
A LOCAL SEARCH OPTIMIZATION ALGORITHM BASED ON NATURAL PRINCIPLES OF
GRAVITATION

FLORIDA INSTITUTE OF TECHNOLOGY

TECHNICAL REPORT #CS-2003-10

Barry Webster
Northrop Grumman Corporation

2000 West Nasa Boulevard
M/S C07-222

Melbourne, FL 32902
barry_webster@northropgrumman.com

Philip J. Bernhard
Department of Computer Sciences

Florida Institute of Technology
150 West University Boulevard

Melbourne, FL 32901
pbernhar@cs.fit.edu

ABSTRACT

This document discusses the concept of an algorithm designed to locate the optimal solution to a

problem in a (presumably) very large solution space. The algorithm attempts to locate the optimal

solution to the problem by beginning a search at an arbitrary point in the solution space and then

searching in the “local” area around the start point to find better solutions. The algorithm completes

either when it locates what it thinks is the optimal solution or when predefined halt conditions have

been met. The algorithm is repair-based, that is, it begins with a given solution and attempts to

“repair” that solution by changing one or more of the components of the solution to bring the solution

closer to the optimal. The algorithm uses the natural principles of gravity that act on a body in motion

through space and simulates those principles to take a given solution to the problem at hand and repair

it to locate an optimal solution. In this document two versions of the algorithm, called GLSA1 (based

on simple gravitational force calculation) and GLSA2 (based on gravitational field calculation), are

presented and the manner in which an initial evaluation of the algorithm was conducted. Then, by way

of example a particular problem is given that the algorithm can be used to solve, along with a

description of how the algorithm would be used to solve that problem. Finally, some conclusions and

opportunities for future direction are presented.

1

INTRODUCTION

One of the most fundamental difficulties faced

when attempting to find the optimal solution

to a complex problem is that the solution space

for the problem is likely to be very large. That

is, the number of possible solutions to the

problem is likely to be great enough to render

an exhaustive search for the optimal solution

impractical at best, nearly impossible at worst

[1].

In cases like these, any algorithm capable of

solving the problem in a reasonable amount of

time must make use of one or more heuristics

(or more colloquially, “rules of thumb” or

educated guesses) as to how to proceed to

locate the optimal solution, and often must

settle for a near-optimal solution instead of

guaranteeing that the optimal solution will be

found [2].

There are many types of algorithms available

for solving such problems. Some algorithms

build a solution from scratch, while others are

repair-based, taking an initial solution and

repeatedly permuting the components of the

solution in order to produce a more optimal

solution [3]. Of interest here are the “local

search” algorithms. These algorithms are

repair-based, systematically and minutely

permuting the current solution in such a way

that the new solution produced is “in the

neighborhood” of the previous solution within

the solution space, as opposed to permuting

the current solution unsystematically (such that

the solutions generated by successive iterations

“hop” around the solution space haphazardly).

Each of these local search algorithms is a

member of a class of algorithms that share

similar techniques, or is a hybrid, combining

characteristics of two or more classes [2, 4].

The algorithm to be described herein is one

such hybrid. In the most basic sense, it is a

variation of the “hill climbing” class of

algorithms. These algorithms operate by taking

the current solution and attempting to find a

more optimal solution within the local search

space. If one can be found, it becomes the

current solution and the process repeats. If

none can be found, the algorithm halts and the

current solution is returned as the optimal

solution. Thus, the algorithm operates as if

climbing a hill, progressing from one solution

to a better solution to one still better, until it

reaches the “peak” of the hill it is climbing and

there are no better solutions around [3].

While being based on hill climbing, the

algorithm to be described herein contains

elements of other classes of local search

(which, for the sake of some degree of brevity,

2

will not be described) [3]. It also incorporates

its own set of heuristics to determine its course

of action. These heuristics are based on the

natural principles of gravitational attraction.

Gravity is one of the four basic forces in

physics. It is the weakest of the four, but it is

also the most pervasive. Nothing is immune to

its effects, and even the stars eventually

succumb to its relentless influence.

Gravitational attraction ensures that once an

object is in the grip of the gravity of another

object, it will never escape unless acted upon

by another force [5]. By simulating the effects

of gravitational attraction, the algorithm

described herein attempts to locate the optimal

solution to a problem by maneuvering the

solution until it is in the grip of the optimal

solution’s “gravity”.

A hurdle that is faced by all local search

algorithms is that within the solution space

there can be a number of localized suboptimal

solutions in addition to the global optimal

solution [2]. A local search algorithm may,

because of how it operates, terminate at one of

these local optima. Of course, if the initial

solution presented to the algorithm is far away

from the global optimal it may be necessary for

the algorithm to terminate at a local optimum

in order to complete within reasonable time

constraints. However, if possible a local search

algorithm should incorporate a method to

attempt to bypass local optima in favor of the

global optimum. The algorithm described

herein contains a number of operating

parameters that are intended to accomplish this

function. How the algorithm attempts to

maneuver the solution towards the global

optimum while avoiding local optima will be

explained in the next section.

DESCRIPTION OF THE ALGORITHM

The simplest way to describe how the

gravitational local search algorithm (or GLSA,

as it shall henceforth be called in this

document) operates is to visualize a ball that is

rolling around on a confined surface. On the

surface are various pits, or “gravity wells”,

some deeper than others. As the ball rolls, it

gradually loses momentum due to friction with

the surface. If it begins to roll into one of the

pits it will gain momentum, and conversely it

will lose momentum if it begins to exit the pit.

The idea is that due to the effects of gravity,

eventually the ball will come to rest in one of

the pits.

In this analogy, the confined surface represents

the solution space for a given problem. The

pits in the surface represent the various local

3

optima, with the deepest pit being the global

optimum solution. The ball that is rolling

around represents the current solution as it is

being permuted. The hope is that the ball can

be controlled such a way that it will have

sufficient inertia to roll into and out of the

more shallow pits (the local optima), settling

only in the deepest pit (the global optimum).

Of course, this analogy takes place in three-

dimensional space, and many problems have

more than three variables in their solution.

However, this particular analogy was chosen

solely for its ease of visualization, and GLSA

can easily be extended to any number of

solution variables.

We propose two basic versions of the GLSA

algorithm. The first, called hereafter GLSA1,

uses the Newtonian equations for gravitational

force between two objects as its basis for

simulation. The second, called hereafter

GLSA2, uses the equations for gravitation field

calculation as its basis for simulation. GLSA1

also contains more of a restriction on the

movement of the solution ball, allowing it to

move a distance of only one node in a given

direction at a time, while GLSA2 allows for

movement of distances of more than one node

at a time. Aside from the differences of basis

of simulation and range of movement, though,

the two versions of GLSA both operate in the

same fashion, using their respective bases of

simulation to calculate where and how the

solution ball should progress through the

solution space, and then moving the solution

ball until its combined momentum (the vector

sum of its velocity in all dimensions) reaches

zero, at which time the best solution seen to

that point is returned.

There are a number of operating parameters

that can be used to control the motion of the

solution ball. Each of these parameters is

individually adjustable, and together they

comprise the “scenario” under which the

algorithm will proceed. The parameters are as

follows:

DENSITY (DENS) – the relative density

of the medium through which the

solution ball is moving. It is used to

help calculate the resistive force that

the solution ball experiences as it

moves through the solution space. It

defaults to a value of 1.2, the relative

density of air [5].

DRAG (DRAG) – the drag coefficient of

the solution ball. It is also used to help

calculate the resistive force that the

solution ball experiences as it moves

through the solution space. It defaults

to a value of 0.5, that of a relatively

streamlined body [5].

4

FRICTION (FRIC) – the moving

coefficient of friction of the solution

ball and the surface on which it is

rolling. It is also used to help calculate

the resistive force that the solution ball

experiences as it moves through the

solution space. It defaults to a value of

0.003, the value for steel rolling on steel

[5].

GRAVITY (GRAV) – the coefficient of

gravity acting between two objects, and

is used only in the GLSA1 version of

the algorithm. It is used in the

calculation of the gravitational force

present between the solution ball and

an adjacent solution. It defaults to the

Newtonian value of 6.672 [5].

INITIAL VELOCITY (IVEL) – the

maximum possible initial velocity of

the solution ball for a given dimension

of movement. It is used to put a

bound on the relative speed of the

solution ball in any one direction at the

outset of the algorithm. It defaults to

an arbitrary value of 10.

ITERATION LIMIT (ITER) – the

maximum number of iterations of the

GLSA procedure for a given problem

instance. This parameter has been

included to ensure termination of

GLSA. In actuality, an object can settle

into a stable orbit around another

object. Obviously, should this happen

during execution of GLSA, it would

never terminate. ITER sets a limit on

the number of times that the GLSA

algorithm can iterate through its

procedure. If the algorithm completes

this number of iterations and the

combined momentum of the solution

ball has not yet reached zero, the

algorithm terminates anyway and

returns the best solution seen to that

point.

MASS (MASS) – the mass of the solution

ball itself, independent of the mass of

the solution node at which the solution

ball is currently located (as calculated

by the relevance function, the function

that determines the relative quality of

the solution at that node). It is used in

the various calculations that are

dependent on the mass of an object,

and defaults to an arbitrary value of 1.

RADIUS (RADI) – the distance between

two objects, and is used only in the

GLSA1 version of the algorithm. It is

used in the calculation of the

gravitational force present between the

solution ball and an adjacent solution.

It defaults to an arbitrary value of 2.

5

SILHOUETTE (SILH) – the silhouette

area of the solution ball as seen from

the front. It is used to help calculate

the resistive force that the solution ball

experiences as it moves through the

solution space. It defaults to an

arbitrary value of 0.1.

THRESHOLD (THRE) – the threshold at

which a given velocity will be assumed

to drop to zero. It is used to prevent

the velocity component of the solution

ball in any direction from hovering

near zero without ever getting there

due to round-offs and the limits of the

calculations. It defaults to an arbitrary

value of 2.

PSEUDOCODE OF THE ALGORITHM

Following is a high-level pseudocode

representation of each of the two versions of

GLSA (complete code listings for both GLSA1

and GLSA2 are included in appendices to this

paper). Inputs to each of the procedures are:

an encoded representation of the solution

space, the node within the solution space at

which the algorithm will commence, and value

assignments for each of the aforementioned

operational parameters.

Both procedures return the relative optimality

of the best solution located by the algorithm,

along with an encoded representation of that

solution and the number of iterations that the

algorithm took to complete.

All references to operational parameters within

the pseudocode are made using the appropriate

four-character abbreviations as listed above

with the parameter names. The reference

“RF” represents the calculated value of the

relevance function for a given solution. The

relevance function is an instance-specific

function used by local search problems to

calculate the relative optimality of a given

solution. The more optimal a solution, the

higher its associated RF value.

Simplified principles of gravitational forces and

fields, as well as the other physical principles

emulated in the algorithm, are used in the

representative equations and calculations. In

addition, the equations for resistive force are

designed for use in a three-dimensional world,

even though local search problems frequently

contain more than three solution component

dimensions. These steps were taken to avoid

excessive computations that would have

increased the complexity of GLSA without

adding anything to its essence, that of using the

basic principles of gravitational attraction as a

basis for performing local search.

6

procedure GLSA1 is
--Number of solution dimensions is a predefined number “n”
integer dim; --Dimension iteration counter
integer cnt; --Loop iteration counter
begin
for dim = 1 to n do
--Assign a predefined starting solution component as the current solution component for
-- dimension “dim” and as the best solution component seen thus far for that dimension
--Randomly assign an initial velocity in the dimension “dim” within the bounds of IVEL

end;
cnt = 0;
--Calculate an initial vector velocity sum, based on the random initial velocity components
-- assigned in the previous step
while (the velocity sum <> 0) and (cnt < ITER) do
--Reset the velocity sum to 0
for dim = 1 to n do
--Calculate the solutions adjacent to the current solution and their respective RF values
--If any of these is better than the best solution seen thus far, then make that solution
-- the new best solution
--Calculate the net difference in gravitational “force” between the adjacent solutions and
-- the current solution for the current dimension “dim”, using the Newtonian equation for
-- gravitational attraction
--Calculate change in acceleration for the current dimension “dim”
--Calculate change in velocity for the current dimension “dim”
--Calculate new current solution component for the dimension “dim”, which will be the next
-- adjacent node in the dimension “dim” in the current direction of movement as indicated
-- by the velocity component for the dimension “dim”

end;
--Calculate the new velocity sum
cnt = cnt + 1;

end;
return best solution found, its RF value, and the iteration count (cnt)

end;

procedure GLSA2 is
--Number of solution dimensions is a predefined number “n”
integer dim; --Dimension iteration counter
integer cnt; --Loop iteration counter
begin
for dim = 1 to n do
--Assign a predefined starting solution component as the current solution component for
-- dimension “dim” and as the best solution component seen thus far for that dimension
--Randomly assign an initial velocity in the dimension “dim” within the bounds of IVEL

end;
cnt = 0;
--Calculate an initial vector velocity sum, based on the random initial velocity components
-- assigned in the previous step
while (the velocity sum <> 0) and (cnt < ITER) do
--Reset the velocity sum to 0
for dim = 1 to n do
--Calculate the solutions adjacent to the current solution, and their respective RF values
--If any of these is better than the best solutions seen thus far, then make that solution
-- the new best solution
--Calculate the change in the gravitation field for the current dimension “dim”, as caused
-- by the adjacent solutions and the current solution using the vector sum equation for
-- gravitational field calculation
--Calculate change in acceleration for the current dimension “dim”
--Calculate change in velocity for the current dimension “dim”
--Calculate new current solution component for the dimension “dim”, which will be the ith

-- adjacent node in the dimension “dim” in the current direction of movement as indicated
-- by the magnitude i of the velocity component for the dimension “dim”

end;
--Calculate the new velocity sum
cnt = cnt + 1;

end;
return best solution found, its RF value, and the iteration count (cnt)

end;

7

EVALUATING THE ALGORITHM

In order to evaluate the efficacy of the GLSA

algorithm, a test environment was devised.

This environment was designed to test the

ability of GLSA to find the optimal or near

optimal solution within a given solution space

when the optimal solution could be known

with certainty.

The test environment consisted of a 10x100

matrix solution space, simulating a problem

with ten variables. The matrix was populated

with randomly-generated integer values ranging

from zero to one hundred. These integer

values represented the associated RF value of

that particular node. The integers could be

assigned with a pre-defined probability in order

to represent problems with sparse solutions.

That is, if the probability was defined to be 0.1,

then only about ten percent of the nodes in the

matrix would be assigned a non-zero value [1].

A complete solution to a problem instance

generated in this fashion would be the sum of

the integer values for a tuple consisting of one

node from each of the ten dimensions, a value

ranging from zero to one thousand. The

higher the sum total, the better the quality of

the solution. As the values were being assigned

to the matrix, a record was being kept of the

optimal solution seen to that point. Thus,

when assignment of values to the matrix was

complete, the overall optimal solution and its

RF value were known.

This test environment allowed for the creation

of problem instances of any degree of sparcity

for the ten-dimensional problem. This

provided for a solution space of up to 10100

possible solutions, a value sufficiently large to

render an exhaustive search of the solution

space impractical. Having said this, it should

be readily obvious that the optimal solution to

the problem could be located simply by

scanning each of the ten dimensions and

building the solution by selecting the largest

value from the nodes in each dimension.

However, this was done in order to facilitate

the rapid generation of problem instances

where the optimal solution was known up

front.

While it is true that the definition of RF for this

problem allowed for a very easy location of the

optimal solution, such is very often not the

case. In many cases, the RF for a problem

involves a particular interrelationship between

the individual variables in the solution. In

these cases, the value of a given variable

assignment relative to the overall RF is not

known until the actual RF is calculated for a

8

complete solution tuple, and cannot be

determined by simple examination of the value.

Thus, it can be seen that the test problem is a

special case of the more general class of multi-

dimensional problems, one where the RF just

happens to be the sum of the values of the

individual solution components. Given this

fact, the problem can be approached by any

solution algorithm as if it was of the more

general class where a solution could not be

readily obtained. Taking this approach allows

for rapid generation of problem instances while

maintaining a sufficiently large solution space

for the solution algorithms to search.

To establish actual test scenarios using the

defined test environment, a series of test

instances was generated. Ten problem

instances were generated for each of ten levels

of sparcity, beginning at ten percent and going

to one hundred percent, in increments of ten

percent. Thus, ten tests were conducted with

ten percent of the nodes in the solution space

having non-zero values, another ten tests were

conducted with twenty percent of the nodes

having non-zero values, another ten tests at

thirty percent, and so on, until the final ten

tests were conducted where every node in the

solution space had a non-zero value [1].

For each of the one hundred total test

instances, the two versions of GLSA were run

and the results collected and compared against

the known optimal solution. To provide a

further basis for comparison, the two versions

of GLSA were compared against two other

methods of finding a solution: random and

basic hill climbing.

Each of the test scenarios progressed as

follows: first, the problem instance was

generated and the optimal solution recorded.

Next, a random solution to the problem

instance was generated (by selecting a random

assignment for each of the ten dimensions) and

its RF value calculated and recorded. Then, the

hill climbing algorithm was run, using as its

starting point the random solution, and its

resultant solution and RF value was recorded.

Finally, each of the two versions of GLSA was

run, also using as its starting point the random

solution (and using the default values for the

operational parameters), and its solution and

RF value was recorded.

This procedure was followed for each of the

one hundred test instances. Once all the data

were collected, a comparison could be made

between the results obtained randomly, by hill

climbing, and GLSA1/GLSA2, and the known

optimal results. Having done so (and done so

9

by repeating the test set several times), the

following items were noticed:

• The random solution, as was surmised,

produced generally very poor solutions

• Hill climbing, beginning at the random

solution and attempting to improve

upon it, was in virtually every instance

able to do so and produce a

significantly better solution than the

random solution

• GLSA1 and GLSA2, also beginning at

the random solution and attempting to

improve upon it, were also in virtually

every instance able to do so and

produce a significantly better solution

than the random solution

• In the overwhelming majority of cases,

both GLSA1 and GLSA2 were able to

produce solutions better than those

obtained by hill climbing, in many cases

substantially better

• GLSA2 on average produced better

solutions than GLSA1

• Typically, hill climbing completed in

two to five iterations

• GLSA1 and GLSA2 both typically

completed in twenty to twenty-five

iterations, although there were a very

few occasions where GLSA2 fell into a

harmonic motion through the solution

space and had to be terminated by

maximum iteration count instead of by

its normal termination conditions

These results, while far from being exhaustive,

were very promising and at least served to

demonstrate that the basic premise of the

GLSA algorithm has some merit and is worthy

of further investigation.

AN APPLICATION OF THE
ALGORITHM

As previously stated, GLSA is a general

purpose local search algorithm, adaptable for

use with most types of problems for which a

local search algorithm is appropriate.

However, a particular problem will now be

outlined to illustrate how GLSA can be used to

solve such a problem.

The problem that will be used for this example

is the File Assignment Problem, or FAP. In

the FAP, a group of files needs to be assigned

to a group of devices in such a manner as to

optimize a predefined factor, such as file access

10

cost or throughput [6]. The FAP has been

shown to be a difficult problem to solve

efficiently, even with relatively few files and

devices, so it is a good candidate for a local

search solution approach [7].

There are many variations of the FAP. The

particular variation that will be used in this

example states that each file in the group must

be assigned to one and only one device, and

that each device may have zero or more files

assigned to it. The goal is to minimize the total

cost of accessing the files during runs of a

particular set of programs (cost in this case is

the time required for a device to locate and

read a file, plus the latency time if a given file

access request is issued but that file is on a

device that is still in the process of accessing

another file, plus the time required to transmit

file data from a device, etc.) [6, 7].

To use GLSA with this particular variation of

the FAP, a suitable RF must first be defined.

In this case, RF would calculate the total file

access cost for a given set of file-to-device

assignments, based on a known sequence of

file access requests that will be made. The set

of file-to-device assignments is the solution.

This solution can be encoded as an array where

each subscript of the array represents one of

the files in the group, and the value held at that

subscript represents the device that the file is

assigned to.

To initialize GLSA, a starting solution is

selected, along with experimental values of the

adjustable operation parameters. The run of

GLSA then commences, and when it

completes the solution returned gives for each

file in the group the device to which it should

be assigned, along with the value of RF for that

solution. The solution returned can then be

compared with the value of RF for solutions

obtained by other algorithms to facilitate a

comparison, or if an exhaustive search of the

solution space is practicable, to prove whether

or not GLSA located the optimal solution.

CONCLUSIONS

As previously stated, the empirical results

obtained thus far with both GLSA1 and

GLSA2 indicate that the algorithm holds at

least some promise for being able to generate

high quality solutions to a variety of local

search problems such as described for the

FAP.

With its available set of operational parameters,

and with the variety of values that can be

assigned to those parameters and their

interplay, GLSA can be fine-tuned to operate

11

in a number of ways as its users see fit. The

experimentation conducted indicated that

changes in the values of the operational

parameters can result in quite varied results for

both versions of the algorithm (i.e. changing

MASS from 1 to 10 resulted in quicker

terminations of the algorithm, but with less

optimal results). Thus, it is conceivable that by

optimizing the values for the parameters, even

better results could be obtained. However, no

empirical results are currently available to verify

this possibility.

With this in mind, one of the first things that

can be done is to generate some results for test

problems using the default parameter values,

then attempt to optimize the parameter values

to see if the performance of GLSA can be

improved for those same test problems. An

attempt could also be made to discover

heuristics that can be generated to determine

which combination(s) of operational parameter

values are most likely to generate the best

results. Other types of local search algorithms

such as simulated annealing and genetic

algorithms could be employed as the heuristic

method, generating and testing combinations

of operational parameter values against various

problem instances in an attempt to discover

optimal parameter settings [8].

GLSA could also be tested against these other

types of algorithms to see how well its results

compare. This could be done in combination

with running GLSA against other different

problem types, to see if GLSA performs better

against some types of problems than others

and/or performs better than other types of

local search algorithm in general or only for

certain types of problems [8].

Other modifications can also be made to

GLSA. For example, it would be a simple

process to parallelize GLSA by simply running

an instance, with a unique set of operational

parameter values, on each available processor

and then returning the best solution obtained

from all instances, or running both versions of

the algorithm on different available processors

and then returning the best solution obtained.

The possibility of other operational parameters

could also be investigated, although care is

required since while gravitational attraction

between two objects is a relatively simple thing

to calculate, the complexity increases

geometrically as the number of objects for

which the attraction interplays are calculated

increases. If GLSA begins to account for the

attractions between more than two objects, the

amount of processing power required to

perform the calculations could quickly become

prohibitive [5].

12

The most basic conclusion that can be drawn

at this point is that there is much that could be

done with GLSA, and only time and further

testing will determine whether it is an effective

tool for solving difficult problems or if it just

an also-ran.

REFERENCES

[1] Kondrak, Grzegorz and van Beek, Peter A
Theoretical Evaluation of Selected Backtracking
Algorithms, Proceedings of the 14th
International Joint Conference on Artificial
Intelligence, pgs. 541-547, 1995.

[2] Pearl, Judea Heuristics: Intelligent Search

Strategies for Computer Problem Solving,
Addison-Wesley, 1985.

[3] Cormen, Thomas H., Leiserson, Charles

E., and Rivest, Ronald L. Introduction to
Algorithms, MIT Press, 1991.

[4] Prosser, Patrick Hybrid Algorithms for the

Constraint Satisfaction Problem, Computational
Intelligence, Vol. 9, No. 3, 1993.

[5] Sears, Francis W., Zemansky, Mark W., and

Young, Hugh D. University Physics, 7th Ed.,
Addison-Wesley, 1987.

[6] Dowdy, Lawrence W. and Foster, Derrell

V. Comparative Models of the File Assignment
Problem, ACM Computing Surveys, Vol. 14,
No. 2, June, 1982.

[7] Bernhard, Philip J. and Fox, Kevin L.

Experimental Evaluation of Techniques for
Database File Assignment, 2000.

[8] Sen, Sandip File Placement Over a Network
Using Simulated Annealing, Association for
Computing Machinery, 1994.

13

APPENDIX A – CODE FOR GLSA1 ALGORITHM

Note The following represents the code for the GLSA1 algorithm specific to the problem

instance that was used for initial testing. While the code can be adapted for virtually any problem

instance, there will be minor modifications that will be required prior to use depending on the

particular nature of the problem at hand. The following is presented, and should be used, only as a

reference for the general manner in which GLSA1 behaves, not as the coding for specific problem

solutions.

/* Include the global definitions header file (this file will contain instance-
specific definitions for the problem such as the solution space, solution
vector, number of dimensions, RF function definition, ranges, etc.) */

#include “global.h”

/* Define the algorithmic environment */

#define DENS 1.2
#define DRAG 0.2
#define FRIC 0.57
#define GRAV 6.672
#define IVEL 10
#define ITER 100
#define MASS 1
#define RADI 2
#define SILH 0.1
#define THRE 2

int
glsa1 (solspace, strt_sol, sol, iter)

unsigned int *iter;
SPACE solspace;
SOL strt_sol, sol;

{
/* Define program variables */

int acc, best_rf, frc, vel_sum = 0;
unsigned int adj1, adj2, cnt = 0, res;
SOL best, vel;

/* Initialize the solution, directional force, and velocity vectors */

for (dim = 0; dim < DIMS; dim++)
{
sol[dim] = best[dim] = strt_sol[dim];
vel[dim] = rand () % (IVEL * 2);
if (vel[dim] < IVEL)
vel[dim] = 0 - vel[dim];

14

else
vel[dim] = (IVEL * 2) - vel[dim];

if (abs (vel[dim]) <= THRE)
{
if (vel[dim] > 0)
vel[dim] += THRE;

else
vel[dim] -= THRE;

}
vel_sum += pow (vel[dim], 2);

}
vel_sum = sqrt (vel_sum);

/* Keep performing the algorithm until the combined velocity reaches zero */

while (vel_sum > 0 && cnt < ITER)
{
/* Reset the velocity sum */

vel_sum = 0;

/* Process each component of the current solution */

for (dim = 0; dim < DIMS; dim++)
{
/* Calculate the gravitational attraction for the current dimension */

adj1 = nextval (sol[dim], 'P', -1);
adj2 = nextval (sol[dim], 'P', 1);
if (solspace[dim][adj1] > solspace[dim][best[dim]])
best[dim] = adj1;

if (solspace[dim][sol[dim]] > solspace[dim][best[dim]])
best[dim] = sol[dim];

if (solspace[dim][adj2] > solspace[dim][best[dim]])
best[dim] = adj2;

frc = 0 - (GRAV * solspace[dim][adj1] *
(solspace[dim][sol[dim]] + 1) / pow (RADI, 2));

frc += GRAV * (solspace[dim][sol[dim]] + 1) * solspace[dim][adj2]
/ pow (RADI,2);

/* Calculate the change in acceleration for the current dimension */

res = (FRIC * MASS) + (0.5 * SILH * DRAG * DENS * pow (vel[dim], 2));
if (vel[dim] > 0)
frc -= res;

else if (vel[dim] < 0)
frc += res;

acc = frc / MASS;

/* Calculate the change in velocity for the current dimension */

if (abs (acc) > abs (vel[dim]) / 2)
acc = vel[dim] / 2;

if (abs (acc) > 0)
vel[dim] += acc;

else
if (vel[dim] > 0)
vel[dim] -= MASS;

else if (vel[dim] < 0)
vel[dim] += MASS;

15

if (abs (vel[dim]) <= THRE)
vel[dim] = 0;

vel_sum += pow (vel[dim], 2);

/* Calculate the new solution components, accounting for the
gravitational effects */

if (vel[dim] > 0)
sol[dim] = nextval (sol[dim], 'P', 1);

else if (vel[dim] < 0)
sol[dim] = nextval (sol[dim], 'P', -1);

}

/* Calculate the new velocity sum */

vel_sum = sqrt (vel_sum);

/* Increment the iteration count */

cnt++;

}

/* Determine the best solution found and its RF value */

for (dim = 0; dim < DIMS; dim++)
sol[dim] = best[dim];

best_rf = rfval (solspace, best);

*iter = cnt;

return best_rf;
}

16

APPENDIX B – CODE FOR GLSA2 ALGORITHM

Note The following represents the code for the GLSA2 algorithm specific to the problem

instance that was used for initial testing. While the code can be adapted for virtually any problem

instance, there will be minor modifications that will be required prior to use depending on the

particular nature of the problem at hand. The following is presented, and should be used, only as a

reference for the general manner in which GLSA2 behaves, not as the coding for specific problem

solutions.

/* Include the global definitions header file (this file will contain instance-
specific definitions for the problem such as the solution space, solution
vector, number of dimensions, RF function definition, ranges, etc.) */

#include “global.h”

/* Define the algorithmic environment */

#define DENS 1.2
#define DRAG 0.2
#define FRIC 0.57
#define GRAV 6.672
#define IVEL 10
#define ITER 100
#define MASS 1
#define RADI 2
#define SILH 0.1
#define THRE 2

int
glsa2 (solspace, strt_sol, sol, iter)

unsigned int *iter;
SPACE solspace;
SOL strt_sol, sol;

{
/* Define program variables */

int acc, best_rf, frc, vel_sum = 0;
unsigned int adj1, adj2, cnt = 0, res;
SOL best, vel;

/* Initialize the solution, directional force, and velocity vectors */

for (dim = 0; dim < DIMS; dim++)
{
sol[dim] = best[dim] = strt_sol[dim];
vel[dim] = rand () % (IVEL * 2);
if (vel[dim] < IVEL)
vel[dim] = 0 - vel[dim];

else

17

vel[dim] = (IVEL * 2) - vel[dim];
if (abs (vel[dim]) <= THRE)
{
if (vel[dim] > 0)
vel[dim] += THRE;

else
vel[dim] -= THRE;

}
vel_sum += pow (vel[dim], 2);

}
vel_sum = sqrt (vel_sum);

/* Keep performing the algorithm until the combined velocity reaches zero */

while (vel_sum > 0 && cnt < ITER)
{
/* Reset the velocity sum */

vel_sum = 0;

/* Process each component of the current solution */

for (dim = 0; dim < DIMS; dim++)
{
/* Calculate the gravitational field component for the current
dimension */

adj1 = nextval (sol[dim], 'P', -1);
adj2 = nextval (sol[dim], 'P', 1);
if (solspace[dim][adj1] > solspace[dim][best[dim]])
best[dim] = adj1;

if (solspace[dim][sol[dim]] > solspace[dim][best[dim]])
best[dim] = sol[dim];

if (solspace[dim][adj2] > solspace[dim][best[dim]])
best[dim] = adj2;

frc = solspace[dim][adj2] - solspace[dim][adj1];

/* Calculate the change in acceleration for the current dimension */

res = (FRIC * MASS) + (0.5 * SILH * DRAG * DENS * pow (vel[dim], 2));
if (vel[dim] > 0)
frc -= res;

else if (vel[dim] < 0)
frc += res;

acc = frc / MASS;

/* Calculate the change in velocity for the current dimension */

if (abs (acc) > abs (vel[dim]) / 2)
acc = vel[dim] / 2;

if (abs (acc) > 0)
vel[dim] += acc;

else
if (vel[dim] > 0)
vel[dim] -= MASS;

else if (vel[dim] < 0)
vel[dim] += MASS;

if (abs (vel[dim]) <= THRE)
vel[dim] = 0;

vel_sum += pow (vel[dim], 2);

18

/* Calculate the new solution components, accounting for the
gravitational effects */

sol[dim] = nextval (sol[dim], ‘P’, vel[dim]);
}

/* Calculate the new velocity sum */

vel_sum = sqrt (vel_sum);

/* Increment the iteration count */

cnt++;

}

/* Determine the best solution found and its RF value */

for (dim = 0; dim < DIMS; dim++)
sol[dim] = best[dim];

best_rf = rfval (solspace, best);

*iter = cnt;

return best_rf;
}

