
Learning States and Rules for Time Series
Anomaly Detection

Stan Salvador, Philip Chan, and John Brodie
Dept. of Computer Sciences Technical Report CS-2003-05

Florida Institute of Technology
Melbourne, FL 32901

{ssalvado, pkc, jbrodie}@cs.fit.edu

ABSTRACT
In this paper we investigate machine learning techniques for
discovering knowledge that can be used to monitor the operation
of devices or systems. Specifically, we study methods for
generating models that can detect anomalies in time series data.
The normal operation of a device can usually be characterized in
different temporal states. To identify these states, we introduce a
clustering algorithm called Gecko that can automatically
determine a reasonable number of clusters using our proposed "L"
method. We then use the RIPPER classification algorithm to
describe these states in logical rules. Finally, transitional logic
between the states is added to create a finite state automaton. Our
empirical results, on data obtained from the NASA shuttle
program, indicate that the Gecko algorithm is comparable to a
human expert in identifying states and our overall system can
track normal behavior and detect anomalies.

Categories and Subject Descriptors
I.2.1 [Learning]: Induction.

General Terms
Algorithms, Verification.

Keywords

clustering, segmentation, anomaly detection, rule generation, time
series data, state transition logic, expert systems.

1. INTRODUCTION
Motivation. An expert system contains a knowledge base that
allows it to reason proficiently in a specific domain. These
knowledge-intensive systems are often used to help humans
monitor and control critical systems in real-time. For example,
NASA uses expert systems to monitor various devices on the
space shuttle. However, populating an expert system’s knowledge
base by hand is known to be a time-consuming process. In this
paper we investigate machine learning techniques for generating
knowledge that can monitor the operation of devices or systems.
Specifically, we study methods for generating models that can
detect anomalies in time series data.

The normal operation of a device can usually be characterized in
different temporal states. Segmentation or clustering techniques
can help identify the various states, however, most methods
directly or indirectly require a parameter to specify the number of
segments/clusters in the time series data. The output of these

algorithms is also not in a logical rule format, which is commonly
used in expert systems for its ease of comprehension and
modification. Furthermore, the relationships between these states
needs to be determined to allow tracking from one state to another
and to detect anomalies.

Problem. Given a time series depicting a system’s normal
operation, we desire to learn a model that can detect anomalies
and can be easily read and modified by human users. We
investigate a few issues in this paper. First, we want a clustering
algorithm that can dynamically determine a reasonable number of
clusters, and hence the number of states for our purposes. These
states should be relatively comparable to those identified by
human experts. Second, we would like these states to be
characterized in logical rules so that they can be read and
modified with relative ease by humans. The rules should be
general enough to cover normal data points not seen in the
training data. Third, given the knowledge of the different states,
we wish to describe the relationship among them for tracking
normal behavior and detecting anomalies.

Approach. To identify states, we introduce Gecko, which is able
to cluster time series data and automatically determine a
reasonable number of clusters (states). Gecko consists of a top
down partitioning phase to find initial sub-clusters and a bottom-
up phase which merges them back together. The appropriate
number of clusters is automatically determined by what we call
the “L” method. To characterize the states in logical rules, we use
the RIPPER [2] classification rule learning algorithm. Since
different states can sometimes overlap in the one-dimensional
input space, additional attributes are derived to help characterize
the states. To track normal behavior and detect anomalies, we
construct a finite state automaton (FSA) with the identified states.

Our main contributions are: (1) we demonstrate a way to perform
time series anomaly detection via automatically generated states
and rules that can easily be understood and modified by humans;
(2) we introduce an algorithm named Gecko for clustering time
series data and the L method for dynamically finding a reasonable
number of clusters--the L method is general enough to be used
with other hierarchical divisive/agglomerative clustering
algorithms; (3) we integrate RIPPER and state transition logic to
generate a complete anomaly detection system; 4) our empirical
evaluations, with data from NASA, indicate that Gecko performs
comparably with a NASA expert and the overall system can track
normal behavior and detect anomalies.

The next section gives an overview of related work. Section 3
provides a detailed explanation of our system, which includes the

components: Gecko (clustering), RIPPER (rule generation), and
state transition logic. Section 4 contains experimental evaluations
of the component algorithms as well as the overall anomaly
detection system, and Section 5 summarizes our study.

2. RELATED WORK
Clustering Algorithms. There are four main categories of
clustering algorithms: partitioning, hierarchical, density-based,
and grid-based. Partitioning algorithms, for example K-means,
and PAM [10], iteratively refine a set of k clusters, which could
take a long time to converge. Density-based algorithms, e.g.,
DBSCAN [4] and DENCLUE [7], are able to efficiently produce
clusters of arbitrary shape and are also able to handle noise. If the
density of a region is above a specified threshold, it is assigned to
a cluster, otherwise it is considered to be noise. However, sharp
spikes in time series data are sometimes important features and
could be incorrectly determined to be noise by a density-based
clustering algorithm. Hierarchical algorithms can be
agglomerative and/or divisive. The agglomerative (bottom-up)
approach repeatedly merges two clusters, while the divisive (top-
down) approach repeatedly splits a cluster into two. ROCK [6]
and Chameleon [8] are hierarchical algorithms that differ mostly
in their similarity functions, which favor spherical and non-
spherical clusters (respectively). Grid-based algorithms such as
WaveCluster [12] reduce the clustering space into a grid of cells
which enables efficient clustering of very large datasets. This is
useful for clustering a large amount of very concentrated data, but
not for one-dimensional time series data. Existing clustering
algorithms are not designed to cluster time series data. Our Gecko
algorithm is a hierarchical algorithm that clusters time series data
by adding constraints to the merging and splitting of clusters.

Determining the Number of Clusters. Clustering algorithms
usually require a stopping condition to be explicitly given as a
parameter(s). This parameter is either k (the number of clusters to
return) or some other ad-hoc algorithm specific parameter.
Forcing a user to specify the number of clusters to return requires
either detailed pre-existing knowledge of the data set, or time-
consuming trial and error. The majority of existing methods to
automatically determine the number of clusters to return involve a
brute-force method of repeatedly running a clustering algorithm
over a range of the parameter k, and then very inefficiently
assessing the quality of each set of clusters that is produced. The
Gap statistic [14] is an example of such a brute-force method that
is far too inefficient to be practical in data sets of non-trivial size.
The existing methods also favor spherical clusters and are less
suitable to time series data. Two methods were proposed to
determine the number of non-spherical clusters to return: cluster
stability [11] and Monte Carlo cross evaluation [13]. However,
these methods have not yet been shown to work well in practice.

Segmentation Algorithms. Segmentation algorithms usually take
time series data as input and produce a Piecewise Linear
Representation (PLR) as output. PLR is a set of consecutive line
segments that tightly fit the original data points. Segmentation
algorithms are somewhat related to clustering algorithms in that
each segment can be thought of as a cluster. However, due to the
linear representation bias, segmentation algorithms usually
produce a finer grain partitioning than clustering algorithms, so
the clusters that are produced may not represent natural clusters.
There are three common approaches [9]. First, in the Sliding

Window approach, a segment is grown until the error of the line is
above a specified threshold, then a new segment is started.
Second, in the Top-down approach, the entire time series is
recursively split until the desired number of segments is reached,
or an error threshold is reached. Third, the Bottom-up approach
starts off with n/2 segments, the 2 most similar adjacent segments
are repeatedly joined until the desired number of segments is
reached, or an error threshold is reached. Bottom-up
Segmentation (BUS) will be evaluated with our proposed ideas.

Determining the Number of Segments. Segmentation
algorithms are most commonly used to create a fine
approximation of a time series for compression, and are not
interested in finding genuine clusters. Methods have been
developed to automatically determine the maximum number of
segments that can be created without over-fitting the data [15],
but no current segmentation algorithms attempt to find a relatively
small set of segments that would correspond to natural clusters.

Rule Generation. To characterize the states into logic rules, we
can use classification rule or association rule algorithms.
However, association rule algorithms generate all associations
that exceed a user-specified confidence and support, which are not
necessary since we just need to characterize the states.
Furthermore, we want a succinct characterization so that the
overhead of matching the states is relatively small.

Anomaly Detection. Much of the work in time series anomaly
detection relies on models that are not easily readable and hence
modifiable by humans for tuning purposes. Examples include a
set of normal sequences [3] and adaptive resonance theory [1].

3. APPROACH

Figure 1. Main steps in time series anomaly detection.

The input to our overall anomaly detection system is a time series
signature (such as the current vs. time graph at the top left corner
of Figure 1) which is considered to be a “normal.” The output of
the overall system is a set of rules that implement state transition
logic on an expert system, and are able to determine if other time
series signatures deviate significantly from the learned signature.
Since the learned signature is the “normal” model, any significant
deviation from this model is considered an anomaly. The overall
architecture of the anomaly detection system consists of three
parts: clustering, rule generation (characterization), and state
transition logic. The clustering phase is performed by the newly
developed clustering algorithm “Gecko,” which is able to identify

distinct phases in a time series signature. After the clustering
algorithm identifies all of the major phases or states of the time
series, rules are created for each state by an implementation of the
RIPPER algorithm. The rules and additional logic for transition
between the states constitute a finite state automaton, which is the
expert system. It raises an anomaly if the data stream being
monitored differs significantly from the learned (normal) model.

In order to prevent data signatures that are shifted to the left or
right (shifted in the time dimension) from causing false anomalies,
time is not considered when creating rules to describe each state.
This also allows steady-state conditions (long horizontal phases
which usually signify on or off) to occur for an indefinite amount
of time without triggering anomalies. Time should not be used in
classification because it is too inflexible to expect all states to start
and end at the same time or for all states to always last for exactly
the same amount of time. In other words, the actual time value
where states begin and end is not important, only the relative
ordering of the states and the normal attribute (non-time) values
of the states are important. As an example, state S2 in Figure 1
would be able to continue indefinitely without triggering an
anomaly, (it is a steady-state condition) if time is not used for
state S2’s classification. However, using only a single original
data measurement (such as current in Figure 1) makes it difficult
to create rules that unambiguously classify data points. For
example, if ‘current’ is the only attribute value that is used during
classification, all data points in state S1 and S3 would be
indistinguishable from each other because they have identical
current values. An ambiguous classification would make state
transition logic difficult because the state that a data point
belonged to would not be clear. To help distinguish between the
different states, pre-processing of the raw data is performed to
generate new attributes. The new derived values that are
generated are the slopes and the 2nd derivatives of all original
measurements. Using the slope of the current, along with the
original ‘current’ measurements, states S1 and S3 can be easily
distinguished between each other. We discuss the main parts in
the next three sections.

3.1 Gecko – Data Clustering
Gecko is a newly developed clustering algorithm that is able to
cluster time series data. While segmentation algorithms typically
create only a fine linear approximation of time series data, Gecko
divides time series data into “genuine” clusters. This optimum
number of clusters is automatically determined by the algorithm
and does not require user input. This is a departure from other
clustering and segmentation algorithms which require either the
number of clusters or some arbitrary threshold to determine how
many clusters or segments should be produced.

3.1.1 The Method
Gecko uses a 2-pass method that is a combination of both
agglomerative and divisive hierarchical clustering. The first is a
top-down pass that partitions the data into a large number of sub-
clusters. This is followed by a bottom-up pass that merges the
sub-clusters back together. The first top-down pass determines all
of the potential boundary areas between clusters, which then
enables the second bottom-up pass to focus only on the relative
similarity of clusters. Note that hierarchical clustering algorithms
are very similar to top-down/bottom-up segmentation. The main

difference is that hierarchical clustering is more generalized than
hierarchical segmentation and any number of methods can be used
to determine similarity, while segmentation is limited to the error
of a segment’s best-fit line.

DataData 1 Large
Cluster

c1 c2 c3 c4

Phase 1:
 Obtain Subclusters

c1 c2 c3 c4

c6

c5

c7

Phase 2:
Merge Subclusters

Subclusters

Phase 3:
Determine the Best

Clustering Level

c1 c2 c3 c4

c6

c5

c7 c1 c2 c5

Final Clustering

Figure 2. Overview of the Gecko Algorithm.

The Gecko algorithm consists of three phases. The first phase
creates many small sub-clusters by initially putting all of the data
points in one cluster, and repeatedly splitting the largest cluster
until all of the clusters can no longer be divided without becoming
smaller than a specified parameter s. The second phase takes all
of the sub-clusters and repeatedly merges the two most similar
clusters until all of the data is once again in the same cluster.
Information about each merge is recorded in a dendrogram (tree
data structure). This dendrogram contains clustering information
about all clustering levels, from clusterings containing a single
cluster to the initial fine grain clustering produced by phase 1.
Using the information that is stored in the dendrogram, phase 3 is
able to quickly determine the ‘best’ number of clusters that should
be extracted from the dendrogram.

3.1.2 Phase 1: Create Sub-Clusters
In the first phase, many small sub-clusters are created by a method
that is very similar to the one used by Chameleon [8], with the

The Gecko Algorithm (overview)
Input: D // time series data
 s // the minimum cluster size
Output: c* clusters

Phase 1:
1. build a k-nearest neighbor graph of D (k=2*s)
2. recursively bisect the graph until the size of each sub-

cluster is between s and 2.2*s

Phase 2:
3. recursively merge the sub-clusters together until only one

cluster remains - a dendrogram is created

Phase 3:
4. find c*, an appropriate number of clusters to return, by

using the L method.
5. extract c* clusters from the dendrogram and return them

exception that Gecko forces cluster boundaries to be non-
overlapping in the time dimension. The sub-clusters are created
by initially placing all of the data points in a cluster, and
repeatedly splitting the largest cluster until all of the clusters are
too small to be split again without violating the minimum possible
cluster size s.

To determine how to split the largest cluster, a k-nearest neighbor
graph is built in which each node in the graph is a time series data
point (measurements taken at a time-interval), and each edge is
the similarity between two data points. Only the slopes of the
original values (original sensor readings) are used to determine
similarity, and not the original values themselves. Using only the
slope will tend to produce sub-clusters that have constant slope,
which produces sub-clusters that are as close to straight lines as
possible. The k-nearest neighbor graph is constructed by creating
an edge from every vertex to each of its k nearest (most similar)
neighbors. The parameter k is not an input parameter. It is
derived from s (smallest possible cluster size), and is defined to be
2*s. Due to the importance of time, the k nearest points of a data
point can be assumed to be the k/2 points on each size of the point
according to the time axis. By using this graph the similarity
between groups of points (clusters) can be determined by
computing the edge cut (sum of the edges) between the two
groups. Similarity between two points is defined to be
ln(1.0/distance+1), where distance is the Euclidean distance (or
any other distance method) between the two points. However any
reasonable inverse mapping between distance and similarity can
be used. If the graph is split where the edge-cut is the smallest,
then the two newly separated clusters will be dissimilar to each
other and have high internal similarity.

Since all boundaries between clusters are cut cleanly by the time
axis with no overlap, the typically NP-hard problem of graph
bisection is trivialized, and the optimal min-cut partitioning of a
cluster can be quickly determined in fewer than |cluster|-1 edge-
cut checks (where |cluster| is the number of data points contained
in the cluster). There is no need for heuristics, because all
possible edge-cut possibilities can be quickly computed with
efficient data structures.

3.1.3 Phase 2: Repeatedly Merge Clusters
Phase 1 produces many small and similarly-sized sub-clusters that
are as dissimilar to each other as possible. In phase 2, the most
similar pair of adjacent (in time) clusters are repeatedly merged
until only one cluster remains. To determine which adjacent pair
of clusters are the most similar, representative points are
generated for each cluster and the two adjacent clusters with the
closest representative points are merged. The reduction of a
cluster into a single representative point for comparison with
other clusters does not adversely effect the quality of the merging
decision because the clusters are internally homogeneous, and can
therefore be accurately represented by a single point. This
reduction causes a substantial improvement in efficiency because
only c-1 representative points (where c is the current number of
clusters) need to be compared to determine which adjacent pair of
clusters are most similar.

The representative point of a cluster contains a value for the slope
of every original attribute in the data other than time. The slope
values are computed by fitting a line to all of the data points of an
original attribute. Experimentation has shown that also using the

original data points and second derivatives in the representative
points does not to improve the quality of the clustering. So
essentially, Gecko generates clusters based only on the slopes of
the original data. If a human is asked to pick out several distinct
phases of a time series graph, he is likely to divide the graph into
flat regions and transitions between flat regions. This eyeball
method of clustering is also essentially clustering by slope.
Segmentation also relies exclusively on slope: if a minimum-error
line (segment) is well fitted to a set of points it means that the
segment has a consistent slope.

However, if raw slope values are used in the representative points,
then the “distance” between clusters with slope values 100 and
101 would be the same as the distance between clusters with slope
values 0 and 1. Differences in slopes that are near zero need to be
emphasized because the same absolute change in slope can triple a
small value, and be an insignificant increase for a large value.
Relative differences between slopes cannot be measured by the
percentage increase because in the preceding example, the
percentage increase from 0 to 1 is undefined. Gecko uses
representative values of slopes to compute the “distance” between
two slopes. The representative value of slope is computed by the
equation:

Representative Slope = 


<+−−
≥+

0)1ln(

0)1ln(

slopeifslope

slopeifslope

This equation emphasizes slopes near zero and decreases the
effect of changes in slope when the slope values are large.
Whenever a slope value is squared, its representative slope value
(approximately) doubles. In the preceding example of comparing
2 pairs of clusters with slopes {100, 101} and {0, 1} the
representative values of their slopes are {4.615, 4.625} and {0,
0.693}. This accurately reflects the relative difference between
raw slopes and not the absolute difference. Taking the
difference between the adjusted slope values gives a good
distance measurement between clusters.

3.1.4 Phase 3: Determine the Best Clustering Level
Hierarchical clustering algorithms typically only keep track of the
current set of clusters, and store no information about previous
sets of clusters. In order to determine when to stop merging (and
thus the number of clusters to return), a stopping condition needs
to be explicitly specified as a parameter. The stopping condition
can be either a number of clusters to return or a threshold that
stops the merging when the measurement of distance (or
similarity) between the last pair of clusters being joined is above
(or below) some threshold. No static stopping condition is likely
to produce good results across varied data sets. Some time series
data sets are much more complex than others that require more
clusters to accurately depict them. In addition, some data sets also
contain more noise than others or have a different scaling, which
leads to inconsistent results when using a constant error threshold
parameter as a stopping condition. The method that Gecko uses
to determine the best number of clusters takes only a small
amount of analysis after a single pass of the clustering algorithm.

In order to make an intelligent decision about which number of
clusters produces the best clustering, the merging process must be
continued all the way to one cluster. Taking advantage of the
nature of hierarchical clustering algorithms, it is possible to

efficiently store many clustering possibilities at the same time. A
tree data structure can be created during the merging process in
which the leaf nodes store the initial sub-clusters, and for each
merge, the newly created merged cluster is represented by a node
that contains pointers to the two clusters that were combined to
create it. The use of such a tree structure enables efficient
analysis of all clustering possibilities, which can be used to
determine the best number of clusters to return. When this
number is determined, the optimal set of c* clusters can be
directly extracted from the tree without any backtracking or a 2nd
pass through the merging process.

Figure 3. Sample Plots of ‘# of clusters vs. merge distance’.

To determine a good number of clusters to return, the distances of
all merges during phase 2 are analyzed. The basic shape of the ‘#
of clusters vs. merge distance’ graph is shown in Figure 3. In this
graph, the x-axis is the number of clusters from 2 to the number of
sub-clusters generated by phase 1. The y-axis is the distance of
the two closest clusters when there are x clusters. Each data-point
is the distance of a single merge, and the entire graph is generated
in only once pass of the clustering algorithm. This graph can vary
significantly depending on the data set but they all contain a
similar “L” shape curve. Figure 3 shows two such graphs
generated from two very different data sets. The graph on the
right side was generated from a much larger data set that
contained more noise. All ‘# of clusters vs. merge distance’
graphs have three distinctive areas: a rather flat region to the
right, a near-vertical region to the left, and a curved transition area
in the middle.

Starting from the right end, where the phase 2 merging process
begins, there are many very similar clusters to be merged and the
trend continues to the left in a rather straight line for some time.
In this region, many clusters are similar to each other and should
be merged.

Another distinctive area of the graph is on the far left side where
the merge distances grow very rapidly (moving from right to left,
which is the order that the merging occurs). This rapid increase in
distance indicates that very dissimilar clusters are being merged
together, and that the quality of the clustering is becoming poor
because clusters are no longer internally homogeneous. If the best
available remaining merges start becoming increasingly poor, it
means that too many merges have already been performed and the
optimal clustering has been passed.

The optimal number of clusters is therefore in the curved area, or
the “elbow” (also known as the knee) of the graph. This elbow
region is between the low distance merges that form a nearly
straight line on the right side of the graph, and the quickly
increasing region on the left side. In this area, the merges that are
being performed are merges of transition clusters between the
more obvious clusters. Clusterings in this region contain highly
homogeneous clusters, as well as some number of transition
clusters between them. Detecting at what number of clusters this

region is will therefore give a good number of clusters to return
that is totally dependent on the data and does not rely on static or
ad-hoc parameters.

To determine the location of the transition area or elbow of the
graph, we take advantage of a property that exists in these ‘# of
clusters vs. merge distance’ graphs. The regions to both the right
and the left of the curved section of the graph (see Figure 3) are
approximately linear. If a line is fitted to the right side and
another line is fitted to the left side, then the intersection of those
two lines will be in the transition area and can be used as the
number of clusters to return. Figure 4 depicts an example.

Figure 4. Finding the number of clusters by the L method.

To create these two lines that will intersect at the transition area
and indicate a good number of clusters to return, we will find a
pair of lines that most closely fit the curve. Figure 5 shows all
possible pairs of best fit lines for a graph that contains seven data
points (seven clusters were repeatedly merged into a single
cluster). Each line must contain at least 2 points, and must start at
either end of the data. Both lines together cover all of the data
points, so if one line is small, the other is large to cover the rest of
the remaining data-points. The lines cover sequential sets of
points, so the total number of line pairs is not exponential, but
only numOfSubclusters-4. Of the four possible line pairs in
Figure 5, the pair that fits their respective data points with the
minimum amount of error is the pair on the bottom left.

Figure 5. All possible pairs of best-fit lines.

Consider a ‘# of clusters vs. merge distance' graph produced by
recursively merging b sub-clusters into a single cluster. The
x-axis varies from 2 to b, hence there are b-1 data points (i.e., b-1
possible merges of clusters) in the graph. Let Lc and Rc be the left
and right sequences of data points partitioned at x=c; that is, Lc

has points with x=2...c, and Rc has points with x=c+1…b, where
c=3…b-2. Equation 1 defines the total root mean squared error
RMSEc, when the partition of Lc and Rc is at x=c:

)(
1

)(
1

1
ccc RRMSE

b

cb
LRMSE

b

c
RMSE ×

−
−+×

−
−= [1]

where RMSE(Lc) is the root mean squared error of the best-fit line
for the sequence of points in Lc (and similarly for Rc). The
weights are proportional to the lengths of Lc (c-1) and Rc (b-c).
We seek the value of c, c ,̂ such that RMSEc is minimized, that is:

 cc RMSEc minarg^ = [2]

The x-intercept of the two minimum-error lines that minimize the
total root mean squared error is:

)]([)]([

)]([)]([
*

cc

cc

LebestFitLinslopeRebestFitLinslope

RebestFitLinyIntLebestFitLinyInt
c

−
−= [3]

The x-intercept calculated by Equation 3 is used as the number of
clusters to return. Another possibility not evaluated in this paper
is to use c*=c^ .

This method to determine the number of clusters to return is
general, and can also be used to determine the number of clusters
in other hierarchical clustering and hierarchical segmentation
algorithms (either bottom-up or top-down) that use different
measures of distance or similarity at each merge. In Gecko,
distance is the y-axis, however if a similar graph is produced by
an algorithm that merges based on similarity, it would be flipped
around the x-axis. The elbow of the curve would be found in this
instance just as effectively with no modifications to the L method
algorithm.

The ‘# of clusters vs. merge distance’ graph contains a portion
where the data (moving to the left) reaches a maximum and starts
moving down (see Figure 4). This occurs because far too many
‘natural’ clusters have been merged together into one cluster at
this point, that the representative slope values start to approach
zero (a very long time series’ slope usually begins to converge
towards zero). The points that are merged after the maximum
point destroy the natural “L” shape of the graph and should not be
considered when fitting 2 lines to the graph.

3.2 RIPPER – Rule Generation
We have adapted RIPPER [2] to generate human readable rules
that characterize the states identified by the Gecko algorithm. The
RIPPER algorithm is based on the Incremental Reduce Error
Pruning (IREP) [5] over-fit-and-prune strategy. The IREP
algorithm is a 2-class approach, where the data set must first be
divided into two subsets. The first subset contains examples of
the class whose characteristics are desired (the positive example
set) and the other subset contains all other data samples (the
negative example set). Our implementation of RIPPER acts as an
outer loop for the IREP rule construction.

The input to RIPPER is the data produced by Gecko which
contains time series data classified into c* states. RIPPER will
execute the IREP algorithm c* times, once for each state. At each
execution of IREP, a different state is considered to be the
positive example set and the rest of the states form the negative
example set. This results a set of rules in for each state. To
describe the relationship among these states, state transition logic
is identified as discussed in the following section.

3.3 State Transition Logic
The upper right-hand quadrant of Figure 1 depicts a simplified
state transition diagram for a signal containing just three states.

The state transition logic is described by three rules for each state
corresponding to each of the three possible state transition
conditions on each input data point. These three rules can be
summarized as the following three simple “if-then” statements:

• If input matches current state’s characteristics Then remain
in current state.

• If input matches the next state’s characteristics Then
transition to the next state.

• If input matches neither the current state’s nor the next
state’s characteristics Then transition to an error state.

The essential element of each of these three rules is the antecedent
condition, which characterizes the data points belonging to each
state. This antecedent condition for each state is obtained from
the RIPPER rule generation process. The state transition logic
simply needs to glue together the proper antecedents to formulate
the above three transition rules for each of the c* states identified
by Gecko.

Unfortunately, our state transition logic needs to be somewhat
more complex. In the domain of devices and systems we are
attempting to monitor, sensors may sometimes report short-term,
transient, anomalous values – false alarms. In order for our
approach to be more robust in handling these transients, we have
added extra counting/threshold logic to the transition from a
normal state to the error state. Before the error state is actually
entered one of two additional criteria must be satisfied: either (1)
the number of consecutively observed anomalous values must
exceed a specified threshold; or (2) the total number of anomalous
values observed has exceeded another threshold. Thus an
anomalous condition is not annunciated unless the observed
values have been improper for some length of time. We have
provided similar logic for the transition from a normal state to its
normal successor. That is, we will not transition to a new normal
state unless the threshold number of consecutive new values for
that state has been observed; or the total number of new values for
that state exceeds a threshold. These 4 threshold values are
parameters to our state transition logic generation process.

4. EMPIRICAL EVALUATION
The goal of this evaluation is to demonstrate the ability of the
Gecko algorithm to identify states in real time series data, show
that RIPPER is able to characterize these states, and also to show
that our overall system is able to detect anomalies. The data used
to evaluate the component algorithms and the overall system is 10
time series data sets obtained from NASA. The data sets are
signatures of a valve from the space shuttle program. Each data
set contains between 1,000 and 20,000 current measurements.

Figure 6. A sample valve time series with clusters from Gecko.

These 10 data sets contain both signatures of valves that are
operating normally, and also signatures of valves that are under
stress or damaged. These particular types of valves must perform
within a strict tolerance, and because a valve’s signature often
changes over time, they must be frequently tested by NASA
engineers to ensure they are working properly. The current
method used to test these valves involves an expert comparing a
valve’s signature to a known normal signature, and determining if
there is any significant variation. We would like to demonstrate
in this evaluation that our anomaly detection system is able to
perform the job of this human expert an automatically determine
if a valve is operating normally.

4.1 Identifying States with Gecko
4.1.1 Procedures and Criteria
The experimental procedure for evaluating Gecko consists of
three parts. First, Gecko and a valve expert from NASA
independently cluster the 10 data sets. The expert is given an un-
clustered graph of each data set and is asked to draw lines
between what he thinks are clusters. This allows us to determine
if the number of clusters that is automatically determined by the
Gecko algorithm is comparable to the number of clusters
produced by the human expert. Second, both Gecko and an
existing algorithm cluster the 10 data sets. Then have a NASA
engineer rate the quality of each clustering from 1 to 10, without
informing him which output is from which algorithm. The
existing algorithm that is used is a bottom-up segmentation
algorithm (BUS). The BUS segmentation algorithm is unable to
determine how many clusters to return without being given an
input parameter that specifies either the number of clusters or an
error threshold. It was impossible to find a static error threshold
that didn’t produce horrible results on over half of the data sets,
so for each data set the input parameter that specifies the number
of clusters to return was set to the same number that Gecko
automatically generates. Forcing both algorithms to produce the
same number of clusters makes for a better test of the comparative
quality of the clusters they produce. Third, the valve expert is
asked to go over all of the Gecko data sets that he rated in step 2,
and explain his evaluation.

Gecko was run with the default parameter for each data set:
minimum cluster size s=10. However, data set number 10
contained a large amount of noise and s needed to be increased to
25 to prevent phase two from considering large noisy areas to be
many clusters alternatively moving up and down.

4.1.2 Results and Analysis
The first part of Gecko’s evaluation was to compare the number of
clusters it produced to the number produced by an expert human.
A summary of the results is shown in Table 1. Gecko was able to
identify a number of clusters that was within the range specified
by the expert to be a ‘reasonable range’ (for datasets 5-10 the
expert did not provide a range and we extrapolated from his
clustering for that data set and his ranges for data sets 1-4).
However, the human expert consistently created clusterings with
fewer clusters than the Gecko algorithm. Despite the difference in
the number of clusters produced, the clusterings produced are
actually quite similar. Gecko generally identifies the same major

clusters as the valve expert, but also produces several ‘transition’
clusters between the more obvious clusters.

Table 1. Clusterings produced by Gecko and a human expert.

 Gecko NASA Human Expert

Data Set # of clusters # of clusters Reasonable Range

1 16 11 9-20

2 16 10 9-20

3 14 10 9-20

4 12 10 9-20

5 13 7 (6-15)

6 10 5 (5-10)

7 7 6 (6-11)

8 16 10 (9-19)

9 16 12 (10-20)

10 15 11 (9-16)

The next task performed by the NASA engineer was to rate the
clusterings produced by Gecko and an existing algorithm. The
existing algorithm used for comparison is a standard
implementation of bottom-up segmentation BUS that initially
creates n/2 segments (each segment is of length 2), and uses root-
mean squared error when determining the errors of lines. For
each data set, the BUS algorithm was made to produce the same
number of clusters as the Gecko algorithm. Table 2 contains the
scores given for all 10 pairs of clusterings.

Table 2. Clustering quality of Gecko and BUS

Data Set Gecko BUS

1 10 2

2 10 3

3 9 3

4 10 3

5 10 3

6 10 3

7 8 8

8 9 5

9 9 7

10 10 6

Average Score 9.5 4.3

Gecko’s average score was 9.5, while the bottom-up segmentation
algorithm’s average score was only 4.3. In addition to the
increased clustering quality, Gecko was also able to determine a
suitable number of clusters with fewer input parameters. It is also
interesting that the data sets that Gecko received a perfect score
on (which signifies a clustering as good as the human expert’s
clustering) often differed notably in the number of clusters
generated. For example, Gecko produced nearly twice as many
clusters as the human expert for data set 5, and Gecko still got a
perfect rating. This suggests that there is often a range of “very
good” numbers of clusters to return, and there is no single correct
number of clusters.

A major reason that Gecko performed so much better is because
Gecko determines the initial segments/clusters much more

effectively than BUS. Gecko and BUS are both bottom-up
hierarchical algorithms and start their merging process from an
initial partitioning of the data. BUS initially partitions the data by
creating as many small clusters as possible by initially putting
every two points into a cluster. This means that wherever there is
a very sharp cluster boundary, there is a 50% chance the BUS’s
initial segments will straddle the boundary. These small errors
often cause more errors during the merging process and the
overall clustering quality suffers. The initial partitioning
produced by Gecko in its first phase, is careful make sure that all
important cluster boundaries occur only on the edges of clusters.

The final part of Gecko’s evaluation was a discussion with the
NASA engineer about why he gave each score. This also
indicated another advantage of the Gecko algorithm over BUS. In
data sets with regions that have very high slopes, BUS divides
them into too many clusters. This is because of the way that BUS
measured the errors of lines. When clusters are merged together
by keeping the total error of the best fit lines to a minimum, there
is a bias favoring merging clusters together that are horizontal and
have low slopes. This is because when the error of a line is
computed using the root mean squared error, the vertical distance
from the point to the best-fit is what is being measured. Thus,
lines that are nearly vertical may seem visually to be a nearly
perfect fit, but the vertical distances from the points to the line can
be huge. Gecko does not suffer from this problem.

Our implementation of Gecko on a PC is able to cluster a 1,000
point data sets in 7 seconds. A 20,000 point data set takes
approximately 7.5 minutes to cluster. However, sampling can be
performed to increase the execution time without any effect on the
quality of the output unless the user wishes to discover very small
clusters that would be smoothed over by over-sampling. About
90% of the execution time is due to phase 1 of the Gecko
algorithm. Building a k-nearest neighbour graph and recursively
bisecting it is much more complex than the merging method used
in the second phase.

4.2 Characterizing states with RIPPER
4.2.1 Procedures and Criteria
The RIPPER algorithm was tested by characterizing the clusters
produced by Gecko for each of the 10 valve data sets. The
accuracy of the characterization produced by RIPPER was
determined in two steps: (1) for every cluster of a data set
(training): create a rule that characterizes the cluster by using
90% of the cluster’s data points; (2) For the remaining 10% of the
data (testing): see if the cluster that these unseen data points
belong to can be correctly determined by the learned rule.

To facilitate the error analysis of temporally adjacent clusters, we
do not separate the unseen test data from the training data during
testing. The 10% unseen data simulates minor normal variations
not observed during training. We group errors into four types:

1. Contradiction : The exact same data point (looks the same
because time is ignored) in training was classified during
clustering to be in two different clusters. This is probably
not a clustering error. It is most likely two different data
points in flat regions that have other clusters between them.
However, because time is ignored during classification, there
is no way to tell the points apart. This will not be an issue
during the state transition logic because the finite state

automaton will only need to know if the data point is in the
current or next state.

2. Uncovered point: The point is not covered by any of the
rules. This is obviously an error. However, it is more likely
to occur in this specific evaluation than in actual practice. In
this test, 10% of the data was unseen during training. If
several successive points in a transition region are not trained
on during the training phase, it could be difficult to predict
them during testing because no similar points were seen in
training. The state transition logic can compensate for
uncovered points.

3. Wrong rule: The point is covered by a rule, but not by either
the correct rule, or a rule that is adjacent to it. This is a
rather significant error. In a real system it would most likely
indicate that the point is anomalous. An error threshold
counter could be used in the state transition logic to force
several ‘wrong rule’ points to occur in a row before signaling
an anomaly. This would make sure stray ‘wrong rule’ points
do not trigger anomalies.

4. Poor transition: The point is not covered by the correct
rule, but is covered by a rule either immediately before or
after it. This could be a transition point which is very close
to belonging in two clusters at the same time. This can be
dealt with in the state transition logic by having a transition
threshold that requires several transition points in a row to
perform a transition to a new state.

Furthermore, to determine what effect derived attributes have on
the quality of the rules that RIPPER produces, the following 3
tests are performed by varying the input data points to contain:
original attributes only, original attributes + slopes, and original
attributes + slopes + second derivatives.

4.2.2 Results and Analysis
RIPPER was able to accurately characterize the vast majority of
the test data points. The frequency of each kind of error on all
data sets when using the original attribute as well as two derived
attributes (slope and second derivative) is shown in Table 3.

Table 3. Classification Errors from RIPPER.

Data
Set

Contrad-
iction

Not
Covered

Wrong
Rule

Poor
Transition

Total
Err.

1 0% 8% 3% 0% 11%

2 0% 3% 0% 3% 6%

3 0% 2% 2% 3% 7%

4 0% 4% 1% 0% 5%

5 0% 0% 0% 0% 0%

6 0% 1% 0% 2% 3%

7 0% 2% 0% 0% 2%

8 0% 1% 1% 0% 2%

9 0% 3% 1% 0% 4%

10 0% 0.4% 0.1 0.5% 1.0%

Avg % 0.0% 2.4% 0.8% 0.8% 4.1%

The ability of RIPPER to accurately characterize data is largely
dependent on the attributes of the data points. Using only the
original attribute “current,” over 1 in 5 data points were not able
to be accurately characterized by the rules. The number of errors

goes down with each extra attribute that is added to the data. This
can be clearly seen in Table 4. This occurs because each new
attribute gives RIPPER the ability to more accurately classify the
data. It is analogous to trying to describe your position on the
earth using only latitude vs. using latitude and longitudes.

Table 4. Errors with different attributes.

Attributes
Contra
diction

Not
Covered

Wrong
Rule

Poor
Transition

Total
Err.

Original 10.2% 0.0% 8.3% 4.1%
22.5
%

Orig +
Slope

3.2% 1.7% 1.6% 0.9% 4.7%

Orig +
Slope +
2ndDer

0% 2.4% 0.8% 0.8% 4.1%

4.3 Overall System (FSA)
4.3.1 Procedures and Criteria
The overall anomaly detection system was tested by using the
rules generated by RIPPER to implement a finite state automaton
on a time series stream of input. If the finite state automaton is
unable to process the input stream through each state in the
correct order of: “S1�S2�S3�…�Sn”, then the input stream is
rejected and is considered to contain an anomaly.

In order to test whether the anomaly detection system works
correctly we performed three kinds of tests: (1) Self-tracking:
Use 90% of the data points to create rules, and then use 100% of
the data fed into the expert system to see if the state transitions
would trigger properly without detecting any anomalies. (2)
Normal operation: Use all of a normal valve’s data to learn its
signature, and then monitor another valve that is also operating
normally. This case should also not trigger any anomalies. (3)
Detecting anomalies: Use all of a properly functioning valve’s
data to learn its normal signature, and then take signatures of
valves that are damaged slightly and run it through the anomaly
detection system. The damaged valves should trigger anomalies.

4.3.2 Results and Analysis
Self-tracking. The baseline test of the anomaly detection system
is provide an incomplete sampling of a time series signature
(random 90%) to characterize, will it be able to monitor the entire
time series signature without triggering any anomalies. This
determines if the anomaly detection system is able to detect
similar time series with minor variations.

An error point in Table 5 is any point that is unexpected in the
state transition logic. This means that the point is neither in the
current state or the following state. Time series data often
contains noise and minor variations. For this reason, anomalies
must not be triggered by only a single data point that does not
agree with the model contained in the finite state automaton. We
use a threshold counter which only reports an anomaly if a certain
number of consecutive error points are found. The last column in
Table 5 shows what the minimum consecutive error threshold
(CE) must be set to for the anomaly detection system to not report
an anomaly. A value of 1 in this last column means that the
anomaly detection system will correctly not report an anomaly as
long as CE >= 1.

Table 5. Self-tracking of a time series.

Data Set Error Pts Min. Error Threshold

1 1.1% 2

2 0.8% 2

3 0.7% 1

4 0.5% 1

5 0.0% 0

6 0.4% 1

7 0.3% 1

8 0.2% 1

9 0.4% 1

10 1.1% 21

Avg 0.55% 4.0

In this experiment both the “consecutive transition threshold”
(CT) and the “consecutive error threshold” (CE) were set to zero.
This causes every possible state transition to be made and every
error point throws an anomaly. This enabled easy computation of
the number of error points. Data set number 10 performs poorly
in this test because the FSA transitions prematurely near the end
of its signature and starts reporting many anomalies, the results
for this data set can be improved by increasing CT to prevent it
from transitioning too early on a spurious data point.

Normal Operation. This test will show that the anomaly
detection system’s model of the normal signature is general
enough to recognize that a different normal time series contains
no anomalies. In this test, the anomaly detection system trained
on data set 1, and then tested on data set 2. Both of these data sets
are of normally operating valves that contains minor (but visible)
differences. The “consecutive transition threshold” (CT)
parameter was set to 2, and CE was set to 10 (minimum possible
cluster size s=10). This means than two consecutive points
believed to be in the next state are needed to perform a state
transition and ten consecutive points believed to be errors are
needed to declare that the time series contains anomalies.

The system was able to successfully transition through the states,
without declaring any anomalies. Of 979 data points, 61 (2.6%)
were error--they were not believed to belong to the current state,
nor to be transition points belonging to the following state.
However, since a consecutive number of errors greater than CE
was never encountered, an anomaly was never triggered.

Detecting Anomalies. In this test, the two data sets containing
time series signatures of valves operating normally (data sets 1
and 2) were used to develop the normal models. Each normal
model was then run against the remaining data sets. Data sets 3-
10 contain signatures of damaged or otherwise ill-behaved valves
and should be determined to be anomalous by the anomaly
detection system.

For each of the 16 tests, the anomaly detection system was able to
determine that signatures contained anomalies. Additionally, the
system is able to inform the user of the state number where the
signature differs from the model. The state where the errors
occurred varied from state 2 to state 12. Thus, the system does
not only give a yes/no answer to whether a time series contains
anomalies, but it is also able to explain to the user where the

anomaly occurred. Also, because the rules generated by RIPPER
are in a human-readable format, the user can look at the rule for
the state where the error occurred and understand exactly why the
system reported the anomaly.

5. CONCLUDING REMARKS
We have detailed our approach to time-series anomaly detection
by discovering and characterizing the states of a time series, and
adding transition logic between these states to construct a finite
state automaton, which is used to track normal behavior and
detect anomalies. The proposed Gecko clustering algorithm is
designed to cluster time series data, and uses our proposed L
method to automatically determine a reasonable number of
clusters efficiently. The rules generated for each state by the
RIPPER algorithm can be easily understood and modified by
humans. (Moreover, the generated rules can be in a format used
by the SCL expert system shell at ICS, which is our collaborator
on this NASA project.)

Our empirical evaluations have shown that the L method used by
the Gecko algorithm returns a number of clusters that is similar to
the number that is generated by a human expert. When the human
expert was asked to rate Gecko’s clusterings from 1-10, Gecko’s
clusterings were given perfect ratings on 6 of 10 data sets. A
perfect rating signifies that Gecko’s clustering is equally as good
as the human expert’s clustering. For comparison, the bottom-up
segmentation algorithm was also tested, and was only given an
average rating of 4.3. RIPPER was able to create accurate rules to
describe the states in which only an average of about 4% of the
data points had a possibly vague classification. Such a small
number of potential errors have little adverse effect on the state
transition logic’s ability to correctly track a signature. Even small
error and transition threshold values would be able to compensate
for this small amount of errors. In fact, during the self-tracking
tests of the finite state automation, nearly all of the data sets
required the consecutive error threshold value to be set to no
greater than 2 to correctly process the signature without detecting
an anomaly. The overall anomaly detection system was able to
detect anomalies in every signature that was from a ‘damaged’
valve, and was also able to monitor a 2nd normal valve without
detecting any anomalies.

We plan to further evaluate our approach with more datasets from
NASA; issues include building a model from multiple datasets
collected at different times and datasets with different
measurements. We plan to study how the L method performs with
other hierarchical clustering algorithms. To dynamically set the
thresholds used in the state transition logic, we can hold out part
of the training data and find thresholds that prevent errors on the
unseen portion of the data.

6. ACKNOWLDEGEMENTS
This research is partially supported by NASA. We thank Bobby
Ferrell and Steven Santuro at NASA for providing the data sets,
helpful comments, and evaluations. We also thank Brian Buckley
and Steve Creighton at ICS for help integrating our algorithms
into their SCL expert system.

7. REFERENCES
[1] Caudell, T. & Newman, D. (1993). An Adaptive Resonance

Architecture to Define Normality and Detect Novelties in
Time Series and Databases. In Proc. IEEE World Congress
on Neural Networks, pp. IV166-176.

[2] Cohen, W. (1995). Fast Effective Rule Induction, ICML.

[3] Dasgupta, D. & Forrest S. (1996). Novelty Detection in Time
Series Data using Ideas from Immunology. In Proc. Fifth
Intl. Conf. on Intelligent Systems.

[4] Ester M., Kriegel H., Sander J., & Xu X. (1996) A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proc. 3rd KDD.

[5] Furnkranz J. & Wildmer G. (1994). Incremental reduced
error pruning. In Proc. ICML.

[6] Guha Sl, Rastogi R., & Shim K. (1999) ROCK: a robust
clustering algorithm for categorical attributes. In 15th Int’l
Conf. on Data Engineering.

[7] Hinneburg A. & Keim D. (1998) An Efficient Approach to
Clustering in Large Multimedia Databases with Noise. AAAI.

[8] Karypis G., Han E. & Kumar V. (1999) Chameleon: A
hierarchical clustering algorithm using dynamic modeling.
IEEE Computer, 32(8) pp. 68-75.

[9] Keogh E., Chu S., Hart D., & Pazanni M. (2001). An Online
Algorithm for Segmenting Time Series. In Proc. IEEE Intl.
Conf. on Data Mining, pp. 289-296.

[10] Ng R. & Han J. (1994). Efficient and effective clustering
method for spatial data mining. In Proc.VLDB, pp 144-155.

[11] Roth V., Lange T., Braun M. & Buhmann J. A Resampling
Approach to Cluster Validation.

[12] Seikholeslami, G., Chatterjee, S. & Zhang, A. (1998).
WaveCluster: A Multi-Resolution Clustering Approach for
Very Large Spatial Databases. Proc. of the 24th VLDB.

[13] Smyth, P. (1996). Clustering Using Monte-Carlo Cross-
Validation. In Proc. 2nd KDD, pp.126-133.

[14] Tibshirani, R., Walther, G. & Hastie, T. (2000). Estimating
the number of clusters in a dataset via the Gap statistic.

[15] Vasko, K. & Toivonen, T. Estimating the number of
segments in time series data using permutation tests.

