An Analysis of the 1999 DARPA/Lincoln Laboratories
Evaluation Data for Network Anomaly Detection

Matthew V. Mahoney and Philip K. Chan
Dept. of Computer Sciences Technical Report CS-2003-02
Florida Institute of Technology
Melbourne, Florida 32901

{mmahoney, pkc}@cs.fit.edu

ABSTRACT

We investigate potential simulation artifacts and their effects
on the evaluation of network anomaly detection systems in the
1999 DARPA/MIT Lincoln Labs off-line intrusion detection
evaluation data set. A dtatistical comparison of the simulated
background and training traffic with real traffic collected from a
university departmental server suggests the presence of artifacts
that could alow a network anomaly detection system to detect
some novel intrusions based on idiosyncrasies of the underlying
implementation of the simulation, with an artificially low fase
alarm rate. The evaluation problem can be mitigated by mixing
real traffic into the simulation. We compare three anomaly
detection algorithms, SPADE, PHAD, and LERAD, on simulated
and mixed traffic. On mixed traffic they detect fewer attacks, but
the explanations for these detections are more plausible.

1. INTRODUCTION

The DARPA/MIT Lincoln Labs (LL) off-line intrusion
detection evaluation data set [17] is probably the most widely used
set for developing and testing intrusion detection systems. Prior
to the development of the two sets in 1998 and 1999, researchers
had to laboriously construct their own tests using exploits against
live targets under controlled conditions. Such results were
normally not reproducible because the background data (network
traffic, audit logs, etc.) would contain private data that could not
be released. The LL data, which simulates a network with
multiple targets under attack by published exploits, solves the
privacy problem by simulating the background network traffic
using amix of public and synthesized data and custom software to
make it appear as if the traffic originates from a much larger
collection of hosts and users.

The LL datais useful because it allows a variety of methodsto
be tested against a wide range of exploits and targets. The 1999
set alone consists of 5 weeks of network traffic, audit logs, system
cal (BSM) logs, nightly file system dumps, and directory listings
collected from targets running four different operating systems
(Solaris, SunOS, Linux, and Windows NT) attacked 244 times
using variations of 58 published exploits ranging from probes and
denial of service attacks to root shell exploits and backdoors.
Systems can detect these attacks using either host based or
network based methods, and either signature detection (modeling
known attacks) or anomaly detection (modeling normal behavior
to detect new attacks). These sets have been used to test a number
of important systems [4, 6, 7, 12, 16, 18, 20, 21, 22, 24, 30, 32,
33, 34, 35, 36, 37]. In addition, the 1998 network traffic is the
basis of the 1999 KDD cup machine learning competition [5],
which had 25 participants, and it continues to be used to test
intrusion detection methods [28, 38].

We are concerned with the realism of the background Internet
traffic, which is important to the proper evaluation of network
anomaly detection systems which use this traffic to model normal
(non-hostile) behavior. Internet traffic is vastly complex, and very
difficult to simulate properly [10]. Some post-evaluation work on
the 1999 LL data suggests the presence of simulation artifacts that
allow hostile traffic to be distinguished based on idiosyncrasies of
the simulation. For example, during development of PHAD [20],
it was discovered that many attacks can be detected simply
because the packets have a TTL value of 253. It was concluded
that this was probably due to the network configuration used in
the simulation. A similar problem occurred with the TCP window
sizefield in NETAD [18].

The most serious questions are raised by the large number of
attacks detected by anomalous source (remote) addresses by
NETAD, and two other systems, ALAD [22] and LERAD [21].
Source addresses are monitored by most network intrusion
detection systems, and form the basis of firewall policy, along
with destination addresses and port numbers. An anomaly would
seem to indicate a novel user, which for a password protected
service such as SSH or telnet, would be considered suspicious.
However most of the attacks detected by these systems in the LL
data are on public services: HTTP, SMTP, DNS, and anonymous
FTP. This does not make sense.

McHugh [23] criticized the LL data because of the
unredistically high rate of malicious attacks, a compromise
needed to keep the data set to a reasonable size. Although some
have suspected there are problems with the LL background traffic
(as suggested by anonymous reviewers of our other papers), we
are not aware of a detailed analysis of this data.

The rest of this paper is organized as follows. In Section 2 we
review the LL evauation and related work in network anomaly
detection, traffic collection and synthesis. In Section 3 we
introduce a smple anomaly detection system caled SAD,
intended to motivate our approach to finding and correcting
artifacts. In Section 4, we datisticaly compare the LL
background data with some real traffic, which we find to be less
predictable and "dirtier" at many protocol levels. In Section 5 we
propose a strategy for making the LL evaluation more redlistic by
mixing real traffic into the simulated off-line data. In Section 6
we test the mixed data on three systems, SPADE [13], PHAD, and
LERAD, and show that most of the questionable detections are
removed. In Section 7, we conclude.

2. RELATED WORK

Our goal is to examine differences in the LL (simulated) and
real background traffic from the point of view of network anomaly
detection systems. We review some of those systems, how the LL

evauation was conducted, and problems with collecting or
synthesizing background traffic.

2.1. The1999 LL Evaluation

The 1998 and 1999 LL data sets were originally used in blind
evaluations before the data was released. In 1999, eight groups
participated, submitting 18 different systems. Participants were
given 3 of the 5 weeks worth of data in advance in order to
develop their systems. One week (week 2) had 43 labeled
instances of 18 of the 58 test attacks. The other two weeks (weeks
1 and 3) were attack-free background traffic which could be used
to train anomaly detection systems. The dataincluded traffic from
two sniffers (inside and outside the Internet router), audit logs,
nightly file system dumps and directory listings, and Solaris
system call traces (BSM).

Four months later, the devel opers were given the two weeks of
test data (weeks 4 and 5) and asked to use their systems to identify
the 201 attacks, some of which were modified to be steathy to
defeat signature detection systems (e.g. by slowing down a port
scan or disguising suspicious commands). Participants had to
identify each attack by time (within 60 seconds) and target IP
address, and report a numeric score or ranking indicating a
confidence level in the alarm. Systems were evauated by the
number of attacks detected out of the number of in-spec attacks
(those they are designed to detect based on the data they examine)
at a scoring threshold allowing 100 false dlarms. The best systems
used a combination of methods, both host and network based, and
both signature detection (modeling known attacks) and anomaly
detection (modeling normal behavior to detect new attacks). The
top four systems [17] detected 40% to 55% of those attacks, as
shown in Table 1.

System In-spec attacks | Detected at 100 FA
Expert 1 169 85 (50%)
Expert 2 173 81 (47%)
Dmine 102 41 (40%)
Forensics 27 15 (55%)

Tablel. Top 4resultsfromthe1999 LL evaluation [17].

2.2. Traffic Collection and Synthesis

The LL developers put much effort into making the
badkground traffic gppea as redistic as posshle. Traffic was
generated using custom software running on a smal number of
hosts to emulate hundeds of programmers, seaetaries, managers,
and aher types of users running common UNIX or Windows
applicaions on thousands of hosts and websites. The distribution
of services (web, mail, telnet, FTP, etc.) was matched to the adual
distribution measured ona small Air Force base network in 1998
Traffic rates are highest during normal working hours, as with red
traffic. Email messsges were taken from public mailing lists or
synthesized using English word bigram statistics. Some traffic
that was too complex to synthesize was generated manually.

Nevertheless it is extremely difficult to simulate the Internet
acarately. The difficulty comes not just from modeling human
behavior, but also from modeling thousands of versions of various
operating systems, servers, and clients. Much of the "crud" found
in red traffic [25] could originate from faulty versions of this
software. For example, in red traffic that we wlleded on a
university departmental server, we have foundreserved TCP flags
set, fragmented |P padkets with the "dont fragment" flag set, TCP

retransmissons with inconsistent payloads, invalid application
protocol commands, undccumented protocols, and so on

A solution to this problem would be to colled red traffic
rather than synthesize it. However, this raises privacy issles.
Public olledions of red traffic such as the Internet Traffic
Archive [27], and the University of New Mexico data set [10], are
stripped of much of the data useful to anomaly detedion,
including al of the gplication payload data.

2.3. Network Anomaly Detection

Many older network anomaly detedion systems, such as thase
surveyed by [3], are based on modeling normal user behavior to
deted unauthorized users. To that end, these systems model
feaures that are mntrolled by the user, such as the destination IP
address and service (port number), and attributes that identify the
user, eg. the source aldress Unusual combinations of these
attributes are often hastile. For example, attempted accesss to
norexistent ports might signal a port scan. An unuwsual source
addressconreding to an authenticated service such as SSH might
indicae apassvord guessng attack. ADAM [31], NIDES [2],
eBayes [35], and SPADE are dl systems that model addresses and
ports. For example, one mode of SPADE asdgns an anomay
score to inbound TCP SYN padkets of 1/P(source aldress
destination address destination pat), i.e. higher scores to padkets
with combinations of these three dtributes that appea less
frequently.

User modeling differs from host based anomaly detedion
systems that model program behavior to deted when a server or
operating system comporent has been compromised. Forrest [9]
showed that such systems make unusua sequences of system cdls
when attadked. This can happen in a buffer overflow attadk where
the cmpromised program is exeauting code suppied by the
attadker, but another possbility is that the dtadker is exploiting a
vulnerability in a rarely used fedure of the program. Becaise
vulnerabiliti es are bugs, they are most likely to occur in poaly
tested code. Thus, ancther approach to anomaly detedion is to
look for unusua inpus to a program that would invoke seldom
used feaures. For example, attadks such as teardrop and pod
(ping of deah) exploit errors in IP padet reassmbly code that
cause the target to crash when it receaves fragmented IP padkets
that canna be resssembled properly. Becaise IP fragmentationis
rare, an anomaly detedor that flags all fragmented traffic, whether
legitimate or nat, islikely to deted these atadks, albeit at the st
of some false darms.

Systems like PHAD and LERAD are program modelers. They
differ from user modelers in two respeds. First, they grealy
extend the number of attributes monitored in order to cover many
of the protocols that might be exploited. PHAD (Packet Healer
Anomaly Detedor), which monitors both inboundand oubound
padkets, models 34 fields in the Ethernet, IP, TCP, UDP, and
ICMP headers. LERAD (LEarning Rules for Anomaly
Detedion), which monitors inboundclient to server TCP streams,
models addresses, ports, length, duration, opening and closing
TCP flags, and the first 8 words in the gplicaion payload.

Sewnd, in order to cope with the bursty nature of network
traffic over awide range of time scdes [15, 26], these systems use
a time-based mode rather than a frequency-based model. In a
frequency based model such as SPADE, the probability P(A = v)
that attribute A has value v is estimated by n,/n, where n, is the
number of times v is observed, and n is the total number of
observations. The asaumptionisthat rare events are more likely to

be hogtile. Thus, these systems assgn an anomaly score of
1/P(A=V) = n/n, or something similar.

PHAD, ALAD, LERAD, and NETAD model novel events,
wheren, = 0in training. They use the anomaly score tn/r where t
is the time since anovel value was last observed, n is the totd
number of observations, and r is the number of anomalies that
oceur in training, i.e. the size of the set of alowed values. For
instance, given the training sequence ababc, there ae n = 5
observations and r = 3 allowed values (a, b, and c). Given thetest
sequence aadad, only the two d's would generate anomdlies. (We
asaime separate training and test phases, although the system
could remain in training mode & all times like SPADE). The last
anomaly before the first disc, sot = 3. The last anomaly before
the second d is the first one, so t = 2. Thus, the first anomaly
score would be 3*5/3 = 5, and the seamndwould be 2¥5/3 = 3.33.
If the sum of anomay scores over al attributes exceals a
threshold, then an alarmis sgnaled.

Note that tn/r has the form of an inverse probability 1/P.
Firgt, the average rate of anomalies in training is r/n, thus this
model asaumes that this rate will continue. However, becaise the
set of allowed values is not alowed to grow after training, we
need ancther term to dscount repea occurrences of the same
anomaly. Thistermist. Thisisagoodmodel of bursty behavior,
and also quite intuitive. The assumption is that the probability of
an event isinversely propartiona to the time sinceit last occurred.

3. SIMULATION ARTIFACT DETECTION

To motivate our investigation d simulation artifadsin the LL
data, we develop a very simple anomaly detedion system that
coud na possbly work. We cdl our system SAD (Simple
Anomaly Detedor, available & [19]). SAD examines only
inbound TCP SYN network padets (destination address
17216.x.x). It looks at just one byte of the padet, spedfied as a
parameter, for example the TTL field (time to live — an 8hit
courter used to expire padets caught in misconfigured router
loops). During training, SAD reards which o the 256 pesble
values are seen at least once and which are not. During testing, it
deteds an anomaly if this byte has a value that was never seen in
training. If there have been no dher anomalies in the last 60
seands, then it outputs an alarm with a score of 1 warning that
the padket is hostile.

We train SAD on the inside sniffer traffic from week 1 and
test it on week 2, which contains 43 attacks. This data (with truth
labels) was avail able in advanceto the original participantsin the
1999 evaluation. We evaluate SAD (using EVAL [19], our
implementation d the LL detedion criteria) and identify severd
promising SAD variations, which we define & any variation that
deteds at leest one atadk for every 10 fase darms (Table 2,
second column). Then we evaluate these variants on the adual
test data by training them oninside week 3, and testing on weeks 4
and 5 which contain 177 d the 201 attads used in the pubished
evaluation results. Almost al of these variations would have done
well in this evaluation (Table 2, third column). The best SAD
variant, which examines the third byte of the source IP address
deteds 79 o 177 attacks (45%), with 43false darms. This result
is competitive with the top systems in the original evaluation.

However, these results are misleading. To test how SAD
might behave in ared network, we mix the 146 hous of training
traffic from week 3 and 19 hous of test traffic from weeks 4-5
with equal durations of (presumably attadk-free traffic colleded
from auniversity departmental server on alarge network. We mix

the traffic by shifting the timestamps to make it appea as if the
web server is part of the home network. No other fields (e.g. IP
addreses) are dhanged. The mixed traffic contains 154,057
simulated and 125834 red inboundTCP SYN padkets.

As we shoud exped, the results are quite poar (Table 2, last
column). Very few attads are deteded, and the false darm rateis
much higher. But amore detail ed analysis siows that these results
make more sense. For example, on the simulated data SAD
deteds ource aldressanomalies in attadks on pubiic web servers
(apache2, back, crashiis, and phf), mail servers (mailbomb,
sendmail),. DNS (Is_domain), and anonymous FTP (guessftp,
warez), where novel addresses soud be norma. However, on
the mixed data, the only attadk deteded is neptune, which spod's
the source aldress with an uressgned pation o the IP address
space (10 a 11 in the first byte). Likewise, most of the other
padket header anomalies deted only attadks that require the
attacker to write (usualy arbitrary) values into those fields.

But why did SAD do so well in the first place? In the next
sedion, we @mpare the simulated training traffic with ou red
traffic to shed some light on this question.

SAD Byte Det/FA Wks1-2 | Wks3-5 | Mixed
IP padket size low byte 4/0 152 0/1
TTL 25/36 24/4 5/43
SourcelP address 1st byte | 13/7 64/41 4/0
SourcelP address 2nd kyte | 13/7 67/42 0/0
SourcelP address 3rd byte | 16/15 7943 0/0
SourcelP address 4th byte | 17/14 7116 0/0
Sourceport, high byte 2/0 13/0 0/0
Destination pat, high byte | 4/24 4/0 4/1664
Destination pat, low byte 5/6 0/0 0/0
TCP healer size 4/0 152 0/5
TCP window sizehigh byte | 5/1 152 7/112
TCPwindow size low byte | 3/1 7/1 4/29
TCP options, bytes 1, 2, 3 4/4 152 0/1
TCP options, byte 4 4/4 152 0/255

Table 2. SAD detections and false alarms (Det/FA) for
variantsthat do well on the 43 attacks in weeks 1-2 of the 1999
LL IDS evaluation inside sniffer traffic. Detections and false
alarms are shown for weeks 1-2 (43 attacks), weeks 3-5 (177
attacks) and for weeks 3-5 mixed with real traffic.

4. SSIMULATED VS. REAL TRAFFIC

In this edion, we compare the LL training data (inside sniffer
weeks 1 and 3 with red traffic olleded from a similar
environment, a university Solaris machine which is the main
server for the CS department, with several faaulty user acouns
and serving severa thousand web pages. We look for differences
in the distributions of attributes that an anomaly detedion system
might monitor. We examine many traffic types, but espedally the
types most commonly exploited: inbound TCP client to server
traffic.

We ae primarily interested in differences that could lea to
evaluation errors in typicd anomaly detedion systems. One type
of error could occur if values that appea only in hatile traffic in
simulation adualy occur in namal, benign traffic. This would
cause those atadks to be missd. Ancther type of error could
occur if rare or novel values occur at a higher rate in red traffic
because there ae awider range of values. Thiswould either lead

to a higher false darm rate, or possbly some alaptive processto
turn off the rule, resulting in alower detedionrate.

We wlleded two sets of data from the server, a small set
consisting of two traces of one million padets eah (severd
hous), and a larger set of 100 million padkets sampled over 10
weeks. The large set was filtered to alow quicker analysis by
extrading only the 1.6 milli on most interesting padets: truncaed
inboundclient to server sesdons.

4.1. Analysis of Packets and Protocols

The simulated and red networks are similar in that there ae
two routers, one to a large locd network with hundeds of hosts,
and a secondto the Internet. However, the red network differsin
that it uses an Ethernet switch rather than a hub, so only traffic to
and from the locd host isvisible. Also, our datawas colleded 2-3
yeas after the LL data was g/nthesized, during which time some
new protocols probably came into use and ahers were expanded.
There ae some dynamicdly assgned IP addresses, and a
portmapper service to assgn pats for RPC and NFS, which are
not foundin the smulation. The only TCP application protocols
that are found in sufficient quantity to alow comparison are
HTTP, SMTP, and SSH. Some traffic is blocked by a firewall,
such as unreatable ports and IP padkets with options. Although
this probably blocked most port scans (there were probably many),
we did find some gparently malicious HTTP and SMTP traffic in
thered data.

The traffic was colleded onwww.csfit.edu. The smaller set
consists of two traces of 1 milli on padkets ead, colleced onNov.
4,2001from 17:40to 0443locd (Eastern) time the foll owing day
(11 hous), and Nov. 6, 2001 from 10:25to 1205 (100 minutes).
Packets were truncaed to 68 lytes. Table 3 compares the
distribution o protocols with that of inside week 3 in the LL set.
In generd, the red traffic is more cmplex in that there ae more
protocols present at every level. At the transport layer there is
somewhat more TCP and ICMP and less UDP, but al three ae
represented in sufficient quantiti es to all ow comparison (and later,
mixing).

Attribute LL insideweek 3 | Real, unfiltered set

Padkets, n 12,814,738 2,000,000

Ethernet. 4 (IPv4, ARP, hub | 45 (many

protocols test, looplad) undacumented)

IP protocols 3 (TCP, UDP, 6 (also OSPFIGP,
ICMP) IGMP, PIM)

IP padkets 99.2% of Ethernet | 94.8% of Ethernet

TCP padkets 83.4% of IP 94.6% of IP

UDP padets 16.4% of IP 3.5% of IP

ICMP padkets | 0.056% of IP 0.268% of IP

TCP protocols | HTTP, SMTP, HTTP, printer, POP3,

(in order of FTP, telnet, s<h, NFS SMTP, RMI,

descending finger, auth, IMAP, nbsesson,

sesson epmap, printer 42239 s, auth, dsp,

frequency) 4045 X-font, portmap

UDP protocols | DNS, NTP, router, | 756, NTP, portmap,

(by descending | nbrame, DNS, sydog,

padet nbdatagram, syslog | nbdatagram, nbrame,

frequency) isakmp, xdmcp

Table 3. Protocols found in LL inside sniffer week 3 and in the
unfiltered real data set.

4.2. Analysis of Fields

In this £dion, we mmpare the simulated training data from
the inside sniffer weeks 1 and 3 with the larger set of red traffic
colleded over 10 weeks. To reduce the workload of analyzing
these huge data sets, we filtered them to extrad just the data that a
network intrusion detedion system would most likely monitor: the
initial portions of inboundclient to server requests.

4.2.1. Data Set

Most of our analyses are based on the large sample of 100
milli on padkets. This consists 50 traces of 2 milli on padkets eah
colleded onMonday through Friday over 10 weeks from Sept. 30
through Oct. 25 and Nov. 4 through Dec 13, 2002 Ead trace
was garted at 00:01 locd time axd ended when 2 milli on padkets
were olleded, usudly abou 10to 15 hous later. Padkets were
truncaed to 200 lytes (134146 kytes of TCP payload).

To reduce the volume of data to a manageable levd, the large
sample set was filtered. This filter removes the following data,
leaving 1,663608 mdkets (1.6%).

e All nonlP pacets.

e All outbound @dkets. A padket isinboundif the destination
addressis 17216.x.x or 192168.x.x (simulated eyrie.af.mil)
or exadly the |P addressof thered server (1631181351).

e UDP padkets to high numbered pats (over 1023, which are
normally server resporses bad to clients.

e TCP ACK, SYN-ACK, FIN-ACK, and PSH-ACK padkets
unless within the first 100 myload bytes of a SYN packet
(i.e. only the first 100 kytes of an inboundclient request are
passed, and nore of the server's resporse).

e Any padket where more than 16 rave been passed to the same
IP addresdport/protocol (TCP/UDP/ICMP) combination in
the last 60 seaonds. A 4K hash table is used, so there ae a
small number of drops dueto colli sions.

Most of the data of interest remains present after filtering.

Filtering both weeks 1 and 3of the smulated inside sniffer traffic

reducesthis st from about 20M padkets to abou 1.6M padkets.

To compare gplicaion protocols, we reassemble TCP streans
from the filtered traffic. Because these padkets are truncated, we
use only the first 134 hytes of the first payload packet. For
interadive protocols sich as SMTP, this method ony alows the
first inboundcommand to be cgtured. However, thisis sifficient
for our analysis.

4.2.2. M easurements
We ae primarily interested in the rate of novel valuesin eat
attribute that an anomaly detedion system might monitor. The
higher this rate, the higher the false darm rate will be, and the
greder the dhance that a genuine anomaly will | ater be masked.
We define the foll owing four statistics:
e r—thenumber of observed values.
e r; —the fradion d r consisting of values e exadly
once
e 1, —the fradion d values e for the first time in the
send Helf of the data.
¢ r,—thefradion d datanealed for r to read half itsfina
value.
For example, given the sequence ABCABD, r = 4 (the size of the
set {A,B,C,D}), r; = 2/4 = 0.5 (C and D occur once), r, = 1/4
(only D is sen for the first time in the second Helf), and ry = 2/6

(becaise we observe r/2 = 2 letters in the first 2/6 of the
sequence).

The statistic r is ggnificant becaise it diredly courts novel
events in the training data (which would be false darms if they
occurred during testing), and is also used to compute the anomaly
score in time-based systems (i.e. tn/r). For Poison pocesses
(where events are independent), r; isa Good-Turing [11] estimate
of the probability that the next value will be novel. For network
processes which are bursty with long range dependencies, r; is
usualy an unckrestimate. However ry, and r, measure the rate of
novel values diredly, either over the second telf of the data (ry,) or
the second Helf of the novel values (ry). Becaise there ae gapsin
the data mlledion, we use padket courts rather than red time to
compute the fradion o data seen.

The r, and r; statistics give us two pants on the growth curve
of r over time. For many attributes, r will grow rapidly at first,
and then level off as all of the possble values are observed. We
are interested in bah the initial growth rate, given by r,, and the
recent growth rate, given by r,,. Often r, will be 0, so we need r; to
make meaningful comparisonsin cases of slowly growingr.

If an attribute has a Zipf distribution [39], thenry =rp =1, =
0.5, and r grows without bound a a @nstant rate. A Zipf
distribution is a spedal case of a power law or Pareto distribution,
which ocaurs in many natura processes, for example, the
distribution o words in English, city popuations, file sizes, or
website requests [1, 14]. We find that many network attributes in
the red traffic, but nat in the simulated traffic, are goproximately
Zipf, for example, client addresses and client versions.

For binary attributes, we list the percentage of occurrences.
We mnsider it significant if an event occurs at any rate in one set
but never in the other. For continuods attributes we list the range
of values, dthough it is unclea when a larger range becomes
significant.

4.2.3. Comparison at Low Level Protocols

We first compare the training traffic (inside sniffer weeks 1
and 3 with the large, 10 week data set, both after filtering. In
most of the dtributes we examined, the rate of anomalies is higher
in the red traffic, as indicated by higher values of r, ry, ry and r,
(listed as four conseautive values in Table 4a), even after taking
into acourt the larger size of the red data set. Where the
difference is sgnificant (a somewhat subjedive judgment), the
higher values are highlighted in italics. These fields include the
Ethernet source aldress TTL, TOS, TCP options, UDP
destination pat, and ICMP type.

The following binary events occur only in the red traffic:
fragmented |P padkets (with the "dont fragment” flag set), TCP
and ICMP chedksum errors, noreero hits in TCP reserved fields
and reserved flags, and norzero data in the urgent pointer when
the URG flag is not set. These events are present even after
removing TCP padkets with bad chedsums.

For all continuous attributes we measured, the range is higher
in red traffic. Thisincludes packet size UDP payload size TCP
header size, urgent pointer, and window size However it is
difficult to judge the significance of these differences based on
range done.

Most attributes are less predictable in red traffic than in
simulation. However the situation is oppasite for TCP ports. The
rate of novel values is lower in the red traffic. Most of the
simulated TCP ports are high numbered FTP data ports negotiated
during FTP sessons. The red traffic has a much lower rate of

FTP sessons. Also, some red ports may be blocked by the
firewall .

r,r,r, Simulated Real
Ethernet source aldr | 8, 0, 0, 00001 76, .01, .11, .03
IP source aldr 1023.26, .71, .73 | 27632 .08, .53,.53
IP destinationaddr. | 32,0, 0, .0002 1,0,0,0
TCP healer size 2,0, 0,.000003 19, .16, .05, .024
ICMP types 3,0,0,.001 7,.14, 14, .16
TTL 9,0, .1,.00002 177, .04, .12, .023
TOS 4,0,0,.0003 44, 07, .64, .53
TCP dest port 8649,.35, .66, .65 | 32855.001,.002,.3
TCP flags 8,0, 0, .00002 13, 3, 0, .00009
TCP options 4 bytes | 2, 0, 0, .00002 104, .22, .31, .18
UDP dest port 7,0,0,.0001 31, .52, .55, .45
Per cent Simulated Real
Padkets n=658801 n=1,663608
IP options None None
IP fragments 0 0.45%
Don't fragment (DF) | 52% set 90% set
DF set in fragment No fragments 100% bad
IP chedksum No errors No errors
TCP chedksum No errors 0.017% bad
UDP chedsum No errors No errors
ICMP chedksum No errors 0.020% bad
TCPreserved flags | AlwaysO 0.093% bad
TCP reserved field Always 0 0.006% bad
Urgent data, noflag | None 0.022% bad
Range Simulated Real
IP padket size (381500 (24-1500
TCP window size (0-32737% (0-65535
TCP healer size (20-24) (20-48)
Urgent pointer (0-1) (0-65535
UDP padket size (25-290 (25-1047)

Table 4. Comparison of inside sniffer weeks 1 and 3

(simulated) with 10 weeks of real traffic after filtering (real).
(@ r, ry, ry, and ry for discrete attributes, (b) percent true for
binary attributes, (c), ranges of continuous attributes.

In Table 5 we ompare inbound TCP SYN padkets in the
simulated and red traffic. This exposes me potential artifads
that were not apparent in the larger set of al filtered padkets. The
most striking difference is in IP source aldresses. The number
and rate of novel addresss is thousands of times higher in red
traffic than in simulation. This is not the cae when UDP and
ICMP traffic (or outboundTCP) isincluded.

Other differences include TCP options (which determine
paket size and TCP header size) and windowv size Every
inboundTCP SYN padket uses the exad same four TCP option
bytes, which set the maximum segment size (MSS to 1500 In
redity, the number of options, their order, and the option types
and values varies widely.

Window size (used to quench return traffic) is alowed to
range from 0 to 65535 The full range of values is £e orly in
red traffic. Simulated traffic is highly predictable, always one of
severa values. A differencein range is also olserved in source

ports (sdleded randamly by the dient) and Hgh numbered
destination pats (often negotiated). One other type of anomaly
seen only in red traffic is a noreero value in the a&knowledgment
field, even though the ACK flag is not set.

We have now acwourted for al of the SAD attributes that
deted attadks. They all appea to be atifads. These fall into two
caegories. Either the simulated range is too low, alowing
detedions of attadks that would atherwise be masked (e.g. window
Size sourceport), or the rate of false darmsistoo low (e.g. source
address TTL, TCP options). This does not mean that SAD did
not legitimately deted any attadks. For example, it deteds
neptune by an anomalous ource adressthat does not appea in
red traffic dther.

Attribute Simulated Real

Padkets, n 50650 210297+ 6 errors
Sourceaddress | 29, 0, .03, .001 24924, .45, .53, .49
r, re, M I

Dest addr, r 17 1(1631181351)
Src port, r 13946(20-33389 45644(21-65534)
Dest port,r 4781(21-33356 1173 (13-65427)
IPpktsize r 1 (44, 4 option bytes) | 8 (40-68)

TCP options,r 1(MSS=1500 103 infirst 4 bytes
Window sizer | 7(512-3212Q 523 (0-65535)
TCP akk Always 0 0.02% bad

Table5. Comparison of simulated and real inbound TCP SYN
packets (excluding TCP checksum errors).

4.2.4. Comparison at Application Protocols
We ompare HTTP requests in the smulated data (weeks 1

and 3 with 10weeks of red traffic. Becausethered padkets were
truncated to 200 hytes (usualy 134146 bytes of payload), we
examine only the first 134 bytesin bah sets. Table 6 summarizes

accesed by seach engines and indexing services. We foundthe
top five user-agents in the red data to be (in descending order)
Scooter/3.2, googlebot/2.1, ia_archiver, Mozlla/3.01, and
http: //www.almaden.ibm.convcs/crawler. They dso have aZipf
distribution.

The only simulated HTTP command is GET, which requests a
web page. The red traffic has 8 different commands: GET (99%
of requests), HEAD, POST, OPTIONS, PROPFIND, LINK, and
two malformed requests, No and tcp_close,. Thereis aso a much
wider variety of options, athough some of these ae due to the
introduction d HTML/1.1. Neverthelessthereiswide variationin
capitaization and spadng. Inthe simulated traffic, HTTP options
invariably have the form Keyword: value, with the keyword
capitalized, no spacebefore the wlon and ore space dterwards.
This is usuadly but not aways the cae in red traffic.
Furthermore, we occasionaly find spelling variations, such as
Referrer: (it is normally misgelled Referer:) or the even more
bizarre Connnection: with threen's. Some keywords are dealy
malformed, such as XXXXXXX: or ~~~~~~~ .. A few requests end
with a linefead rather than a cariage-return and linefeed as
required by HTTP protocol. Finaly there ae some requests
which are dealy suspicious. We found 33requests similar to the
foll owing two examples.

GET /scripts..%255c%255¢. /winnt/system32/cmd.exe7c+dir
GET /MSADC/roct.exe?c+dir HTTP/1.0

Undouliedly this did na acaomplish much ona UNIX haost.

We look only briefly at SMTP (mail) and SH (seaure shell).
These ae the only other TCP applicaion gprotocols besides HTTP
that exist in sufficient quantity in bah data sets to do a useful
comparison. Like HTTP, we once ajain find that red traffic is
"mesg/”, high in benign anomalies. Table 7 summarizes the
results.

the diff erences we found

Inbound HTTP Requests Simulated Real
Number of requests, n 16089 82013
Different URLsreguested, r,r; | 660, .12 21198, .58
HTTP versions, r 1(1.0) 2(1.0,11)
Commeands (GET, POST..), r 1(GET) 8

Options, r 6 72
User-agents, r, r; 50 807, .44
Hosts, r 3 13

Inbound Request Simulated | Real
SMTP requests, n 18241 12911
First command, r 2 7

HELO hosts, r, 1y 3,0 1839, .69
EHLO hosts, r, 1y 24, 04 1461, .58
No initial HELO or EHLO 0 3%
Lower case mmmands 0 0.05%
Binary datain argument 0 0.1%
SH reguests, n 214 666

SH versions, r, 1y 1,0 32,.36

Table 6. Comparison of HTTP requests in simulated traffic
(inside weeks 1 and 3) and 10 weeks of real traffic.

There ae two simulated web servers (hume and marx).
However, the one red web server recéves more traffic and hes
more web pages. The distribution o red URLS is approximately
Zipf, consistent with findings by Adamic [1]. A charaderistic of a
Zipf distribution is that abou half of al values occur exadly once
The simulated URLs are distributed somewhat more uniformly.
Many of the singletons are failed requests which were simulated
by repladng the last 4 charaders of the file name (e.g. html) with
XXX,
There is a huge disparity in the number of user-agents (client
types). The smulated traffic has only five, al versions of Mozilla
(Netscape or Internet Explorer). Red web servers are frequently

Table 7. Comparison of inside sniffer weeks 1 and 3 with 10
weeks of real inbound SM TP and SSH requests.

A norma SMTP sesgon starts with HELO or EHLO (echo
hello), but these ae optional. In the simulated traffic, every
sesgon starts with ore of these two commands. However, abou
3% of red sessons dart with something else, usualy RSET, but
also QUIT, NOOP, EXPN, or CONNECT. Abou 0.2% of red
commands are lower case. One command (EXPN root) is
suspicious.

The number of simulated remote haosts ending and receaving
mail (arguments to HELO and EHLO) is clealy unredistic. This
is dso refleded in the smal number of source IP addresses in
general. The simulated traffic has one maformed command, an

EHLO with no argument. The real traffic does too, and a variety
of other malformed arguments, including binary strings (1-21
bytes, probably too short to be a buffer overflow). The host name
arguments are roughly Zipf distributed, with over haf appearing
only once.

An SSH session opens with the client version string. The
simulated traffic uses a single client version. In real traffic there
are many versions, again Zipf distributed.

4.3. Potential Source of Artifacts

In the previous section we saw that many attributes have a
wider range of values (higher r) in real traffic than in simulation,
and a higher growth rate (ry, ry, and ry), which would make them
harder to model. Why isthis?

One possihility is that the various traffic sources (hardware,
software, and people) are modeled incorrectly with r too small and
static, i.e. too predictable. A second possibility is that individual
sources display the correct ranges of values, but their timing is
wrong, resulting in an incorrect growth rate for r. A third
possibility is that the individua sources are correct in both values
and timing, but there are too few sources to simulate the diversity
of real treffic.

4.3.1. Source Hosts

To investigate the first possibility, we compare single sources
in the simulated and rea traffic. In the first two columns of Table
8, we compare TCP SYN packets originating from the simulated
Solaris host (pascal) with the real host, which also runs Solaris.
We see nearly identical behavior. Both sources produce highly
predictable values, especially for attributes such as window size,
TTL, and TCP options, fields that we previously identified as
artifacts.

In the rightmost two columns, we compare inbound TCP SYN
packets, which represent aggregate sources. In this case, we see
(as before) that r is higher in redl traffic. The simulated aggregate
traffic bears a greater resemblance to the simulated single source
than to real aggregate traffic. This effect is most noticeable for
TCP options and packet size (Ethernet, IP and TCP header), but
also for TTL and window size.

r (values) | Simout Real out Simin Real in
Packets n=3165 n=6932 n=29263 | n=7063
Ether size | 1(60) 1(58) 1(60) 6 (60-82)
IPlength | 1(44) 1(44) 1(44) 6 (44-68)
TOS 1(0) 1(0) 3(0,8,16) | 4(0-3)
DF 1(1) 1(1) 2(0-1) 2(0-1)
TTL 1(255) 1(255) 7 65
Header 1(24) 1(24) 1(24) 6 (24-48)
Window 2 (8760- | 1(24820) | 7 (512- 40 (512-
size 24820) 32120) 65535)
Urg ptr 1(0) 1(0) 1(0) 2(0-1738)
Options 1(MSS) | 1(MSS) 1(MSS) | 20

Table 8. Number (r) and range of values in outbound (from
Solaris) and inbound TCP SYN packets in week 3 and the
small real data set.

4.3.2. Sef-Similarity

Although the evidence suggests that the source of simulation
artifacts is too few sources, we cannot yet rule out a lack of
burstiness or self-similarity as another source. We know that

many types of network events tend to occur in bursts separated by
long gaps, regardless of time scale (self-similarity) [15, 26]. If
individual sources were instead modeled as Poisson processes
(independent events, lacking long gaps), then in an aggregate
process we would expect to see all possible values within a short
period of time. On the other hand, if individual sources produced
bursts of events with long gaps, then r would continue to grow as
new sources are seen for the first time. Furthermore, because gaps
can be arbitrarily long, r should grow throughout any arbitrarily
long trace.

We first observe that both the simulated and real traffic are
bursty. When we examine the distribution of intervals between
successive events, we find that the distribution is heavy tailed
compared to a Poisson distribution, i.e. lots of short and long
gaps. We found this to be true for many packet types. Ethernet,
ARP, ICMP, UDP, TCP, TCP SYN, HTTP SYN, and SMTP
SYN. Although these are al aggregate processes, the results hold
because the sum of Poisson processes is a Poisson process, but the
sum of self-similar processes tends to remain self-similar.

We also measured the Hurst parameter [15], a measure of how
rapidly the burstiness "smoothes out" as the time scale increases.
One measure of burstiness is the standard deviation of events per
time interval, e.g. packets per second or packets per minute. As
we increase the time scale by a factor of M (e.g. 60), we would
expect the relative standard deviation to decrease by a factor of
MY2 for a Poisson process. For a purely self-similar process, there
is no decrease at all, i.e. M®. A process is said to have a Hurst
parameter of H if the standard deviation decreases by a factor of
M*H, where H = 0.5 indicates a Poisson process and H = 1
indicates a purely self-similar process. Many network events
have Hurst parameters of 0.7 to 0.9.

We compared Hurst parameters in the simulated and red
traffic for al of the packet types mentioned above. We measured
H by computing the relative standard deviation of the event rate at
sampling intervals of M = 1, 10, 100, and 1000 seconds. We then
estimated the Hurst parameter between successive values of M as

Hw-1om = 1 + 10g10((T10m/Haom) / (On/Hwm))

where Hy.1ou is the Hurst parameter estimate between sampling
rate M and 10M, oy, is the sample standard deviation for samples
over M seconds, and Py is the sample mean. Because measuring
H requires a contiguous trace, we compared each of the two small
traces of one million packets with two rea traces taken from the
first million packets of simulated week 3, days 1 and 7.

We found that in most cases, the simulated traffic has similar
or higher Hurst parameters than redl traffic. Thisis true for both
individual and aggregate processes. Table 9 shows two examples,
where we compare outbound and inbound TCP SY N packets from
the first of two real traces with the first million packets of week 3,
day 1. Although the number and rate of simulated outbound
packetsis small, we obtained similar values with longer traces.

Sim out Real out | Simin Real in
Padkets 235 5892 2265 5387
Padets./sec .0108 .148 104 135
H, 1-10sec 547 .610 594 .670
H, 10-100s. 614 484 .630 .694
H, 100-1000s. 719 617 .694 747

Table 9. Packets, packet rates, and Hurst parameter estimates
over the range 1 to 1000 seconds for outbound (from the
Solaris host) and inbound TCP SYN rates for simulated and
real traffic.

This evidence seams to rule out the first two pcsshbiliti es that
individual sources are modeled incorredly either in range of
values or in timing. Instead, we onclude that a likely source of
artifads is that there ae too few independent sources of traffic to
dupicate the complexity of Internet traffic.

4.4, Summary

We foundwhat appea to be smulation artifads at every layer
of the protocol stad from the data link layer to the gplication
layer. These ae of two types. First, the smulated data ladks
"crud', anomalous but mostly benign events that might trigger
false darms during testing, such as ched<sum errors, |P fragments
with the "dont fragment" flag set, TCP retransmissons with
inconsistent or partially overlapping payloads, or datain the TCP
reserved fields, urgent painter, or adknowledgment field when the
correspondng flags are not set. These anomalies make up about
0.01% of red padkets.

Semnd many attributes that have asmall and static range of
values in simulation would adualy have amuch wider range in
pradice (often with a power law or Zipf distribution), and this
range would grow at a @mnstant rate, introducing a huge disparity
in the rate of novel events. The problem occursin Ethernet and IP
protocols and source adresss, TOS, TTL, TCP options and
window size HTTP and SMTP commands and arguments, and
HTTP and SSH client versions. The problem is espedally severe
for source |P addresses for inbound(but not outbound TCP SYN
packets. This attribute is monitored by nealy al network
intrusion cetedion systems. The simulated rate of novel addresses
(and thus the false darm rate) is too low by a fador of many
thousands.

Findly, we mpared indvidua traffic sources in the
simulated and red traffic, and these gpea to be modeed
corredly, bath in range of values and in timing. We believe the
problemis due to too few sources.

5. EVALUATION WITH MIXED TRAFFIC

The evidence presented in Sedions 3 and 4 suggest a problem
with the LL data. However, this data was generated at grea
expense and could na easily be replacal. We would prefer a
solution that fixes the data as it exists now, rather than require that
anew set be creaed.

We believe it is impradicd to synthesize Internet traffic
acarately due to its vast complexity. However, we believe that
attadks can be — and for the most part were — simulated corredly.
Thus we propase to use red traffic (with all the usual implications
abou privagy and seaurity) as badkground and training data, but
to continue to use the labeled, simulated attacks as before.

Our propocsal is to add red traffic to the LL data to make it
appea as if it were being sent and recaéved during the simulation.

We believeit is not necessary to remove the simulated background
traffic because the ambination shoud be similar (in the statistica
sense of Sedion 4) to the red traffic done. To seethis, let Ag be
the set of values of attribute A seen in simulation up to the present
time, and let Ar be the correspondng set of values e in red
traffic. Then the set of values Ay seen in merged traffic would be
at al times:

AM:ASDAR

Note that the r statistic for attribute As, which we denote rg is
simply |Agl. Likewise, we define rr = |Ag| and ry = |Aul-
Therefore, we have at all times:

maX(rs, rR) < I'm < I's + Ir

In cases where we suspect r is an artifact, we have rg << rg, and
therefore ry =~ rg, so removing the simulated traffic would have
little effect. Furthermore, because this is true at all times, ry and
rg would have similar growth rates.

A problem can occur when A is too small or empty, i.e. there
is little or no real traffic of types where A is defined to mix with
the smulation. In this case, ry = rs, and the artifact, if there is
one, would not be removed. One such example is the destination
address of incoming traffic, where there are rs = 16 simulated
hosts and rr = 1 red host. We are unable to test whether the
destination address is an artifact in the simulation (although we
have no reason to believe that it would be). Other untestable
attributes are those of FTP and telnet payloads, because there is
little FTP and no telnet traffic in our real data. (Remote login and
FTP are available only viathe SSH protocoal).

We wish to evaluate network anomaly detection systems on
mixed data. Our approach is as follows. First, we anayze the
system to determine which attributes are monitored. Then we test
the simulated and real data to determine which attributes are
present in the simulation, but absent or rare in the real data. Then
we either modify the system to ignore these attributes (e.g. remove
rules for FTP and telnet), or we modify the real datato remove the
discrepancy (e.g. modify destination IP addresses in the red
traffic). We illustrate the process with three systems, SPADE,
PHAD, and LERAD.

5.1. Data Preparation

For our mixed traffic, we use the same large, filtered data set
as described in Section 4. We have 579 hours of traffic, which is
more than enough to mix into the 146 hours of traffic in inside
sniffer week 3 plus the 198 hours in weeks 4 and 5. We mix the
traffic in a 1:1 ratio, i.e. one hour of simulated traffic is mixed
with one hour of redl traffic. Other ratios would be possible by
stretching or compressing the real traffic, but we do not do this.

We mix the traffic to make it appear as if all of the collected
data occurs during the simulation. We do this by adjusting the
time stamp of the first real packet to match the time stamp of the
first simulated packet, then maintain the relative times of the other
real packets, excluding gaps in the two collections. This is
illustrated in Figure 1. Time reads from left to right.

Real

Y

Figure 1. Mapping real time into simulation time when there
are gapsin collection in both data sets.

Simulated

The red traffic consists of 50 traces, divided into 10weeks. We
mix these into weeks 3 (training), 4, and 5 (test) of the inside
sniffer datato prepare threemixed data sets, which we label A, B,
and C as dhown in Table 10. Prior to mixing, both the simulated
and red traffic ae filtered as described in Sedion 42.1 to pass
only truncaed and rate limited inboundclient to server requests.
We denote the unmixed data (after filtering) as st S.

Test data

LL inside weeks 4-5
S+ red weeks 4-7
S+ red weeks 7-10
S+red weeks 1-4

Training data

LL insideweek 3
S+red weeks 1-3
S+ red weeks 4-6
S+ red weeks 7-9

OUJZDU)&

Table 10. Mixed data sets used for evaluation. All data is
filtered.

The results for SAD in Sedion 3 were obtained with sets S
and C. However sets A and B give results smilar to C. In this
cese, filtering has littl e dfed becaise most inboundTCP SYN are
passd through.

5.2. Algorithm Preparations

In this dion we describe how we modify SPADE, PHAD,
and LERAD to med the requirement that it not test any attributes
where rr << rs. We ca do this either by modifying the data
(SPADE), the dgorithm (LERAD), or determining that no
modification is needed (PHAD).

5.2.1. SPADE Modifications
SPADE is a frequency based modd of inbound TCP SYN
padket addresses and pat numbers. It has four probability modes
(0-3), which asdgn scores to every such padket as foll ows:
0. 1/P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP)
1. UP(DA,DP, SA, SP)
2. 1P(DA,DP, SA)
3. 1UP(DA, DP) (default)
where the joint probabiliti es are based on courts up through the
current padet, and SA, SP, DA, and DP denote source aldress
source port, destination address and destination pat, respedively.
All probability modes include the destination address (DA),
which implies that SPADE would buld separate models for the
simulated and red hosts. To prevent this from happening, we
randamly replace # red destination |P addresses with ore of the
four main targets in the simulation (pascd, hume, marx, or zeno),
making it appea asif thered traffic were on these hosts instead.

5.2.2. PHAD Modifications

PHAD is atime-based global model of padet header fields. If
any packet (inbound o outbound client or server) displays a
value never seen in training, then PHAD assgns a score of X tn/r,
wheret is the time since the previous anomaly, n is the number of
training padets, and r is the number of alowed values, and the
sumisover al of the anomalous attributes.

There ae 34 attributes correspondng to the various 1 to 4
byte fields in the Ethernet, IP, TCP, UDP, and ICMP padket
healers. The cndtions for these fields to be present, is that the
padket be of the mrrespondng type. From Table 3 (Sedion 41)
we seethat al five types of padets are available in comparable
quantities in bah the simulated and red traffic. Thus, no rules
ned to be removed from PHAD.

5.2.3. LERAD Modifications

LERAD is a time-based model, like PHAD, assgning a score
of X tn/r to novel attribute values. It creaes condtiona rules of
the form

if Ay=vi;and A, =v, and... then Ay O {Vy, Vis1, - Vier-1}

where A; through Ay are abitrary attributes and the v; are values.
The rules are randamly seleded such that they are dways stisfied
in training and have high n/r.

LERAD models inbound TCP streams from client to server.
The dtributes are date, time, single bytes of the source ad
destination address source and destination pats, TCP flags of the
first, next to last or last padket, duration, length, and the first 8
words in the gplicaion payload.

There ae many potential rules that could exclude red traffic,
for example "if DA = pascal and DP = FTP then ...". Rather than
modify LERAD to avoid such rules, we modify it to record the
number of simulated and red training instances that satisfy the
rule antecadent, then weight ead rule by the fradion o red traffic
when computing the anomay score. This has the dfect of
removing rules that depend orly on the simulated traffic.

5.3. Evaluation Criteria

We evaluate SPADE, PHAD, and LERAD on the LL data
with and withou red traffic mixed in. This srves two puposes.
First, we wish to know if we succesdully removed the atifads.
Semnd, we wish to predict how these systems would work on red
traffic. Although the rate of attadks in the LL data is artificialy
high (except possbly for probes), we can till use these results to
estimate the probability of deteding an attack given any fase
alarm rate (e.g. 10 per day), on the type of traffic that we ald to
the data.

To test whether artifads are removed, we look at eadh attadk
and the dtributes that lead to its detedion with and withou
mixing. If, based on the dtad's description, the detedion is
susped, then we would exped it to be misseed when red traffic is
added. For example, we would exped that HTTP or SMTP
attadks deteded by source addressin simulated traffic would be
missd in mixed traffic. However, if the feaure is genuine, for
example, neptune's forged source aldress then the dtadk would
dtill be deteded, although it could still be missed due to a higher
false darm rate. In general, we will use the following somewhat
subjedive guidelines to determine whether a detedion is
legitimate.

« Source aldressis legitimate for denia of service (DOS)
attacks that spod it, or if the dtak is on an

authenticated service (e.g. telnet, auth, SSH, POPS3,
IMAP, SNMP, sydlog, etc), and the system mekes guch
distinctions. FTP is anonymous in the LL data, so we
consider it pubic.

e Dedtination address is legitimate for probes that scan
addresss, e.g. ipsweep.

e Dedtination pat is legitimate for probes that scan o
accessunuwsed pats, e.g. portsweep, mscan, satan. It is
debatable whether it is legitimate for attadks on a single
port, but we will allow them.

e TCP state snomalies (flags, duration) are legitimate for
DOS attadks that disrupt traffic (arppoison, tcpreset), or
crash the target (ntfsdos, dosnuke).

« |IP fragmentation is legitimate in attadks that generate
fragments (teardrop, pod).

e Padket header anomalies other than addresses and pats
are legitimate if a probe or DOS attadk requires raw
socket programming, where the atacker must put
arbitrary valuesin these fields.

e Applicaion payload anomalies are legitimate in attacks
on servers (usualy R2L (remote to locd) attadks, but
may be probes or DOS).

e TCP stream length is legitimate for buffer overflows.

« No feaure shoud legitimately deted a U2R (user to
roat) or Data dtad (seaurity palicy violation).

5.4. Evaluation Procedure

We use the EVAL program (available & [19]) to test whether
an attack is deteded. EVAL uses the same aiteria & the original
1999LL evauationasdescribed in [17]. However we have had to
make some asumptions where the description is ambiguous.

EVAL couns an attack as deteded if there is at least one
alarm that corredly identifies the target |P address(or one target if
there is more than ore) and if the darm occurs within 60 seconds
of any point within any segment of the dtadk. Attadk segments
are derived from the start times, durations, and destination
addreses from the LL master detedion truth table [17], when
(with three eceptions), the destination is a locd address
(17216.x.x or 192168x.x in the LL set). The three eceptions
dlowed by EVAL are two instances of httptunnel and ore
instance of portsweep which have no segments with a locd
destination address In these caes, the locd addressfrom the LL
master identification list [17] is used instead.

Systems are evaluated based on the number of "in-spec
attadks deteded for a given number of false darms as the scoring
threshold is varied. An attadk isin-specif the system is designed
to deted it, based onthe dtad type, inpu data, target operating
system, and whether the dtad is new or stedthy. Ead attadk
instance during week 4 or 5 islabeled with this information so that
the scoring is unambiguous. For this paper, we ansider an attadk
in-specif there is evidence for the atadk in the inside sniffer data
on which we test it. There are 177 such instances out of 201in
weeks4 and 5

An darm is courted as a false darm if it falls outside of all
attadk segments by more than 60 seconds, whether or nat that
segment is in-spec If an aarm occurs during two overlapping
attacks, then EVAL courts both attadks as deteded. For a given
false darm rate, EVAL sets the threshold as low as possble
without excealing that rate. In other words, if the limit is 100
fase darms, then detedions between the 100th and 101st highest
scoring false darms are included. In case of tie scores, darms are

ranked in the order they are inpu, with the first darm ranking
highest.

It is often possble to deaease the number of fase darms
withou affeding detedions by consolidating bursts of aarms.
We use the program AFIL.PL (aso available & [19]) to do this
prior to al our evaluations. AFIL.PL divides the darm sequence
into ore-minute intervals, then discards any aarm if there is a
higher scoring alarm in the same interval that identifies the same
target.

6. EVALUATION RESULTSWITH MIXED
TRAFFIC

Based onthe evaluation criteria and procedures described in
Sedion 5 we obtained the foll owing results for SPADE, PHAD,
and LERAD.

6.1. SPADE

We tested SPADE version v0922001, which is built into
SNORT 1.7 Win32 [29]. We used sets S, A, B, and C, which
were further modified asin Sedion 52 to randamly substitute red
destination addresses with simulated ones. All SPADE options
were set to their default values, and al SNORT rules other than
SPADE were turned off. SPADE does not have separate training
and test modes, so we ran it on weeks 3 through 5 continuowsly,
discading al aarms in wee&k 3. SPADE uses an adaptive
threshold with various parameters to control alarm reporting.
However we used the raw score reported by SPADE instead. The
default threshold alows thousands of false darms © we do nd
believe that any were lost.

Results are shown in Table 11 for ead of the four probability
modes. We used a threshold of 200 false darms rather than 100
becaise the numbers are low. SPADE deteds abou half as many
attacks at 100false darms.

SPADE detections at 200 FA

0: P(SA, SP, DA)P(SA, SP, DP)/P(SA, SP)
1: P(DA, DP, SA, SP)

2: P(DA, DP, SA)

3: P(DA, DP) (default)

>
o
o

onvo|le
o |o|le
~N|R|o|~

ook |o|n

Table 11. Attacks detected by SPADE at 200 false alarms
according to EVAL on filtered inside sniffer weeks 3-5 (S) and
when mixed with real traffic (A, B, C) in each probability
mode.

Probability modes 0 and linclude the source port (SP), which
is normally picked randamly by the dient and would na be
expeded to yield useful information. The six attadks deteded in
mode 0 on set S are insidesniffer, syslogd, mscan, tcpreset,
arppoison, and smurf. All but mscan are probably coincidental
because the others generate no TCP SYN padkets. However, all
but syslogd target multiple hosts, increasing the likelihood d a
coincidental alarm for one of the targets.

However modes 2 and 3 show the dfeds of mixing clealy.
We have previously identified source aldress(SA) as an artifad.
We now find that adding red data removes most of the detedions
from mode 2, which uses SA, but not from mode 3, which daes
not. On S, mode 2 deteds guest, syslogd, insidesniffer, perl,
mscan, and crashiis. By our previously mentioned criteria, guest
(telnet passwvord guessng) could legitimately be deteded by SA,

and mscan (a probe for multiple vulnerabilities on a range of
hosts) by destination address or port (DA or DP). We do not
count syslogd or insidesniffer (no TCP traffic), perl (a U2R
attack), or crashiis (an HTTP attack).

SPADE detects only mscan on al three mixed sets. On A, it
also detects portsweep, which also can legitimately be detected by
DP. Thus, our results are consistent with the claim that SA (but
not DP) is an artifact and that the artifact is removed in mixed
traffic. When rea traffic is added, the fraction of legitimate
detections goes from 2/6 to 1/1 (or 2/2).

6.2. PHAD

Although it is not necessary to modify PHAD to test it on
mixed traffic, we modified it to include the TTL field. Thisfield
was removed in the origina version because it was believed to be
an artifact. We wish to see whether adding real traffic will remove
it.

On sets S, A, B, and C, PHAD detects 76, 18, 32, and 25 in-
spec attacks respectively at 100 false dlarms according to EVAL.
The median mixed result is for C, so we restrict our detailed
analysisto Sand C. However, A and B give similar results.

In Table 12, we list the attacks detected in sets S and C
grouped by the attribute that contributes the most to the detection.
We classify each detection as legitimate or not according to the
criteria at the beginning of this section. We list the number of
legitimate and total detections separated by a slash, then list the
legitimate and non-legitimate detection types also separated by a
slash. For example, out of the 36 attacks detected in Shy TTL, we

When we add rea traffic, the percentage of legitimate
detections increases from 41% to 76%. Furthermore, of the 6
remaining detections we classify as not legitimate, 3 are
destination address anomalies, which we are unable to remove
because there is only one new destination address in the red
traffic. One other (ffbconfig) is detected because it overlaps
portsweep and is detected by the same alarm. If we ignore these 4
cases, then the fraction of legitimate detections increases to 19/21
or 90%.

6.3. LERAD

We modified LERAD to weight rules by the fraction of real
traffic satisfying the antecedent in training. However, we find in
practice that this weighting has very little effect. Almost all of the
rules are satisfied by a significant fraction of real traffic, and the
effect isto decrease the number of detections by less than 3%.

We also modified the TCP stream reassembly agorithm to
handle truncated and filtered traffic as described in Section 4.2.1.
The LL data contains complete packets, allowing streams to be
reassembled completely. However, truncated TCP packets would
leave gaps. Thus, we truncate the stream after the first 134 bytes
of the first payload packet to match the maximum payload size of
thefiltered traffic. Our filter removes closing TCP flags.
Therefore we also modify the TCP flag attributes to be the flags of
the last three packets up through the payload, instead of the first
and last two packets in the completely reassembled stream. The
modified reassembly is also applied to the simulated traffic.

classify only the 7 instances of portsweep as legitimate, because Attribute | Legitimate/Detected in S InC
this is the only attack which requires the attacker to fill in this Source 8/26: dict, guesstelnet, guest, | 0/0
field. address sshprocesstable, sshtrojan /
casesen, crashiis, fdformat,
Attribute | Legitimate/Detected in S InC ffbconfig, guessftp, netbus,
TTL 7/36: portsweep / apache2, 1/2: portsweep netcat_setup, perl, ps,
back, casesen, crashiis, / ffbconfig sechole, sglattack, xterm,
ffbconfig, guessftp, guesstelnet, warezclient, warezmaster
ipsweep, mailbomb, named, Dest. 1/6: mscan / ncftp, 1/6: mscan /
neptune, netbus, address guesstelnet ncftp, guesstel net
netcat_breakin, ntinfoscan, Dest. port | 14/14: ftpwrite, guesspop, 11/11: ftpwrite,
ppmacro, sechole, smurf, yaga imap, Is_domain, satan, Is_domain, satan,
Ether-DA 0/1: mscan 0/1: mscan named, neptune, netcat, named, netcat,
Dest. IP 1/5: portsweep / ncftp, 0/3: ncftp netcat_breakin netcat_breakin,
address guesstel net Payload 22/29: apache2, back, 8/8: back, imap,
IPfrag 7/8: pod, teardrop / 5/5: teardrop, crashiis, imap, mailbomb, ntinfoscan, phf,
insidesniffer pod ntinfoscan, phf, satan, satan, sendmail
Source IP | 0/5: xlock, portsweep, ncftp, 0/0 sendmail / guesstelnet,
address processtable, sendmail portsweep, yaga
Checksums | 1/6: udpstorm / smurf, apache2 | 0/0 Duration | 0/1: insidesniffer 0/0
TCPflags | 6/6: portsweep, queso 9/9: queso, Length 0/2: netbus, ppmacro 1/1: sendmail
portsweep, TCP 4/9: dosnuke / back, 4/4: dosnuke
dosnuke flags loadmodul e, sendmail
Urgent ptr | 4/4: dosnuke 1/1: dosnuke Total 49/87 (56%) 25/30 (83%)
UDPDP 5/5: satan, portsweep, udpstorm | 0/0
Packet size | 0/0 1/2:satan/ncftp Table 13. Attacks detected by LERAD at 100 false alarms on
Window 0/0 2/2: portsweep setsSand C.
Total 31/76 (41%) 19/25 (76%)

Table 12. Attacks detected by PHAD attributes at 100 false
alarmsin setsSand C.

LERAD uses a randomized rule generation algorithm. In 5
runs on set S, EVAL detects 87, 88, 80, 85, and 91 detections.
(The lost of detections, compared to about 114 on unfiltered
traffic, is due mostly to the loss of TCP flags and some of the
payload). On one run each on sets A, B, and C, the modified

LERAD deteds 29, 30, and 30in-spec dtadks. Thus, we confine
our detailed andlysis to the middie values of ead group, the run
deteding 87 attadks in S, compared with C. As with PHAD, we
caegorize eab detedion as legitimate or nat, and list the results
inTable13.

Once aain, we find that adding red data reduces the fradion
of questionable detedions. The fradion we dlow as legitimate
increases from 56% to 83%. Of the 5 questionable detedions in
C, al are deteded hy destination address which is unaffected by
thered traffic.

6.4. Results Summary

We tested SPADE, PHAD, and LERAD on mixed data, and
found lty an analysis of the deteded attadks that suspeded
simulation artifads were removed. In particular, two strong
artifads were removed: TTL from PHAD, and source aldress
from SPADE and LERAD.

We dso readied similar conclusions in tests on ALAD and
NETAD, athough we omit the detailed analysis. We modified
both programs © that no rule depends exclusively on simulated
data.

ALAD models TCP streans like LERAD, but uses fixed rather
than leaned rules. We modified these rules to remove
dependencies on the destination address which would distinguish
the red traffic. We dso removed rules for applicaion payloads
other than HTTP, SMTP, and SSH. We used LERAD's modified
TCP stream ressembly algorithm. The result was to increase the
fradion d legitimate detedions, mostly by removing detedions by
source adress

NETAD models padkets, like PHAD, but for several types
such as inboundTCP, inboundTCP SYN, HTTP, SMTP, telnet,
and FTP. We removed the telnet and FTP rules. Again, the
fradion o legitimate detedions was increased, mostly by
removing source aldressand TCP window size anomalies.

The results are summarized in Table 14. The origina number
of detedions is the number reported in the literature & 100 false
alarms when trained oninside week 3 and tested on weeks 4-5
before the data is filtered or the dgorithm is modified. For sets S
and C we show the number of legitimate and total detedions, and
the percentage legitimate. Set C generally resulted in a number of
detedions between those of sets A and B, and is therefore the
most representative of the mixed results. In every case, the
fradion d legitimate detedions increases when mixed data is
used.

System Orig L egit/S (pct) L egit/C (pct)
SPADE, mode 2 2/6 (33%) 1/1 (100%)
PHAD, noTTL 54 31/51 (61%) 19/23 (83%)
ALAD 59 16/47 (34%) 10/12(83%)
LERAD (avg.) 114 49/87 (56%) 25/30 (83%)
NETAD 132 | 61/128(48%) 27/41 (67%)

Table 14. Legitimate and total detections at 100 false alarms
on sets Sand C. The original results (orig) are the published
results based on the unmodified algorithm on unfiltered data
(inside weeks 3-5).

7. CONCLUSIONSAND FUTURE WORK

We anadyzed the attadk-free portions of the 1999 LL inside
sniffer traffic by comparing it with one source of red traffic from
the point of view of attributes that are important to anomaly

detedion. We discovered many attributes that have asmall, fixed
range in simulation, but a large axd growing range in red traffic,
in particular, remote dient addresses, TTL, TCP options and TCP
window size The simulated traffic dso ladks "crud’, such as IP
fragments, garbage datain unwsed TCP fields, bad chedsums, and
malformed appli cation commands and arguments.

Whil e these differences are of no consequence to a signature
detedion system, they could be to an anomaly detedion system,
which is designed to be sensitive to unwsua events. The LL
badkground undrestimates the frequency of these events, which
would otherwise generate false darms in many systems. It also
allows the systems to deted attadks based onidiosyncrasies that
would namally be masked.

We propose solving these problems by adding red traffic to
the simulation. This requires careful analysis to ensure that the
system canna distinguish the red traffic from the simulation, and
that it does not monitor traffic types for which no red data is
available. We did this for five systems and showed that many
attacks that appea to be detected by suspeded simulation artifads
are nolonger deteded when red traffic is added.

Although we tested orly the 1999 inside sniffer traffic, we
believe the problem exists in the outside traffic and the 1998
traffic because they were generated by the same methoddogy. We
do nd believe that the host based data (BSM, audit logs, etc.) are
affeded by artifads becaise this data was generated by red
hardware and software, rather than simulated.

Our analysisis based onasingle source of red network traffic.
Obvioudly every environment is different, so we must be caitious
abou drawing general conclusions. Our results need to be
confirmed using other sources of red traffic. Also, we do nd
know the dfeds of changing the propartion of simulated and red
traffic, which could be dore by squeeing, stretching, or sampling
the red data, or by using other sources with dfferent rates. Our
analysis asaumes that the red traffic is attadk-freg but we know
that thisis not the cae. Finding and removing (or labeling) al of
the hostil e traffic would be difficult.

Evduations using red traffic ae usualy not repeaable
because privacy and seaurity concerns usualy prohibit the release
of this data off-line. Furthermore, as hardware gets faster,
software gets more complex, and rew protocols are introduced,
red traffic will 1ook less and less like the LL data. It is more
common now for datato be encrypted and inaccessble. These ae
difficult problems that remain to be solved.

Acknowledgments
This reseach is partidly suppated by DARPA (F3060200-1-
0603.

References

[1] L. A. Adamic, "Zipf, Power-laws, and Pareto - A Ranking
Tutorid",
http://ginger.hpl.hp.com/shl/ papers/ranking/ranking.html
(2002

[2] D.Anderson,. et. d., "Deteding Unusual Program Behavior
using the Statisticd Component of the Next-generation
Intrusion Detedion Expert System (NIDES)", Computer
Science Laboratory SRI-CSL 95-06 May 1995
http://www.sdl.sri.com/papers/5/s/5sri/ Ssri. pdf

[3] S. Axelson, "Reseach in Intrusion Detedion Systems. A
Survey", TR 98-17, Chalmers University of Techndogy,
1999

[4] D. Barbara, Wu, S. Jgjodia, "Deteding Novel Network
Attacks using Bayes Estimators’, SIAM [ntl. Data Mining
Conference, 2001

[5] C. Elkan, "Results of the KDD'99 Classfier Leaning
Contest", http://www.cs.ucsd.edw/users/elkan/clresults.html
(1999

[6] E.Eskin, "Anomaly Detedion over Noisy Data using
Leaned Probability Distributions', Intl. Conf. Machine
Leaning, 2000

[7] E.Eskin, A. Arndld, M, Prerau, L. Portnoy & S. Stolfo. "A
Geometric Framework for Unsupervised Anomaly Detedion:
Deteding Intrusionsin Unlabeled Data’, In D. Barbara and
S. Jgjodia (editors), Applications of Data Mining in
Computer Security, Kluwer, 2002

[8] S. Floyd, V. Paxson, "Difficultiesin Simulating the Internet",
IEEEACM Transadions on Networking, 2001

[9] S. Forrest, S. A. Hofmeyr, A. Somayaiji, and T. A. Longstaff,
"A Sense of Self for Unix Processs’, Proc. 1996 EEE
Symposium on Computer Seaurity and Privagy, 1996

[10] S. Forrest, Computer Immune Systems, Data Sets and
Software, http://www.cs.unm.edw/~immseddata-sets.htm
(2002.

[11] W. Gale, G. Sampson, "Good-Turing Frequency Estimation
withou Teas', Journa of Quantitative Linguistics 2.217-37,
1995

[12] A. K. Ghaosh, A. Schwartzbard, "A Study in Using Neural
Networks for Anomaly and Misuse Detedion”, Proc. 8th
USENIX Seaurity Symposium, Aug. 26-29 1999
Washington DC.

[13] J. Hoagland, SPADE, Sili con Defense,
http://www.sili condefense.com/software/spice/

[14] B. A. Huberman, L. A. Adamic, "The Nature of Marketsin
the World Wide Web",
http://ideas.ugam.caideas/data/Papers/scesced9521.html
(1999

[15 W. E. Leland M. S. Tagqu, W. Willi nger, D. W. Wilson, "On
the Self-Similar Nature of Ethernet Traffic', ACM SIGComm
'93, San Francisco, 1993

[16] Y. LiaoandV. R. Vemuri, "Use of Text Categorizaion
Techniques for Intrusion Detedion", Proc. 11th USENIX
Seaurity Sympasium, 51-59, 2002

[17] R. Lippmann, et d., "The 1999DARPA Off-Line Intrusion
Detedion Evauation", Computer Networks 34(4) 579595,
2000 Dataisavailable & http://www.Il.mit.edwIST/ideval/

[18] M. Mahorey, "Network Traffic Anomaly Detedion Based on
Packet Bytes', to appea, Proc. ACM-SAC, Melboune FL,
2003

[19] M. Mahonrey, Source @de for PHAD, ALAD, LERAD,
NETAD, SAD, EVAL and AFIL.PL isavailable &
http://cs.fit.edu~mmahonrey/dist/

[20] M. Mahorey, P. K. Chan, "PHAD: Padet Header Anomaly
Detedionfor Identifying Hostile Network Traffic", Florida
Tech. technicd report 2001-04, http://cs.fit.edw~tr/

[21] M. Mahorey, P. K. Chan, "Leaning Models of Network
Traffic for Deteding Novel Attacks', Florida Tedh. technicd
report 200208, http://cs.fit.edw/~tr/

[22] M. Mahorey, P. K. Chan, "Leaning Nonstationary Models
of Normal Network Traffic for Deteding Novel Attacks",
Edmonton, Alberta: Proc. SIGKDD, 2002 376-385.

[23] J. McHugh, "Testing Intrusion Detedion Systems: A Critique
of the 1998and 1999DARPA Intrusion Detedion System

Evauations as Performed by Lincoln Laboratory", Proc.
ACM TISSEC 3(4) 262-294, 200Q

[24] P. G. Neumann, P. A. Porras, "Experiencewith EMERALD
to DATE", Proc. 1st USENIX Workshop onintrusion
Detedion and Network Monitoring, Santa Clara, CA, 1999
pp. 73-80

[25] V. Paxson, "Bro: A System for Deteding Network Intruders
in Red-Time", Lawrence Berkeley National Laboratory
Proceadings, 7'th USENIX Seaurity Symposium, Jan. 26-29,
1998 San Antonio TX,

[26] V. Paxson, S. Floyd, "The Fail ure of Poisson Modeling",
IEEEACM Transadions on Networking (3) 226-244, 1995

[27] V. Paxson, The Internet Traffic Archive, http://ita.eelbl.gov/
(2002.

[28] L. Portnoy, "Intrusion Detedion with Unlabeled Data Using
Clustering", Undergraduate Thesis, Columbia University,
2000

[29] M. Roesch, "Snort - Lightweight Intrusion Detedion for
Networks', Proc. USENIX Lisa'99, Sedtle: Nov. 7-12,
1999

[30] A. Schwartzbard and A.K. Ghaosh, "A Study in the Feasibility
of Performing Host-based Anomaly Detedion onWindows
NT", Proc. 2nd Recent Advancesin Intrusion Detedion
(RAID 1999 Workshop, West Lafayette, IN, September 7-9,
1999

[31] R. Sekar, M. Bendre, D. Dhurjati, P. Bolli neni, "A Fast
Automaton-based Methodfor Deteding Anomalous Program
Behaviors'. Procealings of the 20011EEE Sympasium on
Seaurity and Privagy.

[32] R. Sekar, A. Gupta, J. Frullo, T. Shanbheg, S. Zhou, A.
Tiwari and H. Yang, "Spedficaion Based Anomaly
Detedion: A New Approac for Deteding Network
Intrusions', ACM CCS, 2002

[33] R. Sekar and P. Uppuuri, "Synthesizing Fast Intrusion
Prevention/Detedion Systems from High-Level
Spedfications', Proc. 8th USENIX Seaurity Sympasium,
Washington DC, Aug. 1999

[34] M. Tyson, P. Berry, N. Willi ams, D. Moran, D. Blei,
"DERBI: Diagnosis, Explanation and Remvery from
computer Bre&k-Ins', http://www.ai .sri.com/~derbi/, April .
2000

[35] A. Valdes, K. Skinner, "Adaptive, Model-based Monitoring
for Cyber Attadk Detedion”, RAID 2000 LNCS 1907, p80-
92, Springer Verlag, 200Q

[36] G. Vigna, S.T. Eckmann, and R.A. Kemmerer, "The STAT
Tod Suite", Proc. 2000DARPA Information Survivability
Conference and Exposition (DISCEX), |[EEE Press January
2000

[37] G. Vigna and R. Kemmerer, "NetSTAT: A Network-based
Intrusion Detedion System”, Journal of Computer Seaurity,
7(1), 10S Press 1999

[38] K. Yamanishi, J. Takeuchi & G. Willi ams, "On-line
Unsupervised Outlier Detedion Using Finite Mixtures with
Discourting Leaning Algorithms', KDD, p.320-324, 200Q

[39] G. K. Zipf, The Psycho-Biology of Language, an
Introduction to Dynamic Philology, M.1.T. Press 1935.

