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ABSTRACT  
In this paper we investigate machine learning techniques for 
discovering knowledge that can be used to monitor the operation 
of devices or systems.  Specifically, we study methods for 
generating models that can detect anomalies in time series data.  
The normal operation of a device can usually be characterized in 
different temporal states.  To identify these states, we introduce a 
clustering algorithm called Gecko that can automatically 
determine a reasonable number of clusters using our proposed "L" 
method.  We then use the RIPPER classification algorithm to 
describe these states in logical rules.  Finally, transitional logic 
between the states is added to create a finite state automaton. Our 
empirical results, on data obtained from the NASA shuttle 
program, indicate that the Gecko algorithm is comparable to a 
human expert in identifying states and our overall system can 
track normal behavior and detect anomalies. 

Categories and Subject Descriptors 
I.2.1 [Learning]: Induction. 

General Terms 
Algorithms, Verification. 

Keywords 

clustering, segmentation, anomaly detection, rule generation, time 
series data, state transition logic,  expert systems. 

1. INTRODUCTION 
Motivation.    An expert system contains a knowledge base that 
allows it to reason proficiently in a specific domain.  These 
knowledge-intensive systems are often used to help humans 
monitor and control critical systems in real-time.  For example, 
NASA uses expert systems to monitor various devices on the 
space shuttle.  However, populating an expert system’s knowledge 
base by hand is known to be a time-consuming process.  In this 
paper we investigate machine learning techniques for generating 
knowledge that can monitor the operation of devices or systems.  
Specifically, we study methods for generating models that can 
detect anomalies in time series data.  

The normal operation of a device can usually be characterized in 
different temporal states.  Segmentation or clustering techniques 
can help identify the various states, however, most methods 
directly or indirectly require a parameter to specify the number of 
segments/clusters in the time series data.  The output of these 

algorithms is also not in a logical rule format, which is commonly 
used in expert systems for its ease of comprehension and 
modification.  Furthermore, the relationships between these states 
needs to be determined to allow tracking from one state to another 
and to detect anomalies. 

Problem.  Given a time series depicting a system’s normal 
operation, we desire to learn a model that can detect anomalies 
and can be easily read and modified by human users.   We 
investigate a few issues in this paper.  First, we want a clustering 
algorithm that can dynamically determine a reasonable number of 
clusters, and hence the number of states for our purposes.  These 
states should be relatively comparable to those identified by 
human experts.  Second, we would like these states to be 
characterized in logical rules so that they can be read and 
modified with relative ease by humans.  The rules should be 
general enough to cover normal data points not seen in the 
training data.  Third, given the knowledge of the different states, 
we wish to describe the relationship among them for tracking 
normal behavior and detecting anomalies. 

Approach.  To identify states, we introduce Gecko, which is able 
to cluster time series data and automatically determine a 
reasonable number of clusters (states).  Gecko consists of a top 
down partitioning phase to find initial sub-clusters and a bottom-
up phase which merges them back together.  The appropriate 
number of clusters is automatically determined by what we call 
the “L” method.  To characterize the states in logical rules, we use 
the RIPPER [2] classification rule learning algorithm.  Since 
different states can sometimes overlap in the one-dimensional 
input space, additional attributes are derived to help characterize 
the states.  To track normal behavior and detect anomalies, we 
construct a finite state automaton (FSA) with the identified states. 

Our main contributions are:  (1) we demonstrate a way to perform 
time series anomaly detection via automatically generated states 
and rules that can easily be understood and modified by humans; 
(2) we introduce an algorithm named Gecko for clustering time 
series data and the L method for dynamically finding a reasonable 
number of clusters--the L method is general enough to be used 
with other hierarchical divisive/agglomerative clustering 
algorithms; (3) we integrate RIPPER and state transition logic to 
generate a complete anomaly detection system; 4) our empirical 
evaluations, with data from NASA, indicate that Gecko performs 
comparably with a NASA expert and the overall system can track 
normal behavior and detect anomalies. 

The next section gives an overview of related work.  Section 3 
provides a detailed explanation of our system, which includes the 



components:  Gecko (clustering), RIPPER (rule generation), and 
state transition logic.  Section 4 contains experimental evaluations 
of the component algorithms as well as the overall anomaly 
detection system, and Section 5 summarizes our study. 

2. RELATED WORK 
Clustering Algorithms.  There are four main categories of 
clustering algorithms:  partitioning, hierarchical, density-based, 
and grid-based.  Partitioning algorithms, for example K-means, 
and PAM [10], iteratively refine a set of k clusters, which could 
take a long time to converge.  Density-based algorithms, e.g., 
DBSCAN [4] and DENCLUE [7], are able to efficiently produce 
clusters of arbitrary shape and are also able to handle noise.  If the 
density of a region is above a specified threshold, it is assigned to 
a cluster, otherwise it is considered to be noise.  However, sharp 
spikes in time series data are sometimes important features and 
could be incorrectly determined to be noise by a density-based 
clustering algorithm.  Hierarchical algorithms can be 
agglomerative and/or divisive.  The agglomerative (bottom-up) 
approach repeatedly merges two clusters, while the divisive (top-
down) approach repeatedly splits a cluster into two.  ROCK [6] 
and Chameleon [8] are hierarchical algorithms that differ mostly 
in their similarity functions, which favor spherical and non-
spherical clusters (respectively).  Grid-based algorithms such as 
WaveCluster [12] reduce the clustering space into a grid of cells 
which enables efficient clustering of very large datasets.  This is 
useful for clustering a large amount of very concentrated data, but 
not for one-dimensional time series data.  Existing clustering 
algorithms are not designed to cluster time series data.  Our Gecko 
algorithm is a hierarchical algorithm that clusters time series data 
by adding constraints to the merging and splitting of clusters.   

Determining the Number of Clusters.  Clustering algorithms 
usually require a stopping condition to be explicitly given as a 
parameter(s).  This parameter is either k (the number of clusters to 
return) or some other ad-hoc algorithm specific parameter.  
Forcing a user to specify the number of clusters to return requires 
either detailed pre-existing knowledge of the data set, or time-
consuming trial and error.  The majority of existing methods to 
automatically determine the number of clusters to return involve a 
brute-force method of repeatedly running a clustering algorithm 
over a range of the parameter k, and then very inefficiently 
assessing the quality of each set of clusters that is produced.  The 
Gap statistic [14] is an example of such a brute-force method that 
is far too inefficient to be practical in data sets of non-trivial size.  
The existing methods also favor spherical clusters and are less 
suitable to time series data.  Two methods were proposed to 
determine the number of non-spherical clusters to return:  cluster 
stability [11] and Monte Carlo cross evaluation [13].  However, 
these methods have not yet been shown to work well in practice. 

Segmentation Algorithms.  Segmentation algorithms usually take 
time series data as input and produce a Piecewise Linear 
Representation (PLR) as output.  PLR is a set of consecutive line 
segments that tightly fit the original data points.  Segmentation 
algorithms are somewhat related to clustering algorithms in that 
each segment can be thought of as a cluster.  However, due to the 
linear representation bias, segmentation algorithms usually 
produce a finer grain partitioning than clustering algorithms, so 
the clusters that are produced may not represent natural clusters.  
There are three common approaches [9].  First, in the Sliding 

Window approach, a segment is grown until the error of the line is 
above a specified threshold, then a new segment is started.  
Second, in the Top-down approach, the entire time series is 
recursively split until the desired number of segments is reached, 
or an error threshold is reached.  Third,  the Bottom-up approach 
starts off with n/2 segments, the 2 most similar adjacent segments 
are repeatedly joined until the desired number of segments is 
reached, or an error threshold is reached.  Bottom-up 
Segmentation (BUS) will be evaluated with our proposed ideas. 

Determining the Number of Segments.  Segmentation 
algorithms are most commonly used to create a fine 
approximation of a time series for compression, and are not 
interested in finding genuine clusters.  Methods have been 
developed to automatically determine the maximum number of 
segments that can be created without over-fitting the data [15], 
but no current segmentation algorithms attempt to find a relatively 
small set of segments that would correspond to natural clusters. 

Rule Generation.  To characterize the states into logic rules, we 
can use classification rule or association rule algorithms.  
However, association rule algorithms generate all associations 
that exceed a user-specified confidence and support, which are not 
necessary since we just need to characterize the states.   
Furthermore, we want a succinct characterization so that the 
overhead of matching the states is relatively small. 

Anomaly Detection.  Much of the work in time series anomaly 
detection relies on models that are not easily readable and hence 
modifiable by humans for tuning purposes.  Examples include a 
set of normal sequences [3] and adaptive resonance theory [1]. 

3. APPROACH 

 

Figure 1. Main steps in time series anomaly detection. 

The input to our overall anomaly detection system is a time series 
signature (such as the current vs. time graph at the top left corner 
of Figure 1) which is considered to be a “normal.”  The output of 
the overall system is a set of rules that implement state transition 
logic on an expert system, and are able to determine if other time 
series signatures deviate significantly from the learned signature.  
Since the learned signature is the “normal” model, any significant 
deviation from this model is considered an anomaly.  The overall 
architecture of the anomaly detection system consists of three 
parts:  clustering, rule generation (characterization), and state 
transition logic.  The clustering phase is performed by the newly 
developed clustering algorithm “Gecko,” which is able to identify 



distinct phases in a time series signature.  After the clustering 
algorithm identifies all of the major phases or states of the time 
series, rules are created for each state by an implementation of the 
RIPPER algorithm.  The rules and additional logic for transition 
between the states constitute a finite state automaton, which is the 
expert system. It raises an anomaly if the data stream being 
monitored differs significantly from the learned (normal) model.  

In order to prevent data signatures that are shifted to the left or 
right (shifted in the time dimension) from causing false anomalies, 
time is not considered when creating rules to describe each state.  
This also allows steady-state conditions (long horizontal phases 
which usually signify on or off) to occur for an indefinite amount 
of time without triggering anomalies.  Time should not be used in 
classification because it is too inflexible to expect all states to start 
and end at the same time or for all states to always last for exactly 
the same amount of time.  In other words, the actual time value 
where states begin and end is not important, only the relative 
ordering of the states and the normal attribute (non-time) values 
of the states are important.  As an example, state S2 in Figure 1 
would be able to continue indefinitely without triggering an 
anomaly, (it is a steady-state condition) if time is not used for 
state S2’s classification.  However, using only a single original 
data measurement (such as current in Figure 1) makes it difficult 
to create rules that unambiguously classify data points.  For 
example, if ‘current’ is the only attribute value that is used during 
classification, all data points in state S1 and S3 would be 
indistinguishable from each other because they have identical 
current values.  An ambiguous classification would make state 
transition logic difficult because the state that a data point 
belonged to would not be clear.  To help distinguish between the 
different states, pre-processing of the raw data is performed to 
generate new attributes.  The new derived values that are 
generated are the slopes and the 2nd derivatives of all original 
measurements.  Using the slope of the current, along with the 
original ‘current’ measurements, states S1 and S3 can be easily 
distinguished between each other.  We discuss the main parts in 
the next three sections. 

3.1 Gecko – Data Clustering 
Gecko is a newly developed clustering algorithm that is able to 
cluster time series data.  While segmentation algorithms typically 
create only a fine linear approximation of time series data, Gecko 
divides time series data into “genuine” clusters.  This optimum 
number of clusters is automatically determined by the algorithm 
and does not require user input.  This is a departure from other 
clustering and segmentation algorithms which require either the 
number of clusters or some arbitrary threshold to determine how 
many clusters or segments should be produced. 

3.1.1 The Method 
Gecko uses a 2-pass method that is a combination of both 
agglomerative and divisive hierarchical clustering.  The first is a 
top-down pass that partitions the data into a large number of sub-
clusters.  This is followed by a bottom-up pass that merges the 
sub-clusters back together.  The first top-down pass determines all 
of the potential boundary areas between clusters, which then 
enables the second bottom-up pass to focus only on the relative 
similarity of clusters.  Note that hierarchical clustering algorithms 
are very similar to top-down/bottom-up segmentation.  The main 

difference is that hierarchical clustering is more generalized than 
hierarchical segmentation and any number of methods can be used 
to determine similarity, while segmentation is limited to the error 
of a segment’s best-fit line. 
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Figure 2. Overview of the Gecko Algorithm. 

The Gecko algorithm consists of three phases.  The first phase 
creates many small sub-clusters by initially putting all of the data 
points in one cluster, and repeatedly splitting the largest cluster 
until all of the clusters can no longer be divided without becoming 
smaller than a specified parameter s.  The second phase takes all 
of the sub-clusters and repeatedly merges the two most similar 
clusters until all of the data is once again in the same cluster.  
Information about each merge is recorded in a dendrogram (tree 
data structure).  This dendrogram contains clustering information 
about all clustering levels, from clusterings containing a single 
cluster to the initial fine grain clustering produced by phase 1.  
Using the information that is stored in the dendrogram, phase 3 is 
able to quickly determine the ‘best’ number of clusters that should 
be extracted from the dendrogram. 

 

3.1.2 Phase 1:  Create Sub-Clusters 
In the first phase, many small sub-clusters are created by a method 
that is very similar to the one used by Chameleon [8], with the 

The Gecko Algorithm (overview) 
Input:  D                 // time series data 
  s                  // the minimum cluster size 
Output:  c*   clusters   
 
Phase 1: 
1. build a k-nearest neighbor graph of  D (k=2*s) 
2. recursively bisect the graph until the size of each sub-

cluster is between s and 2.2*s 
 
Phase 2: 
3. recursively merge the sub-clusters together until only one 

cluster remains - a dendrogram is created 
 
Phase 3: 
4. find c*, an appropriate number of clusters to return, by 

using the L method. 
5. extract c* clusters from the dendrogram and return them 



exception that Gecko forces cluster boundaries to be non-
overlapping in the time dimension.  The sub-clusters are created 
by initially placing all of the data points in a cluster, and 
repeatedly splitting the largest cluster until all of the clusters are 
too small to be split again without violating the minimum possible 
cluster size s. 

To determine how to split the largest cluster, a k-nearest neighbor 
graph is built in which each node in the graph is a time series data 
point (measurements taken at a time-interval), and each edge is 
the similarity between two data points.  Only the slopes of the 
original values (original sensor readings) are used to determine 
similarity, and not the original values themselves.  Using only the 
slope will tend to produce sub-clusters that have constant slope, 
which produces sub-clusters that are as close to straight lines as 
possible.  The k-nearest neighbor graph is constructed by creating 
an edge from every vertex to each of its k nearest (most similar) 
neighbors.  The parameter k is not an input parameter.  It is 
derived from s (smallest possible cluster size), and is defined to be 
2*s.  Due to the importance of time, the k nearest points of a data 
point can be assumed to be the k/2 points on each size of the point 
according to the time axis.  By using this graph the similarity 
between groups of points (clusters) can be determined by 
computing the edge cut (sum of the edges) between the two 
groups.  Similarity between two points is defined to be 
ln(1.0/distance+1), where distance is the Euclidean distance (or 
any other distance method) between the two points.  However any 
reasonable inverse mapping between distance and similarity can 
be used.  If the graph is split where the edge-cut is the smallest, 
then the two newly separated clusters will be dissimilar to each 
other and have high internal similarity. 

Since all boundaries between clusters are cut cleanly by the time 
axis with no overlap, the typically NP-hard problem of graph 
bisection is trivialized, and the optimal min-cut partitioning of a 
cluster can be quickly determined in fewer than |cluster|-1 edge-
cut checks (where |cluster| is the number of data points contained 
in the cluster).  There is no need for heuristics, because all 
possible edge-cut possibilities can be quickly computed with 
efficient data structures.  

3.1.3 Phase 2:  Repeatedly Merge Clusters  
Phase 1 produces many small and similarly-sized sub-clusters that 
are as dissimilar to each other as possible.  In phase 2, the most 
similar pair of adjacent (in time) clusters are repeatedly merged 
until only one cluster remains.  To determine which adjacent pair 
of clusters are the most similar, representative points are 
generated for each cluster and the two adjacent clusters with the 
closest representative points are merged.  The reduction of a 
cluster into a single representative point for comparison with 
other clusters does not adversely effect the quality of the merging 
decision because the clusters are internally homogeneous, and can 
therefore be accurately represented by a single point.  This 
reduction causes a substantial improvement in efficiency because 
only c-1 representative points (where c is the current number of 
clusters) need to be compared to determine which adjacent pair of 
clusters are most similar. 

The representative point of a cluster contains a value for the slope 
of every original attribute in the data other than time.  The slope 
values are computed by fitting a line to all of the data points of an 
original attribute.  Experimentation has shown that also using the 

original data points and second derivatives in the representative 
points does not to improve the quality of the clustering.  So 
essentially, Gecko generates clusters based only on the slopes of 
the original data.  If a human is asked to pick out several distinct 
phases of a time series graph, he is likely to divide the graph into 
flat regions and transitions between flat regions.  This eyeball 
method of clustering is also essentially clustering by slope.  
Segmentation also relies exclusively on slope:  if a minimum-error 
line (segment) is well fitted to a set of points it means that the 
segment has a consistent slope. 

However, if raw slope values are used in the representative points, 
then the “distance” between clusters with slope values 100 and 
101 would be the same as the distance between clusters with slope 
values 0 and 1.  Differences in slopes that are near zero need to be 
emphasized because the same absolute change in slope can triple a 
small value, and be an insignificant increase for a large value.  
Relative differences between slopes cannot be measured by the 
percentage increase because in the preceding example, the 
percentage increase from 0 to 1 is undefined.  Gecko uses 
representative values of slopes to compute the “distance” between 
two slopes.  The representative value of slope is computed by the 
equation:  

Representative Slope = 


<+−−
≥+

0)1ln(

0)1ln(

slopeifslope

slopeifslope
 

This equation emphasizes slopes near zero and decreases the 
effect of changes in slope when the slope values are large.  
Whenever a slope value is squared, its representative slope value 
(approximately) doubles.  In the preceding example of comparing 
2 pairs of clusters with slopes {100, 101} and {0, 1} the 
representative values of their slopes are {4.615, 4.625} and {0, 
0.693}.  This accurately reflects the relative difference between 
raw slopes and not the absolute difference.    Taking the 
difference between the adjusted slope values gives a good 
distance measurement between clusters.   

3.1.4 Phase 3:  Determine the Best Clustering Level  
Hierarchical clustering algorithms typically only keep track of the 
current set of clusters, and store no information about previous 
sets of clusters.  In order to determine when to stop merging (and 
thus the number of clusters to return), a stopping condition needs 
to be explicitly specified as a parameter.  The stopping condition 
can be either a number of clusters to return or a threshold that 
stops the merging when the measurement of distance (or 
similarity) between the last pair of clusters being joined is above 
(or below) some threshold.  No static stopping condition is likely 
to produce good results across varied data sets.  Some time series 
data sets are much more complex than others that require more 
clusters to accurately depict them.  In addition, some data sets also 
contain more noise than others or have a different scaling, which 
leads to inconsistent results when using a constant error threshold 
parameter as a stopping condition.  The method that Gecko uses 
to determine the best number of clusters takes only a small 
amount of analysis after a single pass of the clustering algorithm.   

In order to make an intelligent decision about which number of 
clusters produces the best clustering, the merging process must be 
continued all the way to one cluster.  Taking advantage of the 
nature of hierarchical clustering algorithms, it is possible to 



efficiently store many clustering possibilities at the same time.  A 
tree data structure can be created during the merging process in 
which the leaf nodes store the initial sub-clusters, and for each 
merge, the newly created merged cluster is represented by a node 
that contains pointers to the two clusters that were combined to 
create it.  The use of such a tree structure enables efficient 
analysis of all clustering possibilities, which can be used to 
determine the best number of clusters to return.  When this 
number is determined, the optimal set of c* clusters can be 
directly extracted from the tree without any backtracking or a 2nd 
pass through the merging process. 

 

Figure 3. Sample Plots of ‘# of clusters vs. merge distance’. 

To determine a good number of clusters to return, the distances of 
all merges during phase 2 are analyzed.  The basic shape of the ‘# 
of clusters vs. merge distance’ graph is shown in Figure 3.  In this 
graph, the x-axis is the number of clusters from 2 to the number of 
sub-clusters generated by phase 1.  The y-axis is the distance of 
the two closest clusters when there are x clusters.  Each data-point 
is the distance of a single merge, and the entire graph is generated 
in only once pass of the clustering algorithm.  This graph can vary 
significantly depending on the data set but they all contain a 
similar “L” shape curve.  Figure 3 shows two such graphs 
generated from two very different data sets.  The graph on the 
right side was generated from a much larger data set that 
contained more noise.  All ‘# of clusters vs. merge distance’ 
graphs have three distinctive areas:  a rather flat region to the 
right, a near-vertical region to the left, and a curved transition area 
in the middle.   

Starting from the right end, where the phase 2 merging process 
begins, there are many very similar clusters to be merged and the 
trend continues to the left in a rather straight line for some time.  
In this region, many clusters are similar to each other and should 
be merged. 

Another distinctive area of the graph is on the far left side where 
the merge distances grow very rapidly (moving from right to left, 
which is the order that the merging occurs).  This rapid increase in 
distance indicates that very dissimilar clusters are being merged 
together, and that the quality of the clustering is becoming poor 
because clusters are no longer internally homogeneous.  If the best 
available remaining merges start becoming increasingly poor, it 
means that too many merges have already been performed and the 
optimal clustering has been passed. 

The optimal number of clusters is therefore in the curved area, or 
the “elbow” (also known as the knee) of the graph.  This elbow 
region is between the low distance merges that form a nearly 
straight line on the right side of the graph, and the quickly 
increasing region on the left side.  In this area, the merges that are 
being performed are merges of transition clusters between the 
more obvious clusters.  Clusterings in this region contain highly 
homogeneous clusters, as well as some number of transition 
clusters between them.  Detecting at what number of clusters this 

region is will therefore give a good number of clusters to return 
that is totally dependent on the data and does not rely on static or 
ad-hoc parameters. 

To determine the location of the transition area or elbow of the 
graph, we take advantage of a property that exists in these ‘# of 
clusters vs. merge distance’ graphs.  The regions to both the right 
and the left of the curved section of the graph (see Figure 3) are 
approximately linear.  If a line is fitted to the right side and 
another line is fitted to the left side, then the intersection of those 
two lines will be in the transition area and can be used as the 
number of clusters to return.  Figure 4 depicts an example. 

 

Figure 4. Finding the number of clusters by the L method. 

To create these two lines that will intersect at the transition area 
and indicate a good number of clusters to return, we will find a 
pair of lines that most closely fit the curve.  Figure 5 shows all 
possible pairs of best fit lines for a graph that contains seven data 
points (seven clusters were repeatedly merged into a single 
cluster).  Each line must contain at least 2 points, and must start at 
either end of the data.  Both lines together cover all of the data 
points, so if one line is small, the other is large to cover the rest of 
the remaining data-points.  The lines cover sequential sets of 
points, so the total number of line pairs is not exponential, but 
only numOfSubclusters-4.  Of the four possible line pairs in 
Figure 5, the pair that fits their respective data points with the 
minimum amount of error is the pair on the bottom left.  

 

Figure 5. All possible  pairs of best-fit lines. 

Consider a ‘# of clusters vs. merge distance' graph produced by 
recursively merging b sub-clusters into a single cluster.  The 
x-axis varies from 2 to b, hence there are b-1 data points (i.e., b-1 
possible merges of clusters) in the graph.  Let Lc and Rc be the left 
and right sequences of data points partitioned at x=c; that is, Lc 

has points with x=2...c, and Rc has points with x=c+1…b, where 
c=3…b-2.  Equation 1 defines the total root mean squared error 
RMSEc, when the partition of Lc and Rc is at x=c: 
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where RMSE(Lc) is the root mean squared error of the best-fit line 
for the sequence of points in Lc (and similarly for Rc).  The 
weights are proportional to the lengths of Lc (c-1) and Rc (b-c).  
We seek the value of c, c ,̂ such that RMSEc is minimized, that is: 

  cc RMSEc minarg^ =  [2] 

The x-intercept of the two minimum-error lines that minimize the 
total root mean squared error is: 
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The x-intercept calculated by Equation 3 is used as the number of 
clusters to return.  Another possibility not evaluated in this paper 
is to use c*=c^ . 

This method to determine the number of clusters to return is 
general, and can also be used to determine the number of clusters 
in other hierarchical clustering and hierarchical segmentation 
algorithms (either bottom-up or top-down) that use different 
measures of distance or similarity at each merge.  In Gecko, 
distance is the y-axis, however if a similar graph is produced by 
an algorithm that merges based on similarity, it would be flipped 
around the x-axis.  The elbow of the curve would be found in this 
instance just as effectively with no modifications to the L method 
algorithm. 

The ‘# of clusters vs. merge distance’ graph contains a portion 
where the data (moving to the left) reaches a maximum and starts 
moving down (see Figure 4).  This occurs because far too many 
‘natural’ clusters have been merged together into one cluster at 
this point, that the representative slope values start to approach 
zero (a very long time series’ slope usually begins to converge 
towards zero).  The points that are merged after the maximum 
point destroy the natural “L” shape of the graph and should not be 
considered when fitting 2 lines to the graph. 

3.2 RIPPER – Rule Generation 
We have adapted RIPPER [2] to generate human readable rules 
that characterize the states identified by the Gecko algorithm.  The 
RIPPER algorithm is based on the Incremental Reduce Error 
Pruning (IREP) [5] over-fit-and-prune strategy.  The IREP 
algorithm is a 2-class approach, where the data set must first be 
divided into two subsets.  The first subset contains examples of 
the class whose characteristics are desired (the positive example 
set) and the other subset contains all other data samples (the 
negative example set).  Our implementation of RIPPER acts as an 
outer loop for the IREP rule construction.  

The input to RIPPER is the data produced by Gecko which 
contains time series data classified into c* states.  RIPPER will 
execute the IREP algorithm c* times, once for each state.  At each 
execution of IREP, a different state is considered to be the 
positive example set and the rest of the states form the negative 
example set.  This results a set of rules in for each state.  To 
describe the relationship among these states, state transition logic 
is identified as discussed in the following section. 

3.3 State Transition Logic 
The upper right-hand quadrant of Figure 1 depicts a simplified 
state transition diagram for a signal containing just three states.  

The state transition logic is described by three rules for each state 
corresponding to each of the three possible state transition 
conditions on each input data point.  These three rules can be 
summarized as the following three simple “if-then” statements: 

• If input matches current state’s characteristics Then remain 
in current state. 

• If input matches the next state’s characteristics Then 
transition to the next state. 

• If input matches neither the current state’s nor the next 
state’s characteristics Then transition to an error state. 

The essential element of each of these three rules is the antecedent 
condition, which characterizes the data points belonging to each 
state.  This antecedent condition for each state is obtained from 
the RIPPER rule generation process.  The state transition logic 
simply needs to glue together the proper antecedents to formulate 
the above three transition rules for each of the c* states identified 
by Gecko. 

Unfortunately, our state transition logic needs to be somewhat 
more complex.  In the domain of devices and systems we are 
attempting to monitor, sensors may sometimes report short-term, 
transient, anomalous values – false alarms.  In order for our 
approach to be more robust in handling these transients, we have 
added extra counting/threshold logic to the transition from a 
normal state to the error state.  Before the error state is actually 
entered one of two additional criteria must be satisfied:  either (1) 
the number of consecutively observed anomalous values must 
exceed a specified threshold; or (2) the total number of anomalous 
values observed has exceeded another threshold.  Thus an 
anomalous condition is not annunciated unless the observed 
values have been improper for some length of time.  We have 
provided similar logic for the transition from a normal state to its 
normal successor.  That is, we will not transition to a new normal 
state unless the threshold number of consecutive new values for 
that state has been observed; or the total number of new values for 
that state exceeds a threshold.  These 4 threshold values are 
parameters to our state transition logic generation process. 

4. EMPIRICAL EVALUATION 
The goal of this evaluation is to demonstrate the ability of the 
Gecko algorithm to identify states in real time series data, show 
that RIPPER is able to characterize these states, and also to show 
that our overall system is able to detect anomalies. The data used 
to evaluate the component algorithms and the overall system is 10 
time series data sets obtained from NASA.  The data sets are 
signatures of a valve from the space shuttle program.  Each data 
set contains between 1,000 and 20,000 current measurements.   

 



Figure 6. A sample valve time series with clusters from Gecko. 

These 10 data sets contain both signatures of valves that are 
operating normally, and also signatures of valves that are under 
stress or damaged.  These particular types of valves must perform 
within a strict tolerance, and because a valve’s signature often 
changes over time, they must be frequently tested by NASA 
engineers to ensure they are working properly.  The current 
method used to test these valves involves an expert comparing a 
valve’s signature to a known normal signature, and determining if 
there is any significant variation.  We would like to demonstrate 
in this evaluation that our anomaly detection system is able to 
perform the job of this human expert an automatically determine 
if a valve is operating normally. 

4.1 Identifying States with Gecko 
4.1.1  Procedures and Criteria 
The experimental procedure for evaluating Gecko consists of 
three parts.  First, Gecko and a valve expert from NASA 
independently cluster the 10 data sets.  The expert is given an un-
clustered graph of each data set and is asked to draw lines 
between what he thinks are clusters.  This allows us to determine 
if the number of clusters that is automatically determined by the 
Gecko algorithm is comparable to the number of clusters 
produced by the human expert. Second, both Gecko and an 
existing algorithm cluster the 10 data sets.  Then have a NASA 
engineer rate the quality of each clustering from 1 to 10, without 
informing him which output is from which algorithm.  The 
existing algorithm that is used is a bottom-up segmentation 
algorithm (BUS).  The BUS segmentation algorithm is unable to 
determine how many clusters to return without being given an 
input parameter that specifies either the number of clusters or an 
error threshold.  It was impossible to find a static error threshold 
that didn’t produce horrible results on over half of the data sets, 
so for each data set the input parameter that specifies the number 
of clusters to return was set to the same number that Gecko 
automatically generates.  Forcing both algorithms to produce the 
same number of clusters makes for a better test of the comparative 
quality of the clusters they produce. Third, the valve expert is 
asked to go over all of the Gecko data sets that he rated in step 2, 
and explain his evaluation. 

Gecko was run with the default parameter for each data set:  
minimum cluster size s=10.  However, data set number 10 
contained a large amount of noise and s needed to be increased to 
25 to prevent phase two from considering large noisy areas to be 
many clusters alternatively moving up and down. 

4.1.2 Results and Analysis 
The first part of Gecko’s evaluation was to compare the number of 
clusters it produced to the number produced by an expert human.  
A summary of the results is shown in Table 1.  Gecko was able to 
identify a number of clusters that was within the range specified 
by the expert to be a ‘reasonable range’ (for datasets 5-10 the 
expert did not provide a range and we extrapolated from his 
clustering for that data set and his ranges for data sets 1-4). 
However, the human expert consistently created clusterings with 
fewer clusters than the Gecko algorithm.  Despite the difference in 
the number of clusters produced, the clusterings produced are 
actually quite similar.  Gecko generally identifies the same major 

clusters as the valve expert, but also produces several ‘transition’ 
clusters between the more obvious clusters. 

Table 1. Clusterings produced by Gecko and a human expert. 

 Gecko NASA Human Expert 

Data Set # of clusters # of clusters Reasonable Range 

1 16 11 9-20 

2 16 10 9-20 

3 14 10 9-20 

4 12 10 9-20 

5 13 7 (6-15) 

6 10 5 (5-10) 

7 7 6 (6-11) 

8 16 10 (9-19) 

9 16 12 (10-20) 

10 15 11 (9-16) 

The next task performed by the NASA engineer was to rate the 
clusterings produced by Gecko and an existing algorithm.  The 
existing algorithm used for comparison is a standard 
implementation of bottom-up segmentation BUS that initially 
creates n/2 segments (each segment is of length 2), and uses root-
mean squared error when determining the errors of lines.  For 
each data set, the BUS algorithm was made to produce the same 
number of clusters as the Gecko algorithm.  Table 2 contains the 
scores given for all 10 pairs of clusterings. 

Table 2. Clustering quality of Gecko and BUS 

Data Set Gecko BUS 

1 10 2 

2 10 3 

3 9 3 

4 10 3 

5 10 3 

6 10 3 

7 8 8 

8 9 5 

9 9 7 

10 10 6 

Average Score 9.5 4.3 

Gecko’s average score was 9.5, while the bottom-up segmentation 
algorithm’s average score was only 4.3.  In addition to the 
increased clustering quality, Gecko was also able to determine a 
suitable number of clusters with fewer input parameters.  It is also 
interesting that the data sets that Gecko received a perfect score 
on (which signifies a clustering as good as the human expert’s 
clustering) often differed notably in the number of clusters 
generated.  For example, Gecko produced nearly twice as many 
clusters as the human expert for data set 5, and Gecko still got a 
perfect rating.  This suggests that there is often a range of “very 
good” numbers of clusters to return, and there is no single correct 
number of clusters.  

A major reason that Gecko performed so much better is because 
Gecko determines the initial segments/clusters much more 



effectively than BUS.  Gecko and BUS are both bottom-up 
hierarchical algorithms and start their merging process from an 
initial partitioning of the data.  BUS initially partitions the data by 
creating as many small clusters as possible by initially putting 
every two points into a cluster.  This means that wherever there is 
a very sharp cluster boundary, there is a 50% chance the BUS’s 
initial segments will straddle the boundary.  These small errors 
often cause more errors during the merging process and the 
overall clustering quality suffers.  The initial partitioning 
produced by Gecko in its first phase, is careful make sure that all 
important cluster boundaries occur only on the edges of clusters. 

The final part of Gecko’s evaluation was a discussion with the 
NASA engineer about why he gave each score.  This also 
indicated another advantage of the Gecko algorithm over BUS.  In 
data sets with regions that have very high slopes, BUS divides 
them into too many clusters.  This is because of the way that BUS 
measured the errors of lines.  When clusters are merged together 
by keeping the total error of the best fit lines to a minimum, there 
is a bias favoring merging clusters together that are horizontal and 
have low slopes.  This is because when the error of a line is 
computed using the root mean squared error, the vertical distance 
from the point to the best-fit is what is being measured.  Thus, 
lines that are nearly vertical may seem visually to be a nearly 
perfect fit, but the vertical distances from the points to the line can 
be huge.  Gecko does not suffer from this problem. 

Our implementation of Gecko on a PC is able to cluster a 1,000 
point data sets in 7 seconds.  A 20,000 point data set takes 
approximately 7.5 minutes to cluster.  However, sampling can be 
performed to increase the execution time without any effect on the 
quality of the output unless the user wishes to discover very small 
clusters that would be smoothed over by over-sampling.  About 
90% of the execution time is due to phase 1 of the Gecko 
algorithm.  Building a k-nearest neighbour graph and recursively 
bisecting it is much more complex than the merging method used 
in the second phase. 

4.2 Characterizing states with RIPPER 
4.2.1 Procedures and Criteria 
The RIPPER algorithm was tested by characterizing the clusters 
produced by Gecko for each of the 10 valve data sets.  The 
accuracy of the characterization produced by RIPPER was 
determined in two steps: (1) for every cluster of a data set 
(training):  create a rule that characterizes the cluster by using 
90% of the cluster’s data points; (2) For the remaining 10% of the 
data (testing):  see if the cluster that these unseen data points 
belong to can be correctly determined by the learned rule. 

To facilitate the error analysis of temporally adjacent clusters, we 
do not separate the unseen test data from the training data during 
testing.  The 10% unseen data simulates minor normal variations 
not observed during training.  We group errors into four types: 

1. Contradiction :  The exact same data point (looks the same 
because time is ignored) in training was classified during 
clustering to be in two different clusters.  This is probably 
not a clustering error.  It is most likely two different data 
points in flat regions that have other clusters between them.  
However, because time is ignored during classification, there 
is no way to tell the points apart.  This will not be an issue 
during the state transition logic because the finite state 

automaton will only need to know if the data point is in the 
current or next state. 

2. Uncovered point:  The point is not covered by any of the 
rules.  This is obviously an error.  However, it is more likely 
to occur in this specific evaluation than in actual practice.  In 
this test, 10% of the data was unseen during training.  If 
several successive points in a transition region are not trained 
on during the training phase, it could be difficult to predict 
them during testing because no similar points were seen in 
training.  The state transition logic can compensate for 
uncovered points. 

3. Wrong rule: The point is covered by a rule, but not by either 
the correct rule, or a rule that is adjacent to it.  This is a 
rather significant error.  In a real system it would most likely 
indicate that the point is anomalous.  An error threshold 
counter could be used in the state transition logic to force 
several ‘wrong rule’ points to occur in a row before signaling 
an anomaly.  This would make sure stray ‘wrong rule’ points 
do not trigger anomalies. 

4. Poor transition:  The point is not covered by the correct 
rule, but is covered by a rule either immediately before or 
after it.  This could be a transition point which is very close 
to belonging in two clusters at the same time.  This can be 
dealt with in the state transition logic by having a transition 
threshold that requires several transition points in a row to 
perform a transition to a new state. 

Furthermore, to determine what effect derived attributes have on 
the quality of the rules that RIPPER produces, the following 3 
tests are performed by varying the input data points to contain:  
original attributes only, original attributes + slopes, and original 
attributes + slopes + second derivatives. 

4.2.2 Results and Analysis 
RIPPER was able to accurately characterize the vast majority of 
the test data points.  The frequency of each kind of error on all 
data sets when using the original attribute as well as two derived 
attributes (slope and second derivative) is shown in Table 3. 

Table 3. Classification Errors from RIPPER. 

Data 
Set 

Contrad-
iction 

Not 
Covered 

Wrong 
Rule 

Poor 
Transition 

Total 
Err. 

1 0% 8% 3% 0% 11% 

2 0% 3% 0% 3% 6% 

3 0% 2% 2% 3% 7% 

4 0% 4% 1% 0% 5% 

5 0% 0% 0% 0% 0% 

6 0% 1% 0% 2% 3% 

7 0% 2% 0% 0% 2% 

8 0% 1% 1% 0% 2% 

9 0% 3% 1% 0% 4% 

10 0% 0.4% 0.1 0.5% 1.0% 

Avg % 0.0% 2.4% 0.8% 0.8% 4.1% 

The ability of RIPPER to accurately characterize data is largely 
dependent on the attributes of the data points.  Using only the 
original attribute “current,” over 1 in 5 data points were not able 
to be accurately characterized by the rules.  The number of errors 



goes down with each extra attribute that is added to the data.  This 
can be clearly seen in Table 4.  This occurs because each new 
attribute gives RIPPER the ability to more accurately classify the 
data.  It is analogous to trying to describe your position on the 
earth using only latitude vs. using latitude and longitudes.        

Table 4. Errors with different attributes. 

Attributes 
Contra
diction 

Not 
Covered 

Wrong 
Rule 

Poor 
Transition 

Total 
Err. 

Original  10.2% 0.0% 8.3% 4.1% 
22.5
% 

Orig + 
Slope 

3.2% 1.7% 1.6% 0.9% 4.7% 

Orig + 
Slope + 
2ndDer 

0% 2.4% 0.8% 0.8% 4.1% 

4.3 Overall System (FSA) 
4.3.1 Procedures and Criteria 
The overall anomaly detection system was tested by using the 
rules generated by RIPPER to implement a finite state automaton 
on a time series stream of input.  If the finite state automaton is 
unable to process the input stream through each state in the 
correct order of: “S1�S2�S3�…�Sn”, then the input stream is 
rejected and is considered to contain an anomaly. 

In order to test whether the anomaly detection system works 
correctly we performed three kinds of tests:  (1) Self-tracking:  
Use 90% of the data points to create rules, and then use 100% of 
the data fed into the expert system to see if the state transitions 
would trigger properly without detecting any anomalies. (2) 
Normal operation:  Use all of a normal valve’s data to learn its 
signature, and then monitor another valve that is also operating 
normally.  This case should also not trigger any anomalies. (3) 
Detecting anomalies:  Use all of a properly functioning valve’s 
data to learn its normal signature, and then take signatures of 
valves that are damaged slightly and run it through the anomaly 
detection system.  The damaged valves should trigger anomalies. 

4.3.2 Results and Analysis 
Self-tracking.  The baseline test of the anomaly detection system 
is provide an incomplete sampling of a time series signature 
(random 90%) to characterize, will it be able to monitor the entire 
time series signature without triggering any anomalies.  This 
determines if the anomaly detection system is able to detect 
similar time series with minor variations. 

An error point in Table 5 is any point that is unexpected in the 
state transition logic.  This means that the point is neither in the 
current state or the following state.  Time series data often 
contains noise and minor variations.  For this reason, anomalies 
must not be triggered by only a single data point that does not 
agree with the model contained in the finite state automaton.  We 
use a threshold counter which only reports an anomaly if a certain 
number of consecutive error points are found.  The last column in 
Table 5 shows what the minimum consecutive error threshold 
(CE) must be set to for the anomaly detection system to not report 
an anomaly.  A value of 1 in this last column means that the 
anomaly detection system will correctly not report an anomaly as  
long as CE >= 1.   

Table 5. Self-tracking of a time series. 

Data Set Error Pts Min. Error Threshold 

1 1.1% 2 

2 0.8% 2 

3 0.7% 1 

4 0.5% 1 

5 0.0% 0 

6 0.4% 1 

7 0.3% 1 

8 0.2% 1 

9 0.4% 1 

10 1.1% 21 

Avg 0.55% 4.0 

In this experiment both the “consecutive transition threshold” 
(CT) and the “consecutive error threshold” (CE) were set to zero.  
This causes every possible state transition to be made and every 
error point throws an anomaly.  This enabled easy computation of 
the number of error points.  Data set number 10 performs poorly 
in this test because the FSA transitions prematurely near the end 
of its signature and starts reporting many anomalies, the results 
for this data set can be improved by increasing CT to prevent it 
from transitioning too early on a spurious data point. 

Normal Operation.  This test will show that the anomaly 
detection system’s model of the normal signature is general 
enough to recognize that a different normal time series contains 
no anomalies.  In this test, the anomaly detection system trained 
on data set 1, and then tested on data set 2.  Both of these data sets 
are of normally operating valves that contains minor (but visible) 
differences.  The “consecutive transition threshold” (CT) 
parameter was set to 2, and CE was set to 10 (minimum possible 
cluster size s=10).  This means than two consecutive points 
believed to be in the next state are needed to perform a state 
transition and ten consecutive points believed to be errors are 
needed to declare that the time series contains anomalies.   

The system was able to successfully transition through the states, 
without declaring any anomalies.  Of 979 data points, 61 (2.6%) 
were error--they were not believed to belong to the current state, 
nor to be transition points belonging to the following state.  
However, since a consecutive number of errors greater than CE 
was never encountered, an anomaly was never triggered. 

Detecting Anomalies.  In this test, the two data sets containing 
time series signatures of valves operating normally (data sets 1 
and 2) were used to develop the normal models.  Each normal 
model was then run against the remaining data sets.  Data sets 3-
10 contain signatures of damaged or otherwise ill-behaved valves 
and should be determined to be anomalous by the anomaly 
detection system. 

For each of the 16 tests, the anomaly detection system was able to 
determine that signatures contained anomalies.  Additionally, the 
system is able to inform the user of the state number where the 
signature differs from the model.  The state where the errors 
occurred varied from state 2 to state 12.  Thus, the system does 
not only give a yes/no answer to whether a time series contains 
anomalies, but it is also able to explain to the user where the 



anomaly occurred.  Also, because the rules generated by RIPPER 
are in a human-readable format, the user can look at the rule for 
the state where the error occurred and understand exactly why the 
system reported the anomaly. 

5. CONCLUDING REMARKS 
We have detailed our approach to time-series anomaly detection 
by discovering and characterizing the states of a time series, and 
adding transition logic between these states to construct a finite 
state automaton, which is used to track normal behavior and 
detect anomalies.  The proposed Gecko clustering algorithm is 
designed to cluster time series data, and uses our proposed L 
method to automatically determine a reasonable number of 
clusters efficiently.  The rules generated for each state by the 
RIPPER algorithm can be easily understood and modified by 
humans.  (Moreover, the generated rules can be in a format used 
by the SCL expert system shell at ICS, which is our collaborator 
on this NASA project.) 

Our empirical evaluations have shown that the L method used by 
the Gecko algorithm returns a number of clusters that is similar to 
the number that is generated by a human expert.  When the human 
expert was asked to rate Gecko’s clusterings from 1-10, Gecko’s 
clusterings were given perfect ratings on 6 of 10 data sets.  A 
perfect rating signifies that Gecko’s clustering is equally as good 
as the human expert’s clustering.  For comparison, the bottom-up 
segmentation algorithm was also tested, and was only given an 
average rating of 4.3.  RIPPER was able to create accurate rules to 
describe the states in which only an average of about 4% of the 
data points had a possibly vague classification.  Such a small 
number of potential errors have little adverse effect on the state 
transition logic’s ability to correctly track a signature.  Even small 
error and transition threshold values would be able to compensate 
for this small amount of errors.  In fact, during the self-tracking 
tests of the finite state automation, nearly all of the data sets 
required the consecutive error threshold value to be set to no 
greater than 2 to correctly process the signature without detecting 
an anomaly.  The overall anomaly detection system was able to 
detect anomalies in every signature that was from a ‘damaged’ 
valve, and was also able to monitor a 2nd normal valve without 
detecting any anomalies. 

We plan to further evaluate our approach with more datasets from 
NASA; issues include building a model from multiple datasets 
collected at different times and datasets with different 
measurements.  We plan to study how the L method performs with 
other hierarchical clustering algorithms.  To dynamically set the 
thresholds used in the state transition logic, we can hold out part 
of the training data and find thresholds that prevent errors on the 
unseen portion of the data. 
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