprocesstable, sshtrojan /
casesen, crashiis, fdformat,
ffbconfig, guessftp, netbus,
netcat_setup, perl, ps,
sechole, sqlattack, xterm,
warezclient, warezmaster

0/0

Dest.
address

1/6: mscan / ncftp,
guesstelnet

1/6: mscan /
ncftp, guesstelnet

Dest. port 14/14: ftpwrite, guesspop,
imap, ls_domain, satan,
named, neptune, netcat,
netcat_breakin

11/11: ftpwrite,
ls_domain, satan,
named, netcat,
netcat_breakin,

Payload 22/29: apache2, back,
crashiis, imap, mailbomb,
ntinfoscan, phf, satan,
sendmail / guesstelnet,
portsweep, yaga

8/8: back, imap,
ntinfoscan, phf,
satan, sendmail

Duration 0/1: insidesniffer 0/0
Length 0/2: netbus, ppmacro 1/1: sendmail
TCP
flags

4/9: dosnuke / back,
loadmodule, sendmail

4/4: dosnuke

Total 49/87 (56%) 25/30 (83%)

Table 13. Attacks detected by LERAD at 100 false alarms on
sets S and C.

 LERAD uses a randomized rule generation algorithm. In 5
runs on set S, EVAL detects 87, 88, 80, 85, and 91 detections.
(The lost of detections, compared to about 114 on unfiltered
traffic, is due mostly to the loss of TCP flags and some of the
payload). On one run each on sets A, B, and C, the modified

LERAD detects 29, 30, and 30 in-spec attacks. Thus, we confine
our detailed analysis to the middle values of each group, the run
detecting 87 attacks in S, compared with C. As with PHAD, we
categorize each detection as legitimate or not, and list the results
in Table 13.
 Once again, we find that adding real data reduces the fraction
of questionable detections. The fraction we allow as legitimate
increases from 56% to 83%. Of the 5 questionable detections in
C, all are detected by destination address, which is unaffected by
the real traff ic.

6.4. Results Summary
 We tested SPADE, PHAD, and LERAD on mixed data, and
found by an analysis of the detected attacks that suspected
simulation artifacts were removed. In particular, two strong
artifacts were removed: TTL from PHAD, and source address
from SPADE and LERAD.
 We also reached similar conclusions in tests on ALAD and
NETAD, although we omit the detailed analysis. We modified
both programs so that no rule depends exclusively on simulated
data.
 ALAD models TCP streams like LERAD, but uses fixed rather
than learned rules. We modified these rules to remove
dependencies on the destination address, which would distinguish
the real traff ic. We also removed rules for application payloads
other than HTTP, SMTP, and SSH. We used LERAD's modified
TCP stream reassembly algorithm. The result was to increase the
fraction of legitimate detections, mostly by removing detections by
source address.
 NETAD models packets, li ke PHAD, but for several types
such as inbound TCP, inbound TCP SYN, HTTP, SMTP, telnet,
and FTP. We removed the telnet and FTP rules. Again, the
fraction of legitimate detections was increased, mostly by
removing source address and TCP window size anomalies.
 The results are summarized in Table 14. The original number
of detections is the number reported in the literature at 100 false
alarms when trained on inside week 3 and tested on weeks 4-5
before the data is filtered or the algorithm is modified. For sets S
and C we show the number of legitimate and total detections, and
the percentage legitimate. Set C generally resulted in a number of
detections between those of sets A and B, and is therefore the
most representative of the mixed results. In every case, the
fraction of legitimate detections increases when mixed data is
used.

System Orig Legit/S (pct) Legit/C (pct)
SPADE, mode 2 2/6 (33%) 1/1 (100%)
PHAD, no TTL 54 31/51 (61%) 19/23 (83%)
ALAD 59 16/47 (34%) 10/12 (83%)
LERAD (avg.) 114 49/87 (56%) 25/30 (83%)
NETAD 132 61/128 (48%) 27/41 (67%)

Table 14. Legitimate and total detections at 100 false alarms
on sets S and C. The original results (orig) are the published
results based on the unmodified algorithm on unfiltered data
(inside weeks 3-5).

7. CONCLUSIONS AND FUTURE WORK
 We analyzed the attack-free portions of the 1999 LL inside
sniffer traff ic by comparing it with one source of real traff ic from
the point of view of attributes that are important to anomaly

detection. We discovered many attributes that have a small , fixed
range in simulation, but a large and growing range in real traff ic,
in particular, remote client addresses, TTL, TCP options and TCP
window size. The simulated traff ic also lacks "crud", such as IP
fragments, garbage data in unused TCP fields, bad checksums, and
malformed application commands and arguments.
 While these differences are of no consequence to a signature
detection system, they could be to an anomaly detection system,
which is designed to be sensitive to unusual events. The LL
background underestimates the frequency of these events, which
would otherwise generate false alarms in many systems. It also
allows the systems to detect attacks based on idiosyncrasies that
would normally be masked.
 We propose solving these problems by adding real traff ic to
the simulation. This requires careful analysis to ensure that the
system cannot distinguish the real traff ic from the simulation, and
that it does not monitor traff ic types for which no real data is
available. We did this for five systems and showed that many
attacks that appear to be detected by suspected simulation artifacts
are no longer detected when real traff ic is added.
 Although we tested only the 1999 inside sniffer traff ic, we
believe the problem exists in the outside traff ic and the 1998
traff ic because they were generated by the same methodology. We
do not believe that the host based data (BSM, audit logs, etc.) are
affected by artifacts because this data was generated by real
hardware and software, rather than simulated.
 Our analysis is based on a single source of real network traff ic.
Obviously every environment is different, so we must be cautious
about drawing general conclusions. Our results need to be
confirmed using other sources of real traff ic. Also, we do not
know the effects of changing the proportion of simulated and real
traff ic, which could be done by squeezing, stretching, or sampling
the real data, or by using other sources with different rates. Our
analysis assumes that the real traff ic is attack-free, but we know
that this is not the case. Finding and removing (or labeling) all of
the hostile traff ic would be diff icult.
 Evaluations using real traff ic are usually not repeatable
because privacy and security concerns usually prohibit the release
of this data off-line. Furthermore, as hardware gets faster,
software gets more complex, and new protocols are introduced,
real traff ic will l ook less and less like the LL data. It is more
common now for data to be encrypted and inaccessible. These are
diff icult problems that remain to be solved.

Acknowledgments
This research is partially supported by DARPA (F30602-00-1-
0603).

References
 [1] L. A. Adamic, "Zipf, Power-laws, and Pareto - A Ranking

Tutorial",
http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html
(2002)

[2] D. Anderson,. et. al., "Detecting Unusual Program Behavior
using the Statistical Component of the Next-generation
Intrusion Detection Expert System (NIDES)", Computer
Science Laboratory SRI-CSL 95-06 May 1995.
http://www.sdl.sri.com/papers/5/s/5sri/5sri.pdf

[3] S. Axelsson, "Research in Intrusion Detection Systems: A
Survey", TR 98-17, Chalmers University of Technology,
1999.

[4] D. Barbara, Wu, S. Jajodia, "Detecting Novel Network
Attacks using Bayes Estimators", SIAM Intl. Data Mining
Conference, 2001.

[5] C. Elkan, "Results of the KDD'99 Classifier Learning
Contest", http://www.cs.ucsd.edu/users/elkan/clresults.html
(1999)

[6] E. Eskin, "Anomaly Detection over Noisy Data using
Learned Probabilit y Distributions", Intl. Conf. Machine
Learning, 2000.

[7] E. Eskin, A. Arnold, M, Prerau, L. Portnoy & S. Stolfo. "A
Geometric Framework for Unsupervised Anomaly Detection:
Detecting Intrusions in Unlabeled Data", In D. Barbara and
S. Jajodia (editors), Applications of Data Mining in
Computer Security, Kluwer, 2002.

[8] S. Floyd, V. Paxson, "Diff iculties in Simulating the Internet",
IEEE/ACM Transactions on Networking, 2001.

[9] S. Forrest, S. A. Hofmeyr, A. Somayaji , and T. A. Longstaff ,
"A Sense of Self for Unix Processes", Proc. 1996 IEEE
Symposium on Computer Security and Privacy, 1996.

[10] S. Forrest, Computer Immune Systems, Data Sets and
Software, http://www.cs.unm.edu/~immsec/data-sets.htm
(2002).

[11] W. Gale, G. Sampson, "Good-Turing Frequency Estimation
without Tears", Journal of Quantitative Linguistics 2.217-37,
1995.

[12] A. K. Ghosh, A. Schwartzbard, "A Study in Using Neural
Networks for Anomaly and Misuse Detection", Proc. 8'th
USENIX Security Symposium, Aug. 26-29 1999,
Washington DC.

[13] J. Hoagland, SPADE, Sili con Defense,
http://www.sili condefense.com/software/spice/

[14] B. A. Huberman, L. A. Adamic, "The Nature of Markets in
the World Wide Web",
http://ideas.uqam.ca/ideas/data/Papers/scescecf9521.html
(1999)

[15] W. E. Leland,M. S. Taqqu, W. Willi nger, D. W. Wilson, "On
the Self-Similar Nature of Ethernet Traff ic", ACM SIGComm
'93, San Francisco, 1993.

[16] Y. Liao and V. R. Vemuri, "Use of Text Categorization
Techniques for Intrusion Detection", Proc. 11th USENIX
Security Symposium, 51-59, 2002.

[17] R. Lippmann, et al., "The 1999 DARPA Off-Line Intrusion
Detection Evaluation", Computer Networks 34(4) 579-595,
2000. Data is available at http://www.ll .mit.edu/IST/ideval/

[18] M. Mahoney, "Network Traff ic Anomaly Detection Based on
Packet Bytes", to appear, Proc. ACM-SAC, Melbourne FL,
2003.

[19] M. Mahoney, Source code for PHAD, ALAD, LERAD,
NETAD, SAD, EVAL and AFIL.PL is available at
http://cs.fit.edu/~mmahoney/dist/

[20] M. Mahoney, P. K. Chan, "PHAD: Packet Header Anomaly
Detection for Identifying Hostile Network Traff ic", Florida
Tech. technical report 2001-04, http://cs.fit.edu/~tr/

[21] M. Mahoney, P. K. Chan, "Learning Models of Network
Traff ic for Detecting Novel Attacks", Florida Tech. technical
report 2002-08, http://cs.fit.edu/~tr/

[22] M. Mahoney, P. K. Chan, "Learning Nonstationary Models
of Normal Network Traff ic for Detecting Novel Attacks ",
Edmonton, Alberta: Proc. SIGKDD, 2002, 376-385.

[23] J. McHugh, "Testing Intrusion Detection Systems: A Critique
of the 1998 and 1999 DARPA Intrusion Detection System

Evaluations as Performed by Lincoln Laboratory", Proc.
ACM TISSEC 3(4) 262-294, 2000.

[24] P. G. Neumann, P. A. Porras, "Experience with EMERALD
to DATE", Proc. 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, Santa Clara, CA, 1999,
pp. 73-80

[25] V. Paxson, "Bro: A System for Detecting Network Intruders
in Real-Time", Lawrence Berkeley National Laboratory
Proceedings, 7'th USENIX Security Symposium, Jan. 26-29,
1998, San Antonio TX,

[26] V. Paxson, S. Floyd, "The Failure of Poisson Modeling",
IEEE/ACM Transactions on Networking (3) 226-244, 1995.

[27] V. Paxson, The Internet Traff ic Archive, http://ita.ee.lbl.gov/
(2002).

[28] L. Portnoy, "Intrusion Detection with Unlabeled Data Using
Clustering", Undergraduate Thesis, Columbia University,
2000

[29] M. Roesch, "Snort - Lightweight Intrusion Detection for
Networks", Proc. USENIX Lisa '99, Seattle: Nov. 7-12,
1999.

[30] A. Schwartzbard and A.K. Ghosh, "A Study in the Feasibilit y
of Performing Host-based Anomaly Detection on Windows
NT", Proc. 2nd Recent Advances in Intrusion Detection
(RAID 1999) Workshop, West Lafayette, IN, September 7-9,
1999.

[31] R. Sekar, M. Bendre, D. Dhurjati, P. Bolli neni, "A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors". Proceedings of the 2001 IEEE Symposium on
Security and Privacy.

[32] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, S. Zhou, A.
Tiwari and H. Yang, "Specification Based Anomaly
Detection: A New Approach for Detecting Network
Intrusions", ACM CCS, 2002.

[33] R. Sekar and P. Uppuluri, "Synthesizing Fast Intrusion
Prevention/Detection Systems from High-Level
Specifications", Proc. 8th USENIX Security Symposium,
Washington DC, Aug. 1999,

[34] M. Tyson, P. Berry, N. Willi ams, D. Moran, D. Blei,
"DERBI: Diagnosis, Explanation and Recovery from
computer Break-Ins", http://www.ai.sri.com/~derbi/, April .
2000.

[35] A. Valdes, K. Skinner, "Adaptive, Model-based Monitoring
for Cyber Attack Detection", RAID 2000, LNCS 1907, p80-
92, Springer Verlag, 2000.

[36] G. Vigna, S.T. Eckmann, and R.A. Kemmerer, "The STAT
Tool Suite", Proc. 2000 DARPA Information Survivabilit y
Conference and Exposition (DISCEX), IEEE Press, January
2000.

[37] G. Vigna and R. Kemmerer, "NetSTAT: A Network-based
Intrusion Detection System", Journal of Computer Security,
7(1), IOS Press, 1999.

[38] K. Yamanishi, J. Takeuchi & G. Willi ams, "On-line
Unsupervised Outlier Detection Using Finite Mixtures with
Discounting Learning Algorithms", KDD, p.320-324, 2000.

[39] G. K. Zipf, The Psycho-Biology of Language, an
Introduction to Dynamic Philology, M.I.T. Press, 1935.

