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ABSTRACT 

This document discusses the concept of an algorithm designed to locate the optimal solution to a 

problem in a (presumably) very large solution space.  The algorithm attempts to locate the optimal 

solution to the problem by beginning a search at an arbitrary point in the solution space and then 

searching in the “local” area around the start point to find better solutions.  The algorithm completes 

either when it locates what it thinks is the optimal solution or when predefined halt conditions have 

been met.  The algorithm is repair-based, that is, it begins with a given solution and attempts to 

“repair” that solution by changing one or more of the components of the solution to bring the solution 

closer to the optimal.  The algorithm uses the natural principles of gravity that act on a body in motion 

through space and simulates those principles to take a given solution to the problem at hand and repair 

it to locate an optimal solution.  In this document two versions of the algorithm, called GLSA1 (based 

on simple gravitational force calculation) and GLSA2 (based on gravitational field calculation), are 

presented and the manner in which an initial evaluation of the algorithm was conducted.  Then, by way 

of example a particular problem is given that the algorithm can be used to solve, along with a 

description of how the algorithm would be used to solve that problem.  Finally, some conclusions and 

opportunities for future direction are presented. 
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INTRODUCTION 

One of the most fundamental difficulties faced 

when attempting to find the optimal solution 

to a complex problem is that the solution space 

for the problem is likely to be very large.  That 

is, the number of possible solutions to the 

problem is likely to be great enough to render 

an exhaustive search for the optimal solution 

impractical at best, nearly impossible at worst 

[1]. 

In cases like these, any algorithm capable of 

solving the problem in a reasonable amount of 

time must make use of one or more heuristics 

(or more colloquially, “rules of thumb” or 

educated guesses) as to how to proceed to 

locate the optimal solution, and often must 

settle for a near-optimal solution instead of 

guaranteeing that the optimal solution will be 

found [2]. 

There are many types of algorithms available 

for solving such problems.  Some algorithms 

build a solution from scratch, while others are 

repair-based, taking an initial solution and 

repeatedly permuting the components of the 

solution in order to produce a more optimal 

solution [3].  Of interest here are the “local 

search” algorithms.  These algorithms are 

repair-based, systematically and minutely 

permuting the current solution in such a way 

that the new solution produced is “in the 

neighborhood” of the previous solution within 

the solution space, as opposed to permuting 

the current solution unsystematically (such that 

the solutions generated by successive iterations 

“hop” around the solution space haphazardly).  

Each of these local search algorithms is a 

member of a class of algorithms that share 

similar techniques, or is a hybrid, combining 

characteristics of two or more classes [2, 4]. 

The algorithm to be described herein is one 

such hybrid.  In the most basic sense, it is a 

variation of the “hill climbing” class of 

algorithms.  These algorithms operate by taking 

the current solution and attempting to find a 

more optimal solution within the local search 

space.  If one can be found, it becomes the 

current solution and the process repeats.  If 

none can be found, the algorithm halts and the 

current solution is returned as the optimal 

solution.  Thus, the algorithm operates as if 

climbing a hill, progressing from one solution 

to a better solution to one still better, until it 

reaches the “peak” of the hill it is climbing and 

there are no better solutions around [3]. 

While being based on hill climbing, the 

algorithm to be described herein contains 

elements of other classes of local search 

(which, for the sake of some degree of brevity, 
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will not be described) [3].  It also incorporates 

its own set of heuristics to determine its course 

of action.  These heuristics are based on the 

natural principles of gravitational attraction. 

Gravity is one of the four basic forces in 

physics.  It is the weakest of the four, but it is 

also the most pervasive.  Nothing is immune to 

its effects, and even the stars eventually 

succumb to its relentless influence.  

Gravitational attraction ensures that once an 

object is in the grip of the gravity of another 

object, it will never escape unless acted upon 

by another force [5].  By simulating the effects 

of gravitational attraction, the algorithm 

described herein attempts to locate the optimal 

solution to a problem by maneuvering the 

solution until it is in the grip of the optimal 

solution’s “gravity”. 

A hurdle that is faced by all local search 

algorithms is that within the solution space 

there can be a number of localized suboptimal 

solutions in addition to the global optimal 

solution [2].  A local search algorithm may, 

because of how it operates, terminate at one of 

these local optima.  Of course, if the initial 

solution presented to the algorithm is far away 

from the global optimal it may be necessary for 

the algorithm to terminate at a local optimum 

in order to complete within reasonable time 

constraints.  However, if possible a local search 

algorithm should incorporate a method to 

attempt to bypass local optima in favor of the 

global optimum.  The algorithm described 

herein contains a number of operating 

parameters that are intended to accomplish this 

function.  How the algorithm attempts to 

maneuver the solution towards the global 

optimum while avoiding local optima will be 

explained in the next section. 

DESCRIPTION OF THE ALGORITHM 

The simplest way to describe how the 

gravitational local search algorithm (or GLSA, 

as it shall henceforth be called in this 

document) operates is to visualize a ball that is 

rolling around on a confined surface.  On the 

surface are various pits, or “gravity wells”, 

some deeper than others.  As the ball rolls, it 

gradually loses momentum due to friction with 

the surface.  If it begins to roll into one of the 

pits it will gain momentum, and conversely it 

will lose momentum if it begins to exit the pit.  

The idea is that due to the effects of gravity, 

eventually the ball will come to rest in one of 

the pits. 

In this analogy, the confined surface represents 

the solution space for a given problem.  The 

pits in the surface represent the various local 
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optima, with the deepest pit being the global 

optimum solution.  The ball that is rolling 

around represents the current solution as it is 

being permuted.  The hope is that the ball can 

be controlled such a way that it will have 

sufficient inertia to roll into and out of the 

more shallow pits (the local optima), settling 

only in the deepest pit (the global optimum).  

Of course, this analogy takes place in three-

dimensional space, and many problems have 

more than three variables in their solution.  

However, this particular analogy was chosen 

solely for its ease of visualization, and GLSA 

can easily be extended to any number of 

solution variables. 

We propose two basic versions of the GLSA 

algorithm.  The first, called hereafter GLSA1, 

uses the Newtonian equations for gravitational 

force between two objects as its basis for 

simulation.  The second, called hereafter 

GLSA2, uses the equations for gravitation field 

calculation as its basis for simulation.  GLSA1 

also contains more of a restriction on the 

movement of the solution ball, allowing it to 

move a distance of only one node in a given 

direction at a time, while GLSA2 allows for 

movement of distances of more than one node 

at a time.  Aside from the differences of basis 

of simulation and range of movement, though, 

the two versions of GLSA both operate in the 

same fashion, using their respective bases of 

simulation to calculate where and how the 

solution ball should progress through the 

solution space, and then moving the solution 

ball until its combined momentum (the vector 

sum of its velocity in all dimensions) reaches 

zero, at which time the best solution seen to 

that point is returned. 

There are a number of operating parameters 

that can be used to control the motion of the 

solution ball.  Each of these parameters is 

individually adjustable, and together they 

comprise the “scenario” under which the 

algorithm will proceed.  The parameters are as 

follows: 

DENSITY (DENS) – the relative density 

of the medium through which the 

solution ball is moving.  It is used to 

help calculate the resistive force that 

the solution ball experiences as it 

moves through the solution space.  It 

defaults to a value of 1.2, the relative 

density of air [5]. 

DRAG (DRAG) – the drag coefficient of 

the solution ball.  It is also used to help 

calculate the resistive force that the 

solution ball experiences as it moves 

through the solution space.  It defaults 

to a value of 0.5, that of a relatively 

streamlined body [5]. 
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FRICTION (FRIC) – the moving 

coefficient of friction of the solution 

ball and the surface on which it is 

rolling.  It is also used to help calculate 

the resistive force that the solution ball 

experiences as it moves through the 

solution space.  It defaults to a value of 

0.003, the value for steel rolling on steel 

[5]. 

GRAVITY (GRAV) – the coefficient of 

gravity acting between two objects, and 

is used only in the GLSA1 version of 

the algorithm.  It is used in the 

calculation of the gravitational force 

present between the solution ball and 

an adjacent solution.  It defaults to the 

Newtonian value of 6.672 [5]. 

INITIAL VELOCITY (IVEL) – the 

maximum possible initial velocity of 

the solution ball for a given dimension 

of movement.  It is used to put a 

bound on the relative speed of the 

solution ball in any one direction at the 

outset of the algorithm.  It defaults to 

an arbitrary value of 10. 

ITERATION LIMIT (ITER) – the 

maximum number of iterations of the 

GLSA procedure for a given problem 

instance.  This parameter has been 

included to ensure termination of 

GLSA.  In actuality, an object can settle 

into a stable orbit around another 

object.  Obviously, should this happen 

during execution of GLSA, it would 

never terminate.  ITER sets a limit on 

the number of times that the GLSA 

algorithm can iterate through its 

procedure.  If the algorithm completes 

this number of iterations and the 

combined momentum of the solution 

ball has not yet reached zero, the 

algorithm terminates anyway and 

returns the best solution seen to that 

point. 

MASS (MASS) – the mass of the solution 

ball itself, independent of the mass of 

the solution node at which the solution 

ball is currently located (as calculated 

by the relevance function, the function 

that determines the relative quality of 

the solution at that node).  It is used in 

the various calculations that are 

dependent on the mass of an object, 

and defaults to an arbitrary value of 1. 

RADIUS (RADI) – the distance between 

two objects, and is used only in the 

GLSA1 version of the algorithm.  It is 

used in the calculation of the 

gravitational force present between the 

solution ball and an adjacent solution.  

It defaults to an arbitrary value of 2. 
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SILHOUETTE (SILH) – the silhouette 

area of the solution ball as seen from 

the front.  It is used to help calculate 

the resistive force that the solution ball 

experiences as it moves through the 

solution space.  It defaults to an 

arbitrary value of 0.1. 

THRESHOLD (THRE) – the threshold at 

which a given velocity will be assumed 

to drop to zero.  It is used to prevent 

the velocity component of the solution 

ball in any direction from hovering 

near zero without ever getting there 

due to round-offs and the limits of the 

calculations.  It defaults to an arbitrary 

value of 2. 

PSEUDOCODE OF THE ALGORITHM 

Following is a high-level pseudocode 

representation of each of the two versions of 

GLSA (complete code listings for both GLSA1 

and GLSA2 are included in appendices to this 

paper).  Inputs to each of the procedures are:  

an encoded representation of the solution 

space, the node within the solution space at 

which the algorithm will commence, and value 

assignments for each of the aforementioned 

operational parameters. 

Both procedures return the relative optimality 

of the best solution located by the algorithm, 

along with an encoded representation of that 

solution and the number of iterations that the 

algorithm took to complete. 

All references to operational parameters within 

the pseudocode are made using the appropriate 

four-character abbreviations as listed above 

with the parameter names.  The reference 

“RF” represents the calculated value of the 

relevance function for a given solution.  The 

relevance function is an instance-specific 

function used by local search problems to 

calculate the relative optimality of a given 

solution.  The more optimal a solution, the 

higher its associated RF value. 

Simplified principles of gravitational forces and 

fields, as well as the other physical principles 

emulated in the algorithm, are used in the 

representative equations and calculations.  In 

addition, the equations for resistive force are 

designed for use in a three-dimensional world, 

even though local search problems frequently 

contain more than three solution component 

dimensions.  These steps were taken to avoid 

excessive computations that would have 

increased the complexity of GLSA without 

adding anything to its essence, that of using the 

basic principles of gravitational attraction as a 

basis for performing local search.  
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procedure GLSA1 is
--Number of solution dimensions is a predefined number “n”
integer dim; --Dimension iteration counter
integer cnt; --Loop iteration counter
begin
for dim = 1 to n do
--Assign a predefined starting solution component as the current solution component for
-- dimension “dim” and as the best solution component seen thus far for that dimension
--Randomly assign an initial velocity in the dimension “dim” within the bounds of IVEL

end;
cnt = 0;
--Calculate an initial vector velocity sum, based on the random initial velocity components
-- assigned in the previous step
while (the velocity sum <> 0) and (cnt < ITER) do
--Reset the velocity sum to 0
for dim = 1 to n do
--Calculate the solutions adjacent to the current solution and their respective RF values
--If any of these is better than the best solution seen thus far, then make that solution
-- the new best solution
--Calculate the net difference in gravitational “force” between the adjacent solutions and
-- the current solution for the current dimension “dim”, using the Newtonian equation for
-- gravitational attraction
--Calculate change in acceleration for the current dimension “dim”
--Calculate change in velocity for the current dimension “dim”
--Calculate new current solution component for the dimension “dim”, which will be the next
-- adjacent node in the dimension “dim” in the current direction of movement as indicated
-- by the velocity component for the dimension “dim”

end;
--Calculate the new velocity sum
cnt = cnt + 1;

end;
return best solution found, its RF value, and the iteration count (cnt)

end;

procedure GLSA2 is
--Number of solution dimensions is a predefined number “n”
integer dim; --Dimension iteration counter
integer cnt; --Loop iteration counter
begin
for dim = 1 to n do
--Assign a predefined starting solution component as the current solution component for
-- dimension “dim” and as the best solution component seen thus far for that dimension
--Randomly assign an initial velocity in the dimension “dim” within the bounds of IVEL

end;
cnt = 0;
--Calculate an initial vector velocity sum, based on the random initial velocity components
-- assigned in the previous step
while (the velocity sum <> 0) and (cnt < ITER) do
--Reset the velocity sum to 0
for dim = 1 to n do
--Calculate the solutions adjacent to the current solution, and their respective RF values
--If any of these is better than the best solutions seen thus far, then make that solution
-- the new best solution
--Calculate the change in the gravitation field for the current dimension “dim”, as caused
-- by the adjacent solutions and the current solution using the vector sum equation for
-- gravitational field calculation
--Calculate change in acceleration for the current dimension “dim”
--Calculate change in velocity for the current dimension “dim”
--Calculate new current solution component for the dimension “dim”, which will be the ith

-- adjacent node in the dimension “dim” in the current direction of movement as indicated
-- by the magnitude i of the velocity component for the dimension “dim”

end;
--Calculate the new velocity sum
cnt = cnt + 1;

end;
return best solution found, its RF value, and the iteration count (cnt)

end;
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EVALUATING THE ALGORITHM 

In order to evaluate the efficacy of the GLSA 

algorithm, a test environment was devised.  

This environment was designed to test the 

ability of GLSA to find the optimal or near 

optimal solution within a given solution space 

when the optimal solution could be known 

with certainty. 

The test environment consisted of a 10x100 

matrix solution space, simulating a problem 

with ten variables.  The matrix was populated 

with randomly-generated integer values ranging 

from zero to one hundred.  These integer 

values represented the associated RF value of 

that particular node.  The integers could be 

assigned with a pre-defined probability in order 

to represent problems with sparse solutions.  

That is, if the probability was defined to be 0.1, 

then only about ten percent of the nodes in the 

matrix would be assigned a non-zero value [1]. 

A complete solution to a problem instance 

generated in this fashion would be the sum of 

the integer values for a tuple consisting of one 

node from each of the ten dimensions, a value 

ranging from zero to one thousand.  The 

higher the sum total, the better the quality of 

the solution.  As the values were being assigned 

to the matrix, a record was being kept of the 

optimal solution seen to that point.  Thus, 

when assignment of values to the matrix was 

complete, the overall optimal solution and its 

RF value were known. 

This test environment allowed for the creation 

of problem instances of any degree of sparcity 

for the ten-dimensional problem.  This 

provided for a solution space of up to 10100 

possible solutions, a value sufficiently large to 

render an exhaustive search of the solution 

space impractical.  Having said this, it should 

be readily obvious that the optimal solution to 

the problem could be located simply by 

scanning each of the ten dimensions and 

building the solution by selecting the largest 

value from the nodes in each dimension.  

However, this was done in order to facilitate 

the rapid generation of problem instances 

where the optimal solution was known up 

front. 

While it is true that the definition of RF for this 

problem allowed for a very easy location of the 

optimal solution, such is very often not the 

case.  In many cases, the RF for a problem 

involves a particular interrelationship between 

the individual variables in the solution.  In 

these cases, the value of a given variable 

assignment relative to the overall RF is not 

known until the actual RF is calculated for a 
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complete solution tuple, and cannot be 

determined by simple examination of the value. 

Thus, it can be seen that the test problem is a 

special case of the more general class of multi-

dimensional problems, one where the RF just 

happens to be the sum of the values of the 

individual solution components.  Given this 

fact, the problem can be approached by any 

solution algorithm as if it was of the more 

general class where a solution could not be 

readily obtained.  Taking this approach allows 

for rapid generation of problem instances while 

maintaining a sufficiently large solution space 

for the solution algorithms to search. 

To establish actual test scenarios using the 

defined test environment, a series of test 

instances was generated.  Ten problem 

instances were generated for each of ten levels 

of sparcity, beginning at ten percent and going 

to one hundred percent, in increments of ten 

percent.  Thus, ten tests were conducted with 

ten percent of the nodes in the solution space 

having non-zero values, another ten tests were 

conducted with twenty percent of the nodes 

having non-zero values, another ten tests at 

thirty percent, and so on, until the final ten 

tests were conducted where every node in the 

solution space had a non-zero value [1]. 

For each of the one hundred total test 

instances, the two versions of GLSA were run 

and the results collected and compared against 

the known optimal solution.  To provide a 

further basis for comparison, the two versions 

of GLSA were compared against two other 

methods of finding a solution:  random and 

basic hill climbing. 

Each of the test scenarios progressed as 

follows:  first, the problem instance was 

generated and the optimal solution recorded.  

Next, a random solution to the problem 

instance was generated (by selecting a random 

assignment for each of the ten dimensions) and 

its RF value calculated and recorded.  Then, the 

hill climbing algorithm was run, using as its 

starting point the random solution, and its 

resultant solution and RF value was recorded.  

Finally, each of the two versions of GLSA was 

run, also using as its starting point the random 

solution (and using the default values for the 

operational parameters), and its solution and 

RF value was recorded. 

This procedure was followed for each of the 

one hundred test instances.  Once all the data 

were collected, a comparison could be made 

between the results obtained randomly, by hill 

climbing, and GLSA1/GLSA2, and the known 

optimal results.  Having done so (and done so 
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by repeating the test set several times), the 

following items were noticed: 

• The random solution, as was surmised, 

produced generally very poor solutions 

• Hill climbing, beginning at the random 

solution and attempting to improve 

upon it, was in virtually every instance 

able to do so and produce a 

significantly better solution than the 

random solution 

• GLSA1 and GLSA2, also beginning at 

the random solution and attempting to 

improve upon it, were also in virtually 

every instance able to do so and 

produce a significantly better solution 

than the random solution 

• In the overwhelming majority of cases, 

both GLSA1 and GLSA2 were able to 

produce solutions better than those 

obtained by hill climbing, in many cases 

substantially better 

• GLSA2 on average produced better 

solutions than GLSA1 

• Typically, hill climbing completed in 

two to five iterations 

• GLSA1 and GLSA2 both typically 

completed in twenty to twenty-five 

iterations, although there were a very 

few occasions where GLSA2 fell into a 

harmonic motion through the solution 

space and had to be terminated by 

maximum iteration count instead of by 

its normal termination conditions 

These results, while far from being exhaustive, 

were very promising and at least served to 

demonstrate that the basic premise of the 

GLSA algorithm has some merit and is worthy 

of further investigation. 

AN APPLICATION OF THE 
ALGORITHM 

As previously stated, GLSA is a general 

purpose local search algorithm, adaptable for 

use with most types of problems for which a 

local search algorithm is appropriate.  

However, a particular problem will now be 

outlined to illustrate how GLSA can be used to 

solve such a problem. 

The problem that will be used for this example 

is the File Assignment Problem, or FAP.  In 

the FAP, a group of files needs to be assigned 

to a group of devices in such a manner as to 

optimize a predefined factor, such as file access 
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cost or throughput [6].  The FAP has been 

shown to be a difficult problem to solve 

efficiently, even with relatively few files and 

devices, so it is a good candidate for a local 

search solution approach [7]. 

There are many variations of the FAP.  The 

particular variation that will be used in this 

example states that each file in the group must 

be assigned to one and only one device, and 

that each device may have zero or more files 

assigned to it.  The goal is to minimize the total 

cost of accessing the files during runs of a 

particular set of programs (cost in this case is 

the time required for a device to locate and 

read a file, plus the latency time if a given file 

access request is issued but that file is on a 

device that is still in the process of accessing 

another file, plus the time required to transmit 

file data from a device, etc.) [6, 7]. 

To use GLSA with this particular variation of 

the FAP, a suitable RF must first be defined.  

In this case, RF would calculate the total file 

access cost for a given set of file-to-device 

assignments, based on a known sequence of 

file access requests that will be made.  The set 

of file-to-device assignments is the solution.  

This solution can be encoded as an array where 

each subscript of the array represents one of 

the files in the group, and the value held at that 

subscript represents the device that the file is 

assigned to. 

To initialize GLSA, a starting solution is 

selected, along with experimental values of the 

adjustable operation parameters.  The run of 

GLSA then commences, and when it 

completes the solution returned gives for each 

file in the group the device to which it should 

be assigned, along with the value of RF for that 

solution.  The solution returned can then be 

compared with the value of RF for solutions 

obtained by other algorithms to facilitate a 

comparison, or if an exhaustive search of the 

solution space is practicable, to prove whether 

or not GLSA located the optimal solution. 

CONCLUSIONS 

As previously stated, the empirical results 

obtained thus far with both GLSA1 and 

GLSA2 indicate that the algorithm holds at 

least some promise for being able to generate 

high quality solutions to a variety of local 

search problems such as described for the 

FAP. 

With its available set of operational parameters, 

and with the variety of values that can be 

assigned to those parameters and their 

interplay, GLSA can be fine-tuned to operate 
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in a number of ways as its users see fit.  The 

experimentation conducted indicated that 

changes in the values of the operational 

parameters can result in quite varied results for 

both versions of the algorithm (i.e. changing 

MASS from 1 to 10 resulted in quicker 

terminations of the algorithm, but with less 

optimal results).  Thus, it is conceivable that by 

optimizing the values for the parameters, even 

better results could be obtained.  However, no 

empirical results are currently available to verify 

this possibility. 

With this in mind, one of the first things that 

can be done is to generate some results for test 

problems using the default parameter values, 

then attempt to optimize the parameter values 

to see if the performance of GLSA can be 

improved for those same test problems.  An 

attempt could also be made to discover 

heuristics that can be generated to determine 

which combination(s) of operational parameter 

values are most likely to generate the best 

results.  Other types of local search algorithms 

such as simulated annealing and genetic 

algorithms could be employed as the heuristic 

method, generating and testing combinations 

of operational parameter values against various 

problem instances in an attempt to discover 

optimal parameter settings [8]. 

GLSA could also be tested against these other 

types of algorithms to see how well its results 

compare.  This could be done in combination 

with running GLSA against other different 

problem types, to see if GLSA performs better 

against some types of problems than others 

and/or performs better than other types of 

local search algorithm in general or only for 

certain types of problems [8]. 

Other modifications can also be made to 

GLSA.  For example, it would be a simple 

process to parallelize GLSA by simply running 

an instance, with a unique set of operational 

parameter values, on each available processor 

and then returning the best solution obtained 

from all instances, or running both versions of 

the algorithm on different available processors 

and then returning the best solution obtained.   

The possibility of other operational parameters 

could also be investigated, although care is 

required since while gravitational attraction 

between two objects is a relatively simple thing 

to calculate, the complexity increases 

geometrically as the number of objects for 

which the attraction interplays are calculated 

increases.  If GLSA begins to account for the 

attractions between more than two objects, the 

amount of processing power required to 

perform the calculations could quickly become 

prohibitive [5]. 
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The most basic conclusion that can be drawn 

at this point is that there is much that could be 

done with GLSA, and only time and further 

testing will determine whether it is an effective 

tool for solving difficult problems or if it just 

an also-ran. 
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APPENDIX A – CODE FOR GLSA1 ALGORITHM 

***Note*** The following represents the code for the GLSA1 algorithm specific to the problem 

instance that was used for initial testing.  While the code can be adapted for virtually any problem 

instance, there will be minor modifications that will be required prior to use depending on the 

particular nature of the problem at hand.  The following is presented, and should be used, only as a 

reference for the general manner in which GLSA1 behaves, not as the coding for specific problem 

solutions. 

/* Include the global definitions header file (this file will contain instance-
specific definitions for the problem such as the solution space, solution
vector, number of dimensions, RF function definition, ranges, etc.) */

#include “global.h”

/* Define the algorithmic environment */

#define DENS 1.2
#define DRAG 0.2
#define FRIC 0.57
#define GRAV 6.672
#define IVEL 10
#define ITER 100
#define MASS 1
#define RADI 2
#define SILH 0.1
#define THRE 2

int
glsa1 (solspace, strt_sol, sol, iter)

unsigned int *iter;
SPACE solspace;
SOL strt_sol, sol;

{
/* Define program variables */

int acc, best_rf, frc, vel_sum = 0;
unsigned int adj1, adj2, cnt = 0, res;
SOL best, vel;

/* Initialize the solution, directional force, and velocity vectors */

for (dim = 0; dim < DIMS; dim++)
{
sol[dim] = best[dim] = strt_sol[dim];
vel[dim] = rand () % (IVEL * 2);
if (vel[dim] < IVEL)
vel[dim] = 0 - vel[dim];
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else
vel[dim] = (IVEL * 2) - vel[dim];

if (abs (vel[dim]) <= THRE)
{
if (vel[dim] > 0)
vel[dim] += THRE;

else
vel[dim] -= THRE;

}
vel_sum += pow (vel[dim], 2);

}
vel_sum = sqrt (vel_sum);

/* Keep performing the algorithm until the combined velocity reaches zero */

while (vel_sum > 0 && cnt < ITER)
{
/* Reset the velocity sum */

vel_sum = 0;

/* Process each component of the current solution */

for (dim = 0; dim < DIMS; dim++)
{
/* Calculate the gravitational attraction for the current dimension */

adj1 = nextval (sol[dim], 'P', -1);
adj2 = nextval (sol[dim], 'P', 1);
if (solspace[dim][adj1] > solspace[dim][best[dim]])
best[dim] = adj1;

if (solspace[dim][sol[dim]] > solspace[dim][best[dim]])
best[dim] = sol[dim];

if (solspace[dim][adj2] > solspace[dim][best[dim]])
best[dim] = adj2;

frc = 0 - (GRAV * solspace[dim][adj1] *
(solspace[dim][sol[dim]] + 1) / pow (RADI, 2));

frc += GRAV * (solspace[dim][sol[dim]] + 1) * solspace[dim][adj2]
/ pow (RADI,2);

/* Calculate the change in acceleration for the current dimension */

res = (FRIC * MASS) + (0.5 * SILH * DRAG * DENS * pow (vel[dim], 2));
if (vel[dim] > 0)
frc -= res;

else if (vel[dim] < 0)
frc += res;

acc = frc / MASS;

/* Calculate the change in velocity for the current dimension */

if (abs (acc) > abs (vel[dim]) / 2)
acc = vel[dim] / 2;

if (abs (acc) > 0)
vel[dim] += acc;

else
if (vel[dim] > 0)
vel[dim] -= MASS;

else if (vel[dim] < 0)
vel[dim] += MASS;
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if (abs (vel[dim]) <= THRE)
vel[dim] = 0;

vel_sum += pow (vel[dim], 2);

/* Calculate the new solution components, accounting for the
gravitational effects */

if (vel[dim] > 0)
sol[dim] = nextval (sol[dim], 'P', 1);

else if (vel[dim] < 0)
sol[dim] = nextval (sol[dim], 'P', -1);

}

/* Calculate the new velocity sum */

vel_sum = sqrt (vel_sum);

/* Increment the iteration count */

cnt++;

}

/* Determine the best solution found and its RF value */

for (dim = 0; dim < DIMS; dim++)
sol[dim] = best[dim];

best_rf = rfval (solspace, best);

*iter = cnt;

return best_rf;
}
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APPENDIX B – CODE FOR GLSA2 ALGORITHM 

***Note*** The following represents the code for the GLSA2 algorithm specific to the problem 

instance that was used for initial testing.  While the code can be adapted for virtually any problem 

instance, there will be minor modifications that will be required prior to use depending on the 

particular nature of the problem at hand.  The following is presented, and should be used, only as a 

reference for the general manner in which GLSA2 behaves, not as the coding for specific problem 

solutions. 

/* Include the global definitions header file (this file will contain instance-
specific definitions for the problem such as the solution space, solution
vector, number of dimensions, RF function definition, ranges, etc.) */

#include “global.h”

/* Define the algorithmic environment */

#define DENS 1.2
#define DRAG 0.2
#define FRIC 0.57
#define GRAV 6.672
#define IVEL 10
#define ITER 100
#define MASS 1
#define RADI 2
#define SILH 0.1
#define THRE 2

int
glsa2 (solspace, strt_sol, sol, iter)

unsigned int *iter;
SPACE solspace;
SOL strt_sol, sol;

{
/* Define program variables */

int acc, best_rf, frc, vel_sum = 0;
unsigned int adj1, adj2, cnt = 0, res;
SOL best, vel;

/* Initialize the solution, directional force, and velocity vectors */

for (dim = 0; dim < DIMS; dim++)
{
sol[dim] = best[dim] = strt_sol[dim];
vel[dim] = rand () % (IVEL * 2);
if (vel[dim] < IVEL)
vel[dim] = 0 - vel[dim];

else
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vel[dim] = (IVEL * 2) - vel[dim];
if (abs (vel[dim]) <= THRE)
{
if (vel[dim] > 0)
vel[dim] += THRE;

else
vel[dim] -= THRE;

}
vel_sum += pow (vel[dim], 2);

}
vel_sum = sqrt (vel_sum);

/* Keep performing the algorithm until the combined velocity reaches zero */

while (vel_sum > 0 && cnt < ITER)
{
/* Reset the velocity sum */

vel_sum = 0;

/* Process each component of the current solution */

for (dim = 0; dim < DIMS; dim++)
{
/* Calculate the gravitational field component for the current
dimension */

adj1 = nextval (sol[dim], 'P', -1);
adj2 = nextval (sol[dim], 'P', 1);
if (solspace[dim][adj1] > solspace[dim][best[dim]])
best[dim] = adj1;

if (solspace[dim][sol[dim]] > solspace[dim][best[dim]])
best[dim] = sol[dim];

if (solspace[dim][adj2] > solspace[dim][best[dim]])
best[dim] = adj2;

frc = solspace[dim][adj2] - solspace[dim][adj1];

/* Calculate the change in acceleration for the current dimension */

res = (FRIC * MASS) + (0.5 * SILH * DRAG * DENS * pow (vel[dim], 2));
if (vel[dim] > 0)
frc -= res;

else if (vel[dim] < 0)
frc += res;

acc = frc / MASS;

/* Calculate the change in velocity for the current dimension */

if (abs (acc) > abs (vel[dim]) / 2)
acc = vel[dim] / 2;

if (abs (acc) > 0)
vel[dim] += acc;

else
if (vel[dim] > 0)
vel[dim] -= MASS;

else if (vel[dim] < 0)
vel[dim] += MASS;

if (abs (vel[dim]) <= THRE)
vel[dim] = 0;

vel_sum += pow (vel[dim], 2);
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/* Calculate the new solution components, accounting for the
gravitational effects */

sol[dim] = nextval (sol[dim], ‘P’, vel[dim]);
}

/* Calculate the new velocity sum */

vel_sum = sqrt (vel_sum);

/* Increment the iteration count */

cnt++;

}

/* Determine the best solution found and its RF value */

for (dim = 0; dim < DIMS; dim++)
sol[dim] = best[dim];

best_rf = rfval (solspace, best);

*iter = cnt;

return best_rf;
}


