
This is a preprint of an article that is to appear in the March issue of ACM Software Engineering Notes
Do Not Reproduce!

Testing with Hostile Data Streams
Alan A. Jorgensen

Computer Science Department
Florida Institute of Technology

150 W. University Blvd.
Melbourne, Florida 32901

aj@se.fit.edu

Abstract1

This note describes a method of testing software for response to
malicious data streams. Systems that process data streams
obtained from an external source such as the Internet are
vulnerable to security issues if malicious data is not processed
correctly. This note describes a testing method that creates
malicious data streams, applies them to a software application and
checks the appropriateness of the application response.

The note begins with a description of the problem: inadequate
testing of software response to malicious data streams. I present a
method of testing the response to malicious data streams and
introduce the concepts of lexical, syntactic and semantic data
stream deformation. I provide a description of a system that
produces and applies such tests. This description divides the
testing system into components and provides some detail about
each component. This system applied to Adobe® Acrobat®
Reader® version

Research is on-going in the following areas: generalized buffer
overrun exploitation, maliciously testing protocols and testing with
encoded or encrypted data streams.

5.0.1 provides a case study. The study applied
141,306 unique test cases and revealed 11 distinct indications of
buffer overrun , numerous program lock-ups, and four
steganographic possibilities.

Keywords: software testing, random testing, Internet security,
Adobe® Acrobat Reader®

Introduction –

, buffer overrun, buffer overflow,
steganography

Security and Data Transmission
The recent concern over the possibility that system security might
be broached by means of a data file [1], such as an image file, is
not without merit. Though the example cited failed to prescribe a
means of invading a system that had not been breached previously,
the effort, once again, conveyed the possibility of
steganographically conveying hostile information by means of an
otherwise useful and harmless data file. Had that example also
contained malformed data such that the processing software had
failed to properly constrain a buffer range, a buffer overflow could
have occurred with the attendant security risk. The hostile data in
the stream could well have been hostile code to be executed as a
result of a loss of program control initiated by the buffer overrun.

1 Copyright 2002, Alan A. Jorgensen. Funding for this research
has been provided by the U.S. Air Force Grant # F49620-01-1-
0294, James A. Whittaker, Principal Investigator.

Failure to Constrain
Whittaker and Jorgensen document the failure of developers to
properly constrain the software activities input, output, storage and
computation [2, 3]. The failure of software testers to test for these
failures to constrain has resulted in a plethora of security breaches
initiated by buffer overruns [4]. (Search the CERT®

This paper presents a method for testing a software application’s
response to corrupt and possibly hostile data streams.

 website for
“Buffer”. The terms “buffer overrun” and “buffer overflow” are
used interchangeably.)

Starting with a general description of the system, this paper
presents a system block diagram and some details of the function
of each component of the system. As a case study, that system was
applied to Adobe® Acrobat® Reader®

The literature describes analytical reasons for not performing
random testing because of the theoretically superior value of
partition testing [5]. These theories generally assume the
availability of partition knowledge and do not address general
black-box testing issues and techniques [6].

. I report the results of that
study. There are several potential avenues of further research and
some of them are presented.

Voas, et al, describes methods of corrupting program code at
several levels during software fault injection such as randomly
selecting the type of deformation or the deformation values
themselves, [7].

Kaner mentions the need for a significantly larger volume of
testing when using random parameter selection [8].

Hamlet notes the general difficulty of using random testing
because of lack of oracles [9].

Data Stream Processing Constraint Failures
Buffer Overruns
A program storing data outside of the area reserved for that data
creates a buffer overrun. Typically this involves storing a sequence
of data greater in length than the storage area (buffer) reserved for
that data. Storing data in an inappropriate place usually causes the
software to enter states unanticipated by the developer and
consequently the behavior of software after an arbitrary buffer
overrun is unpredictable.

And steganography
Steganography is the embedding of a hidden message within
another message. In the context of data transmitted over the
Internet, data included within that transmission that serves a
purpose other than the original purpose of the data transmission is
steganographic data. An example of this kind of data would be

This is a preprint of an article that is to appear in the March issue of ACM Software Engineering Notes
Do Not Reproduce!

hostile code embedded in what would otherwise be informational
(inactive) data.

Security Implications
Buffer overruns are a major source of security breaches for users
(and providers) of the Internet [4]. A typical breach involves
sending a carefully crafted overlong data string such that program
control is appropriated and redirected to the data string itself. The
data string is crafted to contain hostile code that performs
undesirable actions such as, in the case of a computer virus,
retransmitting the hostile data stream to other computers. Once
hostile code has been executed, a large variety of insidious
behaviors may take place.

Historically, buffer overruns have been located by examination of
source code.

This class of security failure can be avoided by the identification
and elimination of the defective code that performs buffer
overruns.

Constraint Testing Technique
Though code inspection is a useful and cost effective way to locate
buffer overrun coding defects, in today’s development
environment of large, complex programs and libraries, the source
code may not be available for review. This paper presents a
“black box” testing method for identifying buffer overruns. This
testing technique is to apply randomly deformed data streams to
the application under test. This technique also provides a broader
testing capability, however, and includes the ability to detect
steganographic possibilities (places in data streams where
information can be hidden without detection by the application
processing that data stream).

Random data stream deformation
Random data stream deformation is the process of taking a valid
data stream, deforming that data stream in a manner such that the
data stream is no longer valid. I define three (3) types of file
deformation: lexical, syntactic, and semantic. These three
categories generally overlap but I define them loosely as:

Lexical – Changing a valid lexical element to an invalid lexical
element. A lexical deformation could be replacing a printable
character with a non-printable character. In practice, the method is
extended to include any character replacement.

Syntactic – Changing valid syntactic elements to lexically correct
but invalid syntactic elements. An example would be to replace a
left parenthesis with a space character. In practice, the definition
is extended to include long string insertions.

Semantic – Changing valid semantic elements to syntactically
correct but semantically invalid elements. For example, changing
the representation of a number to the representation of a different
number that is invalid in that context would constitute a semantic
deformation. Another would be changing a defined identifier to an
undefined identifier.

Malformed Data Stream Testing System
I have developed a system for testing applications with randomly
malformed data streams.

The System
Figure 1 is a block diagram of the hostile data stream test system.

Repeat Tests

Build and Run
Test Case

Build Lexical,
Syntactic or

Semantic Test
Case Script

Test Driver
Program

Create Deformed
File

Application
Program

Deformation
Command File

Robust Data
Stream File

Test Log

Corrupted
Data File

Figure 1 Hostile Data Stream Test System

The Tools

Repeat Test – Continuous repeated testing
The Repeat Test function continuously executes the Build and Run
Test Case function until halted.

Build and Run Test Case – Create a deformed file and run it.
The Build and Run Test Case function selects a Lexical, Syntactic,
or Semantic deformation algorithm, and executes that function to
create a deformed file. The deformation type is selected from a
list in a file using the Select Random Record function. The
frequency distribution of a particular deformation is controlled by
the percentage of occurrence of that function name in a file listing
the functions. Then Build and Run Test Case executes the Test
Driver function to execute the test case.

This is a preprint of an article that is to appear in the March issue of ACM Software Engineering Notes
Do Not Reproduce!

Create a Deformed File
The Create Deformed File function accepts file deformation
commands that produce a copy of a file with specified
modifications.

Available commands are:

• Input - Closes prior input stream and opens a new one
• Output - Closes prior output stream and opens new output

stream
• Close - Closes the current input and output streams
• Copy - Number of bytes from input to output
• Copy all - Copies the remainder of the input to the output
• Copy to byte number - Copies all input bytes until an input

byte position
• Insert - String into output
• Overlay - Inserts string into output and skips same number of

input stream bytes
• Fill - Cyclically inserts a specified number bytes from a string
• Overfill - Cyclically inserts a specified number bytes from a

string and skips the same number of bytes of input
• Skip - Skips the specified number of bytes of the input.
• System - Performs the specified system level command
• Comment - Permits annotation of a deformation script
• Quit or Exit - Terminates execution the Create Deformed File

function.

Numbers may be represented either hexadecimally or decimally.
A zero (0) precedes the representation of hexadecimal numbers.

Characters or characters in a string are represented by their
printable character or by their numeric values (preceded by a ‘/’
character).

There are three deformation functions, Lexical Deformation (Lex),
Syntactic Deformation (Syn), and Semantic Deformation (Sem).
Each function creates a file deformation script for the Create
Deformed File and then executes that function to create a
deformed data stream file. Each function passes the specifics of
the test case to the Test Driver for recording in the Test Log.

Lexical Deformation – Create a Lexically deformed file
The Lexical Deformation (Lex) function selects a lexical element
in the robust source file for replacement with an invalid lexical
element. This is accomplished by creating a file of the locations
and types of lexical elements using the General Parse function.
Lex selects a particular lexical element from the parsed output
using the Select Random Record function. With the element
location and size obtained from the parse, Lex generates the
deformation commands to copy the source file up to that element,
insert the erroneous lexical element, and copy the rest of the file.

Syntactic Deformaion – Create a Syntactically deformed file
The Syntactic Deformation (Syn) function creates a syntactically
deformed file. There are many possible techniques for this, but the
favored one is to create long string attacks in an attempt to force a
buffer overrun. This was accomplished by selecting a random
position in the file for the deformation to occur and inserting or
overlaying a randomly long sequence of some randomly selected
character(s). To accomplish this Syn generates a deformation
command file that will copy some characters from the source file,
fill or overfill a string of characters, and copy the remainder of the

source file.

Semantic Deformation – Create a Semantically deformed file
The Semantic Deformation (Sem) function creates a semantically
deformed file by selecting a specific token from the parsed version
of the source file. Sem selects a different token of the same type
from the same file as a replacement. The Sem function creates the
script to copy the source until the selected element, overlay with
the replacement element, and copy the remainder of the file. This
creates a file that is syntactically correct, but (probably)
semantically invalid.

General Parse – Parse a file into identified lexical elements
The General Parse function is a general-purpose parser that
identifies lexical elements of a file. The output consists of one text
line per lexical element. Each line contains the character position
of the lexical element in the file, a single character code for the
element type, the length of the element, and the element itself.
Non-displaying characters in the lexical element are presented as
numeric values proceeded by a solidus (‘/’). This nomenclature is
consistent with the representation of non-displaying characters in
the Create Deformed File function.

Select Random Record – Randomly select a file record
Given the name a of text file, the Select Random Record function
outputs one record randomly selected from that file. Each line of
the input file has an equal probability of being selected.

Robust Data Stream
A significant element of the system is the use of a robust data
stream. A robust data stream is an efficient stream of data that
exercises a large number of features of the application under test.
An efficient stream should short in length and preferably quickly
processed by the application under test. Such a data stream
provides a good, quick check of positive application functionality
(not exercising error handling or exceptions) and should not
produce error messages.

Test Driver -- Run the application with the corrupted data
A Test Driver function must be created for each application to be
tested. This driver must perform the following functions:

1) Invoke the application
2) Apply the data stream
3) Detect response: The responses of interest here are:

Acceptance (Undetected Corruption), Rejection (Corruption
detected in some manner), Catastrophic Failure (Crash,
General Protection Fault, Failure to Respond, Infinite loop)

4) Detect completion of stream processing
5) Terminate application
6) Record test case information. This includes sufficient

information to reproduce the test case and includes recording
the response to test case as well as other information such as
the date and time of the execution of the test case and the test
case duration.

Case Study, Adobe® Acrobat Reader
Adobe

®

® Acrobat® Reader® is free software provided by Adobe
Systems, Incorporated and is available from [10]. Adobe®
Acrobat® Reader® (AAR) is trusted software and its use is
ubiquitous on the Internet and as such, makes a representative
example for the testing concept presented in this note. AAR

This is a preprint of an article that is to appear in the March issue of ACM Software Engineering Notes
Do Not Reproduce!

processes data in Portable Document File format.

Portable Document Files (PDF)
“Adobe®

Robust data file selection

 Portable Document Format (PDF) is the open de facto
standard for electronic document distribution worldwide.” [11]
PDF files permit the accurate communication of documents
including lexical and graphical properties.

FastIO Systems [12] provides a library of software functions to
create PDF files. The function library includes examples of use
including programs that produce library test files. This case study
included the files atest-1.pdf, atest-2.pdf and arctest.pdf that can be
generated using these library test programs. Modifications of the
programs that generated these files, testpdf.c and arc.c, generated
special versions of these files, atest-1a.pdf, atest-2a.pdf and
arctesta.pdf that inhibited some of the file encoding so that data
would appear as clear text. Though by no means complete, these
files were representative of robust test cases for AAR. Adobe®
Acrobat® Reader®

Test Driver

 version 5.0.1 processes each of these files
without error.

The test driver for AAR was a Rational® Visual Test®

Test environment

 (VT) script.
The Reader driver provided the functions described above. The
recording mode of VT provided script elements such as those
recognizing and recording the contents of the expected pop-up
error windows.

Up to five (5) processors ran the test cases for the case study.
Each processor ran the same version of the Microsoft® Windows
2000® operating system (Version 5.0, build 2195, service pack 1)
and Adobe® Acrobat® Reader®

Example Test Case

 5.0.1 3/27/2001. Progressive
development and improvement of the test system occurred over
the period of the case study. Verification of intermediate test
results occurred during the testing but duplicate test results are not
included in the test results.

The following test case example illustrates the operation of the
system with examples of portions of files produced within the test
system.

Robust File – A parsed section of atest-2.pdf
Following is a portion from a test file source after parsing:
02000 S 6 stream
02006 B 1 /00A
02007 ? 1 %
02008 ? 1 !
02009 I 16 PS-AdobeFont-1.0
02019 ? 1 :
0201A b 1 /020
0201B I 10 UtopiaBold
02025 B 1 /00A

The selection starts from character position 0x02000 in the file.
The four fields are 1) location, 2) token type code, 3) token length,
and 4) the token itself (non-printing characters shown as hex
numbers).

Deformation Command File
Following is a random file deformation command sequence

generated by the syntactic deformation function.

' atest-2.pdf
' Fill from 0201A 0BFF characters of /80

Input atest-2.pdf
Output t.pdf
Copy 0201A
Overfill 0BFF /080
Copy all
Close
System echo log("atest-2.pdf ") > log.inc
System echo log("Fill from 0201A 0BFF characters
of /80") >> log.inc

This example has a comment that explains that the source for the
test is the file “atest-2.pdf” and describes the nature of the
deformation. The deformation commands specifies “atest-2.pdf”
as the input file, “t.pdf” as the output file, copies 0x201A
characters from the input to the output, inserts 0xBFF bytes of
0x80 into the output, skips 0xBFF bytes of the input, copies the
remainder of the input to the output and closes the output file. The
properties of the test case are stored in the file “log.inc” for use by
the driver to identify this test case in the log.

Deformed File - A parsed section of t.pdf
Here is the corresponding portion of the parsed version of the
resulting deformed file:
02000 S 6 stream
02006 B 1 /00A
02007 ? 1 %
02008 ? 1 !
02009 I 16 PS-AdobeFont-1.0
02019 ? 1 :
0201A B 17 /080/080/080/080/080/080/080/080/080
/080/080/080/080/080/080/080/080
0202B B 17 /080/080/080/080/080/080/080/080/080
/080/080/080/080/080/080/080/080

Test Log – The results of this test case
What follows is the corresponding section of the resulting test log.
[Suite Name] Testing Acrobat 5.0
[Machine] Machine
[Start Time] 10/20/2001 08:37:13
[End Suite Header]

[Detail 0] Testing atest-2.pdf
[Detail 0] Fill from 0201A 0BFF characters of /80
[Detail 0] Failed to Detect File Corruption.

[Suite Result] INCOMPLETE
[Elapsed Time] 23.494
[End Suite]

These results are extracted from the test log for the test case
corresponding to the example deformation file shown above. The
log shows the target of the test, the machine on which it was tested
(aliased here for security reasons), the time of the test, the
properties of the test case file, the response to the test case, and the
elapsed time of the test case (in seconds). Note that
“INCOMPLETE” is an indication that the application failed
catastrophically with an Application Error.

This is a preprint of an article that is to appear in the March issue of ACM Software Engineering Notes
Do Not Reproduce!

Application Error – Pop up window

Following is the contents of the Application Error pop-up window
as a result of the execution of the example test case:

DDE Server Window: AcroRd32.exe - Application
Error

The instruction at "0x0805aaaf" referenced memory
at "0x8080808c". The memory could not be
"written".

Click on OK to terminate the program
Click on CANCEL to debug the program

OK Cancel

The debug information corresponding to this failure indicates that
AAR failed during an attempt to store 0x80808080 into location
0x8080808c (0x80808080 + 0xc).
eax=0152f098 ebx=80808080 ecx=011a2fc4
edx=0152f6a0 esi=0152daec edi=80808080
eip=0805aaaf esp=0012ea0c ebp=0012ea18
iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds=0023 es=0023
fs=003b gs=0000 efl=00000282

0805aaaf 895f0c mov [edi+0xc],ebx

Note that the program failed attempting to store the contents of the
EBX register, (ebx=80808080), into the memory location specified
by the contents of the EDI register (edi=80808080) plus 0xC, or
location 0x8080808c. Further note that the contents of the EBX
and EDI registers are obtained from the data contained in the
corruption string. Careful manipulation of the contents of this
string might allow specified data to be stored in a specified
location.

Test results
The case study included 141,306 uniquely deformed files. There
were four (4) recorded categories of failure, Application Failure,
infinite loop, failure to respond, and steganographic. Of the
141,306 test cases, there were 426 failures of the severe types.
Other than the uniqueness of the test cases, failure-to-respond
failures were not classified to determine uniqueness of the failure.

Application Failure
In addition to the catastrophic failure described in the example
above, there were ten (10) other similar instances of “Application
Failure” with unique symptoms (identified by the unique location
of the failing instruction). The “Application Error” pop-up
window indicates an instruction reference to an invalid memory
location and defines a catastrophic application failure (“crash”).
Each of these failures is at least a denial of service and is generally
considered a security vulnerability.

Infinite Loop
In other failure instances AAR continued to run but never ran to
completion. Windows 2000®

Failure to Respond

Task Manager indicated that AAR
was still responding but it was no longer possible to communicate
with the application. This type of failure is a denial of service.

Some instances of failure occurred when AAR stalled and would
not respond to external stimulus. Windows 2000®

Steganographic

Task Manager
indicated that AAR was not responding. This type of failure is a
denial of service.

A common failure resulting from the Lexical tests was that AAR
did not detect the file deformation. After elimination of those
cases where detection would not be expected, there still remained
a set of deformations that could have been detected but were not.
These cases fell into areas that apparently were not parsed or
parsing was deferred. Each of the following cases presents a
steganographical opportunity:

• After header and before first “object”
• Comments
• “Document Property” objects (Parsing is deferred).
• After the End of File indicator (“%%EOF”)

Future Work

Generalization of Buffer Overrun Exploitation
There are two schools of thoughts about buffer overruns. The
conservative view is that buffer overruns are a security risk.
Another view is that, in general, a buffer overrun poses little more
risk than that of denial of service. The creation of computer viruses
is a highly specialized art form. Is it possible to create a general
procedure for developing seriously exploitive attacks from buffer
overruns in general?

Malicious Protocol Testing
The case study provided in this note concerns only a single
direction of data flow. It seems likely that in bidirectional data
transfers (protocols) failures might be exposed at any point in the
data exchange. Can the technique described here be applied to
applications, such as web page servers, that utilize complex
protocols?

Encoded or Encrypted Data streams
Though portions of the case study described in this note included
data streams with encoded data, the code actually tested was, in
most cases, the decoding software rather than the affect of data
that was malformed prior to encoding. Is is possible to extend this
technique to create corrupt data streams prior to encoding (or
encryption) such that the application functionality that processes
the decoded (or decrypted) data might uncover buffer overruns?

References
[1] Costello, Sam (2002): McAfee: New virus is first to infect
image files, ComputerWorld (Online publication) June 13, 2002.

http://www.computerworld.com/securitytopics/security/story/0,10
801,71968,00.html

(Also see: Costello, Sam (2002): Users question JPEG virus;
McAfee stands firm, ComputerWorld, June 24, 2002)

http://computerworld.com/securitytopics/security/story/0,10801,72
220,00.html

[2] Whittaker, James A. and Alan A. Jorgensen (1999): Why
Software Fails. ACM Software Engineering Notes, July 1999.

http://www.computerworld.com/securitytopics/security/story/0,10801,71968,00.html�
http://www.computerworld.com/securitytopics/security/story/0,10801,71968,00.html�
http://computerworld.com/securitytopics/security/story/0,10801,72220,00.html�
http://computerworld.com/securitytopics/security/story/0,10801,72220,00.html�

This is a preprint of an article that is to appear in the March issue of ACM Software Engineering Notes
Do Not Reproduce!

[3] Jorgensen, Alan A. (1999): Software Design Based on
Operational Modes, Ph.D. dissertation, Florida Institute of
Technology, 1999.

[4] Software Engineering Institute (2002): CERT Coordination
Center, http://www.cert.org Carnegie Mellon University, 2002.

[5] Gutjahr, Walter J. (1999) Partition Testing Versus Random
Testing: the Influence of Uncertainty. In IEEE Transactions on
Software Engineering, vol. 25, 1999, pp. 661 - 674.

 [6] Duran, J. W. and S.C. Ntafos (1984): An evaluation of
random testing, IEEE Trans. on Software Engineering, SE-10(7)
pp. 438-444, July 1984.

 [7] Voas, Jeffrey M. and Gary McGraw (1998): Software Fault
Injection, Inoculating Programs Against Errors, Wiley Computer
Publishing, 1998.

 [8] Kaner, Cem (2000) Architectures of Test Automation:
Alternatives to GUI Regression Testing, Proceedings, International
Conference on Software Test, Analysis and Review, STARWEST
2000, (http://www.kaner.com/pdfs/slides/star2000.pdf)

 [9] Hamlet, D. (1994) Random testing, In Encyclopedia of
Software Engineering, J. Marciniak, Editor, Wiley, New York, pp.
970-978, 1994. (http://citeseer.nj.nec.com/hamlet94random.html).

[10] Adobe Systems Incorporated (2002): Adobe Acrobat –
Download, http://www.adobe.com/products/acrobat/readstep2.htm
l

[11] Adobe Systems Incorporated (2002): Adobe
PDF, http://www.adobe.com/products/acrobat/adobepdf.html,
2002. Accessed July 16, 2002.

[12] FastIO Systems (2002): http://www.fastio.com/ Accessed
July, 2002, Last updated: April 8, 2002.

http://www.cert.org/�
http://www.kaner.com/pdfs/slides/star2000.pdf�
http://citeseer.nj.nec.com/hamlet94random.html�
http://www.adobe.com/products/acrobat/readstep2.html�
http://www.adobe.com/products/acrobat/readstep2.html�
http://www.adobe.com/products/acrobat/adobepdf.html�
http://www.fastio.com/�

