Migration from
a Waterfall/Non SEI CMM Compliant Process to
a RUP/SEI CMM Compliant Process

by

Chad Amos Chamberlin

A thesis submitted to the
School of Extended Graduate Studies at
Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Software Engineering

Melbourne, Florida
May 2003

Permission to Copy

| grant The Florida Institute of Technology the non-exclusive right to use
this work for their own purposes and to make single copies of the work
available to the public on a not-for-profit basis if copies are not otherwise

available.

Chad Amos Chamberlin

We the undersigned committee hereby recommend that the attached
document be accepted as fulfilling in part the requirements for the degree of
Master of Science in Software Engineering.

“Migration from a Waterfall/Non SEI CMM Compliant Process to a RUP/SEI
CMM Compliant Process,”
a thesis by Chad Amos Chamberlin

Mr. David Clay,
Director, Computer Programs
School of Extended Graduate Studies Spaceport, KSC

Thesis Advisor

Art Dickinson, Ph.D.
Assistant Director, Computer Programs
School of Extended Graduate Studies Spaceport, KSC

Michael Shaw, Ph.D.
Associate Professor and Associate Head
Department of Mathematical Sciences

William David Shoaff, Ph.D.
Associate Professor and Head

Department of Computer Sciences

Abstract

Title:
Migration from
a Waterfall/Non SEI CMM Compliant Process to
a RUP/SEI CMM Compliant Process

Author:
Chad Amos Chamberlin

Thesis Advisor:
Mr. David Clay

Software Life Cycle processes play a key role in the successful
development of software products. Software processes continue to evolve
as the field of software development progresses toward being a true
engineering discipline. This thesis has two objectives:

(1) To apply software engineering knowledge gained during the pursuit of
this degree toward the design and development of a complete,
Software Engineering Institute (SEI) Capability Maturity Model (CMM)
compliant process for the design phase of the software lifecycle.

(2) To evaluate a Waterfall Lifecycle Model vs. an Iterative Lifecycle Model

and compare SEI CMM compliant processes to non-SEI CMM

compliant process using a "real world" software development project.

1

2

2.1

211
2.1.2
2121
2.1.2.2
2.1.2.3
2124
2.1.25
2.1.2.6
2.2

221
2.2.2
2221
2221.1
2221.2
22213
22214
22215
2.2.2.1.6
2.2.2.2

Table of Contents

INtrOdUCTION ..eeeiii e 1
Evaluation of Lifecycle Models.........ccccccoeeeernnne. 5
Waterfall..........oouiiii 5
DefinitioN.....ueeiiii 5
DOD 2167A ..ottt 8
System ReqUIremMeNntSooovvveeeeiiiiiiiiee e 8
SYStEM DESIQN ..coeveiiiiiiiiie e 8
Software Requirements...........ooeevvveiiiiineeeeeeeeeeiiiiinnns 9
Software Preliminary Design........cccccovveeeeeiiieeiinnnnnnn 10
Software Detailed Design............ceveeiiiiieiiiiieeiiinnnnnn 10
Test and Integrationceeiiiiniiiiiieeeiiic e, 11
ITEratiVE ... 11
DefinitioN.......ueiii 11
Rational Unified Process (RUP).......cccccooeeviiiiennne, 13
Industry Best PractiCes...........ccoeuvviiviiiiiiiiiieecceii, 13

Management of requirements...............cccevvnnn... 13

Component Basedccccoevvevvviiiiicceiiiiie e, 14

Visually modelingcccoevviviiiiiiiiieie e, 14

Built-in Qualitycooovvviiiiiiiiii e, 14

Change Control.........cccooovviiiiiiiiee e, 15

Commercial Viability.........cccoooeviiiiiiiiiiie, 15
History of RUP ..o 16

2.2.2.3
22231
2.2.2.3.2
222321
2.2.2.3.2.2
2.2.2.3.2.3
222324
2.2.2.3.3
2.2.2.34
222341
2.2.2.34.2
2.2.2.34.3
222344
3

3.1

3.2

3.2.1
3.2.2

3.2.3

3.24

3.2.5

3.3

3.3.1
3.3.2

CYCIES .. 17
PRASES ...oveiiie 18
INCEPLION ..o 18
Elaboration ..., 18
CONSLIUCHION ..vvveiiiieeeeccceeeeie e 19
TraNSItIONuuiiee e 19
ItEratioNS.....uveiie e 20
Modeling elements............cooviiieiiiiiiiiec e, 20
Who = WOrKers........oooviiiiiiiie 21
What = ArtifactS.........covveiiii 21
HOW = ACHVILIESovvviiiiieieeecceeeeiii e, 22
When = WOrkflowscccoovviiiiiiiiiiiiiiii, 22
Discussion of SEI CMMcccvviiiiiiineeeee, 24
History of CMM ..o 24
CMM LEVEIS....ccieiiiieiee e 25
Level 1 - Initial ..o 25
Level 2 - Repeatableccoeiiiiiiiiiii, 25
Level 3 -Defined ..o 26
Level 4 - Managed.........ccccooeevviiiiiiiiveeiec e, 27
Level 5 - Optimizing.......cccoeieeiviiiiiiieeeen e 27
Key Process Areas (KPA)cccooiiiiviiiiiiccceie, 28
Level 2 KPA Software Project Planning.................. 29
Level 3 KPA Peer ReVIEWScoovvvvviiiiiiineeeeeee, 31

4.1

4.1.1
4.1.2
41.2.1
41.2.1.1
41.2.1.2
41.2.2
4.1.2.3
4.2

421
4.2.2
42.2.1
42.2.1.1
42.2.1.2
4.2.2.2
42.2.2.1
4.2.2.2.2
42223
4.2.2.3

o N O

Comparison of CLCS Processes.......ccccceeeeeeeeeen, 32

Description of CLCS Process Acoeeveevvvvvnennne, 32
Process OVEIVIEW...........uuuuiiiiieeiiieieiiiiiee e 32
CMM Evaluation of Design Phasecccccuu... 34
Level 2 KPA Software Project Planning.................. 36
Activities Performed (Work Products)............... 36
Ability to Perform (Estimation training) 37
Level 3 KPA Peer ReVIEWScoovvvvviiiiiiiiieeeeeeee, 38
Process A CMM Evaluation Summary.................... 38
Description of CLCS Process Bccccevivieeiinneee, 39
Process OVEIVIEW...........uuuuiiiiiieeiiiieeiiiiiiien e, 39
CMM Evaluation of Design Phasecccccoeeeee, 41
Level 2 KPA Software Project Planning.................. 43
Activities Performed (Work Products)............. 43
Ability to Perform (Estimation training) 47
Level 3 KPA Peer ReVIEWScoovvvvviiiiiiiiieeeeeeee, 47
Design Readiness Review (DRR)..........ccc........ 47
Preliminary Design Review (PDR).................... 49
Critical Design Review (CDR).......ccooeevvviiienne, 49
Process B CMM Evaluation Summary.................... 51
Supporting Evidence for Hypothesis.................. 52
Hypothesis Summary........cccccoeevieevieiiinieeceiieeee, 56
Future Research on this TOPICccccooeevvviiiennee, 58
ReferencCes ... 59

Vi

10

Appendix A
Appendix B

vii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Table of Figures

DOD 21687 A . e 7
The History of RUP Developmentcooovveiiiiiiiineeeeeeeceiiin 16
The RUP Implementation of the Iterative Model.......................... 17
RUP Modeling EIemMentsooiiiiiiiiiiiiiiiie e 21
The History of the SEI CMM...........coiiiiiiiiiiii e 24
The CMM SHIUCKUIEeveiiie e 29
Process A —Requirements / Design Development 33
Process A - Software Production ACtIVItIESccevviviiiiieeeeennee. 34
Process A - Preliminary Design.........coovvuiiiiiiiinnieiiieeeiiicie e 35

Process A - Detail DeSIgNuuiiiieiiiiiiiiiiiieeee e 36
Process B - Design Developmentcoouviiiiineeeiiieeiiiiiinnnn. 40
Process B - Requirements Readinessccoocevvviiieiiiiiiineennn, 42
Process B -DRR ... 42
Process B - Analysis & Design Workflowccceeveiiviinnnnn. 45
Process B - OO/UML........ccooiiiiiiiiiiiiee e 46
ProceSsS B - PDR ... 49
Process B - CDR ...t 50
CSCI Comparable durationsccoeevueiiiiiinneeeeeeeeiee e 55

viii

APS
CDR
CLCS
CMM
COTS
CSC
CSCI
CSuU
DOD
FPA
IPT
KPA
KSC
0]0)
PDR
RUP
SDD
SDP
SDR
SEI
SQM
SRR
SSR
STD
UML

Table of Acronyms

Application Software

Critical Design Review
Checkout Launch and Control System
Capability Maturity Model
Commercial off the Shelf
Computer Software Component
Computer Software Configuration Item
Computer Software Unit
Department of Defense
Function Point Analysis
Integrated Product Team

Key Process Area

Kennedy Space Center

Object Oriented

Preliminary Design Review
Rational Unified Process
Software Design Document
Software Development Plan
Software Design Review
Software Engineering Institute
Software Quality Management
System Requirements Review
Software Specification Review
Standard

Unified Modeling Language

Acknowledgements

| would like to thank David Clay for serving as my thesis advisor. Special
thanks to Jonsie Ivey for clearing the thesis path so that others at SEGS
KSC could follow.

1 Introduction

It is commonly accepted throughout the software industry that the road to a
successful software development project follows a software development
process that is implemented inside the general confines of a software life
cycle model. What is not commonly accepted is which life cycle model and
which development processes are the "ones" to follow for a particular
development effort. As the software industry continues to evolve so do the
models and processes by which software is developed. Over the years, the
evolution of software development has produced many different types of
software life cycle models and even more software development processes,

each with their list of pros and cons, enthusiast and naysayers.

By choosing a life cycle model to follow and then instituting development
processes, a software project begins the effort of developing software. The
ability for these processes to aid in the successful completion of a software
product can be subjective. How does one know if the processes are worth
following? Will they aid in a successful completion?

In 1986 the Software Engineering Institute (SEI) began work on a way to
evaluate software development processes. By evaluating the effectiveness
of a software process a rating could be applied which in turn could help
indicate the maturity of the software process and it's likelihood of
successfully producing software. This software process evaluation is
known as the Capability Maturity Model (CMM).

This background work for this thesis was conducted over a period of twelve
months. The data collected are from a real world software engineering

1

project; the Checkout and Launch Control System (CLCS), Application
Software (APS) at NASA Kennedy Space Center (KSC). The purpose of
CLCS was to replace the Checkout, Control and Monitoring System used to

process and launch the United States Space Shuttle at KSC

For three years, September 1998 to September 2001, the CLCS project
followed a Waterfall life cycle model with minimal process descriptions.
During the three years of following Process A the CLCS project continually
failed to meet schedule milestones and cost milestones. Not only where
the milestones missed many of them were never achieved. A majority of

the software produced was not progressing past unit test.

A corrective solution was needed to ensure the continuation of the project.
It became evident that a radical redirection from Process A was necessary
to get the CLCS project moving in a forward direction. The decision was
made to bring the CLCS software life cycle into line with more modern life
cycle models and SEI CMM compliant processes. Although the Waterfall
life cycle model cannot be blamed in and of itself for the inadequacies of
this development effort, the combination of this model and the lack of CMM
compliant processes did produce disastrous results. The lock step method
by which most organizations institute the Waterfall model prevented the
discovery of severe problems until late in the life cycle. This model and
minimal process definition will be referred to as "Process A" throughout the

thesis.

The new life cycle model chosen iterative and implemented using the
Rational Unified Process (RUP). Detailed processes were also created and

modeled in the Unified Modeling Language (UML). In September of 2001,

the CLCS project left Process A and began using the new process at the
requirement analysis phase. This new model and process definition will be
referred to as "Process B" throughout the thesis.

Software performance data were captured over the three-year period that
CLCS followed Process A and over the twelve-month period that CLCS
followed process B. The data taken capture the performance of one
hundred plus software engineers assigned to approximately twenty
Integrated Product Teams (IPTs).

Both process A and B were working to the same requirements as defined
by the legacy system that was being replaced. The software engineering
personnel were the same, the management structure was the same, and
the development and target platforms were the same. Both Process A and
Process B were followed using Object Oriented (OO) methodologies. This
resulted in a unique environment in which the study of different life cycle
models and development processes could be undertaken. It was this
unique environment that created the opportunity for this thesis.

Throughout the pursuit of the master of software engineering degree the
author was introduced to the idea that following the iterative lifecycle model
and SEI CMM compliant process was the most efficient way to develop
software. Although this concept was stated in many different sources and
touted by experts in the industry, the author did not come across substantial
evidence from a software development project that supported these claims.

The CLCS project provided the ability to validate these statements:
There is an improvement in the performance of a software development
team when:
% Following an iterative lifecycle model versus a waterfall lifecycle
model.
% Following SEI CMM compliant processes versus non-SEI CMM

compliant processes.

In this thesis, background information on both the Waterfall and Iterative
software life cycle models is presented. An explanation of the RUP is
covered, as well as the history and background of the SEI CMM, including
the key elements for each CMM Level covered in this thesis. The details of
Process A and Process B are explained as well as the CMM evaluation of
both processes. The metrics collected from each process will be presented
along with an interpretation of the results. Finally, a hypothesis summary

and areas of potential future research on this topic are discussed.

2 Evaluation of Lifecycle Models

2.1 Waterfall
2.1.1 Definition

Dr. Winston Royce first described the Waterfall lifecycle model in 1970. His
paper titled, Managing the Development of Large Software Systems:
Concepts and Techniques, "...set the roots for the 'Waterfall model.
Although Royce didn't mentioned the word 'waterfall' in it, his methodology
became later known for it because of the layout of the boxes in his
diagrams which looked like stones in a waterfall."[6]

This model is defined by a set of sequential phases that are strictly
performed in order. Each phase is accompanied by a verification of the
work in the phase that ensures that the work products are complete which
in turn allows the next phase in the sequence to begin. These verifications
take the form of formal reviews in which management, engineering peers,

customers and even end user may be involved.

It is important that the work products in each phase are developed with due
diligence, as the formal reviews are meant as a last check and verification
that the work products are ready for promotion to the next phase. Although
Royce allows phases to be revisited, in general practice the formal reviews
indicate a firm completion of a phase and returning to phases previously
reviewed is rarely allowed. Due to schedule and budget constraints there
exists great pressure to "lock-down" one phase to move to the next. If
issues are raised during the reviews work products may have to be revisited

to solve any identified problems and the completion of a phase postponed.

Managers have been persuaded by the name "waterfall" to never move
backwards in the software life cycle, trying to complete each step right the
first time.[14]

The Waterfall model has been widely used in industry for many years and
continues to be used today. The United States Department of Defense
(DoD) developed a military software development standard known as DoD-
Std-2167A. The DoD and its government contractors used this standard
extensively. For its military projects the DoD mandated the use of this
military software development standard for a number of years. There has
been much debate on whether or not DoD 2167A dictated that the Waterfall
Model be followed. Regardless of these debates, many defense
contractors and those required to follow DoD 2167A used a Waterfall

lifecycle model approach during their software development projects.

Although this standard has been superceded by MIL Standard 498 and
other IEEE and I1SO standards, the following description describes DoD
2167A in conjunction with a Waterfall lifecycle model, as it is this standard
that was used as a model for Process A. Figure 1 shows the DoD-2167A
life cycle model, its resemblance to waterfall model diagrams can easily be

seen.

Fabrication

Hamdwars

Preliminary
[zign

HACI
Testng

Fie quite ments
Analysis

Shystam
COncEpts

&)

St
Fie quite-
mnents
Anglysiz

Softw are
e quitemeants

s@

Analysis

Preliminary
[zign

€

@

Detailed
Do
= san Tading, Uni
Tezthg and
Irbegration

Tezthg

Revi ews
SER - Swstern Bequir gnents Beview
SDR - System Design Resview
S5R - Software Specification Feview
PCR - Prelimirary Design Fev ew
CDR - Critical Design Beview
TRR - T est Readiness Few ew
FZA, - Funckiorel Confi guration Audit
PCA- Physical Configuration Audt
FGR - Formal Gualification Resd ew

* -Mayna berequiredfor all
CSC1s and HWCls

** - bay be utiple resi ews and
may beintegrated with
hardware
rend e

¥

=1
Tezthg

Shstiem
Inkegration
and
Testhg

Figure 1: DoD 2167A.[5]

Testihg

*
@ @ @ En\-i]uaﬁon

'

Production

and
Lre plovgine nit

t

Product Baszline

2.1.2 DOD 2167A
2.1.2.1 System Requirements

The system requirements phase is used to define and/or analyze the
requirements levied on the entire system being developed. These
requirements are generally written at a high level and must be refined so
that they are as clear and unambiguous as possible. This is a difficult task
and can set the stage for the entire life of the project.

The end of this phase is marked by the first verification in which the system
requirements documents are formally examined in the System
Requirements Review (SRR). It is important that the system engineers
understand the requirements prior to the SRR and that they have used this
phase to resolve any misunderstandings or discrepancies in the system

requirements.

Once the system requirements have been verified in the SRR they are
ready to be used during the system design phase. At this point all parties
involved have agreed upon the requirements and the ability to change

requirements is strictly limited.

2.1.2.2 System Design

The system design phase involves taking the verified system requirements
and designing the system. The design of the system includes which
hardware platforms, operating systems, networks, commercial off the shelf
products (COTS), etc. must be included in the system. Also examined are

custom hardware development and custom software development.

Those requirements that fall into the realm of custom software development
are levied upon the software development organization. These
requirements will be the foundation of the next software development
phase. The conclusion of this phase comes with the verification of the
system design in the system design review (SDR).

It is very important that those responsible for the software development
agree with the requirements that system engineering has allocated to them
as this will be the foundation of the software development effort.

2.1.2.3 Software Requirements

Once the system designers allocate requirements to the software
organization these requirements become the responsibility of that
organization. Like the systems requirements phase, this phase requires a
scrutiny of the requirements, the difference being that these requirements
pertain to the software being developed not the entire system. Often times
the initial requirements are at such a high level that they must be broken
down into smaller subsets of requirements. This results in what are

commonly referred to as grandparent, parent and child requirements.

It is imperative that the software development team understands the
software requirements. It is this foundation that will dictate success or
failure of the software end product. This phase concludes with the
verification of the software requirements, both those allocated by the
system design phase and those derived requirements created during this
phase. This verification occurs via the Software Specification Review
(SSR). At the conclusion of this review the software implementation effort

is ready to begin.

2.1.2.4 Software Preliminary Design

During the preliminary design phase the software requirements are used to
begin the design of the software system. This includes identification of
Computer Software Configuration Items (CSCI), and subsets of CSCls
Computer Software Components (CSCs).

Regardless of the design methodology used, Object Oriented, Structured or
Functional Decomposition, the work products of this phase need to describe
the "framework" or beginnings of the software design. The use of two
design phases allows the verification of the framework and is an attempt to
prevent design mistakes at an early phase. This phase is verified during the

Preliminary Design Review (PDR).

2.1.2.5 Software Detailed Design

The detailed design phase builds on the preliminary design to flush out the
remaining detail and address remaining design issues. This phase is the
last before code will actually be written and thus the work products
produced must be accurate and complete.

In this phase additional CSCs may be identified as well as Computer
Software Units (CSUs). CSCs and CSUs make up the detailed design of
each CSCI. ltis the design work products of these software entities that will
directly translate into software code. As a result the accurate verification of
these work products is crucial and is conducted through via the Critical
Design Review (CDR).

10

2.1.2.6 Test and Integration

Test and Integration typically involves more then one phase. The testing of
CSUs is generally referred to as Unit Test and is performed to ensure the
correct functionality of each CSU. CSCs are comprised of CSUs and are
tested after the CSUs have been integrated to function together.
Subsequently each CSCI integrates its CSCs during process level testing
and System level test and integration completes the testing phases by

ensuring all CSCls within a system function together.

The obvious work product of one or more test and integration phases is
successful software. These tests attempt to ensure that not only does the
software execute without failure but that it also performs what was dictated
by the software requirements. Traceability of requirements from the
requirements phase through to the testing phases is important to insure
Additional work products include test plans and procedures that are

followed to conduct the software tests.

Verification of the work products from this phase is generally the working
software. However, other work products such as the test plans and

procedures are verified for correctness as well.

2.2 lterative
2.2.1 Definition

The waterfall process has given way to an iterative development approach.
"There are two fundamental flaws in the traditional (waterfall or modified
waterfall) software development life cycle model: the information flow is

unidirectional with inadequate provisions for feedback and user involvement

11

is focused primarily only at the beginning and end of the project. The
iterative process addresses these flaws by using a shorter life cycle and
allowing efficiently for feedback from later stages to earlier ones."[8]

The complexity of software products no longer allows the lock step process
of fully completing each life cycle phase before moving on to the next.
Iterative development allows requirements to be understood, designs to be

flushed out, implementations to be created and errors to be found early.

This is accomplished by breaking the software project up into definable
pieces of functionality or iterations. This is not a quantitative process and is
usually determined based on the customer’s needs and what pieces of
functionality are considered most important or are needed first. The
complete life cycle is followed for each iteration, including delivery to the
customer. As each piece of functionality, or iteration is completed the end

product progressively grows. This is known as incremental delivery.

The iterative model still closely follows the phases as defined in the
Waterfall Model, requirements analysis, design, implementation, test and
delivery. However, by allowing iterations through each phase of the life
cycle, the engineering process is enhanced from the education of the
developers about the problem domain, and from the education of the users
about the software product being produced.

The CLCS project chose to follow Rational Corporation's implementation of
the iterative life cycle model for Process B.

12

2.2.2 Rational Unified Process (RUP)

The Rational Unified Process is an engineering process used for
developing software. The RUP is a process that can be implemented for
both large and small sized software projects. It is designed to produce
quality software on time and within budget by increasing productivity,
facilitating communication between developers and end users, being
configurable, and taking advantage of the software engineering industries
‘best practices’. RUP has evolved over several years and is the
accumulation of these best practices as described in Section 3.2.2.1.

2.2.2.1 Industry Best Practices

“Best Practices” are those that have proven to be successful in industry
among many different software development organizations. Rational based
the RUP on the “best practice” of an iterative life cycle model. In addition to

the iterative model the RUP also incorporates other industry best practices.

2.2.2.1.1 Management of requirements

If requirements are not managed correctly a software project has no chance
of success. The ability to understand, control and track requirements is
essential to the successful completion of any software project. The RUP,
using the UML, facilitates the requirements analysis phase with use cases
and scenarios. These tools help drive the users requirements through
software design, implementation, test and delivery. Use cases are often
used to define the iterations of a software development effort.

13

2.2.2.1.2 Component Based

The ability to develop modules, subsystems or components has proven to
reduce complexity and facilitate reuse. The break out of system objects
and functions greatly improves the ability to understand, communicate and
develop software products. The RUP encourages the practice of identifying
architectural components within a software project and those that can be
incorporated from outside of the project.

2.2.2.1.3 Visually modeling

“A picture is worth a thousand words.” Visual modeling greatly improves
the communication of ideas about a software design and architecture.
Visual modeling contributes to the developer's ability to abstract the
software's architectural components, leaving the details to the
implementation phase. The RUP promotes the use of the UML for the

visual modeling of a software product.

2.2.2.1.4 Built-in Quality

If a quality assurance organization puts its stamp of approval on a software
product at the end of the testing phase, chances are there is not very much
quality in the software product. Quality is not something that can be tested
for at the end of any software project. The people building the product must
build quality into the product. Quality begins with requirement solicitation
and must be present during every phase of the project life cycle. "A
development process that does not address requirements quality is bound
to produce poor-quality software."[10 p. 5] At the early stages of
development a project must define how quality will be measured for all work
products produced.

14

2.2.2.1.5 Change Control

Changes come at all times during the software lifecycle and effect all
artifacts of the software lifecycle. Successful management of these
changes is imperative for a software project to be successful. The process
of managing changes to the software work products as well as changes to
the process itself must be defined during the preliminary stages of
development.

2.2.2.1.6 Commercial Viability

The force behind the creation of the RUP is a commercial entity, The
Rational Software Corporation. As such the need to generate profit and sell
products comes into play. The RUP is designed to be used in conjunction
with the RUP Product. This ‘product’ includes a central, searchable
knowledge base that is used for guidelines, templates, tools, process
improvement, etc. In addition to the RUP Product, the Rational Corporation
also has several development tools available to help facilitate software

development.

The RUP is also meant to be used with the widely accepted Unified
Modeling Language (UML). UML was originally created by Rational and is
now maintained by the Object Management Group. UML is a visual syntax
used to model and convey information (requirements, designs, and
implementations). Figure 2 shows the evolutionary history of the RUP and
Figure 3 shows the RUP Iterative Model.

15

2.2.2.2 History of RUP

Objectory AB Company
1987 Ivar Jacobson creates Objectory Process
Rational Software

Rational Software
Rational Approach process includes iterative
development and architecture based design

OMT: James Rumbaugh

Rational UML 0.8

\ 1996 Rational Software aquires Objectory AB /
Rational Objectory Process 4.0 is created

Requisite, Inc.
Requirements Management

SQA, Inc.

Detailed Test Process

1997 Rational Software aquires Requisite & SQA
Rational Objectory Process 4.1 is created

Rational UML 1.0

lvar Jacobson, Grady Booch, James Rumbaugh
The Unified Software Development Process

Pure-Atria
Configuration Management

Business Modeling

Rational UML 1.2

Project M@: 1998 Rational Software aquires PureAtria

Rational Unified Process 5.0 is created

Figure 2: The History of RUP Development

2.2.2.3 The Process

Organization along time

Phases
% Core Process Workflows Inception [Elsboraticn] Construstion | Trans tion
Business Modeling
Requirermernts N e —
Aralsis & Design LT
]

Organization
lrrplementation

along content
ﬂ e
Creplay ment

Core Supporting Workflows
Configuration & Change bt s W L]
Froject Management | o _commim | o | e
Erwironment I

pembay Fer [e [oter [ec] e | mr.l
edton * §1 #2 #n 0 HeH T E+2Y M AmH

¥ lterations

Figure 3: The RUP Implementation of the Iterative Model [7 p. 2]

2.2.2.3.1 Cycles

A software project should consist of many cycles through the phases of the
RUP. Each cycle results in an incremental delivery to the customer. A
cycle involves traversing each phase in the model: Inception, Elaboration,
Construction and Transition. There may be many iterations of each phase
within a cycle. As each cycle occurs the Inception and Elaboration phases

may become shorter as the understanding of the scope of the work required

becomes more defined.

17

2.2.2.3.2 Phases

The phases of each cycle are the same, inception, elaboration, construction
and transition. During each phase multiple iterations may be performed to
refine the artifacts that will be produced.

2.2.2.3.2.1 Inception

The inception phase defines the scope of the project and the business
case for the project. This is done via identification of 10-20 percent of the
use cases, the risks, the success criteria, scheduling and necessary
resources. This information is used to determine the viability of the
software project. Addressing the following objectives marks the conclusion
of the Inception phase:

< What is the scope?

> Core Requirements
> Key deliverables
> Project Constraints
4 Do we understand the requirements?
> Use Case model 10-20 percent complete.
4 Can it be done? Will it be profitable?
> Business case
. Success criteria
. Profitability
. Financial goals
> Risk assessment
> Project Plan
. Schedule with major milestones
. Cycles
. Phases
. Iterations
. Prototypes

2.2.2.3.2.2 Elaboration
The elaboration phase is where the high level abstraction of the system is
developed. This phase creates an overall architecture, identifying the full

18

scope of the project, the majority of the use cases, the major functions of
the system, and the major risks. The development of the use cases helps
to identify the full scope of the system including the complexity and those
areas that could be critical paths due to any associated development risks.
Addressing the following objectives marks the conclusion of the Elaboration
phase:

Is the ‘idea’ behind the product stable?
> Requirements are under control.

Are the risks addressed and can they be resolved?
Is the Construction planned and viable?
Can the product be produced from the use case model?

& &4 ¢

2.2.2.3.2.3 Construction

The Construction phase is where the concept modeled during Inception
and Elaboration is actually realized. This phase will generally include many
iterations and may have iterations occur in parallel. The details of the
system are finalized and created and all parts of the system are tested for
completeness and correctness. The Construction phase includes all levels
of testing. The Construction phase does not just produce code and an
executable. Other artifacts of this phase include test plans, user manuals,
product descriptions, etc. Addressing the following objectives marks the
conclusion of the Construction phase:

4 Initial Operational Capability:
> Is the product ready for release to the user community?
> Can a beta version be released?

2.2.2.3.2.4 Transition

The Transition phase is used to, as the name suggests, transition the
software product over to the control of the user community. This may
include required user training, simultaneous operation with an existing

legacy system, establishment of maintenance organizations and processes,

19

issue resolution, etc. The transition phase should only be entered after
major issues from the Construction phases' Initial Operations Capability
milestone have been resolved. Addressing the following objectives marks
the conclusion of the Transition phase:

© Product Release:
> Were the project objectives meet?
> Can the next cycle begin?

2.2.2.3.3 lterations

The RUP is built around cycling through all RUP phases with each phase
containing as much iteration as necessary. "The Unified Process assumes
that the activities Requirements, Analysis, Design, Implementation, and
Testing participate in each of these iterations."[2 p. 482] An iteration is the
process of actually performing a particular phase more then once during a
cycle. lterating within a phase for a particular cycle allows lessons learned
to be incorporated into the software products as the development is

occurring.

2.2.2.3.4 Modeling elements

For the RUP to work, process definition beyond cycles, phases and
iterations is required. The 'who', 'what', 'when' and 'how' of the process is
needed. Definitions are needed of who will do the work, what the work is
comprised of and how and when the work will be performed. It is during the
project-planning portion of the inception phase that these elements are
identified.

Who = Workers
What = Artifacts
How = Activities
When = Workflow

& & 4 &

20

\Workflow
1)
contains

1.* 1 * 1 *
C Activity > | Worker | Artifact

erforms creates
_-
1. .* 1 _*

1..* 1.*

Figure 4: RUP Modeling Elements

2.2.2.3.41 Who =Workers

Workers are the ‘who’. Workers can be individuals or entire teams and are
logical entities that are responsible for assigned activities and the artifacts
those activities produce. For example, a designer produces an Object
Oriented Design and an Implementer produces an implementation of the
design. Throughout the life cycle a person or team may fulfill many different

worker responsibilities.

2.2.2.3.4.2 What = Artifacts

Artifacts are the ‘what’. Artifacts are the actual products produced by the
workers. These products can be entry or exit criteria to a particular phase.
They can be internal or external deliverables or even end products.

21

Artifacts are produced in every cycle for every phase and for each iteration.
Examples of artifacts include, Use-Case Models, Design Model, Class
Diagram, Code, Test Plans, User Guide. Any item, which is produced
during the software lifecycle, is an artifact and had to be produced by a

worker during an activity.

2.2.2.3.4.3 How = Activities

Activities are the ‘how’. Activities are how the worker actually produces an
artifact. Although phases are actually “activities” these are too large to
handle for the worker and must be broken down into more manageable
activities. Generally an activity should take no longer then a few days.
Activities during the Elaboration phase might include the creation of a
specific Use Case, or the reviewing of the System Architecture Diagram.

2.2.2.3.4.4 When =Workflows

Workflows are the ‘when’. Workflows are the essential identification of
when Workers should perform certain Activities to produce the appropriate
Artifacts. Although the RUP is not a waterfall methodology, there is a
required ordering to the Workflows. Implementation before Design would
be disastrous; it is the ordering of Workflows that make the RUP a process
by which software can be produced. The RUP defines two types of
Workflows, core process workflows and supporting workflows.

Core Process Workflows

The Core Process Workflows are used in the actual production of the end
product. The artifacts created during these Workflows are the engineering
artifacts created by Workers who are generally part of the actual software

engineering process. These Workflows can be visited throughout each

22

cycle, phase and iteration. Although different phases place more emphasis
on certain Workflows then others, the Workflows are not performed in a
sequential fashion and can be on going during each phase of a cycle. As
shown in Figure 3 the Core Process Workflows consist of the following:

<% - Business Modeling
<% - Requirements

<% - Analysis and Design
4 - Implementation

4 - Test

4 - Deployment

Core Supporting Workflows

Core Supporting Workflows do not produce software artifacts, however,
they are vital to the success of the RUP. These Workflows, as the heading
suggest, “support” the Core Process Workflows. Like the Core Process
Workflows, the Core Supporting Workflows can have more emphasis
placed on them during certain phases but are continually active during all
phases. The Workers involved with the Supporting Workflows are generally
not part of the software engineering team. They fulfill separate yet equally
important roles. As shown in Figure 3 the Core Supporting Workflows
consist of the following:

<% - Project Management
< - Configuration and Change Management
<4 - Environment Support

23

3 Discussion of SEI CMM
3.1 History of CMM

The Capability Maturity Model for developed by the SEI is a framework that
describes the key elements of an effective software process. The CMM
describes an evolutionary improvement path for software organizations
from an ad hoc, immature process to a mature, disciplined one. This path
follows five levels of maturity. Figure 4 shows the evolutionary history of
the SEI CMM.

1986 - Software Engineering Institute (SED) Federal Government Eecquest for amethod to
& MITRE Corporation begin developing a access the capability of software contractors
software process maturity framework.

¥ h J
15987 - 5EI *s Watts Humphrey creates
software process maturity frameworl.

1988 Watts Humphrey releases Managing the SET's Software Process A ssessment and Software
Software Process, Addison-Wesley. This boaold Capability Evaluation are combined with
evolved from the SEL matunty framework. Humgphrey’s Matunty Questionnaire.

|

1991 SEIreleases Capability Maturity Model for
Software (ChID

Figure 4: The History of the SEI CMM

24

3.2 CMM Levels

The CMM is comprised of five different levels indicating process maturity.
Each level has its own criteria by which a software process is evaluated.
These criteria are used to determine an organization's process maturity.
The level in which an organization meets all of the criteria is assigned to
that organization. This allows the organization to advertise that they are
compliant with that particular SEI CMM Level.

The CMM levels are obtained through sequential achievement. For an
organization to obtain CMM Level 4 it must have also achieved Level 2 and

Level 3.

3.2.1 Level 1 - Initial

Level 1 is the initial CMM level. All software organizations are given a Level
1 without evaluation. If an organization is developing software they are at
least at a Level 1. This is considered an immature process level from which
an organization must quickly strive to surpass. Level 1 is frequently defined

as chaos.

3.2.2 Level 2 - Repeatable

Level 2 is defined as repeatable. An organization must have the ability to
repeat the processes by which they develop software. In order for this to
occur the organization must have processes that are "defined, documented,

practiced, trained, measured, enforced and improvable."[1 p.18]

These defined processes must include requirements management, project

planning and tracking, subcontract management, quality assurance (QA),

25

and software configuration management. This definition of an
organization's process provides a framework of project management that
allows the organization to set and follow realistic objectives and goals

based on previous software project successes.

3.2.3 Level 3 - Defined

Level 3 indicates that an organization's process is defined. By defined, the
CMM requires that the software processes and management processes be
documented for an entire organization. Also required is the ability for
personnel to understand these processes across all projects and that

training is in place to ensure this comprehension.

In addition to an organization-wide defined set of software and
management standards, the projects within an organization are allowed to
tailor these processes to meet a project's specific needs. These changes

would only be incorporated with appropriate training at the project level.

Two other larger factors for Level 3 are the tracking of quality metrics and
verification of work products. The tracking of quality metrics must be in
place at the project level as well as defined at the organization level. The
verification of work products usually materializes in the form of Peer
Reviews. Peer Reviews are performed to verify that the products being
produced throughout the software process are accurate and complete.
Documents describing the processes for conducting peer reviews are

common artifacts in a Level 3 certified organization.

The main objective of Level 3 is the standardization and consistency of

processes for both software and management across an organization's

26

projects. This is obtained by having an organization wide set of processes
that can be tailored for each individual project as circumstances dictate.

3.24 Level 4 - Managed

Level 4 moves beyond the process definition of Level 3 by requiring the
ability to measure the software products and processes. The CMM requires
the establishment of quality measurements across an organization. These
measurements must be collected into a database for analysis.

This organizational database of process and software quality metrics allows
an organization to predict the results of their processes and the quality of
both process and product. Software Quality Management (SQM) allows
predictive analysis of future projects as well as corrective action to be taken
on projects that stray outside of the organizational process trends.

3.2.5 Level 5 - Optimizing

Level 5 builds on the SQM requirements of Level 4 to institute defect
prevention and process improvement. The quality metrics are taken a step
further and analysis is performed to determine the cause of defects. The
identification of defects along with the identifications of strengths in both
process and product allow corrective action to be taken to improve the
product and the incorporation of process improvements to improve the

process.

27

Process improvement is performed to remove common causes of defects
found throughout an organization's projects. These improvements are
distributed throughout the entire organization. Improvements can come not
only in the form of process change but also technology change. Changes
in technology are analyzed to determine their effect on the organization.
Both process and technology changes are encouraged, planned for and
managed as to not disrupt the stable development environment.

3.3 Key Process Areas (KPA)

Key Process Areas (KPA) govern each level in the CMM, except for level 1.
The KPAs are obtained by achieving all of the goals within each KPA.
When all KPAs have been addressed within a CMM Level then the
organization has achieved that CMM level rating.

KPAs are organized by common features. The common features include:

4 A commitment to perform

% Ability to perform

4 Activities performed

4 Measurement and analysis
Common features indicate whether the processes by which a software
organization has implemented a particular KPA are effective. Each
common feature contains key practices, which describe those activities that
contribute most to the implementation of a common feature and in turn a

KPA. The key practices are unique and specific to each key process area.

The CMM Levels and the relationships between key process areas,

common features and key practices are shown in Figure 5.

28

Maturity Level

V \Contain
Process
capability

Key process areas

Achieve

\ Organized by

@ Common features
Address
Contain

Key practices

Implementation or

institutionalization

Describe

Activities or

infrastructure

Figure 5: The CMM Structure [1 p. 31]

Although all KPAs were evaluated for both Process A and Process B, the
following sections describe the KPAs that are addressed in this thesis.

3.3.1 Level 2 KPA Software Project Planning

This KPA has fifteen different activities defined to support three goals of the
KPA. The first goal of this KPA is stated as follows, "Software estimates
are documented for use in planning and tracking the software project."[1
p.134] The common feature "Activities Performed" contains activity nine.
This activity states, "Estimates for the size of the software work products (or

changes to the size of software work products) are derived according to a

29

documented procedure.” [1 p. 142] This activity is mapped to the first goal
of this KPA.
Level 2 - Repeatable
Key Process Area - Software Project Planning
Common Feature - Activities Performed
Key Practice - Estimation for work product size

The common feature "Ability to Perform contains ability 4. This ability
states, "The software managers, software engineers, and other individuals
involved in the software project planning are trained in the software
estimating and planning procedures applicable to their areas of
responsibility.” [1 p.138] This ability is mapped to all three goals of this
KPA.
Level 2 - Repeatable
Key Process Area - Software Project Planning
Common Feature - Ability to Perform
Key Practice - Software estimation training

30

3.3.2 Level 3 KPA Peer Reviews

This KPA has one commitment defined to support the two goals of the KPA.
The first goal of this KPA is stated as follows, "Peer review activities are
planned."[1 p.270] The common feature "Commitment to Perform" contains
commitment 1, this commitment states, "The project follows a written
organizational policy for performing peer reviews." [1 p. 271] This
commitment is mapped to both goals of this KPA.
Level 3 - Defined
Key Process Area -Peer Reviews
Common Feature - Commitment to Perform

Key Practice - Policy for peer reviews

31

4 Comparison of CLCS Processes

This section will discuss both Process A and Process B. For a comparison
the SEI CMM KPAs covered under both processes are kept the same. This
allows the reader to see a side-by-side comparison of the two processes.
The magnitude of information required in evaluating a process for CMM and
the amount of data produced from the evaluation prevents addressing all
such data in this section. Instead, major violations of CMM in Process A

will be pointed out and described.

The same KPAs detected as major violations in Process A will be
addressed in the Process B section. These major violations where used to
initiate the redirection which eventually led to a migration away from
Process A to Process B. Although the SEI CMM evaluations of each
process were performed on the entirety of Process A and Process B it
should be kept in mind that this thesis focused on the Design Phase of each

process.

4.1 Description of CLCS Process A

4.1.1 Process Overview

As stated in the introduction the CLCS project followed a Waterfall life cycle
model with minimal process descriptions for a period of approximately three
years. The lack of formal processes that qualified as CMM compliant along
with the use of the Waterfall model resulted in a severe overrun of both
schedule and budgets. Much of the blame for the inadequacies of this
development effort lie with the lack of well written process, however, the

use of the Waterfall Model prevented early detection of severe problems.

32

- Scope of Task Defined

- ScheduleBaselined

- Training Identified/Started
Requirements / Design Development

. Requirements Analysi Overview Design
Fé)equllrements and Allocation to Specification
evelopment Software Modules Development

!

Software Module)
Classification SRS Review by
(Safety & Criticality) System Specialists

Implementation
Plan Generated

Requirements
Review
Panel

Process Documents

84K00070-002 Softw are Development Plan 84K01710 RTC AppSw Architecture Standard
84K01705 Documentation Standard 84K01730-102 SW Classification Practice

Figure 6: Process A —Requirements / Design Development [17 p. 26]

As seen in Figure 6, Process A followed a Requirements Analysis, Design,
and Implementation order of phases. Although the phases were renamed
the basic Waterfall approach can be easily detected.

The implementation portion of the model is shown in Figure 7. Again, the

Waterfall model can be seen with the lock step progression through
Software Production phases.

33

- Overview Design Specification Complete
- Implementation Plan Approved
- RRP Complete

Software Production
Software Detailed Design Software Implementation .
9 I (Code/ Desktop Testing) I) Peer Inspections
Unit Testing Integrated Testing Ready for
Validation

Process Documents
84K00070-002 Software Development Plan 84K01730-101 Test Application Display Development
84K01705 Documentation Standard 84K01730-104 Peer Inspection Practice
84K01710 RTC AppSw Architecture Standard 84K01730-105 Command & Control Software Development
84K01720 Implementation Standard 84K01730-108 Testing
84K07500-012 Programming Standard 84K01730-109 Configuration Management

Figure 7: Process A - Software Production Activities [17 p. 28]

Figures 6 and 7 show the basic Waterfall Model and appear to be the
beginnings of a standard software development lifecycle. However, a
software development effort requires more then just a model to follow.
Software processes must be defined to guide the developers through the
life cycle. In particular the industry has migrated toward following CMM
compliant process and many of the features required to be present in such

a model were previously presented in the Summary of SEI CMM section.

4.1.2 CMM Evaluation of Design Phase

This section describes the Process A design and its evaluation under SEI
CMM. Process A falls short when it comes to defining processes and
specifically CMM compliant processes. One of the reasons for this may lie
in the brevity of the processes themselves. The main focus of this thesis

34

was the design phase of software development, Figure 8 and Figure 9 are
the complete preliminary and detailed design phases of Process A as
defined in NASA's Software Development Plan, Volume Il Revision B. [17]

5.2.5 Overview Design Specification Development

Once all requirements have been allocated to specific software modules, the Overview Design
Specification portion of the SRS must be completed.

1.

2.

¢

< 4

The software design sections of the SRS shall be developed by Software Engineering
personnel per84K01705-RTC Application Software Documentation Standard.

The design shall be reviewed by the IPT to ensure completeness, correct interpretation of
requirements and that all development members fully understand the design.
Performance of this review shall be documented in the CSCI's Software Development
Folder.

Each class/module identified in the SRS shall be mapped to a specific element of the
RTC Application Software architecture as defined in 84K01710 RTC Application Software
Architecture Standard. Each class/module must have one or more associated software
modules identified by name (e.g., <CSCI>_WaterPmp.og, <CSCI>_Pump.atc) that will
satisfy the requirements specified in the SRS. This information will be used to build a
Requirements Traceability Matrix.

Changes are localized; changing one class has a small impact on other classes.

The modules that must be developed to support the implementation of the requirements,
the design/allocation of these modules shall also be documented in the ODS section of
the SRS.

During the design phase, the use of pseudo Function Designators (FD) can be finalized.
These FDs shall be added to the SRS as appropriate. Requests to add new pseudo FDs
to DBSAFE shall be processed per 84K01730-109 Configuration Management Practice.

Figure 8: Process A - Preliminary Design [17 p.30]

35

5.3.2 Software Detail Design

Using the SRS and ODS data developed during the requirement development
phases, a more detailed design of the CSCI can be developed.

1. The design shall adhere to 84K01710 RTC Application Software Architecture
Standard

2. ldentification and specification of the classes and objects necessary to implement
the functional requirements shall be solidified.

. Class descriptions are enhanced when necessary (e.g., by sequence
diagrams, state transition diagrams) to help define the class’s
activities.

. The classes/objects are scrutinized to identify commonality between

objects to support generalization of those objects to as common a
base class as possible. Inherited attributes and methods are also
identified during this activity.
3. ldentification and specification of the inter-process communications and system
interactions shall be specified. Objects are mapped to the major architectural
elements, which assists in the detailing of the necessary communication paths.
4. The SRS shall be updated to capture the design activities and class
specifications.

Figure 9: Process A - Detail Design [17 p.31]

4.1.2.1 Level 2 KPA Software Project Planning

4.1.2.1.1 Activities Performed (Work Products)

The SEI CMM Level 2 KPA, Software Project Planning (KPA-SPP), is one
of five KPAs for Level 2. KPA-SPP directly effects the design phase of a

software process. The Process A design phase does not satisfy all three of

the goals required to meet this KPA.

The first major discrepancy is the lack of defined work products. The CMM

requires under Goal 1, Activity 9 of KPA-SPP that the estimation of the size

of work products be defined. Process A not only lacks a defined method of

estimation it also lacks defined work products.

Process A attempts to

define Preliminary Design work products in Figure 8 Item 3: which indicates

36

the need for classes and in Item 4 the documentation of these classes in
the Overview Design Specification (ODS). In Figure 9 an attempt is made
at identifying Detailed Design work products; class attributes and methods,

and Inter-Process Communications (IPC).

Although these items are called out they fall short of being complete work
products. Where is this information captured? What format is it in? Are
there tools to help develop these items? The analysis of this KPA in
relation to Process A indicated a need to identify all work products, a
modeling language, and a tool to create the final design phase work artifact;

a design document.

The CMM also requires, under Goal 2 Activity 8 of KPA-SPP, that the
identification of software work products necessary to establish and maintain
control of the software project be addressed and defined. Due to the lack of

work products described Process A also falls short of meeting this goal.

4.1.2.1.2 Ability to Perform (Estimation training)

KPA SPP Ability to Perform 4 requires training for all software engineers
and managers to be trained in software estimating and planning procedures
as stated in the Software Development Plan (SDP). Process A lacked any
software estimation what so ever. Neither Figure 8 nor Figure 9 indicate
any software estimation, this resulted directly in Process A lacking software
estimation techniques. The involvement of Software Quality is also left out
of the process and as a result Software Quality was not involved in the
design phase and did not appear until later in the testing phases.

37

4.1.2.2 Level 3 KPA Peer Reviews

Another serious flaw with Process A is the lack of review definition.
Although Figure 8 Item 2 indicates that the preliminary design shall be
reviewed there is no indication as to how to perform such a review. CMM
Level 3 KPA Peer Reviews Commitment #1 requires projects to follow a
written organizational policy for performing peer reviews. Absent in the
Process A design phase are any instructions concerning how to perform the
preliminary design peer review called for in Figure 8 Item 2. In addition,
Figure 6 does not indicate a peer review of the preliminary design. This
causes confusion as to which process definition is correct, the pictorial view

or the textual description.

In addition there in no mention of a review of the detailed design created via
Figure 9. As a result there is not a review of the work products produced by
the detailed design phase. This results in inconsistency between the
preliminary design phase and the detailed design phase and creates chaos
in the process definition itself. The lack of peer review definition is a
serious flaw in the Process A and was identified as a major reason to
migrate to Process B. Interesting to note is the fact that a peer review does
not occur in Process A until after the software has been implemented. This
can be seen in Figure 7. This allowed the entire design and implementation
phases to proceed without a single peer review.

4.1.2.3 Process A CMM Evaluation Summary

Although many violations of KPA common features exists the
aforementioned are serious enough on their own that Process A does not
even qualify for SEI CMM Level 2. Process A did not meet any of the KPAs
addressed in this thesis. The absence of Peer Review processes and the

38

confusion between the textual and pictorial descriptions of the process
prevent Process A from fulfilling the CMM requirements for Peer Reviews.

4.2 Description of CLCS Process B

4.2.1 Process Overview

As a result of the problems produced by Process A, the CLCS project had
to find solutions to their development dilemma. After years of complaints
from software developers more familiar with the latest software
development models and processes, the opportunity to implement
alternative solutions was at hand. Project management tasked a few
individuals including the author to come up with a better process that could
be followed. The result was Process B, Figure 10.

39

- Scope of Task Defined

- Schedule Baselined

- Training Identified/Started
Requirements / Design Development

Requirements | SRS Review By Essential Model Design
Development System Specialist Development
_’
Iterative Development

Implementation
Plan Generated

v

Detailed Design
Development

A\ 4

Iterative Development

Process Documents
84K00070002 Software Development Plan 84K01710 RTC AppSw Architecture Standard
84K01705 Documentation Standard 84K00055103 Software Safety Classification Practice

Figure 10: Process B - Design Development [18 p. 26]

Process B created major changes for the CLCS development team. The
most significant change being the migration from a Waterfall model to an
Iterative Model and from an ill-defined process to a very detailed process.
The CMM deficiencies in Process A were addressed in Process B to bring
CLCS into CMM compliance. Due to the familiarity of terminology used
during Process A many of the same terms and acronyms were carried over
to Process B. This was to facilitate the learning curve of a new process and
to create as little impact to the budget and schedule as possible.

40

4.2.2 CMM Evaluation of Design Phase

Figure 10 shows the iterative design phase of Process B. Entry into this
phase occurred via a review of the software requirements. The CSCI team
was able to iterate through the preliminary or essential design with each
pass going through a preliminary design review. The detailed design could
be iteratively developed in the same manner with each iteration being
presented to a critical design review. The presentation of design products
to a formal review team allowed corrections to the design before
implementation occurred. Each CSCI passed though multiple cycles of the
RUP. Each design phase was encompassed within a cycle and could
include multiple iterations, this allowed for iterative development and

incremental deliveries to the end user.

For the CLCS software engineer, another significant difference between
Process A and Process B was the sheer amount of information in the form
of guidance. Although large of amounts of information do not indicate a
well-written process and certainly do not guarantee CMM compliance the
less then four hundred words and two diagrams in Process A left much

room for improvement. Process B added information in the several ways.

1) To support this migration and process change an entirely new document
was created. In Process A the entire scope of the design phase was
included in the SDP. In Process B the design phase was expanded in the
SDP and the details of the work products and peer reviews were created in
a separate document entitled, SDP_Supplement: Technical Review

Practice.

41

2) The CSClI's software lead was given the responsibility for determining the
state of the requirements they were responsible to design from. In Process
A this was not specifically spelled out and in most cases the CSCI received
requirements that could not be understood. Figure 11 and Figure 12
explicitly state the role of the CSCI lead.

5.2.4 Requirements Readiness For Design

Once the SRS is determined to be correct and complete from a functional requirements
perspective, it is reviewed by the IPT and specifically the CSCI Design Lead to determine if
the requirements are acceptable so that the preliminary design work can start. Basically,
this is a review to ensure that the functional requirements are implementable and that
specific requirements regarding concurrency, safety, and performance are clearly
understood. Once the requirements are found to be acceptable in order to begin designing
the software, a Design Readiness Review is scheduled in order to baseline the SRS and
kick-off the design process.

Figure 11: Process B - Requirements Readiness [18 p. 27]

5.2.5 Design Readiness Review

The Design Readiness Review (DRR) is a review of the state of the requirements of the
CSCI. The main objective of this review is to determine if the requirements are acceptable
so that the preliminary design effort can start. Reference 84K01730-100 RTC Application
Software Technical Review Practice for details on the DRR.

Figure 12: Process B - DRR [18 p. 28]

3) Two quick reference cards were created to aid during training of Process
B and Microsoft PowerPoint was used to create peer review presentation
templates.

42

A Design Workflow Quick Reference card, Figure 13, that highlighted the
new design process was used during process training and subsequently
during the actual design phase of each CSCI. Details of Figure 13 can be
found in Appendix A. The second quick reference card created, Figure 14,
was used to highlight the usage of the Unified Modeling Language (UML).
Although Process A was to be used with UML as the design modeling
language, the process itself did not indicate this. In addition, Process A
provided no training for the usage of UML. This was corrected under
Process B, which provided training as well as the quick reference card for
use during actual design development.

The presentation templates forced each CSCI to address and present the
same information at each requirements review, preliminary design review
and critical design review. Not only did this create consistency within a
CSCI but it required each CSCI within the CLCS project to produce the

same types of artifacts as required by Process B.

4.2.2.1 Level 2 KPA Software Project Planning
4.2.2.1.1 Activities Performed (Work Products)

In addressing the deficiencies of Process A the first priority was to define
the work products which needed to be produced. The lack of defined work
products in Process A created great diversity among CSCIs and to be able
to be CMM compliant at any level this needed to be brought under control.

Process B defined work products for each Process Workflow. In particular
work products were identified for the Design Workflow for both the
Elaboration and Construction phases. The work products are outlined for

the Requirements Analysis, Preliminary Design and Detailed Design.

43

General descriptions are found in the SDP, Figures 11, 12, 15 and 16, and
specific detalil is provided in the SDP Supplement.

These work products include entry/exit criteria for each phase and
verification review. The work products are also found in the Quick
Reference Card for the Design Workflow found in Figure 13. The detailed
specification of what is required for each phase and at each review provides
no room for interpretation. The CSCIs had to produce all of the required
work products, this resulted in consistency across the entire project.

The greatest improvement in Process B came in the form of a Software
Design Document (SDD). This document had to be created by each CSCI
from a project level template. This template ensured consistency across all
CSCls. The SDD contained all of the UML work products defined in the
process as required. The UML quick reference guide was used to aid
software engineers in the development of the UML work products. By
mandating the use of the SDD template and the UML quick reference guide
Process B not only enforced consistency in the look of the SDD but also in
the actual UML artifacts contained in it.

The real point of this KPA is to provide ways to estimate the size of work
products. In Process A there were no defined work products so the
estimation process was moot. In Process B the work products are defined
in detail, therefore the processes for software estimation and planning could
be defined.

44

Egld_ w.sv— E

Analys on Workflow

1 se this Cuick Reference to follow the states required
fior the 360 Softw are design process.

Thisis only a quick reference. For greater detail reference
the 360 Bofterare Lifecyele Design Phase domam ertation.

The OO0 design for a CACT shall consist of TML products that depict
hioth a Stafie View and a Dinamic Fiew

Btatic View shown by
UL Structural Diagrams

Diymamic View shown by
UML Behavioral Diagrams

Class diagram UUse case diagram
Olyect diagram Sequence diagram
Component diagram Collaboration diagr an
D epl oym ent. diagram Statechart diggram
Acfivity diagram

The check boxesindicate the mirimum set of issues and concepts
that shall be addressed as well as the minimum set of UML design
artifacts that shall be created for each state in the process.

Those check boxes which are grayed shall not be recquired.

The placement of check box esin later states does not preclude the
concepts or artifacts they represent from being used and
addressed in eatlier phases Forinstance, a C3CI can consider

polymorphism, cohesion and error handling during the Preliminary

Design. Beyond those checkbox es which are required, designer

discretion shall be used to determine which checkboxes best facilitate

the needs of the C3CT design

Eemember that the TML is a notation used to cotrvey information.
Beyond the required attifacts, the C2CT must decided what TIL
notation to use, when to use it and how to use it, to comvey the
necessary dedgn information,

An lterative Process can be followed for Use cases beginming with

the Preliminary Design state and progressing through Implem ertation.

DEFINITIONS

ATATIC VIEW: An aspect of a systerm that emnphasizes its stuctire.
CLASS DIAGRAM: Tonwse class diagrams to ilhstate the statie desizn wewr

OBJECE EI&GRAM Yr.u use cbd]uad.lagrans 1o ilbostrate the s tatic snapshots

DV AWIC WIEW Anaspectof a systern that emphasizes its behavior,

USE CASE DIAGRAM: Shows a set of use cases and acto

xd.ah.omshps Especially ivportant in crgarising
Y5

5 and their
ard modeling ﬂ'e 'behav:ms of a

SEQUENCE DIAGEAM: Enphasizes the time cedering of messages.
Showrs asetof chjects and the messages sert and recelvedby\‘lnse chjects.

COLLABORATION DIAGEANM: Enphasizes the stroetoyal
organization of the objects that send and rece1ve mess azes.

ATATECHART DIAGRALD: Shows a state machive, comsisting of states,
transitions, everts, amd activities. Emphasize evert-crdeted behavior.

ACTIVITY DIAGEAN: Shows aset of activities, the sequerdial crb rancling
flow fiom activity to activity, and chjects that act amd am acted upon.

DresigriLead
Eemiems SRE

[Fnire s,
[fstiving € o nd st Bosnriowe
[Bt Dohamine b

Dresign Readive s
Appromed

Pre Bm fnary Dresigrn

O Extry s mam 0D

O Amw.f]:nﬁm Fuliminazy

m] Em.rsfhma Eaw fs
T triber Bakrial § dys)

Pre Bm nary Desian
DEapprared

Tre Im 3 Drecizp Rewienr
mu(\IjDRsign

[Estry # Allumgptychach bome

oxplinad
[fustivity ¥ ozadnct Esakw
[0 Exit/Toirmie fhs

Fre Bm thary Dresiga
Apmared

Detailed Dresigrn kY

[Fumyer 1.
[fusthity/ Dofira Tunikd Doign
[it f e B8
Ditribat Mokl (s days)

Srbmit For Rewienr

Dretailed Decign
Deapprared

Submit For Rewiewr

DRR
[Requiremerts Clear, Carrect, Thambigions
COPuctiomal

O Cavammency
15 afety
Orafomance
O Irter- CECI
[Jser Interface
[Bequirsmerd Iazes
[Wagrers/Corwems
[Cordrol Shell Artifacts Fem ared
5] Use of Shalls for Clirity

‘ AP Tesign Team Resporshilities

[Agpreme [Tisappreme

[ERecad DER Eses iFast RRF gap
[0 Baselive SES
———— Prelminary Desgn
[Resolre DRE Isues
O Uz Caces Idertified
O Testhaal Descriptions
O Tk« Case Digams
= Diagram

O Class
[Bderimmce
[degoc mtime £ Agzregation § Composition
[Tifultiplic ity
[dtribate declartio
[Operation dec hration

[Ire ¥m wry Displey Lagouts
O T4DH. RCL, PCLprl_::Jsi.m

APTDesizn Taam Fesponsibilities
[J5ES hac beer Baceliwd

[DER isanes resobred

[Design coveisterd with ofher CECTs
[Desig enbarcem erds faxgge stime
[dgpmome [Disappome

O Recard PDR ks s 1 Raza REP gomp

[Baselire FDR(Ref. S4EO1730-109)

Dretadled Design,

[Besolre FDR leanes

[Puruction Pokd Avalysc of Prelim ey Design
[Thilizatico of the BT C Framewooch Comparerts
O Whilimation of the STL

O T.ﬁ:l.l.mnmtf Dresign Patterre

[Aatribnge defirdion
O Absract Data Types
[0 Operatiom dfirdion
[Pando- Code fir selected Algarithm s
[B apenketion
[Limose Conapling [Tight Cdesion
[bteraction Dingams
[Sequence [Colhboratia
[State Charte

O Object Diagrms

O Atirity Diagams

[Whaime re Cotucems

[Eror/Ecceptim Hrdling Defired

[Besonxce atiliztionn (Memory, CFU, bard dick)
[Final Displiy Layazt

[Walidation Flan.

[I plemertation Flm

O T4D¥, RCL, PCL, Rasion

Froceed to In plem evtation

CDE
A FTDesign Team Resporsihilities
[PLE Isqes resolred
[Desiguready far implem entation
[Design corwsistert with other C3CIs
[Design avbramcem exie/ayzaectiore
8 cte dnle CDR dssne reschition meeting
O ipprore O Disapprare

[Recad COR Enks b Razx REP gop
[Basling CDR { Ref. 84E01730- 109)

Eafumnss: The muifed modsbing b wer gmide, oty Boooh, Tamss Boombangh, and T Tapotbeon. Ruddicon Wolay Longman, s 9 1559 IEEN0-201-571 66+

o pycigtt © 2002 340 fofivam Corposition, All Tigkts mramed.

Figure 13: Process B - Analysis & Design Workflow [4]

OO / UML Quick Reference

DEFINTTIONS
HNIFIEDfMODELING LANGUAGE (Ul\;%)do
the ts of a softerare mgéwe s}stem tustie, ousresting

CLADSE: The bhe-pint” of'a ‘real-wodd’ or concephial entity.
QOBJECT: Animtaree of a alass.

PACKAGE: 4 geremlpupose mechawism for orgarizing
ts 1o groaps.

ABSTRACTION The process of idertifying “ealawrcrld”

comrnonality and comb imng it 1o a elass .

ENCAPSULATION The process of combiring data and the

eratices on that mto a5 enhty,eg acIa.s.s or opatation.
oncealing mmp lementaho m an erity thershy Ieducing
compleity. Use)s reed colybe concemed with the pubiia mtexfa:e

C OUP LIMG: The degiee to which taro objects ate deperndentupon
- Stuve foralor\;rtdegree ofcm.pfmg

-C 5 are calized ;, chanzing one class has alarge inpact on
other classes.
COHESION: ﬂedeg:reetow}ud\\‘le ercapnulation of an dhject
addresses a single scope of fanctionality.
-Stvefora dagres of cohesion

- 5 are Jocahzed; changing ome elass has a small inpact on
other classes.

TEE CAZE: Description of the finctionalities a sys tem provides to
auser,
- Canbe diagranumatic andfor textial

ASAOCIATION: The defined wlaticeship betoreen tero classes.
TYPES OF ABSOCIATIONS

GENERALIZATION: “is-a-kind-of” 4 of association
inwlich one olass has alierarchical re'l.ahm\sl'npw1 arcther ofass.
Trwmlves .

-4 IC omemand T ator Valve “Gs-a-Jand of” vgf’

INHERITAMNCE: The shility for a derived class to acquire the
operatices and attibuates of a pavent elass .
POLYMMORFPHIZM: The ability to wdefine the fanctiorality of
angnherited wethod by a derived ojass .

A1l valves with an open method can overide a base classes open
nﬁﬂndmﬂlumque fre

OVERRIDIMG; The, ab)l\tyto haye a method with the same name
same signabire but differert firchonality.
- Canemly cconr in a derived class
COVERLOADING: The d:)l\ty 1o have 2 method with the same
name but different siznatire and finchonality.
- Can ocorrin the same cizss, derived class, or global fanctions.

AGGREGATION: “hasa A type of association invwhich cve ofass
looselyoo mtary ancther ol :?egahﬁwdjel,s, loosete;cmlpnsed of
rag;g dc}-fszs mlghtuse an chject bioker to conmmricate with
-4 C?E’Cﬁ “has-a" Lameh Data Bus.

COMPOBITI O H:

“coftains-a” 4 of assodation inwhich cne

DIAGRAMATIC SYNTAX

STATIC MODELS
Class Inl'exitan:e Agrregation Composition
[E i B3 i
Atk B FhesT M
e | | BERTG Pl
Cpamton.] g :wm:‘l?‘p’m‘p F W]
Compirtmat m.m rearied | |0
T30 "haad T § connie-s'
*¥-xhind-of LD =3 Bl oxdd=a
wibo T W PATRA TR
1.7 1.*| omordouop 8F
T TCH ITE EIE.
T Trh_ ES T
Hdmmdant - comandar_
- haalth
TE WU el ALy TrhREl] BTN
mﬂm Sl @rm oo mmandua)
LI ¥ r bl smeng BF: ¢ BOE¥ miihamd

0,1,10.15

Ty
Exactlym
* Zera or More
L1 Zero or One

I
Ore or Mom
=2 mio n (e

Class [Dorleor
10,11,12,13,
1415

Access Specifiers
E:;\l/ Pukh‘;: [Protectad | Privatel

To # >

i | v V|V

ol AR

&pf):hcmfﬁm /

Dies cviptive Text is used inanote
to deserbe ar clanfy scme aspect
of the diszram When reviewing
diagrans read notes fist.

Ilajor Elements of the UL

Builing hlochs of
1. Things (hwic 00 bailing bloake]

- Shmctiral T}uxgséhmmpmofum..;m; 2 Soo
Vi bty

Class, [rte:

se case, hitive class, Comp:mzm, Hode
- Behavioml 'Thngsl\&hwxbpm SE ML, dymemic) 5. Exemution
Mechanisms of

Interacton, 5 tate

- Gn:vuprmg Thirgs {ozpumstonal pack o THL)

Packag

2
A t.omal Things {ugphnoreparty of THLY 3,

omvon Divisions
4. Extensihility
2. Re].ahons}nps {mlativnal bilding Wlocks of TRIL) Stere 5,
- Deperdency Tazgged Vahes,
- hssodation Corstraints
- Geremlimtion
- Realization

ic ol pame e tion o f aveto £ukma s)

3. Diagrarms (g
Class, iject, se case, Sequance, Co]laboxahm Statechart,
Aetivity, Corm:orent, pﬁ;]yerm

Roules of TML

1. Hames

4 I.ng ity

DYNAMIC MODELS
Thate [Ftate Chart |
T DmtalState Trwsiion Final Stafe
Super S tate
Conmurency

Seguence Diagram
syreleonos L [z=7]
~mynchoonos W conditional express

| Ml

Messages

yalqo wpomT

lifeline

Tramsition Ar:hon

class fizhtl arother class. conposite class 15 i}] SR Life Coole e [ELE fFwcus Emaine] [Haodling P | [henaDian Froaering |
compn‘:gd 0¥a]l of its aﬂs because the parts ‘mmfxﬂ d1e"writh the hﬁley Systems & chitecture s d.rivexc wmind} [jeminm} omind} || minm}
Greatcam s hoo! 1 parts ate s hawed anong d].ﬁ' mwholes e Case Viewr e .
- The cotmposme class w:ll ustanh.a‘be termonate Design Viear ichiterhue-cerdnic
Process View Tterative and incremental
- The plmp “onmtairs- 37 valve. Trvplermertation Viewr Iﬁ@
Diaployrnent Viewr
Eofumrce: The mifed modolins bnsmasm wer smde/ Crrsbhe Booch Jame: Foombansh atd hex Tcobvon Addicon W low Lonsman Fuc 8 1999 IZEH 0-201-571 i34 (o porizhd € 2002 360 £oflwam Corpozstion All st miened.

Figure 14: Process B - OO/UML [4]

4.2.2.1.2 Ability to Perform (Estimation training)

For this KPA the Ability to Perform 4 requires all software engineers and
managers to be trained in software estimating and planning procedures. In
Process B it was decided to perform Function Point Analysis (FPA) for
software estimation and planning. This approach was documented and

detailed training was provided to those responsible for performing the FPA.

In addition to providing training the process also dictated that FPA be part
of the entry criteria to the Design Readiness Review (DRR). This enforced
the process and ensured that FPA had actually been performed and that it
was reviewed to ensure accuracy. The DRR was a review required for the
transition from Process A to Process B and will be described in the next
section. Figure 13 fails to indicate the requirement of the FPA as entry
criteria to the DRR.

4.2.2.2 Level 3 KPA Peer Reviews

Commitment 1 for this KPA requires projects to follow a written
organizational policy for performing peer reviews. Process B introduced
three new peer reviews in addition to what Process A already had in place.
Each of these reviews required specific work products to be reviewed,
forcing each CSCI to become consistent. Each CSCI was also required to
use a PowerPoint review template that forced consistency in the manner in

which the now consistent work products were presented.

4.2.2.2.1 Design Readiness Review (DRR)

The first review added was the Design Readiness Review, Figure 12. This
was in effect a Software Requirements Review and was performed during

the Transition phase of the Analysis & Design Workflow. This can be seen

a7

on Figure 13. This review has a non-traditional name due to the fact the
during Process A a requirements review had already taken place. As in all
cases of real world software development a process has to take into
account real world schedule and politics. Process B could not "repeat" a
requirements review due to political reasons, thus the design readiness

review was created.

This review allowed the CSCI design lead to give a final acceptance of the
requirements. Since many of the CSCI requirements were not complete
this allowed the software organization to request additional analysis of the
requirements without indicating on the schedules that the original

requirements review under Process A was null and void.

48

4.2.2.2.2 Preliminary Design Review (PDR)

The PDR is to be performed during the Elaboration Phase of the Design
Workflow for Process B. This review serves the same purpose of the
Waterfall PDR in Process A, but can be performed multiple times during the

iterations through the system.

The highlights of this Review are seen in Figure 15 from the Process B
SDP, with the specific details covered in the SDP Supplement.

5.2.6 Preliminary Design Review

Upon completion of the DRR, the CSCI presents the produced artifacts to the first of the
design review panels. Reference 84K01730-100 RTC Application Software Technical
Review Practice for details on the PDR.

It is recommended that as a CSCI completes the preliminary design definition for a Use
Case or group of related Use Cases, the design be presented to the PDR. This will help
ensure the CSCl’s design is proceeding along an acceptable path. At the completion of all
aspects of the preliminary design, a final PDR shall be held to ensure the design is complete
and fully acceptable.

All concerns/actions raised during the PDR shall be documented on a Razor issue (in the
RRP Group). More than one concern/action can be documented on a single issue if they
are closely related. The PDR issues must be addressed during preparation for the CDR and
must be discussed at the CDR meeting.

Figure 15: Process B - PDR [18 p. 28]

4.2.2.2.3 Critical Design Review (CDR)
Like the PDR the CDR was added to the Design Workflow and is to be

performed during the Elaboration Phase. This review serves the same
purpose of the Waterfall CDR in Process A, but can be performed multiple

time during the iterations through the system.

49

The highlights of this Review are seen in Figure 16 from the Process B
SDP, with the specific details covered in the SDP Supplement.

5.2.7 Detailed Design Development

While the Preliminary Design analysis created a high-level, conceptual model of the system, the Detailed Design
Development effort now defines a single, optimal solution at a lower level of detalil. It specifies and identifies the
following parts for the system:

e Which objects are active (concurrency)

Application task scheduling policies

Organization of classes and objects within deployable components

Inter-processor communication media and protocols

Distribution of software components

Relation implementation strategies (How are associations implemented?)

Implementation patterns for Finite State Machines

1 to Many UML associations

Error-Handling Policies
. Memory Management Policies

1. The Detailed Design will be documented in the Software Design Document.

2. The Detailed Design will be developed by Software Engineering with the participation of Shuttle Engineering.
This ensures the technical content of the design is correct and efficient while also ensuring the design is
understandable to Shuttle Engineering personnel.

3. Identification and specification of the classes and objects necessary to implement the requirements are
solidified:

. Class descriptions are enhanced when necessary (e.g., by Sequence Diagrams, State Charts, etc.) to
help define the class’s activities

. The classes/objects are scrutinized to identify commonality between objects to support generalization
of those objects to as common a base class as possible. Inherited attributes and methods are also
identified during this activity.

4. The activities included in the Detailed Design development are:

. Definition of software components and their distribution

. Identification and characterization of threads

e Application or architectural design patterns (e.g., global error handling, safety processing and fault
tolerance)

Implementation of associations, aggregations and components is defined

Exception handling is defined for each class

Types and valid ranges of class attributes are defined

Complex algorithms are clarified or introduced

Identification and specification of the inter-process communications and system interactions are

specified

5. The following artifacts are products as a result of the Detailed Design effort. These artifacts are contained in
the SDD.

. Class (required) and Object (optional) Diagrams updated to include architecture design patterns
. State Charts (only required for major sequences)

. Sequence Diagrams

. Pseudo-Code describing complex algorithmic behavior

6. As part of the Detailed Design effort, code prototyping can be used to test out design decisions before
proceeding with full-fledged design activities.

Figure 16: Process B - CDR [18 p. 28]

50

4.2.2.3 Process B CMM Evaluation Summary

The KPAs discussed above are only a few of what is required by the CMM.
These were pointed out in this thesis because of the severity and
consequences of not meeting them in Process A. All KPAs are critical to a
CMM evaluation, however, these directly affected the design phase and the

focus of the thesis.

The creation of Process B addressed the many CMM deficiencies in
Process A, specifically the KPAs addressed in this thesis. The definitions of
work products as well as an entirely new document outlining entry/exit
criterion for each phase and verifications review were additions to Process
B. Software estimation activity via FPA and the complete training of how to
perform this activity was also added. In addition to providing training to
satisfy Level 2 KPA - Ability to Perform 4, Process B instituted training in all

areas of the life cycle.

Finally the peer review process was greatly enhanced. Process B took
what amounted to a review before design and a review after implementation
and added three additional reviews in between. This brought the CLCS

process more in line with mainstream review processes.

51

5 Supporting Evidence for Hypothesis

The CLCS project was a "real world" software development project and as
a result the data collected are based on actual work performed by the
project's software engineers. Part of the improvements made for Process B
included the collections of metrics. Process B instituted function point
analysis, and gathered metrics based on the function points. OO Classes,
Source Lines of Code (SLOC), Man Months, defects, and test results were
all items included in the metrics collecting. Process A did not included such
detailed metrics collecting. As a result the basis for process comparison is

actual performance data.

This performance data is schedule based and is used by this thesis as the
criteria for comparing Process A against Process B. This data includes the
"Implementation Actual Percentage Complete" and the "Actual Duration”
elapsed in terms of days. Both Process A and Process B scheduling
included preliminary design, detailed design, coding, and unit test under the
category of implementation. Although this could have been done on a finer
level of granularity it does provide for an easy direct comparison between

the two processes.

52

Using the given data a total projected duration time can be calculated. This
is based on past performance and assumes the rate of performance will
continue at a steady pace. The following formula is used to calculate the

total projected duration implementation time per CSCI:

actual%Complete _ actualDuration
100 ~ total ProjectedDuration

or

(actualDuration x100)
actual%Complete

= total ProjectedDuration

In addition a comparable duration is calculated at 25%, 50% and 75%
complete for Process A and Process B based on the total projected
duration. The following formula is used to calculate the comparable duration

time.

((-25].50.75)x total Pr ojectedDuration) = comparableDuration

53

Finally, a change in development time percentage is calculated for Process
B. This shows a percentage change in the amount of development time
following Process B as opposed to following Process A. The following

formula is used for this calculation.

(processBActualDuration x100) /(processAActualDuration x100)
processB%Complete processA%Complete

%changelnDevelopmentTime
Figure 17 shows the direct comparisons between Process A and Process B
for each CSCI. The table contains the formula calculations as stated

above. Detailed Microsoft Project schedules from the CLCS project and

data for each individual CSCI are located in Appendix B.

54

° Duration for common percentages
(@)] ..
7)) 8 c complete at existing rate of
— w0 c 2 Yo £
@) (4] & = completion in Days.
(0))] O o | S
O o -
| - e _—
@ QO ® n
o (2|22
o O (&) .
<0 | <2 25% 50% 75% 100% %reduction
A 100 315 78.75 157.50 | 236.25 315.00
CRYO 48.25%
B 91 148.33 | 40.75 81.5 122.25 163.00
A 66 521.87 | 197.68 395.36 | 593.03 790.71
DPS 48.72
B 34 137.86 | 101.37 202.74 | 304.10 405.47
A 82 519.88 | 158.50 317.00 | 475.50 634.00
ECL 50.00
B 62 196.54 | 79.25 158.5 237.75 317.00
A 46 181.24 | 98.50 197.00 | 295.50 394.00
EPD 11.21
B 26 90.96 87.46 17493 | 262.39 349.85
A 100 457 114.25 228,50 | 342.75 457.00
HWS 70.90
B 100 133 33.25 66.5 99.75 133.00
A 97 45299 | 116.75 23350 | 350.25 467.00
HYD 63.81
B 88 148.72 | 42.25 84.5 126.75 169.00
A 69 523.02 | 189.50 379.00 | 568.50 758.00
INS 57.39
B 36 116.28 | 80.75 161.5 242.25 323.00
A 63 253.89 | 100.75 201.50 | 302.25 403.00
MEQ 65.01
B 60 84.6 35.25 70.5 105.75 141.00
A 27 49.95 46.25 92.50 138.75 185.00
PLD 64.86
B 20 13.00 16.25 32,5 48.75 65.00
A 49 69.09 35.25 70.50 105.75 141.00
RMS 31.21
B 80 77.60 24.25 48.5 72.75 97.00
A 84 41832 | 124.50 249.00 | 373.50 498.00
OMS 75.70
B 65 78.65 30.25 60.5 90.75 121.00

Figure 17: CSCI Comparable durations

55

6 Hypothesis Summary

This thesis involved using the information learned in pursuit of the master of
software engineering degree to create an iterative lifecycle model using SEI
CMM compliant processes for a real world software project. In addition, the
CLCS Project created a unique environment in which the study of different
life cycle models and development processes could be undertaken. It
created an environment in which one could analyze whether or not there is
an improvement in the performance of a software development team under
the following conditions:
1) When the team follows an iterative lifecycle model versus a waterfall
lifecycle model
2) When the team follows SEI CMM compliant processes versus non-SEl
CMM compliant processes.

The Process A SDP shows exactly why Process A was struggling for three
years to produce software. The lack of direction from the written design
process left each CSCI struggling to determine what was required during
the design phase, including which work products were to be produced. The
work products themselves were also left undefined by the process. As a
result each of the twenty CSCls proceeded to define what was needed for
them to produce software. There was no regard for the project as a whole.
The lack of definition in Process A actually forced the creation of twenty
different software development processes, one for each CSCI.

The inability for Process A to meet the SEI CMM KPAs identified in this
thesis proved to NASA managers that Process A was at a Level 1 and
needed to be improved. It was this chaotic Level 1 environment that
created an atmosphere of non-productivity. This environment led to

56

schedule and budget slips that eventually became unbearable for upper
management. It was under the threat of project cancellation that the

decision was made to search for a solution.

In addition to addressing the KPA deficiencies in Process A, Process B
introduced a completely new direction in terms of a software life cycle
model. The use of an iterative model allowed for constant process and

product improvement through lessons learned in each iteration.

Evaluation of the supporting Evidence in Figure 17 shows that as a result of
migrating from Process A to Process B a CSCl's development time was
greatly reduced. In some cases Process B created a development
timesaving of over seventy-percent. There does exists one CSCI which
appears to be an anomaly, the EPD CSCI only showed a 11.21% reduction
in development time. The average savings is 57.58% if EPD is thrown out
of the calculation, but still a respectable 53.36% if EPD is used in the

calculation.

As a result of this redirection, the CLCS was able to surpass their three-
year performance using Process A in one year using this new process. An
Integrated Process Team (IPT) following Process A took approximately
three years from requirements analysis to unit test. An IPT following the
new process took approximately one year from requirements analysis to, in
some cases, user validation and acceptance. It is this analysis that
validates the two thesis statements. According to the data gathered there is
an improvement in performance when following an iterative lifecycle model
with SEI CMM compliant processes as opposed to a waterfall lifecycle

model with non-SEI CMM compliant processes.

57

7 Future Research on this Topic

This thesis concentrated primarily on the design phase of the software life
cycle. One phase does not make a successful project. It is unknown
whether or not the performance improvement would continue through the
test and deployment process workflows. Further research could be
conducted on the impact of this lifecycle and process migration during these
later phases. In addition, CLCS was only one project. Further research
could be conducted on similar projects in an effort to expand the thesis
across different types of software development efforts.

Other areas of research could expand the usage of the iterative model
using processes other then Rational Corporations RUP. Do other
processes create the same level of improvements as the RUP did. Do
other lifecycle models, e.g. extreme programming, rapid prototyping create

improvements over iterative?

It would also be interesting to research what effect the iterative model had
in comparison to the SEI CMM compliant processes. What percentage of
the improvements in performance can be attributed to the change in
lifecycle models vs. the change in software processes. Could the same
improvements occurred with just a change in process or just a change in

lifecycle models.

58

8 References

1.

The Capability Maturity Model: Guidelines for Improving Software Process,
Carnegie Mellon University Software Engineering Institute, Addison-Wesley,
Reading, Massachusetts, 1999.

Bernd Bruegge and Allen H. Dutoit, Object-Oriented Software Engineering,
Prentice Hall, Upper Saddle River, NJ, 2000.

Bryan Campbell and Dr. Glenn Ray, Iterative Development Testing
Approaches, http://www.bryancampbell.com/Articles/Test strateqy long.htm,
(April 2003).

Chad A. Chamberlin, 360 Software Corporation, 2002.

DOD-STD-2167A (1988, February) Military Standard: Defense System
Software Development, Washington, D.C.: Department of Defense

Graphical Development Process Assistant, http://www.informatik.uni-
bremen.de/gdpa/def W/WATERFALL.htm, (April 2003).

Maria Ericsson, Developing Large-scale Systems with the Rational Unified
Process, http://www.rational.com/products/whitepapers/sis.jsp Rational
Software, 2000.

Iterative Life Cycle,
http://www.accelerasoftware.com/notes/200207_073.html, (April 2003).

Iterative vs. Waterfall Approach, CDC Technologies, http://www.cdc-
technologies.com/method/it_vs_wat.htm, (April 2003).

10. Stephen H. Kan, Metrics and Models in Software Quality Engineering,

Addison-Wesley, Reading, Massachusetts, 1997.

11.Philippe Kruchten, A Rational Development Process,

http://www.rational.com/products/whitepapers/334.ijsp Rational Software

Corporation, 1996.

12.Philippe Kruchten, From Waterfall to Iterative Lifecycle - A tough transition

for project managers, http://www.rational.com/products/whitepapers/334.isp
Rational Software Corporation, 2000.

59

http://www.bryancampbell.com/Articles/Test_strategy_long.htm�
http://www.informatik.uni-bremen.de/gdpa/def_w/WATERFALL.htm�
http://www.informatik.uni-bremen.de/gdpa/def_w/WATERFALL.htm�
http://www.rational.com/products/whitepapers/sis.jsp�
http://www.accelerasoftware.com/notes/200207_073.html�
http://www.cdc-technologies.com/method/it_vs_wat.htm�
http://www.cdc-technologies.com/method/it_vs_wat.htm�
http://www.rational.com/products/whitepapers/334.jsp�
http://www.rational.com/products/whitepapers/334.jsp�

13.Jack R. Meredith and Samuel J. Mantel, Jr., Project Management: A
Managerial Approach, Fourth Edition, John Wiley & Sons, New York, New
York, 2000.

14.James W. Moore Software Engineering Standars: A User's Road Map, 1°
Edition Wiley IEEE Press Nov. 1997.

15.Jim Pietrocarlo, Managemening lterative Development, Rational Software
http://www.cooug.org/managing_iterative _development4%5B1%5D.ppt,
(April 2003).

16.Leslee Probasco, The Ten Essentials of RUP, The Essence of an Effective
Development Process,
http://www.rational.com/products/whitepapers/413.jsp Rational Software,
2000.

17.National Aeronautics and Space Administration, Kennedy Space Center, FL.
Document 84K00070-002 Software Development Plan Volume Il Revision B,
Aug. 2001.

18.National Aeronautics and Space Administration, Kennedy Space Center, FL.
Document 84K00070-002 Software Development Plan Volume Il Revision D,
Apr. 2002.

19.Rational Unified Process: Best Practices for Software Development Teams,
http://www.rational.com/products/whitepapers/100420.jsp Rational Software,
2001.

20.W. W. Royce: Managing the Development of Large Software Systems:
Concepts and Techniques. ICSE 1987: 328-339.

21.lan Sommerville and Pete Sawyer, Requirements Engineering: A good
practice guide, John Wiley & Sons, New York, New York, 1997.

22.Thesis Manual and Style Guide for Use at Florida Institute of Technology,
Second Edition, Florida Institute of Technology, Melbourne, FL, 2001.

23.J.A. Whittaker, Introduction to Software Engineering, SES Press, Melbourne,
FL, 1998.

60

http://www.cooug.org/managing_iterative_development4%5B1%5D.ppt�
http://www.rational.com/products/whitepapers/413.jsp�
http://www.rational.com/products/whitepapers/100420.jsp�

9 Appendix A

—— DEE
[] Bequremerts Clear, Carect, Thambigimes

. [Fzuctional

[Cawnmmency
Dresign Lead [C5afersr
Rewiemrs SES [CPeformarice
Cinter-C2CT
[User Dterface

[] Bequirsment [aies
Drecigr Beadive oo Bewienr [Waimers Coruems
(DER) [] Cortrol Shell drtifucts Fem ored

[] Use of Shalls for Clarity

H Baby ¢ i,
D.O\.u:mr_rn'l:ndd.un: R APTDesign Team Resporsthilites
Exmcd Derargade =ae .
[4pprowe [Disapprowe

E Becad DEE kaxs hBazx BRT gap
: ; Baselive SRS
D R“f? ¥ "Dre iminary Desizn
GILES [Becolre DRER Lo
[] Use Cases Idetified
[Texbaal De sTiptions
[™ee Case DRgame

[Class Liazmm
(Tre bm irvary Dresign w [ertmee

Drecizn Bendine o=
DEapprored

[fssoc ftione § Aggregation § Composition
[Mfatip lic it

[T ewwrp i craase 00 [Ztribute declmtion
] #amiy ¢ Detige Feehenary [Operation dec bration
Danigd [Bternction Triagrams
O E”S.ﬁﬁfﬁxﬁim [Sequence O Collhbomtiz
[] State Charts
: : [ductirity Dingrams
'@-u Submit For Review] Objact Dringrms
2% ; WaimeTss Comcers
E E: (] Pre Hm friary Disply Layonts
: L TADH, R CL, PCL, Fasion
2 =
&

H&ﬁmmﬁ?Den@Miw AFTDesizn Team Fesporshilibes
DR (SRS bias be o Baselied

..... :lDRRq,smes,pe.so]mad
[eawy ¢ il cospey cieak bomea [JDesign coreictert wrih ofhwer CSCL
expladed 7 enbate a1z i
[] gy ¢ Coadua Ravamr [[Desin emmis.;js
I:I Bmcs D2rardud? Sram Dwe D Ao

] Becad POR #oms i Base BRP gop
T (] Baselive PDR(Ref. S4E0L730-109

61

Dretadled Dresizn

FPre Bm imary Dresign
Apprared

Denprrared

(Detailed Desion w

[eawy ¢ e

[Jaamy ¢ Dedee Dawled Deaga

[J esict Schedule Rawiew 2
Db fdarenal (1 days)

Sbmit For Bewienr

(Critic a1 De sizm Remien w
[CDE)

I:‘ Borey ¢ all ecipy e boorea
expladad
O sy ¢ Covdus Rave
[exct pereraane mrae 2
Sebadul? |2 Peaslubcd MEg.

Dretailed Dresizp
Apprared

Froces dto o plem srtation

Dretailed Dresizp

[JEResolkre DDE eaies
[Pmuctice, Poid Arabysic of Prelm mary Design
[] Utilizatica of the BT C FrmemnahfCompaetts
[Urtilimatica: of the STL
[Wilimation of Dresige Patte e
[] Class Driagram
O Polm aphim

[Owerloadingg Orerridive
[Adtribate defidion

[] &bstract Deta Types
[Opertion defirits

O Paeade- Code for selected Alzarithm =
Ercapralation
Loose Conplivg [JTight Cdhesion
Titeraction Drisgram s
[] Sequerce [JColuboratio
State Charts
Object Dringram s
Ltirity Disgrams
P Taime s Cotcems
EmorErception Huadlig Defive d
Reconxce utilizmtior (Memory, CEU, bard dick)
Final Dicplay Lacroat
alidation Flan
Im plem extation Pl
TADX,ECL, PCL, Fusdon

CL'E

1000

AFTDesizn Team Fesporsibilities

[] PLE Imes ecoked

[] Designreadrfa mplem artation
Drecign comeistert wrifh otber C5CIs
Drecign enharicem ertsingzzectiore

[] 5 ke dnle CDE isa1e resohmticy mestivg

[spprome [Disapprare

[] Becard COR ks b Baza ERP gop
[] Bass e CD'E | Ref. S4E01730- 109)

62

Use this Quick Reference to follow the states required
for the 360 Softer are design process.

Thisis only a quick reference. For greater detadl reference
the 360 Softerare Lifecyele Design Phase dooun entation,

The 00 design for a CECT shall consist of UML products that depu:t
both a Sfafic Fiew and a Dyvamic Fiew. :

Atatic View shown by Dynamic ¥Wiew shown by
URIL Structural Diagrams UML Behavioral Diagrams
Cless diagran Use case diagram
Cgect diagram Sequerre dingr an
Component dagram Callaborafion diagram
Dreployam ent diagyam afechart diagram

Activity diagran

The check box esindicate the minimum set of issues and concepts :
that shall be addressed as well asthe minimoam set of TML demgn
artifacts that shall be created for each state in the process. :

Those check boxeswhich are grayed shall not be required

The placement of check box esinlater states does not preclude theé

cotwcepts of a.ft:ifacts they represent from beihg used atud '
polymorphism, cohesion and ervor handling durmg the Prehmmﬂr}gr
Design. Beyond those checkbox es wiich are required, designer :
discretion shall be used to determine which checkbozes best f&c1hfate
the needs of the CECT design

Remiem her that the ML is a notation used to cotrrey information
Beyond the required artifacts the C3CT must decided what TTML
notation to vse, when to use it and how to use it to comrey the :
necessary design information.

& Tterative Process can be followed for Use cases begimning withé
the Preliminary Design state and progy essing through Tmplem entation.

63

DEFINTITONS

ATATIC VIEW: An s pect of a swwtemm that emphasizes its shuctire.

CL&S&HDI AGEAM: Toinuse dass diagrams to ilhistate the static desizn w.ew
of asys

DE&EE:E n:quI HGRHM Yn:u use d:dl.l.ag:rdngm to hstrate the s tahic s:napsh.:-is

DV AMIC VIEW, Anaspect of asvstan that emphasizes its b ehavior.

USE CASE DIAGRAN: Shoas a set of use cases ard avpors and thisir
r⪫rtot{lshprs. Especially mportant in crgarmmng and modeling ﬂE behawm's cvf'a
5y

SEQUENCE DIATEAN: Emphsims the ime crdering Df'mﬁs¥5
Shoars asetofohjerts and the messazes sext ard recewedb]r those chjects.

COLLABORATION DIAGEAL: Emphasizes the shucbual
o anization of the objects that serd and recelve mess ages.

ATATECHART DIAGEAN: Shows a stafe machine, comsisting n:\cf'staibs
transihoes , everts, and activites. Emphasizs evert- ordered behiavice.

ACTIVITY DIAGE AN Shows aset of activities, the sequential Drbmtl’urg
floar fiom activity to actvity, and chjects that act and aw oted upon

64

10 Appendix B

72 Microsoft Project ===
| Ele Edit View Insert Format Iooks Project Window Help ‘
B E AR A e A EEREEE
&2+ — showe | Al - =B 7 O = | ll Tasks Bk _|
%/ crro-ps opF GsE
4}j CLCS 98 06-08-01.mpp =lalx|
ek tame | Aot | s | Actielpuraion :Z'rﬂebararzadrﬂ:re |10ﬂ|9J|Em2‘tﬁwr \SMJAUBES? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 70% Mon 6/8/98 768.57 d [
CRYO-MPS OPF GSE | 91% Thu10/1/98 683.34 d o E——
Req'ts Development 100% Thu 10/1/98 165d W
Implementation 100% Tue 6/1/99 3154 i
Validation Procedure 100% WWed 9/1/99 207 d P -
Validation 0% Tue 7/3/01 od [
DPS 63% Mon 6/8/98 621.92d I —
ECL 75% Mon 6/8/98 698.64 d T ——
EPD OPF 70% Mon 6/8/98 619.14 d [|
HWS-HWS 73% Mon7/13/98 792.19d Lo e—
ﬂll\ln (Y1 Y mans nA . ZiOwn NN ~an ar illil _I B B Llj“
CLCS 9-16-02 .mpp
Task Mame j| Act. % Start j| Actusl Duremonj| = = = = I2ﬂi;n = = —I
= OPF Processing 63% Mon 6/8/98 845.65 d
“ CRYO-MPS OPF GSE 82% Thu 10/1/98 821.3d
Req'ts Development 100% Thu 10/1/98 165d
Implementation 91% Mon 7/2/01 148.33 d
Validation Procedure 70% Tue 10/2/01 1253 d
Validation 0% Fri 8/30/02 od
DPS 68% Mon 6/8/98 90343 d
ECL 53% Mon 6/8/98 630.76 d
EPD OPF 43% Mon 6/8/98 533.8d
HWS-HWS 99% Mon 7/13/98 1139.05d
: HYD-HYD 80% Mon 7/20/98 902.9d " " :] ' ; ’
EE IT | Eml = rrl el
Astan||| & 51 B G) Ry || GyNew Tenant Foms | B3 Micrasoft ord - Thesis... | () Message Center | Bijcics a1602 mep |[@iCLCS 9B 06 0801w [RN A@ 1:36PM
o Duration for common percentages
& - complete at existing rate of
O c o .
> g 3 completion
E:) g g a Calculated
— —_
g g— g @ Total
o oS ,
<0 <8 |25% |50% |75% | Duration
Process A 100 315 78.75 157.50 236.25 315.00
Process B 91 148.33 40.75 81.5 122.25 163.00
Process B Provided a 48.25% reduction in development time.

65

Err

| Ele Edit View Insert Format Iooks Project Window Help

=&l

DERERY | {mRS w|(@=%0 ¢ 6w laar e,
& P + = show~ | aral - 16 - = | 2l Tasks - v:l—& _|
| |ops
Jjj CLCS 98 06-08-01.mpp ol x|
[reknane fes s | AchslBuraten %ﬂemazg [78 |10ﬂ|9J|Em2‘tﬁwr \SMJAUBES? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 68% Mon 6/8/98 749.98 d [
“DPS 63% Mon 6/8/98 621.92d A
Requirements 76% Mon 6/8/98 565.05 d
= Implementation 66% Mon 11/16/98 521.87d
PUD Implementation 85% Mon 11/16/98 385.9d
OPF Implementation 2% Wed 7/11/01 27d [
OPF Validation Procedure 15% Wed 3/14/01 16.2d I
“ Validation 0% |Thu 1/31/02 od I
ECL 75% Mon 6/8/98 698.64 d T ——
EPD OPF 70% Mon 6/8/98 619.14d ; —
ﬂll‘.'n EmAre —2nans nm_ 2raAinn 0 an illiI _I

CLCS 9-16-02 .mpp
Task Mame

Act. %

E

Actusl Durton | |
e

= OPF Processing
“DPS
Requirements
= Implementation
PUD Implementation
OPF Implementation
OPF Validation Procedure
Validation
ECL
EPD OPF
Netwo HWS-HWS

Lat
Skart-Fir..,

62%
68%
96%
34%
73%
0%
2%
0%
53%
43%
99%

Mon 6/8/98
Mon 6/8/98
Mon 6/8/98
Mon 7/2/01
Mon 7/2/01
Tue 5/28/02
Thu 9/12/02
Fri 5/30/03
Mon 6/8/98
Mon 6/8/98
Mon 7/13/98

1139.05d

| Ready Il

Astan||| & 51 B G) Ry || GyNew Tenant Foms

| B3 Micrasoft ord - Thesis... | () Message Center

ElEE el sl
|[Ecics se o6 0801w [RWG A@ 1:33PM

| EjcLes 91602 mep

Duration for common percentages
()
? - complete at existing rate of
c S :
(D/_) o 3 completion
a) g g a Calculated
T o < »
S e e @ Total
S o o8 ,
< O <2 |25% 50% 75% Duration
Process A 66 521.87 | 197.68 | 395.36 | 593.03 | 790.71
Process B 34 137.86 | 101.37 | 202.74 | 304.10 | 405.47
Process B Provided a 48.72% reduction in development time.

66

13 Micrasaft Project

| Ele Edit View Insert Format Iooks Project Window Help

=&

DR ERY iRt -)

Ho Group B

Qaranm.

4 & + = Showr | Arid =16

= | all Tasks

- v=|—15;_|

E3

Jjj CLCS 98 06-08-01.mpp =lolx|
ek tame | Aot s | Actielpuraion :Z'rﬂebararzadrﬂ:re |10ﬂ|9J|Em2‘tﬁwr \SMJAUBES? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 69% Mon 6/8/98 760 d [
SECL | 75% Mon 6/8/98 698.64 d A
Biteskly Requirements 100% Mon 6/8/98 232d
FIERHE Implementation 82% Mon 9/14/98 519.88d i
Validation Procedure 80% Tue 8/10/99 2096d PR
Validation 0% Thu 8/30/01 0w [
EPD OFF 70% Mon 6/8/98 619.14 d T —
HWS-HWS 73% Mon 7/13/98 792.19d T —
HYD-HYD 80% Mon 7/20/98 643.35d I ——
INS 66% Mon 6/8/98 692.32d —
s 25 e e e oy
CLCS 9-16-02 .mpp —I
Task Mame j| Act. % j| Start j| Actual Duremonj| = = = = |2ni;n = =
= OPF Processing 60% Mon 6/8/98 748.08 d
“ECL 51% Mon 6/8/98 593.23 d
Requirements 100% Mon 6/8/98 232d
Implementation 62% Mon 7/2/01 196.54 d !
Validation Procedure 45% Thu 1/3/02 78.3d[=
Validation 0% Fri 8/30/02 od
EPD OPF 43% Mon 6/8/98 533.8d
HWS-HWS 99% Mon 7/13/98 1139.05 d
HYD-HYD 80% Mon 7/20/98 202.9d
INS 52% Mon 6/8/98 633.72d
MEQ 1% Tue 9/1/98 762.25d

Diagrar

| Ready Il

Astan||| & 51 B G) Ry || GyNew Tenant Foms

| B3 Micrasoft ord - Thesis... | () Message Center

| EjcLes 91602 mep

ElEE el sl
|[Eicics se o6 0801w [RG @ 140PM

o Duration for common percentages
§ - complete at existing rate of
1 § '% completion
8 g? = é Calculated
% %— % % Total-
<O <2 |25% 50% 75% Duration
Process A 82 519.88 | 15850 | 317.00 | 47550 | 634.00
Process B 62 196.54 | 79.25 158.5 237.75 | 317.00
Process B Provided a 50.00% reduction in development time.

67

13 Micrasaft Project

| Ele Edit View Insert Format Iooks Project Window Help

=&

2R ERY

tBRd o |dl=snzce

Ho Group B

Qaranm.

Arial - 16 -

4 % + = Show~

= | all Tasks - 7= | == _|

|epo oPe

Jjj CLCS 98 06-08-01.mpp =lolx|
ek tame | Aot s | Actielpuraion :Z'rﬂebararzadrﬂ:re |10ﬂ|9J|Em2‘tﬁwr \SMJAUBES? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 68% Mon 6/8/98 750.74 d [
~ EPD OPF | 74% Mon 6/8/98 649.41d Pl e ——
T Requirements 100% Mon 6/8/98 349d j T —
FIERHE Implementation 46% Fri 2/25/00 181.24 d : [
EPD Implementation 46% Fri 2/25/00 83.72d : [
OPF Validation 0% Tue 9/18/01 0d : [
HWS-HWS 73% Mon 7/13/98 792.19d f I —
HYD-HYD 80% Mon 7/20/98 643.35d j I ——
INS 66% Mon 6/8/98 692.32d . T ——
MEQ 59% Tue 9/11/98 599.16 d : I —
mE e e il oy
CLCS 9-16-02 .mpp —I
Task Mame j| Act. % j| Start j| Actual Duremonj| = = = = |2ni;n = =
= OPF Processing 67% Mon 6/8/98 814.04 d
“ EPD OPF 65% Mon 6/8/98 729.71d
Requirements 100% Mon 6/8/98 349d
= Implementation 26% Mon 7/2/01 90.96 d
EPD Implementation 26% Mon 7/2/01 83.23d
OPF Validation 17% Mon 12/2/02 25d
HWS-HWS 99% Mon 7/13/98 1081.85d
HYD-HYD 80% Mon 7/20/98 202.9d
INS 52% Mon 6/8/98 633.72d
MEQ 71% Tue 9/1/98 762.25d
OMS-Horizontal 56% Mon 9/7/98 638.03 d

Diagrar

| Ready Il

Astan||| & 51 B G) Ry || GyNew Tenant Foms

| B3 Micrasoft ord - Thesis... | () Message Center

| EjcLes 91602 mep

ElEE el sl
|[Ecics se o6 0801w [RGG A@ 1:42PM

Duration for common percentages
()
§ - complete at existing rate of
c o .
E o 2 completion
m g g a Calculated
T o < »
S e e @ Total
S o o8 ,
<O <2 |25% 50% 75% Duration
Process A 46 181.24 | 98.50 197.00 | 29550 | 394.00
Process B 26 90.96 87.46 174.93 | 262.39 | 349.85
Process B Provided a 11.21% reduction in development time.

68

Err

| Ele Edit View Insert Format Iooks Project Window Help

=&l

D2l ERY iRt -]

Ho Group B

Qar

@.

4 & + = Showr | Arid =16

= | all Tasks

- v=|—15;_|

[Hvs-Hws

Jjj CLCS 98 06-08-01.mpp =lolx|
ek tame | Aot s | Actielpuraion :Z'tﬂabararzadr 75 |10ﬂ|9J|Em2‘tﬁwr \SMJAUBES? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 67% Mon 6/8/98 744.31 d [
“HWS-HWS | 73% Mon 7/13/98 792.19d o I —
T Regq'ts Development 100% |Mon 7/13/98 123 d : =
PSR Implementation 100% | Mon 9/14/98 457 d !
Implementation (Titan) 0% Mon 12/18/00 Od ; [
Validation Procedure 9% Meon 8/16/99 12d ‘ [
Validation 0% Wed 4/25/01 0d f I
Validation (EPD portion) 0% |Mon 11/4/02 0d j S
HYD-HYD 80% Mon 7/20/98 643.35d . I ——
INS 66% Mon 6/8/98 692.32d ; —
s 25 e e e oy
CLCS 9-16-02 .mpp i —I
Task Mame Act. % art j| Actual Duremonj| = = = = |2ni;n = =
= OPF Processing 68% Mon 6/8/98 820.28 d
“ HWS-HWS 99% Mon 7/13/98 995.06 d
Req'ts Development 100% Mon 7/13/98 123 d
Implementation 100% Tue 7/24/01 78d
Validation Procedure 100% Fri 11/30/01 133 d
OPF Validation 100% Mon 6/24/02 23d
Validation (EPD portion) 0% Fri 7/26/02 od
HYD-HYD 80% Mon 7/20/98 202.9d
INS 52% Mon 6/8/98 633.72d
MEQ 71% Tue 9/1/98 762.25d
OMS-Horizontal 56% Mon 9/7/98 638.03 d

Diagrar

E4T ||| 2aps. [NUM | [SCRL | ovR.

| Ready Il

Astan||| & 51 B G) Ry || GyNew Tenant Foms

| B3 Micrasoft ord - Thesis... | () Message Center |

B)CLCS 916-02 .mpp

|[Ecics se o6 0801w [RGG A@ 1:42PM

o Duration for common percentages
g - complete at existing rate of
2] § ‘% completion
% g’ % g R Calculated
S g— S % Total
28 &9 |25% |50% |75% | Duration
Process A 100 457 11425 | 22850 | 342.75 | 457.00
Process B 100 133 33.25 66.5 99.75 133.00
Process B Provided a 70.90% reduction in development time.

69

3 Micrasaft Project

| Ele Edit View Insert Format Iooks Project Window Help

=&l

DR ESRY | 2R o|@[=c0 ¢ @ wow laar e,
€ > & = Showr | wial sz olEE= A ok
| | Hvo-twvp
CLCS 98 06-08-01.mpp
i | fet | s Burtin :Z'rﬂebararzadrﬂ:re |10ﬂ|9J|Em2‘tﬁwr \SMJAUBES? 12r1|:~aMEe:fG2g 7J11| Of‘o?g:
“ OPF Processing 67% Mon 6/8/98 716.53 d o E—
“HYD-HYD 80% Mon 7/20/98 643.35d o I —
iy Req'ts Development 100% |Mon 7/20/98 297 d VIRKTRIAD |
FERHE Implementation 97% Wed 3/17/99 452,004 il
Implementation (Titan) 0% Wed 5/16/01 Od [
Validation Procedure 1% Fri 5/18/01 072d [
Validation 0% Fri 6/15/01 0d b
INS 66% Mon 6/8/98 692.32 d T —
MEQ 59% Tue 9/1/98 599.16 d T —
OMS-Horizontal Mon 9/7/98 492.76 d T ——
CLCS 9-16-02 .mpp =lolx|
<k Marme: j| Act. % j| Start j| Actusl Duremonj| = = = = I2ﬂi;n = = B
= OPF Processing 64% Mon 6/8/98 780.07 d
“HYD-HYD | 80% Mon 7/20/98 902.9d
Req'ts Development 100% Mon 7/20/98 297 d
Implementation 88% Tue 9/11/01 14872 d
Validation Procedure 55% Mon 11/12/01 396d
Validation 0% Thu 10/24/02 od
INS 52% Mon 6/8/98 633.72d
MEQ 71% Tue 9/1/98 762.25d
OMS-Horizontal 56% Mon 9/7/98 638.03 d
Dingraid || KNI} sl T o

| Ready

Astan||| & 51 B G) Ry || GyNew Tenant Foms

| B3 Micrasoft ord - Thesis... | () Message Center

E4T ||| 2aps. [NUM | [SCRL | ovR.

Duration for common percentages
()
g - complete at existing rate of
c o .
9 o 2 completion
T g g a Calculated
T o < »
S e e @ Total
S o o8 ,
<O <2 |25% 50% 75% Duration
Process A 97 45299 | 116.75 | 23350 | 350.25 | 467.00
Process B 88 148.72 | 42.25 84.5 126.75 | 169.00
Process B Provided a 63.81% reduction in development time.

70

|[@jeics 9-16.02 mpp CLCS 98 06-08-01.mpp R A@ 143rM

3 Micrasaft Project

| Ele Edit View Insert Format Iooks Project Window Help

=&l

2R ERY

PBRS o |(R=senm o @ wew -

Qaranm.

4 % + = showr | Al

=16 = | 2l Tasks - v:l—& .

| [ms

4 CLCS 98 06-08-01.mpp

=lolx|

Task Matme Act. % Start Actual Duration wember | Januar | Awigust | March | oot |
| | | EHIZ%I 7 109] 20 [5H7 [8r0 [1263] 328 [741 [10
= OPF Processing 63% Mon 6/8/98 683.09 d [
ZINS | 66% Mon 6/8/98 692.32 d EoE b e ——
Biteskly Requirements 100% Mon 6/8/98 404 d !
PSR Implementation 59% |Mon 9/14/98 523.02d !
Validation Procedure 0% Mon 8/27/01 od :
Validation 0% Fri 3/1/02 od ‘
MEQ 59% Tue 9/1/98 599.16 d
OMS-Horizontal Mon 9/7/98 492.76 d
] < S| i

CLCS 9-16-02 .mpp
Task Mame

art

Actusl Duration _ | |
- s

Diagrar

= OPF Processing 61% Mon 6/8/98

“INS 52% Mon 6/8/98
Requirements 93% Mon 6/8/98
Implementation 36% Mon 7/2/01
Validation Procedure 0% Wed 4/24/02
Validation 0% Thu 10/17/02
MEQ 71% Tue 9/1/98
OMS-Horizontal 56% Mon 9/7/98

739.22 d
633.72d
751.91d
116.28 d
0d
od

O ————
£38.03 o — P

| Ready

Astan||| & 51 B G) Ry || GyNew Tenant Foms | B3 Micrasoft ord - Thesis... | () Message Center

| EjcLes 91602 mep

E4T ||| 2aps. [NUM | [SCRL | ovR.

Duration for common percentages
(]
g - complete at existing rate of
c ©] .
) o = completion
< g3 a Calculated
< a < »
S e E Total
28 &9 |25% |50% |75% | Duration
Process A 69 523.02 | 189.50 | 379.00 | 568.50 | 758.00
Process B 36 116.28 | 80.75 161.5 24225 | 323.00
Process B Provided a 57.39% reduction in development time.

71

|[Ecics se o6 0801w [RGG A@ 1:43PM

3 Micrasaft Project = TS|

| Ele Edit View Insert Format Iooks Project Window Help

DERERY | {mRS w|(@=%0 ¢ 6w laar e,
& P + = show~ | aral - 16 - = | 2l Tasks - v=|—&_
=
}j CLCS 98 06-08-01.mpp =[]
Task Mame | Act.% | Start | Actual Duration :Z’:ﬁberaaal = lmﬂl;lan;:r ‘SMJA‘UBQSEI 12r1l:«;Mﬁe:fG2g 7ml o::loml
= OPF Processing 62% Tue 9/1/98 632.15d o —
“MEQ | 59% Tue 9/1/98 599.16 d I I —
T “MEQ-MEQ 61% Tue 9/1/98 496.19d T —
FERHE Requirements 100% Tue 9/1/08 230d ———
Implementation 63% Mon 5/3/99 253.89d |
Validation Procedure 0% Tue 5/1/01 od o
Validation 0% Mon 7/30/01 od [
SAIL TCS Validation 0% Thu 9/20/01 0d S
MEQ-PLD 54% Fri 1/1/99 481,36 d o I
MEQ-RMS 60% Mon 1/4/99 559.83 d Co —
mE e e e ame oy
CLCS 9-16-02 .mpp g —l
Task Mame Act. % art j| Actua\Duremonj| < | 2001
= OPF Processing 66% Tue 9/1/98 760.17 d
“MEQ 1% Tue 9/1/98 762.25d
FMEQ-MEQ 70% Tue 9/1/98 736.82d
Requirements 100% Tue 9/1/98 230d
Implementation 60% Mon 7/2/01 84.6d
Validation Procedure 43% Tue 3/26/02 27.52d
Validation 0% Mon 9/16/02 od
SAIL TCS Validation 0% Wed 10/2/02 od
MEQ-PLD 60% Fri 1/1/99 597.04 d
MEQ-RMS 82% Mon 1/4/99 782.15d
e OMS-Horizontal 56% Mon 9/7/98 638.03 d : — — :
[Ready T Bl el
Astan||| & 51 B G) Ry || GyNew Tenant Foms | B3 Micrasoft ord - Thesis... | () Message Center | Bijcics a6tz mep |[@iCLCS 9B 060801 m. [RPN A@ 144PM
Duration for common percentages
()
o ? - complete at existing rate of
L =
c o .
> o = completion
1 P =
@5 g g a Calculated
< a)
g S £ s £ Total
S o o8 ,
<O <2 |25% 50% 75% Duration
Process A 63 253.89 100.75 201.50 302.25 403.00
Process B 60 84.6 35.25 70.5 105.75 141.00
Process B Provided a 65.01% reduction in development time.

72

3 Micrasaft Project

| Ele Edit View Insert Format Iooks Project Window Help

=&l

DR ERY | aa< - |[f|=e0 ¢ @ wow laar e,
& P + = show~ | aral - 16 - = | 2l Tasks - v=|—&_
\ =
Jjj CLCS 98 06-08-01.mpp =lolx|
ek tame | Aot s | Actielpuraion :Z'tﬂebararza [7 |10ﬂ|9J|Em2‘tﬁwr \smmuagrg? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 62% Tue 9/1/98 632.15d [
“MEQ | 59% Tue 9/1/98 599.16 d I I —
T MEQ-MEQ 61% Tue 9/1/98 496.19d ——
FHEHHE ®MEQ-PLD 54% Fri 1/1/99 481.36 d —
Req'ts Development 100% |Fri 1/1/99 1914d e
Implementation 27% Fri10/1/99 49.95d I
Validation Procedure 0% Tue 6/19/01 0d I
Validation 0% Mon 6/3/02 od o
MEQ-RMS 60% Mon 1/4/99 559.83 d I —
OMS-Horizontal 68% Mon 9/7/98 492.76 d : I ———
KT 3 N)

Task Mame

CLCS 9-16-02 .mpp

Act. %

art

Actusl Duration _ | |
- s

[
=
=
=
=
B

Diagrar

= OPF Processing
“MEQ
MEQ-MEQ
“MEQ-PLD
Req'ts Development

Implementation

Validation Procedure

Validation

MEQ-RMS
OMS-Horizontal

66%
1%
70%
60%
100%
20%
0%
0%
82%
56%

Tue 9/1/98
Tue 9/1/98
Tue 9/1/98
Fri 1/1/99
Fri 1/1/99
Tue 7/9/02
Tue 8/27/02
Wed 10/9/02
Mon 1/4/99
Mon 9/7/98

76017 d
762.25d
736.82d
597.04 d
1914d
13d

782.15d
638.03 d

E4T ||| 2aps. [NUM | [SCRL | ovR.

| Ready

Astan||| & 51 B G) Ry || GyNew Tenant Foms | B3 Micrasoft ord - Thesis... | () Message Center | Bijcics a6tz mep |[@iCLCS 9B 060801 m. [RPN A@ 144PM
Duration for common percentages
()
@) = - complete at existing rate of
— 1= o)
QI_ g 3 completion
@4 g % a Calculated
= <2 =N Total
= ZE | 2%
5 o o3 :
<O <2 |25% 50% 75% Duration
Process A 27 49.95 46.25 92.50 138.75 | 185.00
Process B 20 13.00 16.25 325 48.75 65.00
Process B Provided a 64.86% reduction in development time.

73

3 Micrasaft Project

| Ele Edit View Insert Format Iooks Project Window Help

=&l

DR ERY | aa< - |[f|=e0 ¢ @ wow laar e,
& P + = show~ | aral - 16 - = | 2l Tasks - v:l—& _|
\ [vez
Jjj CLCS 98 06-08-01.mpp =lolx|
ek tame | Aot s | Actielpuraion :Z'tﬂebararza [7 |10ﬂ|9J|Em2‘tﬁwr \smmuagrg? 12r1|:~aMEe:fG2g 7J11| meoi‘l
= OPF Processing 62% Tue 9/1/98 632.15d [
“MEQ | 59% Tue 9/1/98 599.16 d I I —
T MEQ-MEQ 61% Tue 9/1/98 496.19d : ——
FEHE MEQ-PLD 54% Fri 1/1/99 481.36 d : —
©MEQ-RMS 60% Mon 1/4/99 559.83 d : I ——
Req'ts Development 100% Mon 1/4/99 187 d : ——
Implementation 49% Fri 10/1/99 69.00d f I
Validation Procedure 0% | Thu 5/10/01 od
Validation 0% |Thu 8/1/02 0d 5 o
OMS-Horizontal 68% Mon 9/7/98 492.76 d : I ———
4] | Els n B

Task Mame

CLCS 9-16-02 .mpp

Act. %

art

B

= OPF

Diagrar

Processing

“MEQ
MEQ-MEQ
MEQ-PLD
“MEQ-RMS

Req'ts Development

Implementation

Validation Procedure

Validation

OMS-Horizontal

66%
1%
70%
60%
82%
100%
80%
63%
0%
56%

Tue 9/1/98 76017 d
Tue 9/1/98 762.25d
Tue 9/1/98 736.82d
Fri 1/1/99 597.04 d
Mon 1/4/99 782.15d
Mon 1/4/99 187d
Wed 2/6/02 7764d
Wed 4/3/02 35914
Mon 9/16/02 0d
Mon 9/7/98 638.03 d

| Ready

E4T ||| 2aps. [NUM | [SCRL | ovR.

| [REGAD 45e

Astan||| & 51 B G) Ry || GyNew Tenant Foms | B3 Micrasoft ord - Thesis... | () Message Center | Ejcics S5z e |[ECLES 98 05:08.01 m.
Duration for common percentages
(]
g ? - complete at existing rate of
c o .
e o = completion
1 S =
(@3 g g a Calculated
L T a T %
= S e e @ Total
5 o 5 8 :
<O <2 |25% 50% 75% Duration
Process A 49 69.09 35.25 70.50 105.75 | 141.00
Process B 80 77.60 24.25 48.5 72.75 97.00
Process B Provided a 31.21% reduction in development time.

74

1& Microsoft Praject
| Ele Edit View Insert Format Iooks Project Window Help

=&

2R ERY

tBRd o |dl=snzce

Ho Group

Qaranm.

Arial - 16 -

4 % + = Show~

= | all Tasks

-v=|—£5;_

| | oms-Horizontal

Jjj CLCS 98 06-08-01.mpp

=lolx|

Ly | march | cctca|

Task Mame Act. % | Start | Actual Duration
= OPF Processing 68% Mon 9/7/98 492.76 d
= OMS-Horizontal 68% Mon 9/7/98 492.76 d
Req'ts Development 100% Mon 9/7/98 158 d
Implementation 84% Mon 10/12/98 418.32d
Validation Procedure 45% | Tue 7/6/99 91.8d
Validation Men 2/12/01 Od

misi ml

wember | June | Januar | August
128 [323 | 76 [1oMa] 2A [5M7 [@0 [12d3]aea [7a1 [10

CLCS 9-16-02 .mpp
Task Mame

H 4
| 2001 —I

= OPF Processing
= OMS-Horizontal
Req'ts Development
Implementation
Validation Procedure
Validation

Mon 9/7/98

56% Mon 9/7/98 :

100% Mon 9/7/98 158 d j

65% Tue 12/18/01 78.65d ;

47% |Wed 4/24/02 54.99 d [
0% |Wwed 10/9/02 0d

j| Actusl Duration jl - = = = T == o
638.03 d ; ; E :

I
Astan||| & 51 B G) Ry || GyNew Tenant Foms

| B3 Micrasoft ord - Thesis... | () Message Center

E4T ||| 2aps. [NUM | [SCRL | ovR.

| EjcLes 91602 mep

|[Ecics se o6 0801w [RWG @ 1:45PM

o Duration for common percentages
§ = complete at existing rate of
2) § ‘% completion
% g’ 8 E’ _ Calculated
g g— g % Total
28 &9 |25% |50% |75% | Duration
Process A 84 418.32 | 12450 | 249.00 | 37350 | 498.00
Process B 65 78.65 30.25 60.5 90.75 121.00
Process B Provideda 75.70% reduction in development time.

75

46

	1 Introduction
	2 Evaluation of Lifecycle Models
	2.1 Waterfall
	2.1.1 Definition
	Figure 1: DoD 2167A.[5]

	2.1.2 DOD 2167A
	2.1.2.1 System Requirements
	2.1.2.2 System Design
	2.1.2.3 Software Requirements
	2.1.2.4 Software Preliminary Design
	2.1.2.5 Software Detailed Design
	2.1.2.6 Test and Integration

	2.2 Iterative
	2.2.1 Definition
	2.2.2 Rational Unified Process (RUP)
	2.2.2.1 Industry Best Practices
	2.2.2.1.1 Management of requirements
	2.2.2.1.2 Component Based
	2.2.2.1.3 Visually modeling
	2.2.2.1.4 Built-in Quality
	2.2.2.1.5 Change Control
	2.2.2.1.6 Commercial Viability

	2.2.2.2 History of RUP
	Figure 2: The History of RUP Development

	2.2.2.3 The Process
	Figure 3: The RUP Implementation of the Iterative Model [7 p. 2]
	2.2.2.3.1 Cycles
	2.2.2.3.2 Phases
	2.2.2.3.2.1 Inception
	2.2.2.3.2.2 Elaboration
	2.2.2.3.2.3 Construction
	2.2.2.3.2.4 Transition

	2.2.2.3.3 Iterations
	2.2.2.3.4 Modeling elements
	Figure 4: RUP Modeling Elements
	2.2.2.3.4.1 Who = Workers
	2.2.2.3.4.2 What = Artifacts
	2.2.2.3.4.3 How = Activities
	2.2.2.3.4.4 When = Workflows

	3 Discussion of SEI CMM
	3.1 History of CMM
	Figure 4: The History of the SEI CMM

	3.2 CMM Levels
	3.2.1 Level 1 - Initial
	3.2.2 Level 2 - Repeatable
	3.2.3 Level 3 - Defined
	3.2.4 Level 4 - Managed
	3.2.5 Level 5 - Optimizing

	3.3 Key Process Areas (KPA)
	Figure 5: The CMM Structure [1 p. 31]
	3.3.1 Level 2 KPA Software Project Planning
	3.3.2 Level 3 KPA Peer Reviews

	4 Comparison of CLCS Processes
	4.1 Description of CLCS Process A
	4.1.1 Process Overview
	Figure 6: Process A –Requirements / Design Development [17 p. 26]
	Figure 7: Process A - Software Production Activities [17 p. 28]

	4.1.2 CMM Evaluation of Design Phase
	Figure 8: Process A - Preliminary Design [17 p.30]
	Figure 9: Process A - Detail Design [17 p.31]
	4.1.2.1 Level 2 KPA Software Project Planning
	4.1.2.1.1 Activities Performed (Work Products)
	4.1.2.1.2 Ability to Perform (Estimation training)

	4.1.2.2 Level 3 KPA Peer Reviews
	4.1.2.3 Process A CMM Evaluation Summary

	4.2 Description of CLCS Process B
	4.2.1 Process Overview
	Figure 10: Process B - Design Development [18 p. 26]

	4.2.2 CMM Evaluation of Design Phase
	Figure 11: Process B - Requirements Readiness [18 p. 27]
	Figure 12: Process B - DRR [18 p. 28]
	4.2.2.1 Level 2 KPA Software Project Planning
	4.2.2.1.1 Activities Performed (Work Products)
	Figure 13: Process B - Analysis & Design Workflow [4]
	Figure 14: Process B - OO/UML [4]

	4.2.2.1.2 Ability to Perform (Estimation training)

	4.2.2.2 Level 3 KPA Peer Reviews
	4.2.2.2.1 Design Readiness Review (DRR)
	4.2.2.2.2 Preliminary Design Review (PDR)
	Figure 15: Process B - PDR [18 p. 28]

	4.2.2.2.3 Critical Design Review (CDR)
	Figure 16: Process B - CDR [18 p. 28]

	4.2.2.3 Process B CMM Evaluation Summary

	5 Supporting Evidence for Hypothesis
	Figure 17: CSCI Comparable durations

	6 Hypothesis Summary
	7 Future Research on this Topic
	8 References
	9 Appendix A
	10 Appendix B

