
Design and Implementation of Exception 
Handling with Zero Overhead in 

Functional Languages 

 

By 

 

Ramon Zatarain Cabada 

 

A dissertation 
submitted to the College of Engineering at 

Florida Institute of Technology 
in partial fulfillment of the requirements for 

the degree of 

 

Doctor of Philosophy 
in 

Computer Science 

 

 

Melbourne, Florida 
May, 2003  



Abstract 

Title: Design and Implementation of Exception Handling with Zero 
Overhead in Functional Languages 

Author: Ramon Zatarain Cabada 
Major Advisor: Ryan Stansifer, Ph.D. 

 

This dissertation considers the implementation of exception handling 

specifically for functional languages. Some implementations incur overhead for 

using exception handling even when no exceptions are raised. We show the 

results of some experiments with the SML of New Jersey and OCAML 

compilers, two well-known compilers for functional languages. Imperative 

languages avoid this overhead by using tables, but the approach does not easily 

transfer to compilers using continuation passing style (CPS). This dissertation 

proposes an approach that works with CPS compilers like SML of New Jersey. 

We first present an experiment where programs in SML are written with 

and without exception handlers. From these results, we conclude that programs 

with exception handling produce overhead even when no exceptions are raised. 

Then, we analyze the source of the exception handling overhead in the SML of 

New Jersey compiler. We present a solution to the problem. The new approach 

uses two continuations instead of the one continuation. One continuation 

encapsulates the rest of the normal computation as usual. A second continuation 

is used for passing the abnormal computation. The second continuation is not 

 iii



passed as an extra argument but is passed as a displacement from the first 

continuation. 

We have implemented a basic CPS compiler for functional languages 

with exception handling. With it we were able to implement the new approach to 

exception handling and compare it side-by-side with the approach taken by the 

SML of New Jersey compiler. We show that the new approach to exception 

handling adds no overhead to the normal flow of control. 

The importance of our new approach to exception handling for CPS 

compilers proposed in this dissertation is the improved run-time performance in 

every case in which an exception handler is used. 
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1  I n t r o d u c t i o n  

The value of exception handling is well-known in the field of software 

engineering. The first high-level language to have a mechanism for exception 

handling was PL/I [Ans76]. Before that, a common form of processing 

exceptions or error conditions was made by using IF statements inside the 

normal code in order to check the return code of some operations. When an 

exception occurred, normal processing activities were ended.  

PL/I allowed a programmer to handle and propagate exceptions 

dynamically. The exceptions were associated to statements (today most 

programming languages like Ada and Java associate it to blocks of code). When 

an exception was raised the flow of control continued at the beginning of the 

statement which raised the exception. 

A very important paper on exception handling was written for 

Goodenough [Goo75]. This paper describes a notation for an exception handling 

mechanism. Today, many models of exception handling in different 

programming languages are based in that notation. 

Another language which pioneered exception handling facilities was CLU 

[LS79]. This programming language associated exceptions with blocks of code 

(procedures). A drawback in CLU was that exception propagation did not 

existed, and that exception was handled by the calling procedure.  
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After PL/I and CLU, a substantial amount of work has been done in 

programming languages to design alternative methods of exception handling.  

Ada [BR86], COMMON LISP [Ste84], SML [MTH90], Modula-3 [CDGJKN], 

C++ [Str91], and Java [GJS96] all support exception handling techniques. 

There are several advantages to supporting exception handling in a 

language. One is to avoid cluttering programs with code for detecting error 

conditions. Another is to allow an exception to be propagated in its dynamic 

chain of calls. That provides a caller the possibility of knowing about the failure 

of an operation and is named dynamic propagation. But, most important is that 

the language encourages programmers to consider all events that can throw an 

exception during program execution. 

Exception handing is very often the most important part of the system 

because it deals with abnormal situations. For a variety of reasons, not least 

among which is the fact that more than half of the code is often devoted to 

exception detection and handling, many failures are caused by the incomplete or 

incorrect handling of these abnormal situations. The requirements for correct 

system behavior during exception handling are in some sense even greater than 

for the system operating in normal mode. 
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1.1 Overview of the problem 

When declaring and using exception handling the syntax and semantic of 

a language is pretty much the same. On the other hand, when we talk about 

efficiency we come to different results. Compilers of imperative languages like 

Java, Ada, and C++ implement exception handling without imposing overhead 

on normal execution [LYKPMEA, BR86, and Din00].  When a program defines 

an exception handler, the runtime performance of that program would be the 

same without exception handler definition. We can say that there is no runtime 

penalty for defining an exception handler which is never used. In other words, no 

runtime overhead occurs in the case in which no exceptions are raised. However, 

compilers of functional languages like SML/NJ [AM91] or CAML [Ler00] 

produce code that has exception handling overhead. We made some experiments 

in order to verify this. We found also the source of the overhead in the SML/NJ 

[AM91] compiler. 

In this dissertation we present a new approach to implementing exception 

handling in functional programming languages. The new approach incorporates a 

method for implementing exception handling without imposing overhead on 

normal execution. In order to test the new approach, we had first to build a 

compiler for a functional language, where we implemented the two approaches: 

the traditional approach (the one used in the SML/NJ compiler), and the new 

approach proposed in this dissertation.  
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1.2 Outline of dissertation 

 Some material about functional languages and programming in them, 

especially SML, would be helpful for a reader of this dissertation [Har98, Hen80, 

Pau91, and Ull98]. 

Chapter 2 covers introductory and support material in functional 

programming, continuation-passing style, and exception handling. The material is 

presented with explanations and some code in different languages. 

Chapter 3 describes the design and implementation of a model of 

translation and execution of programs. The translator generates CPS 

(continuation-passing style) programs, which are executed by an evaluator of CPS 

code. The chapter presents a set of examples used in testing the compiler in SML 

and CPS code. 

Chapter 4 presents the abstract machine used to interpret the target code 

produced by the translator. We also show some examples of programs produced 

and tested in the machine. 

Chapter 5 explains how the SML/NJ compiler implements exception 

handling. It also shows the experiments that we made in order to verify that the 

SML/NJ and OCAML compilers produce overhead in programs with exception 

handlers. Last, we explain the source of the overhead in SML programs by using 

an example. 
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Chapter 6 presents the new approach for exception handling 

implemented in our compiler. We start by describing a method used in imperative 

languages. This method uses a table of assembly code regions. Then, we explain 

the first part of the new approach where code produced by the compiler contains 

two continuations, and last we explain how zero overhead can be reached by 

doing some modifications to that approach.  

Chapter 7 shows the experiments we did in order to test the performance 

of the new approach. First, it explains the experimental methodology and 

examples used in the tests. Second, it presents the results of performance of the 

programs using the old and new approach. Last, it makes an analysis of the 

results. 

Finally, chapter 8 describes some conclusions of the work and the future 

research to be done. 
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2 Related Work 

This chapter sets the stage for the presentations in chapter 3, 4, and 5. 

First, we review the fundamental concepts of functional programming; then we 

present an introduction of continuation passing style (CPS); finally, we describe 

exceptions in modern programming languages like SML, Java, and Ada. 

       
2.1 Functional Programming 
  

Functional languages 
 

 Functional languages focus on data values described by expressions (built 

from function applications and definitions of functions) with automatic 

evaluation of expressions. Programs can be viewed as descriptions declaring 

information about values rather than instructions for the computation of values 

or of effects [Rea89]. In functional programming languages there is no distinction 

between statements and expressions; names are only used to identify expressions 

and functions (and not memory locations); like in imperative languages they allow 

functions to be passed as arguments to other functions, or returned as results 

(higher-order functions) [WM95].  

Functional Languages are divided in eager and lazy functional languages. 

In eager functional languages, the evaluation of arguments in a function 

application is made before the function is applied. This gives as a result that the 
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same expression can be evaluated more than one time. On the other hand, lazy 

functional languages evaluate expressions in a demand drive way named call by 

need. In this technique the arguments of functions are evaluated once at most 

[Rea89]. For example, assuming double is defined by: 

fun double x = plus x x 

The evaluation of double (fact 5) begins with: 

 Double (fact 5) = plus (fact 5) (fact 5) 

With call by need, fact 5 needs to be evaluated only one time. 

Examples of eager functional languages are Scheme [SSJ78], SML 

[MTH90], and CAML [Ler00]. Miranda [Tur85], Lazy ML [Aug84], Ponder 

[Fai82], and Haskell [Hud90] are all examples of lazy functional languages. 

 
Eager functional languages 
 
 Functions that are always undefined with undefined arguments are called 

strict. A functional language that uses strict evaluation (to evaluate the arguments 

of the functions) is named eager (or strict) language. This evaluation technique in 

conventional programming languages like Pascal and C have been called call by 

value, while for functional languages is also called applicative reduction order. 

Some of the functional programming languages that use eager evaluation are ML, 

Scheme, and CAML. 
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The ML and SML programming languages 
 
 ML [MTH90] is a general-purpose programming language designed for 

large projects.  It was developed in the late 1970s as the Meta-Language of the 

Edinburgh Logic for Computable Functions (LCF) theorem-proving system. It is 

an eager and functional programming language where current statements as 

blocks, conditional, assignments, etc. are encapsulated as expressions. Every 

expression has a statically determined type and will only evaluate to values of that 

type. Standard ML of New jersey (abbreviated SML/NJ) is a compiler and 

programming environment for ML written in ML with associated libraries, tools, 

and documentation [AM91, SML03]. SML/NJ is free, open source software. The 

core of the SML/NJ system is an aggressively optimizing compiler that produces 

native machine code for most commonly used architectures: x86 (IA32), Sparc, 

MIPS, IBM Power 1 (PowerPC), HPPA, and Alpha [ SML03]. The compiler 

translates a source program into a target machine language program in several 

phases. 

  

Lazy functional languages 

 Functions that can give defined results even when arguments are 

undefined are called non-strict. For example the expression (3 = 3) or ((5 div 0) = 

4) might give a defined result of true (true or x = true), if we ignore the result of 

the second sub-expression (undefined).  A functional language that uses non-
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strict evaluation (to evaluate the arguments of the functions) is named lazy (or 

non-strict) language. A program using lazy evaluation will not evaluate any 

expression unless its value is demanded by some other part of the computation. 

Lazy evaluation, also called call-by-need, is a modification of call-by-name that 

never evaluates the same thunk (sub-expression) twice. In this technique, lambda 

expressions are represented by graphs.  

 

Lambda Calculus 
 

 Lambda calculus is a mathematical calculus for computable functions 

proposed by Alonzo Church in 1941 in order to establish the limits of what was 

computable. It is the theoretical foundation of functional languages. Next, we 

have a definition of a context free grammar for lambda calculus [Sta95]: 

 
V -->  x | y | z | v |….. {Variables) 
F -->  a  | b | c | f | g |…. {Set of functional symbols} 
L -->  V | F | λ V.L | L L | (L) 

 
Examples: x, f x, f (g x),  λx.b, f (λ x.b), λy.(g x )  
   

Lambda calculus provides a behavioral explanation of terms in the form     

of rewriting or reduction rules [Rea89]. They are used to simplify lambda terms.  

The most important reduction is the (β) reduction rule. This is given by: 

   
Beta reduction (β): (λv.E1)E2 ====> E1[E2/v] 

   
It means that the bound variable v in the body E1 of the abstraction is   

substituted by the argument E2. It can be interpreted as saying that a function 
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λv.E1 applied to the actual argument E2 means the same as the body E1 where 

all occurrences of the formal parameter v have been replaced by E2. The variable 

v is bound to E2. This is essentially the call-by-name rule in ALGOL 60. 

 
Examples: (λ x. + x x) 4   ====> + 4 4 
  (λ v.v) c          ====>  c 
  (λ x. λ y. * y x) 3 ) 7  ====> (λ y. * y 3) 7 
  (λ y. * y 3) 7   ====>  * 7 3 
 

A very important note is that we can represent any element of a 

programming language like a number, a primitive operation, a selection, 

recursion, etc. in lambda calculus. 

 

Combinators 
 

 A free variable (non-local variable) affects the efficiency of a program 

(binding of free variables with its values). Combinators are a technique for 

transforming lambda expression into expressions that only include applications 

and combinators. These expressions are called closed expressions (expressions 

with no free variables). The idea is first, to translate a lambda expression into a 

combinator term in which no variables appear, and second, to translate a 

combinatory term into a combinatory using an algorithm named bracket 

abstraction. 
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Example: Consider the lambda expression (λ x. + x 1). It will be transformed to 

a combinatory term and then into a combinator as follow [Sta95].  

(λ x. + x 1)   =========> 
[x] (+ x 1)   =========>{combinator term) 

 S ([x] (+ x)) ([x] 1)  =========>{use of bracket abstraction} 
 S (S ([x] +) ([x] x)) [x] 1 =========>{use of bracket abstraction} 
 S (S (K +) I) (K 1)      {combinator} 
 
             
Where the rules of evaluation are: 
 
 S x y z    ====> x z (y z) 
 K x z      ====> x 
 I x   ====> x 
 
Example: We evaluate the corresponding lambda expression and combinatory 

and we get the same result.  

 Lambda expression  Combinator 
  (λ x. + x 1)   S (S (K +) I) (K 1) 
    (λ x. + x 1) 3   S (S (K +) I) (K 1) 3 

 ( + 3 1)   S (K +) I 3 (K 1 3) 
  4    (K + 3) (I 3) (1) 

+ 3 1 
4 

 
Something remarkable to establish is that the third combinatory I can be built 

with combinators K and S. Then, any program can be described entirely by these 

two primitives. 

 

Closures 
 
 In languages such as C without nested procedures, the run-time 

representation of a function value can be the address of the machine code for that 
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function [App98]. This address can be passed as an argument, stored in a variable, 

and so on; when it is time to call the function, the address is loaded into a 

machine register, and the “call to address contained in register” instruction is 

used. 

 But this will not work for nested functions, where a function can return a 

function as a value (high-order functions). The problem is the non-local 

environment can not be found without the static link. The solution is to represent 

a function-variable as closure: a record that contains the machine-code pointer 

and a way to access the necessary free (non-local) variables. One simple kind of 

closure is just a pair of code pointer and static link; following the static link can 

permit access to the non-local variables. The portion of the closure giving access 

to values of variables is often called the environment. 

Tail recursion 

 A function call f(x) within the body of another function g(y) is in tail 

position if “calling f is the last thing that g will do before returning”. Applications 

of functions in tail positions can be implemented by direct jumps instead of the 

more sophisticated context switches needed for other function calls in most 

language implementations. 

 
 
Example: (non-tail recursive function): 
 
fun fact (n)= 
 if  n=0 then 1 else fact(n-1) * n  
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The call to function fact is not the last operation of the function (the last 

operation is the multiplication operation), and then this is a non-tail recursive 

function. 

 
 
Example: (tail recursive function): 
 
fun fact (n)= 
 if n=0 then 1 else n * fact(n-1) 
 
The call to function fact is the last operation in the function. 
 
 

2.2 Continuation-passing style (CPS) 
 
Definitions of CPS 
 
 The purpose of CPS is to make every aspect of control flow and data 

flow explicit [App92]. 

 It combines tail recursion with extra parameters (the continuations) in a 

function. In section 2.1.5 we showed an example that shows a transformation of 

a non-tail recursive function into a tail recursive function by using a continuation 

named k. Into the continuation we pass the context of the function (instead of 

using a stack for saving). Then the function does not need to return for doing last 

operations. 

Another way of looking at CPS is as “a style of programming in which 

every user function f takes an extra argument k known as a continuation. 

Whenever f would normally return a result r to its caller, it instead returns the 
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result of applying the continuation to r. The continuation thus represents the 

whole of the rest of the computation” [FOL]. 

Example: The program, 
 
 if x < 0 then x else f(x) 

can be broken up into the expression 

 x < 0 

and the continuation (expressed here as an evaluation context) 

 if [ ] then x else f(x) 

The expression is evaluated and then passed into the continuation, which takes it 

the rest of the way. 

Writing the continuation as a function, we can transform this program into: 

 (λv. if v then x else f(x))(x < 0) 

Applying this transformation to every part of the program, we produce a program 

in continuation-passing style (CPS). 

Thus, CPS is a style of writing programs where the events in the future, 

i.e. the rest of the computation, is passed as an explicit parameter. The value 

passed as this parameter is the continuation. A continuation is a procedure that 

takes the value of the current expression and computes the rest of the 

computation. Procedures do not return values; instead, they invoke the 

continuation with the result. If a program is fully CPS converted then there are 

no procedure return. Every procedure call is tail call, and the program's control 

memory is not stored in some invisible stack but explicity as the continuation. 
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Advantages of CPS 
 
• No need for a stack (values go on and off the stack too many times), 

because functions never return. 

• Every intermediate value of a computation is given a name (possible 

corresponding to a machine register). This allows an easy translation to 

machine code. 

• Functional language compilers use CPS to transform the structure of 

the function from a lambda calculus form to an imperative form. We 

can then, apply conventional techniques like code optimization and 

generation to the transformed form. 

• Beta reductions and others optimizations are easier to do too. 

 
How can CPS be useful? 
 

CPS can be useful in several different ways.  When there are two or 

more possible continuations (one for success and one for failure), it is more 

convenient to let the procedure choose between its continuations than to force 

its caller always to perform a test based on some returned result, particularly 

since the nature of the information that must be returned depends on how the 

computation is to continue.  Another use of CPS is to return multiple results by 

passing them to a multiple-argument continuation.  This is often better than 
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returning some data structure out of which the caller of the procedure would 

have to extract the values. 

 

2.3 Exceptions 

 
Exception handling techniques 
 
 An exception is the union of error, exceptional case, rare situation, 

and unusual event [LS98]. The entity that is raising an exception stops and waits 

for the completion of the exception processing. Exceptions are usually divided 

into two classes: predefined and user-defined. Predefined exceptions are declared 

implicitly and are associated with conditions that are detected by the underlying 

hardware or operating system; they are also called system-defined exceptions. In 

any case languages with exception handling allow the program to regain control. 

 The idea of exception handling is seen as the immediate response and 

consequent action taken to handle the exceptions. An exception handler is the 

code attached to (or associated with) an entity for one or several exceptions and is 

executed when any of these exceptions occur within the entity. Depending on the 

exception-handling mechanism, an entity can be a program, a procedure, a 

statement, an expression, an object, or data. Exception handling can be 

embedded into the operating system or into a programming language. 

 16



 

Exception handling in programming languages  

 Goodenough’s notation is the first structured exception-handling 

mechanism proposed [Goo75]. It either terminates or resumes the program’s 

execution after an exception is handled. If an exception is raised from an 

operation, the mechanism first tries to find local handlers, which is in the same 

context as the operation. 

The programming language CLU [Lis79] is based on a simple model of 

exception handling and can support termination. The mechanism searches only 

one level up besides the local context. If a user wants to raise an exception several 

levels up, he must raise the same exception explicitly in the handler of each level. 

This exception propagation mechanism is called explicit propagation. 

Ada [Ada95] declares exceptions by the statement exception. An 

exception not handled is automatically raised into the upper levels along the 

calling chain until a handler is found or until a program boundary is reached. 

Therefore, this propagation method is called automatic or dynamic 

propagation.  

 
Example: 
 
 1 -- propagation.adb:  illustrate exception propagation 
  2  
  3 with Ada.Text_IO; use Ada; 
  4  
  5 procedure Propagation is 
  6  
  7    E, F, G, H: exception; 
  8  
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  9    procedure A is 
 10    begin 
 11       Text_IO.Put_Line ("Begin A"); 
 12       -- *********************************** 
 13       -- suppose an exception is raised here 
 14       -- *********************************** 
 15       Text_IO.Put_Line ("End A"); 
 16    end A; 
 17  
 18    procedure B is 
 19       procedure C is 
 20       begin 
 21         Text_IO.Put_Line ("Begin C"); 
 22         A; 
 23         Text_IO.Put_Line ("End C"); 
 24       exception 
 25         when E => Text_IO.Put_Line ("Caught E"); 
 26       end C; 
 27    begin 
 28       Text_IO.Put_Line ("Begin B"); 
 29       C; 
 30       Text_IO.Put_Line ("End B"); 
 31    exception 
 32       when F => Text_IO.Put_Line ("Caught F"); 
 33    end B; 
 34  
 35 begin 
 36    Text_IO.Put_Line ("Begin Main"); 
 37    B; 
 38    Text_IO.Put_Line ("End Main"); 
 39 exception 
 40    when G => Text_IO.Put_Line ("Caught G"); 
 41 end Propagation 
 
 
 The program starts execution (main program) writing a line, and then 

calls procedure B. procedure B starts also writing a line, and then calls procedure 

C. Procedure C calls procedure A after writing a line. In procedure A, the 

program writes a line, and then an exception is thrown (a supposition). Because 
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procedure A has not an exception handler, the exception is propagated into    

upper levels along the calling chain. The upper level in this case is procedure C 

which has declared an exception handler (for exception E). If the exception is not 

caught in procedure C, then the exception is reraised and propagated to 

procedure B. This procedure has a handler that will try to catch again the 

exception. The propagation can continue until a handler is found or until a 

program boundary is reached. 

In C++ [Str91], there is no specific declaration for exceptions. User can 

raise an ordinary object as an exception by using the statement throw. A 

try…catch structure attaches handlers led by catch to a guarded block of code 

led by try. If the handler for a raised exception cannot be found locally, C++ 

unwinds the stack of the try block and propagates the exception to its caller. This 

procedure continues until a handler is found or until a default handler is called, 

which then aborts the program. 

Java [GJS96] uses a mechanism similar to C++, adding the clause finally 

to the try…catch structure. The statements in finally are executed whether or 

not exceptions are raised.  

 
 
Example: 
 
 1 class One_Exception extends Exception { 
  2    int argument; 
  3    public One_Exception (int i) { argument=i; } 
  4 } 
  5  
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  6 class Another_Exception extends Exception {} 
  7  
  8 public class Try_Block { 
  9  
 10    public static void main (String argv[]) { 
 11  
 12       // Java "try" block with "catch" and "finally" 
 13  
 14       try { 
 15  
 16         // block of statements; may raise exceptions, 
 17         // "break", "continue", or return. 
 18  
 19          if (1==0) { 
 20             throw new One_Exception (5); 
 21          } else { 
 22             throw new Another_Exception (); 
 23          } 
 24  
 25       } catch (One_Exception e) { 
 26          // one handler 
 27          System.out.println (e.argument); 
 28  
 29       } catch (Another_Exception e) { 
 30          // another handler 
 31          e.printStackTrace (System.err); 
 32  
 33       } finally { 
 34          // final wishes; always executed no matter whether 
 35          // we leave the block normally, with an exception, 
 36          // because of a "break", "continue", or return 
 37       } 
 38    } 
 39 } 
 
 
 When the Java program enters in the try block, it tests the condition 

(1==0). In this case the condition is false, so the program will raise the exception 

Another_Exception (). Inside the try block there are two exception handlers: 

one for exception One_Exception and another for Another_Exception. The 
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first handler will fail to catch the exception that was raised, but the second 

handler will success, and it will execute the code of the handler (e.printStackTrace 

(System.err)). 

 SML [MTH90] like Java has exceptions that are themselves values. An 

exception name in Standard ML is a constructor of the built-in type exn [Pau91]. 

The exception declaration exception exc_name makes exc_name a new 

constructor of type exn. Raising an exception creates an exception packet 

containing a value of type exn. For example, raise Ex throws exception Ex. 

During evaluation, exception packets propagate under the call-by-value rule. If 

expression E returns an exception packet then that is the result of the 

application f(E) for any function f.  An exception handler tests whether the result 

of an expression is an exception packet. SML uses the construct E handle P1 => 

E1 | … | Pn => En  to define an exception handler [Paulson]. 

 
 
Example:  
 
exception Neg  
local 
 fun search (n,i) = if n<0 then raise Neg else 
                             i*i<=n 
       andalso (n mod i = 0 orelse search (n,i+1)) 
in 
 fun composite n = search (n,2) 
 fun prime n = not (composite n) 
end; 
 
(prime ~7) handle Neg => (print("The number is negative: \n");false) 
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 The program finds whether a number is a prime number or not. It first 

declares an exception handler named Neg which is thrown when a negative 

number is passed to the function search. If the exception Neg is raised then the 

handler (last line of code) will catch it and its code (print(“The number…”)..) will 

be executed. Shall another kind of exception be raised in some of the three 

functions; the system will follow the calling chain (automatic propagation) to 

upper levels. Because there is no another exception handler, the exception will be 

considered an uncaught exception (the program terminates and returns to the 

operating system). 

 

Handler binding 

 Handler binding attaches handlers to certain exceptions to catch their 

occurrences in the whole program or part of the program. There are three ways 

to bind handlers with exceptions [LS98]: static, where once a handler is attached 

to an exception, the same handler is used for every occurrence of that exception 

in the whole program or process; semidynamic, used by Ada, C++, and 

Modula-3, where different handlers associates with the exception in different 

context during an exception propagation; and dynamic, where different handlers 

can be attached to an exception in the same context.   
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Implementing exception handling 

 It is the process of receiving the notification, identifying the exception, 

and determining the association handler. There are several methods, which are 

divided into the following categories [LS98]: 

• Stack unwinding. The handler defined first is checked first. If none can be 

found to handle the raised exception, the context stack is unwound, and 

the search begins within the new context. This is the method used in Ada, 

C++ and Modula 3. 

• Handler pool. It is a handler chain, or lined list, or a table of handlers, 

each of which has been bound to a specific exception or group of 

exceptions. To find an associated handler, the pool is searched linearly.  

• Combination of stack unwinding and handler pool. A separate handler 

chain is stored within the stack frame. 

• Backtracking exception identifier bindings. It “backtracks” exception 

identifier bindings to determine a matching handler. 

• Scanning instances of objects. It scans all the instances of an object for 

handler determination, since users can supply different handlers for the 

same exception raised in different instances. 
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3 A Model of CPS Translation and 
Interpretation 

 
The middle part and key transformation in some functional language 

compilers is the conversion to CPS (continuation-passing style) language, which 

was defined and explained in chapter 2. We use CPS as our intermediate 

representation in our functional language compiler that was built for our 

experiments (figure 3.1).  

 

   

Source Program
(Lambda code) 

Translation to CPS 

CPS Program

    Translation to flat CPS 

  Flat CPS code (no free variables) 

 

Translation to Abstract
Machine code 

Abstract machine code

 Figure 3.1 Overview of the compiler for the experiments 
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The CPS language is well-designed to match both the lambda calculus, 

which is the source language in our compiler, and the model of a von Neumann 

machine (represented by the abstract machine code). The compiler first translates 

lambda code into CPS expressions. Then, CPS expressions are translated into a 

free variables representation which is called Flat CPS. Flat CPS code consists of 

only one CPS function (no inner functions as in a normal CPS expression). Last, 

Flat CPS is translated into an abstract machine code. 

We present in this chapter, a model of translation and execution that 

allows a programmer (or student/teacher) to write, translate, and execute 

programs in a source functional language (an extended lambda language) and a 

target CPS language.  Both systems are based on the definitions of a semantic for 

CPS and a model of translation by Appel [App92]. The main contribution of our 

model is to collect everything (the model of translation and semantics) together 

into a working program and to create a whole framework which can be used to 

execute programs, allowing studying a wide range of performance assessments 

that can be discussed, highlighting the performance relationships among different 

elements. Figure 3.1, shows this model of translation-interpretation. 

As we can observe in figure 3.2, a program written in an intermediate 

representation of a functional language like SML (in this case lambda code), is 

translated into a CPS program and then, evaluated using a specific input as data. 

After the evaluation, a value (the result) is obtained.  
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Intermediate Representation
        Of SML programs 
          (Lambda code) 

Translator 
To CPS 

CPS Program

Evaluator
Of CPS Input Value

 Figure 3.2 Model of translation-interpretation 
 
 

 
 
 

3.1 A minicompiler for miniML 
 

The first part of model described above, is a translator to CPS. This 

translator takes a program written in a lambda language (encoded into a tree-like 

data structure), and then makes a recursive traversal over the source-language 

program producing a CPS program.  

 
 

The Lambda language 
 
Figure 3.3 shows the definition of a lambda expression as an ML datatype. 
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type var=string 
  
 datatype lexp= 
   VAR of var 
  |INT of int 
  |STRING of string 
  |FN of var * lexp 
  |FIX of var list * lexp list * lexp 
  |APP of lexp * lexp 
  |PLUS 
  |SUB 
  |MULT 
  |LESS 
  |EQ 
  |MAKEREF 
  |RAISE of lexp 
  |HANDLE of lexp * lexp 
  |COND of lexp * lexp * lexp  (* switch *) 
 

 
Figure 3.3 Datatype for a lambda expression. 

 
 
 
 
In this case, each value (a constructor) of type lexp can represent: 
 
• A variable (VAR), an integer (INT), or a string (STRING); 

• An anonymous (lambda) function (FN); 

• A function declaration (FIX) where function names (var list) are bound 

to anonymous functions (lexp list) under the scope of a lambda 

expression; 

• A function-calling construct (APP); 

• A set of primitive operations for making arithmetic (PLUS, SUB, and 

MULT); comparisons (LESS, and EQ); and creation of references to 

memory (we use them when exceptions are declared). 
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• A primitive operation to evaluate an expression of type exception and to 

throw a user-defined or system exception (RAISE). 

• A primitive operation HANDLE which evaluates the first argument, and 

if an exception is raised, then applies the second argument (handler) to 

the exception. 

• A primitive operator COND used to test conditions EQ and LESS. 

Besides normal testing, this primitive is very important when a 

HANDLE tests for a determined exception.  

 
 
Examples: The next table shows several examples of different lambda 

expressions using our notation. We also show, for clarity purposes, the 

corresponding code of the lambda expression in SML code. 

 
SML LAMBDA 

1 INT  1                     

289 – (17 * 17) 
 

APP(SUB,RECORD  [INT 289, 
    APP(MULT,RECORD  [INT 17,INT 17])]) 
 

(fn x => x) FN ("x",VAR "x") 

(fn x => 3) FN ("x",INT 3) 

(fn x => 3) 9 APP (FN ("x",INT 3), INT 9) 

(fn x => x) 9 
 

APP(FN ("x",VAR "x"),INT 9) 
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if  (3 = 5) then 2 else 7 COND(APP(EQ,RECORD[INT 3,INT 5]),INT2,INT 7) 

if (2 < ((fn x => x) 3)) 
then 2 
else ((fn x => x) 7) 

 
COND(APP(LESS,RECORD[INT  2, 
      APP(FN("x",VAR   "x"),INT 3)]), 
           INT 2,APP(FN ("x",VAR "x"),INT 7)) 

let 
    Fun fact(n)= 
      if n<1 then 
         1 
      else 
         n*(fact(n-1) 
in 
    Fact(6) 
end 
 

APP(FIX(["fact"], 
      [FN("n", 
         COND(APP(LESS,RECORD [VAR "n",INT 1]), 
         INT 1, 
         APP(MULT,RECORD[VAR "n", 
           APP (VAR "fact", 
            APP (SUB,RECORD [VAR "n",INT 1]))])))], 
      VAR "fact"),INT 6)  
 

“a string” STRING "a string" 

Exception  Astring APP (MAKEREF, STRING "Astring") 

 let   
      fun f(n)=n*n  
 in   
      f(0)  
 end 
 

FIX(["f"],  
              [FN("n",APP 
                   (MULT,RECORD [VAR "n",VAR "n"]))], 
              APP(VAR "f",INT 0)) 

let   
     fun f(n)=n*n  handle   
                            ovfl=>0  
in   
     f(1700)  
end 
 
 
 

FIX (["f"], 
     [FN ("n",  
           HANDLE 
                  (APP (MULT,RECORD [VAR "n",VAR "n"]), 
                    FN("e",COND (APP (EQ,RECORD  
                                      [VAR  "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e")))))],APP (VAR "f",INT 1700))
 

let   
     fun g(x)=f(x)  
            handle  DIV=>2 
     fun f(y)= raise   DIV     
           handle MULT=>1 
in   
     g(2)  
end 
 

FIX  (["g","f"], 
     [FN  ("x", 
         HANDLE 
           (APP (VAR "f",VAR "x"), 
            FN ("e", 
               COND 
                 (APP (EQ,RECORD [VAR "e", 
                      APP  (MAKEREF,STRING "DIV")]),INT 2, 
                             RAISE (VAR "e"))))), 
      FN ("y", 
         HANDLE 
           (RAISE (APP (MAKEREF,STRING "DIV")), 
            FN ("e", 
               COND 
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                 (APP (EQ,RECORD [VAR "e", 
                    APP (MAKEREF,STRING "MULT")]),INT 1, 
                            RAISE (VAR "e")))))], 
    APP (VAR "g",INT 2))  
 
 

let   
     fun f(n)=n*n 
           handle ovfl=>n 
     fun run(x)= 
          if x>1000  then 
             f(17)  
          else  
            (run(x+f(17)-288)) 
in   
     run(0)  
end 
 

FIX 
    (["f","run"], 
     [FN 
        ("n", 
         HANDLE 
           (APP (MULT,RECORD [VAR "n",VAR "n"]), 
            FN 
              ("e", 
               COND 
                 (APP (EQ,RECORD  
                        [VAR "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e"))))), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD  
                    [VAR "x",INT 10]),APP (VAR "f",INT 1700), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
                    [VAR "x", 
                     APP (SUB,RECORD 
                            [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0))  
 

 
 
Table 3.1 Examples of SML and Lambda expressions. 
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The CPS language 
 

The CPS language used in our translator has three big differences with 

respect to those traditional compilers which use also CPS as an intermediate 

representation [App92]: 

• Every function has a name. 

• There is an operator for defining mutually recursive functions (instead of 

fixed point function). 

• There are n-tuple primitive operators. 

Besides that, we use the ML datatype declaration in order to prohibit ill-

formed expressions. One important property of CPS is that every intermediate 

value of a computation is given a name. This makes easier the translation later, to 

any kind of machine code. For example the SML expression 289 – (17 * 17) is 

translated to  

 PRIMOP(*,[INT 17,INT 17],["w2"], 
       [PRIMOP (-,[INT 289,VAR "w2"], 
               ["w1"],[APP (VAR "k",[VAR "w1"])])]) 
 
in CPS notation, where w1 and w2 are intermediate names produced by the 

translator. We will explain in more detail later this example. 

 Another important aspect of CPS operations is that every argument is 

atomic; that means that only variables or constants are allowed to be arguments. 

The definition of a CPS expression as an ML datatype is shown in Figure 3.4. 
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datatype primop= 
   gethdlr 
  |sethdlr 
  | + 
  | - 
  | * 
  | < 
  |equal 
  |makeref 

type var=string;  
datatype value =  

   VAR of var 
  |INT of int 
  |STRING of string 

datatype cexp= 
  |APP of value * value list 
  |FIX of (var * var list * cexp) list * cexp 
  |PRIMOP of primop * value list * var list * cexp     
             list 
 

 
Figure 3.4 Datatype for a CPS expression. 

 

 

A primitive operator can be: 

• gethdlr and sethdlr. Both are used for handling exceptions. The operator 

gethdlr obtains the current exception handler (or saving the old handler), 

and sethdlr updates the store with a current handler (re-install a new 

handler). 

• +, -, *.  Arithmetic operators for adding, subtracting, and multiplying two 

arguments. 

• <, equal. Testing (comparison) operators for less than and equal to. 

• makeref.  This operator is used to create a reference (a pointer) to 

memory. We use makeref mainly to declare an exception.  
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A value datatype is defined as all the different kind of atomic arguments 

that can be used in a CPS operator. A value or argument can be a variable (VAR), 

an integer (INT), or a string constant (STRING). 

 
Our CPS language has just three different kinds of expressions. They are: 

• APP. It is used for calling a function (whose name is of type value), 

passing one or more arguments (using a list of values). 

• FIX. As we mentioned before, in CPS all functions have a name. There 

are no anonymous functions. FIX is used to define a general-purpose 

mutually recursive function definition. The syntax of FIX defines a list of 

zero or more functions, with a name (type var), arguments (type var list), 

and bodies (type cexp). All of these functions can be called (using the 

APP operator), from each body of the function or from the main body of 

the FIX expression (type cexp). 

• PRIMOP. This stands for primitive operator.  All primitives like 

handling exception, arithmetic, testing, and references, are built by using 

this constructor. The first field is the primitive name (primop type), the 

second and third fields are used for arguments and/or result names, and 

the fourth field is the continuation expression of the primitive operator.   

 
A set of examples will clarify CPS notation. Next tables show the same 

examples from last table but including lambda code and corresponding CPS 

code. 
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Example # 1 
 
INT  1 
APP (VAR "k",[INT 1]) 
 
 

Where APP(VAR “k”, [result]) is the initial continuation for any program in the 

CPS expression. This continuation is really what is called in functional 

programming, the identity function (fn x => x). 

 

 
Example # 2 
 
APP(SUB,RECORD  [INT 289, 
    APP(MULT,RECORD  [INT 17,INT 17])]) 
PRIMOP (*,[INT 17,INT 17],["w2"], 
     [PRIMOP (-,[INT 289,VAR "w2"],["w1"],[APP (VAR "k",[VAR "w1"])])]) 
 
 

CPS evaluates first the multiplication operator, giving as a result w2, and then the 

continuation is evaluated (subtraction). At the end, the result is given to the initial 

continuation (VAR w1), which is also a continuation from the subtraction 

operation. 

 

 
Example # 3 
 
FN ("x",VAR "x") 
FIX ([("F3",["x","k4"],APP (VAR "k4",[VAR "x"]))],APP (VAR "k",[VAR "F3"])) 
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A lambda function (anonymous or named function) corresponds to a FIX 

function, which uses a determined name. In this example, we can see that F3 is 

the name assigned for the compiler to the function. Besides, this function has two 

arguments. The first one is variable x (same as lambda expression), and another 

one for k4. This is the continuation that takes the rest of the computation when 

the function is called from an application. 

 

 
Example # 4 
 
FN ("x",INT 3) 
FIX ([("F5",["x","k6"],APP (VAR "k6",[INT 3]))],APP (VAR "k",[VAR "F5"])) 
 
 
This example is very similar to the last one. 
 
 
 
Example # 5 
 
APP (FN ("x",INT 3), INT 9) 
FIX 
    ([("r7",["x8"],APP (VAR "k",[VAR "x8"]))], 
     FIX 
       ([("F9",["x","k10"],APP (VAR "k10",[INT 3]))], 
        APP (VAR "F9",[INT 9,VAR "r7"]))) 
 
 

An anonymous function is applied a value (INT 9). Inside the body of the 

function, the bound variable is not used. So, the result will give just INT 3. In the 

CPS code we see two functions. The inner function corresponds to the 

anonymous function of the lambda expression. The outer function r7 
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corresponds to the rest of the computation after the inner function has been 

evaluated. We can interpret r7 as the normal return from the function. The CPS 

flow of execution starts calling function F9, which takes two arguments. F9 then 

call k10 (which takes the value r7), and last the identity function is evaluated. 

 
 
 
Example # 6 
 
COND(APP(EQ,RECORD[INT 3,INT 5]),INT2,INT 7) 
FIX 
    ([("F15",["z16"], 
       PRIMOP 
         (equal,[VAR "z16",INT 0],[], 
          [APP (VAR "k",[INT 2]),APP (VAR "k",[INT 7])]))], 
     PRIMOP 
       (equal,[INT 3,INT 5],[], 
        [APP (VAR "F15",[INT 0]),APP (VAR "F15",[INT 1])])) 
 
 

A condition expression in lambda language produces a function in CPS language. 

The condition test for two arguments (3 and 5), and depending of the result of 

the test, make first or second options (2 or 7).  With CPS, the evaluation start also 

testing the arguments, continuing with a call to F15 with argument INT 0 if the 

result of the test was true, or a call to F15 with argument INT 1 if it was false. 

The Function F15 begins testing for the argument; if zero (true) then it finish 

with the identity continuation with argument INT 2 as a result. If not zero then 

the continuation is with argument 7. 

 
 
 

 36



 

Example # 7 
 
APP(FIX(["fact"], 
      [FN("n", 
         COND(APP(LESS,RECORD [VAR "n",INT 1]), 
         INT 1, 
         APP(MULT,RECORD[VAR "n", 
           APP (VAR "fact", 
            APP (SUB,RECORD [VAR "n",INT 1]))])))], 
      VAR "fact"),INT 6) 
FIX 
    ([("r29",["x30"],APP (VAR "k",[VAR "x30"]))], 
     FIX 
       ([("fact",["n","w31"], 
          FIX 
            ([("F32",["z33"], 
               PRIMOP 
                 (equal,[VAR "z33",INT 0],[], 
                  [APP (VAR "w31",[INT 1]), 
                   FIX 
                     ([("r35",["x36"], 
                        PRIMOP 
                          (*,[VAR "n",VAR "x36"],["w34"], 
                           [APP (VAR "w31",[VAR "w34"])]))], 
                      PRIMOP 
                        (-,[VAR "n",INT 1],["w37"], 
                         [APP (VAR "fact",[VAR "w37",VAR "r35"])]))]))], 
             PRIMOP 
               (<,[VAR "n",INT 1],[], 
                [APP (VAR "F32",[INT 0]),APP (VAR "F32",[INT 1])])))], 
        APP (VAR "fact",[INT 6,VAR "r29"]))) 
 
 
This example corresponds to the classical factorial function. The lambda code is 

built by using one FIX function (fact) which binds an anonymous function for 

the body of the factorial function. The factorial of 6 is evaluated. The CPS 

expression contains three FIX functions. One is for applying the identity function 

(r29); another one for the function factorial; and another one for the condition 

expression. The main difference in both programs is the way it accumulates the 

result. In the lambda code, the argument n-1 and a return address are pushed into 

a stack and then the values and addresses are popped in order to get the factorial. 
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But with CPS we do not have return from calling function. The CPS code passes 

also the argument n-1, but instead of passing the return address, CPS passes a 

function (name) which contains the rest of the computation (see code in italic 

form). In this case, variable w37 corresponds to the argument n-1 passed to the 

factorial function, and variable r35 is the function which corresponds to the rest 

of the computation. Function r35 is an iterative function which computes the 

factorial by calling itself n number of times. In this case, the call to function w31 

is really to function r35, the value bound to r31 (however in the last call w31 has 

value r29, the initial argument passed in the first call to function fact, and the last 

function called in the program).  

 
 
Example # 8 
 
RAISE(APP(MAKEREF, STRING "except1")) 
PRIMOP 
    (makeref,[STRING "except1"],["w50"], 
     [PRIMOP (gethdlr,[],["h49"],[APP (VAR "h49",[VAR "w50"])])]) 
 
 

The raise operator is used to throw an exception which is later caught or 

uncaught by a handler. In this example, we first create an exception named 

except1, which is thrown later. In CPS, the current exception handler is first 

returned (gethdlr), and then a jump to this handler is made using the declared 

exception (w50) as an argument. 
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Example # 9 
 
FIX (["f"], 
     [FN ("n",  
           HANDLE 
                  (APP (MULT,RECORD [VAR "n",VAR "n"]), 
                    FN("e",COND (APP (EQ,RECORD  
                                      [VAR  "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e")))))],APP (VAR "f",INT 1700)) 
FIX 
    ([("f",["n","w55"], 
       PRIMOP 
         (gethdlr,[],["h56"], 
          [FIX 
             ([("k58",["x67"],APP (VAR "w55",[VAR "x67"])), 
               ("n65",["e57"], 
                PRIMOP 
                  (sethdlr,[VAR "h56"],[], 
                   [FIX 
                      ([("F59",["e","k60"], 
                         FIX 
                           ([("F61",["z62"], 
                              PRIMOP 
                                (equal,[VAR "z62",INT 0],[], 
                                 [APP (VAR "k60",[VAR "n"]), 
                                  PRIMOP 
                                    (gethdlr,[],["h63"], 
                                     [APP (VAR "h63",[VAR "e"])])]))], 
                            PRIMOP 
                              (equal,[VAR "e",VAR "ovfl"],[], 
                               [APP (VAR "F61",[INT 0]), 
                                APP (VAR "F61",[INT 1])])))], 
                       APP (VAR "F59",[VAR "e57",VAR "k58"]))]))], 
              PRIMOP 
                (sethdlr,[VAR "n65"],[], 
                 [PRIMOP 
                    (*,[VAR "n",VAR "n"],["w66"], 
                     [PRIMOP 
                        (sethdlr,[VAR "h56"],[], 
                         [APP (VAR "k58",[VAR "w66"])])])]))]))], 
     FIX 
       ([("r68",["x69"],APP (VAR "k",[VAR "x69"]))], 
        APP (VAR "f",[INT 1700,VAR "r68"]))) 
 
 

We will explain the lambda expression handle with more details. This expression 

has two parts. The first part is the expression that is going to be evaluated 
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(multiplication expression). The second part is evaluated only if an exception is 

raised from the first part. The lambda code implements the second part using an 

anonymous function with one condition inside it. Whenever an exception is 

raised in the first part expression, the bound variable (e) of the function takes the 

exception name, and then the condition expression compares the bound variable 

(the exception) against a defined exception (ovfl). If the condition is true the 

handler catches the exception and continues with the first continuation (VAR n). 

If the condition is false it continues with second continuation (raise e).  

 As we explained before in this section, CPS implements exception 

handling by using two primitives: gethdlr and sethdlr. The first primitive getdlr 

executed (variable h56), saves the current handler in memory (at the end of the 

expression it will be restored). Next, primitive sethdlr with variable n65 sets a 

new current handler (function n65). If the multiplication raises an exception 

(like overflow), a jump to the current handler (function n65) is performed. The 

first instruction to be executed in function n65 is the restoration of the old 

current handler (sethdlr with variable h56). The rest of the code in function n65 

is the checking of the raised exception against exception overflow. At the end of 

the function a jump to function k58 is made (this ends the execution of the 

handler). On the other hand, if the multiplication does not raise an exception, the 

next primitive sethdlr with variable h56 restores the old current handler. Both 

cases (exception thrown or not), end jumping to function k58, which in turn 

jumps to the exit of the program: function r68. A more detailed description of 
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implementing exception handling in the SML/NJ compiler is presented later in 

chapter 5. 

 
The translator to CPS 
 
 The translation from a lambda expression to a corresponding CPS 

expression is made by a recursive traversal of the lambda expression. We saw in 

the last examples, that each lambda expression is represented in a hierarchical 

structure (a syntax tree) where each node represents an operation, and the 

children of a node represent the argument of the operation. For example, the tree 

for the lambda expression 

 FIX([“f”],  
      [FN(“n”,APP (MULT,RECORD [VAR “n”,VAR “n”]))], APP(VAR “f”,INT 0)) 
 
is shown in figure 3.5. 
 
 

FIX

(["f"],        [FN             APP          

("n",      APP    (VAR "f",      INT 0)) 

(MULT,   RECORD….  
 
 
Figure 3.5 Syntax tree for a lambda expression. 
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We will describe the algorithm to convert any lambda expression to one 

in CPS. We do this by giving an ML function f, which transforms the ML data 

structure for lambda expressions given earlier. We also include a ML function 

newVar: unit -> lexp 
 

to create new variables. The function f and corresponding comments are 

shown in next table. We showed before several examples of the CPS translation. 

 
 
local 
    val count = ref 0; 
    fun incr () = (count := !count + 1); 
in 
    type var = string; 
    fun newVar (x) = (incr(); x^Int.toString (!count)) 
end 
 
We start declaring a function to create new variables. That function uses a 

reference which is initialized with zero, and keeps increasing by one for each new 

variable. The new variables are created by concatenating a string of length one to 

a number (count). 

 
fun f(lamb.VAR v, c) = c(VAR v) 
|   f(lamb.INT i, c) = c(INT i) 
|   f(lamb.STRING s,c) = c(STRING s)    
 
To CPS convert a lambda variable, integer, or string, the continuation c is applied 

to the variable or constant. For example, in next function 

 
f (lamb.INT 7,(fn x1=>APP (VAR "k",[x1]))) 

the continuation c is the second argument of function f, and it will produce 

 APP(VAR “k”,[INT 7]) 
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|   f(lamb.HANDLE (A,B), c) = g (A,B,c)    
 
Function g makes the translation of HANDLE. The explanation of the 

translation of primitive HANDLE is complex. In order to explain it with great 

detail, we will present next, the version written in the book of Appel [App92], 

which is a little easier to understand than the implementation.  

 
f ( HANDLE (A,B),c) =   
 PRIMOP(gethdlr,[],[h],   
  FIX([(k,[x],c(VAR x)),   
          (n,[e], PRIMOP(sethdlr,[VAR h],[],[      
    f (B, λf.APP (f,[VAR e, VAR k]))]))],   
   PRIMOP(sethdlr,[VAR n],[], 
         [f (A, λv.PRIMOP(sethdlr,[VAR h],[],[APP(VAR k,[v])]))])))       
 
 
 
A lambda HANDLE operator is translated into two mutually recursive functions, 

k and n, and a set of gethdlr and sethdlr CPS primitive operators inside and 

outside those functions. Function n will be the exception handler of the 

expression. Function k will apply continuation c (the continuation received by the 

whole expression), to the argument x (the result of the whole expression). This 

function will be called wherever or not an exception is raised (inside or outside 

the exception handler n). So, the flow of execution of this code will be: 

• Start saving the current handler h (first gethdlr). 

• Next, set the new handler n (sethdlr with variable n). It will be used only 

when an exception is raised in the first part of the expression). 
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• If an exception is raised in A (the code produced after translation of A), a 

jump to the new handler n is performed. Then, the handler will set the 

old current handler (sethdlr with variable h), and the code produced by 

the translation of B will be performed. In this code, a jump to function k 

will always be performed as the last operation of the function. This is 

because k is the continuation of B. 

• If no exception is raised in A then there is no jump to the handler n, so a 

sethdlr of the old current handler h is executed, ending with a jump to 

function k. 

|   f(lamb.RAISE E, c) = 
 let 
     val h = newVar ("h") 
 in  
     f(E,(fn w=>cps.PRIMOP(cps.gethdlr,[],[h], 
          [cps.APP(cps.VAR h,[w])])))  
 end 
 
The code produced by the translator can be divided in two parts: 

• There is some code produced from translation of E. This code is 

referenced by w in second part. 

• The second part of the produced code, just gets the current handler h, 

and then jump to this handler passing w as an argument. 

 
|   f(lamb.FN (v,E), c) =  
 let  
     val F = newVar ("F"); 
     val k  = newVar ("k");  
 in 
     cps.FIX([(F,[v,k],f(E,(fn z=>cps.APP 
          (cps.VAR k,[z]))))],c(cps.VAR F))  
              end 
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Two names of variables are needed. One is for the name of the CPS function, 

and another one for continuation k. The translator transforms a lambda function 

into a named FIX function. We know CPS functions do not return. Then a jump 

to continuation k is needed, taking z (The result of expression E) as an argument. 

Argument v has the same meaning in the CPS expression. 

 
|   f(lamb.FIX(hx,bx,E),c) = 
 let 
     val w = newVar ("w") 
     fun g(h1::h,lamb.FN(v,B)::b)=  
                  (h1,[v,w], f(B, fn z=> 
                                    cps.APP(cps.VAR  w,[z])))::g(h,b) 
     |   g(nil,nil) = nil 
 in 
     cps.FIX (g(hx,bx), f(E,c)) 
 end 
 
Both types of FIX functions (lambda and CPS) are used for defining a set of 

named mutually recursive functions. Lambda function names and bodies are 

contained in two lists (hx, bx). Function g transforms both lists into a single list, 

containing function names, arguments, and bodies. The main expression E is also 

transformed with the current continuation c.  

 
|   f(lamb.APP(lamb.MAKEREF,E),c) = 
 let 
     val w = newVar ("w") 
 in 
     f(E,fn v=>cps.PRIMOP(cps.makeref,[v],[w], 
                                          [c(cps.VAR w)])) 
 end 
 
This is an operator that takes one argument: the name of the exception. It is used 

to declare an exception. The operator does return a result, and continue in one 

way. E should be a string, which is later bound with the name v, to create a 
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reference in the store. The result, a reference to the store, will be kept in w, which 

is then used in the continuation. 

 
|   f(lamb.APP(lamb.PLUS,b.RECORD [x,y]),c) = 
 convert_bin (cps.+, x, y,c) 
|   f(lamb.APP(lamb.SUB,b.RECORD [x,y]),c) = 
            convert_bin (cps.-, x, y,c) 
|   f(lamb.APP(lamb.MULT,b.RECORD [x,y]),c) = 
            convert_bin (cps.*, x, y,c) 
 
Primitive arithmetic operators (PLUS, SUB, and MULT) are translated using the 

same format. As MAKEREF, they return one result, and continue in one way. 

Function convert_bin makes this transformation. 

 
|   f(lamb.APP (lamb.LESS,b.RECORD [x,y]),c) = 
            convert_jmp (cps.<,x,y,c) 
 
 
Primitive operators for conditional branches (LESS and EQ) returns no result 

and continue in one of two ways. Function convert_jmp make this 

transformation. 

 
|   f(lamb.APP (lamb.EQ,b.RECORD [x,y]),c) = 
 convert_jmp (cps.equal,x,y,c) 
 
 
|   f(lamb.APP (F,E), c) = 
 let 
     val r= newVar ("r"); 
     val x= newVar ("x"); 
 in 
     cps.FIX([(r,[x],c(cps.VAR x))], 
              f(F,(fn f2=>f(E,(fn e=>cps.APP(f2, 
               [e,cps.VAR r])))))) 
 end 
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CPS functions do not have returns. Then, if we want to translate a lambda 

function call, we need to create a continuation function (it will replace the return 

address). This function is named r. We also need to evaluate F and E, from 

which f2 and e, will refer to these values. Next, a jump to f2 using e as the first 

argument and r (the continuation) as the second will be applied.  

 
|   f(lamb.COND (test,exp1,exp2),c) = 
 let 
     val fname= newVar ("F") 
     val z= newVar ("z") 
     val E1= f (exp1, c) 
     val E2= f (exp2, c) 
     val f2= (fname, [z], cps.PRIMOP (cps.equal, 
      [cps.VAR z,cps.INT 0],[],[E1,E2])) 
 in 
     cps.FIX ([f2], f (test, (fn v=>cps.APP 
           (cps.VAR fname,[v])))) 
 end 
 
For the primitive condition COND we need to create a FIX function. In the 

body of the recursive function there is a primitive operator for conditional branch 

(equal), that test if the argument of the function is zero. The main expression of 

the FIX operator is the translated code for the test. 

 
and 
    g(A,B,c1)= 
              let 
         val h= newVar ("h") 
         val e= newVar ("e") 
         val k= newVar ("k") 
                   val n= newVar ("n") 
   
     val seth1=  
                    cps.PRIMOP(cps.sethdlr,[cps.VAR h], 
         [],[f(B,(fn f2=>cps.APP(f2,[cps.VAR e, 
               cps.VAR k])))]) 
     val seth2=  
                    cps.PRIMOP(cps.sethdlr,[cps.VAR n], 
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         [],[f(A,(fn v=>cps.PRIMOP(cps.sethdlr, 
            [cps.VAR h],[],[cps.APP(cps.VAR k, 
                   [v])])))]) 
     val x= newVar ("x") 
     val fix1=  
                    cps.FIX([(k,[x],c1(cps.VAR x)),(n, 
           [e], seth1 )], seth2 ) 
              in 
    cps.PRIMOP(cps.gethdlr,[],[h],[fix1]) 
             end 
 
 
Function g implements lambda operator HANDLE. First, four new variables are 

created for the names of the functions (n and k), the handler h, and an argument 

e. Then, seth1 contains the code of the body for new handler n, and seth2 the 

code for the main expression of FIX. Name fix1 contains the code of the entire 

FIX expression, including seth1 and seth2. And finally, The whole code for 

HANDLE is contained in cps.PRIMOP(cps.gethdlr,[],[h],[fix1]). 

 
and  
    convert_bin (bin_op, x, y, c) = 
             let 
                   val w= newVar ("w") 
                   fun c2 vx vy =  
                      cps.PRIMOP (bin_op, [vx,vy],[w], 
                          [c (cps.VAR w)]) 
             in 
                   f (x, (fn xv => f (y, c2 xv))) 
             end 
 
This function converts primitive arithmetic operators PLUS, SUB, and MULT. 

We need first to convert the argument expressions of the primitive, which are 

always two (x and y). Conversion of y is made first, taking a PRIMOP operator 

as a continuation. Then, conversion of x is performed taking also a PRIMOP 

operator as continuation. So, the result will give a primitive operator for x inside 
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another primitive operator for y. The last continuation is always the initial c 

continuation applied to the last result w. 

 
and 
    convert_jmp (jmp_op, x, y, c) = 
           let 
               val w=newVar ("w") 
  fun c2 vx vy = cps.PRIMOP (jmp_op, [vx,vy], 
  [], [c (cps.INT 0), c (cps.INT 1)]) 
           in 
 f (x, (fn xv => f (y, c2 xv))) 
           end 
 
 
Observing the code produced by this function, we find only two differences with 

respect to the code for function convert_bin. The CPS primitive operators 

produced have not result (the third field is the empty list), and there are two 

possible continuations for that primitive. These continuations take as arguments 

INT 0 or INT 1 which represent true or false respectively. 

 
 

3.2 A conceptual and executable framework 
 
 The semantic of CPS is described by Appel [App92] in chapter 3, where 

he explains the meaning of CPS expressions by using denotational or 

continuation semantics. This semantics is defined as a functor in SML. The 

functor takes a CPS structure, a datatype for the values allowed in the semantics, 

and some data definitions as arguments. Then, a function evaluates a CPS 

expression, using an empty environment and store at the beginning of the 

evaluation.  
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 We implemented this continuation semantic by defining some needed 

functions, an initial environment, and a store. Also, we linked some other 

programs like the translator of CPS, and together we had as a result a conceptual 

and executable framework of functional programming (see figure 3.6).  

 

 

Translator 
To CPS 

Evaluator 
Of CPS 

LAMBDA 
CODE 

STORE 
AND 
ENVIRONMENT 

 Translator  
to Flat CPS 
and Abstract

machine code
(optional) 

RESULT 

RESULT 

 

Figure 3.6 Conceptual and executable framework. 

 

This conceptual framework focuses on the experience of learning the 

CPS concepts by using a framework of CPS programming. It can serve as an aid 

in gaining a coherent understanding of the CPS programming.  The most 

important element of this framework is that programs in lambda and CPS code 
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can be directly compiled and executed and, the programmer can see how this 

source code (lambda) is transformed into correspondent CPS code together with 

important components of the framework, like an environment and a store. From 

this framework a teacher and/or student should be able to write their own 

programs, test them with different data, make experiments, etc. Research based 

upon the experiment approach can be conducted in order to study the different 

structures to use in a program, and so to determine what the best approach is. 

 

Evaluator of CPS 
 
 The evaluator of CPS is a program which takes a CPS program, an input, 

and performs an evaluation or execution of the CPS program, giving as a result a 

denotable value (which is later converted into a string). The input is formed by 

two components:  

 
• An environment. This is a function that maps CPS variables to denotable 

values (result values). The initial environment of the evaluator is created 

by three functions: 

val env0 = fn v=>raise Undefined (v) 
val env1 = bind(env0,"k", FUNC ic) 
val env2 = bind (env1, "ovfl", overflow_exn) 

 
 The first value bound to the environment is the empty environment 

(raise Undefined); the second value is the initial continuation (identity 

continuation); and the third value is a predefined exception (overflow).  
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• A store. A function that maps locations (addresses) to denotable values. 

The initial store of the evaluator are three functions: 

 val store0 = (100, fn l=>raise Exc_Overflow l,fn _=>0) 
 val store1 = upd(store0,handler_ref,FUNC default_handler) 
 val store2 = upd(store1, overflow_loc, STRING "-overflow-") 

 
Store0 establish that the first unused location is address 100. Addresses before 

100 are used for keeping values like system exceptions. This store is the empty 

location (a raise to an exception); the second location has the initial default 

handler; and the third location has the predefined overflow exception handler. 

 
The output or result is a denotable value. It can be any of these values: 
 
• INT. It denotes the type integer. 

• FUNC. A constructor of function type. It takes a list of denotable 

values, and a store, yielding an answer (a string). 

• STRING. It denotes the string. 

• ARRAY. An array of locations. Our implementation uses it to store 

references to exceptions. 

 
In next tables, we show the implementation and some comments of the evaluator 

of CPS. 

type nextloc= loc -> loc 
fun nextloc (l)=l+1 
type answer = string 
type var = string 
datatype dvalue = 
  INT of int 
 |FUNC of dvalue list -> 
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  (loc*(loc->dvalue)*(loc->int))-> 
  answer 
 |STRING of string 
 |ARRAY of loc list 
 

Function nextloc is used to generate new locations in the store. Answer is the 

result of all the execution of a program. The datatype dvalue define a set of 

constructors representing the denotable values of the semantic. Denotable Values 

can be used as arguments, variables, etc. They can be an integer, a string, an array 

or a function. ARRAY values are a list of type loc (integers) and they are a 

mutable data structure (they can be modified using the upd function). We use 

dvalues of type ARRAY to store references, used when an exception is declared. 

A dvalue of type function takes a list of actual dvalues and a store.  

 
type store = loc * (loc -> dvalue) * (loc -> int) 
type handler_ref= loc 
val overflow_loc = 7; 
val overflow_exn: dvalue = ARRAY [overflow_loc] 

The type of the store is loc*(loc->dvalue)*(loc->int), where loc represent the 

next unused location, (loc->dvalue) a mapping from locations to dvalues, and 

(loc->int) a mapping from locations to integers. The current handler is kept in 

a special location in store. We decided to store the address (reference) of the 

overflow exception in the element 7 of a dvalue ARRAY. 

 
 
fun upd ((n,f,g):store, l: loc, v: dvalue) =       
  (n, fn i => if i=l then  v  else f i, g)  
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Function upd is used to modify the store, given a location and its value. We use 

upd every time a new exception handler is set by the operator sethdlr, or when a 

new reference is created by the operator makeref (remember we use it to create 

new exceptions). 

 
fun fetch ((_,f,_): store) (l: loc) =   f l  
 
Function fetch is used for getting a value (denotable value) from store using a 

determined location. 

exception Undefined of var and Exc_Overflow of loc 
 
We define two exceptions: Undefined that is used when a value is not in the 

environment (undefined variable), and Exc_Overflow when a value is not in the 

store. 

fun do_raise exn s =       
  let val FUNC f= fetch s handler_ref in f [exn] s end   
 
Function do_raise catches overflow exceptions for arithmetic operations. It can 

be though as a system exception handling for the CPS. The function uses the 

default handler, which is bound in the store with location handler_ref, and then 

passes parameter exn to this default handler. 

 
fun overflow(n:unit->int, c:dvalue list ->store->answer)=    
 if (n() >=minint andalso n() <=maxint) 
  handle Overflow=>false 
 then  c [INT(n())]   
 else  do_raise overflow_exn    
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Function overflow checks for limit (minimum and maximum) in results of 

arithmetic operations. There is a handle expression which catches SML overflow 

exceptions (in the metalanguage). The function calls do_raise function if there is 

a violation of the limits allowed in the program. If there is not overflow, then the 

result of the arithmetic operation is passed to the continuation c. 

 
exception bad_equality and Error 
 
Two exceptions are defined: bad_equality is raised when two non compatible 

denotable values are compared; Error is raised when the result of the program is 

not a denotable value. 

 
fun evalprim (a.gethdlr, [], [c]) =      
      (fn s => c [fetch s handler_ref] s)   
|   evalprim (a.sethdlr, [h], [c]) = 
 (fn s => c [] (upd(s,handler_ref,h)))  
|   evalprim (a.+,[INT i, INT j],[c]) =  
 overflow(fn ()=> (i + j),c) 
|   evalprim (a.-,[INT i, INT j],[c]) =  
 overflow(fn ()=> (i - j),c) 
|   evalprim (a.*,[INT i, INT j],[c]) =  
            overflow(fn ()=> (i * j),c)  
|   evalprim (a.<,[INT i, INT j],[t,f]) = 
 if i<j then t[] else f[] 
|   evalprim (a.equal,[INT i, INT j],[t,f]) = 
 if i=j then t[] else f[] 
|   evalprim (a.equal,[ARRAY [i],ARRAY [j]], [t,f]) =  
 if i=j then t[] else f[]    
|   evalprim (a.makeref,[v],[c])=  
 (fn (l,f,r)=>c [ARRAY [l]] (upd ((nextloc l,f,r),l,v))) 
|   evalprim (a.equal, [_,_], [t,f]) = raise bad_equality 

 

 55



 

Function evalprim evaluates a primitive operator (PRIMOP) applied to 

arguments. The first two primitive operators: gethdlr and sethdlr are used for 

exception handling. A gethdlr operator fetches the current exception handler 

(handler_ref) from the store. A sethdlr operator sets (updates) a new current 

handler in the store. Integer addition, subtraction, and multiplication just make 

the computation and if there is no overflow, applies c to the result. Integer 

comparison just tests two integers, and depending of the result, it applies one of 

two continuations (for true or false) to the empty list. Primitive makeref is 

important in exception declaration. The operator first inserts the denotable value 

v which can be the name of the exception, in the first available location in the 

store. Then, it inserts the store location where v was saved in the environment. 

type env = a.var -> dvalue 

 
The type of the environment is a function from a variable (string) to a denotable 

value. 

fun V env (a.INT i) = INT i        
|   V env (a.STRING s) = STRING s 
|   V env (a.VAR v) = env v 

 
Fun V converts CPS values to denotable values. For variables the function has to 

lock up the environment. 

 
fun bind (env:env, v:a.var, d) =        
 fn w => if v=w then  d  
         else  env w 
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Function bind produces a new environment (a function of type a.var -> dvalue) 

by binding a new variable with a denotable value. 

fun E (a.APP(f,vl)) env = 
 let val FUNC g = V env f 
 in g   (map (V env) vl)        
 end  
 
Function E is the function which takes the whole CPS expression, an 

environment, and a store, and then it evaluates the expression giving as a result a 

value of type answer (a string). Function application first locks up for function f 

in the current environment; this gives as a result a function which is applied to a 

set of arguments obtained (converted) from the environment. 

|   E (a.PRIMOP(p,vl,wl,el)) env = 
 evalprim(p, 
   map (V env) vl, 
   map (fn e => fn al =>   
    E e (bindn(env,wl,al)))   
    el )  
 
In order to evaluate a primitive operator, we first convert the arguments using the 

current environment (map (V env) vl). Then the continuation (a function) of the 

evalprim function is built by using the continuation of this function (E), and a 

new environment with the addition of element wl. 

 
|   E (a.FIX(fl,e)) env =  
   let fun h r1 (f,vl,b) = 
   FUNC(fn al => E b (bindn(g r1,vl,al))) 
      and g r = bindn(r, map #1 fl, map (h r) fl) 
  in E e (g env) 
  end 
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Function E with a mutually recursive function FIX (fl,e) evaluates expression e 

in the augmented environment g.  The augmented environment is built by 

binding the list of recursive function names (map #1 fl), with the list of bodies 

(map (h r) fl) of each of these recursive functions (FUNC(fn al => E b (bindn(g 

r1,vl,al)))) , and using theirs respective local variables (bindn(g r1,vl,al)). 

 
fun ic [INT i] _    = Int.toString i 
|   ic [STRING s] _ = s 
|   ic [FUNC _] _   = "fn" 
|   ic [ARRAY [l]] _= "ref "^(Int.toString l) 
|   ic _           _= raise Error 
 
This function (ic), is used to produce answer (an string) as a result of the 

evaluation. The function just transforms a denotable value to a string. 

 
fun default_handler [ARRAY [l]] s = 
  let 
    val STRING e =fetch s l 
  in 
    "EXCEPTION "^e 
  end 
|   default_handler [_,ARRAY [l]] s =  
  let 
    val STRING e =fetch s l 
  in 
   "EXCEPTION "^e 
  end 
 
This function allows the program to display the output EXCEPTION 

name_exception whenever a user defined exception is raised. Remember that the 

name of the exception (string) is saved in memory, maintaining the location l in a 
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denotable value of type ARRAY. So, using l as the location and the fetch 

function we can access the name of the raised exception.   

  
 
val env0 = fn v=>raise Undefined (v) 
val env1 = bind(env0,"k", FUNC ic) 
val env2 = bind (env1, "ovfl", overflow_exn); 
 
val store0 = (100, fn l=>raise Exc_Overflow l,fn _=>0) 
val store1 = upd(store0,handler_ref,FUNC default_handler) 
val store2 = upd(store1, overflow_loc, STRING "-overflow-") 
 

We initialize the environment with three new bindings (fn v=>raise Undefined 

(v), FUNC ic, and overflow_exn), and the store with three new store locations 

(fn l=>raise Exc_Overflow, FUNC default_handler, STRING "-overflow-"), 

where the last one is the handler for the overflow exception. 

 
 
fun eval (vl,e) dl = E e env2 store2 
 
Finally, function eval will take a CPS expression e, two lists of variables and 

denotable values (vl and dl), and it will call function E passing formal parameters 

e, env2, and store2. 
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4 The Abstract Machine 

Continuation-passing style is the representation that we use as 

intermediate code because it is closely related to Church’s lambda calculus and 

to the model of von Neumann, represented by our target abstract machine 

language (see figure 3.1). Each operator of CPS corresponds to one operator in 

our target abstract machine code. In order to test the performance of the CPS 

code we implemented an abstract machine.  

The machine has an instruction set, a register set and a model of 

memory, and executes programs written in abstract machine code. Figure 4.1 

illustrates the components of the abstract machine. 

AMC ProgramMemory

   

Simulator of 
      AMC  Result 

Registers

Figure 4.1 Components of the Abstract Machine 
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4.1 A generator of abstract machine code (AMC)  

 Flat CPS is in a form which is easily translated to abstract machine code 

(see figure 3.1). The abstract machine is modeled after a conventional von 

Neumann machine. The AMC is essentially an assembly-language program, and 

like any abstract machine it has some advantages with respect to a real machine: 

first, performance analysis is easier, and second it is easier to simulate. 

 
The abstract machine language 
 
Figure 4.2 shows the definition of the abstract machine instructions as an ML 

datatype. 

 datatype instruction = 
     LABEL of string 

                |JUMP of string 
                |CJUMP of relop * exp * exp * string * string 
                |LOAD of exp * exp 
                |STORE of exp * exp 
                |ADD of exp * exp * exp 
                |SUB of exp * exp * exp 
                |MUL of exp * exp * exp 
                 

and     exp= 
     MEM of string 

                |NAME of string 
                |CONST of int 
                |STRING of string 
                |REG of int 
 

and     relop=   EQ | LT 
 
  
 

Figure 4.2 Datatype for an abstract machine instruction 
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Where a data or expression exp can be: 

• An address of memory represented by a name (string) of a register, 

variable, etc. 

• The name of a label, which represents an address. 

• A constant for an integer data. 

• A string data. 

• The number (integer) of a register.  

And an abstract machine instruction can be: 

• A label which is really not an instruction, but just an address. Whenever 

the simulator finds a label it just increases the program pointer, in order 

to read the next instruction. 

• A jump instruction is an unconditional branch to a label. 

• A CJUMP is a conditional jump to one of two labels depending of the 

result of the test. 

• A load or move from memory into a register. 

• A store from a register or a string into a memory address. 

• Arithmetic operations to add, subtract, or multiply two values, producing 

a result which is stored into memory. 
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We illustrate the abstract machine code with a complete program in SML, 

Lambda, CPS, flat CPS, and abstract machine code.  

 
SML 
 
let 
 fun f(x)= x*5 
in 
 f(4) 
end 
 
 
LAMBDA  
 
FIX(["f"], [FN ("x", 
     APP(b.MULT,RECORD [VAR "x",INT 5]))], 
    APP(VAR "f",INT 4))  
 
 
CPS  
 
FIX 
    ([("f",["x","w1"], 
       PRIMOP (*,[VAR "x",INT 5],["w2"],[APP (VAR "w1",[VAR "w2"])]))], 
     FIX 
       ([("r3",["x4"],APP (VAR "initialNormalCont",[VAR "x4"]))], 
        APP (VAR "f",[INT 4,VAR "r3"]))) 
         
 
FLAT CPS  
 
FIX 
    ([("f",["x","w1"], 
       PRIMOP (*,[VAR "x",INT 5],["w2"],[APP (VAR "w1",[VAR "w2"])])), 
      ("r3",["x4"],APP (VAR "initialNormalCont",[VAR "x4"]))], 
     APP (VAR "f",[INT 4,VAR "r3"]))  
 
 
AMC   
 
0               LOAD Const 4,Reg 1 
1               LOAD Mem r3,Reg 2 
2               JUMP Name f 
3      LAB f: 
4               STORE Reg 1,Mem x 
5               STORE Reg 2,Mem w1 
6               MUL  Mem x,Const 5,Mem w2 
7               LOAD Mem w2,Reg 1 
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8               JUMP Mem w1 
9      LAB r3: 
10             STORE Reg 1,Mem x4 
11             LOAD Mem x4,Reg 1 
12             JUMP Mem initialNormalCont 
13    LAB end: 
 
 
We can see the different representations of the program after each phase of the 

compilation process, especially the last one: the abstract machine code. The code 

in the AMC performs the following operations: 

• Instructions 0 and 1 pass the parameters in registers 1 and 2. 

• Instruction 2 is a jump to label f. 

• Instructions 4 and 5 store the parameters in memory. 

• Instruction 6 multiplies first parameter (constant 4) by constant 5. 

• Instruction 7 passes as a parameter the result of the multiplication in 

register 1. 

• Instruction 8 is a jump to address r3 (the value of variable w1). 

• Instruction 10 stores the parameter into memory address x4. 

• Instruction 11 passes the value of x4 into register 1. This register always 

keeps the final result. 
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• Instruction 12 jumps to the initial continuation initialNormalCont, a 

fixed address or constant in memory that represents the end of any 

program (in the first CPS example of section 3.1 we explained the 

meaning of the initial continuation in a CPS program). 

 4.2 A simulator for the AMC 

 The simulator is a program which emulates a real computer. It is a piece 

of software that runs an AMC program. In order to emulate a real computer it 

uses three data structures which mimic a memory for data values, a memory for 

code, and a set of registers (see figure 4.1). It also uses two variables that keep the 

current program pointer (PC) for the code, and the current stack pointer (SP) for 

the data. The main routine of the simulator is a recursive function that keeps 

reading instructions from the AMC program.  Next, we describe the algorithm 

that carries out the simulation of an AMC program. 

 
Input: An AMC program (list of instructions). 

Output: A value or result after executing the AMC program. 

Method: 

• Convert the list (AMC program) into an array (more convenient for the 

simulation) 

• Initialize PC and memory pointers with initial address. PC points to first 

AMC instruction and memory pointer to address zero in memory. 
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• Start main function which keeps reading instructions pointed by PC, 

executing the operations (storing, loading, jumping, adding, etc.), and 

updating the value of PC. 

 

Example:  We now show the execution by the simulator of the  AMC program 

shown in the last section. We display different stages of execution with the 

respective values in memory and registers. Memory and register values are 

shown before the displayed instruction is executed. As you can observe in the 

example, the memory of the abstract machine is an array of tuples, where the 

left component of the tuple is used for names or variables and the second for 

the value assigned to such names or variables. 

 

INSTRUCTION 0:  LOAD Const 4,Reg 1 
 
MEMORY = 
  [|("ovfl","ovfl"),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("","")|]  
    
REG1 = ""  
REG2 = ""  
 

 
At the beginning memory only contains the value of a pre-defined 

exception (overflow). Registers 1 and 2 are empty. 
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INSTRUCTION 2:  JUMP Name f 
 
MEMORY = 
  [|("ovfl","ovfl"),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("","")|] 
 
REG1 = "4"  
REG2 = "r3"  
 

Before executing instruction 2, registers 1 and 2 already contain the 
values passed as parameters. 
 
 
 
INSTRUCTION 8:  JUMP Mem w1  
 
MEMORY = 
  [|("ovfl","ovfl"),("x","4"),("w1","r3"),("w2","20"),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("","")|]  
 
REG1 = "20"  
REG2 = "r3"  
 

Before executing instruction 8, the variables x, w1, and w2 contain 
values 4, r3, and 20 respectively as a result of instructions 4-6, and register 1 
contain value 20 as a result of instruction 7. 
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INSTRUCTION 8:  JUMP Mem initialNormalCont   
 
MEMORY = 
  [|("ovfl","ovfl"),("x","4"),("w1","r3"),("w2","20"),("x4","20"),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""), 
   ("",""),("",""),("",""),("","")|]  
 
REG1 = "20"  
REG2 = "r3"  
 

At the end of the program, register 1 contain the result of the 

multiplication (instruction 11 assigned it). In memory variable x4 get the same 

value which was passed as a parameter in instruction 10. 
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5 Exception-Handling Overhead 

 This chapter considers the implementation of exception handling. We 

examine programs written in the functional language ML. We tested two 

compilers: SML/NJ version 110.0.7 and OCAML version 3.06. We show that 

these programs with exception handling have runtime overhead even when no 

exceptions are thrown. Last, we describe the source of the overhead in programs 

compiled with the SML/NJ compiler. 

 

5.1 Introduction 
 
 Many modern programming languages, for example, Java, Modula-3, and 

SML, provide mechanisms for dealing with exceptional conditions detected by 

hardware or software. They also allow the programmer to define other unusual 

events and use the same mechanisms to deal with them when they arise. These 

mechanisms are collectively called exception handling. 

 An exception can be defined as a condition brought to the attention of 

the operation’s invoker, which becomes part of normal exit or return; or as an 

error or an event that occurs unexpectedly or infrequently, and includes an error 

or a signal. The exception handler is the code attached to an entity (program, 

procedure, object, expression, etc) that is executed when an exception occurs 
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[LS98]. A handler may catch one or more kinds of exceptions and may fail to 

handle other kinds of exceptions. 

 Though the syntax is different, exception handling in most modern 

programming languages is pretty much the same. In Ada [Ada95] and Modula-3 

[Nel91] exceptions are declared using the keyword exception. The raise 

statement raises an exception. A begin … exception … end construct is used to 

associate handlers to some block of code in Ada. In C++ [Str91] there is no 

specific declaration for an exception. Users can raise an ordinary object as an 

exception by using the statement throw. A try{...} catch{…} structure attaches 

handlers led by the keyword catch to a guarded block of code led by the keyword 

try. Modula 3 uses the construct try … except … end and try … finally … end 

that are used to bind handlers to a code block and to clean up resources. The 

code led by the keyword finally is executed whether or not exceptions are raised. 

One interesting feature of Java [GJS96] is that it throws objects that are instances 

of the predefined class Throwable. 

 Some functional languages have exception handling. Some do not. Lazy 

functional languages like Haskell [Hud90], try to eliminate dependencies on the 

order of evaluation. Some exception handling introduces such situations. For 

example in the expression (raise x, raise y) the order of evaluation depends of 

which exception is first raised. Consequently, these languages do not have 

exception handling mechanisms.  
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 Eager functional languages, on the other hand, sometimes have exception 

handling mechanisms like the imperative languages. In ML [MTH90], exceptions 

are declared with the keyword exception, and raised with the keyword raise. An 

exception can be handled with the construct <expression> handle <match> 

where match is a set of patterns (P) of the type P1 =>E1 | … | Pn => En  and E 

is an expression (see SML example in chapter 2).  CAML [Ler00] uses a similar 

syntax. When declaring an exception, it uses the keyword exception too. The 

keyword raise is used for throwing an exception, and try <expression> with 

<match> for handling the exception. 

5.2 Implementation of exceptions (SML/NJ) 
  
 In chapter 3 we showed an example of translating a HANDLE and 

RAISE lambda expression into a corresponding CPS expression. We also 

described the algorithm to convert any lambda expression (like HANDLE and 

RAISE) into a CPS expression. In this section we give more details about the 

implementation of exception handling expressions in lambda and CPS language. 

 The SML/NJ [AM91, App92, and AT89] compiler translates a source 

program into a machine-language program in several phases. The first phase 

produces an abstract syntax tree. The second phase transforms this tree into 

lambda expressions. Then, the third phase translates the lambda code into 

continuation passing style (CPS) code, which is later converted into a no nesting 

function code (flattened CPS code). Last, many optimizations are performed, and 
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machine code is produced. The run-time system uses a heap instead a stack. The 

absence of function return (a call-with-continuation instruction does not return 

like a normal function) means that a run-time stack is not required to execute 

programs. SML/NJ keeps all the activation records (closures) on the garbage-

collected heap.  

 We study a simplified version of the SML programming language 

represented by the data type lexp (lambda expression) 

datatype lexp = VAR of lexp   | 
    FN of var * lexp  | 
   …… 
    RAISE of lexp  | 
    HANDLE of lexp * lexp  
 
 Where RAISE and HANDLE are the kind of lambda expressions for 

exception handling in the lambda language of the compiler. An exception handler 

in ML is a set of patterns P of the type P1 =>E1 | … | Pn => En where P is a 

pattern, usually an exception name, and E is a given expression. So the exception 

handler resembles a case construct. In the lambda language, a handler is just a 

function taking an expression exn as an argument. RAISE evaluates an 

expression of type exn and then raises that exception. HANDLE evaluates its 

first argument, and if an exception occurs it applies the second argument to that 

exception. The second argument is an expression of type exn  A, where A is the 

type of the first argument. To implement exception handlers, there is a 

distinguished location in the store, containing the current exception handler; each 
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exception handler is just a continuation taking an exn argument. A HANDLE 

just installs a new exception handler upon entry, and re-installs the previous 

handler upon exit. A RAISE just passes its argument to the current handler. 

In the third phase of the compilation, and after some optimizations and 

representation decisions have been made, the lambda code is translated into CPS 

code.  

  The CPS primitive operators used by the SML/NJ compiler for 

exceptions are gethdlr (get the current exception handler) and sethdlr (update 

the store with a new exception handler). A complete explanation of gethdlr and 

sethdlr operators with some examples was given in chapter 3. The store has a 

special location (a special register) in which the “current exception handler” is 

kept. This is a function, which is called in order to “raise” an exception. Primitive 

operators and CPS expressions are described in ML as follows: 

 

datatype primop = gethdlr | sethdlr | makeref | * | - | + | < | …  
datatype cexp =     PRIMOP of primop * value list  
                                                            * var list * cexp list 
                  |FIX of (var * var list * cexp)list * cexp 
                  |APP of value * value list 
 

The primitive operators gethdlr and sethdlr, take 2 arguments, return no 

result, and continues in only one way. This type of operator is executed only for 

the side effect on the store. The semantics of the primitive operators gethdlr and 

sethdlr are: 
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 Evalprim (gethdlr, [], [c]) = (fn s => c [fetch s handler_ref] s) 

 Evalprim (sethdlr, [h], [c]) = (fn s => c [] (upd(s, handler_ref,h))) 

  

 Where fetch is a function for obtaining a value (the current exception 

handler) from a location in the value store s; upd is a function for updating a 

location with a new value h, producing a new store s; handler_ref is the address 

where the actual or current exception handler is stored in the store; h is the 

exception handler to fetch or to set; and c is the current continuation. So, in the 

first operator a fetch for recovering the current exception handler to the store s 

in location handler_ref is performed. In the second operator, an update of the 

store s in location handler_ref with the value of exception handler h is made. 

 A function convert (or function f like in chapter 3) performs the 

translation. We show again the case of convert for lambda expressions HANDLE 

and RAISE (it was also described in section 3.2). The function convert takes two 

arguments: a lambda-language expression lexp and a continuation function c. The 

result is a CPS expression cexp: the original lambda expression, converted to CPS. 

 
 
convert( HANDLE (A,B),c) =    

PRIMOP(gethdlr,[],[h],                          
 FIX([(k,[x],c(VAR x)),                                       
         (n,[e], PRIMOP(sethdlr,[VAR h],[],[      
  convert(B, λ f.APP (f,[VAR e, VAR k]))]))],   
   PRIMOP(sethdlr,[VAR n],[],                        
     [convert(A,λv.PRIMOP(sethdlr,[VAR h],[],[APP(VAR k,[v])]))]))) 
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 The translation of HANDLE must first save the old handler h. Then, it 

makes a continuation k corresponding to the context of the entire handle 

expression. Next, it makes and installs a new exception handler n. Finally, the first 

operand A of the handle expression is executed, with a continuation that re-

installs h and then invokes k. 

 The new handler n, if invoked, first re-installs h and then evaluates the 

second operand B of the HANDLE expression, continuing with k. 

Raising an exception is much simpler: 

convert (RAISE(E), c) = convert(E,  
 λw.PRIMOP(gethdlr,[],[h], [APP(VAR h,    [w])])) 
 
 

The function first evaluates the exception value E, yielding a value 

referred to by metavariable w. Then the current handler h is extracted and 

applied to w. In other terms, we first extract the current exception handler h 

from the store (at a specific location) and then apply it to the expression E. The 

continuation c is ignored completely because raising an exception disrupts the 

normal flow of control. This is the way the SML/NJ compiler translates 

exception handling. 
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5.3 Overhead in Exception Handling of SML/NJ 

 Implementing exception handling in SML/NJ produces runtime 

overhead. In order to experimentally verify this, we wrote two small programs in 

SML.  

Program 1: Exception Handler 

val t=Timer.startRealTimer(); 
local 
 fun f(n)= n*n handle Overflow=>n 
in 
 fun run(m) =  if m > 1000000 then f(17) 
   else (f(17) ; run(m+1)) 
end; 
run(0); 
val ct=Time.toReal(Timer.checkRealTimer t); 
 
Program 2: No Exception Handler 
 
val t=Timer.startRealTimer(); 
local 
 fun f(n)= n*n 
in    

fun run(m) = if m > 1000000 then f(17) 
          else (f(17) ; run(m+1))  
end; 
run(0); 
val ct=Time.toReal(Timer.checkRealTimer t); 
 
 

 Program 1 does not actually raise an exception at all because only small 

values, named 17, and so, are ever multiplied. Program 1 is for all practical 

purposes the same as program 2. The only difference between the two programs 

is that program 1 defines an exception handler and program 2 does not. We ran 
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both programs modifying the test in the “if-statement” (n > 1000000), starting 

with 1000, then 50000, 100000, 200000, 400000, 600000, 800000 and finally 

1000000. This controls the number of times the function f is called. The graph in 

figure 5.1 shows the time spent in program 1 (with exception handler) and 

program 2 (no exception handler). The difference between the curves in the 

graph shows the overhead when a program has an exception handler (even when 

no exception is raised).  
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Figure 5.1 Comparison between using and not using exceptions in 

SML/NJ. 

Looking at the code produced by the compiler for both programs (with 

and without handlers), we have 159 SPARC instructions (bcc, ld, st, jmp, etc) for 
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the program with exception handling as opposed to 98 SPARC instructions for 

the program without exception handling. 

5.4 Overhead in Exception Handling of OCAML 

Implementing exception handling in OCAML also produces overhead. 

We tried the same experiment. We wrote essentially the same two programs in 

OCAML. The main difference between the implementation is the mechanism for 

getting the system time. 

Program 1: Exception Handler 
let  
 f n = try n*n with overflow -> n 
in 
 let rec run m = if m>1000000 then f(17) 
   else (f(17);run(m+1))  

in  
run(0);; 

let x1=times();; 
print_float(x1.tms_utime);;print_newline();; 
print_float(x1.tms_stime);;print_newline();; 
  
Program 2: No Exception Handler 
let  
 f n =  n*n   
in 
 let rec run m = if m>1000000 then f(17) 
   else (f(17);run(m+1))  

in  
run(0);; 

let x1=times();; 
print_float(x1.tms_utime);;print_newline();; 
print_float(x1.tms_stime);;print_newline();; 
 

Again, as in SML, the only difference between these two programs is the 

exception handler. We ran both programs modifying the test. The graph in figure 
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5.2 shows the time spent in program 1 and program 2. The curves we got on the 

graph prove that the OCAML compiler also produces overhead when a program 

has exception handlers. 
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Figure 5.2 Comparison between using and not using exceptions in 

OCAML 

We examined the assembly code of both programs. Program 1 has 78 

SPARC instructions while program 2 has 41 instructions. Conclusions are 

difficult to draw, but CAML programs with exception handlers always ran slower 

than programs without handlers even when no exceptions were thrown. 
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5.5 The source of the Exception Handling 
Overhead in SML 

 
We will explain the source of the overhead in SML programs, by 

presenting different stages in compilations of program 1 and program 2. The 

lambda code of program 1 is: 

FIX 
    (["f","run"], 
     [FN 
        ("n", 
         HANDLE 
           (APP (MULT,RECORD [VAR "n",VAR "n"]), 
            FN 
              ("e", 
               COND 
                 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e"))))), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
                    [VAR "x", 
                     APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0)) 

Next, the compiler translates the source code (lambda) into a CPS 

program. This CPS program is later transformed into a flat program, which is just 

one large FIX definition of mutually recursive functions with no free variables, 

and no internal FIX operators. Here is the flattened CPS code for program 1. 
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FIX 
    ([("f",["n","w1","x"], 
       PRIMOP 
         (gethdlr,[],["h2"], 
          [PRIMOP 
             (sethdlr,[VAR "n11"],[], 
              [PRIMOP 
                 (*,[VAR "n",VAR "n"],["w12"], 
                  [PRIMOP 
                     (sethdlr,[VAR "h2"],[], 
                      [APP (VAR "k4",[VAR "w12",VAR "w1",VAR "x"])])])])])), 
      ("k4",["x13","w1","x"],APP (VAR "w1",[VAR "x13",VAR "x"])), 
      ("n11",["e3"], 
       PRIMOP (sethdlr,[VAR "h2"],[], 
         [APP (VAR "F5",[VAR "e3",VAR "k4"])])), 
      ("F5",["e","k6"], 
       PRIMOP(equal,[VAR "e",VAR "ovfl"],[], 
          [APP (VAR "F7",[INT 0]),APP (VAR "F7",[INT 1])])), 
      ("F7",["z8"], 
       PRIMOP(equal,[VAR "z8",INT 0],[], 
          [APP (VAR "k6",[VAR "n"]), 
           PRIMOP (gethdlr,[],["h9"],[APP (VAR "h9",[VAR "e"])])])), 
      ("run",["x","w1"], 
       PRIMOP(equal,[VAR "x",INT 10],[], 
          [APP (VAR "F14",[INT 0,VAR "x"]), 
           APP (VAR "F14",[INT 1,VAR "x"])])), 
      ("F14",["z15","x"], 
       PRIMOP(equal,[VAR "z15",INT 0],[], 
          [APP (VAR "f",[INT 17,VAR "r16",VAR "x"]), 
           APP (VAR "f",[INT 17,VAR "r22",VAR "x"])])), 
      ("r16",["x17","x"],APP (VAR "r25",[VAR "x17"])), 
      ("r18",["x19"],APP (VAR "w1",[VAR "x19"])), 
      ("r22",["x23","x"], 
       PRIMOP 
         (-,[VAR "x23",INT 288],["w21"], 
          [PRIMOP 
             (+,[VAR "x",VAR "w21"],["w20"], 
              [APP (VAR "run",[VAR "w20",VAR "r18"])])])), 
      ("r25",["x26"],APP (VAR "initialNormalCont",[VAR "x26"]))], 
     APP (VAR "run",[INT 0,VAR "r25"])) 
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 Function f starts executing two operations: a gethdlr and a sethdlr. The 

gethdlr operation stores the current handler in variable h2. The sethdlr operation 

installs the new handler n11 (push). This handler is used only when an exception 

is raised (for example, an exception is thrown from the multiplication operation). 

After executing the multiplication operation, the old handler h2 is reinstalled as 

the current handler (pop), and then a jump to function k4 is performed. 

 The exception handling overhead is produced because these two 

operations gethdlr and sethdlr are always executed. They install a new handler 

even when an exception is never thrown in the program.  

 We found that another source of overhead is an extra function produced 

by the compiler named k (k4 in our CPS program). This function is used to 

invoke the continuation which is received by the function which declares the 

exception handler. But this code is invoked only if the exception is raised. 

Now, let us see the lambda and CPS code of program # 2. 

First, here is the lambda code: 

 
FIX 
    (["f","run"], 
     [FN ("n",APP (MULT,RECORD [VAR "n",VAR "n"])), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
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                    [VAR "x", 
                     APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0)) 

 

Here is the flattened CPS code: 

FIX 
    ([("f",["n","w1","x"], 
       PRIMOP 
         (*,[VAR "n",VAR "n"],["w2"], 
          [APP (VAR "w1",[VAR "w2",VAR "x"])])), 
      ("run",["x","w1"], 
       PRIMOP 
         (equal,[VAR "x",INT 10],[], 
          [APP (VAR "F3",[INT 0,VAR "x"]), 
           APP (VAR "F3",[INT 1,VAR "x"])])), 
      ("F3",["z4","x"], 
       PRIMOP 
         (equal,[VAR "z4",INT 0],[], 
          [APP (VAR "f",[INT 17,VAR "r5",VAR "x"]), 
           APP (VAR "f",[INT 17,VAR "r11",VAR "x"])])), 
      ("r5",["x6","x"],APP (VAR "r14",[VAR "x6"])), 
      ("r7",["x8"],APP (VAR "w1",[VAR "x8"])), 
      ("r11",["x12","x"], 
       PRIMOP 
         (-,[VAR "x12",INT 288],["w10"], 
          [PRIMOP 
             (+,[VAR "x",VAR "w10"],["w9"], 
              [APP (VAR "run",[VAR "w9",VAR "r7"])])])), 
      ("r14",["x15"],APP (VAR "initialNormalCont",[VAR "x15"]))], 
     APP (VAR "run",[INT 0,VAR "r14"]))  

 

Because program 2 has no handle declaration, the CPS code has no 

instances where gethdlr and sethdlr are used. We can observe that function f has 
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just one primitive operator which is the multiplication operator. This means 

program 2 executes faster than program 1. 

In conclusion, exception handling in a program produces overhead 

because the operations, gethdlr and sethdlr, are executed even if an exception is 

never throw in the program. Our investigation found another possible source of 

overhead in function k (k4 in the CPS program), produced by the handle 

operation. This function is only used to invoke the continuation which is received 

by the function which declares the exception handler. We can observe in the CPS 

code of program 2 that this function does not exist. However, we believe that 

optimization of the compiler can avoid calling this function. 
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6 Zero Overhead Exception Handling 

 In chapter 5 we showed that some implementations incur overhead for 

using exception handling even when no exception are thrown. We also showed 

the results of some experiments with the SML/NJ and OCAML compilers, and 

then we identified and explained the source of the overhead in SML programs. 

 In this chapter we present the solution for the exception handling 

overhead problem. First, we explain a technique that some imperative language 

compilers use to implement exception handling. Particularly, we explain 

exception handling implementations using an exception table in Java and Ada. 

This technique uses a table where it keeps every possible exception to be handled 

along with related information for that exception. It is important to say that this 

technique has proven to deliver zero overhead exception handling.  

Next, we present the implementation of the exception table technique in 

a functional programming language. This implementation presented some 

problems and/or weakness concerning dynamic propagation which are discussed 

and commented at the end of the section.  

Last, we present a different approach that uses two continuations instead 

of one during the passing of parameters in the calling process. In this new 

approach one continuation encapsulates the rest of the normal continuation, and 

a second continuation is used for passing the abnormal computation. The second 
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continuation is not passed as an extra argument but is passed as a displacement 

from the first continuation. This new technique can deliver zero overhead 

exception handling. 

   

6.1 Exception table technique  

Some imperative languages like Ada, C++, and Java have a different approach to 

implement exception handling [Din00, BR86, LYKPMEA, and Ven99]. We now 

describe how Java and Ada implement exception handling. 

Java implementation of exception handling 

We consider a program for computing the remainder. 

 

 static int remainder (int dividend, int divisor) 
  throws OverflowException, DivideByZeroException  { 
             if ((dividend = = Integer.MIN_VALUE) && (divisor = = -1))  { 
                         throw new OverflowException ( ); 
   try   { 
    return dividend % divisor; 
   } catch (ArithmeticException e)  { 
                                     throw new DivideByZeroException ( ); 
   } 
  } 
 } 
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The Java compiler generates the following bytecode sequence for the remainder 

method: 

 

  0 iload_0 

  1 ldc #1 <Integer –2147483648> 

  3 if_icmpne 19 

  6 iload_1 

Body  7 iconst_m1 

  8 if_icmpne 19 

     11 new #4 <Class OverflowException> 

  14 dup 

  15 invokespecial #10 <Method OverflowException ( )> 

  18 athrow 

  19 iload_0 

  20 iload_1 

  21 irem 

  22 ireturn 

  23 pop 

  Handler  24 new #2 <Class DivideByZeroException> 

  27 dup 

  28 invokespecial #9 <Method DivideByZeroException ( )> 

  31 athrow 
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The bytecode sequence of the remainder method has two separate parts. 

The first part is the normal path of execution for the method. This part goes 

from pc offset zero through 22. The second part is the catch clause, which goes 

from pc offset 23 through 31. There appears to be no jump or entry into this part 

of the code; but as we will see, the runtime system may jump to this catch clause. 

It corresponds to the exception handler in the source program. 

The irem instruction in the main bytecode sequence might throw an 

ArithmeticException.  If this situation occurs, the Java virtual machine knows 

to jump to the bytecode sequence that implements the catch clause by looking 

up and finding the exception in a table. Each method that catches exceptions is 

associated with an exception table that is found in the class file along with the 

bytecode sequence of the method. The exception table has one entry for each 

exception that is caught by each try block. Each entry has four pieces of 

information: 

• The start point 

• The end point 

• The pc offset within the bytecode sequence to jump to 

• A constant pool index of the exception class that is being caught 

 

The following is the exception table for the remainder method: 

Exception table: 

From  to  target  type 

19  23  23 <Classjava.lang.ArithmeticException> 
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The preceding exception table indicates that from pc offset 19 through 

22, inclusive, ArithmeticException is caught. The try block’s endpoint value, 

listed in the table under the label “to,” is always one more then the last pc offset 

for which the exception is caught. In this case the endpoint value is listed as 23, 

but the last pc offset for which the exception is caught is 22. This range, 19 to 22 

inclusive, corresponds to the bytecode sequence that implements the code inside 

the try block of remainder function. The target listed in the preceding table is the 

pc offset to jump to if an ArithmeticException is thrown between the pc 

offsets 19 to 22, inclusive. 

 If an exception is thrown during the execution of a method, the Java 

virtual machine searches through the exception table for a matching entry. An 

exception table entry matches if the current program counter is within the range 

specified by the entry, and if the exception class thrown is the exception class 

specified by the entry (or is a subclass of the specified exception class). The Java 

virtual machine searches through the exception table in the order in which the 

entries appear in the table. When the first match is found, the virtual machine sets 

the program counter to the new pc offset location and continues execution there. 

If no match is found, the virtual machine pops the current stack frame and 

rethrows the same exception. 

  If no exception is thrown, the Java virtual machine continues the normal 

execution of the program, with no use of the exception table. Thus, the exception 
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handler of the method (catch block) has no effect on the performance of the 

method.  

Ada implementation of exception handling 

 In Ada [Ada95], an exception handler consists of a sequence of 

statements. Exception handlers appear in a case like structure at the end of a 

frame or block. For example, 

Exception 

 when E1 | E2   … ;  -- handler for E1 and E2 

 when E3   … ;  -- handler for E3 

 when others   … ;  -- handler for other exceptions 

specifies a set of exceptions to which each handler applies. 

 The information in this case structure can be translated into code to be 

executed whenever an exception is raised or into a table to be searched by a 

recovery routine at runtime.  

 Some Ada compilers, like the DEC Ada compiler for the VAX/VMS 

system, implement responding to an exception by using a technique named 

dynamic tracking [BR86]. Here, the current context for exception handling is 

posted in a predictable location. Keeping this information up to date means that 
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changes in the context for exception handling must be tracked dynamically. This 

technique needs a stack for storing the exception contexts. Upon entry to a 

frame, a new context record must be added to the top of the stack. Upon exit 

from a frame, the top context record must be popped from the stack. This 

technique is simple but produces overhead to normal execution. An alternative of 

dynamic tracking is to use a static “map” of the portion of memory that 

contains executable code, indicating the boundaries of each frame, and the 

boundaries of the sequence of statements within each frame. The map is 

implemented as a table of exceptions. Constructing the table requires 

knowledge of the exact address of each contiguous block of code for each frame. 

It must therefore involve cooperation of the compiler, the linker, and the virtual 

address translator. In particular, any relocation of code modules must be reflected 

by corresponding adjustments to the map. This method does not produce any 

overhead on normal execution, but requires a degree of coordination of 

compilation, linking, loading, and virtual address translation. The Intermetric Ada 

compiler for the IBM mainframes has a particular simple scheme for a mix of 

static and dynamic tracking. 

Implementation of exception handling using tables in 
ML 
 The main idea of this implementation is to use an exception table where 

we can keep in each entry of the table, the range of the protected code, the 

address of the exception handler, and the exception name. Now, the 
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implementation in ML would be different because the structure of a functional 

language is different than the structure of an imperative language. Instead of 

using blocks like “try and catch,” ML uses expressions. The syntax for an 

expression of type “handler” in SML: 

 <expression> handle <match> 

where <expression> can be an id, or a const expression, an if  expression, etc.; and 

<match> can be a pattern, followed by the symbol “=>” and an expression. As 

we mentioned before, CAML uses a notation for defining exception handlers 

similar to SML. 

 The exception table is created when abstract machine code is generated. 

We describe a machine-level translation of a program with exception handling to 

produce code along with the exception table: 

• Eliminate the primitive operators which cause the overflow in the 

program (gethdlr and sethdlr operators). 

• Obtain the range of the protected code 

• Produce machine code for the protected code 

• For user-defined exceptions insert a Jump instruction (its address will be 

the first entry of the corresponding exception table). For system-defined 

exceptions the compiler will not produce a Jump instruction. This kind of 
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exception is raised by the run-time system, even though a handler in the 

program can catch them. 

• An entry in the exception table is inserted. The entry content is the range 

of the protected code, the address of the corresponding handle, and the 

exception name. 

• Finally, we make a small optimization in order to avoid making two 

consecutive jumps; that is means calling function “k” (“k4” in the last 

program), from outside of the handler. 

 

We show in the next table part of the final code (abstract machine code) 

produced by our compiler. If an exception is thrown during the execution of the 

expression n*n (line 6 of code), our runtime system searches through the 

exception table (line 74) for a matching entry. An exception table entry matches, 

when the current program counter is within the range specified by the entry (in 

this example the PC is pointing to line 6), and the exception type thrown is one 

of the exceptions specified by the entry (“ovfl” was specified in the SML code). 

The simulator searches through the exception table in the order in which entries 

appear in the table (just one entry for this example). When the first match is 

found, the run-time system sets the program counter to the new pc offset 

location (it takes the address of the handler “n10” which is 16), and continues the 

execution.  
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(* MACHINE CODE WITH EXCEPTION *) 
 
0               LOAD    Const 0,Reg 1 
1               LOAD    Mem r24,Reg 2 
2               JUMP    run 
        LAB f: 
3               STORE   Reg 1,Mem w1 
4               STORE   Reg 2,Mem n 
5               STORE   Reg 3,Mem x 
6               MUL     Mem n,Mem n, 
                        Mem w11 
7               LOAD    Mem w11,Reg 1 
8               LOAD    Mem x,Reg 2 
9               JUMP    w1 
        LAB k4: 
10              STORE   Reg 1,Mem x12 
11              STORE   Reg 2,Mem w1 
12              STORE   Reg 3,Mem x 
13              LOAD    Mem x12,Reg 1 
14              LOAD    Mem x,Reg 2 
15              JUMP    w1 
        LAB n10: 
16              STORE   Reg 1,Mem e3 
17              LOAD    String h2, 
                        Reg 99 
18              LOAD    Mem e3,Reg 1 
19              LOAD    Mem k4,Reg 2 
20              JUMP    F5 
                . 
                . 
        LAB run: 
37              STORE   Reg 1,Mem x 
38              STORE   Reg 2,Mem w1 
39              CJUMP   EQ,Mem x,Const 
                        10,L4,L5 
        LAB L4: 
40              LOAD    Const 0,Reg 1 
41              LOAD    Mem x,Reg 2 
42              JUMP    F13 
                . 
                . 
        LAB r15: 
57              STORE   Reg 1,Mem x16 
58              STORE   Reg 2,Mem x 
59              LOAD    Mem x16,Reg 1 
60              JUMP    r24 
        LAB r17: 
61              STORE   Reg 1,Mem x18 
62              LOAD    Mem x18,Reg 1 
63              JUMP    w1 
        LAB r21: 
64              STORE   Reg 1,Mem x22 
65              STORE   Reg 2,Mem x 
66              SUB     Mem x22,Const  
                        288,Mem w20 
67              ADD     Mem x,Mem w20, 
                        Mem w19 
68              LOAD    Mem w19,Reg 1 
69              LOAD    Mem r17,Reg 2 
70              JUMP    run 
        LAB r24: 
71              STORE   Reg 1,Mem x25 
72              LOAD    Mem x25,Reg 1 

 
(* MACHINE CODE WITH NO EXCEPTION *) 
 
0               LOAD    Const 0,Reg 1 
1               LOAD    Mem r14,Reg 2 
2               JUMP    run 
        LAB f: 
3               STORE   Reg 1,Mem n 
4               STORE   Reg 2,Mem w1 
5               STORE   Reg 3,Mem x 
6               MUL     Mem n,Mem n, 
                Mem w2 
7               LOAD    Mem w2,Reg 1 
8               LOAD    Mem x,Reg 2 
9               JUMP    w1 
        LAB run: 
10              STORE   Reg 1,Mem x 
11              STORE   Reg 2,Mem w1 
12              CJUMP   EQ,Mem x, 
                        Const 10,L0,L1 
        LAB L0: 
13              LOAD    Const 0,Reg 1 
14              LOAD    Mem x,Reg 2 
15              JUMP    F3 
        LAB L1: 
16              LOAD    Const 1,Reg 1 
17              LOAD    Mem x,Reg 2 
18              JUMP    F3 
        LAB F3: 
19              STORE   Reg 1,Mem z4 
20              STORE   Reg 2,Mem x 
21              CJUMP   EQ,Mem z4, 
                        Const 0,L2,L3 
        LAB L2: 
22              LOAD    Const 17,Reg 1 
23              LOAD    Mem r5,Reg 2 
24              LOAD    Mem x,Reg 3 
25              JUMP    f 
        LAB L3: 
26              LOAD    Const 17,Reg 1 
27              LOAD    Mem r11,Reg 2 
28              LOAD    Mem x,Reg 3 
29              JUMP    f 
        LAB r5: 
30              STORE   Reg 1,Mem x6 
31              STORE   Reg 2,Mem x 
32              LOAD    Mem x6,Reg 1 
33              JUMP    k 
        LAB r7: 
34              STORE   Reg 1,Mem x8 
35              LOAD    Mem x8,Reg 1 
36              JUMP    w1 
        LAB r11: 
37              STORE   Reg 1,Mem x12 
38              STORE   Reg 2,Mem x 
39              SUB     Mem x12, 
                        Const 288, 
                        Mem w10 
40              ADD     Mem x,Mem w10, 
                        Mem w9 
41              LOAD    Mem w9,Reg 1 
42              LOAD    Mem r7,Reg 2 
43              JUMP    run 
        LAB r14: 
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73              JUMP    k 
        LAB ETab: 
74              ExT     3,6,n10,ovfl 
        LAB end: 
 
 
 

44              STORE   Reg 1,Mem x15 
45              LOAD    Mem x15,Reg 1 
46              JUMP    k 
        LAB end: 
 
 

 

If no match is found, the run-time system rethrows the same exception 

from the point where the last call was executed. Now, if no exception is thrown 

during the execution of the multiplication expression, the program jump to k4 

(line 10), which is a continuation from the handle operation.  

Implementation weakness 

We tested our implementation with different examples, finding major 

difficulties concerning dynamic propagation. As we explained in chapter two, an 

exception not handled is automatically raised to other frames along the calling 

chain until a handler is found or until a program boundary is reached. This 

propagation method is called automatic or dynamic propagation. If the 

handler for a raised exception cannot be found locally, a Java, Ada or C++ 

program unwinds the stack of the try block and propagates the exception to its 

caller. This procedure continues until a handler is found or until a default handler 

is called, which then aborts the program.  

Our implementation creates the exception table during the compilation of 

the program. With the help of the table the program can find the handler if it is in 
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the same context. However, when the handler for the thrown exception is in 

another context or frame from the calling chain then the table does not work. In 

order to implement dynamic propagation, we use a different approach: using two 

continuation for normal and abnormal (exception) procedures. In the next 

section we explain that approach. 

 

6.2 Low overhead using two continuations 

 Now, we present an implementation which can be used with programs 

where dynamic propagation occurs. This exception handling implementation can 

deliver a good performance in handling exceptions where we obtain a decrement 

of the overhead with respect to the normal method of implementation (see 

chapter 5). 

 In the analysis we made in chapter 5, we concluded that unnecessary 

utilization of gethdlr and sethdlr  operators (along with the use of  function k), 

produces the main overhead of SML programs. Those two operators are used to 

save and restore the handlers of the programs. We designed a different CPS 

conversion program, where those operators (gethdlr and sethdlr) are not longer 

needed. The main idea of the new CPS code is the use of a second continuation 

for abnormal situations. The next example will serve to illustrate the new 

technique. We will show again the SML, lambda, and CPS code. 
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The SML code of the program is 
 
exception mult  
let 
 fun f(n)= h(n) handle mult => n  
 fun h(m)= g(m) 
 fun g(v)= (raise mult) handle ovfl => v  
in 
 f(17) 
end 
  
 
and the respective lambda code is 
 
APP 
    (FN 
       ("mult", 
        FIX 
          (["f","h","g"], 
           [FN 
              ("n", 
               HANDLE 
                 (APP (VAR "h",VAR "n"), 
                  FN 
                    ("e1", 
                     COND 
                       (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n", 
                        RAISE (VAR "e1"))))), 
 FN ("m",APP (VAR "g",VAR "m")), 
            FN 
              ("v", 
               HANDLE 
                 (RAISE (VAR "mult"), 
                  FN 
                    ("e2", 
                     COND 
                       (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v", 
                        RAISE (VAR "e2")))))],APP (VAR "f",INT 17))), 
     APP (MAKEREF,STRING "MUL")) 
 
     

Observing the lambda code, we see in boldface the handler defined in 

the SML function f. A handler with the old technique produces the operations 

gethdlr and sethdlr which cause the main overhead in a program. With the 

new approach or design of the conversion program the handler is passed as a 
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second continuation (we call it abnormal continuation). This second 

continuation could be used if a raise operation of such exception is executed.  

The CPS code with the new technique is 

 
 
FIX 
    ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])), 
       
      ("e'3",["z4"],APP (VAR "initialAbnormalCont",[VAR "z4"])), 
      
      ("F5",["mult","k6","ak7"], 
           APP (VAR "f",[a.INT 17,VAR "r26",VAR "e'28",VAR "mult"])), 
            
      ("f",["n","w8","ak9","mult"], 
           APP (VAR "h",[VAR "n",VAR "r14",VAR "e'16",VAR "mult"])),     
       
      ("H10",["e1","mult","v"], 
           PRIMOP(equal,[VAR "e1",VAR "mult"],[], 
              [APP (VAR "F11",[a.INT 0,VAR "v"]), 
               APP (VAR "F11",[a.INT 1,VAR "v"])])),          
       
      ("F11",["z12","n"], 
           PRIMOP(equal,[VAR "z12",a.INT 0],[], 
              [APP (VAR "r26",[VAR "n"]), 
               APP (VAR "ak9",[VAR "e1"])])), 
                        
      ("r14",["x15"],APP (VAR "w8",[VAR "x15"])), 
       
      ("e'16",["z17","mult","v"],APP (VAR "H10",[VAR "z17",VAR "mult",VAR "v"])), 
                      
      ("h",["m","w8","ak9","mult"], 

APP (VAR "g",[VAR "m",VAR "r18",VAR "e'20",VAR   "mult"])), 
                
      ("r18",["x19"],APP (VAR "w8",[VAR "x19"])),  
       
      ("e'20",["z21","mult","v"],APP (VAR "e'16",[VAR "z21",VAR "mult",VAR "v"])), 
        
            
      ("g",["v","w8","ak9","mult"], 

APP (VAR "H22",[VAR "mult",VAR "w8",VAR "v",VAR "mult"])), 
               
      ("H22",["e2","w8","v","mult"], 
           PRIMOP(equal,[VAR "e2",VAR "ovfl"],[], 
              [APP (VAR "F23",[a.INT 0,VAR "w8",VAR "v",VAR "e2",VAR "mult"]), 
               APP (VAR "F23",[a.INT 1,VAR "w8",VAR "v",VAR "e2",VAR "mult"])])),   
        
              
      ("F23",["z24","w8","v","e2","mult"], 

 98



 

           PRIMOP(equal,[VAR "z24",a.INT 0],[], 
              [APP (VAR "w8",[VAR "v",VAR "mult"]), 
               APP (VAR "e'20",[VAR "e2",VAR "mult",VAR "v"])])), 
        
      ("r26",["x27"],APP (VAR "r1",[VAR "x27"])), 
       
      ("e'28",["z29"],APP (VAR "ak7",[VAR "z29"]))], 
                 
      PRIMOP(makeref,[a.STRING "MUL"],["w30"], 
           [APP (VAR "F5",[VAR "w30",VAR "r1",VAR "e'3"])]))  
 

When function h is invoked (first boldface text), the normal continuation 

(r14) and the abnormal continuations (e’16) are passed as arguments. This second 

continuation, is the name of a function whose main body contains an invocation 

to the handler H10 and will be used later in the program.  Function h, then just 

invokes function g passing the  two continuations r18 and e’20. Last, function g 

has an invocation to the handler H22 (produced by the RAISE operation of the 

lambda program). This handler, H22, will not catch the exception, so an 

invocation to the first handler (H10) will be performed by using the abnormal 

continuation contained in variable ak9. 

 

The new conversion program 

 In chapter 3, we presented the algorithm to convert a lambda expression 

into a corresponding continuation expression. The conversion function f  takes 

two arguments: a lambda expression and a continuation function. The result is a 

CPS expression [App92]. Our new approach is a modification to the mutually-

recursive function f of Appel. We modified the translation by adding a new 
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continuation for abnormal computations. The new function convert takes three 

arguments: a lambda expression, a continuation function c for normal 

computations, and a continuation function e for abnormal computations.  

 All functions in the lambda language have exactly one argument. When 

translated to CPS with one continuation, the continuation adds one argument. 

Now in the translation with two continuation every function become a function 

with three arguments. 

The first part of the algorithm is the same than in the old algorithm (like 

function f of Appel [App92] we need  to create new variables).  

Function f (we call it now convert) takes two continuations functions (c 

and e) as arguments, besides the lambda expression.   

 
fun convert(lambda.VAR v, c, e) = c(VAR v) 
|   convert(lambda.INT i, c, e) = c(INT i) 
|   convert(lambda.STRING s,c, e) = c(STRING s)    

 

A lambda HANDLE definition translates into a single CPS function 

definition. This function is given a name H, and corresponds to the handler of 

the produced continuation expression. The body of H is given by converting 

subexpression B (the second operand of the HANDLE expression) into a CPS 

expression. Last, the main body of the FIX expression is the result of translating 

the first operand A of the HANDLE expression. In the translation of A, the 

continuation function e’ is used as a third argument. If A contains a RAISE 

expression then this function e’ is used as the normal continuation. Then, when 
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A is done executing, it will bind its result to some variable w and then apply H to 

that variable. 

 
conve t(HANDLE (A,FN(z,B)),c, e) =   r

r

r

let 
val H = newVar ("H") 

 fun e' w = APP(VAR H,[w])  
in 
 FIX([(H,[z],convert(B,c , e))], convert (A,c,e')) 
end 
 
 

A RAISE expression is converted by applying the abnormal continuation 

into the expression E. Because the abnormal continuation is a handler, then the 

result of the translations is the invocation of that handler. 

 
 
conve t(RAISE E, c, e) = convert(E,e,e) 
 

 

In the case of function definitions, the modifications (shown in 

boldface below) consist in adding a third argument ak for the abnormal 

continuation.   

 

conve t(FN (v,E), c, e) =  
let   
    val F  = newVar ("F"); 
    val k  = newVar ("k"); 
    val ak = newVar ("ak"); 
    fun e' z = APP(VAR ak,[z]) 
in 
    FIX([(F,[v,k,ak],convert (E,(fn z=>APP 
        (VAR k,[z])), e'))],c(VAR F))   
end 
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With respect to lambda expressions constructed using FIX, the 

modifications again consist of adding a third argument to each mutually recursive 

function.  

 

conve t(FIX(hx,bx,E),c, e) = r

 
r

let 
    val w = newVar ("w") 
    val ak = newVar ("ak") 
    fun e'' w = APP(VAR ak,[w]) 
    fun g(h1::h,FN(v,B)::b)=  
        (h1,[v,w,ak], convert (B, fn z=> 
                     APP(VAR w,[z]), e''))::g(h,b) 
    |   g(nil,nil) = nil 
in 
    FIX (g(hx,bx),convert (E,c, e)) 
end 

 

In a function call, we need to add a new return address e’  for abnormal 

continuation. This address will be used when an exception is raised and the 

abnormal continuation is taken as the normal continuation to execute.  

conve t(APP (F,E), c, e) = 
let 
    val r= newVar ("r"); 
    val x= newVar ("x"); 
    val e'= newVar ("e'"); 
    val z= newVar ("z"); 
in 
   FIX([(r,[x],c(VAR x)), 
               (e',[z],e(VAR z))], 
                convert(F,(fn f2=>convert(E,(fn e2=>APP(f2, [e2,VAR r,VAR e'])), e)), e)) 
end 
 

 
In the rest of the cases, the only modification to make is adding the third 

continuation in the list of calling and receiving arguments . 
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6.3 Zero overhead with one continuation and 
displacement 

 
 The use of an extra argument for the abnormal continuation, provides 

better performance in normal execution of programs with exception declarations. 

However, the extra argument imposes some overhead of its own during the 

normal execution of a program. We can remove that overhead by making some 

small changes to the compiler; specifically the program that converts to CPS 

code. The main idea is passing only one continuation address for the normal and 

abnormal continuations. Both continuation addresses are consecutive functions 

whose names differ only by an apostrophe. Next, we illustrate this technique by 

using the same example shown in the previous section, but with the 

modifications discussed before. 

 

FIX 
    ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])), 
       
      ("r1'",["z3"],APP (VAR "initialAbnormalCont",[VAR "z3"])), 
      
      ("F4",["mult","k5"], 
          APP (VAR "f",[a.INT 17,VAR "r23",VAR "mult"])), 
       
      ("f",["n","w7","mult"], 
          APP (VAR "h",[VAR "n",VAR "r13",VAR "mult"])),   
       
      ("H9",["e1","mult","v"], 
          PRIMOP(equal,[VAR "e1",VAR "mult"],[], 
             [APP (VAR "F10",[a.INT 0,VAR "v"]), 
              APP (VAR "F10",[a.INT 1,VAR "v"])])),          
       
      ("F10",["z11","n"], 
          PRIMOP(equal,[VAR "z11",a.INT 0],[], 
             [APP (VAR "r23",[VAR "n"]), 
              APP (VAR "w7",[VAR "e1"])])), 
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      ("r13",["x14"],APP (VAR "w7",[VAR "x14"])), 
       
      ("r13'",["z15","mult","v"],APP (VAR "H9",[VAR "z15",VAR "mult",VAR "v"])), 
                      
      ("h",["m","w7","mult"],APP (VAR "g",[VAR "m",VAR "r16",VAR "mult"])), 
              
      ("r16",["x17"],APP (VAR "w7",[VAR "x17"])), 
       
      ("r16'",["z18","mult","v"],APP (VAR "r13'",[VAR "z18",VAR "mult",VAR "v"])), 
                   
      ("g",["v","w7","mult"],APP (VAR "H19",[VAR "mult",VAR "w7",VAR "v",VAR "mult"])), 
          
      ("H19",["e2","w7","v","mult"], 
           PRIMOP(equal,[VAR "e2",VAR "ovfl"],[], 
              [APP (VAR "F20",[a.INT 0,VAR "w7",VAR "v",VAR "e2",VAR "mult"]), 
               APP (VAR "F20",[a.INT 1,VAR "w7",VAR "v",VAR "e2",VAR "mult"])])), 
                            
      ("F20",["z21","w7","v","e2","mult"], 
           PRIMOP(equal,[VAR "z21",a.INT 0],[], 
              [APP (VAR "w7",[VAR "v",VAR "mult"]), 
               APP (VAR "r16'",[VAR "e2",VAR "mult",VAR "v"])])), 
      ("r23",["x24"],APP (VAR "r1",[VAR "x24"])), 
       
      ("r23'",["z25"],APP (VAR "ak6",[VAR "z25"]))], 
                 
      PRIMOP(makeref,[a.STRING "MUL"],["w26"], 
           [APP (VAR "F4",[VAR "w26",VAR "r1"])])) 

 

 The program starts invoking function F4, and passing w26 and r1, the 

return address from normal continuation. There is no need to pass r1’, the return 

address from abnormal continuation, because it can be referenced by just adding 

the apostrophe to the name of the normal continuation. Next, from function F4 

there is an invocation to function f where the normal continuation r23 is passed 

as the second argument. Then, there is an invocation to function h passing the 

continuation r13 as second argument, and from function h there is a call to 

function g passing continuation r16 as one of the arguments. Next, function g 

calls the function H19 function passing continuation w7 (which contains the 
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value r16) as the second argument. In function H19, the condition checks if e2 

(exception mult) is equal to ovfl (overflow). Because it is false, then there is a 

jump to F20 passing again continuation w7. The condition of function F20 only 

checks the validity of last condition (function H19). Because it was false then it 

calls for function r16’ (the abnormal continuation) instead of function r16 (the 

normal continuation). Function r16’ invokes function r13’ (abnormal 

continuation too), and function r13’ calls for function H9, that is the handler of 

function f (see last SML code). The condition of the handler function H9 is true 

(the raised exception is equal to mult exception), and the program finishes calling 

functions F10, r23, and r1 consecutively. 

 

Problems due to optimization 

 This method does not impose any obvious overhead on normal 

execution. On the other hand, a problem in a real compiler (like SML/NJ) is that 

during optimization the compiler relocates consecutive functions of the program. 

This problem is also faced by others compilers that use exception tables [BR86, 

Din00]. As a solution to this problem we mentioned before that Ada [BR86] 

compilers interact with the linker, the loader, and the virtual address translator. 

The Ada compiler uses a static “map” of the portion of memory that contains 

executable code, indicating the boundaries of each frame, and the boundaries of 

the sequence of statements within each frame. The map is implemented as an 
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exception table. Constructing the table requires knowledge of the exact address of 

each contiguous block of code for each frame.  Any relocation of the code during 

optimization must be reflected by corresponding adjustments to the table. A 

global static table corresponds to each main program. The table contains 

information like the low address of the segment (one segment is the code of a 

sequence of statements, an exception handler, etc.), the address of the code to be 

executed (handler) when an exception is raised within the code segment 

beginning with this lower address, etc. If the optimizer of the compiler relocates 

the code, then the linker/loader modifies the information in the table by adding 

or subtracting a constant to the low addresses of code segment and the exception 

handler address. The disadvantage of this technique is the dependency of the 

compiler with the linker and other programs. On the other hand, some C++ 

compilers like the HP C++ compiler follow a different method for dealing with 

the problem of relocation due to optimizations [Din00]. They also use exception-

handling tables. They divide the code of a program in exception-handling code 

and normal code. The normal or nonexceptional code is optimized while 

compensation code is placed along the exceptional path to restore program state 

(before executing the exception handlers) to what it would have been if the 

optimization had not taken place. The place where such compensation code is 

added is called a landing pad, which serves as an alternate return path for each 

call. 
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 In our compiler, we can work with this last approach; that is, including 

compensation code, in order to restore the program state to what it would be if 

optimization had not been done in the main control flow (see figure 6.1). 

 

PROGRAM 

 

f f
f’ + …Compensation  

code
optimization

f’

No exception 
Is raised OK

… execution
Exception
Is raised

restore 

 

Figure 6.1 Inclusion of compensation code 

  

If an exception is raised the compensation code would do some 

operations, the most important would be to restore the program state to what it 

would be if optimization had not been done in the main control flow. The 

implementation of this method has not yet been accomplished. 
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 Another solution to the problem is including a block with two jump 

operations (e and e’) before the code of the functions for normal and abnormal 

continuations. One jump will be to the normal continuation f; another jump will 

be to the abnormal continuation f’. Then, every reference to the normal or 

abnormal continuations from the main program will be first a reference to that 

block of consecutive jumps e and e’.  
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7 Experiments and Performance 

 This chapter presents a set of examples or experiments we made in order 

to test the performance of the new approaches. We also present a set of graphs 

comparing the performance between the traditional technique of exception 

handling and the new techniques that we designed and implemented. The set of 

graphs demonstrate that a functional program using exception handling can reach 

low and zero overhead when using the two-continuations and one-continuation-

displacement techniques respectively.  

 

7.1 Experimental measurements 

 All measurement in the experiments are made by counting the number of 

instructions executed by the simulated programs. As we explained in chapter 4, 

we implemented a simulator of a real machine. The simulator “executes”  a 

program in abstract machine code, and obtain information like the number of 

instructions performed by that program. The abstract machine code can be 

produced by three different compilers. One using the original approach (using the 

gethdlr and sethdlr operators), a second that uses the two-continuations 

approach, and a third that uses the one-continuation-displacement approach. 

Some comparisons in the experiments are between programs that declare and use 

exception handlers; and some are between programs that declare and never use 
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exception handlers which is, of course, the most important situation for our 

research. 

7.2 Experimental examples 

 Next, we present a set of examples to be used in the experiments. For 

each program we show the code in SML language (for clarity reasons), lambda 

code, and CPS (flat) code. The abstract machine code of that programs is found 

in the appendix.  

 The next program was compiled by using the original (old) approach in 

the translation of lambda expressions to CPS code. The program has three 

functions (f, h, and g), where two of them (f and g) have handler definitions. The 

program start by calling function f. This function in turn call function h, and then 

function h call function g. This last function raises an exception (exception mult). 

The handler of the last function (g) can not catch the exception mult. So, the 

exception is propagated by following in reverse order the actual calling chain, 

until the exception is caught by the handler of function f. 

 

PROGRAM 1 - Old technique  

SML code 
 
exception mult  
let 
 fun f(n)= h(n) handle mult => n  
 fun h(m)= g(m) 
 fun g(v)= (raise mult) handle ovfl => v  
in 
 f(17) 
end 
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Lambda code 
 
APP 
    (FN 
       ("mult", 
        FIX 
          (["f","h","g"], 
           [FN 
              ("n", 
               HANDLE 
                 (APP (VAR "h",VAR "n"), 
                  FN 
                    ("e1", 
                     COND 
                       (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n", 
                        RAISE (VAR "e1"))))),FN ("m",APP (VAR "g",VAR "m")), 
            FN 
              ("v", 
               HANDLE 
                 (RAISE (VAR "mult"), 
                  FN 
                    ("e2", 
                     COND 
                       (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v", 
                        RAISE (VAR "e2")))))],APP (VAR "f",INT 17))), 
     APP (MAKEREF,STRING "MUL")) 
 
 
CPS code 
 
  FIX 
    ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])), 
      
      ("F3",["mult","k4"],APP (VAR "f",[a.INT 17,VAR "r33",VAR "mult"])), 
           
      ("f",["n","w5","mult"], 
          PRIMOP(gethdlr,[],["h6"], 
             [PRIMOP(sethdlr,[VAR "n15"],[], 
                [APP (VAR "h",[VAR "n",VAR "r16",VAR "mult",VAR "h6"])])])), 
                   
      ("k8",["x18"],APP (VAR "r33",[VAR "x18"])), 
       
      ("n15",["e7","h6","v","mult"], 
          PRIMOP(sethdlr,[VAR "h6"],[], 
             [APP (VAR "F9",[VAR "e7",VAR "k8",VAR "mult",VAR "v"])])), 
                            
      ("F9",["e1","k10","mult","n"], 
          PRIMOP(equal,[VAR "e1",VAR "mult"],[], 
             [APP (VAR "F11",[a.INT 0,VAR "n"]), 
              APP (VAR "F11",[a.INT 1,VAR "n"])])),                    
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      ("F11",["z12","n"], 
          PRIMOP(equal,[VAR "z12",a.INT 0],[], 
             [APP (VAR "k8",[VAR "n"]), 
              PRIMOP(gethdlr,[],["h13"], 
                  [APP (VAR "h13",[VAR "e1"])])])), 
                                     
      ("r16",["x17"], 
          PRIMOP(sethdlr,[VAR "h6"],[], 
             [APP (VAR "k8",[VAR "x17"])])), 
                              
      ("h",["m","w5","mult","h6"], 

APP (VAR "g",[VAR "m",VAR "r19",VAR "mult",VAR "h6"])), 
                
      ("r19",["x20"],APP (VAR "w5",[VAR "x20"])), 
                   
      ("g",["v","w5","mult","h6"], 
          PRIMOP(gethdlr,[],["h21"], 
             [PRIMOP(sethdlr,[VAR "n30"],[], 
                 [PRIMOP(gethdlr,[],["h31"], 
                    [APP (VAR "h31", 

[VAR "mult",VAR "h21",VAR "h6",VAR "v",VAR "mult"])])])])), 
                  
      ("k23",["x32"],APP (VAR "w5",[VAR "x32"])), 
        
      ("n30",["e22","h21","h6","v","mult"], 
          PRIMOP(sethdlr,[VAR "h21"],[], 
             [APP (VAR "F24",[VAR "e22",VAR "k23",VAR "h6",VAR "v",VAR "mult"])])), 
                          
      ("F24",["e2","k25","h6","v","mult"], 
          PRIMOP(equal,[VAR "e2",VAR "ovfl"],[], 
             [APP (VAR "F26",[a.INT 0,VAR "e2",VAR "h6",VAR "v",VAR "mult"]), 
              APP (VAR "F26",[a.INT 1,VAR "e2",VAR "h6",VAR "v",VAR "mult"])])),  
                                    
      ("F26",["z27","e2","h6","v","mult"], 
          PRIMOP(equal,[VAR "z27",a.INT 0],[], 
             [APP (VAR "k25",[VAR "v"]), 
              PRIMOP(gethdlr,[],["h28"], 
                        [APP (VAR "h28",[VAR "e2",VAR "h6",VAR "v",VAR "mult"])])])), 
               
      ("r33",["x34"],APP (VAR "r1",[VAR "x34"]))], 
                 
      PRIMOP(makeref,[a.STRING "MUL"],["w35"], 
          [APP (VAR "F3",[VAR "w35",VAR "r1"])])) 
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Now, program 1 is compiled by using the new approach in the translation 

of lambda expressions to CPS code. In the new approach two continuations are 

produced when producing the CPS code. We can observe, in the next CPS code, 

two continuations. One is for passing normal computations (the rest of the 

function computation), and another one for passing abnormal computations 

(exception handlers). 

 

 

PROGRAM  1 - Two-continuation technique  

 
SML code 
 
exception mult  
let 
 fun f(n)= h(n) handle mult => n  
 fun h(m)= g(m) 
 fun g(v)= (raise mult) handle ovfl => v  
in 
 f(17) 
end 
 
 
Lambda code 
 
APP 
    (FN 
       ("mult", 
        FIX 
          (["f","h","g"], 
           [FN 
              ("n", 
               HANDLE 
                 (APP (VAR "h",VAR "n"), 
                  FN 
                    ("e1", 
                     COND 
                       (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n", 
                        RAISE (VAR "e1"))))),FN ("m",APP (VAR "g",VAR "m")), 
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            FN 
              ("v", 
               HANDLE 
                 (RAISE (VAR "mult"), 
                  FN 
                    ("e2", 
                     COND 
                       (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v", 
                        RAISE (VAR "e2")))))],APP (VAR "f",INT 17))), 
     APP (MAKEREF,STRING "MUL")) 
 
 
CPS code 
 
FIX 
    ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])), 
       
      ("e'3",["z4"],APP (VAR "initialAbnormalCont",[VAR "z4"])), 
      
      ("F5",["mult","k6","ak7"], 
           APP (VAR "f",[a.INT 17,VAR "r26",VAR "e'28",VAR "mult"])), 
            
      ("f",["n","w8","ak9","mult"], 
           APP (VAR "h",[VAR "n",VAR "r14",VAR "e'16",VAR "mult"])),     
       
      ("H10",["e1","mult","v"], 
           PRIMOP(equal,[VAR "e1",VAR "mult"],[], 
              [APP (VAR "F11",[a.INT 0,VAR "v"]), 
               APP (VAR "F11",[a.INT 1,VAR "v"])])),          
       
      ("F11",["z12","n"], 
           PRIMOP(equal,[VAR "z12",a.INT 0],[], 
              [APP (VAR "r26",[VAR "n"]), 
               APP (VAR "ak9",[VAR "e1"])])), 
                        
      ("r14",["x15"],APP (VAR "w8",[VAR "x15"])), 
       
      ("e'16",["z17","mult","v"],APP (VAR "H10",[VAR "z17",VAR "mult",VAR "v"])), 
                      
      ("h",["m","w8","ak9","mult"], 

APP (VAR "g",[VAR "m",VAR "r18",VAR "e'20",VAR "mult"])), 
                 
      ("r18",["x19"],APP (VAR "w8",[VAR "x19"])), 
       
      ("e'20",["z21","mult","v"],APP (VAR "e'16",[VAR "z21",VAR "mult",VAR "v"])), 
                   
      ("g",["v","w8","ak9","mult"], 

APP (VAR "H22",[VAR "mult",VAR "w8",VAR "v",VAR "mult"])), 
                
      ("H22",["e2","w8","v","mult"], 
           PRIMOP(equal,[VAR "e2",VAR "ovfl"],[], 
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              [APP (VAR "F23",[a.INT 0,VAR "w8",VAR "v",VAR "e2",VAR "mult"]), 
               APP (VAR "F23",[a.INT 1,VAR "w8",VAR "v",VAR "e2",VAR "mult"])])),   
                     
      ("F23",["z24","w8","v","e2","mult"], 
           PRIMOP(equal,[VAR "z24",a.INT 0],[], 
              [APP (VAR "w8",[VAR "v",VAR "mult"]), 
               APP (VAR "e'20",[VAR "e2",VAR "mult",VAR "v"])])), 
        
      ("r26",["x27"],APP (VAR "r1",[VAR "x27"])), 
       
      ("e'28",["z29"],APP (VAR "ak7",[VAR "z29"]))], 
                 
      PRIMOP(makeref,[a.STRING "MUL"],["w30"], 
           [APP (VAR "F5",[VAR "w30",VAR "r1",VAR "e'3"])]))  
 

Last, program 1 is compiled by using the modification to the new 

approach in the translation of lambda expressions to CPS code. The new CPS 

code produced by this compilation changes the name of some functions 

(functions which computes abnormal continuations). The new name is similar to 

the name of the previous function that computes the normal continuation. 

Another important modification to the CPS code is that now it only passes as a 

parameter the normal continuation (the abnormal continuation can be referenced 

or located using a displacement from the normal continuation).  

  

PROGRAM  1 - One-continuation-displacement technique  

SML code 
 
exception mult  
let 
 fun f(n)= h(n) handle mult => n  
 fun h(m)= g(m) 
 fun g(v)= (raise mult) handle ovfl => v  
in 
 f(17) 
end 
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Lambda code 
 
APP 
    (FN 
       ("mult", 
        FIX 
          (["f","h","g"], 
           [FN 
              ("n", 
               HANDLE 
                 (APP (VAR "h",VAR "n"), 
                  FN 
                    ("e1", 
                     COND 
                       (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n", 
                        RAISE (VAR "e1"))))),FN ("m",APP (VAR "g",VAR "m")), 
            FN 
              ("v", 
               HANDLE 
                 (RAISE (VAR "mult"), 
                  FN 
                    ("e2", 
                     COND 
                       (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v", 
                        RAISE (VAR "e2")))))],APP (VAR "f",INT 17))), 
     APP (MAKEREF,STRING "MUL")) 
 
 
CPS code 
 
FIX 
    ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])), 
       
      ("r1'",["z3"],APP (VAR "initialAbnormalCont",[VAR "z3"])), 
      
      ("F4",["mult","k5"], 
          APP (VAR "f",[a.INT 17,VAR "r23",VAR "mult"])), 
       
      ("f",["n","w7","mult"], 
          APP (VAR "h",[VAR "n",VAR "r13",VAR "mult"])),   
       
      ("H9",["e1","mult","v"], 
          PRIMOP(equal,[VAR "e1",VAR "mult"],[], 
             [APP (VAR "F10",[a.INT 0,VAR "v"]), 
              APP (VAR "F10",[a.INT 1,VAR "v"])])),          
       
      ("F10",["z11","n"], 
          PRIMOP(equal,[VAR "z11",a.INT 0],[], 
             [APP (VAR "r23",[VAR "n"]), 
              APP (VAR "w7",[VAR "e1"])])), 
                  

 116



 

      ("r13",["x14"],APP (VAR "w7",[VAR "x14"])), 
       
      ("r13'",["z15","mult","v"],APP (VAR "H9",[VAR "z15",VAR "mult",VAR "v"])), 
                      
      ("h",["m","w7","mult"],APP (VAR "g",[VAR "m",VAR "r16",VAR "mult"])), 
              
      ("r16",["x17"],APP (VAR "w7",[VAR "x17"])), 
       
      ("r16'",["z18","mult","v"],APP (VAR "r13'",[VAR "z18",VAR "mult",VAR "v"])), 
                   
      ("g",["v","w7","mult"],APP (VAR "H19",[VAR "mult",VAR "w7",VAR "v",VAR "mult"])), 
          
      ("H19",["e2","w7","v","mult"], 
           PRIMOP(equal,[VAR "e2",VAR "ovfl"],[], 
              [APP (VAR "F20",[a.INT 0,VAR "w7",VAR "v",VAR "e2",VAR "mult"]), 
               APP (VAR "F20",[a.INT 1,VAR "w7",VAR "v",VAR "e2",VAR "mult"])])), 
                            
      ("F20",["z21","w7","v","e2","mult"], 
           PRIMOP(equal,[VAR "z21",a.INT 0],[], 
              [APP (VAR "w7",[VAR "v",VAR "mult"]), 
               APP (VAR "r16'",[VAR "e2",VAR "mult",VAR "v"])])), 
          
      ("r23",["x24"],APP (VAR "r1",[VAR "x24"])), 
       
      ("r23'",["z25"],APP (VAR "ak6",[VAR "z25"]))], 
                 
      PRIMOP(makeref,[a.STRING "MUL"],["w26"], 
           [APP (VAR "F4",[VAR "w26",VAR "r1"])])) 
 

 

 

 

Program 2 contains two functions: f and run. At the beginning function 

run is called passing a value of zero as a parameter. Function run loops 10 times, 

calling the same number of times function f and making a computation. On the 

other hand, function f computes the expression n*n (actually 17*17). The result 

of the computation never raises an exception so the handler ovfl is never 
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evaluated. The program was compiled by using the original (old) approach in the 

translation of lambda expressions to CPS code.  

We showed before that this program produces exception handling 

overhead (see chapter 5).  

 

PROGRAM 2 - Old technique with exception handler 

 
SML code 
 
let   

fun f(n)=n*n handle ovfl=>n 
 fun run(x)=if x>10 then f(17) else (run(x+f(17)-288)) 
in   
    run(0)  
end 
 
 
Lambda code 
 
FIX 
    (["f","run"], 
     [FN 
        ("n", 
         HANDLE 
           (APP (MULT,RECORD [VAR "n",VAR "n"]), 
            FN 
              ("e", 
               COND 
                 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e"))))), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
                    [VAR "x", 
                     APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0)) 
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CPS code 
 
FIX 
    ([("f",["n","w1","x"], 
        PRIMOP(gethdlr,[],["h2"], 
          [PRIMOP(sethdlr,[VAR "n11"],[], 
            [PRIMOP(a.*,[VAR "n",VAR "n"],["w12"], 
               [PRIMOP(sethdlr,[VAR "h2"],[], 
                  [APP (VAR "k4",[VAR "w12",VAR "w1",VAR "x"])])])])])), 
           
      ("k4",["x13","w1","x"],APP (VAR "w1",[VAR "x13",VAR "x"])), 
       
      ("n11",["e3"], 
        PRIMOP(sethdlr,[VAR "h2"],[], 
           [APP (VAR "F5",[VAR "e3",VAR "k4"])])), 
                   
      ("F5",["e","k6"], 
        PRIMOP(equal,[VAR "e",VAR "ovfl"],[], 
           [APP (VAR "F7",[a.INT 0]), 
            APP (VAR "F7",[a.INT 1])])), 
                                        
      ("F7",["z8"], 
        PRIMOP(equal,[VAR "z8",a.INT 0],[], 
           [APP (VAR "k6",[VAR "n"]), 
            PRIMOP(gethdlr,[],["h9"], 
               [APP (VAR "h9",[VAR "e"])])])), 
           
      ("run",["x","w1"], 
        PRIMOP(equal,[VAR "x",a.INT 10],[], 
           [APP (VAR "F14",[a.INT 0,VAR "x"]), 
            APP (VAR "F14",[a.INT 1,VAR "x"])])), 
             
      ("F14",["z15","x"], 
        PRIMOP(equal,[VAR "z15",a.INT 0],[], 
           [APP (VAR "f",[a.INT 17,VAR "r16",VAR "x"]), 
            APP (VAR "f",[a.INT 17,VAR "r22",VAR "x"])])), 
                
      ("r16",["x17","x"],APP (VAR "r25",[VAR "x17"])), 
           
      ("r18",["x19"],APP (VAR "w1",[VAR "x19"])), 
                    
      ("r22",["x23","x"], 
        PRIMOP(a.-,[VAR "x23",a.INT 288],["w21"], 
           [PRIMOP(a.+,[VAR "x",VAR "w21"],["w20"], 
              [APP (VAR "run",[VAR "w20",VAR "r18"])])])), 
      
      ("r25",["x26"],APP (VAR "initialNormalCont",[VAR "x26"]))], 
      
      APP (VAR "run",[a.INT 0,VAR "r25"])) 
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In next version of program 2, we eliminate the exception handler from 

function f, and then we compile it again using the original approach in the 

translation of lambda expressions to CPS code.  

 

PROGRAM 2 - Old technique without exception handler 

 
SML code 
 
let   
 fun f(n)=n*n  
 fun run(x)=if x>1000 then f(17) else (run(x+f(17)-288)) 
in   
    run(0)  
end 
 
 
Lambda code 
 
FIX 
    (["f","run"], 
     [FN ("n",APP (MULT,RECORD [VAR "n",VAR "n"])), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
                    [VAR "x", 
                     APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0))       
 
 
CPS code 
 
FIX 
    ([("f",["n","w1","x"], 
        PRIMOP (a.*,[VAR "n",VAR "n"],["w2"], 
          [APP (VAR "w1",[VAR "w2",VAR "x"])])), 
       
      ("run",["x","w1"], 
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        PRIMOP(equal,[VAR "x",a.INT 10],[], 
          [APP (VAR "F3",[a.INT 0,VAR "x"]), 
           APP (VAR "F3",[a.INT 1,VAR "x"])])), 
        
      ("F3",["z4","x"], 
        PRIMOP(equal,[VAR "z4",a.INT 0],[], 
          [APP (VAR "f",[a.INT 17,VAR "r5",VAR "x"]), 
           APP (VAR "f",[a.INT 17,VAR "r11",VAR "x"])])), 
                
      ("r5",["x6","x"],APP (VAR "r14",[VAR "x6"])), 
          
      ("r7",["x8"],APP (VAR "w1",[VAR "x8"])), 
                    
      ("r11",["x12","x"], 
        PRIMOP(a.-,[VAR "x12",a.INT 288],["w10"], 
          [PRIMOP(a.+,[VAR "x",VAR "w10"],["w9"], 
             [APP (VAR "run",[VAR "w9",VAR "r7"])])])), 
        
      ("r14",["x15"],APP (VAR "initialNormalCont",[VAR "x15"]))], 
       
      APP (VAR "run",[a.INT 0,VAR "r14"])) 
 
 
 
 
 

Now, program 2 (with no handler) is compiled by using the new 

approach in the translation of lambda expressions to CPS code. As we can see in 

the produced CPS code , there are two continuations for normal and abnormal 

computations. Both continuations are passed as arguments by the different 

functions. 

 

PROGRAM 2 - Two-continuation technique 

 
SML code 
 
let   
 fun f(n)=n*n handle ovfl=>n 
 fun run(x)=if x>10 then f(17) else (run(x+f(17)-288)) 
in   
    run(0)  
end 
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Lambda code 
 
FIX 
    (["f","run"], 
     [FN 
        ("n", 
         HANDLE 
           (APP (MULT,RECORD [VAR "n",VAR "n"]), 
            FN 
              ("e", 
               COND 
                 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e"))))), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
                    [VAR "x", 
                     APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0)) 
  
 
CPS code 
 
FIX 
    ([("f",["n","w1","ak2","x"], 
        PRIMOP (a.*,[VAR "n",VAR "n"],["w7"], 
          [APP (VAR "w1",[VAR "w7",VAR "x"])])), 
         
      ("H3",["e"], 
        PRIMOP(equal,[VAR "e",VAR "ovfl"],[], 
          [APP (VAR "F4",[a.INT 0]), 
           APP (VAR "F4",[a.INT 1])])),   
            
      ("F4",["z5"], 
        PRIMOP(equal,[VAR "z5",a.INT 0],[], 
          [APP (VAR "w1",[VAR "n"]), 
           APP (VAR "ak2",[VAR "e"])])), 
       
      ("run",["x","w1","ak2"], 
        PRIMOP(equal,[VAR "x",a.INT 10],[], 
          [APP (VAR "F8",[a.INT 0,VAR "x"]), 
           APP (VAR "F8",[a.INT 1,VAR "x"])])), 
              
      ("F8",["z9","x"], 
        PRIMOP(equal,[VAR "z9",a.INT 0],[], 
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          [APP (VAR "f",[a.INT 17,VAR "r10",VAR "e'12",VAR "x"]), 
           APP (VAR "f",[a.INT 17,VAR "r20",VAR "e'22",VAR "x"])])), 
                
      ("r10",["x11","x"],APP (VAR "r25",[VAR "x11"])), 
       
      ("e'12",["z13"],APP (VAR "ak2",[VAR "z13"])), 
            
      ("r14",["x15"],APP (VAR "w1",[VAR "x15"])), 
       
      ("e'16",["z17"],APP (VAR "ak2",[VAR "z17"])), 
                    
      ("r20",["x21","x"], 
        PRIMOP(a.-,[VAR "x21",a.INT 288],["w19"], 
          [PRIMOP(a.+,[VAR "x",VAR "w19"],["w18"], 
             [APP(VAR "run", 
                 [VAR "w18",VAR "r14",VAR "e'16"])])])), 
                  
      ("e'22",["z23"],APP (VAR "ak2",[VAR "z23"])), 
      
      ("r25",["x26"],APP (VAR "initialNormalCont",[VAR "x26"])), 
       
      ("e'27",["z28"],APP (VAR "initialAbnormalCont",[VAR "z28"]))], 
       
      APP (VAR "run",[a.INT 0,VAR "r25",VAR "e'27"]))  
 

Last, program 2 is compiled by using the modification to the new 

approach in the translation of lambda expressions to CPS code. As we mentioned 

before, names of functions for normal and abnormal consecutive computations 

are similar, and the abnormal continuation is not passed as a parameter. 

 

PROGRAM 2 - One-continuation-displacement technique 

 
SML code 
 
let   
 fun f(n)=n*n handle ovfl=>n 
 fun run(x)=if x>10 then f(17) else (run(x+f(17)-288)) 
in   
    run(0)  
end 
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Lambda code 
 
FIX 
    (["f","run"], 
     [FN 
        ("n", 
         HANDLE 
           (APP (MULT,RECORD [VAR "n",VAR "n"]), 
            FN 
              ("e", 
               COND 
                 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n", 
                  RAISE (VAR "e"))))), 
      FN 
        ("x", 
         COND 
           (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17), 
            APP 
              (VAR "run", 
               APP 
                 (PLUS, 
                  RECORD 
                    [VAR "x", 
                     APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))], 
     APP (VAR "run",INT 0))  
 
 
CPS code 
 
FIX 
    ([("f",["n","w1","x"], 
        PRIMOP (a.*,[VAR "n",VAR "n"],["w7"], 
          [APP (VAR "w1",[VAR "w7",VAR "x"])])), 
        
      ("H3",["e"], 
        PRIMOP(equal,[VAR "e",VAR "ovfl"],[], 
           [APP (VAR "F4",[a.INT 0]), 
            APP (VAR "F4",[a.INT 1])])),  
               
      ("F4",["z5"], 
        PRIMOP(equal,[VAR "z5",a.INT 0],[], 
           [APP (VAR "w1",[VAR "n"]), 
            APP (VAR "w1",[VAR "e"])])), 
       
      ("run",["x","w1"], 
       PRIMOP(equal,[VAR "x",a.INT 10],[], 
           [APP (VAR "F8",[a.INT 0,VAR "x"]), 
            APP (VAR "F8",[a.INT 1,VAR "x"])])), 
              
      ("F8",["z9","x"], 
        PRIMOP(equal,[VAR "z9",a.INT 0],[], 
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           [APP (VAR "f",[a.INT 17,VAR "r10",VAR "x"]), 
            APP (VAR "f",[a.INT 17,VAR "r18",VAR "x"])])), 
                
      ("r10",["x11","x"],APP (VAR "r22",[VAR "x11"])), 
       
      ("r10'",["z12"],APP (VAR "ak2",[VAR "z12"])), 
            
      ("r13",["x14"],APP (VAR "w1",[VAR "x14"])), 
       
      ("r13'",["z15"],APP (VAR "ak2",[VAR "z15"])), 
                    
      ("r18",["x19","x"], 
        PRIMOP(a.-,[VAR "x19",a.INT 288],["w17"], 
           [PRIMOP(a.+,[VAR "x",VAR "w17"],["w16"], 
               [APP (VAR "run",[VAR "w16",VAR "r13"])])])), 
                
      ("r18'",["z20"],APP (VAR "ak2",[VAR "z20"])), 
      
      ("r22",["x23"],APP (VAR "initialNormalCont",[VAR "x23"])), 
       
      ("r22'",["z24"],APP (VAR "initialAbnormalCont",[VAR "z24"]))], 
       
      APP (VAR "run",[a.INT 0,VAR "r22"])) 

7.3 Performance evaluation 

 In the last section, we presented two different programs. We can say that 

the goal of both programs is different. Program 1 is a program used to test 

dynamic propagation in the execution of a program. So, the three different 

versions of program 1 raise one exception in the last called function, which is 

then caught by the handler defined in the first function. On the other hand, 

program 2 is a program used to test the performance of  the execution of a 

program. More precisely, it tests the overhead of exception handling in a 

program. For this case, we present 4 different versions. The first one, is a version 

of a program that declares and never raises an exception. This version was 

produced by the compiler that uses the traditional technique of exception 
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handling. This program was presented on chapter 5. The second version is like 

first version, only with no exception declaration. The third version is again like 

version one, but using the compiler that implements the two-continuation 

technique. Finally, the last version is like first version but using the compiler that 

implements the one-continuation-displacement technique. The next three figures 

illustrates the performance of program 2 on its four different versions. 
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Figure 7.1 Performance of program 2 from 10 to 1000 steps 
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Figure 7.2 Performance of program 2 from 10000 to 1000000 steps 
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Figure 7.3 Performance of program 2 from 10 to 1000000 steps 
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7.4 Analysis of performance 

 Clearly, the last three graphs show three differences in performance of 

the four versions in program 2. The first version show the worst performance 

from the four versions. The reason, as we established before, is the overhead 

created by operators gethdlr and sethdlr. Because version 2 has no exception 

declaration, then it has zero overhead exception handling. So, it is the main 

parameter to compare with relation to the other programs. Version 3 is the 

program that incorporates the two-continuation technique. The curves of the 

graphs show that this version decreases the amount of overhead of version 1. 

Analyzing the code of programs using the two-continuation technique, our 

conclusion is that the source of overhead is the extra parameter added to each 

function that passes the normal continuation. Finally, the graphs shows that the 

curves of  version 1 and version  4 are “tied” or follow exactly the same direction. 

That means, that there is no exception handling overhead  in the program that 

uses the one-continuation-displacement technique.  
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8  C o n c l u s i o n s  a n d  F u t u r e  
W o r k  

8.1   Conclusions 

We have implemented a basic CPS compiler for functional languages with 

exception handling. With it we were able to implement the new approach to 

exception handling and compare it with the approach taken by the SML of New 

Jersey compiler. By identifying the source of the overhead we show that all the 

overhead is moved from the normal flow of control to the code executed when 

an exception is raised.  

 

The main contributions of this dissertation are: 

• We develop a model of translation and execution that allows a 

programmer (or student/teacher) to write, translates, and executes 

programs in a source functional language (an extended lambda language) 

and a target CPS language. The model can be seen as a framework that 

can be used to execute programs, allowing studying a wide range of 

performance assessments. 

• We implemented an abstract machine. The machine has an instruction 

set, a register set, a model of memory, a code generator which transforms 

programs into abstract machine code (AMC), and a simulator which 
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executes AMC programs. The AMC is essentially an assembly-language 

program, and like any abstract machine it has some advantages with 

respect to a real machine: first, we can make very good analysis and 

experiments of performance, and second it is easy to transport to real 

architectures.    

• We showed that the implementation of exception handling in the 

SML/NJ and OCAML compilers produces runtime overhead on normal 

execution. 

• We demonstrated the source of the exception handling overhead in SML 

programs. 

• We designed and implemented a new approach where all the overhead is 

moved from the normal flow of control to the code executed when an 

exception is raised.  

 

8.2   Future work 

The research presented in this dissertation can be extended in the 

following directions:   

• Writing generators of code for real machines. Remember that our 

generator produces code for an abstract machine. 

• Continuing the compiler with the next phase: optimization. We could test 

our new method of exception handling and see if the code produced by 
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this method is affected by the optimizer. If  this is the case, we could 

implement some mechanism used in imperative compilers like Ada, Java, 

or C++ (we discussed some of these techniques in chapter 5). 

• Implementing the approach of exception table, or a mix of the two-

continuation approach with the exception table approach.  

• Our research focused on CPS compilers. Another direction can be 

working on implementation that use other techniques like combinators. 

OCAML could be a good example to study.  
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Appendix 

PROGRAM 1 - Old technique  

Abstract Machine Code 

0               STORE   String MUL,Mem w35 
1               LOAD    Mem w35,Reg 1 
2               LOAD    Mem r1,Reg 2 
3               JUMP    Name F3 
        LAB r1: 
4               STORE   Reg 1,Mem x2 
5               LOAD    Mem x2,Reg 1 
6               JUMP    Mem initialNormalCont 
        LAB F3: 
7               STORE   Reg 1,Mem mult 
8               STORE   Reg 2,Mem k4 
9               LOAD    Const 17,Reg 1 
10              LOAD    Mem r33,Reg 2 
11              LOAD    Mem mult,Reg 3 
12              JUMP    Name f 
        LAB f: 
13              STORE   Reg 1,Mem n 
14              STORE   Reg 2,Mem w5 
15              STORE   Reg 3,Mem mult 
16              STORE   Reg 99,Mem h6 
17              LOAD    String n15,Reg 99 
18              LOAD    Mem n,Reg 1 
19              LOAD    Mem r16,Reg 2 
20              LOAD    Mem mult,Reg 3 
21              LOAD    Mem h6,Reg 4 
22              JUMP    Name h 
        LAB k8: 
23              STORE   Reg 1,Mem x18 
24              LOAD    Mem x18,Reg 1 
25              JUMP    Name r33 
        LAB n15: 
26              STORE   Reg 1,Mem e7 
27              STORE   Reg 2,Mem h6 
28              STORE   Reg 3,Mem v 
29              STORE   Reg 4,Mem mult 
30              LOAD    String h6,Reg 99 
31              LOAD    Mem e7,Reg 1 
32              LOAD    Mem k8,Reg 2 
33              LOAD    Mem mult,Reg 3 
34              LOAD    Mem v,Reg 4 
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35              JUMP    Name F9 
        LAB F9: 
36              STORE   Reg 1,Mem e1 
37              STORE   Reg 2,Mem k10 
38              STORE   Reg 3,Mem mult 
39              STORE   Reg 4,Mem n 
40              CJUMP   EQ,Mem e1,Mem mult,L0,L1 
        LAB L0: 
41              LOAD    Const 0,Reg 1 
42              LOAD    Mem n,Reg 2 
43              JUMP    Name F11 
        LAB L1: 
44              LOAD    Const 1,Reg 1 
45              LOAD    Mem n,Reg 2 
46              JUMP    Name F11 
        LAB F11: 
47              STORE   Reg 1,Mem z12 
48              STORE   Reg 2,Mem n 
49              CJUMP   EQ,Mem z12,Const 0,L2,L3 
        LAB L2: 
50              LOAD    Mem n,Reg 1 
51              JUMP    Name k8 
        LAB L3: 
52              STORE   Reg 99,Mem h13 
53              LOAD    Mem e1,Reg 1 
54              JUMP    Mem h13 
        LAB r16: 
55              STORE   Reg 1,Mem x17 
56              LOAD    String h6,Reg 99 
57              LOAD    Mem x17,Reg 1 
58              JUMP    Name k8 
        LAB h: 
59              STORE   Reg 1,Mem m 
60              STORE   Reg 2,Mem w5 
61              STORE   Reg 3,Mem mult 
62              STORE   Reg 4,Mem h6 
63              LOAD    Mem m,Reg 1 
64              LOAD    Mem r19,Reg 2 
65              LOAD    Mem mult,Reg 3 
66              LOAD    Mem h6,Reg 4 
67              JUMP    Name g 
        LAB r19: 
68              STORE   Reg 1,Mem x20 
69              LOAD    Mem x20,Reg 1 
70              JUMP    Mem w5 
        LAB g: 
71              STORE   Reg 1,Mem v 
72              STORE   Reg 2,Mem w5 
73              STORE   Reg 3,Mem mult 
74              STORE   Reg 4,Mem h6 
75              STORE   Reg 99,Mem h21 
76              LOAD    String n30,Reg 99 
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77              STORE   Reg 99,Mem h31 
78              LOAD    Mem mult,Reg 1 
79              LOAD    Mem h21,Reg 2 
80              LOAD    Mem h6,Reg 3 
81              LOAD    Mem v,Reg 4 
82              LOAD    Mem mult,Reg 5 
83              JUMP    Mem h31 
        LAB k23: 
84              STORE   Reg 1,Mem x32 
85              LOAD    Mem x32,Reg 1 
86              JUMP    Mem w5 
        LAB n30: 
87              STORE   Reg 1,Mem e22 
88              STORE   Reg 2,Mem h21 
89              STORE   Reg 3,Mem h6 
90              STORE   Reg 4,Mem v 
91              STORE   Reg 5,Mem mult 
92              LOAD    String h21,Reg 99 
93              LOAD    Mem e22,Reg 1 
94              LOAD    Mem k23,Reg 2 
95              LOAD    Mem h6,Reg 3 
96              LOAD    Mem v,Reg 4 
97              LOAD    Mem mult,Reg 5 
98              JUMP    Name F24 
        LAB F24: 
99              STORE   Reg 1,Mem e2 
100             STORE   Reg 2,Mem k25 
101             STORE   Reg 3,Mem h6 
102             STORE   Reg 4,Mem v 
103             STORE   Reg 5,Mem mult 
104             CJUMP   EQ,Mem e2,Mem ovfl,L4,L5 
        LAB L4: 
105             LOAD    Const 0,Reg 1 
106             LOAD    Mem e2,Reg 2 
107             LOAD    Mem h6,Reg 3 
108             LOAD    Mem v,Reg 4 
109             LOAD    Mem mult,Reg 5 
110             JUMP    Name F26 
        LAB L5: 
111             LOAD    Const 1,Reg 1 
112             LOAD    Mem e2,Reg 2 
113             LOAD    Mem h6,Reg 3 
114             LOAD    Mem v,Reg 4 
115             LOAD    Mem mult,Reg 5 
116             JUMP    Name F26 
        LAB F26: 
117             STORE   Reg 1,Mem z27 
118             STORE   Reg 2,Mem e2 
119             STORE   Reg 3,Mem h6 
120             STORE   Reg 4,Mem v 
121             STORE   Reg 5,Mem mult 
122             CJUMP   EQ,Mem z27,Const 0,L6,L7 
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        LAB L6: 
123             LOAD    Mem v,Reg 1 
124             JUMP    Mem k25 
        LAB L7: 
125             STORE   Reg 99,Mem h28 
126             LOAD    Mem e2,Reg 1 
127             LOAD    Mem h6,Reg 2 
128             LOAD    Mem v,Reg 3 
129             LOAD    Mem mult,Reg 4 
130             JUMP    Mem h28 
        LAB r33: 
131             STORE   Reg 1,Mem x34 
132             LOAD    Mem x34,Reg 1 
133             JUMP    Name r1 
        LAB end: 
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PROGRAM  1 - Two-continuation technique  

Abstract Machine Code 

0               STORE   String MUL,Mem w30 
1               LOAD    Mem w30,Reg 1 
2               LOAD    Mem r1,Reg 2 
3               LOAD    Mem e'3,Reg 3 
4               JUMP    Name F5 
        LAB r1: 
5               STORE   Reg 1,Mem x2 
6               LOAD    Mem x2,Reg 1 
7               JUMP    Mem initialNormalCont 
        LAB e'3: 
8               STORE   Reg 1,Mem z4 
9               LOAD    Mem z4,Reg 1 
10              JUMP    Mem initialAbnormalCont 
        LAB F5: 
11              STORE   Reg 1,Mem mult 
12              STORE   Reg 2,Mem k6 
13              STORE   Reg 3,Mem ak7 
14              LOAD    Const 17,Reg 1 
15              LOAD    Mem r26,Reg 2 
16              LOAD    Mem e'28,Reg 3 
17              LOAD    Mem mult,Reg 4 
18              JUMP    Name f 
        LAB f: 
19              STORE   Reg 1,Mem n 
20              STORE   Reg 2,Mem w8 
21              STORE   Reg 3,Mem ak9 
22              STORE   Reg 4,Mem mult 
23              LOAD    Mem n,Reg 1 
24              LOAD    Mem r14,Reg 2 
25              LOAD    Mem e'16,Reg 3 
26              LOAD    Mem mult,Reg 4 
27              JUMP    Name h 
        LAB H10: 
28              STORE   Reg 1,Mem e1 
29              STORE   Reg 2,Mem mult 
30              STORE   Reg 3,Mem v 
31              CJUMP   EQ,Mem e1,Mem mult,L0,L1 
        LAB L0: 
32              LOAD    Const 0,Reg 1 
33              LOAD    Mem v,Reg 2 
34              JUMP    Name F11 
        LAB L1: 
35              LOAD    Const 1,Reg 1 
36              LOAD    Mem v,Reg 2 
37              JUMP    Name F11 
        LAB F11: 
38              STORE   Reg 1,Mem z12 
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39              STORE   Reg 2,Mem n 
40              CJUMP   EQ,Mem z12,Const 0,L2,L3 
        LAB L2: 
41              LOAD    Mem n,Reg 1 
42              JUMP    Name r26 
        LAB L3: 
43              LOAD    Mem e1,Reg 1 
44              JUMP    Mem ak9 
        LAB r14: 
45              STORE   Reg 1,Mem x15 
46              LOAD    Mem x15,Reg 1 
47              JUMP    Mem w8 
        LAB e'16: 
48              STORE   Reg 1,Mem z17 
49              STORE   Reg 2,Mem mult 
50              STORE   Reg 3,Mem v 
51              LOAD    Mem z17,Reg 1 
52              LOAD    Mem mult,Reg 2 
53              LOAD    Mem v,Reg 3 
54              JUMP    Name H10 
        LAB h: 
55              STORE   Reg 1,Mem m 
56              STORE   Reg 2,Mem w8 
57              STORE   Reg 3,Mem ak9 
58              STORE   Reg 4,Mem mult 
59              LOAD    Mem m,Reg 1 
60              LOAD    Mem r18,Reg 2 
61              LOAD    Mem e'20,Reg 3 
62              LOAD    Mem mult,Reg 4 
63              JUMP    Name g 
        LAB r18: 
64              STORE   Reg 1,Mem x19 
65              LOAD    Mem x19,Reg 1 
66              JUMP    Mem w8 
        LAB e'20: 
67              STORE   Reg 1,Mem z21 
68              STORE   Reg 2,Mem mult 
69              STORE   Reg 3,Mem v 
70              LOAD    Mem z21,Reg 1 
71              LOAD    Mem mult,Reg 2 
72              LOAD    Mem v,Reg 3 
73              JUMP    Name e'16 
        LAB g: 
74              STORE   Reg 1,Mem v 
75              STORE   Reg 2,Mem w8 
76              STORE   Reg 3,Mem ak9 
77              STORE   Reg 4,Mem mult 
78              LOAD    Mem mult,Reg 1 
79              LOAD    Mem w8,Reg 2 
80              LOAD    Mem v,Reg 3 
81              LOAD    Mem mult,Reg 4 
82              JUMP    Name H22 
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        LAB H22: 
83              STORE   Reg 1,Mem e2 
84              STORE   Reg 2,Mem w8 
85              STORE   Reg 3,Mem v 
86              STORE   Reg 4,Mem mult 
87              CJUMP   EQ,Mem e2,Mem ovfl,L4,L5 
        LAB L4: 
88              LOAD    Const 0,Reg 1 
89              LOAD    Mem w8,Reg 2 
90              LOAD    Mem v,Reg 3 
91              LOAD    Mem e2,Reg 4 
92              LOAD    Mem mult,Reg 5 
93              JUMP    Name F23 
        LAB L5: 
94              LOAD    Const 1,Reg 1 
95              LOAD    Mem w8,Reg 2 
96              LOAD    Mem v,Reg 3 
97              LOAD    Mem e2,Reg 4 
98              LOAD    Mem mult,Reg 5 
99              JUMP    Name F23 
        LAB F23: 
100             STORE   Reg 1,Mem z24 
101             STORE   Reg 2,Mem w8 
102             STORE   Reg 3,Mem v 
103             STORE   Reg 4,Mem e2 
104             STORE   Reg 5,Mem mult 
105             CJUMP   EQ,Mem z24,Const 0,L6,L7 
        LAB L6: 
106             LOAD    Mem v,Reg 1 
107             LOAD    Mem mult,Reg 2 
108             JUMP    Mem w8 
        LAB L7: 
109             LOAD    Mem e2,Reg 1 
110             LOAD    Mem mult,Reg 2 
111             LOAD    Mem v,Reg 3 
112             JUMP    Name e'20 
        LAB r26: 
113             STORE   Reg 1,Mem x27 
114             LOAD    Mem x27,Reg 1 
115             JUMP    Name r1 
        LAB e'28: 
116             STORE   Reg 1,Mem z29 
117             LOAD    Mem z29,Reg 1 
118             JUMP    Mem ak7 
        LAB end: 
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PROGRAM  1 - One-continuation-displacement technique  

Abstract Machine Code 

0               STORE   String MUL,Mem w26 
1               LOAD    Mem w26,Reg 1 
2               LOAD    Mem r1,Reg 2 
3               JUMP    Name F4 
        LAB r1: 
4               STORE   Reg 1,Mem x2 
5               LOAD    Mem x2,Reg 1 
6               JUMP    Mem initialNormalCont 
        LAB r1': 
7               STORE   Reg 1,Mem z3 
8               LOAD    Mem z3,Reg 1 
9               JUMP    Mem initialAbnormalCont 
        LAB F4: 
10              STORE   Reg 1,Mem mult 
11              STORE   Reg 2,Mem k5 
12              LOAD    Const 17,Reg 1 
13              LOAD    Mem r23,Reg 2 
14              LOAD    Mem mult,Reg 3 
15              JUMP    Name f 
        LAB f: 
16              STORE   Reg 1,Mem n 
17              STORE   Reg 2,Mem w7 
18              STORE   Reg 3,Mem mult 
19              LOAD    Mem n,Reg 1 
20              LOAD    Mem r13,Reg 2 
21              LOAD    Mem mult,Reg 3 
22              JUMP    Name h 
        LAB H9: 
23              STORE   Reg 1,Mem e1 
24              STORE   Reg 2,Mem mult 
25              STORE   Reg 3,Mem v 
26              CJUMP   EQ,Mem e1,Mem mult,L0,L1 
        LAB L0: 
27              LOAD    Const 0,Reg 1 
28              LOAD    Mem v,Reg 2 
29              JUMP    Name F10 
        LAB L1: 
30              LOAD    Const 1,Reg 1 
31              LOAD    Mem v,Reg 2 
32              JUMP    Name F10 
        LAB F10: 
33              STORE   Reg 1,Mem z11 
34              STORE   Reg 2,Mem n 
35              CJUMP   EQ,Mem z11,Const 0,L2,L3 
        LAB L2: 
36              LOAD    Mem n,Reg 1 
37              JUMP    Name r23 
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        LAB L3: 
38              LOAD    Mem e1,Reg 1 
39              JUMP    Mem w7 
        LAB r13: 
40              STORE   Reg 1,Mem x14 
41              LOAD    Mem x14,Reg 1 
42              JUMP    Mem w7 
        LAB r13': 
43              STORE   Reg 1,Mem z15 
44              STORE   Reg 2,Mem mult 
45              STORE   Reg 3,Mem v 
46              LOAD    Mem z15,Reg 1 
47              LOAD    Mem mult,Reg 2 
48              LOAD    Mem v,Reg 3 
49              JUMP    Name H9 
        LAB h: 
50              STORE   Reg 1,Mem m 
51              STORE   Reg 2,Mem w7 
52              STORE   Reg 3,Mem mult 
53              LOAD    Mem m,Reg 1 
54              LOAD    Mem r16,Reg 2 
55              LOAD    Mem mult,Reg 3 
56              JUMP    Name g 
        LAB r16: 
57              STORE   Reg 1,Mem x17 
58              LOAD    Mem x17,Reg 1 
59              JUMP    Mem w7 
        LAB r16': 
60              STORE   Reg 1,Mem z18 
61              STORE   Reg 2,Mem mult 
62              STORE   Reg 3,Mem v 
63              LOAD    Mem z18,Reg 1 
64              LOAD    Mem mult,Reg 2 
65              LOAD    Mem v,Reg 3 
66              JUMP    Name r13' 
        LAB g: 
67              STORE   Reg 1,Mem v 
68              STORE   Reg 2,Mem w7 
69              STORE   Reg 3,Mem mult 
70              LOAD    Mem mult,Reg 1 
71              LOAD    Mem w7,Reg 2 
72              LOAD    Mem v,Reg 3 
73              LOAD    Mem mult,Reg 4 
74              JUMP    Name H19 
        LAB H19: 
75              STORE   Reg 1,Mem e2 
76              STORE   Reg 2,Mem w7 
77              STORE   Reg 3,Mem v 
78              STORE   Reg 4,Mem mult 
79              CJUMP   EQ,Mem e2,Mem ovfl,L4,L5 
        LAB L4: 
80              LOAD    Const 0,Reg 1 
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81              LOAD    Mem w7,Reg 2 
82              LOAD    Mem v,Reg 3 
83              LOAD    Mem e2,Reg 4 
84              LOAD    Mem mult,Reg 5 
85              JUMP    Name F20 
        LAB L5: 
86              LOAD    Const 1,Reg 1 
87              LOAD    Mem w7,Reg 2 
88              LOAD    Mem v,Reg 3 
89              LOAD    Mem e2,Reg 4 
90              LOAD    Mem mult,Reg 5 
91              JUMP    Name F20 
        LAB F20: 
92              STORE   Reg 1,Mem z21 
93              STORE   Reg 2,Mem w7 
94              STORE   Reg 3,Mem v 
95              STORE   Reg 4,Mem e2 
96              STORE   Reg 5,Mem mult 
97              CJUMP   EQ,Mem z21,Const 0,L6,L7 
        LAB L6: 
98              LOAD    Mem v,Reg 1 
99              LOAD    Mem mult,Reg 2 
100             JUMP    Mem w7 
        LAB L7: 
101             LOAD    Mem e2,Reg 1 
102             LOAD    Mem mult,Reg 2 
103             LOAD    Mem v,Reg 3 
104             JUMP    Name r16' 
        LAB r23: 
105             STORE   Reg 1,Mem x24 
106             LOAD    Mem x24,Reg 1 
107             JUMP    Name r1 
        LAB r23': 
108             STORE   Reg 1,Mem z25 
109             LOAD    Mem z25,Reg 1 
110             JUMP    Mem ak6 
        LAB end: 
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PROGRAM 2 - Old technique with exception handler 

Abstract Machine Code 

0               LOAD    Const 0,Reg 1 
1               LOAD    Mem r25,Reg 2 
2               JUMP    Name run 
        LAB f: 
3               STORE   Reg 1,Mem n 
4               STORE   Reg 2,Mem w1 
5               STORE   Reg 3,Mem x 
6               STORE   Reg 99,Mem h2 
7               LOAD    String n11,Reg 99 
8               MUL     Mem n,Mem n,Mem w12 
9               LOAD    String h2,Reg 99 
10              LOAD    Mem w12,Reg 1 
11              LOAD    Mem w1,Reg 2 
12              LOAD    Mem x,Reg 3 
13              JUMP    Name k4 
        LAB k4: 
14              STORE   Reg 1,Mem x13 
15              STORE   Reg 2,Mem w1 
16              STORE   Reg 3,Mem x 
17              LOAD    Mem x13,Reg 1 
18              LOAD    Mem x,Reg 2 
19              JUMP    Mem w1 
        LAB n11: 
20              STORE   Reg 1,Mem e3 
21              LOAD    String h2,Reg 99 
22              LOAD    Mem e3,Reg 1 
23              LOAD    Mem k4,Reg 2 
24              JUMP    Name F5 
        LAB F5: 
25              STORE   Reg 1,Mem e 
26              STORE   Reg 2,Mem k6 
27              CJUMP   EQ,Mem e,Mem ovfl,L0,L1 
        LAB L0: 
28              LOAD    Const 0,Reg 1 
29              JUMP    Name F7 
        LAB L1: 
30              LOAD    Const 1,Reg 1 
31              JUMP    Name F7 
        LAB F7: 
32              STORE   Reg 1,Mem z8 
33              CJUMP   EQ,Mem z8,Const 0,L2,L3 
        LAB L2: 
34              LOAD    Mem n,Reg 1 
35              JUMP    Mem k6 
        LAB L3: 
36              STORE   Reg 99,Mem h9 
37              LOAD    Mem e,Reg 1 
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38              JUMP    Mem h9 
        LAB run: 
39              STORE   Reg 1,Mem x 
40              STORE   Reg 2,Mem w1 
41              CJUMP   EQ,Mem x,Const 10,L4,L5 
        LAB L4: 
42              LOAD    Const 0,Reg 1 
43              LOAD    Mem x,Reg 2 
44              JUMP    Name F14 
        LAB L5: 
45              LOAD    Const 1,Reg 1 
46              LOAD    Mem x,Reg 2 
47              JUMP    Name F14 
        LAB F14: 
48              STORE   Reg 1,Mem z15 
49              STORE   Reg 2,Mem x 
50              CJUMP   EQ,Mem z15,Const 0,L6,L7 
        LAB L6: 
51              LOAD    Const 17,Reg 1 
52              LOAD    Mem r16,Reg 2 
53              LOAD    Mem x,Reg 3 
54              JUMP    Name f 
        LAB L7: 
55              LOAD    Const 17,Reg 1 
56              LOAD    Mem r22,Reg 2 
57              LOAD    Mem x,Reg 3 
58              JUMP    Name f 
        LAB r16: 
59              STORE   Reg 1,Mem x17 
60              STORE   Reg 2,Mem x 
61              LOAD    Mem x17,Reg 1 
62              JUMP    Name r25 
        LAB r18: 
63              STORE   Reg 1,Mem x19 
64              LOAD    Mem x19,Reg 1 
65              JUMP    Mem w1 
        LAB r22: 
66              STORE   Reg 1,Mem x23 
67              STORE   Reg 2,Mem x 
68              SUB     Mem x23,Const 288,Mem w21 
69              ADD     Mem x,Mem w21,Mem w20 
70              LOAD    Mem w20,Reg 1 
71              LOAD    Mem r18,Reg 2 
72              JUMP    Name run 
        LAB r25: 
73              STORE   Reg 1,Mem x26 
74              LOAD    Mem x26,Reg 1 
75              JUMP    Mem initialNormalCont 
        LAB end: 
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PROGRAM 2 - Old technique without exception handler 

Abstract Machine Code 

0               LOAD    Const 0,Reg 1 
1               LOAD    Mem r14,Reg 2 
2               JUMP    Name run 
        LAB f: 
3               STORE   Reg 1,Mem n 
4               STORE   Reg 2,Mem w1 
5               STORE   Reg 3,Mem x 
6               MUL     Mem n,Mem n,Mem w2 
7               LOAD    Mem w2,Reg 1 
8               LOAD    Mem x,Reg 2 
9               JUMP    Mem w1 
        LAB run: 
10              STORE   Reg 1,Mem x 
11              STORE   Reg 2,Mem w1 
12              CJUMP   EQ,Mem x,Const 10,L0,L1 
        LAB L0: 
13              LOAD    Const 0,Reg 1 
14              LOAD    Mem x,Reg 2 
15              JUMP    Name F3 
        LAB L1: 
16              LOAD    Const 1,Reg 1 
17              LOAD    Mem x,Reg 2 
18              JUMP    Name F3 
        LAB F3: 
19              STORE   Reg 1,Mem z4 
20              STORE   Reg 2,Mem x 
21              CJUMP   EQ,Mem z4,Const 0,L2,L3 
        LAB L2: 
22              LOAD    Const 17,Reg 1 
23              LOAD    Mem r5,Reg 2 
24              LOAD    Mem x,Reg 3 
25              JUMP    Name f 
        LAB L3: 
26              LOAD    Const 17,Reg 1 
27              LOAD    Mem r11,Reg 2 
28              LOAD    Mem x,Reg 3 
29              JUMP    Name f 
        LAB r5: 
30              STORE   Reg 1,Mem x6 
31              STORE   Reg 2,Mem x 
32              LOAD    Mem x6,Reg 1 
33              JUMP    Name r14 
        LAB r7: 
34              STORE   Reg 1,Mem x8 
35              LOAD    Mem x8,Reg 1 
36              JUMP    Mem w1 
        LAB r11: 
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37              STORE   Reg 1,Mem x12 
38              STORE   Reg 2,Mem x 
39              SUB     Mem x12,Const 288,Mem w10 
40              ADD     Mem x,Mem w10,Mem w9 
41              LOAD    Mem w9,Reg 1 
42              LOAD    Mem r7,Reg 2 
43              JUMP    Name run 
        LAB r14: 
44              STORE   Reg 1,Mem x15 
45              LOAD    Mem x15,Reg 1 
46              JUMP    Mem initialNormalCont 
        LAB end: 
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PROGRAM 2 - Two-continuation technique 

Abstract Machine Code 

0               LOAD    Const 0,Reg 1 
1               LOAD    Mem r25,Reg 2 
2               LOAD    Mem e'27,Reg 3 
3               JUMP    Name run 
        LAB f: 
4               STORE   Reg 1,Mem n 
5               STORE   Reg 2,Mem w1 
6               STORE   Reg 3,Mem ak2 
7               STORE   Reg 4,Mem x 
8               MUL     Mem n,Mem n,Mem w7 
9               LOAD    Mem w7,Reg 1 
10              LOAD    Mem x,Reg 2 
11              JUMP    Mem w1 
        LAB H3: 
12              STORE   Reg 1,Mem e 
13              CJUMP   EQ,Mem e,Mem ovfl,L0,L1 
        LAB L0: 
14              LOAD    Const 0,Reg 1 
15              JUMP    Name F4 
        LAB L1: 
16              LOAD    Const 1,Reg 1 
17              JUMP    Name F4 
        LAB F4: 
18              STORE   Reg 1,Mem z5 
19              CJUMP   EQ,Mem z5,Const 0,L2,L3 
        LAB L2: 
20              LOAD    Mem n,Reg 1 
21              JUMP    Mem w1 
        LAB L3: 
22              LOAD    Mem e,Reg 1 
23              JUMP    Mem ak2 
        LAB run: 
24              STORE   Reg 1,Mem x 
25              STORE   Reg 2,Mem w1 
26              STORE   Reg 3,Mem ak2 
27              CJUMP   EQ,Mem x,Const 10,L4,L5 
        LAB L4: 
28              LOAD    Const 0,Reg 1 
29              LOAD    Mem x,Reg 2 
30              JUMP    Name F8 
        LAB L5: 
31              LOAD    Const 1,Reg 1 
32              LOAD    Mem x,Reg 2 
33              JUMP    Name F8 
        LAB F8: 
34              STORE   Reg 1,Mem z9 
35              STORE   Reg 2,Mem x 
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36              CJUMP   EQ,Mem z9,Const 0,L6,L7 
        LAB L6: 
37              LOAD    Const 17,Reg 1 
38              LOAD    Mem r10,Reg 2 
39              LOAD    Mem e'12,Reg 3 
40              LOAD    Mem x,Reg 4 
41              JUMP    Name f 
        LAB L7: 
42              LOAD    Const 17,Reg 1 
43              LOAD    Mem r20,Reg 2 
44              LOAD    Mem e'22,Reg 3 
45              LOAD    Mem x,Reg 4 
46              JUMP    Name f 
        LAB r10: 
47              STORE   Reg 1,Mem x11 
48              STORE   Reg 2,Mem x 
49              LOAD    Mem x11,Reg 1 
50              JUMP    Name r25 
        LAB e'12: 
51              STORE   Reg 1,Mem z13 
52              LOAD    Mem z13,Reg 1 
53              JUMP    Mem ak2 
        LAB r14: 
54              STORE   Reg 1,Mem x15 
55              LOAD    Mem x15,Reg 1 
56              JUMP    Mem w1 
        LAB e'16: 
57              STORE   Reg 1,Mem z17 
58              LOAD    Mem z17,Reg 1 
59              JUMP    Mem ak2 
        LAB r20: 
60              STORE   Reg 1,Mem x21 
61              STORE   Reg 2,Mem x 
62              SUB     Mem x21,Const 288,Mem w19 
63              ADD     Mem x,Mem w19,Mem w18 
64              LOAD    Mem w18,Reg 1 
65              LOAD    Mem r14,Reg 2 
66              LOAD    Mem e'16,Reg 3 
67              JUMP    Name run 
        LAB e'22: 
68              STORE   Reg 1,Mem z23 
69              LOAD    Mem z23,Reg 1 
70              JUMP    Mem ak2 
        LAB r25: 
71              STORE   Reg 1,Mem x26 
72              LOAD    Mem x26,Reg 1 
73              JUMP    Mem initialNormalCont 
        LAB e'27: 
74              STORE   Reg 1,Mem z28 
75              LOAD    Mem z28,Reg 1 
76              JUMP    Mem initialAbnormalCont 
        LAB end: 
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PROGRAM 2 - One-continuation-displacement technique 

Abstract Machine Code 

0               LOAD    Const 0,Reg 1 
1               LOAD    Mem r22,Reg 2 
2               JUMP    Name run 
        LAB f: 
3               STORE   Reg 1,Mem n 
4               STORE   Reg 2,Mem w1 
5               STORE   Reg 3,Mem x 
6               MUL     Mem n,Mem n,Mem w7 
7               LOAD    Mem w7,Reg 1 
8               LOAD    Mem x,Reg 2 
9               JUMP    Mem w1 
        LAB H3: 
10              STORE   Reg 1,Mem e 
11              CJUMP   EQ,Mem e,Mem ovfl,L0,L1 
        LAB L0: 
12              LOAD    Const 0,Reg 1 
13              JUMP    Name F4 
        LAB L1: 
14              LOAD    Const 1,Reg 1 
15              JUMP    Name F4 
        LAB F4: 
16              STORE   Reg 1,Mem z5 
17              CJUMP   EQ,Mem z5,Const 0,L2,L3 
        LAB L2: 
18              LOAD    Mem n,Reg 1 
19              JUMP    Mem w1 
        LAB L3: 
20              LOAD    Mem e,Reg 1 
21              JUMP    Mem w1 
        LAB run: 
22              STORE   Reg 1,Mem x 
23              STORE   Reg 2,Mem w1 
24              CJUMP   EQ,Mem x,Const 10,L4,L5 
        LAB L4: 
25              LOAD    Const 0,Reg 1 
26              LOAD    Mem x,Reg 2 
27              JUMP    Name F8 
        LAB L5: 
28              LOAD    Const 1,Reg 1 
29              LOAD    Mem x,Reg 2 
30              JUMP    Name F8 
        LAB F8: 
31              STORE   Reg 1,Mem z9 
32              STORE   Reg 2,Mem x 
33              CJUMP   EQ,Mem z9,Const 0,L6,L7 
        LAB L6: 
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34              LOAD    Const 17,Reg 1 
35              LOAD    Mem r10,Reg 2 
36              LOAD    Mem x,Reg 3 
37              JUMP    Name f 
        LAB L7: 
38              LOAD    Const 17,Reg 1 
39              LOAD    Mem r18,Reg 2 
40              LOAD    Mem x,Reg 3 
41              JUMP    Name f 
        LAB r10: 
42              STORE   Reg 1,Mem x11 
43              STORE   Reg 2,Mem x 
44              LOAD    Mem x11,Reg 1 
45              JUMP    Name r22 
        LAB r10': 
46              STORE   Reg 1,Mem z12 
47              LOAD    Mem z12,Reg 1 
48              JUMP    Mem ak2 
        LAB r13: 
49              STORE   Reg 1,Mem x14 
50              LOAD    Mem x14,Reg 1 
51              JUMP    Mem w1 
        LAB r13': 
52              STORE   Reg 1,Mem z15 
53              LOAD    Mem z15,Reg 1 
54              JUMP    Mem ak2 
        LAB r18: 
55              STORE   Reg 1,Mem x19 
56              STORE   Reg 2,Mem x 
57              SUB     Mem x19,Const 288,Mem w17 
58              ADD     Mem x,Mem w17,Mem w16 
59              LOAD    Mem w16,Reg 1 
60              LOAD    Mem r13,Reg 2 
61              JUMP    Name run 
        LAB r18': 
62              STORE   Reg 1,Mem z20 
63              LOAD    Mem z20,Reg 1 
64              JUMP    Mem ak2 
        LAB r22: 
65              STORE   Reg 1,Mem x23 
66              LOAD    Mem x23,Reg 1 
67              JUMP    Mem initialNormalCont 
        LAB r22': 
68              STORE   Reg 1,Mem z24 
69              LOAD    Mem z24,Reg 1 
70              JUMP    Mem initialAbnormalCont 
        LAB end: 
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