

Migration from

a Waterfall/Non SEI CMM Compliant Process to

a RUP/SEI CMM Compliant Process

by

Chad Amos Chamberlin

A thesis submitted to the

School of Extended Graduate Studies at

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Software Engineering

Melbourne, Florida

May 2003

Permission to Copy

I grant The Florida Institute of Technology the non-exclusive right to use

this work for their own purposes and to make single copies of the work

available to the public on a not-for-profit basis if copies are not otherwise

available.

Chad Amos Chamberlin

We the undersigned committee hereby recommend that the attached

document be accepted as fulfilling in part the requirements for the degree of

Master of Science in Software Engineering.

“Migration from a Waterfall/Non SEI CMM Compliant Process to a RUP/SEI

CMM Compliant Process,”

a thesis by Chad Amos Chamberlin

Mr. David Clay,

Director, Computer Programs

School of Extended Graduate Studies Spaceport, KSC

Thesis Advisor

Art Dickinson, Ph.D.

Assistant Director, Computer Programs

School of Extended Graduate Studies Spaceport, KSC

Michael Shaw, Ph.D.

Associate Professor and Associate Head

Department of Mathematical Sciences

William David Shoaff, Ph.D.

Associate Professor and Head

Department of Computer Sciences

 iii

Abstract
Title:

Migration from

a Waterfall/Non SEI CMM Compliant Process to

a RUP/SEI CMM Compliant Process

Author:

Chad Amos Chamberlin

Thesis Advisor:

Mr. David Clay

Software Life Cycle processes play a key role in the successful

development of software products. Software processes continue to evolve

as the field of software development progresses toward being a true

engineering discipline. This thesis has two objectives:

(1) To apply software engineering knowledge gained during the pursuit of

this degree toward the design and development of a complete,

Software Engineering Institute (SEI) Capability Maturity Model (CMM)

compliant process for the design phase of the software lifecycle.

(2) To evaluate a Waterfall Lifecycle Model vs. an Iterative Lifecycle Model

and compare SEI CMM compliant processes to non-SEI CMM

compliant process using a "real world" software development project.

 iv

Table of Contents

1 Introduction .. 1
2 Evaluation of Lifecycle Models 5

2.1 Waterfall... 5

2.1.1 Definition .. 5

2.1.2 DOD 2167A ... 8

2.1.2.1 System Requirements ... 8

2.1.2.2 System Design .. 8

2.1.2.3 Software Requirements ... 9

2.1.2.4 Software Preliminary Design 10

2.1.2.5 Software Detailed Design .. 10

2.1.2.6 Test and Integration .. 11

2.2 Iterative .. 11

2.2.1 Definition .. 11

2.2.2 Rational Unified Process (RUP) 13

2.2.2.1 Industry Best Practices .. 13

2.2.2.1.1 Management of requirements 13

2.2.2.1.2 Component Based .. 14

2.2.2.1.3 Visually modeling .. 14

2.2.2.1.4 Built-in Quality ... 14

2.2.2.1.5 Change Control ... 15

2.2.2.1.6 Commercial Viability .. 15

2.2.2.2 History of RUP ... 16

 v

2.2.2.3 The Process .. 17

2.2.2.3.1 Cycles .. 17

2.2.2.3.2 Phases .. 18

2.2.2.3.2.1 Inception .. 18

2.2.2.3.2.2 Elaboration .. 18

2.2.2.3.2.3 Construction .. 19

2.2.2.3.2.4 Transition ... 19

2.2.2.3.3 Iterations .. 20

2.2.2.3.4 Modeling elements .. 20

2.2.2.3.4.1 Who = Workers.. 21

2.2.2.3.4.2 What = Artifacts ... 21

2.2.2.3.4.3 How = Activities ... 22

2.2.2.3.4.4 When = Workflows .. 22

3 Discussion of SEI CMM .. 24

3.1 History of CMM .. 24

3.2 CMM Levels ... 25

3.2.1 Level 1 - Initial ... 25

3.2.2 Level 2 - Repeatable ... 25

3.2.3 Level 3 - Defined ... 26

3.2.4 Level 4 - Managed ... 27

3.2.5 Level 5 - Optimizing ... 27

3.3 Key Process Areas (KPA) 28

3.3.1 Level 2 KPA Software Project Planning 29

3.3.2 Level 3 KPA Peer Reviews 31

 vi

4 Comparison of CLCS Processes 32

4.1 Description of CLCS Process A 32

4.1.1 Process Overview.. 32

4.1.2 CMM Evaluation of Design Phase 34

4.1.2.1 Level 2 KPA Software Project Planning 36

4.1.2.1.1 Activities Performed (Work Products) 36

4.1.2.1.2 Ability to Perform (Estimation training) 37

4.1.2.2 Level 3 KPA Peer Reviews 38

4.1.2.3 Process A CMM Evaluation Summary 38

4.2 Description of CLCS Process B 39

4.2.1 Process Overview.. 39

4.2.2 CMM Evaluation of Design Phase 41

4.2.2.1 Level 2 KPA Software Project Planning 43

4.2.2.1.1 Activities Performed (Work Products) 43

4.2.2.1.2 Ability to Perform (Estimation training) 47

4.2.2.2 Level 3 KPA Peer Reviews 47

4.2.2.2.1 Design Readiness Review (DRR) 47

4.2.2.2.2 Preliminary Design Review (PDR) 49

4.2.2.2.3 Critical Design Review (CDR) 49

4.2.2.3 Process B CMM Evaluation Summary 51

5 Supporting Evidence for Hypothesis 52

6 Hypothesis Summary .. 56

7 Future Research on this Topic 58
8 References ... 59

 vii

9 Appendix A ... 61

10 Appendix B ... 65

 viii

Table of Figures

Figure 1: DoD 2167A.. 7

Figure 2: The History of RUP Development ... 16

Figure 3: The RUP Implementation of the Iterative Model.......................... 17

Figure 4: RUP Modeling Elements ... 21

Figure 4: The History of the SEI CMM .. 24

Figure 5: The CMM Structure ... 29

Figure 6: Process A –Requirements / Design Development 33

Figure 7: Process A - Software Production Activities 34

Figure 8: Process A - Preliminary Design ... 35

Figure 9: Process A - Detail Design ... 36

Figure 10: Process B - Design Development ... 40

Figure 11: Process B - Requirements Readiness 42

Figure 12: Process B - DRR ... 42

Figure 13: Process B - Analysis & Design Workflow 45

Figure 14: Process B - OO/UML... 46

Figure 15: Process B - PDR ... 49

Figure 16: Process B - CDR ... 50

Figure 17: CSCI Comparable durations ... 55

 ix

Table of Acronyms

APS Application Software

CDR Critical Design Review

CLCS Checkout Launch and Control System

CMM Capability Maturity Model

COTS Commercial off the Shelf

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DOD Department of Defense

FPA Function Point Analysis

IPT Integrated Product Team

KPA Key Process Area

KSC Kennedy Space Center

OO Object Oriented

PDR Preliminary Design Review

RUP Rational Unified Process

SDD Software Design Document

SDP Software Development Plan

SDR Software Design Review

SEI Software Engineering Institute

SQM Software Quality Management

SRR System Requirements Review

SSR Software Specification Review

STD Standard

UML Unified Modeling Language

 x

Acknowledgements

I would like to thank David Clay for serving as my thesis advisor. Special

thanks to Jonsie Ivey for clearing the thesis path so that others at SEGS

KSC could follow.

 1

1 Introduction

It is commonly accepted throughout the software industry that the road to a

successful software development project follows a software development

process that is implemented inside the general confines of a software life

cycle model. What is not commonly accepted is which life cycle model and

which development processes are the "ones" to follow for a particular

development effort. As the software industry continues to evolve so do the

models and processes by which software is developed. Over the years, the

evolution of software development has produced many different types of

software life cycle models and even more software development processes,

each with their list of pros and cons, enthusiast and naysayers.

By choosing a life cycle model to follow and then instituting development

processes, a software project begins the effort of developing software. The

ability for these processes to aid in the successful completion of a software

product can be subjective. How does one know if the processes are worth

following? Will they aid in a successful completion?

In 1986 the Software Engineering Institute (SEI) began work on a way to

evaluate software development processes. By evaluating the effectiveness

of a software process a rating could be applied which in turn could help

indicate the maturity of the software process and it's likelihood of

successfully producing software. This software process evaluation is

known as the Capability Maturity Model (CMM).

This background work for this thesis was conducted over a period of twelve

months. The data collected are from a real world software engineering

 2

project; the Checkout and Launch Control System (CLCS), Application

Software (APS) at NASA Kennedy Space Center (KSC). The purpose of

CLCS was to replace the Checkout, Control and Monitoring System used to

process and launch the United States Space Shuttle at KSC

For three years, September 1998 to September 2001, the CLCS project

followed a Waterfall life cycle model with minimal process descriptions.

During the three years of following Process A the CLCS project continually

failed to meet schedule milestones and cost milestones. Not only where

the milestones missed many of them were never achieved. A majority of

the software produced was not progressing past unit test.

A corrective solution was needed to ensure the continuation of the project.

It became evident that a radical redirection from Process A was necessary

to get the CLCS project moving in a forward direction. The decision was

made to bring the CLCS software life cycle into line with more modern life

cycle models and SEI CMM compliant processes. Although the Waterfall

life cycle model cannot be blamed in and of itself for the inadequacies of

this development effort, the combination of this model and the lack of CMM

compliant processes did produce disastrous results. The lock step method

by which most organizations institute the Waterfall model prevented the

discovery of severe problems until late in the life cycle. This model and

minimal process definition will be referred to as "Process A" throughout the

thesis.

The new life cycle model chosen iterative and implemented using the

Rational Unified Process (RUP). Detailed processes were also created and

modeled in the Unified Modeling Language (UML). In September of 2001,

 3

the CLCS project left Process A and began using the new process at the

requirement analysis phase. This new model and process definition will be

referred to as "Process B" throughout the thesis.

Software performance data were captured over the three-year period that

CLCS followed Process A and over the twelve-month period that CLCS

followed process B. The data taken capture the performance of one

hundred plus software engineers assigned to approximately twenty

Integrated Product Teams (IPTs).

Both process A and B were working to the same requirements as defined

by the legacy system that was being replaced. The software engineering

personnel were the same, the management structure was the same, and

the development and target platforms were the same. Both Process A and

Process B were followed using Object Oriented (OO) methodologies. This

resulted in a unique environment in which the study of different life cycle

models and development processes could be undertaken. It was this

unique environment that created the opportunity for this thesis.

Throughout the pursuit of the master of software engineering degree the

author was introduced to the idea that following the iterative lifecycle model

and SEI CMM compliant process was the most efficient way to develop

software. Although this concept was stated in many different sources and

touted by experts in the industry, the author did not come across substantial

evidence from a software development project that supported these claims.

 4

The CLCS project provided the ability to validate these statements:

There is an improvement in the performance of a software development

team when:

 Following an iterative lifecycle model versus a waterfall lifecycle

model.

 Following SEI CMM compliant processes versus non-SEI CMM

compliant processes.

In this thesis, background information on both the Waterfall and Iterative

software life cycle models is presented. An explanation of the RUP is

covered, as well as the history and background of the SEI CMM, including

the key elements for each CMM Level covered in this thesis. The details of

Process A and Process B are explained as well as the CMM evaluation of

both processes. The metrics collected from each process will be presented

along with an interpretation of the results. Finally, a hypothesis summary

and areas of potential future research on this topic are discussed.

 5

2 Evaluation of Lifecycle Models
2.1 Waterfall
2.1.1 Definition
Dr. Winston Royce first described the Waterfall lifecycle model in 1970. His

paper titled, Managing the Development of Large Software Systems:

Concepts and Techniques, "…set the roots for the 'Waterfall' model.

Although Royce didn't mentioned the word 'waterfall' in it, his methodology

became later known for it because of the layout of the boxes in his

diagrams which looked like stones in a waterfall."[6]

This model is defined by a set of sequential phases that are strictly

performed in order. Each phase is accompanied by a verification of the

work in the phase that ensures that the work products are complete which

in turn allows the next phase in the sequence to begin. These verifications

take the form of formal reviews in which management, engineering peers,

customers and even end user may be involved.

It is important that the work products in each phase are developed with due

diligence, as the formal reviews are meant as a last check and verification

that the work products are ready for promotion to the next phase. Although

Royce allows phases to be revisited, in general practice the formal reviews

indicate a firm completion of a phase and returning to phases previously

reviewed is rarely allowed. Due to schedule and budget constraints there

exists great pressure to "lock-down" one phase to move to the next. If

issues are raised during the reviews work products may have to be revisited

to solve any identified problems and the completion of a phase postponed.

 6

Managers have been persuaded by the name "waterfall" to never move

backwards in the software life cycle, trying to complete each step right the

first time.[14]

The Waterfall model has been widely used in industry for many years and

continues to be used today. The United States Department of Defense

(DoD) developed a military software development standard known as DoD-

Std-2167A. The DoD and its government contractors used this standard

extensively. For its military projects the DoD mandated the use of this

military software development standard for a number of years. There has

been much debate on whether or not DoD 2167A dictated that the Waterfall

Model be followed. Regardless of these debates, many defense

contractors and those required to follow DoD 2167A used a Waterfall

lifecycle model approach during their software development projects.

Although this standard has been superceded by MIL Standard 498 and

other IEEE and ISO standards, the following description describes DoD

2167A in conjunction with a Waterfall lifecycle model, as it is this standard

that was used as a model for Process A. Figure 1 shows the DoD-2167A

life cycle model, its resemblance to waterfall model diagrams can easily be

seen.

Figure 1: DoD 2167A.[5]

 8

2.1.2 DOD 2167A
2.1.2.1 System Requirements
The system requirements phase is used to define and/or analyze the

requirements levied on the entire system being developed. These

requirements are generally written at a high level and must be refined so

that they are as clear and unambiguous as possible. This is a difficult task

and can set the stage for the entire life of the project.

The end of this phase is marked by the first verification in which the system

requirements documents are formally examined in the System

Requirements Review (SRR). It is important that the system engineers

understand the requirements prior to the SRR and that they have used this

phase to resolve any misunderstandings or discrepancies in the system

requirements.

Once the system requirements have been verified in the SRR they are

ready to be used during the system design phase. At this point all parties

involved have agreed upon the requirements and the ability to change

requirements is strictly limited.

2.1.2.2 System Design
The system design phase involves taking the verified system requirements

and designing the system. The design of the system includes which

hardware platforms, operating systems, networks, commercial off the shelf

products (COTS), etc. must be included in the system. Also examined are

custom hardware development and custom software development.

 9

Those requirements that fall into the realm of custom software development

are levied upon the software development organization. These

requirements will be the foundation of the next software development

phase. The conclusion of this phase comes with the verification of the

system design in the system design review (SDR).

It is very important that those responsible for the software development

agree with the requirements that system engineering has allocated to them

as this will be the foundation of the software development effort.

2.1.2.3 Software Requirements
Once the system designers allocate requirements to the software

organization these requirements become the responsibility of that

organization. Like the systems requirements phase, this phase requires a

scrutiny of the requirements, the difference being that these requirements

pertain to the software being developed not the entire system. Often times

the initial requirements are at such a high level that they must be broken

down into smaller subsets of requirements. This results in what are

commonly referred to as grandparent, parent and child requirements.

It is imperative that the software development team understands the

software requirements. It is this foundation that will dictate success or

failure of the software end product. This phase concludes with the

verification of the software requirements, both those allocated by the

system design phase and those derived requirements created during this

phase. This verification occurs via the Software Specification Review

(SSR). At the conclusion of this review the software implementation effort

is ready to begin.

 10

2.1.2.4 Software Preliminary Design
During the preliminary design phase the software requirements are used to

begin the design of the software system. This includes identification of

Computer Software Configuration Items (CSCI), and subsets of CSCIs

Computer Software Components (CSCs).

Regardless of the design methodology used, Object Oriented, Structured or

Functional Decomposition, the work products of this phase need to describe

the "framework" or beginnings of the software design. The use of two

design phases allows the verification of the framework and is an attempt to

prevent design mistakes at an early phase. This phase is verified during the

Preliminary Design Review (PDR).

2.1.2.5 Software Detailed Design
The detailed design phase builds on the preliminary design to flush out the

remaining detail and address remaining design issues. This phase is the

last before code will actually be written and thus the work products

produced must be accurate and complete.

In this phase additional CSCs may be identified as well as Computer

Software Units (CSUs). CSCs and CSUs make up the detailed design of

each CSCI. It is the design work products of these software entities that will

directly translate into software code. As a result the accurate verification of

these work products is crucial and is conducted through via the Critical

Design Review (CDR).

 11

2.1.2.6 Test and Integration
Test and Integration typically involves more then one phase. The testing of

CSUs is generally referred to as Unit Test and is performed to ensure the

correct functionality of each CSU. CSCs are comprised of CSUs and are

tested after the CSUs have been integrated to function together.

Subsequently each CSCI integrates its CSCs during process level testing

and System level test and integration completes the testing phases by

ensuring all CSCIs within a system function together.

The obvious work product of one or more test and integration phases is

successful software. These tests attempt to ensure that not only does the

software execute without failure but that it also performs what was dictated

by the software requirements. Traceability of requirements from the

requirements phase through to the testing phases is important to insure

Additional work products include test plans and procedures that are

followed to conduct the software tests.

Verification of the work products from this phase is generally the working

software. However, other work products such as the test plans and

procedures are verified for correctness as well.

2.2 Iterative
2.2.1 Definition
The waterfall process has given way to an iterative development approach.

"There are two fundamental flaws in the traditional (waterfall or modified

waterfall) software development life cycle model: the information flow is

unidirectional with inadequate provisions for feedback and user involvement

 12

is focused primarily only at the beginning and end of the project. The

iterative process addresses these flaws by using a shorter life cycle and

allowing efficiently for feedback from later stages to earlier ones."[8]

The complexity of software products no longer allows the lock step process

of fully completing each life cycle phase before moving on to the next.

Iterative development allows requirements to be understood, designs to be

flushed out, implementations to be created and errors to be found early.

This is accomplished by breaking the software project up into definable

pieces of functionality or iterations. This is not a quantitative process and is

usually determined based on the customer’s needs and what pieces of

functionality are considered most important or are needed first. The

complete life cycle is followed for each iteration, including delivery to the

customer. As each piece of functionality, or iteration is completed the end

product progressively grows. This is known as incremental delivery.

The iterative model still closely follows the phases as defined in the

Waterfall Model, requirements analysis, design, implementation, test and

delivery. However, by allowing iterations through each phase of the life

cycle, the engineering process is enhanced from the education of the

developers about the problem domain, and from the education of the users

about the software product being produced.

The CLCS project chose to follow Rational Corporation's implementation of

the iterative life cycle model for Process B.

 13

2.2.2 Rational Unified Process (RUP)
The Rational Unified Process is an engineering process used for

developing software. The RUP is a process that can be implemented for

both large and small sized software projects. It is designed to produce

quality software on time and within budget by increasing productivity,

facilitating communication between developers and end users, being

configurable, and taking advantage of the software engineering industries

‘best practices’. RUP has evolved over several years and is the

accumulation of these best practices as described in Section 3.2.2.1.

2.2.2.1 Industry Best Practices
“Best Practices” are those that have proven to be successful in industry

among many different software development organizations. Rational based

the RUP on the “best practice” of an iterative life cycle model. In addition to

the iterative model the RUP also incorporates other industry best practices.

2.2.2.1.1 Management of requirements
If requirements are not managed correctly a software project has no chance

of success. The ability to understand, control and track requirements is

essential to the successful completion of any software project. The RUP,

using the UML, facilitates the requirements analysis phase with use cases

and scenarios. These tools help drive the users requirements through

software design, implementation, test and delivery. Use cases are often

used to define the iterations of a software development effort.

 14

2.2.2.1.2 Component Based
The ability to develop modules, subsystems or components has proven to

reduce complexity and facilitate reuse. The break out of system objects

and functions greatly improves the ability to understand, communicate and

develop software products. The RUP encourages the practice of identifying

architectural components within a software project and those that can be

incorporated from outside of the project.

2.2.2.1.3 Visually modeling
“A picture is worth a thousand words.” Visual modeling greatly improves

the communication of ideas about a software design and architecture.

Visual modeling contributes to the developer's ability to abstract the

software's architectural components, leaving the details to the

implementation phase. The RUP promotes the use of the UML for the

visual modeling of a software product.

2.2.2.1.4 Built-in Quality
If a quality assurance organization puts its stamp of approval on a software

product at the end of the testing phase, chances are there is not very much

quality in the software product. Quality is not something that can be tested

for at the end of any software project. The people building the product must

build quality into the product. Quality begins with requirement solicitation

and must be present during every phase of the project life cycle. "A

development process that does not address requirements quality is bound

to produce poor-quality software."[10 p. 5] At the early stages of

development a project must define how quality will be measured for all work

products produced.

 15

2.2.2.1.5 Change Control
Changes come at all times during the software lifecycle and effect all

artifacts of the software lifecycle. Successful management of these

changes is imperative for a software project to be successful. The process

of managing changes to the software work products as well as changes to

the process itself must be defined during the preliminary stages of

development.

2.2.2.1.6 Commercial Viability
The force behind the creation of the RUP is a commercial entity, The

Rational Software Corporation. As such the need to generate profit and sell

products comes into play. The RUP is designed to be used in conjunction

with the RUP Product. This ‘product’ includes a central, searchable

knowledge base that is used for guidelines, templates, tools, process

improvement, etc. In addition to the RUP Product, the Rational Corporation

also has several development tools available to help facilitate software

development.

The RUP is also meant to be used with the widely accepted Unified

Modeling Language (UML). UML was originally created by Rational and is

now maintained by the Object Management Group. UML is a visual syntax

used to model and convey information (requirements, designs, and

implementations). Figure 2 shows the evolutionary history of the RUP and

Figure 3 shows the RUP Iterative Model.

 16

2.2.2.2 History of RUP

Figure 2: The History of RUP Development

Objectory AB Company
1987 Ivar Jacobson creates Objectory Process
Rational Software

Rational Software

Rational Approach process includes iterative
development and architecture based design

1996 Rational Software aquires Objectory AB
Rational Objectory Process 4.0 is created

Requisite, Inc.
Requirements Management

SQA, Inc.
Detailed Test Process

1997 Rational Software aquires Requisite & SQA
Rational Objectory Process 4.1 is created

Pure - Atria
Configuration Management

1998 Rational Software aquires Pure - Atria
Rational Unified Process 5.0 is created

Rational UML 0.8

Rational UML 1.0

Rational UML 1.2

Business Modeling

Project Management

Ivar Jacobson, Grady Booch, James Rumbaugh
The Unified Software Development Process

OMT: James Rumbaugh

 17

2.2.2.3 The Process

Figure 3: The RUP Implementation of the Iterative Model [7 p. 2]

2.2.2.3.1 Cycles
A software project should consist of many cycles through the phases of the

RUP. Each cycle results in an incremental delivery to the customer. A

cycle involves traversing each phase in the model: Inception, Elaboration,

Construction and Transition. There may be many iterations of each phase

within a cycle. As each cycle occurs the Inception and Elaboration phases

may become shorter as the understanding of the scope of the work required

becomes more defined.

 18

2.2.2.3.2 Phases
The phases of each cycle are the same, inception, elaboration, construction

and transition. During each phase multiple iterations may be performed to

refine the artifacts that will be produced.

2.2.2.3.2.1 Inception

 The inception phase defines the scope of the project and the business

case for the project. This is done via identification of 10-20 percent of the

use cases, the risks, the success criteria, scheduling and necessary

resources. This information is used to determine the viability of the

software project. Addressing the following objectives marks the conclusion

of the Inception phase:

 What is the scope?
 Core Requirements
 Key deliverables
 Project Constraints

 Do we understand the requirements?
 Use Case model 10-20 percent complete.

 Can it be done? Will it be profitable?
 Business case

♦ Success criteria
♦ Profitability
♦ Financial goals

 Risk assessment
 Project Plan

♦ Schedule with major milestones
♦ Cycles
♦ Phases
♦ Iterations
♦ Prototypes

2.2.2.3.2.2 Elaboration

 The elaboration phase is where the high level abstraction of the system is

developed. This phase creates an overall architecture, identifying the full

 19

scope of the project, the majority of the use cases, the major functions of

the system, and the major risks. The development of the use cases helps

to identify the full scope of the system including the complexity and those

areas that could be critical paths due to any associated development risks.

Addressing the following objectives marks the conclusion of the Elaboration

phase:

 Is the ‘idea’ behind the product stable?
 Requirements are under control.

 Are the risks addressed and can they be resolved?
 Is the Construction planned and viable?
 Can the product be produced from the use case model?

2.2.2.3.2.3 Construction

 The Construction phase is where the concept modeled during Inception

and Elaboration is actually realized. This phase will generally include many

iterations and may have iterations occur in parallel. The details of the

system are finalized and created and all parts of the system are tested for

completeness and correctness. The Construction phase includes all levels

of testing. The Construction phase does not just produce code and an

executable. Other artifacts of this phase include test plans, user manuals,

product descriptions, etc. Addressing the following objectives marks the

conclusion of the Construction phase:

 Initial Operational Capability:
 Is the product ready for release to the user community?
 Can a beta version be released?

2.2.2.3.2.4 Transition

The Transition phase is used to, as the name suggests, transition the

software product over to the control of the user community. This may

include required user training, simultaneous operation with an existing

legacy system, establishment of maintenance organizations and processes,

 20

issue resolution, etc. The transition phase should only be entered after

major issues from the Construction phases' Initial Operations Capability

milestone have been resolved. Addressing the following objectives marks

the conclusion of the Transition phase:

 Product Release:
 Were the project objectives meet?
 Can the next cycle begin?

2.2.2.3.3 Iterations
The RUP is built around cycling through all RUP phases with each phase

containing as much iteration as necessary. "The Unified Process assumes

that the activities Requirements, Analysis, Design, Implementation, and

Testing participate in each of these iterations."[2 p. 482] An iteration is the

process of actually performing a particular phase more then once during a

cycle. Iterating within a phase for a particular cycle allows lessons learned

to be incorporated into the software products as the development is

occurring.

2.2.2.3.4 Modeling elements
For the RUP to work, process definition beyond cycles, phases and

iterations is required. The 'who', 'what', 'when' and 'how' of the process is

needed. Definitions are needed of who will do the work, what the work is

comprised of and how and when the work will be performed. It is during the

project-planning portion of the inception phase that these elements are

identified.

 Who = Workers
 What = Artifacts
 How = Activities
 When = Workflow

 21

Figure 4: RUP Modeling Elements

2.2.2.3.4.1 Who = Workers

 Workers are the ‘who’. Workers can be individuals or entire teams and are

logical entities that are responsible for assigned activities and the artifacts

those activities produce. For example, a designer produces an Object

Oriented Design and an Implementer produces an implementation of the

design. Throughout the life cycle a person or team may fulfill many different

worker responsibilities.

2.2.2.3.4.2 What = Artifacts

 Artifacts are the ‘what’. Artifacts are the actual products produced by the

workers. These products can be entry or exit criteria to a particular phase.

They can be internal or external deliverables or even end products.

 Worker Activity

Workflow

contains

 Artifact

1

1..* 1..* 1..*

creates performs
1..* 1..*

1..*
1..*

 22

Artifacts are produced in every cycle for every phase and for each iteration.

Examples of artifacts include, Use-Case Models, Design Model, Class

Diagram, Code, Test Plans, User Guide. Any item, which is produced

during the software lifecycle, is an artifact and had to be produced by a

worker during an activity.

2.2.2.3.4.3 How = Activities

 Activities are the ‘how’. Activities are how the worker actually produces an

artifact. Although phases are actually “activities” these are too large to

handle for the worker and must be broken down into more manageable

activities. Generally an activity should take no longer then a few days.

Activities during the Elaboration phase might include the creation of a

specific Use Case, or the reviewing of the System Architecture Diagram.

2.2.2.3.4.4 When = Workflows

Workflows are the ‘when’. Workflows are the essential identification of

when Workers should perform certain Activities to produce the appropriate

Artifacts. Although the RUP is not a waterfall methodology, there is a

required ordering to the Workflows. Implementation before Design would

be disastrous; it is the ordering of Workflows that make the RUP a process

by which software can be produced. The RUP defines two types of

Workflows, core process workflows and supporting workflows.

The Core Process Workflows are used in the actual production of the end

product. The artifacts created during these Workflows are the engineering

artifacts created by Workers who are generally part of the actual software

engineering process. These Workflows can be visited throughout each

Core Process Workflows

 23

cycle, phase and iteration. Although different phases place more emphasis

on certain Workflows then others, the Workflows are not performed in a

sequential fashion and can be on going during each phase of a cycle. As

shown in Figure 3 the Core Process Workflows consist of the following:

 - Business Modeling
 - Requirements
 - Analysis and Design
 - Implementation
 - Test
 - Deployment

Core Supporting Workflows do not produce software artifacts, however,

they are vital to the success of the RUP. These Workflows, as the heading

suggest, “support” the Core Process Workflows. Like the Core Process

Workflows, the Core Supporting Workflows can have more emphasis

placed on them during certain phases but are continually active during all

phases. The Workers involved with the Supporting Workflows are generally

not part of the software engineering team. They fulfill separate yet equally

important roles. As shown in Figure 3 the Core Supporting Workflows

consist of the following:

Core Supporting Workflows

 - Project Management
 - Configuration and Change Management
 - Environment Support

 24

3 Discussion of SEI CMM
3.1 History of CMM
The Capability Maturity Model for developed by the SEI is a framework that

describes the key elements of an effective software process. The CMM

describes an evolutionary improvement path for software organizations

from an ad hoc, immature process to a mature, disciplined one. This path

follows five levels of maturity. Figure 4 shows the evolutionary history of

the SEI CMM.

Figure 4: The History of the SEI CMM

 25

3.2 CMM Levels
The CMM is comprised of five different levels indicating process maturity.

Each level has its own criteria by which a software process is evaluated.

These criteria are used to determine an organization's process maturity.

The level in which an organization meets all of the criteria is assigned to

that organization. This allows the organization to advertise that they are

compliant with that particular SEI CMM Level.

The CMM levels are obtained through sequential achievement. For an

organization to obtain CMM Level 4 it must have also achieved Level 2 and

Level 3.

3.2.1 Level 1 - Initial
Level 1 is the initial CMM level. All software organizations are given a Level

1 without evaluation. If an organization is developing software they are at

least at a Level 1. This is considered an immature process level from which

an organization must quickly strive to surpass. Level 1 is frequently defined

as chaos.

3.2.2 Level 2 - Repeatable
Level 2 is defined as repeatable. An organization must have the ability to

repeat the processes by which they develop software. In order for this to

occur the organization must have processes that are "defined, documented,

practiced, trained, measured, enforced and improvable."[1 p.18]

These defined processes must include requirements management, project

planning and tracking, subcontract management, quality assurance (QA),

 26

and software configuration management. This definition of an

organization's process provides a framework of project management that

allows the organization to set and follow realistic objectives and goals

based on previous software project successes.

3.2.3 Level 3 - Defined
Level 3 indicates that an organization's process is defined. By defined, the

CMM requires that the software processes and management processes be

documented for an entire organization. Also required is the ability for

personnel to understand these processes across all projects and that

training is in place to ensure this comprehension.

In addition to an organization-wide defined set of software and

management standards, the projects within an organization are allowed to

tailor these processes to meet a project's specific needs. These changes

would only be incorporated with appropriate training at the project level.

Two other larger factors for Level 3 are the tracking of quality metrics and

verification of work products. The tracking of quality metrics must be in

place at the project level as well as defined at the organization level. The

verification of work products usually materializes in the form of Peer

Reviews. Peer Reviews are performed to verify that the products being

produced throughout the software process are accurate and complete.

Documents describing the processes for conducting peer reviews are

common artifacts in a Level 3 certified organization.

The main objective of Level 3 is the standardization and consistency of

processes for both software and management across an organization's

 27

projects. This is obtained by having an organization wide set of processes

that can be tailored for each individual project as circumstances dictate.

3.2.4 Level 4 - Managed
Level 4 moves beyond the process definition of Level 3 by requiring the

ability to measure the software products and processes. The CMM requires

the establishment of quality measurements across an organization. These

measurements must be collected into a database for analysis.

This organizational database of process and software quality metrics allows

an organization to predict the results of their processes and the quality of

both process and product. Software Quality Management (SQM) allows

predictive analysis of future projects as well as corrective action to be taken

on projects that stray outside of the organizational process trends.

3.2.5 Level 5 - Optimizing
Level 5 builds on the SQM requirements of Level 4 to institute defect

prevention and process improvement. The quality metrics are taken a step

further and analysis is performed to determine the cause of defects. The

identification of defects along with the identifications of strengths in both

process and product allow corrective action to be taken to improve the

product and the incorporation of process improvements to improve the

process.

 28

Process improvement is performed to remove common causes of defects

found throughout an organization's projects. These improvements are

distributed throughout the entire organization. Improvements can come not

only in the form of process change but also technology change. Changes

in technology are analyzed to determine their effect on the organization.

Both process and technology changes are encouraged, planned for and

managed as to not disrupt the stable development environment.

3.3 Key Process Areas (KPA)
Key Process Areas (KPA) govern each level in the CMM, except for level 1.

The KPAs are obtained by achieving all of the goals within each KPA.

When all KPAs have been addressed within a CMM Level then the

organization has achieved that CMM level rating.

KPAs are organized by common features. The common features include:

 A commitment to perform
 Ability to perform
 Activities performed
 Measurement and analysis

Common features indicate whether the processes by which a software

organization has implemented a particular KPA are effective. Each

common feature contains key practices, which describe those activities that

contribute most to the implementation of a common feature and in turn a

KPA. The key practices are unique and specific to each key process area.

The CMM Levels and the relationships between key process areas,

common features and key practices are shown in Figure 5.

 29

Figure 5: The CMM Structure [1 p. 31]

Although all KPAs were evaluated for both Process A and Process B, the

following sections describe the KPAs that are addressed in this thesis.

3.3.1 Level 2 KPA Software Project Planning
This KPA has fifteen different activities defined to support three goals of the

KPA. The first goal of this KPA is stated as follows, "Software estimates

are documented for use in planning and tracking the software project."[1

p.134] The common feature "Activities Performed" contains activity nine.

This activity states, "Estimates for the size of the software work products (or

changes to the size of software work products) are derived according to a

Maturity Level

Key process areas

Common features

Key practices

Process

capability

Goals

Implementation or

institutionalization

Activities or

infrastructure

Contain

Organized by

Contain

Indicate

Achieve

Address

Describe

 30

documented procedure." [1 p. 142] This activity is mapped to the first goal

of this KPA.

 Level 2 - Repeatable

 Key Process Area - Software Project Planning

 Common Feature - Activities Performed

 Key Practice - Estimation for work product size

The common feature "Ability to Perform contains ability 4. This ability

states, "The software managers, software engineers, and other individuals

involved in the software project planning are trained in the software

estimating and planning procedures applicable to their areas of

responsibility." [1 p.138] This ability is mapped to all three goals of this

KPA.

Level 2 - Repeatable

 Key Process Area - Software Project Planning

 Common Feature - Ability to Perform

 Key Practice - Software estimation training

 31

3.3.2 Level 3 KPA Peer Reviews
This KPA has one commitment defined to support the two goals of the KPA.

The first goal of this KPA is stated as follows, "Peer review activities are

planned."[1 p.270] The common feature "Commitment to Perform" contains

commitment 1, this commitment states, "The project follows a written

organizational policy for performing peer reviews." [1 p. 271] This

commitment is mapped to both goals of this KPA.

 Level 3 - Defined

 Key Process Area -Peer Reviews

 Common Feature - Commitment to Perform

 Key Practice - Policy for peer reviews

 32

4 Comparison of CLCS Processes
This section will discuss both Process A and Process B. For a comparison

the SEI CMM KPAs covered under both processes are kept the same. This

allows the reader to see a side-by-side comparison of the two processes.

The magnitude of information required in evaluating a process for CMM and

the amount of data produced from the evaluation prevents addressing all

such data in this section. Instead, major violations of CMM in Process A

will be pointed out and described.

The same KPAs detected as major violations in Process A will be

addressed in the Process B section. These major violations where used to

initiate the redirection which eventually led to a migration away from

Process A to Process B. Although the SEI CMM evaluations of each

process were performed on the entirety of Process A and Process B it

should be kept in mind that this thesis focused on the Design Phase of each

process.

4.1 Description of CLCS Process A
4.1.1 Process Overview
As stated in the introduction the CLCS project followed a Waterfall life cycle

model with minimal process descriptions for a period of approximately three

years. The lack of formal processes that qualified as CMM compliant along

with the use of the Waterfall model resulted in a severe overrun of both

schedule and budgets. Much of the blame for the inadequacies of this

development effort lie with the lack of well written process, however, the

use of the Waterfall Model prevented early detection of severe problems.

 33

Requirements
Development

Requirements Analysis
and Allocation to
Software Modules

Overview Design
Specification
Development

Requirements / Design Development

- Scope of Task Defined
- ScheduleBaselined
- Training Identified/Started

Software Module
Classification

(Safety & Criticality)

Requirements
Review
Panel

Implementation
Plan Generated

SRS Review by
System Specialists

Process Documents
84K00070-002 Software Development Plan 84K01710 RTC AppSw Architecture Standard
84K01705 Documentation Standard 84K01730-102 SW Classification Practice

Figure 6: Process A –Requirements / Design Development [17 p. 26]

As seen in Figure 6, Process A followed a Requirements Analysis, Design,

and Implementation order of phases. Although the phases were renamed

the basic Waterfall approach can be easily detected.

The implementation portion of the model is shown in Figure 7. Again, the

Waterfall model can be seen with the lock step progression through

Software Production phases.

 34

Software Detailed Design

Software Production

- Overview Design Specification Complete
- Implementation Plan Approved
- RRP Complete

Ready for
Validation

Software Implementation
(Code/ Desktop Testing) Peer Inspections

Integrated Testing

Process Documents
84K00070-002 Software Development Plan 84K01730-101 Test Application Display Development
84K01705 Documentation Standard 84K01730-104 Peer Inspection Practice
84K01710 RTC AppSw Architecture Standard 84K01730-105 Command & Control Software Development
84K01720 Implementation Standard 84K01730-108 Testing
84K07500-012 Programming Standard 84K01730-109 Configuration Management

Unit Testing

Figure 7: Process A - Software Production Activities [17 p. 28]

Figures 6 and 7 show the basic Waterfall Model and appear to be the

beginnings of a standard software development lifecycle. However, a

software development effort requires more then just a model to follow.

Software processes must be defined to guide the developers through the

life cycle. In particular the industry has migrated toward following CMM

compliant process and many of the features required to be present in such

a model were previously presented in the Summary of SEI CMM section.

4.1.2 CMM Evaluation of Design Phase
This section describes the Process A design and its evaluation under SEI

CMM. Process A falls short when it comes to defining processes and

specifically CMM compliant processes. One of the reasons for this may lie

in the brevity of the processes themselves. The main focus of this thesis

 35

was the design phase of software development, Figure 8 and Figure 9 are

the complete preliminary and detailed design phases of Process A as

defined in NASA's Software Development Plan, Volume II Revision B. [17]

Figure 8: Process A - Preliminary Design [17 p.30]

5.2.5 Overview Design Specification Development
Once all requirements have been allocated to specific software modules, the Overview Design
Specification portion of the SRS must be completed.

1. The software design sections of the SRS shall be developed by Software Engineering

personnel per84K01705-RTC Application Software Documentation Standard.
2. The design shall be reviewed by the IPT to ensure completeness, correct interpretation of

requirements and that all development members fully understand the design.
Performance of this review shall be documented in the CSCI’s Software Development
Folder.

 Each class/module identified in the SRS shall be mapped to a specific element of the
RTC Application Software architecture as defined in 84K01710 RTC Application Software
Architecture Standard. Each class/module must have one or more associated software
modules identified by name (e.g., <CSCI>_WaterPmp.og, <CSCI>_Pump.atc) that will
satisfy the requirements specified in the SRS. This information will be used to build a
Requirements Traceability Matrix.

 Changes are localized; changing one class has a small impact on other classes.
 The modules that must be developed to support the implementation of the requirements,

the design/allocation of these modules shall also be documented in the ODS section of
the SRS.

 During the design phase, the use of pseudo Function Designators (FD) can be finalized.
These FDs shall be added to the SRS as appropriate. Requests to add new pseudo FDs
to DBSAFE shall be processed per 84K01730-109 Configuration Management Practice.

 36

Figure 9: Process A - Detail Design [17 p.31]

4.1.2.1 Level 2 KPA Software Project Planning
4.1.2.1.1 Activities Performed (Work Products)
The SEI CMM Level 2 KPA, Software Project Planning (KPA-SPP), is one

of five KPAs for Level 2. KPA-SPP directly effects the design phase of a

software process. The Process A design phase does not satisfy all three of

the goals required to meet this KPA.

The first major discrepancy is the lack of defined work products. The CMM

requires under Goal 1, Activity 9 of KPA-SPP that the estimation of the size

of work products be defined. Process A not only lacks a defined method of

estimation it also lacks defined work products. Process A attempts to

define Preliminary Design work products in Figure 8 Item 3: which indicates

5.3.2 Software Detail Design
Using the SRS and ODS data developed during the requirement development
phases, a more detailed design of the CSCI can be developed.
1. The design shall adhere to 84K01710 RTC Application Software Architecture
Standard
2. Identification and specification of the classes and objects necessary to implement
the functional requirements shall be solidified.

• Class descriptions are enhanced when necessary (e.g., by sequence
diagrams, state transition diagrams) to help define the class’s
activities.

• The classes/objects are scrutinized to identify commonality between
objects to support generalization of those objects to as common a
base class as possible. Inherited attributes and methods are also
identified during this activity.

3. Identification and specification of the inter-process communications and system
interactions shall be specified. Objects are mapped to the major architectural
elements, which assists in the detailing of the necessary communication paths.
4. The SRS shall be updated to capture the design activities and class
specifications.

 37

the need for classes and in Item 4 the documentation of these classes in

the Overview Design Specification (ODS). In Figure 9 an attempt is made

at identifying Detailed Design work products; class attributes and methods,

and Inter-Process Communications (IPC).

Although these items are called out they fall short of being complete work

products. Where is this information captured? What format is it in? Are

there tools to help develop these items? The analysis of this KPA in

relation to Process A indicated a need to identify all work products, a

modeling language, and a tool to create the final design phase work artifact;

a design document.

The CMM also requires, under Goal 2 Activity 8 of KPA-SPP, that the

identification of software work products necessary to establish and maintain

control of the software project be addressed and defined. Due to the lack of

work products described Process A also falls short of meeting this goal.

4.1.2.1.2 Ability to Perform (Estimation training)
KPA SPP Ability to Perform 4 requires training for all software engineers

and managers to be trained in software estimating and planning procedures

as stated in the Software Development Plan (SDP). Process A lacked any

software estimation what so ever. Neither Figure 8 nor Figure 9 indicate

any software estimation, this resulted directly in Process A lacking software

estimation techniques. The involvement of Software Quality is also left out

of the process and as a result Software Quality was not involved in the

design phase and did not appear until later in the testing phases.

 38

4.1.2.2 Level 3 KPA Peer Reviews
Another serious flaw with Process A is the lack of review definition.

Although Figure 8 Item 2 indicates that the preliminary design shall be

reviewed there is no indication as to how to perform such a review. CMM

Level 3 KPA Peer Reviews Commitment #1 requires projects to follow a

written organizational policy for performing peer reviews. Absent in the

Process A design phase are any instructions concerning how to perform the

preliminary design peer review called for in Figure 8 Item 2. In addition,

Figure 6 does not indicate a peer review of the preliminary design. This

causes confusion as to which process definition is correct, the pictorial view

or the textual description.

In addition there in no mention of a review of the detailed design created via

Figure 9. As a result there is not a review of the work products produced by

the detailed design phase. This results in inconsistency between the

preliminary design phase and the detailed design phase and creates chaos

in the process definition itself. The lack of peer review definition is a

serious flaw in the Process A and was identified as a major reason to

migrate to Process B. Interesting to note is the fact that a peer review does

not occur in Process A until after the software has been implemented. This

can be seen in Figure 7. This allowed the entire design and implementation

phases to proceed without a single peer review.

4.1.2.3 Process A CMM Evaluation Summary
Although many violations of KPA common features exists the

aforementioned are serious enough on their own that Process A does not

even qualify for SEI CMM Level 2. Process A did not meet any of the KPAs

addressed in this thesis. The absence of Peer Review processes and the

 39

confusion between the textual and pictorial descriptions of the process

prevent Process A from fulfilling the CMM requirements for Peer Reviews.

4.2 Description of CLCS Process B
4.2.1 Process Overview
As a result of the problems produced by Process A, the CLCS project had

to find solutions to their development dilemma. After years of complaints

from software developers more familiar with the latest software

development models and processes, the opportunity to implement

alternative solutions was at hand. Project management tasked a few

individuals including the author to come up with a better process that could

be followed. The result was Process B, Figure 10.

 40

Requirements
Development

Requirements / Design Development

- Scope of Task Defined
- Schedule Baselined
- Training Identified/Started

Detailed Design
Development

Implementation
Plan Generated

Process Documents
84K00070-002 Software Development Plan 84K01710 RTC AppSw Architecture Standard
84K01705 Documentation Standard 84K00055-103 Software Safety Classification Practice

PDR

Essential Model Design
Development

SRS Review By
System Specialist

Final CDR

Iterative Development

CDR
Iterative Development

Figure 10: Process B - Design Development [18 p. 26]

Process B created major changes for the CLCS development team. The

most significant change being the migration from a Waterfall model to an

Iterative Model and from an ill-defined process to a very detailed process.

The CMM deficiencies in Process A were addressed in Process B to bring

CLCS into CMM compliance. Due to the familiarity of terminology used

during Process A many of the same terms and acronyms were carried over

to Process B. This was to facilitate the learning curve of a new process and

to create as little impact to the budget and schedule as possible.

 41

4.2.2 CMM Evaluation of Design Phase
Figure 10 shows the iterative design phase of Process B. Entry into this

phase occurred via a review of the software requirements. The CSCI team

was able to iterate through the preliminary or essential design with each

pass going through a preliminary design review. The detailed design could

be iteratively developed in the same manner with each iteration being

presented to a critical design review. The presentation of design products

to a formal review team allowed corrections to the design before

implementation occurred. Each CSCI passed though multiple cycles of the

RUP. Each design phase was encompassed within a cycle and could

include multiple iterations, this allowed for iterative development and

incremental deliveries to the end user.

For the CLCS software engineer, another significant difference between

Process A and Process B was the sheer amount of information in the form

of guidance. Although large of amounts of information do not indicate a

well-written process and certainly do not guarantee CMM compliance the

less then four hundred words and two diagrams in Process A left much

room for improvement. Process B added information in the several ways.

1) To support this migration and process change an entirely new document

was created. In Process A the entire scope of the design phase was

included in the SDP. In Process B the design phase was expanded in the

SDP and the details of the work products and peer reviews were created in

a separate document entitled, SDP Supplement: Technical Review
Practice

.

 42

2) The CSCI's software lead was given the responsibility for determining the

state of the requirements they were responsible to design from. In Process

A this was not specifically spelled out and in most cases the CSCI received

requirements that could not be understood. Figure 11 and Figure 12

explicitly state the role of the CSCI lead.

Figure 11: Process B - Requirements Readiness [18 p. 27]

Figure 12: Process B - DRR [18 p. 28]

3) Two quick reference cards were created to aid during training of Process

B and Microsoft PowerPoint was used to create peer review presentation

templates.

5.2.4 Requirements Readiness For Design
Once the SRS is determined to be correct and complete from a functional requirements
perspective, it is reviewed by the IPT and specifically the CSCI Design Lead to determine if
the requirements are acceptable so that the preliminary design work can start. Basically,
this is a review to ensure that the functional requirements are implementable and that
specific requirements regarding concurrency, safety, and performance are clearly
understood. Once the requirements are found to be acceptable in order to begin designing
the software, a Design Readiness Review is scheduled in order to baseline the SRS and
kick-off the design process.

5.2.5 Design Readiness Review
The Design Readiness Review (DRR) is a review of the state of the requirements of the
CSCI. The main objective of this review is to determine if the requirements are acceptable
so that the preliminary design effort can start. Reference 84K01730-100 RTC Application
Software Technical Review Practice for details on the DRR.

 43

 A Design Workflow Quick Reference card, Figure 13, that highlighted the

new design process was used during process training and subsequently

during the actual design phase of each CSCI. Details of Figure 13 can be

found in Appendix A. The second quick reference card created, Figure 14,

was used to highlight the usage of the Unified Modeling Language (UML).

Although Process A was to be used with UML as the design modeling

language, the process itself did not indicate this. In addition, Process A

provided no training for the usage of UML. This was corrected under

Process B, which provided training as well as the quick reference card for

use during actual design development.

The presentation templates forced each CSCI to address and present the

same information at each requirements review, preliminary design review

and critical design review. Not only did this create consistency within a

CSCI but it required each CSCI within the CLCS project to produce the

same types of artifacts as required by Process B.

4.2.2.1 Level 2 KPA Software Project Planning
4.2.2.1.1 Activities Performed (Work Products)
In addressing the deficiencies of Process A the first priority was to define

the work products which needed to be produced. The lack of defined work

products in Process A created great diversity among CSCIs and to be able

to be CMM compliant at any level this needed to be brought under control.

Process B defined work products for each Process Workflow. In particular

work products were identified for the Design Workflow for both the

Elaboration and Construction phases. The work products are outlined for

the Requirements Analysis, Preliminary Design and Detailed Design.

 44

General descriptions are found in the SDP, Figures 11, 12, 15 and 16, and

specific detail is provided in the SDP Supplement.

These work products include entry/exit criteria for each phase and

verification review. The work products are also found in the Quick

Reference Card for the Design Workflow found in Figure 13. The detailed

specification of what is required for each phase and at each review provides

no room for interpretation. The CSCIs had to produce all of the required

work products, this resulted in consistency across the entire project.

The greatest improvement in Process B came in the form of a Software

Design Document (SDD). This document had to be created by each CSCI

from a project level template. This template ensured consistency across all

CSCIs. The SDD contained all of the UML work products defined in the

process as required. The UML quick reference guide was used to aid

software engineers in the development of the UML work products. By

mandating the use of the SDD template and the UML quick reference guide

Process B not only enforced consistency in the look of the SDD but also in

the actual UML artifacts contained in it.

The real point of this KPA is to provide ways to estimate the size of work

products. In Process A there were no defined work products so the

estimation process was moot. In Process B the work products are defined

in detail, therefore the processes for software estimation and planning could

be defined.

 45

Figure 13: Process B - Analysis & Design Workflow [4]

Figure 14: Process B - OO/UML [4]

 47

4.2.2.1.2 Ability to Perform (Estimation training)
For this KPA the Ability to Perform 4 requires all software engineers and

managers to be trained in software estimating and planning procedures. In

Process B it was decided to perform Function Point Analysis (FPA) for

software estimation and planning. This approach was documented and

detailed training was provided to those responsible for performing the FPA.

In addition to providing training the process also dictated that FPA be part

of the entry criteria to the Design Readiness Review (DRR). This enforced

the process and ensured that FPA had actually been performed and that it

was reviewed to ensure accuracy. The DRR was a review required for the

transition from Process A to Process B and will be described in the next

section. Figure 13 fails to indicate the requirement of the FPA as entry

criteria to the DRR.

4.2.2.2 Level 3 KPA Peer Reviews
Commitment 1 for this KPA requires projects to follow a written

organizational policy for performing peer reviews. Process B introduced

three new peer reviews in addition to what Process A already had in place.

Each of these reviews required specific work products to be reviewed,

forcing each CSCI to become consistent. Each CSCI was also required to

use a PowerPoint review template that forced consistency in the manner in

which the now consistent work products were presented.

4.2.2.2.1 Design Readiness Review (DRR)
The first review added was the Design Readiness Review, Figure 12. This

was in effect a Software Requirements Review and was performed during

the Transition phase of the Analysis & Design Workflow. This can be seen

 48

on Figure 13. This review has a non-traditional name due to the fact the

during Process A a requirements review had already taken place. As in all

cases of real world software development a process has to take into

account real world schedule and politics. Process B could not "repeat" a

requirements review due to political reasons, thus the design readiness

review was created.

This review allowed the CSCI design lead to give a final acceptance of the

requirements. Since many of the CSCI requirements were not complete

this allowed the software organization to request additional analysis of the

requirements without indicating on the schedules that the original

requirements review under Process A was null and void.

 49

4.2.2.2.2 Preliminary Design Review (PDR)
The PDR is to be performed during the Elaboration Phase of the Design

Workflow for Process B. This review serves the same purpose of the

Waterfall PDR in Process A, but can be performed multiple times during the

iterations through the system.

The highlights of this Review are seen in Figure 15 from the Process B

SDP, with the specific details covered in the SDP Supplement.

Figure 15: Process B - PDR [18 p. 28]

4.2.2.2.3 Critical Design Review (CDR)
Like the PDR the CDR was added to the Design Workflow and is to be

performed during the Elaboration Phase. This review serves the same

purpose of the Waterfall CDR in Process A, but can be performed multiple

time during the iterations through the system.

5.2.6 Preliminary Design Review
Upon completion of the DRR, the CSCI presents the produced artifacts to the first of the
design review panels. Reference 84K01730-100 RTC Application Software Technical
Review Practice for details on the PDR.

It is recommended that as a CSCI completes the preliminary design definition for a Use
Case or group of related Use Cases, the design be presented to the PDR. This will help
ensure the CSCI’s design is proceeding along an acceptable path. At the completion of all
aspects of the preliminary design, a final PDR shall be held to ensure the design is complete
and fully acceptable.

All concerns/actions raised during the PDR shall be documented on a Razor issue (in the
RRP Group). More than one concern/action can be documented on a single issue if they
are closely related. The PDR issues must be addressed during preparation for the CDR and
must be discussed at the CDR meeting.

 50

The highlights of this Review are seen in Figure 16 from the Process B

SDP, with the specific details covered in the SDP Supplement.

Figure 16: Process B - CDR [18 p. 28]

5.2.7 Detailed Design Development
While the Preliminary Design analysis created a high-level, conceptual model of the system, the Detailed Design
Development effort now defines a single, optimal solution at a lower level of detail. It specifies and identifies the
following parts for the system:

• Which objects are active (concurrency)
• Application task scheduling policies
• Organization of classes and objects within deployable components
• Inter-processor communication media and protocols
• Distribution of software components
• Relation implementation strategies (How are associations implemented?)
• Implementation patterns for Finite State Machines
• 1 to Many UML associations
• Error-Handling Policies
• Memory Management Policies

1. The Detailed Design will be documented in the Software Design Document.
2. The Detailed Design will be developed by Software Engineering with the participation of Shuttle Engineering.

This ensures the technical content of the design is correct and efficient while also ensuring the design is
understandable to Shuttle Engineering personnel.

3. Identification and specification of the classes and objects necessary to implement the requirements are
solidified:
• Class descriptions are enhanced when necessary (e.g., by Sequence Diagrams, State Charts, etc.) to

help define the class’s activities
• The classes/objects are scrutinized to identify commonality between objects to support generalization

of those objects to as common a base class as possible. Inherited attributes and methods are also
identified during this activity.

4. The activities included in the Detailed Design development are:
• Definition of software components and their distribution
• Identification and characterization of threads
• Application or architectural design patterns (e.g., global error handling, safety processing and fault

tolerance)
• Implementation of associations, aggregations and components is defined
• Exception handling is defined for each class
• Types and valid ranges of class attributes are defined
• Complex algorithms are clarified or introduced
• Identification and specification of the inter-process communications and system interactions are

specified
5. The following artifacts are products as a result of the Detailed Design effort. These artifacts are contained in

the SDD.
• Class (required) and Object (optional) Diagrams updated to include architecture design patterns
• State Charts (only required for major sequences)
• Sequence Diagrams
• Pseudo-Code describing complex algorithmic behavior

6. As part of the Detailed Design effort, code prototyping can be used to test out design decisions before
proceeding with full-fledged design activities.

 51

4.2.2.3 Process B CMM Evaluation Summary
The KPAs discussed above are only a few of what is required by the CMM.

These were pointed out in this thesis because of the severity and

consequences of not meeting them in Process A. All KPAs are critical to a

CMM evaluation, however, these directly affected the design phase and the

focus of the thesis.

The creation of Process B addressed the many CMM deficiencies in

Process A, specifically the KPAs addressed in this thesis. The definitions of

work products as well as an entirely new document outlining entry/exit

criterion for each phase and verifications review were additions to Process

B. Software estimation activity via FPA and the complete training of how to

perform this activity was also added. In addition to providing training to

satisfy Level 2 KPA - Ability to Perform 4, Process B instituted training in all

areas of the life cycle.

Finally the peer review process was greatly enhanced. Process B took

what amounted to a review before design and a review after implementation

and added three additional reviews in between. This brought the CLCS

process more in line with mainstream review processes.

 52

5 Supporting Evidence for Hypothesis
The CLCS project was a "real world" software development project and as

a result the data collected are based on actual work performed by the

project's software engineers. Part of the improvements made for Process B

included the collections of metrics. Process B instituted function point

analysis, and gathered metrics based on the function points. OO Classes,

Source Lines of Code (SLOC), Man Months, defects, and test results were

all items included in the metrics collecting. Process A did not included such

detailed metrics collecting. As a result the basis for process comparison is

actual performance data.

This performance data is schedule based and is used by this thesis as the

criteria for comparing Process A against Process B. This data includes the

"Implementation Actual Percentage Complete" and the "Actual Duration"

elapsed in terms of days. Both Process A and Process B scheduling

included preliminary design, detailed design, coding, and unit test under the

category of implementation. Although this could have been done on a finer

level of granularity it does provide for an easy direct comparison between

the two processes.

 53

Using the given data a total projected duration time can be calculated. This

is based on past performance and assumes the rate of performance will

continue at a steady pace. The following formula is used to calculate the

total projected duration implementation time per CSCI:

ationojectedDurtotal
tionactualDuraCompleteactual

Pr100
%

≡

or

() ationojectedDurtotal
Completeactual

tionactualDura Pr
%

100
≡

×

In addition a comparable duration is calculated at 25%, 50% and 75%

complete for Process A and Process B based on the total projected

duration. The following formula is used to calculate the comparable duration

time.

()() DurationcomparableationojectedDurtotal ≡× Pr75.|50.|25.

 54

Finally, a change in development time percentage is calculated for Process

B. This shows a percentage change in the amount of development time

following Process B as opposed to following Process A. The following

formula is used for this calculation.

() ()

imevelopmentTchangeInDe

CompleteprocessA
ontualDuratiprocessAAc

CompleteprocessB
ontualDuratiprocessBAc

%

%
100

%
100

≡
××

Figure 17 shows the direct comparisons between Process A and Process B

for each CSCI. The table contains the formula calculations as stated

above. Detailed Microsoft Project schedules from the CLCS project and

data for each individual CSCI are located in Appendix B.

 55

C
SC

I

Pr
oc

es
s

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion in Days.

%reduction 25% 50% 75% 100%

CRYO
A 100 315 78.75 157.50 236.25 315.00

48.25%
B 91 148.33 40.75 81.5 122.25 163.00

DPS
A 66 521.87 197.68 395.36 593.03 790.71

48.72
B 34 137.86 101.37 202.74 304.10 405.47

ECL
A 82 519.88 158.50 317.00 475.50 634.00

50.00
B 62 196.54 79.25 158.5 237.75 317.00

EPD
A 46 181.24 98.50 197.00 295.50 394.00

11.21
B 26 90.96 87.46 174.93 262.39 349.85

HWS
A 100 457 114.25 228.50 342.75 457.00

70.90
B 100 133 33.25 66.5 99.75 133.00

HYD
A 97 452.99 116.75 233.50 350.25 467.00

63.81
B 88 148.72 42.25 84.5 126.75 169.00

INS
A 69 523.02 189.50 379.00 568.50 758.00

57.39
B 36 116.28 80.75 161.5 242.25 323.00

MEQ
A 63 253.89 100.75 201.50 302.25 403.00

65.01
B 60 84.6 35.25 70.5 105.75 141.00

PLD
A 27 49.95 46.25 92.50 138.75 185.00

64.86
B 20 13.00 16.25 32.5 48.75 65.00

RMS
A 49 69.09 35.25 70.50 105.75 141.00

31.21
B 80 77.60 24.25 48.5 72.75 97.00

OMS
A 84 418.32 124.50 249.00 373.50 498.00

75.70
B 65 78.65 30.25 60.5 90.75 121.00

Figure 17: CSCI Comparable durations

 56

6 Hypothesis Summary
This thesis involved using the information learned in pursuit of the master of

software engineering degree to create an iterative lifecycle model using SEI

CMM compliant processes for a real world software project. In addition, the

CLCS Project created a unique environment in which the study of different

life cycle models and development processes could be undertaken. It

created an environment in which one could analyze whether or not there is

an improvement in the performance of a software development team under

the following conditions:

1) When the team follows an iterative lifecycle model versus a waterfall

lifecycle model

2) When the team follows SEI CMM compliant processes versus non-SEI

CMM compliant processes.

The Process A SDP shows exactly why Process A was struggling for three

years to produce software. The lack of direction from the written design

process left each CSCI struggling to determine what was required during

the design phase, including which work products were to be produced. The

work products themselves were also left undefined by the process. As a

result each of the twenty CSCIs proceeded to define what was needed for

them to produce software. There was no regard for the project as a whole.

The lack of definition in Process A actually forced the creation of twenty

different software development processes, one for each CSCI.

The inability for Process A to meet the SEI CMM KPAs identified in this

thesis proved to NASA managers that Process A was at a Level 1 and

needed to be improved. It was this chaotic Level 1 environment that

created an atmosphere of non-productivity. This environment led to

 57

schedule and budget slips that eventually became unbearable for upper

management. It was under the threat of project cancellation that the

decision was made to search for a solution.

In addition to addressing the KPA deficiencies in Process A, Process B

introduced a completely new direction in terms of a software life cycle

model. The use of an iterative model allowed for constant process and

product improvement through lessons learned in each iteration.

Evaluation of the supporting Evidence in Figure 17 shows that as a result of

migrating from Process A to Process B a CSCI's development time was

greatly reduced. In some cases Process B created a development

timesaving of over seventy-percent. There does exists one CSCI which

appears to be an anomaly, the EPD CSCI only showed a 11.21% reduction

in development time. The average savings is 57.58% if EPD is thrown out

of the calculation, but still a respectable 53.36% if EPD is used in the

calculation.

As a result of this redirection, the CLCS was able to surpass their three-

year performance using Process A in one year using this new process. An

Integrated Process Team (IPT) following Process A took approximately

three years from requirements analysis to unit test. An IPT following the

new process took approximately one year from requirements analysis to, in

some cases, user validation and acceptance. It is this analysis that

validates the two thesis statements. According to the data gathered there is

an improvement in performance when following an iterative lifecycle model

with SEI CMM compliant processes as opposed to a waterfall lifecycle

model with non-SEI CMM compliant processes.

 58

7 Future Research on this Topic
This thesis concentrated primarily on the design phase of the software life

cycle. One phase does not make a successful project. It is unknown

whether or not the performance improvement would continue through the

test and deployment process workflows. Further research could be

conducted on the impact of this lifecycle and process migration during these

later phases. In addition, CLCS was only one project. Further research

could be conducted on similar projects in an effort to expand the thesis

across different types of software development efforts.

Other areas of research could expand the usage of the iterative model

using processes other then Rational Corporations RUP. Do other

processes create the same level of improvements as the RUP did. Do

other lifecycle models, e.g. extreme programming, rapid prototyping create

improvements over iterative?

It would also be interesting to research what effect the iterative model had

in comparison to the SEI CMM compliant processes. What percentage of

the improvements in performance can be attributed to the change in

lifecycle models vs. the change in software processes. Could the same

improvements occurred with just a change in process or just a change in

lifecycle models.

 59

8 References
1. The Capability Maturity Model: Guidelines for Improving Software Process,

Carnegie Mellon University Software Engineering Institute, Addison-Wesley,
Reading, Massachusetts, 1999.

2. Bernd Bruegge and Allen H. Dutoit, Object-Oriented Software Engineering,
Prentice Hall, Upper Saddle River, NJ, 2000.

3. Bryan Campbell and Dr. Glenn Ray, Iterative Development Testing
Approaches, http://www.bryancampbell.com/Articles/Test_strategy_long.htm,
(April 2003).

4. Chad A. Chamberlin, 360 Software Corporation, 2002.

5. DOD-STD-2167A (1988, February) Military Standard: Defense System
Software Development, Washington, D.C.: Department of Defense

6. Graphical Development Process Assistant, http://www.informatik.uni-
bremen.de/gdpa/def_w/WATERFALL.htm, (April 2003).

7. Maria Ericsson, Developing Large-scale Systems with the Rational Unified
Process, http://www.rational.com/products/whitepapers/sis.jsp Rational
Software, 2000.

8. Iterative Life Cycle,
http://www.accelerasoftware.com/notes/200207_073.html, (April 2003).

9. Iterative vs. Waterfall Approach, CDC Technologies, http://www.cdc-
technologies.com/method/it_vs_wat.htm, (April 2003).

10. Stephen H. Kan, Metrics and Models in Software Quality Engineering,
Addison-Wesley, Reading, Massachusetts, 1997.

11. Philippe Kruchten, A Rational Development Process,
http://www.rational.com/products/whitepapers/334.jsp Rational Software
Corporation, 1996.

12. Philippe Kruchten, From Waterfall to Iterative Lifecycle - A tough transition
for project managers, http://www.rational.com/products/whitepapers/334.jsp
Rational Software Corporation, 2000.

http://www.bryancampbell.com/Articles/Test_strategy_long.htm�
http://www.informatik.uni-bremen.de/gdpa/def_w/WATERFALL.htm�
http://www.informatik.uni-bremen.de/gdpa/def_w/WATERFALL.htm�
http://www.rational.com/products/whitepapers/sis.jsp�
http://www.accelerasoftware.com/notes/200207_073.html�
http://www.cdc-technologies.com/method/it_vs_wat.htm�
http://www.cdc-technologies.com/method/it_vs_wat.htm�
http://www.rational.com/products/whitepapers/334.jsp�
http://www.rational.com/products/whitepapers/334.jsp�

 60

13. Jack R. Meredith and Samuel J. Mantel, Jr., Project Management: A
Managerial Approach, Fourth Edition, John Wiley & Sons, New York, New
York, 2000.

14. James W. Moore Software Engineering Standars: A User's Road Map, 1st

15. Jim Pietrocarlo, Managemening Iterative Development, Rational Software

Edition Wiley IEEE Press Nov. 1997.

http://www.cooug.org/managing_iterative_development4%5B1%5D.ppt,
(April 2003).

16. Leslee Probasco, The Ten Essentials of RUP, The Essence of an Effective
Development Process,
http://www.rational.com/products/whitepapers/413.jsp Rational Software,
2000.

17. National Aeronautics and Space Administration, Kennedy Space Center, FL.
Document 84K00070-002 Software Development Plan Volume II Revision B,
Aug. 2001.

18. National Aeronautics and Space Administration, Kennedy Space Center, FL.
Document 84K00070-002 Software Development Plan Volume II Revision D,
Apr. 2002.

19. Rational Unified Process: Best Practices for Software Development Teams,
http://www.rational.com/products/whitepapers/100420.jsp Rational Software,
2001.

20. W. W. Royce: Managing the Development of Large Software Systems:
Concepts and Techniques. ICSE 1987: 328-339.

21. Ian Sommerville and Pete Sawyer, Requirements Engineering: A good
practice guide, John Wiley & Sons, New York, New York, 1997.

22. Thesis Manual and Style Guide for Use at Florida Institute of Technology,
Second Edition, Florida Institute of Technology, Melbourne, FL, 2001.

23. J.A. Whittaker, Introduction to Software Engineering, SES Press, Melbourne,
FL, 1998.

http://www.cooug.org/managing_iterative_development4%5B1%5D.ppt�
http://www.rational.com/products/whitepapers/413.jsp�
http://www.rational.com/products/whitepapers/100420.jsp�

 61

9 Appendix A

 62

 63

 64

 65

10 Appendix B

C
R

YO

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 100 315 78.75 157.50 236.25 315.00

Process B 91 148.33 40.75 81.5 122.25 163.00

Process B Provided a 48.25% reduction in development time.

 66

D
PS

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 66 521.87 197.68 395.36 593.03 790.71

Process B 34 137.86 101.37 202.74 304.10 405.47

Process B Provided a 48.72% reduction in development time.

 67

EC
L

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 82 519.88 158.50 317.00 475.50 634.00

Process B 62 196.54 79.25 158.5 237.75 317.00

Process B Provided a 50.00% reduction in development time.

 68

EP
D

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 46 181.24 98.50 197.00 295.50 394.00

Process B 26 90.96 87.46 174.93 262.39 349.85

Process B Provided a 11.21% reduction in development time.

 69

H
W

S

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 100 457 114.25 228.50 342.75 457.00

Process B 100 133 33.25 66.5 99.75 133.00

Process B Provided a 70.90% reduction in development time.

 70

H
YD

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 97 452.99 116.75 233.50 350.25 467.00

Process B 88 148.72 42.25 84.5 126.75 169.00

Process B Provided a 63.81% reduction in development time.

 71

IN
S

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 69 523.02 189.50 379.00 568.50 758.00

Process B 36 116.28 80.75 161.5 242.25 323.00

Process B Provided a 57.39% reduction in development time.

 72

M
EQ

-M
EQ

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 63 253.89 100.75 201.50 302.25 403.00

Process B 60 84.6 35.25 70.5 105.75 141.00

Process B Provided a 65.01% reduction in development time.

 73

M
EQ

-P
LD

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 27 49.95 46.25 92.50 138.75 185.00

Process B 20 13.00 16.25 32.5 48.75 65.00

Process B Provided a 64.86% reduction in development time.

 74

M
EQ

-R
M

S

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 49 69.09 35.25 70.50 105.75 141.00

Process B 80 77.60 24.25 48.5 72.75 97.00

Process B Provided a 31.21% reduction in development time.

 75

O
M

S

A
ct

ua
l P

er
ce

nt
ag

e
C

om
pl

et
e

A
ct

ua
l D

ur
at

io
n

(D
ay

s)

Duration for common percentages
complete at existing rate of

completion

25% 50% 75%

Calculated

Total

Duration

Process A 84 418.32 124.50 249.00 373.50 498.00

Process B 65 78.65 30.25 60.5 90.75 121.00

Process B Provided a 75.70% reduction in development time.

 7

 46

	1 Introduction
	2 Evaluation of Lifecycle Models
	2.1 Waterfall
	2.1.1 Definition
	Figure 1: DoD 2167A.[5]

	2.1.2 DOD 2167A
	2.1.2.1 System Requirements
	2.1.2.2 System Design
	2.1.2.3 Software Requirements
	2.1.2.4 Software Preliminary Design
	2.1.2.5 Software Detailed Design
	2.1.2.6 Test and Integration

	2.2 Iterative
	2.2.1 Definition
	2.2.2 Rational Unified Process (RUP)
	2.2.2.1 Industry Best Practices
	2.2.2.1.1 Management of requirements
	2.2.2.1.2 Component Based
	2.2.2.1.3 Visually modeling
	2.2.2.1.4 Built-in Quality
	2.2.2.1.5 Change Control
	2.2.2.1.6 Commercial Viability

	2.2.2.2 History of RUP
	Figure 2: The History of RUP Development

	2.2.2.3 The Process
	Figure 3: The RUP Implementation of the Iterative Model [7 p. 2]
	2.2.2.3.1 Cycles
	2.2.2.3.2 Phases
	2.2.2.3.2.1 Inception
	2.2.2.3.2.2 Elaboration
	2.2.2.3.2.3 Construction
	2.2.2.3.2.4 Transition

	2.2.2.3.3 Iterations
	2.2.2.3.4 Modeling elements
	Figure 4: RUP Modeling Elements
	2.2.2.3.4.1 Who = Workers
	2.2.2.3.4.2 What = Artifacts
	2.2.2.3.4.3 How = Activities
	2.2.2.3.4.4 When = Workflows

	3 Discussion of SEI CMM
	3.1 History of CMM
	Figure 4: The History of the SEI CMM

	3.2 CMM Levels
	3.2.1 Level 1 - Initial
	3.2.2 Level 2 - Repeatable
	3.2.3 Level 3 - Defined
	3.2.4 Level 4 - Managed
	3.2.5 Level 5 - Optimizing

	3.3 Key Process Areas (KPA)
	Figure 5: The CMM Structure [1 p. 31]
	3.3.1 Level 2 KPA Software Project Planning
	3.3.2 Level 3 KPA Peer Reviews

	4 Comparison of CLCS Processes
	4.1 Description of CLCS Process A
	4.1.1 Process Overview
	Figure 6: Process A –Requirements / Design Development [17 p. 26]
	Figure 7: Process A - Software Production Activities [17 p. 28]

	4.1.2 CMM Evaluation of Design Phase
	Figure 8: Process A - Preliminary Design [17 p.30]
	Figure 9: Process A - Detail Design [17 p.31]
	4.1.2.1 Level 2 KPA Software Project Planning
	4.1.2.1.1 Activities Performed (Work Products)
	4.1.2.1.2 Ability to Perform (Estimation training)

	4.1.2.2 Level 3 KPA Peer Reviews
	4.1.2.3 Process A CMM Evaluation Summary

	4.2 Description of CLCS Process B
	4.2.1 Process Overview
	Figure 10: Process B - Design Development [18 p. 26]

	4.2.2 CMM Evaluation of Design Phase
	Figure 11: Process B - Requirements Readiness [18 p. 27]
	Figure 12: Process B - DRR [18 p. 28]
	4.2.2.1 Level 2 KPA Software Project Planning
	4.2.2.1.1 Activities Performed (Work Products)
	Figure 13: Process B - Analysis & Design Workflow [4]
	Figure 14: Process B - OO/UML [4]

	4.2.2.1.2 Ability to Perform (Estimation training)

	4.2.2.2 Level 3 KPA Peer Reviews
	4.2.2.2.1 Design Readiness Review (DRR)
	4.2.2.2.2 Preliminary Design Review (PDR)
	Figure 15: Process B - PDR [18 p. 28]

	4.2.2.2.3 Critical Design Review (CDR)
	Figure 16: Process B - CDR [18 p. 28]

	4.2.2.3 Process B CMM Evaluation Summary

	5 Supporting Evidence for Hypothesis
	Figure 17: CSCI Comparable durations

	6 Hypothesis Summary
	7 Future Research on this Topic
	8 References
	9 Appendix A
	10 Appendix B

