Learning States and Rules for Time Series

Anomaly Detection

Stan Salvador, Philip Chan, and John Brodie

Dept. of Computer Sciences Technical Report CS-2003-05
Florida Institute of Technology
Melbourne, FL 32901

{ssalvado, pkc, jbrodie}@cs.fit.edu

ABSTRACT

In this paper we investigate machine learning tephes for

discovering knowledge that can be used to moniteraperation
of devices or systems. Specifically, we study rodth for

generating models that can detect anomalies in senes data.
The normal operation of a device can usually beaddtarized in
different temporal states. To identify these statee introduce a
clustering algorithm called Gecko that can autocadly

determine a reasonable number of clusters usingrposed "L"
method. We then use the RIPPER classification rilgo to

describe these states in logical rules. Finaligngitional logic
between the states is added to create a finite atabmaton. Our
empirical results, on data obtained from the NASKutde

program, indicate that the Gecko algorithm is comabke to a
human expert in identifying states and our ovesghbtem can
track normal behavior and detect anomalies.

Categories and Subject Descriptors
1.2.1 [Learning]: Induction.

General Terms
Algorithms, Verification.

Keywords

clustering, segmentation, anomaly detection, releegation, time
series data, state transition logic, expert system

1. INTRODUCTION

Motivation.
allows it to reason proficiently in a specific ddama These
knowledge-intensive systems are often used to Helmans
monitor and control critical systems in real-tim&or example,
NASA uses expert systems to monitor various devimesthe
space shuttle. However, populating an expert systknowledge
base by hand is known to be a time-consuming psocés this
paper we investigate machine learning techniquegéaerating
knowledge that can monitor the operation of devimesystems.
Specifically, we study methods for generating medilat can
detect anomalies in time series data.

The normal operation of a device can usually beaddtarized in
different temporal states. Segmentation or clusgerechniques
can help identify the various states, however, mosthods
directly or indirectly require a parameter to sfyettie number of
segments/clusters in the time series data. Thpuouif these

algorithms is also not in a logical rule format,ighis commonly
used in expert systems for its ease of comprehensiad
modification. Furthermore, the relationships betwé¢hese states
needs to be determined to allow tracking from dateso another
and to detect anomalies.

Problem. Given a time series depicting a system’'s normal
operation, we desire to learn a model that canctieleomalies
and can be easily read and modified by human userd/e
investigate a few issues in this paper. Firstwaet a clustering
algorithm that can dynamically determine a reastnabmber of
clusters, and hence the number of states for opoges. These
states should be relatively comparable to thosentified by
human experts. Second, we would like these stwiebe
characterized in logical rules so that they canread and
modified with relative ease by humans. The rulbsutd be
general enough to cover normal data points not seethe
training data. Third, given the knowledge of thffedent states,
we wish to describe the relationship among themtifacking
normal behavior and detecting anomalies.

Approach. To identify states, we introduce Gecko, whiclalide
to cluster time series data and automatically d@ter a
reasonable number of clusters (states). Geckoistenst a top
down partitioning phase to find initial sub-clustemd a bottom-
up phase which merges them back together. Theoppate
number of clusters is automatically determined thatwve call
the “L” method. To characterize the states indagrules, we use
the RIPPER [2] classification rule learning algomit Since
different states can sometimes overlap in the omedsional
input space, additional attributes are derivedélp ltharacterize

An expert system contains a knowledge base that the states. To track normal behavior and deteomaties, we

construct a finite state automaton (FSA) with thentified states.

Our main contributions are: (1) we demonstrateag t® perform
time series anomaly detection via automaticallyegeted states
and rules that can easily be understood and mddifiehumans;
(2) we introduce an algorithm named Gecko for €risg time
series data and the L method for dynamically figdinreasonable
number of clusters--the L method is general enciagbe used
with other hierarchical divisive/agglomerative ¢kring
algorithms; (3) we integrate RIPPER and state itianslogic to
generate a complete anomaly detection system; Aempirical
evaluations, with data from NASA, indicate that &eperforms
comparably with a NASA expert and the overall systan track
normal behavior and detect anomalies.

The next section gives an overview of related wofkection 3
provides a detailed explanation of our system, flncludes the

components: Gecko (clustering), RIPPER (rule gsigar), and
state transition logic. Section 4 contains experital evaluations
of the component algorithms as well as the oveaalbmaly
detection system, and Section 5 summarizes ouy.stud

2. RELATED WORK

Clustering Algorithms. There are four main categories of
clustering algorithms: partitioning, hierarchicalensity-based,
and grid-based. Partitioning algorithms, for exirig-means,
and PAM [10], iteratively refine a set &fclusters, which could
take a long time to converge. Density-based dlgos, e.g.,
DBSCAN [4] and DENCLUE [7], are able to efficienthroduce
clusters of arbitrary shape and are also abledlbanoise. If the
density of a region is above a specified threshibld,assigned to
a cluster, otherwise it is considered to be noilewever, sharp
spikes in time series data are sometimes impofeattres and
could be incorrectly determined to be noise by asig-based
clustering algorithm. Hierarchical algorithms caibe
agglomerative and/or divisive. The agglomeratizetiom-up)
approach repeatedly merges two clusters, whilalivisive (top-
down) approach repeatedly splits a cluster into. MROCK [6]
and Chameleon [8] are hierarchical algorithms thfier mostly
in their similarity functions, which favor sphericand non-
spherical clusters (respectively). Grid-based rtigms such as
WaveCluster [12] reduce the clustering space ingwich of cells
which enables efficient clustering of very largdgagats. This is
useful for clustering a large amount of very coned data, but
not for one-dimensional time series data. Existalgstering
algorithms are not designed to cluster time seté#a. Our Gecko
algorithm is a hierarchical algorithm that clusténse series data
by adding constraints to the merging and splitbhglusters.

Determining the Number of Clusters. Clustering algorithms
usually require a stopping condition to be exgicgiven as a
parameter(s). This parameter is eitkéhe number of clusters to
return) or some other ad-hoc algorithm specific apaater.
Forcing a user to specify the number of clustenetorn requires
either detailed pre-existing knowledge of the dsgf or time-
consuming trial and error. The majority of exigtimethods to
automatically determine the number of clustersstam involve a
brute-force method of repeatedly running a clustemlgorithm
over a range of the parametkr and then very inefficiently
assessing the quality of each set of clustersishatoduced. The
Gap statistic [14] is an example of such a brute€anethod that
is far too inefficient to be practical in data sefsion-trivial size.
The existing methods also favor spherical clusterd are less
suitable to time series data. Two methods werggsed to
determine the number of non-spherical clusteretorn: cluster
stability [11] and Monte Carlo cross evaluation J[13However,
these methods have not yet been shown to workinvphactice.

Segmentation Algorithms. Segmentation algorithms usually take
time series data as input and produce a Piecewiseall
Representation (PLR) as output. PLR is a set néecutive line
segments that tightly fit the original data pointSegmentation
algorithms are somewhat related to clustering @lgos in that
each segment can be thought of as a cluster. Howeue to the
linear representation bias, segmentation algorithassially
produce a finer grain partitioning than clusteragorithms, so
the clusters that are produced may not represantabialusters.
There are three common approaches [9]. Firsthée Sliding

Window approach, a segment is grown until the esfdhe line is
above a specified threshold, then a new segmerdtaged.
Second, in the Top-down approach, the entire timees is
recursively split until the desired number of segtads reached,

or an error threshold is reached. Third, the @uotup approach
starts off withn/2 segments, the 2 most similar adjacent segments
are repeatedly joined until the desired number egfngents is
reached, or an error threshold is reached. Bottpm-
Segmentation (BUS) will be evaluated with our pregmbideas.

Determining the Number of Segments. Segmentation
algorithms are most commonly used to create a fine
approximation of a time series for compression, ane not
interested in finding genuine clusters. Methods/ehdeen
developed to automatically determine the maximurmioer of
segments that can be created without over-fitthey data [15],
but no current segmentation algorithms attempinio & relatively
small set of segments that would correspond toraktiusters.

Rule Generation. To characterize the states into logic rules, we
can use classification rule or association ruleomtigms.
However, association rule algorithms generalie associations
that exceed a user-specified confidence and supplbith are not
necessary since we just need to characterize thgesst
Furthermore, we want a succinct characterizationthsd the
overhead of matching the states is relatively small

Anomaly Detection Much of the work in time series anomaly
detection relies on models that are not easilyakfedand hence
modifiable by humans for tuning purposes. Exampietude a
set of normal sequences [3] and adaptive resorthrogy [1].

3. APPROACH

—

Currernt

state-transition logic

Time

¥
u:lustfrlng

51 — slope=3 AND cumentzl

2 Rule AND cumrents1

Generation

(i1}
(15}
0w

52 — slope=l AND cument=1

Curment

53 — slope=-3 AND cument2D)
AND cumrents1

Time

Figure 1. Main steps in time series anomaly detect.

The input to our overall anomaly detection systera time series
signature (such as the current vs. time grapheatdp left corner
of Figure 1) which is considered to be a “normarlhe output of
the overall system is a set of rules that implenstéate transition
logic on an expert system, and are able to deterifiother time

series signatures deviate significantly from therried signature.
Since the learned signature is the “normal” modey; significant
deviation from this model is considered an anomaije overall

architecture of the anomaly detection system cts19$ three
parts: clustering, rule generation (charactemzgti and state
transition logic. The clustering phase is perfainhy the newly
developed clustering algorithm “Gecko,” which ideatp identify

distinct phases in a time series signature. Atiter clustering
algorithm identifies all of the major phases ortesaof the time
series, rules are created for each state by areimspitation of the
RIPPER algorithm. The rules and additional logic transition
between the states constitute a finite state automavhich is the
expert system. It raises an anomaly if the dateasir being
monitored differs significantly from the learned(mal) model.

In order to prevent data signatures that are shtitethe left or
right (shifted in the time dimension) from causfase anomalies,
time is not considered when creating rules to desaach state.
This also allows steady-state conditions (long Zzwnrial phases
which usually signify on or off) to occur for andiefinite amount
of time without triggering anomalies. Time shoulgt be used in
classification because it is too inflexible to espall states to start
and end at the same time or for all states to aast for exactly
the same amount of time. In other words, the ad¢ioee value
where states begin and end is not important, oméy relative
ordering of the states and the normal attributen{time) values
of the states are important. As an example, S8atén Figure 1
would be able to continue indefinitely without weying an
anomaly, (it is a steady-state condition) if tinseniot used for
state S2's classification. However, using onlyiragle original
data measurement (such as current in Figure 1) sriakifficult
to create rules that unambiguously classify datatpo For
example, if ‘current’ is the only attribute valuat is used during
classification, all data points in state S1 and \&&uld be
indistinguishable from each other because they hédeatical
current values. An ambiguous classification wonidke state
transition logic difficult because the state thatdata point
belonged to would not be clear. To help distinglistween the
different states, pre-processing of the raw datpedormed to
generate new attributes. The new derived valueg Hre
generated are the slopes and the 2nd derivatived! afriginal
measurements. Using the slope of the current,galeith the
original ‘current’ measurements, states S1 and 8Bz easily
distinguished between each other. We discuss #ia parts in
the next three sections.

3.1 Gecko — Data Clustering

Gecko is a newly developed clustering algorithimt fkaable to

cluster time series data. While segmentation #lyos typically

create only a fine linear approximation of timeiegdata, Gecko
divides time series data into “genuine” clustefBhis optimum

number of clusters is automatically determined oy &lgorithm

and does not require user input. This is a deparftom other
clustering and segmentation algorithms which regeither the
number of clusters or some arbitrary threshold etenine how
many clusters or segments should be produced.

3.1.1 The Method

Gecko uses a 2-pass method that is a combinatioboti
agglomerative and divisive hierarchical clusteringhe first is a
top-down pass that partitions the data into a lang@mber of sub-
clusters. This is followed by a bottom-up pasg tharges the
sub-clusters back together. The first top-dowrs psetermines all
of the potential boundary areas between clusterichnvthen
enables the second bottom-up pass to focus onthe@mnelative
similarity of clusters. Note that hierarchical siering algorithms
are very similar to top-down/bottom-up segmentatidrne main

difference is that hierarchical clustering is mgeneralized than
hierarchical segmentation and any number of metbhadse used
to determine similarity, while segmentation is lied to the error
of a segment’s best-fit line.

Phase 1:
Obtain Subclusters

Phase 3:
Determine the Best
Clustering Level

Phase 2:
Merge Subclusters

Subclusters

Figure 2. Overview of the Gecko Algorithm.

Final Clustering

D@

The Gecko algorithm consists of three phases. fifaephase
creates many small sub-clusters by initially pyftall of the data
points in one cluster, and repeatedly splitting ldmgest cluster
until all of the clusters can no longer be dividethout becoming
smaller than a specified parameter The second phase takes all
of the sub-clusters and repeatedly merges the test similar
clusters until all of the data is once again in Haene cluster.
Information about each merge is recorded in a derdm (tree
data structure). This dendrogram contains cluggenformation
about all clustering levels, from clusterings camteg a single
cluster to the initial fine grain clustering proagdcby phase 1.
Using the information that is stored in the dendaog phase 3 is
able to quickly determine the ‘best’ number of tdus that should
be extracted from the dendrogram.

The Gecko Algorithm (overview,
Input: D [/l time series data

s // the minimum cluster size
Output: c* clusters

Phase 1

1. build ak-nearest neighbor graph @ (k=2*s)

2. recursively bisect the graph until the size afte sub-
cluster is betweesand 2.2%

Phase 2
3. recursively merge the sulusters together until only o
cluster remains - a dendrogram is created

Phase 2

4. find c*, an apprpriate number of clusters to return,
using the L method.

5. extractt* clusters from the dendrogram and return them

3.1.2 Phase 1: Create Sub-Clusters
In the first phase, many small sub-clusters arateceby a method
that is very similar to the one used by Chamele&®in With the

exception that Gecko forces cluster boundaries ¢o nion-

overlapping in the time dimension. The sub-clsste created
by initially placing all of the data points in auster, and
repeatedly splitting the largest cluster until @lthe clusters are
too small to be split again without violating thinimum possible
cluster sizes.

To determine how to split the largest clustek;reearest neighbor
graph is built in which each node in the graph tisre series data
point (measurements taken at a time-interval), each edge is
the similarity between two data points. Only thepss of the
original values (original sensor readings) are usedetermine
similarity, and not the original values themselvéssing only the
slope will tend to produce sub-clusters that hawestant slope,
which produces sub-clusters that are as closeraight lines as

possible. Thé-nearest neighbor graph is constructed by creating

an edge from every vertex to each ofktsearest (most similar)
neighbors. The parametéris not an input parameter. It is
derived froms (smallest possible cluster size), and is defieloet
2*s. Due to the importance of time, tkeearest points of a data
point can be assumed to be K2 points on each size of the point
according to the time axis. By using this grapk gimilarity
between groups of points (clusters) can be deteuniby
computing the edge cut (sum of the edges) betwhentwo
groups. Similarity between two points is defined be
In(1.0Mdistance-1), wheredistanceis the Euclidean distance (or
any other distance method) between the two poiH®w~ever any
reasonable inverse mapping between distance arithrsiyncan
be used. If the graph is split where the edgesctiie smallest,
then the two newly separated clusters will be digar to each
other and have high internal similarity.

Since all boundaries between clusters are cut lglégnthe time
axis with no overlap, the typically NP-hard problesh graph
bisection is trivialized, and the optimal min-cwrgitioning of a
cluster can be quickly determined in fewer thaosfgf-1 edge-
cut checks (where |cluster| is the number of dabatp contained
in the cluster). There is no need for heuristisscause all
possible edge-cut possibilities can be quickly coteg with
efficient data structures.

3.1.3 Phase 2: Repeatedly Merge Clusters

Phase 1 produces many small and similarly-sizeectugiers that
are as dissimilar to each other as possible. bs@t2, the most
similar pair of adjacent (in time) clusters areeaaedly merged
until only one cluster remains. To determine whachacent pair
of clusters are the most similar, representativantpo are
generated for each cluster and the two adjacesterkiwith the
closest representative points are merged. Thectieduof a
cluster into a single representative point for cangon with
other clusters does not adversely effect the quafithe merging
decision because the clusters are internally honemes, and can
therefore be accurately represented by a singlat.poiThis
reduction causes a substantial improvement inieffay because
only c-1 representative points (wheeeis the current number of
clusters) need to be compared to determine whigceadt pair of
clusters are most similar.

The representative point of a cluster containslaevéor the slope
of every original attribute in the data other thiame. The slope
values are computed by fitting a line to all of tteta points of an
original attribute. Experimentation has shown thab using the

original data points and second derivatives in réqgresentative
points does not to improve the quality of the audsig. So

essentially, Gecko generates clusters based ontheslopes of
the original data. If a human is asked to pick seueral distinct
phases of a time series graph, he is likely todéithe graph into
flat regions and transitions between flat regioriBhis eyeball

method of clustering is also essentially clusterimg slope.

Segmentation also relies exclusively on slope rifinimum-error

line (segment) is well fitted to a set of pointarieans that the
segment has a consistent slope.

However, if raw slope values are used in the remtagive points,
then the “distance” between clusters with slopaiesl100 and
101 would be the same as the distance betweeredusith slope
values 0 and 1. Differences in slopes that are r&y@ need to be
emphasized because the same absolute change éncslojtriple a
small value, and be an insignificant increase fdarge value.

Relative differences between slopes cannot be meddwy the

percentage increase because in the preceding exartipd

percentage increase from 0 to 1 is undefined. Geagkes
representative values of slopes to compute thedidige” between
two slopes. The representative value of slop@ispted by the
equation:

In(slope+l) if slope=0

Representative Slope .
—In(—slope+1) if slope<0

This equation emphasizes slopes near zero and adesrehe
effect of changes in slope when the slope values large.
Whenever a slope value is squared, its represeatsibpe value
(approximately) doubles. In the preceding exangbleomparing
2 pairs of clusters with slopes {100, 101} and {0, et
representative values of their slopes are {4.61625%}. and {0,
0.693}. This accurately reflects the relative diffiece between
raw slopes and not the absolute difference. ncakine
difference between the adjusted slope values gaegood
distance measurement between clusters.

3.1.4 Phase 3: Determine the Best Clustering Level
Hierarchical clustering algorithms typically onlgdp track of the
current set of clusters, and store no informatiboud previous
sets of clusters. In order to determine when dp sterging (and
thus the number of clusters to return), a stoppimgdition needs
to be explicitly specified as a parameter. Thegitag condition
can be either a number of clusters to return dnrashold that
stops the merging when the measurement of distajoce
similarity) between the last pair of clusters bejoiged is above
(or below) some threshold. No static stopping ol is likely
to produce good results across varied data seime $ime series
data sets are much more complex than others thjaireemore
clusters to accurately depict them. In additiamms data sets also
contain more noise than others or have a diffesealing, which
leads to inconsistent results when using a constaat threshold
parameter as a stopping condition. The methodGeako uses
to determine the best number of clusters takes anlgmall
amount of analysis after a single pass of the etirsg algorithm.

In order to make an intelligent decision about Wwhimmber of
clusters produces the best clustering, the mengiagess must be
continued all the way to one cluster. Taking adage of the
nature of hierarchical clustering algorithms, it pessible to

efficiently store many clustering possibilitiesthe same time. A
tree data structure can be created during the ngengiocess in
which the leaf nodes store the initial sub-clustarsd for each
merge, the newly created merged cluster is repreddsy a node
that contains pointers to the two clusters thatewaymbined to
create it. The use of such a tree structure esabfficient

analysis of all clustering possibilities, which c#@#e used to
determine the best number of clusters to return.hefWthis

number is determined, the optimal set aif clusters can be
directly extracted from the tree without any baa&king or a 2nd
pass through the merging process.

45

4.0

3.0

2.5

20

1.5 4

1.0 %

~, .
- " 0
0.0 -+

20 40 s0 B0 o zoo 200 soo 800

SO ANNUW AR
chowomonon
C

a

Figure 3. Sample Plots of# of clustersvs.merge distance’

To determine a good number of clusters to retima distances of
all merges during phase 2 are analyzed. The Bhsise of the#
of clustersvs. merge distancegraph is shown in Figure 3. In this
graph, thex-axis is the number of clusters from 2 to the nunadfe
sub-clusters generated by phase 1. yHaeis is the distance of
the two closest clusters when thereyaotusters. Each data-point
is the distance of a single merge, and the entaptyis generated
in only once pass of the clustering algorithm. sTdriaph can vary
significantly depending on the data set but thdycahtain a
similar “L” shape curve. Figure 3 shows two suctapis
generated from two very different data sets. Traplg on the
right side was generated from a much larger data tizat
contained more noise. All#' of clustersvs. merge distance
graphs have three distinctive areas: a ratherrégion to the
right, a near-vertical region to the left, and aved transition area
in the middle.

Starting from the right end, where the phase 2 mgrgrocess
begins, there are many very similar clusters tonkeeged and the
trend continues to the left in a rather straighe lfor some time.
In this region, many clusters are similar to eatttenand should
be merged.

Another distinctive area of the graph is on thelédir side where
the merge distances grow very rapidly (moving fraght to left,
which is the order that the merging occurs). Tafsd increase in
distance indicates that very dissimilar clustess laeing merged
together, and that the quality of the clusterindpégoming poor
because clusters are no longer internally homogenelf the best
available remaining merges start becoming incrghsipoor, it
means that too many merges have already been pedoand the
optimal clustering has been passed.

The optimal number of clusters is therefore in¢beved area, or
the “elbow” (also known as the knee) of the graprhis elbow
region is between the low distance merges that farmearly
straight line on the right side of the graph, ahe& tjuickly
increasing region on the left side. In this atha,merges that are
being performed are merges of transition clustexsvéen the
more obvious clusters. Clusterings in this regiontain highly
homogeneous clusters, as well as some number pS$iticn
clusters between them. Detecting at what numbetusters this

region is will therefore give a good number of téus to return
that is totally dependent on the data and doesaipbn static or
ad-hoc parameters.

To determine the location of the transition areselwow of the
graph, we take advantage of a property that ekisthese # of
clustersvs. merge distancegraphs. The regions to both the right
and the left of the curved section of the grapte Sigure 3) are
approximately linear. If a line is fitted to théht side and
another line is fitted to the left side, then th&ersection of those
two lines will be in the transition area and canused as the
number of clusters to return. Figure 4 depictexample.

Determining the # of Clusters to Return

95 -
o 30 \
o
E 2.5 4 LY
= 2.0 \
::’: L -
= 1.0 1 &

0.5 i AI.L

0.0 - L b sep e ;

o 20 40 &0 20
of Clusters

Figure 4. Finding the number of clusters by the L rathod.

To create these two lines that will intersect & ttansition area
and indicate a good number of clusters to retumwil find a
pair of lines that most closely fit the curve. rig 5 shows all
possible pairs of best fit lines for a graph thattains seven data
points (seven clusters were repeatedly merged atsingle
cluster). Each line must contain at least 2 poitsl must start at
either end of the data. Both lines together calepf the data
points, so if one line is small, the other is latgeover the rest of
the remaining data-points. The lines cover sedalesets of
points, so the total number of line pairs is nopanential, but
only numOfSubclusterd. Of the four possible line pairs in
Figure 5, the pair that fits their respective dptants with the
minimum amount of error is the pair on the botteifi. |

e

\

e

\‘
Figure 5. All possible pairs of best-fit lines.

Consider a ‘# of clusters vs. merge distance' gaolduced by
recursively mergingb sub-clusters into a single cluster. The
x-axis varies from 2 th, hence there ae 1l data points (i.eb-1
possible merges of clusters) in the graph. LendR. be the left
and right sequences of data points partitioneg=at that is, L.
has points withk=2..c, andR; has points withk=c+1...b, where
c=3...b-2. Equation 1 defines the total root mean squareor
RMSE, when the partition df. andR. is atx=c:

c-1 b-c
xRMSHL.) +
b-1 "L b-1

RMSE =

xRMSHR,) [1]

whereRMSE(L) is the root mean squared error of the bestrfd li
for the sequence of points i, (and similarly forR.)). The
weights are proportional to the lengthslgf(c-1) andR; (b-c).
We seek the value @f ¢, such thaRMSE is minimized, that is:

c*=argmin, RMSE 2]

The x-intercept of the two minimume-error lines that niize the
total root mean squared error is:

o= yinfbestFitLire(L,)] — yIn{bestFitLire(R,)] [3]
slopgbestFitLire(R.)] — slopgbestFitLire(L,)]
The x-intercept calculated by Equation 3 is used asithaber of

clusters to return. Another possibility not evadahin this paper
is to usec*=c”" .

This method to determine the number of clustergetorn is
general, and can also be used to determine the erumflclusters
in other hierarchical clustering and hierarchicelyrsentation
algorithms (either bottom-up or top-down) that udiéferent
measures of distance or similarity at each mergde. Gecko,

distance is thg-axis, however if a similar graph is produced by

an algorithm that merges based on similarity, itlddbe flipped
around thex-axis. The elbow of the curve would be found iis th
instance just as effectively with no modificatidosthe L method
algorithm.

The # of clustersvs. merge distancegraph contains a portion
where the data (moving to the left) reaches a maxirand starts
moving down (see Figure 4). This occurs becaus¢ofa many

‘natural’ clusters have been merged together imte cluster at
this point, that the representative slope valuast $6 approach
zero (a very long time series’ slope usually bedgmsonverge
towards zero). The points that are merged afterniaximum

point destroy the natural “L” shape of the grapt ahould not be
considered when fitting 2 lines to the graph.

3.2 RIPPER - Rule Generation

We have adapted RIPPER [2] to generate human readales

that characterize the states identified by the @edgorithm. The
RIPPER algorithm is based on the Incremental Redtiwer

Pruning (IREP) [5] over-fit-and-prune strategy. €THREP

algorithm is a 2-class approach, where the datanset first be
divided into two subsets. The first subset costa@ramples of
the class whose characteristics are desired (tbiiyoexample
set) and the other subset contains all other dataples (the
negative example set). Our implementation of RIRREts as an
outer loop for the IREP rule construction.

The input to RIPPER is the data produced by Geckaiclw
contains time series data classified iotostates. RIPPER will
execute the IREP algorithot times, once for each state. At each
execution of IREP, a different state is considetedbe the
positive example set and the rest of the states the negative
example set. This results a set of rules in fahestate. To
describe the relationship among these states, tssausition logic

is identified as discussed in the following section

3.3 State Transition Logic
The upper right-hand quadrant of Figure 1 depictnaplified
state transition diagram for a signal containingt jthree states.

The state transition logic is described by thrdesrdor each state
corresponding to each of the three possible stetasition
conditions on each input data point. These thtdesrcan be
summarized as the following three simple “if-thetéitements:

e If input matches current state’s characteristicennremain
in current state.

e If input matches the next state’s characteristidsenl
transition to the next state.

e If input matches neither the current state’'s nag tiext
state’s characteristics Then transition to an estate.

The essential element of each of these three isitbe antecedent
condition, which characterizes the data points gitogy to each
state. This antecedent condition for each statbtfained from
the RIPPER rule generation process. The stataiti@m logic
simply needs to glue together the proper antecederformulate
the above three transition rules for each ofchstates identified
by Gecko.

Unfortunately, our state transition logic needsb® somewhat
more complex. In the domain of devices and systemsare
attempting to monitor, sensors may sometimes regwtt-term,
transient, anomalous values — false alarms. Irerofdr our
approach to be more robust in handling these eatsiwe have
added extra counting/threshold logic to the trémsitfrom a
normal state to the error state. Before the estate is actually
entered one of two additional criteria must bes§iati: either (1)
the number of consecutively observed anomalousegalust
exceed a specified threshold; or (2) the total remalh anomalous
values observed has exceeded another thresholdus &h
anomalous condition is not annunciated unless thserved
values have been improper for some length of tinvée have
provided similar logic for the transition from arnmal state to its
normal successor. That is, we will not transitiora new normal
state unless the threshold number of consecutivevadues for
that state has been observed; or the total nunflrevovalues for
that state exceeds a threshold. These 4 threskaites are
parameters to our state transition logic genergirocess.

4. EMPIRICAL EVALUATION

The goal of this evaluation is to demonstrate thiity of the
Gecko algorithm to identify states in real timeisgrdata, show
that RIPPER is able to characterize these stabelsalao to show
that our overall system is able to detect anomalibs data used
to evaluate the component algorithms and the dvgrsiem is 10
time series data sets obtained from NASA. The dats are
signatures of a valve from the space shuttle progr&ach data
set contains between 1,000 and 20,000 current merasats.

-

++H

Curment
[y
X J

A
+

Time

Figure 6. A sample valve time series with clustefsom Gecko.

These 10 data sets contain both signatures of valvat are
operating normally, and also signatures of vahheg fire under
stress or damaged. These particular types of satuest perform
within a strict tolerance, and because a valvegmature often
changes over time, they must be frequently testedNBSA

engineers to ensure they are working properly. Theent
method used to test these valves involves an expenparing a
valve’s signature to a known normal signature, deigtrmining if
there is any significant variation. We would lit demonstrate
in this evaluation that our anomaly detection sysie able to
perform the job of this human expert an automadsiodétermine
if a valve is operating normally.

4.1 ldentifying States with Gecko

4.1.1 Procedures and Criteria

The experimental procedure for evaluating Geckosist® of
three parts. First, Gecko and a valve expert frilSA
independently cluster the 10 data sets. The expegiven an un-
clustered graph of each data set and is asked dw ¢ines
between what he thinks are clusters. This allosvoudetermine
if the number of clusters that is automaticallyedetined by the
Gecko algorithm is comparable to the number of tehss
produced by the human expert. Second, both Geckb am
existing algorithm cluster the 10 data sets. Thawe a NASA
engineer rate the quality of each clustering froto 10, without
informing him which output is from which algorithm.The
existing algorithm that is used is a bottom-up segtation
algorithm (BUS). The BUS segmentation algorithnuiable to
determine how many clusters to return without bejgien an
input parameter that specifies either the numbesiudters or an
error threshold. It was impossible to find a statiror threshold
that didn’t produce horrible results on over hdltlee data sets,
so for each data set the input parameter thatfiggetihe number
of clusters to return was set to the same numbatr &ecko
automatically generates. Forcing both algorithmgroduce the
same number of clusters makes for a better tebieofomparative
quality of the clusters they produce. Third, thdveaexpert is
asked to go over all of the Gecko data sets thaateel in step 2,
and explain his evaluation.

Gecko was run with the default parameter for eaata det:
minimum cluster sizes=10. However, data set number 10
contained a large amount of noise amkeded to be increased to
25 to prevent phase two from considering largeynaigas to be
many clusters alternatively moving up and down.

4.1.2 Results and Analysis

The first part of Gecko’s evaluation was to compgaeenumber of
clusters it produced to the number produced byxgere human.
A summary of the results is shown in Table 1. Gesfs able to
identify a number of clusters that was within tlaage specified
by the expert to be a ‘reasonable range’ (for &4$as-10 the
expert did not provide a range and we extrapoldteth his
clustering for that data set and his ranges foe dwts 1-4).
However, the human expert consistently createdarings with
fewer clusters than the Gecko algorithm. Despigedifference in
the number of clusters produced, the clusteringslyred are
actually quite similar. Gecko generally identifib® same major

clusters as the valve expert, but also producesrakltransition’
clusters between the more obvious clusters.

Table 1. Clusterings produced by Gecko and a humagxpert.

Gecko NASA Human Expert
Data Set | # of clusters| # of cluster Reasonable Range

1 16 11 9-20
2 16 10 9-20
3 14 10 9-20
4 12 10 9-20
5 13 7 (6-15)
6 10 5 (5-10)
7 7 6 (6-11)
8 16 10 (9-19)
9 16 12 (10-20)
10 15 11 (9-16)

The next task performed by the NASA engineer wasate the
clusterings produced by Gecko and an existing @lgar The
existing algorithm used for comparison is a staddar
implementation of bottom-up segmentation BUS thditially
createn/2 segments (each segment is of length 2), androsés
mean squared error when determining the errorsnek| For
each data set, the BUS algorithm was made to peothe same
number of clusters as the Gecko algorithm. Tabter®ains the
scores given for all 10 pairs of clusterings.

Table 2. Clustering quality of Gecko and BUS

Data Set Gecko BUS
1 10 2
2 10 3
3 9 3
4 10 3
5 10 3
6 10 3
7 8
8 5
9 7
10 10 6
Average Score 9.5 4.3

Gecko’s average score was 9.5, while the bottorsegpnentation
algorithm’s average score was only 4.3. In additio the
increased clustering quality, Gecko was also abldetermine a
suitable number of clusters with fewer input partare It is also
interesting that the data sets that Gecko recesveérfect score
on (which signifies a clustering as good as the draxpert’s
clustering) often differed notably in the number diisters
generated. For example, Gecko produced nearlyetasc many
clusters as the human expert for data set 5, anlcCaill got a
perfect rating. This suggests that there is ofteange of “very
good” numbers of clusters to return, and thereisingle correct
number of clusters.

A major reason that Gecko performed so much betbecause
Gecko determines the initial segments/clusters muabre

effectively than BUS. Gecko and BUS are both buottp
hierarchical algorithms and start their merginggess from an
initial partitioning of the data. BUS initially pitions the data by
creating as many small clusters as possible byallyitputting
every two points into a cluster. This means thia¢ngver there is
a very sharp cluster boundary, there is a 50% ehéme BUS's
initial segments will straddle the boundary. Thesell errors
often cause more errors during the merging pro@ess the
overall clustering quality suffers. The initial rdoning
produced by Gecko in its first phase, is carefukensure that all
important cluster boundaries occur only on the sdgelusters.

The final part of Gecko’s evaluation was a disaussivith the
NASA engineer about why he gave each score.
indicated another advantage of the Gecko algorafier BUS. In
data sets with regions that have very high slop&sS divides
them into too many clusters. This is because efithy that BUS
measured the errors of lines. When clusters argedetogether
by keeping the total error of the best fit linesatainimum, there
is a bias favoring merging clusters together thath@rizontal and
have low slopes. This is because when the erraa bhe is
computed using the root mean squared error, theakdistance
from the point to the best-fit is what is being swad. Thus,
lines that are nearly vertical may seem visuallybto a nearly
perfect fit, but the vertical distances from thénp®to the line can
be huge. Gecko does not suffer from this problem.

Our implementation of Gecko on a PC is able totelua 1,000
point data sets in 7 seconds. A 20,000 point deatatakes
approximately 7.5 minutes to cluster. However, @amg can be
performed to increase the execution time withoyteffect on the
quality of the output unless the user wishes toalisr very small
clusters that would be smoothed over by over-samgpliAbout
90% of the execution time is due to phase 1 of Gexko
algorithm. Building a k-nearest neighbour grapld aecursively
bisecting it is much more complex than the mergirethod used
in the second phase.

4.2 Characterizing states with RIPPER

4.2.1 Procedures and Criteria

The RIPPER algorithm was tested by characterizimgdusters
produced by Gecko for each of the 10 valve data. sethe
accuracy of the characterization produced by RIPPESS
determined in two steps: (1) for every cluster ofdaa set
(training): create a rule that characterizes thuster by using
90% of the cluster’s data points; (2) For the remmaj 10% of the
data (testing): see if the cluster that these ems#ata points
belong to can be correctly determined by the |ehrote.

To facilitate the error analysis of temporally adiat clusters, we
do not separate the unseen test data from théntgaitata during
testing. The 10% unseen data simulates minor rlorarations

not observed during training. We group errors fotar types:

1. Contradiction: The exact same data point (looks the same

because time is ignored) in training was classifioting

clustering to be in two different clusters. Thésprobably
not a clustering error. It is most likely two d@ifent data
points in flat regions that have other clustersveen them.
However, because time is ignored during classificatthere
is no way to tell the points apart. This will nm¢ an issue
during the state transition logic because the dirstate

Thie a

automaton will only need to know if the data pamin the
current or next state.

2. Uncovered point The point is not covered by any of the
rules. This is obviously an error. However, itisre likely
to occur in this specific evaluation than in actoctice. In
this test, 10% of the data was unseen during trginiIf
several successive points in a transition regiemat trained
on during the training phase, it could be diffictdt predict
them during testing because no similar points veemn in
training. The state transition logic can compemskdr
uncovered points.

Wrong rule: The point is covered by a rule, but not by either
the correct rule, or a rule that is adjacent to Tthis is a
rather significant error. In a real system it wbmost likely
indicate that the point is anomalous. An erroreshold
counter could be used in the state transition lagidorce
several ‘wrong rule’ points to occur in a row bef@ignaling

an anomaly. This would make sure stray ‘wrong’ mpénts

do not trigger anomalies.

4. Poor transition: The point is not covered by the correct
rule, but is covered by a rule either immediatedfobe or
after it. This could be a transition point whichvery close
to belonging in two clusters at the same time. sTd@n be
dealt with in the state transition logic by haviagransition
threshold that requires several transition pointsirow to
perform a transition to a new state.

Furthermore, to determine what effect derived laites have on
the quality of the rules that RIPPER produces, ftilewing 3

tests are performed by varying the input data goiotcontain:
original attributes only, original attributes + g&s, and original
attributes + slopes + second derivatives.

4.2.2 Results and Analysis

RIPPER was able to accurately characterize the magtrity of
the test data points. The frequency of each kindrmr on all
data sets when using the original attribute as agltwo derived
attributes (slope and second derivative) is showhable 3.

Table 3. Classification Errors from RIPPER.

Data Contrad- Not Wrong Poor Total
Set iction Covered Rule Transition Err.
1 0% 8% 3% 0% 11%
2 0% 3% 0% 3% 6%
3 0% 2% 2% 3% 7%
4 0% 4% 1% 0% 5%
5 0% 0% 0% 0% 0%
6 0% 1% 0% 2% 3%
7 0% 2% 0% 0% 2%
8 0% 1% 1% 0% 2%
9 0% 3% 1% 0% 4%
10 0% 0.4% 0.1 0.5% 1.0%
Avg % 0.0% 2.4% 0.8% 0.8% 4.1%

The ability of RIPPER to accurately characterizéada largely
dependent on the attributes of the data pointsindJenly the
original attribute “current,” over 1 in 5 data ptirwere not able
to be accurately characterized by the rules. Thmeher of errors

goes down with each extra attribute that is adddtié data. This
can be clearly seen in Table 4. This occurs becaash new
attribute gives RIPPER the ability to more accuyatéassify the
data. It is analogous to trying to describe yoasifion on the
earth using only latitude vs. using latitude amitudes.

Table 4. Errors with different attributes.

Attributes Contra Not Wrong Poor Total
diction Covered Rule Transition Err.

Original | 10.2% | 0.0% 8.3% 41% 202/[;5
Orig + 3.2% 1.7% 1.6% 0.9% 4.79
Slope
Orig +
Slope + 0% 2.4% 0.8% 0.8% 4.19
2ndDer

4.3 Overall System (FSA)

4.3.1 Procedures and Criteria

The overall anomaly detection system was testediding the

rules generated by RIPPER to implement a finiteestatomaton
on a time series stream of input. If the finitatstautomaton is
unable to process the input stream through eade stathe

correct order of: “S$S2>S3>...>39n", then the input stream is
rejected and is considered to contain an anomaly.

In order to test whether the anomaly detection esystvorks
correctly we performed three kinds of tests: $EJf-tracking:
Use 90% of the data points to create rules, andl tise 100% of
the data fed into the expert system to see if thte gransitions
would trigger properly without detecting any anciesl (2)
Normal operation: Use all of a normal valve's data to learn its
signature, and then monitor another valve thatlse aperating
normally. This case should also not trigger angnaalies. (3)
Detecting anomalies Use all of a properly functioning valve’'s
data to learn its normal signature, and then tagmeatures of
valves that are damaged slightly and run it throtigh anomaly
detection system. The damaged valves should traygyemalies.

4.3.2 Results and Analysis

Table 5. Self-tracking of a time series.

Data Set Error Pts Min. Error Threshold

=

1.1%
0.8%
0.7%
0.5%
0.0%
0.4%
0.3%
0.2%
0.4%
1.1%
0.55%

N

©o| o N o v B W N
NI R EEN

[y
o
N
[y

4.0

Avg

In this experiment both the “consecutive transititmeshold”

(CT) and the “consecutive error threshol@€H) were set to zero.
This causes every possible state transition to agenand every
error point throws an anomaly. This enabled easyputation of

the number of error points. Data set nhumber 1@opas poorly

in this test because the FSA transitions prematurear the end
of its signature and starts reporting many anorsaliee results
for this data set can be improved by increasifigto prevent it

from transitioning too early on a spurious datapoi

Normal Operation. This test will show that the anomaly
detection system’s model of the normal signaturegéseral
enough to recognize that a different normal timeesecontains
no anomalies. In this test, the anomaly detecsigstem trained
on data set 1, and then tested on data set 2. dthlese data sets
are of normally operating valves that contains mitwt visible)
differences. The “consecutive transition threshol@CT)
parameter was set to 2, aGf was set to 10 (minimum possible
cluster sizes=10). This means than two consecutive points
believed to be in the next state are needed tcomerh state
transition and ten consecutive points believed g¢oebrors are
needed to declare that the time series containnalies.

The system was able to successfully transitionutincthe states,

Self-tracking. The baseline test of the anomaly detection system without declaring any anomalies. Of 979 data mi6tl (2.6%)

is provide an incomplete sampling of a time sel&mnature
(random 90%) to characterize, will it be able toniar the entire
time series signature without triggering any andesal This
determines if the anomaly detection system is dbledetect
similar time series with minor variations.

An error point in Table 5 is any point that is upegted in the
state transition logic. This means that the p@meither in the
current state or the following state. Time serdta often
contains noise and minor variations. For this saasnomalies
must not be triggered by only a single data pdiat tdoes not
agree with the model contained in the finite seattomaton. We
use a threshold counter which only reports an ahoiha certain

number of consecutive error points are found. l@Bsecolumn in

Table 5 shows what the minimum consecutive erroestiold

(CE) must be set to for the anomaly detection systenot report
an anomaly. A value of 1 in this last column meémst the

anomaly detection system will correctly not repamtanomaly as
long asCE >= 1.

were error--they were not believed to belong todheent state,
nor to be transition points belonging to the foliogv state.
However, since a consecutive number of errors greahtinCE

was never encountered, an anomaly was never tedger

Detecting Anomalies. In this test, the two data sets containing
time series signatures of valves operating norm@lbta sets 1
and 2) were used to develop the normal models. h Bacmal
model was then run against the remaining data de&ta sets 3-
10 contain signatures of damaged or otherwiseettidved valves
and should be determined to be anomalous by thenago
detection system.

For each of the 16 tests, the anomaly detectioteisys/as able to
determine that signatures contained anomalies. itidddlly, the

system is able to inform the user of the state rarmthere the
signature differs from the model. The state whire errors
occurred varied from state 2 to state 12. Thus,system does
not only give a yes/no answer to whether a timégseaontains
anomalies, but it is also able to explain to therushere the

anomaly occurred. Also, because the rules gertelatdRIPPER
are in a human-readable format, the user can Ibdkearule for
the state where the error occurred and understeaxdtly why the
system reported the anomaly.

5. CONCLUDING REMARKS

We have detailed our approach to time-series anodetiection
by discovering and characterizing the states afa series, and
adding transition logic between these states testcoat a finite
state automaton, which is used to track normal Wehaand
detect anomalies. The proposed Gecko clusteriggrithm is
designed to cluster time series data, and usesp@mposed L
method to automatically determine a reasonable euantf
clusters efficiently. The rules generated for eatite by the
RIPPER algorithm can be easily understood and readiby
humans. (Moreover, the generated rules can befonnzat used
by the SCL expert system shell at ICS, which is aaltaborator
on this NASA project.)

Our empirical evaluations have shown that the Lhogtused by
the Gecko algorithm returns a number of clusteas ighsimilar to

the number that is generated by a human experenlie human
expert was asked to rate Gecko’s clusterings freb®,1Gecko’s

clusterings were given perfect ratings on 6 of Hiadsets. A
perfect rating signifies that Gecko’s clusteringetpually as good
as the human expert’s clustering. For comparitosbottom-up
segmentation algorithm was also tested, and wag ginen an

average rating of 4.3. RIPPER was able to createrate rules to
describe the states in which only an average ofia®o of the

data points had a possibly vague classificatioruchSa small
number of potential errors have little adverse atffen the state
transition logic’s ability to correctly track a sigture. Even small
error and transition threshold values would be #&bleompensate
for this small amount of errors. In fact, durifgetself-tracking
tests of the finite state automation, nearly alltloé data sets
required the consecutive error threshold value g¢osét to no
greater than 2 to correctly process the signatitteout detecting
an anomaly. The overall anomaly detection systeas able to
detect anomalies in every signature that was froldamaged’

valve, and was also able to monitor ¥ Bormal valve without
detecting any anomalies.

We plan to further evaluate our approach with naatasets from
NASA,; issues include building a model from multiplatasets
collected at different times and datasets with edét

measurements. We plan to study how the L methddmpes with

other hierarchical clustering algorithms. To dyicaity set the
thresholds used in the state transition logic, e lzold out part
of the training data and find thresholds that pn¢esrors on the
unseen portion of the data.

6. ACKNOWLDEGEMENTS

This research is partially supported by NASA. \Wank Bobby
Ferrell and Steven Santuro at NASA for providing thata sets,
helpful comments, and evaluations. We also tham&BBuckley
and Steve Creighton at ICS for help integrating algorithms
into their SCL expert system.

7. REFERENCES

[1] Caudell, T. & Newman, D. (1993). An Adaptive Reance
Architecture to Define Normality and Detect Nowvedtiin
Time Series and Databases. FAroc. IEEE World Congress
on Neural Networkspp. IV166-176.

[2] Cohen, W. (1995). Fast Effective Rule Inductit@ivL.

[3] Dasgupta, D. & Forrest S. (1996). Novelty Deteciinifime
Series Data using Ideas from Immunology.Rroc. Fifth
Intl. Conf. on Intelligent Systems

[4] Ester M., Kriegel H., Sander J., & Xu X. (1996) Aiisity-
Based Algorithm for Discovering Clusters in LargeaSal
Databases with Noise. Rroc. 3°KDD.

[5] Furnkranz J. & Wildmer G. (1994). Incremental reeidic
error pruning. IrProc. ICML

[6] Guha SI, Rastogi R., & Shim K. (1999) ROCK: a rsbu
clustering algorithm for categorical attributes. 16" Int'l
Conf. on Data Engineering

[7] Hinneburg A. & Keim D. (1998) An Efficient Approach
Clustering in Large Multimedia Databases with No&S&AI.

[8] Karypis G., Han E. & Kumar V. (1999) Chameleon: A
hierarchical clustering algorithm using dynamic relrg.
IEEE Computer32(8) pp. 68-75.

[9] Keogh E., Chu S., Hart D., & Pazanni M. (2001). @nline
Algorithm for Segmenting Time Series. Rroc. |IEEE Intl.
Conf. on Data Miningpp. 289296,

[10]Ng R. & Han J. (1994). Efficient and effective dlering
method for spatial data mining. Rroc.VLDB pp 144-155.

[11]Roth V., Lange T., Braun M. & Buhmann J. A Resangl
Approach to Cluster Validation.

[12] Seikholeslami, G., Chatterjee, S. & Zhang, A. (1998
WaveCluster: A Multi-Resolution Clustering Apprbafor
Very Large Spatial Databasd&oc. of the 2% VLDB.

[13]Smyth, P. (1996). Clustering Using Monte-Carlo Gros
Validation. InProc. 2nd KDD pp.126-133.

[14] Tibshirani, R., Walther, G. & Hastie, T. (2000) tifsating
the number of clusters in a dataset via the Gajstita

[15]Vasko, K. & Toivonen, T. Estimating the number of
segments in time series data using permutatios. test

