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ABSTRACT
Natural forming multi-agent systems (aka Swarms) have the abil-
ity to grow to enormous sizes without requiring any of the agents
to oversee the entire system. The success of these systems comes
from the fact that agents are simple and the interaction with the en-
vironment and neighboring agents is local in nature. In this paper
we look at abstractions in the field of swarms and study their ap-
plicability in the context of coordination systems. In particular, we
focus on the problematic issue of scalability of Linda systems. The
purpose of this work is to look at abstractions yielded from obser-
vations of swarms and the way they are organized, and demonstrate
how these abstractions may be used to implement a scalable tuple
distribution mechanism in a Linda system – to be namedSwarm-
Linda.

1. INTRODUCTION
In the past 20 years coordination models, and in particular tuple-
space-based models such as Linda, have proven to be quite suc-
cessful in tackling the intricacies of medium-to-large-scale open
systems. Currently, the tuple-space model is incorporated in com-
mercial middleware platforms such as Jini [1] and GigaSpaces [10].

Yet, the coordination community is aware that Linda systems may
not scale well due to the amount of information transmitted be-
tween the entities involved in this model. As the number of actors
increases, the communication overhead becomes prohibitive. One
of the reasons for the somewhat poor scalability of Linda systems
may be the fact that the design of these systems still inherit ideas
from early Linda systems [11, 12]. These implementations were
focused on parallel computing and not on open large scale comput-
ing. When trying to use the communication abstraction advocated
by Linda in the context of large scale distributed systems one is
faced with a not-so-easy-to-solve scalability issue: communication
overhead.

Natural forming multi-agent systems, such as swarms of bees and
flies, schools of fish, and packs of wolves, are notorious for their or-
ganization (coordination) and also for their ability to grow to enor-
mous sizes – some ant colonies are known to span thousands of
miles and to contain millions of ants. Their activities are based on
simple rules that can be easily implemented in computer programs.
Their interaction translates (in computer science terms) into local
communications. Abstractions taken from these areas have been
used extensively in areas such as optimization of NP-hard problems
[9] and implementation of network routing algorithms [3], and nor-
mally yield simple and efficient solutions.

Our work investigates the use of swarm-intelligence techniques and
observations in the context of the tuple space systems (in particular
the Linda coordination system). Our goal is to look at the scalabil-
ity problem and study how to improve the current scenario using
techniques adapted from models originating from biological col-
lective organisms such as ant colonies and termite molds.

This paper is divided as follows. Section 2 describes the scala-
bility problem in Linda-based systems. In Section 3 the standard
approaches for implementing distributed Linda systems are cov-
ered and their problems summarized. Section 4 goes over the main
concepts of swarms systems and how these should be used in a
SwarmLinda. Section 5 shows several algorithms that may be im-
plemented to make a SwarmLinda more scalable and adaptive. Sec-
tion 6 summarizes the advantages of a SwarmLinda over traditional
approaches.

2. SCALABILITY OF LINDA SYSTEMS
Scalability is today thesine qua nonof efficient distributed systems.
It is not uncommon for distributed systems to make use of a large
number of active entities. In fact, we can foresee an increase on the
number of active entities in the future and consequently an increase
of communication in these systems. Given this trend, we can easily
say that scalability is one of the main challenges for the future of
distributed systems.

Scalability is a well studied topic in the context of tuple-space sys-
tems such as Linda. Studies range from theoretical [15] to imple-
mentations of tuple-space systems that claim to be scalable [22,
18], to studies on the suitability of these systems to wide-area com-
puting [14] based on Cardelli’s claims [5].



Theoretical works tend to formalize the concept of tuple spaces and
use the formalism as a way to show how the data should be dis-
tributed. For instance, Obreiter and Gräf [15] argue that scalability
can be achieved by organizing tuples in servers based on the struc-
ture of the tuples. This is generally used in implementations via
the mechanism of hash codes associated with tuples (and the use of
this hash code to decide the physical location of these tuples). This
technique attempts to improve scalability of tuple space systems by
improving the tuple matching mechanism (how fast tuples can be
found).

In the practical arena, Rowstron did several works attempting to
make Linda systems more scalable [19, 18]. His approach is based
on the idea of configuring tuple spaces hierarchically and classify-
ing the spaces into local and global. Rowstron views tuple spaces as
indivisible entities although some argue that tuples (objects stored
in tuple spaces) must be the focus of distribution. One could easily
argue that the granularity of Rowstron’s systems is too coarse for
real-world large scale systems.

As an illustration of the communication overhead in existing Linda
implementations, consider the problem of retrieving a tuple (based
on a given template) from a set of remote servers. A common im-
plementation technique is to ask a set of servers for matching tuples
by some multicast. Each server searches, matches and locks the tu-
ples while it offers them to the requestor. This scheme establishes
a state “tuple under request” which is global for the set of servers
and the requestor. This approach will suffer from severe perfor-
mance problems if the number of nodes searched or the number of
requesting nodes increases by magnitudes.

The drawback of the approaches such as the ones above is that
they are all based on the same concept: they are data-oriented.
They assume that improved scalability depends solely on the way
the data is distributed and not on how search for a tuple is per-
formed. Although better scalability can be achieved using data-
oriented techniques, it is a process of dubious reliability in the long
run. Additionally, data-oriented techniques do not show tolerance
to changes in the environment such as server failures and addition
of new servers on-the-fly, to name but a few.

In order to be of use to Linda systems, data-oriented techniques
need to be augmented with other concepts to help minimize the
communication overhead. This paper looks away from standard
techniques and go search for solutions in the field of biological
sciences where natural forming multi-agent systems (aka swarms)
seem to exhibit the characteristics necessary to build scalable Linda
systems.

3. DISTRIBUTING LINDA
There are several aspects that need to be considered when imple-
menting a Linda-like system. Among these, the process of dis-
tributed tuple spaces has been widely discussed by the coordina-
tion community. The literature on Linda-like systems describes a
plethora of approaches for distributing tuple spaces. Several major
strategies can be distinguished and evaluated against the require-
ments of large scale distribution.

• Centralizationis a simple client-server distribution strategy
where one specific server-machine operates the complete tu-
ple space as in TSpaces [21]. It can be accessed by clients

that are arbitrarily located somewhere on a network (see Fig-
ure 1).
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Figure 1: Centralized tuple spaces

The centralized tuple-space server has the advantage of an
easy implementation that basically attaches a network inter-
face to an otherwise non-distributed tuple-space. However,
it carries all the disadvantages of any centralization of ser-
vices. The tuple-space server is most likely to become a
bottleneck under high load induced from a large number of
active clients, it is the single point of failure in the entire sys-
tem, and it does not make a fair use of the resources available
over the network.

The centralized solution is clearly not the best choice for a
large scale distributed Linda-like system.

• Partitioning of tuple spaces is a strategy in which data with
common characteristics is co-located in one of a set of tuple-
space servers (see Figure 2). Requests with the same charac-
teristics are then routed towards that machine. While simple
partitioning (eg. co-locating tuples with same parity) might
lead to unbalanced partitions, a carefully chosen hashing func-
tion on tuples can do better [2].
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Figure 2: Partitioned tuple spaces

Partitioning has the advantage of providing a distributed man-
agement of a tuple space including concurrent execution of
operations on the partitions and thus slightly relaxes the prob-
lems of centralized solutions. However, for one, it does in-
clude a centralization for certain sets of tuple. Also, the par-
titioning scheme handles reconfigurations very poorly. An
automatic adaption of any hashing function and the induced
distributed reorganization of the tuple-spaces content will be
complex and costly.

The partitioning solution cannot overcome the problems of
the centralized approach and cannot be applied to dynamic
changes on both of the infrastructure and the applications de-
mand.

• Full replication places complete and consistent copies of tu-
ple spaces on several machines at different locations. Any
addition of data has to be replicated at all nodes, a search
for data can be performed locally on one machine, and any
removal of data has to be replicated (see Figure 3).

Full replication distributes the load for data-searches and in-
herently offers some support for fault-tolerance. However,
the communication costs for keeping the replicas consistent
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Figure 3: Full replication

on all participating nodes is high and requires locking proto-
cols or equivalents since multiple local searches may lead to
the decision to remove the same piece of data [7].

Full replication is not a good choice for large scale systems,
as both adding and removing data involves operating on all
replicas which certainly does not scale with the number of
participating nodes.

• Intermediate replicationhas been proposed in the early of
Linda [6]. The schema bases on a grid of nodes that is formed
by logical intersecting “busses”. Each node is part of ex-
actly oneoutbusand oneinbus. Emitted data is replicated on
all nodes of the outbus, whereas searches are performed on
the inbus. As the inbus intersects all outbusses, it provides
a complete view of the tuple space (see Figure 4). By in-
troducing simulated nodes, the number of nodes can change
dynamically while retaining the virtual grid [20].
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Figure 4: Intermediate replication

The intermediate replication schema allows for as many con-
current replications and searches for data as there are out-
and inbusses respectively. The removal of some data, how-
ever, requires a consistent update on all nodes on the respec-
tive outbus.

Intermediate replication is only a partial solution for large
scale Linda-like systems. While introducing more concur-
rency, it still carries scalability problems of keeping replicas
consistent within an outbus. While it has the potential for dy-
namic reconfigurations of the numbers of in- and outbusses,
the two “dimensions” used seem to be insufficient to scale.

While none of these approaches seems to be usable (without mod-
ification) in the implementation of a large scale distributed Linda-
like system, the intermediate replication schema seems to offer the
most flexibility. In fact, it is the most general schema, as it concep-
tually captures the centralized approach – a single outbus of size
1 – and the fully replication case – a single outbus of sizen for n
participating nodes.

Schema Problems
Centralized Centralization of load and failure, not scalable
Partitioning Repartitioning hard
Full replication Huge overhead for replicated addition and re-

moval of data, not scalable
Intermediate
replication

Overhead for coordinating replication and
locking, reconfiguration hard

Table 1: Problems with known schemas

Table 1 summarizes the main drawbacks of standard distribution
approaches. None of the approaches described here scale well and
therefore should not be used in an implementation of a large scale
Linda. Long-term solutions for this problem are long due and need
to be explored. Thus SwarmLinda.

4. CONCEPTS OF A SWARMLINDA
Over the past years, new models originating in biology, such as
swarms, ant colonies and termite molds, have been studied in the
field of computer science [17, 4, 8, 13]. The current interest lies
on using these abstractions as a technique (a meta-heuristic) for
finding feasible solutions to NP-hard problems.

In these models, actors (workers) sacrifice individual goals (if any)
for the benefit of the society. At the same time, these actors (birds,
fish, ants, termites) act extremely decentralized without any explicit
global or central control. The work is carried out by making purely
local decisions and by taking actions that require only very small
computations. These characteristics alone allow for the systems to
scale to very large sizes – ant colonies can involve millions of indi-
vidual ants and still perform highly complex tasks such as building
an ant hill. This so-calledswarm intelligenceprovides an inter-
esting opportunity to rethink scalability of coordination media like
tuple spaces.

We apply these principles as a radical new approach to implement-
ing a large scale distributed coordination platform, which we call
SwarmLinda. An example of such principles being used as an al-
ternative to data-oriented schemes could simply consist of a sys-
tem where templates are modeled as ants that search for food (the
matching tuples). One can understand the “world” of Linda servers
as a two-dimensional space in which ants search for food, leaving
trails to successful matches.

With an ant-based optimization of the trails in this world, shortest
tuple-producer-consumer paths can be found. These paths can be
exploited to optimize system performance: instead of queries to
sets of replicas, the “template-ant” goes directly to where it expects
a match. Technically, this accounts to a single message interchange
directly between the producing and consuming sites.

The nature of an ant-based optimization ensures that changes in the
structure of a distributed application in terms of tuple-generation
and -consumption are dynamically discovered. Secondly, when
searching for food, the “template-ants” make only local decisions,
like moving to some next server, examining the local tuple-store,
etc. There is no global state that will be established by the mecha-
nism.

4.1 Principles



A SwarmLinda has to consider a few principles that can be ob-
served in most naturally occurring swarm systems [16]. These prin-
ciples guarantee the success of the collective activity performed by
the swarm and also allow for these natural occurring systems to
become very large in size:

Simplicity: Natural swarm individuals are simple creatures that
perform simple tasks. They do no deep reasoning and im-
plement only a small set of simple rules. The execution of
these rules in a society leads to the emergence of complex
behavior. Active entities in a SwarmLinda should also obey
the principle of low complexity. They should be “small” in
terms of resource usage.

Dynamism: Natural swarms operate in a dynamically changing
environment and are able to adapt to it. In an open distributed
system, the configuration of running applications and ser-
vices changes over time. If a tuple is found in a given loca-
tion it doesn’t necessarily mean that other similar tuples will
exist in the same location in the future. Therefore, a search
heuristic for tuples should not be fixed; instead it should dy-
namically adapt to changes.

Locality: Natural swarm individuals observe their direct neighbor-
hood and take decisions based on this local view. As the key
to scalability in SwarmLinda, an active entity has to perform
only local searches and inquire only to direct neighbors.

4.2 Abstractions
One needs to understand how a SwarmLinda should be organized
in order to respect the principles just described. Standard Linda
systems do not have the idea of ants or food. A SwarmLinda needs
to abstract these concepts in the Linda world.

In the later part of this paper, we will base the description of a
SwarmLinda on the following abstractions:

Individuals are the active entities that are able to observe their
neighborhood, to move in the environment, and to change
the state of the environment in which they are located.

Environment is the context in which the individuals work and
which they observe.

State is a characteristic of the environment that can be observed
and changed by individuals.

There is not necessarily a fixed mapping between the abstractions
above and the concepts common to Linda implementations. Al-
though the environment and the state are somewhat fixed, the in-
dividuals may represent different Linda entities depending on the
algorithm in question. For instance, when searching for a tuple the
individuals are the active templates that move on the grid of servers
looking for tuples. On the other hand, when trying to be adaptive,
individuals are tuples that move from location to location based on
a semi-random decision process.

5. ALGORITHMS FOR A SWARMLINDA
Having described the general concepts of a SwarmLinda, we can
now focus on bringing it to life by defining the concrete environ-
ment and its state, and the individuals and the rules they apply. Next

we describe some algorithms that seem useful. These are taken
from abstraction of natural multi-agent systems [4, 16], especially
those formed by ants.

These algorithms make the core of SwarmLinda – they are the ab-
straction of swarm intelligence in the context of Linda. In general,
these algorithms are fairly independent and should be able to be
implemented without requiring the other algorithms to exist in the
system.

5.1 Searching for Tuples
This algorithm is normally used by ants to find food. Ants look
for food in the proximity of the ant hill. Once found, the food is
brought to the ant hill and a trail is left so that other ants can know
where the food can be found. The ants know the way back to the
ant hill because they have a short memory of the last few steps they
took and also because the ant hill has a distinctive scent that can
be tracked by the ants. In a tuple space context, one could view
tuples as food. The locations where the tuples are stored can be
seen as the terrain while the templates are seen as ants that wander
in the locations in search of tuples. The ant hill is the process that
executed the operation.

The active individuals are the template-ants, the environment con-
sists of tuple-space servers whose state is composed by the tuples
stored and “scent” of different kinds of template that indicate a like-
lihood that matches for a template is available at a location. The
scents are volatile and disappear slowly over time.

The tuple-searching ant should follow the following rules:

1. The first step is to spread the scent of process in the server it
is connected to and this server’s neighborhood. This distinc-
tive scent will be tracked by the ants on their way back to the
ant hill.

2. Check for a matching tuple at the current location. If a match
is found, return to the origin location and leave scent for the
template matched at each step. They are able to find their
way back using their short memory and tracking the distinc-
tive scent of the process (as described above). If no match is
found, check the direct neighborhood.

3. If there are no scents around the current location that fit to the
template, randomly choose a direction in the grid of servers
to look for a tuple.

4. If there is a scent that indicates a direction for next step
(matching scent), move one step towards that scent and start
over. As pointed out before, we want to guarantee adaptabil-
ity in SwarmLinda. Additionally, we also want to maintain
the non-determinism when searching for tuples. One way
guarantee these properties is by adding a small random fac-
tor in a range of[−ξ, ξ] to each scent. This enables new
paths (not necessarily the path of the strongest scent) to be
discovered.

5. The activity of the ant is limited to ensure that it does not
seek for tuples that have not yet been produced. After each
unsuccessful step without a match, the ant stops its search
with a probability ofγ. This factor is 0 in the beginning
and increased by someΓ with each unsuccessful step.Γ it-
self also increases over time. When the ant decides to stop
searching, it takes one of three actions:



• Sleep for some time and then continue. This is a pure
limitation of activity. If the ant has reached an area
where no matching tuples have been produced for a
long time, the ant will have a hard time to get out of
that location. The sleeping would allow sometime for
the system to change and maybe get to a state where
tuples can be found in that location.

• Die and be reborn after some time at its original loca-
tion – where the search started.

• Materialize in some other random location and con-
tinue to search for tuples. This will perhaps lead the
ant to a find a match but will not lead to an optimal
trail from the original location to the tuple found at
such a distant place. However, the trail from the ran-
domly chosen location to the tuple is marked for the
other template-ants that operate in that region and can
help find optimal trails from their origins to tuples. In
sum, this method might be acceptable as a last resort.

Which action is taken depends on the age of the ant. After an
ant has slept several times, it then tries a rebirth. After some
rebirths, it decides to rematerialize elsewhere.

The result of the above is the emergence of application specific
paths between tuple producers and consumers. Given that scents
are volatile and become less strong with time, the paths found can
dynamically adapt to changes in the system – when consumers or
producers join, leave or move within the system.

S13 S15 S16

S9 S10 S11 S12

S5 S6 S7 S8

S1 S2 S3 S4

S14

Search Path

Client (Anthill)

Return Path

Figure 5: Searching for a tuple

Figure 5 shows an example of the search algorithm. A client con-
nected to serverS2 spreads its scent on serversS1, S2, S3, S6.
Later, a template-ant goes searching for a tuple. For the purposes of
this example let us assume the template-ant can remember the last
three steps it took. The template-ant wanders in search for a tuple
making a decision at each server. After a few steps the template-
ant finds a matching tuple in serverS14 – the path it took until it
found the tuple was [S2, S3, S4, S8, S7, S11, S15, S14]. After the
tuple is found the template-ant uses its short memory to return to

the ant hill. The first three steps returning are taken based on what
is in memory: [S15, S11, S7]. After this the template-ant tries to
track the scent of the ant-hill. InS7 the template-ant is influenced
by such a scent and moves toS6, S2, and finally back to the client.
Observe that the return path is not necessarily the path it took to
find the tuple. In the end, the return path [S2, S6, S7, S11, S15,
S14] was marked with the scent for that particular template.

Compare this approach with one standard mechanism to find dis-
tributed tuples: hashing. Tuples are normally searched based on
a hash function that takes the template as the input and generate
a location where the tuple can be found as the output. Hashing is
definitely fast but unfortunately not very adaptive. The determin-
ism that exist in hash functions forces tuples with the same template
to alwaysbe placed in the same location no matter the size of the
system, thus causing bottleneck problems if tuples matching such
template are in demand in the system.

Although in a SwarmLinda tuples matching the same template would
tendto stay together, this is not necessarily true in all cases. If such
tuples are being produced in locations that are far enough from each
other the tuples will remain separate and create clusters across all
the system. This minimizes the creation of bottlenecks when tu-
ples of a certain template are required by several processes. As
the search will start from various locations, tuples will tend to be
retrieved from the closest cluster from the source of the search.

Another problem with hashing approaches is that they are not fault
tolerant – if a tuple is being hashed to a location, that location is ex-
pected to be working. Hashing may be made fault-tolerant (based
on conflict resolutions techniques) but its implementation is nor-
mally cumbersome, its use in practice may be very expensive, and
its effectiveness doubtful. For instance, one could use a re-hash
technique to attempt to search for a tuple elsewhere when the first
hash function failed. This is very expensive because it doubles the
number of messages in the system for each tuple being searched.
From the point of view of swarm techniques, failures are just an-
other change in the environment. This would be like ants trying
to search for food in a food supply that was suddenly destroyed.
Surely this is not a problem and the ants will only starve if food
cannot be found.

5.2 Distribution Mechanism
Another area of SwarmLinda where abstraction from natural multi-
agent systems can be used is in the distribution of tuples amongst
the servers. Historically, tuples have been distributed using various
staticmechanisms (as described in Section 3). In SwarmLinda the
partitioning of the tuple space would be dynamic using the concept
of brood sorting used by ants.

Ants are able to sort different kinds of things they keep in the ant
hill such as food, larvae, eggs, etc. In an ant hill these are normally
sorted by type. That is, they are grouped by type in one place and
kept separate from other things. More importantly, ants do this pro-
cess in spite of the amount of each type, thus being very scalable.

The individuals that operate here are tuple-ants in contrast to the
algorithm of the previous section. The environment is unchanged
– it remains as a network of servers. Their state is the set of tuples
stored thus far.

A SwarmLinda implementation may use brood sorting as below
in the process of tuple distribution. One could see tuples being



grouped based on their template which will lead to the formation
of clusters of tuples. In this process, tuples are the food and the ant
is the active process representing the out primitive:

1. Upon the execution of an out primitive, start visiting the
servers.

2. Observe the kind of tuples (the template they match) the
servers are storing. Each out process should have a limited
memory so it doesn’t remember the information about the en-
tire “grid” of servers but only the last few – this guarantees
that the decision of a process is based on local information.

3. Store the tuple in the server if nearby servers store tuples
matching the same template. Again this decision also con-
siders a small random factor[−ξ, ξ].

4. If nearby servers do not contain similar tuples, randomly
choose (using the random factor) whether to drop or continue
to carry the tuple to the next step (to another server).

In order to guarantee that the steps above work well, certain condi-
tion must be satisfied. The out process should be able to store the
tuple eventually. For each time the process decidesnot to store the
tuple, the random factor will tend toξ. This increases the chance of
storing the tuple in the next step. Also the likelihood to store the tu-
ple is also calculated stochastically based on the kinds of objects in
memory – if most of the objects in memory are of the same kind as
the one being carried out the likelihood to store the tuple becomes
very high.

The power of this approach shows when it is compared with the
partitioning scheme as described in Section 3. Similar to the case
for searching tuples, partitioning is based primarily in the use of
a hash function to decide where the tuple should be placed. This
standard technique is far from being able to cope with failures and
changes in the application behavior. Failures in certain servers may
be fatal to the system while changes in application behavior may
force changes in the actual hash function being used.

The approach described in this subsection is able to improve the
availability of the system without having to count on costly tech-
niques such a replication of data. In the ant-based approach de-
scribed above, there are no assumptions about the behavior of ap-
plications, there are no pre-defined distribution schema, there are
no special scenarios implemented to deal with failures in the server.

Scalability is also improved. Similar to the case of server fail-
ures, hashing techniques are not very simple to modify to consider
servers added on-the-fly. In SwarmLinda, servers can be added at
any point and the ants will make sure that these servers are explored
and used in storing tuples.

Another fact that improves scalability is the limitation in the mem-
ory of the ant-tuples. This forces them to make decision based on
local informationonly. In practice, this may account for having
the out-process having to communicate to servers only in its neigh-
borhood. The use of local communication in the entire scheme
improves the scalability of the system.

5.3 Dealing with Openness
Openness is known to be one of the main challenges in distributed
systems. In this arena, the ability of a system to deal with changes

can be a great asset. For instance, in open Linda systems the need
for tuples of specific formats (templates) can change greatly over-
time.

Swarm systems are very adaptive and can rapidly respond to changes
in the environment. Ants for instance, can move the ant hill to an-
other location if they find themselves in danger.

To enable a SwarmLinda to show such a behavior for collections
of similar tuples, we again use tuple-ants as the individuals. The
environment is again a terrain of servers that has scents as the state.

Ants find the ant hill based on a particular scent unique to the ant
hill. This scent is what keeps the ants together in the ant hill. For
a SwarmLinda, we want tuples matching the same template to be
kept together (as described in Section 5.2) but we do not want them
to be fixed to a given location. Instead, we want them to dynami-
cally adapt to changes.

There is a functionSc : T → S on templates and tuples. There is
a relationC : S×S on scent that defines similarity of scent. When
templatete and tupletu match, thenSc(te), Sc(tu) ∈ C.

1. A new tuple-ant that carries a tupletu emitsSc(tu) at its
origin. A new template-ant that carries a templatete emits
Sc(te) at its origin.

2. Template-ants remain at that position and never move.

3. Tuple-ants sense their environment for a scent similar – as
given byC – toSc(tu). If there is such, then other template-
or tuple-ants are around.

4. Based on the strength of the detected scent plus the small
random factor[−ξ, ξ], the tuple-ant decides to move into that
direction or to stay where it is.

The above causes tuples to stay closer to where other similar tuples
are needed or are being produced (based on the number of in and
out primitives executed) even if this consists of migrating from one
server to another. This would also have an effect on the distribution
mechanism explained in Section 5.2. When a tuple is being stored
the scent left by previous in and out primitives should also be con-
sidered when deciding to drop the tuple in the current server or to
keep “walking” through the terrain of servers searching for a good
place to drop the tuple.

5.4 Balancing tuple- and template movement
In the preceding algorithms, we always identified either the tuple-
ants or the template-ants as individuals that move and perform a
continued search. In this section we describe an intermediate ap-
proach where ants can be both tuples and templates. Every tuple-
and template ant decides after its birth whether it goes out to other
servers seeking matches or stays at its origin until it is found by
some other ant.

Consider an application where one node consumes a lot of tuples
that are generated on other nodes. If trails from the producers to
the consumer are found – and these can be found by programming
a tuple-ant with the algorithm from Section 5.1 – it makes no sense
to have the consumer start template-ants that seek the consumers.
Based on the system history (of scents) it is known where a con-
sumer is and what the path is, so tuple-ants should be started there



while the template-ants at the consumer should remain stationary
and basically wait for a matching tuple-ant to appear. But if the for-
mer consumer starts to be a producer after the calculation of some
results, it might become reasonable to start template-ants from the
former producers to reach out for the result.

Our algorithm should lead to a dynamic balance between active and
passive ants that takes into account the current producer/consumer
configuration in the system.

For the algorithm, the individuals are tuple- and template-ants. The
environment is still the terrain of servers. The state at each location
includes two scents: One scent indicates whether the location is
visited successfully by other ants – it is an attraction – or not – it is
an outsider. Successful means that the visiting ant found a match
at this location. We call this the visitor scent. The second scent,
the producer-consumer scent ranges over[−φ, φ]. Positive values
indicate that the matches that took place were such that a visiting
template-ant retrieved a tuple from that location – showing that the
location is a producer of information. If the scent is negative, it
indicates that visiting tuple-ants were matched with a template at
that location – the location is a consumer of tuples.

Tuple- and template-ants follow the algorithms from Section 5.1
to find matching templates resp. tuples. If an tuple-ant finds a
match, it neutralizes a bit of producer-consumer scent at the lo-
cation. When a template-ant finds a matching tuple, it adds a bit of
this scent at the location. Both kinds of ants leave a bit of visitor
scent in the case of success.

When a new ant is born, it will either be a tuple- or a template-
ant depending on the kind of operation requested. A new tuple-ant
emits a bit of producer-consumer scent at the location of its birth, a
template-ant neutralizes some.

These ants can behave in two different ways: Either they are ac-
tive and move around following the search algorithms as described
above, or they are passive and remain at their origin to be found by
others.

The further fate of a new ant depends on the current state of the
location where they are born. This state distinguishes producing
and consuming locations and whether the location is attractive for
visitors. The following table shows how new ants behave based on
these two characteristics:

Producer Consumer
Attraction Passive tuple-ant

Passive/active template-ant
Active/passive tuple-ant
Passive template-ant

Outsider Active tuple-ant
Passive template-ant

Passive tuple-ant
Active template-ant

If a producer is visited by many ants, there is no need to send out
tuple-ants. Template-ants can be passive too as many visitors sat-
isfy them, but also active to establish a global balance. The ratio
passive/active could be adjusted.

For an attractive consumer, template-ants can remain passive. Tuple-
ants might be active with the same argument on a global balance.

If a producer is not visited by many other ants, it will send out its
tuples-ants to find matches. Its template-ants can remain passive as
there are not many.

If a consumer is not visited by many other ants, it will send out ac-
tive template-ants to find matches and generate passive tuple-ants
to attract other active template-ants to improve the chance of be-
coming an attraction.

The algorithm can be compared to the intermediate replication scheme
described in Section 3. There, an in leads to a broadcast of the tem-
plate on the inbus and to a search for a matching tuple. An out leads
to the replication of the tuple on the outbus where the local lists of
waiting tuples are then searched. This seems to resemble the idea
of having tuple-ants and template-ants go out and seek for matches.
However, the in- and outbusses in intermediate replication are usu-
ally very static. In the SwarmLinda algorithm the balance between
tuple- and template-ants is highly dynamic and adapts to the current
behavior of the running applications.

6. EVALUATION
The algorithms described in Section 5 demonstrate the power of
swarm abstractions in the context of Linda systems. They have
the potential to make a SwarmLinda more efficient than standard
Linda implementations. In particular, SwarmLinda appears to be
more efficient dealing with (at least) the following issues:

Scalability: The decisions taken by ants are based on local ob-
servations like sensing the direct environment or asking the
currently visited server for a match. State changes are also
purely local like changing the scent at the current or directly
surrounding locations. There are no global states like locking
at a set of servers. With that, the activities of the algorithms
are independent of the number of active ants. This increases
the scalability of the resulting SwarmLinda with respect to
the number of tuples produced and requested and the num-
ber of nodes involved in the system.

Adaptability: The decisions of ants are taken based on the current
state of the system. This state is changed based on decisions
of individuals in the system by leaving fresh scent at loca-
tions. The influence of prior decisions becomes smaller over
time with the evaporation of old scent. The state therefore re-
flect the current configuration of the system in terms of where
and what kind of tuples are produced and consumed. The be-
havior of the ants dynamically adapts to this configurations.
A SwarmLinda is therefore adaptive while traditional Linda-
systems behave based on static design and initialization de-
cisions.

Fault-Tolerance: The influence of wrong decisions of ants are
only temporary. Changes in scent based on wrong decisions
also vanish over time with the evaporation. In a traditional
Linda-system, precautions have to take care of fault-detection
and correction and often even the coordination language is
extended. A SwarmLinda is fault-tolerant via its inherent
adaptability mechanism.

Additionally, the availability of the system is also improved.
Failures in server nodes are treated by the ants as changes in
the systems configuration. Based on the adaptability charac-
teristic described above, ants should be able to deal with such
failures in a very elegant way.

Load Balancing: Adaption to the current configuration of tuple
production and consumption does not lead to bottlenecks in
the system. As shown, the load in terms of activity of ants
can also be dynamically adjusted by simple local decisions.



A SwarmLinda can load balance itself by adapting the activ-
ity performed by ants.

7. CONCLUSION
This paper describes approaches for the implementation of a Swarm-
Linda. The paper demonstrates that organized behavior in Swarm-
Linda can be implemented based on a few simple rules that mimic
naturally forming multi-agents systems.

We claim that the use of swarm abstractions in an implementation
of SwarmLinda would not only be simple but will improve its scal-
ability and adaptability.

The algorithms presented here provide an excellent alternative to
the standard approaches used in various Linda implementations.
The algorithms follow three principles that can be observed in any
swarm-based systems: simplicity, dynamism and locality.

We are currently working on a design that will include the algo-
rithms described in Section 5. As a first step we are primarily fo-
cusing on the algorithms related to the tuple distribution mecha-
nism and the one for searching tuples.
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