Design and Implementation of Exception
Handling with Zero Overhead in
Functional Languages

Ramon Zatarain Cabada

A dissertation
submitted to the College of Engineering at
Florida Institute of Technology
in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
n
Computer Science

Melboutne, Florida
May, 2003

Abstract

Title: Design and Implementation of Exception Handling with Zero
Overhead in Functional Languages

Author: Ramon Zatarain Cabada

Major Advisor: Ryan Stansifer, Ph.D.

This dissertation considers the implementation of exception handling
specifically for functional languages. Some implementations incur overhead for
using exception handling even when no exceptions are raised. We show the
results of some experiments with the SML of New Jersey and OCAML
compilers, two well-known compilers for functional languages. Imperative
languages avoid this overhead by using tables, but the approach does not easily
transfer to compilers using continuation passing style (CPS). This dissertation
proposes an approach that works with CPS compilers like SML of New Jersey.

We first present an experiment where programs in SML are written with
and without exception handlers. From these results, we conclude that programs
with exception handling produce overhead even when no exceptions are raised.
Then, we analyze the source of the exception handling overhead in the SML of
New Jersey compiler. We present a solution to the problem. The new approach
uses two continuations instead of the one continuation. One continuation

encapsulates the rest of the normal computation as usual. A second continuation

is used for passing the abnormal computation. The second continuation is not

passed as an extra argument but is passed as a displacement from the first
continuation.

We have implemented a basic CPS compiler for functional languages
with exception handling. With it we were able to implement the new approach to
exception handling and compare it side-by-side with the approach taken by the
SML of New Jersey compiler. We show that the new approach to exception
handling adds no overhead to the normal flow of control.

The importance of our new approach to exception handling for CPS
compilers proposed in this dissertation is the improved run-time performance in

every case in which an exception handler is used.

A%

Table of Content

List Of FIQUIES ..ecevvuriiiiuiiiitieiiiieiieccteccieccteecnnneesnnecsaeesssseeessneesssseesannes vii
ACKNOWIEdZmENntccevvuiiiiiiiiiiiiniieiniieiiieiireeie s aseesasseeas viii
DediCationecceeeeeieeeeteeteeeccee e ix
Chapter 1 — INtroduction......uieiiieiiiiinnieinnieiniieinniecnsecsseessessseessseesens 1
1.1 Overview of the problem ... 3
1.2 Outline of DISSEItatiOnc.cucvieiiiiiiciciisiisiciciiesisiessssssssesssssse e 4
Chapter 2 — Related Work.....coueeeeeieineinieniiinieniecnieneceeneecneesseessnennees 6
2.1 Functional Programming...........ceieeiininimnimninissisisiesisesssesesesessesenss 6
2.2 Continuation-passing style (CPS)........cccovvviiininiiininicinicicnicicicines 13
2.3 EXCEPHONS ittt 16
Chapter 3 — A Model Of CPS Translation And Interpretation................... 24
3.1 A minicompiler for MIniMIL......cccciuiiireineineireieeeeee e 26
3.2 A conceptual and executable framework ... 49
Chapter 4 — The Abstract Machineoeeveeeiueinvenieeesiensnennnensneennennenns 60
4.1 A generator of abstract machine code (AMC)ccceuveuveuncurerncinerncerennennes 61
4.2 A simulator for the AMC ..o 65
Chapter 5 — Exception Handling Overheadcovueeurenvennneeneennnnennnnnn. 69
5.1 INtOAUCHON .. ss s saessesanes 69
5.2 Implementation of exceptions (SML/NJ) .o, 71
5.3 Overhead in Exception Handling of SML/NJcc.coccveunevnernernennernennens 76
5.4 Overhead in Exception Handling of OCAML.........ccccocuviivviniivincincinenncnnee 78
5.5 The source of the Exception Handling Overhead in SML..............cc........ 80
Chapter 6 — Zero Overhead Exception Handlingccoueeevurennnneennnnen. 85
0.1 Exception table teChNIQUE.......ccceuiiiiiiiiiiniiciicicceecenee 86
6.2 Low overhead using two CONtNUALIONS......cuveeeieeeieieeeieereieeeeeseeseneenenes 96
6.3 Zero overhead with one continuation and displacementccc........ 103
Chapter 7 — Experiments And Performance.......c.cceeveevvernveneecnnvennennne 109
7.1 Experimental MEasUrEMENLS.......cciuruiurieiiirieriiiniiiisisesiessssssessssesssssnans 109
7.2 Experimental eXamples........cccvuirieiniiriciniciiniiieieee e 110

7.3 Petformance EVAUALION «.o.iivieeeieeeereeeeiereteteveeeteessestsessessetesessessesessessones 125

7.4 Analysis of the PerfOrmance ... 128
Chapter 8 — Conclusions And Future Work........ccceeveeeveruenneennennnennee. 129
8.1 CONCIUSIONS ... 129
8.2 FULULE WOTK...ooiviiieitiitt e 130
RefErencCes ...cuuuiiiniiiniiiiiiiiitiiiiricirce s ae e 132
APPENAIX coriiiiiiiiiiiiiiiiieirenree e sa e s s aesssaaeeas 138

vi

List of Figures

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2

Figure 5.1

Figure 5.2

Figure 6.1
Figure 7.1
Figure 7.2

Figure 7.3

Opverview of the compiler for the experiments.........ccccvvvivcrricircunnnen 24
Model of translation-iNterpretation ... 26
Datatype for a lambda eXpression ... 27
Datatype for a lambda eXpression ... 32
Syntax tree for a lambda eXpression........cevcvicinernicinisicniciscienens 41
Conceptual and executable framework........ovvvviveevivinierininieianee. 50
Components of the Abstract Machineccccoovivivivivininininininnne. 60
Datatype for an abstract machine instruction.........cceeccuevverccueunnes 61
Comparison between using and not

using exceptions i SML/NJ ..o 77

Comparison between using and not

using exceptions in OCAML.........ccviiicics 79
Inclusion of compensation COde.......umriinininiieneieneseeeeeeees 107
Performance of program 2 from 10 to 1000 steps........cccceeuvvvrvrcuncen. 126
Performance of program 2 from 10000 to 1000000 steps................ 127
Performance of program 2 from 10 to 1000000 stepscccceuuuuee. 127

vii

Acknowledgment

First and foremost I would like to thank my advisor Dr. Ryan Stansifer
for all the effort he spent in guiding my dissertation. He not only inspired me to
work in functional languages but also help to improve my abilities as a
programmer, as a writer, and most at all as a computer scientist. I also highly

appreciate his company and friendship during this last five years.

I would also like to acknowledge my committee, Dr. Phil Bernhard, Dr.
Pat Bond, and Dr. Dennis Jackson for theirs valuable comments about this
research. Special thanks to Dr. George (Jorge) Abdo for his words and advice he

provided during this last five years.

I also thank many faculty members from the Florida Institute of
Technology for providing insight and comprehensive explanations to their many

fields of expertise.

Finally, I want to give my gratitude to my wife for her support not only as
a wife but also as a computer professional. She not only gave me her love and
understanding but also gave me valuable comments and suggestions during my

research.

viii

Dedication

This dissertation is dedicated to the memory of my father
Rosalio Zatarin Osuna (1930-2003)

to my mother Delia 'T. Cabada Amarillas

to my wife Laucia and

to my three precious danghters Zyanya, Ana, and Naomi

ixX

1 Introduction

The value of exception handling is well-known in the field of software
engineering. The first high-level language to have a mechanism for exception
handling was PL/I [Ans76]. Before that, a common form of processing
exceptions or error conditions was made by using IF statements inside the
normal code in order to check the return code of some operations. When an
exception occurred, normal processing activities were ended.

PL/TI allowed a programmer to handle and propagate exceptions
dynamically. The exceptions were associated to statements (today most
programming languages like Ada and Java associate it to blocks of code). When
an exception was raised the flow of control continued at the beginning of the
statement which raised the exception.

A very important paper on exception handling was written for
Goodenough [Goo75]. This paper describes a notation for an exception handling
mechanism. Today, many models of exception handling in different
programming languages are based in that notation.

Another language which pioneered exception handling facilities was CLU
[LS79]. This programming language associated exceptions with blocks of code
(procedures). A drawback in CLU was that exception propagation did not

existed, and that exception was handled by the calling procedure.

After PL/I and CLU, a substantial amount of work has been done in
programming languages to design alternative methods of exception handling.
Ada [BR86], COMMON LISP [Ste84], SML [MTH90], Modula-3 [CDGJKN],
C++ [Str91], and Java [GJS96] all support exception handling techniques.

There are several advantages to supporting exception handling in a
language. One is to avoid cluttering programs with code for detecting error
conditions. Another is to allow an exception to be propagated in its dynamic
chain of calls. That provides a caller the possibility of knowing about the failure
of an operation and is named dynamic propagation. But, most important is that
the language encourages programmers to consider all events that can throw an
exception during program execution.

Exception handing is very often the most important part of the system
because it deals with abnormal situations. For a variety of reasons, not least
among which is the fact that more than half of the code is often devoted to
exception detection and handling, many failures are caused by the incomplete or
incorrect handling of these abnormal situations. The requirements for correct
system behavior during exception handling are in some sense even greater than

for the system operating in normal mode.

1.1 Overview of the problem

When declaring and using exception handling the syntax and semantic of
a language is pretty much the same. On the other hand, when we talk about
efficiency we come to different results. Compilers of imperative languages like
Java, Ada, and C++ implement exception handling without imposing overhead
on normal execution [LYKPMEA, BR86, and Din00]. When a program defines
an exception handler, the runtime performance of that program would be the
same without exception handler definition. We can say that there is no runtime
penalty for defining an exception handler which is never used. In other words, no
runtime overhead occurs in the case in which no exceptions are raised. However,
compilers of functional languages like SML/NJ [AM91] or CAML [Ler00]
produce code that has exception handling overhead. We made some experiments
in order to verify this. We found also the soutce of the overhead in the SML/N]
[AM91] compiler.

In this dissertation we present a new approach to implementing exception
handling in functional programming languages. The new approach incorporates a
method for implementing exception handling without imposing overhead on
normal execution. In order to test the new approach, we had first to build a
compiler for a functional language, where we implemented the two approaches:
the traditional approach (the one used in the SML/NJ compiler), and the new

approach proposed in this dissertation.

1.2 Outline of dissertation

Some material about functional languages and programming in them,
especially SML, would be helpful for a reader of this dissertation [Har98, Hen80,
Pau91, and UlI98].

Chapter 2 covers introductory and support material in functional
programming, continuation-passing style, and exception handling. The material is
presented with explanations and some code in different languages.

Chapter 3 describes the design and implementation of a model of
translation and execution of programs. The translator generates CPS
(continuation-passing style) programs, which are executed by an evaluator of CPS
code. The chapter presents a set of examples used in testing the compiler in SML
and CPS code.

Chapter 4 presents the abstract machine used to interpret the target code
produced by the translator. We also show some examples of programs produced
and tested in the machine.

Chapter 5 explains how the SML/NJ compiler implements exception
handling. It also shows the experiments that we made in order to verify that the
SML/N]J and OCAML compilers produce overhead in programs with exception
handlers. Last, we explain the source of the overhead in SML programs by using

an example.

Chapter 6 presents the new approach for exception handling
implemented in our compiler. We start by describing a method used in imperative
languages. This method uses a table of assembly code regions. Then, we explain
the first part of the new approach where code produced by the compiler contains
two continuations, and last we explain how zero overhead can be reached by
doing some modifications to that approach.

Chapter 7 shows the experiments we did in order to test the performance
of the new approach. First, it explains the experimental methodology and
examples used in the tests. Second, it presents the results of performance of the
programs using the old and new approach. Last, it makes an analysis of the
results.

Finally, chapter 8 describes some conclusions of the work and the future

research to be done.

2 Related Work

This chapter sets the stage for the presentations in chapter 3, 4, and 5.
First, we review the fundamental concepts of functional programming; then we
present an introduction of continuation passing style (CPS); finally, we describe

exceptions in modern programming languages like SML, Java, and Ada.

2.1 Functional Programming

Functional languages

Functional languages focus on data values described by expressions (built
from function applications and definitions of functions) with automatic
evaluation of expressions. Programs can be viewed as descriptions declaring
information about values rather than instructions for the computation of values
or of effects [Rea89]. In functional programming languages there is no distinction
between statements and expressions; names are only used to identify expressions
and functions (and not memory locations); like in imperative languages they allow
functions to be passed as arguments to other functions, or returned as results
(higher-order functions) [WM95].

Functional Languages are divided in eager and lazy functional languages.
In eager functional languages, the evaluation of arguments in a function

application is made before the function is applied. This gives as a result that the

same expression can be evaluated more than one time. On the other hand, lazy
functional languages evaluate expressions in a demand drive way named call by
need. In this technique the arguments of functions are evaluated once at most
[Rea89]. For example, assuming double is defined by:

fun double x = plus x x
The evaluation of double (fact 5) begins with:

Double (fact 5) = plus (fact 5) (fact 5)
With call by need, fact 5 needs to be evaluated only one time.

Examples of eager functional languages are Scheme [SSJ78], SML
[MTH90], and CAML [Ler00]. Miranda [Tur85], Lazy ML [Aug84|, Ponder

[Fai82], and Haskell [Hud90] are all examples of lazy functional languages.

Eager functional languages

Functions that are always undefined with undefined arguments are called
strict. A functional language that uses strict evaluation (to evaluate the arguments
of the functions) is named eager (or strict) language. This evaluation technique in
conventional programming languages like Pascal and C have been called call by
value, while for functional languages is also called applicative reduction order.

Some of the functional programming languages that use eager evaluation are ML,

Scheme, and CAML.

The ML and SML programming languages

ML [MTH90] is a general-purpose programming language designed for
large projects. It was developed in the late 1970s as the Meta-Language of the
Edinburgh Logic for Computable Functions (LCF) theorem-proving system. It is
an eager and functional programming language where current statements as
blocks, conditional, assignments, etc. are encapsulated as expressions. Every
expression has a statically determined type and will only evaluate to values of that
type. Standard ML of New jersey (abbreviated SML/N]J) is a compiler and
programming environment for ML written in ML with associated libraries, tools,
and documentation [AM91, SMLO03]. SML/NJ is free, open soutce softwate. The
core of the SML/N]J system is an aggtessively optimizing compiler that produces
native machine code for most commonly used architectures: x86 (IA32), Sparc,
MIPS, IBM Power 1 (PowerPC), HPPA, and Alpha [SMLO3]. The compiler
translates a source program into a target machine language program in several

phases.

Lazy functional languages

Functions that can give defined results even when arguments are
undefined are called non-strict. For example the expression (3 = 3) or ((5 div 0) =
4) might give a defined result of true (true or x = true), if we ignore the result of

the second sub-expression (undefined). A functional language that uses non-

strict evaluation (to evaluate the arguments of the functions) is named lazy (or
non-strict) language. A program using lazy evaluation will not evaluate any
expression unless its value is demanded by some other part of the computation.
Lazy evaluation, also called call-by-need, is a modification of call-by-name that
never evaluates the same thunk (sub-expression) twice. In this technique, lambda

expressions are represented by graphs.

Lambda Calculus

Lambda calculus is a mathematical calculus for computable functions
proposed by Alonzo Church in 1941 in order to establish the limits of what was
computable. It is the theoretical foundation of functional languages. Next, we

have a definition of a context free grammar for lambda calculus [Sta95]:

\4 > x|ylz|v]... {Variables)
F > a|b|c|f|g].... {Setof functional symbols}
L > VI|F|AVL|LL|@L

Examples: x, f x, f (g x), Ax.b, f (A x.b), Ay.(gx)
Lambda calculus provides a behavioral explanation of terms in the form
of rewriting or reduction rules [Rea89]. They are used to simplify lambda terms.

The most important reduction is the () reduction rule. This is given by:

Beta reduction (B): (A\v.E1)E2 ====> E1[E2/v]
It means that the bound variable v in the body E1 of the abstraction is

substituted by the argument E2. It can be interpreted as saying that a function

Av.E1 applied to the actual argument E2 means the same as the body E1 where
all occurrences of the formal parameter v have been replaced by E2. The variable

v is bound to E2. This is essentially the call-by-name rule in ALGOL 60.

Examples: (Ax. +xx)4 ====> +44
(Avv)c ====> c
Ax Ay *yx)3)7 ====> Ay *y3)7
Ay *y3)7 ====> *73

A very important note is that we can represent any element of a
programming language like a number, a primitive operation, a selection,

recursion, etc. in lambda calculus.

Combinators

A free variable (non-local variable) affects the efficiency of a program
(binding of free variables with its values). Combinators are a technique for
transforming lambda expression into expressions that only include applications
and combinators. These expressions are called closed expressions (expressions
with no free variables). The idea is first, to translate a lambda expression into a
combinator term in which no variables appear, and second, to translate a
combinatory term into a combinatory using an algorithm named bracket

abstraction.

10

Example: Consider the lambda expression (A x. + x 1). It will be transformed to

a combinatory term and then into a combinator as follow [Sta95].

(hx +x1) —========>

[x] (+x1) =========>{combinator term)

S(x] (+x)(x] 1) =========>{use of bracket abstraction}
S (x] +) (x] x)) [x] 1 =========>{use of bracket abstraction}
S(S(K+) D) (K1) {combinator}

Where the rules of evaluation are:

Sxyz ====>x1z(y2)
Kxz ====>x
Ix =_===>x

Example: We evaluate the corresponding lambda expression and combinatory

and we get the same result.

Lambda expression Combinator
(Ax. +x1) SCEKHI KT
Ax.+tx1)3 SCEK+HDHKIS3
(+31) SKHI3ZK13
4 K+3)d3 @
+31
4

Something remarkable to establish is that the third combinatory I can be built
with combinators K and S. Then, any program can be described entirely by these

two primitives.

Closures

In languages such as C without nested procedures, the run-time

representation of a function value can be the address of the machine code for that

11

function [App98]. This address can be passed as an argument, stored in a variable,
and so on; when it is time to call the function, the address is loaded into a
machine register, and the “call to address contained in register” instruction is
used.

But this will not work for nested functions, where a function can return a
function as a value (high-order functions). The problem is the non-local
environment can not be found without the static link. The solution is to represent
a function-variable as closure: a record that contains the machine-code pointer
and a way to access the necessary free (non-local) variables. One simple kind of
closure is just a pair of code pointer and static link; following the static link can
permit access to the non-local variables. The portion of the closure giving access
to values of variables is often called the environment.

Tail recursion

A function call f(x) within the body of another function g(y) is in tail
position if “calling f is the last thing that g will do before returning”. Applications
of functions in tail positions can be implemented by direct jumps instead of the
more sophisticated context switches needed for other function calls in most

language implementations.

Example: (non-tail recursive function):

fun fact (n)=
if n=0 then 1 else fact(n-1) * n

12

The call to function fact is not the last operation of the function (the last
operation is the multiplication operation), and then this is a non-tail recursive

function.

Example: (tail recursive function):

fun fact (n)=
if n=0 then 1 else n * fact(n-1)

The call to function fact is the last operation in the function.

2.2 Continuation-passing style (CPS)

Definitions of CPS

The purpose of CPS is to make every aspect of control flow and data
flow explicit [App92)].

It combines tail recursion with extra parameters (the continuations) in a
function. In section 2.1.5 we showed an example that shows a transformation of
a non-tail recursive function into a tail recursive function by using a continuation
named k. Into the continuation we pass the context of the function (instead of
using a stack for saving). Then the function does not need to return for doing last
operations.

Another way of looking at CPS is as “a style of programming in which
every user function f takes an extra argument k known as a continuation.

Whenever f would normally return a result r to its caller, it instead returns the

13

result of applying the continuation to r. The continuation thus represents the
whole of the rest of the computation” [FOL].
Example: The program,

if x < 0 then x else f(x)
can be broken up into the expression

x<0
and the continuation (expressed here as an evaluation context)

if [] then x else f(x)
The expression is evaluated and then passed into the continuation, which takes it
the rest of the way.
Writing the continuation as a function, we can transform this program into:

(Av. if v then x else f(x))(x < 0)
Applying this transformation to every part of the program, we produce a program
in continuation-passing style (CPS).

Thus, CPS is a style of writing programs where the events in the future,
Le. the rest of the computation, is passed as an explicit parameter. The value
passed as this parameter is the continuation. A continuation is a procedure that
takes the value of the current expression and computes the rest of the
computation. Procedures do not return values; instead, they invoke the
continuation with the result. If a program is fully CPS converted then there are
no procedure return. Every procedure call is tail call, and the program's control

memory is not stored in some invisible stack but explicity as the continuation.

14

Advantages of CPS

. No need for a stack (values go on and off the stack too many times),
because functions never return.

o Every intermediate value of a computation is given a name (possible
corresponding to a machine register). This allows an easy translation to
machine code.

o Functional language compilers use CPS to transform the structure of
the function from a lambda calculus form to an imperative form. We
can then, apply conventional techniques like code optimization and
generation to the transformed form.

° Beta reductions and others optimizations are easier to do too.

How can CPS be useful?

CPS can be useful in several different ways. When there are two or
more possible continuations (one for success and one for failure), it is more
convenient to let the procedure choose between its continuations than to force
its caller always to perform a test based on some returned result, particularly
since the nature of the information that must be returned depends on how the
computation is to continue. Another use of CPS is to return multiple results by

passing them to a multiple-argument continuation. This is often better than

15

returning some data structure out of which the caller of the procedure would

have to extract the values.

2.3 Exceptions

Exception handling techniques

An exception is the union of error, exceptional case, rare situation,
and unusual event [LS98]. The entity that is raising an exception stops and waits
for the completion of the exception processing. Exceptions are usually divided
into two classes: predefined and user-defined. Predefined exceptions are declared
implicitly and are associated with conditions that are detected by the underlying
hardware or operating system; they are also called system-defined exceptions. In
any case languages with exception handling allow the program to regain control.

The idea of exception handling is seen as the immediate response and
consequent action taken to handle the exceptions. An exception handler is the
code attached to (or associated with) an entity for one or several exceptions and is
executed when any of these exceptions occur within the entity. Depending on the
exception-handling mechanism, an entity can be a program, a procedure, a
statement, an expression, an object, or data. Exception handling can be

embedded into the operating system or into a programming language.

16

Exception handling in programming languages

Goodenough’s notation is the first structured exception-handling
mechanism proposed [Goo75]. It either terminates or resumes the program’s
execution after an exception is handled. If an exception is raised from an
operation, the mechanism first tries to find local handlers, which is in the same
context as the operation.

The programming language CLU [Lis79] is based on a simple model of
exception handling and can support termination. The mechanism searches only
one level up besides the local context. If a user wants to raise an exception several
levels up, he must raise the same exception explicitly in the handler of each level.
This exception propagation mechanism is called explicit propagation.

Ada [Ada95] declares exceptions by the statement exception. An
exception not handled is automatically raised into the upper levels along the
calling chain until a handler is found or until a program boundary is reached.

Therefore, this propagation method is called automatic or dynamic

propagation.
Example:
1 -- propagation.adb: illustrate exception propagation
i with Ada.Text 10; use Ada;
g procedure Propagation is
2 E, F, G, H: exception;
8

17

http://www.adahome.com/rm95/rm9x-A-10-01.html

9 procedure A is

10 begin

11 Text_IO.Put_Line ("Begin A");

12 o FRFRFRFARARFR IR ARSI IR FA AR FR A
13 -- suppose an exception is raised here

14 o FRFRFAARARAAFAA AR FAA AR A
15 Text_1O.Put_Line ("End A");

16 end A;

17

18 procedure B is
19 procedure Cis

20 begin
21 Text_IO.Put_Line ("Begin C");
22 A;

gl

23 Text_1O.Put_Line ("End C");
24 exception
25 when E => Text_IO.Put_Line ("Caught E");

26 end C;

27 begin

28 Text_IO.Put_Line ("Begin B");
29 C;

30 Text_IO.Put_Line ("End B");
31 exception
32 when F => Text_IO.Put_Line ("Caught I'");

33 end B;

34

35 begin

36 Text_lO.Put_Line ("Begin Main");
37 B;

38 Text_IO.Put_Line ("End Main");
39 exception
40 when G => Text_IO.Put_Line ("Caught G");
41 end Propagation
The program starts execution (main program) writing a line, and then
calls procedure B. procedure B starts also writing a line, and then calls procedure

C. Procedure C calls procedure A after writing a line. In procedure A, the

program writes a line, and then an exception is thrown (a supposition). Because

18

procedure A has not an exception handler, the exception is propagated into
upper levels along the calling chain. The upper level in this case is procedure C
which has declared an exception handler (for exception E). If the exception is not
caught in procedure C, then the exception is reraised and propagated to
procedure B. This procedure has a handler that will try to catch again the
exception. The propagation can continue until a handler is found or until a
program boundary is reached.

In C++ [Str91], there is no specific declaration for exceptions. User can
raise an ordinary object as an exception by using the statement throw. A
try...catch structure attaches handlers led by catch to a guarded block of code
led by try. If the handler for a raised exception cannot be found locally, C++
unwinds the stack of the try block and propagates the exception to its caller. This
procedure continues until a handler is found or until a default handler is called,
which then aborts the program.

Java [G]S96] uses a mechanism similar to C++, adding the clause finally
to the try...catch structure. The statements in finally are executed whether or

not exceptions are raised.

Example:

1 class One_Exception extends Exception {

2 int argument;

3 public One_Exception (int i) { argument=i; }
45

5

19

6 class Another_Exception extends Exception {}

.
8 public class Try_Block {

9

10 public static void main (String argv][]) {

11

12 // Java "ty" block with "catch” and "finally"
13

14 try {

15

16 // block of statements; may raise exceptions,
17 // "break", "continue", or return.

18

19 if (1==0) {

20 throw new One_Exception (5);

21 } else {

22 throw new Another_Exception ();

23 }

24

25 } catch (One_Exception ¢) {

26 // one handler

27 System.out.println (e.argument);

28

29} catch (Another_Exception e) {
30 // another handler

31 e.printStackTrace (System.err);

32

33 } finally {

34 // final wishes; always executed no matter whether
35 // we leave the block normally, with an exception,
36 // because of a "break", "continue', or return

37 }

38 }

39}

When the Java program enters in the try block, it tests the condition
(1==0). In this case the condition is false, so the program will raise the exception
Another_Exception (). Inside the try block there are two exception handlers:

one for exception One_Exception and another for Another_Exception. The

20

first handler will fail to catch the exception that was raised, but the second
handler will success, and it will execute the code of the handler (e.printStackTrace
(System.err)).

SML [MTH90] like Java has exceptions that are themselves values. An
exception name in Standard ML is a constructor of the built-in type exn [Pau91].
The exception declaration exception exc_name makes exc_name a new
constructor of type exn. Raising an exception creates an exception packet
containing a value of type exn. For example, raise Ex throws exception Ex.
During evaluation, exception packets propagate under the call-by-value rule. If
expression E returns an exception packet then that is the result of the
application f(E) for any function f. An exception handler tests whether the result

of an expression is an exception packet. SML uses the construct E handle P1 =>

El| ... | Pn=>En to define an exception handler [Paulson].
Example:
exception Neg
local
fun search (n,i) = if n<0 then raise Neg else
*i<=n
andalso (n mod 1 = 0 orelse search (n,i+1))
in

fun composite n = search (n,2)
fun prime n = not (composite n)
end;

(ptime ~7) handle Neg => (print("The number is negative: \n");false)

21

The program finds whether a number is a prime number or not. It first
declares an exception handler named Neg which is thrown when a negative
number is passed to the function search. If the exception Neg is raised then the
handler (last line of code) will catch it and its code (print(“The number...”)..) will
be executed. Shall another kind of exception be raised in some of the three
functions; the system will follow the calling chain (automatic propagation) to
upper levels. Because there is no another exception handler, the exception will be
considered an uncaught exception (the program terminates and returns to the

operating system).

Handler binding

Handler binding attaches handlers to certain exceptions to catch their
occurrences in the whole program or part of the program. There are three ways
to bind handlers with exceptions [LS98]: static, where once a handler is attached
to an exception, the same handler is used for every occurrence of that exception
in the whole program or process; semidynamic, used by Ada, C++, and
Modula-3, where different handlers associates with the exception in different
context during an exception propagation; and dynamic, where different handlers

can be attached to an exception in the same context.

22

Implementing exception handling
It is the process of receiving the notification, identifying the exception,
and determining the association handler. There are several methods, which are

divided into the following categories [LS98]:

o Stack unwinding. The handler defined first is checked first. If none can be
found to handle the raised exception, the context stack is unwound, and
the search begins within the new context. This is the method used in Ada,
C++ and Modula 3.

. Handler pool. It is a handler chain, or lined list, or a table of handlers,
each of which has been bound to a specific exception or group of
exceptions. To find an associated handler, the pool is searched linearly.

o Combination of stack unwinding and handler pool. A separate handler
chain is stored within the stack frame.

o Backtracking exception identifier bindings. It “backtracks” exception
identifier bindings to determine a matching handler.

° Scanning instances of objects. It scans all the instances of an object for
handler determination, since users can supply different handlers for the

same exception raised in different instances.

23

3 A Model of CPS Translation and
Interpretation

The middle part and key transformation in some functional language
compilers is the conversion to CPS (continuation-passing style) language, which
was defined and explained in chapter 2. We use CPS as our intermediate
representation in our functional language compiler that was built for our

experiments (figure 3.1).

Source Program
(Lambda code)

Translation to CPS

CPS Program

v

Translation to flat CPS

v

Flat CPS code (no free variables)

v

Translation to Abstract
Machine code

v

Abstract machine code

Figure 3.1 Overview of the compiler for the experiments

24

The CPS language is well-designed to match both the lambda calculus,
which is the source language in our compiler, and the model of a von Neumann
machine (represented by the abstract machine code). The compiler first translates
lambda code into CPS expressions. Then, CPS expressions are translated into a
free variables representation which is called Flat CPS. Flat CPS code consists of
only one CPS function (no inner functions as in a normal CPS expression). Last,
Flat CPS is translated into an abstract machine code.

We present in this chapter, a model of translation and execution that
allows a programmer (or student/teacher) to write, translate, and execute
programs in a source functional language (an extended lambda language) and a
target CPS language. Both systems are based on the definitions of a semantic for
CPS and a model of translation by Appel [App92]. The main contribution of our
model is to collect everything (the model of translation and semantics) together
into a working program and to create a whole framework which can be used to
execute programs, allowing studying a wide range of performance assessments
that can be discussed, highlighting the performance relationships among different
elements. Figure 3.1, shows this model of translation-interpretation.

As we can observe in figure 3.2, a program written in an intermediate
representation of a functional language like SML (in this case lambda code), is
translated into a CPS program and then, evaluated using a specific input as data.

After the evaluation, a value (the result) is obtained.

25

Intermediate Representation
Of SML programs
(Lambda code)

Translator
To CPS

v

CPS Program

v

Evaluator

Input —>{ OfCPS ——> Value

Figure 3.2 Model of translation-interpretation

3.1 A minicompiler for miniML

The first part of model described above, is a translator to CPS. This
translator takes a program written in a lambda language (encoded into a tree-like
data structure), and then makes a recursive traversal over the source-language

program producing a CPS program.

The Lambda language

Figure 3.3 shows the definition of a lambda expression as an ML datatype.

26

type var=string

datatype lexp=
VAR of var
| INT of int
| STRING of string
|[FN of var * lexp
|[FIX of var list * lexp list * lexp
|APP of lexp * lexp
| PLUS
| SUB
| MULT
|LESS
|EQ
| MAKEREF
|[RAISE of lexp
| HANDLE of lexp * lexp
|COND of lexp * lexp * lexp (* switch *)

Figure 3.3 Datatype for a lambda expression.

In this case, each value (a constructor) of type lexp can represent:
o A variable (VAR), an integer (INT), or a string (STRING);
o An anonymous (lambda) function (FN);

o A function declaration (FIX) where function names (var list) are bound

to anonymous functions (lexp list) under the scope of a lambda

expression;
o A function-calling construct (APP);
o A set of primitive operations for making arithmetic (PLUS, SUB, and

MULT); comparisons (LESS, and EQ); and creation of references to
memory (we use them when exceptions are declared).

27

o A primitive operation to evaluate an expression of type exception and to
throw a user-defined or system exception (RAISE).

° A primitive operation HANDLE which evaluates the first argument, and
if an exception is raised, then applies the second argument (handler) to
the exception.

° A primitive operator COND used to test conditions EQ and LESS.
Besides normal testing, this primitive is very important when a

HANDLE tests for a determined exception.

Examples: The next table shows several examples of different lambda
expressions using our notation. We also show, for clarity purposes, the

corresponding code of the lambda expression in SML code.

SML LAMBDA
1 INT 1
289 — (17 *17) APP(SUB,RECORD [INT 289,
APP(MULT,RECORD [INT 17,INT 17])])
(fn x => x) FN ("x",VAR "x")
(fn x => 3) FN ("x",INT 3)
fhx=>3)9 APP (FN ("x",INT 3), INT 9)
(fnx=>x)9 APP(FN ("x",VAR "x"),INT 9)

28

if (3 =5) then 2 else 7

if 2 < ((fn x => x) 3))
then 2
else ((fnx =>x) 7)

let
Fun fact(n)=
if n<1 then
1
else
n*(fact(n-1)
in
Fact(6)
end

“a string”
Exception Astring
let

fun f(n)=n*n
in

£(0)
end
let
fun f(n)=n*n handle
ovfl=>0
in
£(1700)
end

let
fun g(x)=f(x)
handle DIV=>2
fun f(y)= raise DIV
handle MULT=>1
in
2(2)
end

COND(APP(EQ,RECORDI[INT 3,INT 5]),INTZ,INT 7)

COND(APP(LESS,RECORD[INT 2,
APP(FN("x",VAR "x"),INT 3)]),
INT 2,APP(FN ("x",VAR "x"),INT 7))
APP(FIX(["fact"],
[FN("n",
COND(APP(LESS,RECORD [VAR "n",INT 1]),
INT 1,
APP(MULT,RECORD[VAR "n",
APP (VAR "fact",
APP (SUB,RECORD [VAR "n",INT 1]))])))],
VAR "fact"),INT 6)

STRING "a string"

APP (MAKEREF, STRING "Astring")

FIX(["f"],
[EN("n",APP
(MULT,RECORD [VAR "n",VAR "n"]))],
APP(VAR "f"INT 0))

FIX (["f"],
[FN (nnn’
HANDLE
(APP (MULT,RECORD [VAR "n",VAR "n"]),
FN("e",COND (APP (EQ,RECORD
[VAR "e",VAR "ovfl"]),VAR "n",
RAISE (VAR "e™)))))],APP (VAR "f",INT 1700))

FIX ([ngn,nfu]’
[FN ("X",
HANDLE
(APP (VAR "f",VAR "x"),
FN (neu’
COND
(APP (EQ,RECORD [VAR "e",
APP (MAKEREF,STRING "DIV")]),INT 2,
RAISE (VAR "e"))))),
FN (nyn’
HANDLE
(RAISE (APP (MAKEREF,STRING "DIV")),
FN (neu’
COND

29

(APP (EQ,RECORD [VAR "e",
APP (MAKEREF,STRING "MULT")]),INT 1,
RAISE (VAR "e")))))],
APP (VAR "g",INT 2))

let FIX
fun f(n)=n*n q"f","run"],
handle ovfl=>n [FN
fun run(x)= ("n",
if x>1000 then HANDLE
£f(17) (APP MULT,RECORD [VAR "n",VAR "n"]),
else FN
(run(x+£(17)-288)) ("e",
in COND
run(0) (APP (EQ,RECORD
end [VAR "e",VAR "ovfl"]),VAR "n",
RAISE (VAR "e"))))),
FN
("X",
COND

(APP (EQ,RECORD
[VAR "x",INT 10]),APP (VAR "f",INT 1700),
APP
(VAR "run",
APP
(PLUS,
RECORD
[VAR "x"
APP (SUB,RECORD
[APP (VAR "{",INT 17),INT 288])]))))],
APP (VAR "run",INT 0))

Table 3.1 Examples of SML and Lambda expressions.

30

The CPS language

The CPS language used in our translator has three big differences with
respect to those traditional compilers which use also CPS as an intermediate
representation [App92]:

o Every function has a name.

o There is an operator for defining mutually recursive functions (instead of
fixed point function).
o There are #-tuple primitive operators.

Besides that, we use the ML datatype declaration in order to prohibit ill-
formed expressions. One important property of CPS is that every intermediate
value of a computation is given a name. This makes easier the translation later, to
any kind of machine code. For example the SML expression 289 — (17 * 17) is

translated to

PRIMOP(*,[INT 17,INT 17],["w2"],
[PRIMOP (-,[INT 289,VAR "w2"],
["wl1"],JAPP (VAR "k",[VAR "w1"]D])])

in CPS notation, where wl and w2 are intermediate names produced by the
translator. We will explain in more detail later this example.

Another important aspect of CPS operations is that every argument is
atomic; that means that only variables or constants are allowed to be arguments.

The definition of a CPS expression as an ML datatype is shown in Figure 3.4.

31

datatype primop=
gethdlr
| sethdlr
| +
‘ —_
‘ *
| <
|equal
|makeref
type var=string;
datatype value =
VAR of var
| INT of int
| STRING of string
datatype cexp=
|APP of wvalue * wvalue list
|[FIX of (var * var list * cexp) list * cexp
| PRIMOP of primop * value list * var list * cexp
list

Figure 3.4 Datatype for a CPS expression.

A primitive operator can be:
o gethdlr and sethdlr. Both are used for handling exceptions. The operator
gethdlr obtains the current exception handler (or saving the old handler),

and sethdlr updates the store with a current handler (re-install a new

handler).

o +, -, *. Arithmetic operators for adding, subtracting, and multiplying two
arguments.

o <, equal. Testing (comparison) operators for less than and equal to.

o makeref. 'This operator is used to create a reference (a pointer) to

memory. We use makeref mainly to declare an exception.

32

A value datatype is defined as all the different kind of atomic arguments
that can be used in a CPS operator. A value or argument can be a variable (VAR),

an integer (INT), or a string constant (STRING).

Our CPS language has just three different kinds of expressions. They are:

o APP. It is used for calling a function (whose name is of type value),
passing one or more arguments (using a list of values).

o FIX. As we mentioned before, in CPS all functions have a name. There
are no anonymous functions. FIX is used to define a general-purpose
mutually recursive function definition. The syntax of FIX defines a list of
zero or more functions, with a name (type var), arguments (type var list),
and bodies (type cexp). All of these functions can be called (using the
APP operator), from each body of the function or from the main body of
the FIX expression (type cexp).

o PRIMOP. This stands for primitive operator. All primitives like
handling exception, arithmetic, testing, and references, are built by using
this constructor. The first field is the primitive name (primop type), the
second and third fields are used for arguments and/or result names, and

the fourth field is the continuation expression of the primitive operator.

A set of examples will clarify CPS notation. Next tables show the same
examples from last table but including lambda code and corresponding CPS

code.

33

Example # 1

INT 1

APP (VAR "k" [INT 1))

Where APP(VAR “k”, [result]) is the initial continuation for any program in the
CPS expression. This continuation is really what is called in functional

programming, the identity function (fn x => x).

Example # 2

APP(SUB,RECORD [INT 289,
APP(MULT,RECORD [INT 17,INT 17])])

PRIMOP (+,[INT 17,INT 17],["w2"],
[PRIMOP (-,[INT 289,VAR "w2"],["w1"L[APP (VAR "k",[VAR "w1"]D]])

CPS evaluates first the multiplication operator, giving as a result w2, and then the
continuation is evaluated (subtraction). At the end, the result is given to the initial
continuation (VAR wl), which is also a continuation from the subtraction

operation.

Example # 3

FN (HX"’VAR HXH)

FIX ([("F3",["x","k4"],APP (VAR "k4",[VAR "x"]))],APP (VAR "k",[VAR "F3"]))

34

A lambda function (anonymous or named function) corresponds to a FIX
function, which uses a determined name. In this example, we can see that F3 is
the name assigned for the compiler to the function. Besides, this function has two
arguments. The first one is variable x (same as lambda expression), and another
one for k4. This is the continuation that takes the rest of the computation when

the function is called from an application.

Example # 4

FN ('x"INT 3)

FIX ([("F5"["x","k6"],APP (VAR "k6" [INT 3]))],APP (VAR "k"[VAR "F5"]))

This example is very similar to the last one.

Example # 5

APP (FN ('x"INT 3), INT 9)

FIX
([("r7",["x8"],APP (VAR "k",[VAR HXSVI])>]’
FIX
([("FO",["x","k10"],APP (VAR "k10",[IN'T 3]))],
APP (VAR "F9" [INT 9,VAR "t7"])))

An anonymous function is applied a value (INT 9). Inside the body of the
function, the bound variable is not used. So, the result will give just INT 3. In the
CPS code we see two functions. The inner function corresponds to the

anonymous function of the lambda expression. The outer function 17

35

corresponds to the rest of the computation after the inner function has been
evaluated. We can interpret t7 as the normal return from the function. The CPS
flow of execution starts calling function F9, which takes two arguments. F9 then

call k10 (which takes the value 7), and last the identity function is evaluated.

Example # 6

COND(APP(EQ,RECORD[INT 3,INT 5]),INT2,INT 7)

FIX
([(llFlSll’[llZ«lGH]’
PRIMOP
(equal,[VAR "z16",IN'T 0],[],
[APP (VAR "k",[INT 2]),APP (VAR "K",[INT 7)]))],
PRIMOP
(equal,[INT 3,INT 5,[],
[APP (VAR "F15",[INT 0]),APP (VAR "F15" [INT 1])]))

A condition expression in lambda language produces a function in CPS language.
The condition test for two arguments (3 and 5), and depending of the result of
the test, make first or second options (2 or 7). With CPS, the evaluation start also
testing the arguments, continuing with a call to F15 with argument INT 0 if the
result of the test was true, or a call to F15 with argument INT 1 if it was false.
The Function F15 begins testing for the argument; if zero (true) then it finish
with the identity continuation with argument INT 2 as a result. If not zero then

the continuation is with argument 7.

36

Example # 7

APP(FIX(["fact"],
[FN("I’I",
COND(APP(LESS,RECORD [VAR "n",INT 1]),
INT 1,
APP(MULT,RECORD[VAR "n",
APP (VAR "fact",
APP (SUB,RECORD [VAR "n",INT 1)]))],
VAR "fact"),INT 6)

FIX
([("£29"["x30"],APP (VAR "k",[VAR "x30"])],
FIX
([("fact",["n","w?)l"],
FIX
([(VIFBZH’[HZS?)H]’
PRIMOP
(equal,[VAR "z33",IN'T 0L,[],
[APP (VAR "w31",[INT 1]),
FIX
([("35"["x36"],
PRIMOP
(*,[VAR "n",VAR "x36"],["w34"],
[APP (VAR "w31",[VAR "w34")])],
PRIMOP
([VAR "n"INT 1],["w37"],
[APP (VAR "fact",[VVAR "w37", VAR "r35 D)D),
PRIMOP
(<,]VAR "n"INT 1],[],
[APP (VAR "F32",[INT 0]),APP (VAR "F32",[INT 1])])))],
APP (VAR "fact” [INT 6,VAR "r29"])))

This example corresponds to the classical factorial function. The lambda code is
built by using one FIX function (fact) which binds an anonymous function for
the body of the factorial function. The factorial of 6 is evaluated. The CPS
expression contains three FIX functions. One is for applying the identity function
(r29); another one for the function factorial; and another one for the condition
expression. The main difference in both programs is the way it accumulates the
result. In the lambda code, the argument n-1 and a return address are pushed into
a stack and then the values and addresses are popped in order to get the factorial.

37

But with CPS we do not have return from calling function. The CPS code passes
also the argument n-1, but instead of passing the return address, CPS passes a
function (name) which contains the rest of the computation (see code in italic
form). In this case, variable w37 corresponds to the argument n-1 passed to the
factorial function, and variable £35 is the function which corresponds to the rest
of the computation. Function 135 is an iterative function which computes the
factorial by calling itself n number of times. In this case, the call to function w31
is really to function 135, the value bound to r31 (however in the last call w31 has
value 129, the initial argument passed in the first call to function fact, and the last

function called in the program).

Example # 8

RAISE(APP(MAKEREF, STRING "exceptl"))

PRIMOP
(makeref,[STRING "except1"],["w50"],
[PRIMOP (gethdly,[],["h49"],|JAPP (VAR "h49",[VAR "w50"D)])

The raise operator is used to throw an exception which is later caught or
uncaught by a handler. In this example, we first create an exception named
exceptl, which is thrown later. In CPS, the current exception handler is first
returned (gethdlr), and then a jump to this handler is made using the declared

exception (w50) as an argument.

38

Example # 9

FIX (["'f'],
[FN ("1’1",
HANDLE
(APP (MULT,RECORD [VAR "n",VAR "n"]),
FN("e",COND (APP (EQ,RECORD
[VAR "e".VAR "ovfl"]),VAR "n",
RAISE (VAR "e"))),APP (VAR "f" INT 1700))

FIX
([("f",["n","wSS"],
PRIMOP
(gethdlz,[],["h56"],
[FIX
([("k58",["x67"],APP (VAR "w55",[VAR "x67"))),
("ﬂ65",["657"],
PRIMOP
(sethdlr,[VAR "h56"],[],
[FIX
([("F59",["C","k60"],
FIX
([("F61",["Z62"],
PRIMOP
(equal,[VAR "z62",INT 0],[],
[APP (VAR "k60",[VAR "n"]),
PRIMOP
(gethdly,[],["h63"],
[APP (VAR "h63",[VAR "¢,
PRIMOP
(equal,[VAR "e",VAR "ovfl",[],
[APP (VAR "F61",[INT 0]),
APP (VAR "FO61",[INT 1)),
APP (VAR "F59",[VAR "e57",VAR "k58"))]))],
PRIMOP
(sethdlr,[VAR "n65"],[],
[PRIMOP
(VAR "n",VAR "n"],["w606"],
[PRIMOP
(sethdlr,[VAR "h56"],]],
. [APP (VAR "k58",[VAR "w66" D)D),
(("£68",["x69",APP (VAR "k",[VAR "x69")))],
APP (VAR "f"[INT 1700,VAR "t68"))))

We will explain the lambda expression handle with more details. This expression

has two parts. The first part is the expression that is going to be evaluated

39

(multiplication expression). The second part is evaluated only if an exception is
raised from the first part. The lambda code implements the second part using an
anonymous function with one condition inside it. Whenever an exception is
raised in the first part expression, the bound variable (e) of the function takes the
exception name, and then the condition expression compares the bound variable
(the exception) against a defined exception (ovfl). If the condition is true the
handler catches the exception and continues with the first continuation (VAR n).
If the condition is false it continues with second continuation (raise e).

As we explained before in this section, CPS implements exception
handling by using two primitives: gethdlr and sethdlr. The first primitive getdlr
executed (variable h56), saves the current handler in memory (at the end of the
expression it will be restored). Next, primitive sethdlr with variable n65 sets a
new current handler (function n65). If the multiplication raises an exception
(like overflow), a jump to the current handler (function n65) is performed. The
first instruction to be executed in function n65 is the restoration of the old
current handler (sethdlr with variable h56). The rest of the code in function n65
is the checking of the raised exception against exception overflow. At the end of
the function a jump to function k58 is made (this ends the execution of the
handler). On the other hand, if the multiplication does not raise an exception, the
next primitive sethdlr with variable h56 restores the old current handler. Both
cases (exception thrown or not), end jumping to function k58, which in turn

jumps to the exit of the program: function r68. A more detailed description of

40

implementing exception handling in the SML/N]J compiler is presented later in

chapter 5.

The translator to CPS

The translation from a lambda expression to a corresponding CPS
expression is made by a recursive traversal of the lambda expression. We saw in
the last examples, that each lambda expression is represented in a hierarchical
structure (a syntax tree) where each node represents an operation, and the
children of a node represent the argument of the operation. For example, the tree

for the lambda expression

FIX([“f],
[FN(“n”,APP (MULT,RECORD [VAR “n”,VAR “n”]))], APP(VAR “f INT 0))

is shown in figure 3.5.
FIX
("f1, [FN /R
("n", APP (VAR "f", INT 0))

(MULT, RECORD....

Figure 3.5 Syntax tree for a lambda expression.

41

We will describe the algorithm to convert any lambda expression to one
in CPS. We do this by giving an ML function f, which transforms the ML data
structure for lambda expressions given earlier. We also include a ML function
newVar: unit -> lexp

to create new variables. The function f and corresponding comments are

shown in next table. We showed before several examples of the CPS translation.

local

val count = ref 0;

fun incr () = (count := lcount + 1);
in

type var = string;

fun newVar (x) = (incr(); x" Int.toString (Icount))
end

We start declaring a function to create new variables. That function uses a
reference which is initialized with zero, and keeps increasing by one for each new
variable. The new variables are created by concatenating a string of length one to

a number (count).

fun flamb.VAR v, ¢) = ¢(VAR v)
| flamb.INT 1, ¢) = c(INTi)
| f(lamb.STRING s,c) = ¢(STRING 5s)

To CPS convert a lambda variable, integer, or string, the continuation c is applied

to the variable or constant. For example, in next function

f lamb.INT 7,(fn x1=>APP (VAR "k",[x1])))
the continuation c is the second argument of function f, and it will produce

APP(VAR “k” [INT 7))

42

| | flamb.HANDLE (AB), ©) = g (A,B,0)

Function g makes the translation of HANDLE. The explanation of the
translation of primitive HANDLE is complex. In order to explain it with great
detail, we will present next, the version written in the book of Appel [App92],

which is a little easier to understand than the implementation.

f (HANDLE (A,B).c) =
PRIMOP (gethdlr, [J,[h],
FIX([(k,[x],c(VAR x)),
(n,[¢], PRIMOP(sethdlr,[VAR h],[l,[

£ B, MAPP (f[VAR e, VAR K])])],
PRIMOP(sethdlr,[VAR n,[],

[f (A, Av.PRIMOP(sethdlr,[VAR h],[l,[APP(VAR k,[W)])]))

A lambda HANDLE operator is translated into two mutually recursive functions,
k and n, and a set of gethdlr and sethdlr CPS primitive operators inside and
outside those functions. Function n will be the exception handler of the
expression. Function k will apply continuation ¢ (the continuation received by the
whole expression), to the argument x (the result of the whole expression). This
function will be called wherever or not an exception is raised (inside or outside
the exception handler n). So, the flow of execution of this code will be:

o Start saving the current handler h (first gethdlr).

o Next, set the new handler n (sethdlr with variable n). It will be used only

when an exception is raised in the first part of the expression).

43

o If an exception is raised in A (the code produced after translation of A), a
jump to the new handler n is performed. Then, the handler will set the
old current handler (sethdlr with variable h), and the code produced by
the translation of B will be performed. In this code, a jump to function k
will always be performed as the last operation of the function. This is
because k is the continuation of B.

° If no exception is raised in A then there is no jump to the handler n, so a
sethdlr of the old current handler h is executed, ending with a jump to

function k.

| f(lamb.RAISEE, ¢) =
let
val h = newVar ("h")
in
f(E,(fn w=>cps.PRIMOP(cps.gethdls,[],[h],
[cps.APP(cps. VAR h,[w])])))

end

The code produced by the translator can be divided in two parts:

o There is some code produced from translation of E. This code is
referenced by w in second part.

o The second part of the produced code, just gets the current handler h,

and then jump to this handler passing w as an argument.

| f(lamb.FN (v,E), ¢) =

let

val F = newVar ("F");

val k = newVar ("k");
in

cps. FIX([(F,[v,k],f(E,(fn z=>cps. APP

(cps. VAR k,[z]))))],c(cps. VAR F))

end

44

Two names of vatiables are needed. One is for the name of the CPS function,
and another one for continuation k. The translator transforms a lambda function
into a named FIX function. We know CPS functions do not return. Then a jump
to continuation k is needed, taking z (The result of expression E) as an argument.

Argument v has the same meaning in the CPS expression.

| flamb.FIX(hx,bx,E),c) =
let
val w = newVar ("w")
fun g(hl:h,lamb.FN(v,B):b)=
(h1,[v,w], {(B, fn z=>
cps.APP(cps. VAR w,[z])))::g(h,b)
| g(nilnil) = nil
in
cps.FIX (g(hx,bx), f(E,c))
end

Both types of FIX functions (lambda and CPS) are used for defining a set of
named mutually recursive functions. Lambda function names and bodies are
contained in two lists (hx, bx). Function g transforms both lists into a single list,
containing function names, arguments, and bodies. The main expression E is also

transformed with the current continuation c.

| flamb.APP(lamb.MAKEREF,E),c) =
let
val w = newVar ("w")
in
f(E,fn v=>cps.PRIMOP(cps.makeref,[v],[w],
[c(cps.- VAR w))]))

end

This is an operator that takes one argument: the name of the exception. It is used
to declare an exception. The operator does return a result, and continue in one
way. E should be a string, which is later bound with the name v, to create a

45

reference in the store. The result, a reference to the store, will be kept in w, which

is then used in the continuation.

| flamb.APP(lamb.PLUS,b.RECORD |[x,y]),c) =
convert_bin (cps.+, X, y,)

| f(lamb.APP(lamb.SUB,b.RECORD [x,y]),c) =
convert_bin (cps.-, X, y,¢)

| flamb.APP(lamb.MULT,b.RECORD |[x,y]),c) =

convert_bin (cps.*, x, y,0)

Primitive arithmetic operators (PLUS, SUB, and MULT) are translated using the
same format. As MAKEREF, they return one result, and continue in one way.

Function convert_bin makes this transformation.

| f(lamb.APP (lamb.LESS,b.RECORD [x,y]),c) =

convert_jmp (cps.<,x,y,c)

Primitive operators for conditional branches (LESS and EQ) returns no result
and continue in one of two ways. Function convert_jmp make this

transformation.

| f(lamb.APP (lamb.EQ,b.RECORD [x,y]),c) =
convert_jmp (cps.equal,x,y,c)

| flamb.APP (F,E), ¢) =
let
val r= newVar ("t");
val x= newVar ("x");
in
cps.FIX([(t,[x],c(cps. VAR x))],
f(F,(fn £2=>{(E,(fn e=>cps.APP(f2,
[e,cps.- VAR t]))))))

end

46

CPS functions do not have returns. Then, if we want to translate a lambda
function call, we need to create a continuation function (it will replace the return
address). This function is named r. We also need to evaluate F and E, from
which f2 and e, will refer to these values. Next, a jump to f2 using e as the first

argument and r (the continuation) as the second will be applied.

| f(lamb.COND (test,expl,exp2),c) =

let

val fname= newVar ("F")

val z= newVar ("z")

val E1= f (expl, ¢)

val E2= f (exp2, ¢)

val f2= (fname, [z], cps.PRIMOP (cps.equal,

[cps.VAR z,cps.INT 0],[],[E1,E2]))

in

cps.FIX ([f2], f (test, (fn v=>cps.APP

(cps.VAR fname,[v]))))

end

For the primitive condition COND we need to create a FIX function. In the
body of the recursive function there is a primitive operator for conditional branch
(equal), that test if the argument of the function is zero. The main expression of

the FIX operator is the translated code for the test.

and
g(A,B,cl)=
let
val h= newVar ("h")
val e= newVar ("e")
val k= newVar ("k")
val n= newVar ("n")

val sethl=
cps.PRIMOP(cps.sethdlr,[cps. VAR h],
[LIfB,(fn f2=>cps.APP(f2,[cps.VAR ¢,
cps.VAR K)))))
val seth2=
cps.PRIMOP (cps.sethdlr,[cps. VAR 1],

47

[I,[f(A,(fn v=>cps.PRIMOP(cps.sethdlr,
[cps. VAR hl,[],[cps.APP(cps.VAR k,
DD
val x= newVar ("x")
val fix1=
cps.FIX([(k,[x],c1(cps.VAR x)),(n,
[e], seth1)], seth2)
in
cps.PRIMOP (cps.gethdlr,], [h],[fix1])

end

Function g implements lambda operator HANDLE. First, four new variables are
created for the names of the functions (n and k), the handler h, and an argument
e. Then, sethl contains the code of the body for new handler n, and seth2 the
code for the main expression of FIX. Name fix1 contains the code of the entire
FIX expression, including sethl and seth2. And finally, The whole code for

HANDLE is contained in cps.PRIMOP(cps.gethdlr,[],[h],[fix1]).

and
convert_bin (bin_op, x,y, ¢) =

let

val w= newVar ("w")

fun c2 vx vy =

cps.PRIMOP (bin_op, [vx,vy],[w],
[c (cps.VAR w)])

in

f (x, (fn xv => £ (y, c2 xv)))
end

This function converts primitive arithmetic operators PLUS, SUB, and MULT.
We need first to convert the argument expressions of the primitive, which are
always two (x and y). Conversion of y is made first, taking a PRIMOP operator
as a continuation. Then, conversion of x is performed taking also a PRIMOP

operator as continuation. So, the result will give a primitive operator for x inside

48

another primitive operator for y. The last continuation is always the initial ¢

continuation applied to the last result w.

and
convert_jmp (jmp_op, X, y, ¢) =

let
val w=newVar ("w")
fun c2 vx vy = cps.PRIMOP (jmp_op, [vx,vy],

[I, [¢ (cps.INT 0), ¢ (cps.INT 1)])

in
f x, (fnxv => £ (y, c2 xv)))

end

Observing the code produced by this function, we find only two differences with
respect to the code for function convert_bin. The CPS primitive operators
produced have not result (the third field is the empty list), and there are two
possible continuations for that primitive. These continuations take as arguments

INT 0 or INT 1 which represent true or false respectively.

3.2 A conceptual and executable framework

The semantic of CPS is described by Appel [App92] in chapter 3, where
he explains the meaning of CPS expressions by using denotational or
continuation semantics. This semantics is defined as a functor in SML. The
functor takes a CPS structure, a datatype for the values allowed in the semantics,
and some data definitions as arguments. Then, a function evaluates a CPS
expression, using an empty environment and store at the beginning of the

evaluation.

49

We implemented this continuation semantic by defining some needed

functions, an initial environment, and a store. Also, we linked some other

programs like the translator of CPS, and together we had as a result a conceptual

and executable framework of functional programming (see figure 3.6).

AND
ENVIRONMENT

STORE <—

Translator
To CPS

Evaluator
Of CPS

Translator
to Flat CPS
and Abstract

machine code

(optional)

> RESULT

> RESULT

Figure 3.6 Conceptual and executable framework.

This conceptual framework focuses on the experience of learning the

CPS concepts by using a framework of CPS programming. It can serve as an aid

in gaining a coherent understanding of the CPS programming. The most

important element of this framework is that programs in lambda and CPS code

50

can be directly compiled and executed and, the programmer can see how this
source code (lambda) is transformed into correspondent CPS code together with
important components of the framework, like an environment and a store. From
this framework a teacher and/or student should be able to write their own
programs, test them with different data, make experiments, etc. Research based
upon the experiment approach can be conducted in order to study the different

structures to use in a program, and so to determine what the best approach is.

Evaluator of CPS

The evaluator of CPS is a program which takes a CPS program, an input,
and performs an evaluation or execution of the CPS program, giving as a result a
denotable value (which is later converted into a string). The input is formed by

two COl’IlpOI]CI’ltS:

o An environment. This is a function that maps CPS variables to denotable
values (result values). The initial environment of the evaluator is created
by three functions:
val env0 = fn v=>raise Undefined (v)
val envl = bind(env0,"k", FUNC ic)
val env2 = bind (envl, "ovfl", overflow_exn)

The first value bound to the environment is the empty environment

(raise Undefined); the second value is the initial continuation (identity

continuation); and the third value is a predefined exception (overflow).

51

o A store. A function that maps locations (addresses) to denotable values.
The initial store of the evaluator are three functions:
val store0 = (100, tn 1=>raise Exc_Overflow Lfn _=>0)
val storel = upd(storeO,handler_ref, FUNC default_handler)
val store2 = upd(storel, overflow_loc, STRING "-overflow-")
Store0 establish that the first unused location is address 100. Addresses before
100 are used for keeping values like system exceptions. This store is the empty

location (a raise to an exception); the second location has the initial default

handler; and the third location has the predefined overflow exception handler.

The output or result is a denotable value. It can be any of these values:

o INT. It denotes the type integer.

o FUNC. A constructor of function type. It takes a list of denotable
values, and a store, yielding an answer (a string).

o STRING. It denotes the string.

o ARRAY. An array of locations. Our implementation uses it to store

references to exceptions.

In next tables, we show the implementation and some comments of the evaluator

of CPS.

type nextloc= loc -> loc
fun nextloc ()=1+1
type answer = string
type var = string
datatype dvalue =
INT of int
| FUNC of dvalue list ->

52

(loc*(loc->dvalue)*(loc->int))->
answer

| STRING of string

| ARRAY of loc list

Function nextloc is used to generate new locations in the store. Answer is the
result of all the execution of a program. The datatype dvalue define a set of
constructors representing the denotable values of the semantic. Denotable Values
can be used as arguments, variables, etc. They can be an integer, a string, an array
or a function. ARRAY values are a list of type loc (integers) and they are a
mutable data structure (they can be modified using the upd function). We use
dvalues of type ARRAY to store references, used when an exception is declared.

A dvalue of type function takes a list of actual dvalues and a store.

type store = loc * (loc -> dvalue) * (loc -> int)

type handler_ref= loc

val overflow_loc = 7,

val overflow_exn: dvalue = ARRAY [overflow_loc]

The type of the store is loc*(loc->dvalue)*(loc->int), where loc represent the
next unused location, (loc->dvalue) a mapping from locations to dvalues, and
(loc->int) a mapping from locations to integers. The current handler is kept in
a special location in store. We decided to store the address (reference) of the

overflow exception in the element 7 of a dvalue ARRAY.

fun upd ((n,f,):store, I: loc, v: dvalue) =
(n, fni=>ifi=l then v elsef1i, g)

53

Function upd is used to modify the store, given a location and its value. We use
upd every time a new exception handler is set by the operator sethdlr, or when a
new reference is created by the operator makeref (remember we use it to create

new exceptions).

| fun fetch ((_f,_): store) (l: loc) = f1

Function fetch is used for getting a value (denotable value) from store using a

determined location.

| exception Undefined of var and Exc_Overflow of loc

We define two exceptions: Undefined that is used when a value is not in the
environment (undefined variable), and Exc_Overflow when a value is not in the

store.

fun do_raise exn s =
let val FUNC f= fetch s handler_ref in f [exn] s end

Function do_raise catches overflow exceptions for arithmetic operations. It can
be though as a system exception handling for the CPS. The function uses the
default handler, which is bound in the store with location handler_ref, and then

passes parameter exn to this default handler.

fun overflow(n:unit->int, c:dvalue list ->store->answer)=
if (n() >=minint andalso n() <=maxint)
handle Overflow=>false
then ¢ [INT(n())]

else do_raise overflow_exn

54

Function overflow checks for limit (minimum and maximum) in results of
arithmetic operations. There is a handle expression which catches SML overflow
exceptions (in the metalanguage). The function calls do_raise function if there is
a violation of the limits allowed in the program. If there is not overflow, then the

result of the arithmetic operation is passed to the continuation c.

exception bad equality and Error

Two exceptions are defined: bad_equality is raised when two non compatible
denotable values are compared; Error is raised when the result of the program is

not a denotable value.

fun evalprim (a.gethdlr, [], [c]) =
(fn s => c [fetch s handler_ref] s)
| evalprim (a.sethdlr, [h], [c]) =
(fn s => c [] (upd(s,handler_ref,h)))
| evalprim (a.+,[INT i, INT j],[c]) =
overflow(fn ()=> (i + j),c)
| evalprim (a.-,[INT i, INT jl,[c]) =
overflow(fn ()=> (i - j),c)
| evalprim (a.%,[INT i, INT j,[c]) =
overflow(fn ()=> (i * j),c)
| evalprim (a.<,[INT i, INT j],[t,f]) =
if i<j then t[] else f[]
| evalprim (a.equal,[INT i, INT j],[t,f]) =
if i=j then t[] else f[]
| evalprim (a.equal,[ARRAY [i], ARRAY [j]], [t.f]) =
if i=j then t[] else f[]
| evalprim (a.makeref,[v],[c])=
(tn (LE,r)=>c [ARRAY [1]] (upd ((nextloc Lf,r),1,v)))
| evalprim (a.equal, [_,_], [t,f]) = raise bad_equality

55

Function evalprim evaluates a primitive operator (PRIMOP) applied to
arguments. The first two primitive operators: gethdlr and sethdlr are used for
exception handling. A gethdlr operator fetches the current exception handler
(handler_ref) from the store. A sethdlr operator sets (updates) a new current
handler in the store. Integer addition, subtraction, and multiplication just make
the computation and if there is no overflow, applies ¢ to the result. Integer
comparison just tests two integers, and depending of the result, it applies one of
two continuations (for true or false) to the empty list. Primitive makeref is
important in exception declaration. The operator first inserts the denotable value
v which can be the name of the exception, in the first available location in the

store. Then, it inserts the store location where v was saved in the environment.

type env = a.var -> dvalue

The type of the environment is a function from a variable (string) to a denotable

value.

fun Venv (a.INT 1) = INT 1
| Venv (a.STRING s) = STRING s
| Venv(@aVARvV)=envv

Fun V converts CPS values to denotable values. For variables the function has to

lock up the environment.

fun bind (env:env, v:a.var, d) =
fn w => if v=w then d
else envw

56

Function bind produces a new environment (a function of type a.var -> dvalue)

by binding a new variable with a denotable value.

fun E (a.APP(f,v])) env =
let val FUNC g = Venv

ing (map (Venv) vl
end

Function E is the function which takes the whole CPS expression, an
environment, and a store, and then it evaluates the expression giving as a result a
value of type answer (a string). Function application first locks up for function f
in the current environment; this gives as a result a function which is applied to a

set of arguments obtained (converted) from the environment.

| E (a.PRIMOP(p,vl,wlel)) env =
evalprim(p,
map (V env) vl,
map (fn e => fn al =>
E e (bindn(env,wl,al)))
el)

In order to evaluate a primitive operator, we first convert the arguments using the
current environment (map (V env) vl). Then the continuation (a function) of the
evalprim function is built by using the continuation of this function (E), and a

new environment with the addition of element wl.

| E (aFIX(fle)) env =
let fun h r1 (f,vl,b) =
FUNC(fn al => E b (bindn(g r1,vl,al)))
and g r = bindn(r, map #1 fl, map (h r) fI)
in E e (g env)
end

57

Function E with a mutually recursive function FIX (fl,e) evaluates expression e
in the augmented environment g. The augmented environment is built by
binding the list of recursive function names (map #1 fI), with the list of bodies
(map (h 1) fl) of each of these recursive functions (FUNC(fn al => E b (bindn(g

rl,vlal)))) , and using theirs respective local variables (bindn(g r1,vl,al)).

funic [INT 1] _ = Int.toString i

| ic [STRINGs]_=s

| ic [FUNC_]_ ="m"

| ic [ARRAY [l]] _= "ref ""(Int.toString 1)
| ic _= raise Error

This function (ic), is used to produce answer (an string) as a result of the

evaluation. The function just transforms a denotable value to a string.

fun default_handler [ARRAY [l]] s =

let

val STRING e =fetch s 1
in

"EXCEPTION ""e
end
| default_handler [_,ARRAY [l]] s =
let

val STRING e =fetch s 1
in

"EXCEPTION ""e
end

This function allows the program to display the output EXCEPTION
name_exception whenever a user defined exception is raised. Remember that the

name of the exception (string) is saved in memory, maintaining the location 1in a

58

denotable value of type ARRAY. So, using 1 as the location and the fetch

function we can access the name of the raised exception.

val env0 = fn v=>raise Undefined (v)
val envl = bind(env0,"k", FUNC ic)
val env2 = bind (envl, "ovfl", overflow_exn);

val store0 = (100, fn I=>raise Exc_Overflow Lfn _=>0)
val storel = upd(store0,handler_ref, FUNC default_handler)
val store2 = upd(storel, overflow_loc, STRING "-overflow-")

We initialize the environment with three new bindings (fn v=>raise Undefined
(v), FUNC ic, and overflow_exn), and the store with three new store locations
(fn 1=>raise Exc_Overflow, FUNC default_handler, STRING "-overflow-"),

where the last one is the handler for the overflow exception.

| fun eval (vl,e) dl = E e env2 store2

Finally, function eval will take a CPS expression e, two lists of variables and
denotable values (vl and dlI), and it will call function E passing formal parameters

e, env2, and store2.

59

4 The Abstract Machine

Continuation-passing style is the representation that we use as
intermediate code because it is closely related to Church’s lambda calculus and
to the model of von Neumann, represented by our target abstract machine
language (see figure 3.1). Each operator of CPS corresponds to one operator in
our target abstract machine code. In order to test the performance of the CPS

code we implemented an abstract machine.

The machine has an instruction set, a register set and a model of
memory, and executes programs written in abstract machine code. Figure 4.1

illustrates the components of the abstract machine.

AMC Program

!

Simulator of

I

Memory

Registers

Figure 4.1 Components of the Abstract Machine

60

4.1 A generator of abstract machine code (AMC)

Flat CPS is in a form which is easily translated to abstract machine code
(see figure 3.1). The abstract machine is modeled after a conventional von
Neumann machine. The AMC is essentially an assembly-language program, and
like any abstract machine it has some advantages with respect to a real machine:

first, performance analysis is easier, and second it is easier to simulate.

The abstract machine language
Figure 4.2 shows the definition of the abstract machine instructions as an ML

datatype.

datatype instruction =
LABEL of string
| JUMP of string
| CJUMP of relop * exp * exp * string * string
| LOAD of exp * exp
| STORE of exp * exp
|ADD of exp * exp * exp
| SUB of exp * exp * exp
IMUL of exp * exp * exp

and exp=
MEM of string
INAME of string
| CONST of int
| STRING of string
|IREG of int

and relop= EQ | LT

Figure 4.2 Datatype for an abstract machine instruction

61

Where a data or expression exp can be:

An address of memory represented by a name (string) of a register,

variable, etc.

The name of a label, which represents an address.

A constant for an integer data.

A string data.

The number (integer) of a register.

And an abstract machine instruction can be:

A label which is really not an instruction, but just an address. Whenever
the simulator finds a label it just increases the program pointer, in order

to read the next instruction.

A jump instruction is an unconditional branch to a label.

A CJUMP is a conditional jump to one of two labels depending of the

result of the test.

A load or move from memory into a register.

A store from a register or a string into a memory address.

Arithmetic operations to add, subtract, or multiply two values, producing

a result which is stored into memory.

62

We illustrate the abstract machine code with a complete program in SML,

Lambda, CPS, flat CPS, and abstract machine code.

SML
let
fun f(x)= x*5
in
£(4)
end
LAMBDA

FIX([”F']’ [FN ("X"’
APP(b.MULT,RECORD [VAR "x"INT 5]))],
APP(VAR "f'INT 4))

CPS

FIX
([(”F"["X","Wl H]’
PRIMOP (%,[VAR "x",INT 5],["w2"],[APP (VAR "w1",[VAR "w2")]))],
FIX
([("3",["x4"],APP (VAR "initialNormalCont",[VAR "x4"])],
APP (VAR "f" [INT 4,VAR "r3"])))

FLAT CPS

FIX
([("f‘l,["xn,nwl "],
PRIMOP (%,[VAR "x",IN'T 5],["w2"],[APP (VAR "w1",[VAR "w2"])])),
("t3",["x4"],APP (VAR "initialNormalCont",[VAR "x4"]))],
APP (VAR "f",[INT 4,VAR "t3"]))

:

LOAD Const 4,Reg 1
LOAD Mem r3,Reg 2
JUMP Name f
LAB f:
STORE Reg 1,Mem x
STORE Reg 2,Mem w1
MUL Mem x,Const 5,Mem w2
LOAD Mem w2,Reg 1

~N Ut kAW — O

63

8 JUMP Mem wl

9 LAB«3:

10 STORE Reg 1,Mem x4
11 LOAD Mem x4,Reg 1

12 JUMP Mem initialNormalCont
13 LAB end:

We can see the different representations of the program after each phase of the
compilation process, especially the last one: the abstract machine code. The code

in the AMC performs the following operations:

o Instructions 0 and 1 pass the parameters in registers 1 and 2.

o Instruction 2 is a jump to label f.

o Instructions 4 and 5 store the parameters in memory.

o Instruction 6 multiplies first parameter (constant 4) by constant 5.

o Instruction 7 passes as a parameter the result of the multiplication in
register 1.

o Instruction 8 is a jump to address r3 (the value of variable w1).

o Instruction 10 stores the parameter into memory address x4.

o Instruction 11 passes the value of x4 into register 1. This register always

keeps the final result.

64

° Instruction 12 jumps to the initial continuation initialNormalCont, a
fixed address or constant in memory that represents the end of any
program (in the first CPS example of section 3.1 we explained the

meaning of the initial continuation in a CPS program).

4.2 A simulator for the AMC

The simulator is a program which emulates a real computer. It is a piece
of software that runs an AMC program. In order to emulate a real computer it
uses three data structures which mimic a memory for data values, a memory for
code, and a set of registers (see figure 4.1). It also uses two variables that keep the
current program pointer (PC) for the code, and the current stack pointer (SP) for
the data. The main routine of the simulator is a recursive function that keeps
reading instructions from the AMC program. Next, we describe the algorithm

that carries out the simulation of an AMC program.

Input: An AMC program (list of instructions).

Output: A value or result after executing the AMC program.

Method:

o Convert the list (AMC program) into an array (more convenient for the
simulation)

o Initialize PC and memory pointers with initial address. PC points to first

AMC instruction and memory pointer to address zero in memory.

65

o Start main function which keeps reading instructions pointed by PC,
executing the operations (storing, loading, jumping, adding, etc.), and

updating the value of PC.

Example: We now show the execution by the simulator of the AMC program
shown in the last section. We display different stages of execution with the
respective values in memory and registers. Memory and register values are
shown before the displayed instruction is executed. As you can observe in the
example, the memory of the abstract machine is an array of tuples, where the
left component of the tuple is used for names or variables and the second for

the value assigned to such names or variables.

INSTRUCTION 0: LOAD Const 4,Reg 1

MEMORY =
[| ("Ovﬂ" Hovﬂﬂ) (HH HH) (HH HH) (’IH HH) (HH’HH) (HH VHI) (IVH HH) ("H HH)

(HH HH) ("" nn nmnonn "M AL ALE nn HH) (IHY LULALE mmonn AL AR L
>

>

AALABRAALE WAL AL nn HH HH " Hl’ nn nmonn nmonn "H " HH me

5 5

5 >

5 5

nn "H VHY nm

5

>

NN nn "nn "" nmonn HH " AALLAALE mmonn HH me

5 5

5 >

s((L
(0,0, 0,
(0,0, 0,
) ("" "H),("" "") ()’(
)’(),("" ""),("" "")’(
),(HH ll‘l),(l‘l‘ vm)’(nn Nll)’(‘lll m
D5C,C0), (M
(L, (M
(L, (M
(D, L,

5

>

HH nn "mn "" nmonn "" " m oy mnmmnn HH m

NN AN AN NG AN N AN AN N

5 5

5 >

(L (M
()
()
()
)’(HH "")’(
"nn Vl"),("ll NN)’(HN nn
("
)5
()
0"

5 5

HH nn "nn "" nmonn oy nmonan H" me

5

> >

nmnonn AL AALL My " onn " onn

>

mnnonn WAL AL

> >

> >

> >

>

AL ALE GALLIALE nmnonn HH " (AL ALE HH UL IHY LA
>

IHY UL
>
nn "H VHY "

5

monn HH me

> >

> >

> >

>

HH nn "" nn nmonn HH " AL AL nn HH mnmmonn HH me

> >

> >

> >

>

",
(
(
(
(
(
(
(
(
NN nn , "" nn ’(UH UL HH " WAL ALE mmonn HH me

nn HH |]

5 >

5 5

>

)
",)
0,00
0,00
0,00
() (vm "H)
(HH HH) ("" "ll)
(.0
(.00
0,00
0,00

NN nn
>

REGl —m
REG2 —mm

At the beginning memory only contains the value of a pre-defined
exception (overflow). Registers 1 and 2 are empty.

66

INSTRUCTION 2: JUMP Name f

MEMORY =
[| (Hovﬂll Hovﬂﬂ) (HH HH) (HH HH) (’IH HH) (HH HH) (HH VHI) <|Hl HH) ("H HH)

(NN NN) (VHI nn nmonn "oy LA ALE nmonn nmonn mmeonn m oy

WAL AALE GALLRALE nmonn "me oy AALABRAALE nmonn nmonn mmonn LA AL

> > >

me oy m oy

(0,0, C L L, ,
(NN’NN "nn VHI) (UH UH),(HH HH) (HH HH) ("" "H) (VHY "") (NH HH)’(HH HH)’
(HH HH) ("" "") (H" "") ("" "") (H" HH) ("" "H) ("" "") ("" "") (H" H")
(HH HH) ("" "") (H" "") ("" "") (H" HH) ("" "H) ("" "") ("" "") (H" H")
(HH HH) ("" "") (VIH Vlll) (HN NN) (HN HH) (HH ll‘l) (IHV llll) (HIV Nll) (HH ll")
(HH HH) ("" "") (Vl" Vlll) (HN NN) (HN HH) (HH ll‘l) (IHV llll) (HIV Nll) (HH ll")
(HH HH) ("" "") (HH HH) (HH HH) (HH HH) (HH HH) (IHY HH) (HH HH) (HH HH)
(HH HH) ("" "") (HH HH) (HH HH) (HH HH) (HH HH) (IHY HH) (HH HH) (HH HH)
(NN NN) (VHI VHI) (UU UH),(HH HH) (HH HH) (H" "H) (VHY "") (NH HH)’(HH HH)’
E ;E 3(0,0, (R,

I

REG1 = "4"
REG2 = "r3"

Before executing instruction 2, registers 1 and 2 already contain the
values passed as parameters.

INSTRUCTION 8: JUMP Mem wl

MEMORY =

[| ("Ovﬂ" "Ovﬂ") (HX" "4") (" 1" ’lr:))l) (H 2" "20”) ("" "") (HH "") ("" H")’
(HH HH) ("" "") (Vl" Vlll) (HN NN) (HN HH) (HH ll‘) (IHV llll) (HIV nn (HH AL
(HH HH) "nn "") (Vl" LULAL "nn NN) (HN HH) (HH ll‘l) (IHV llll) (HIV Nll) (HH AL
(HH HH) ("" "") (HH HH) (HH HH) (HH HH) (HH HH) (IHY HH) (HH HH) (HH HH)
(HH HH) ("" "") (HH HH) (HH HH) (HH HH) (HH HH) (IHY HH) (HIY HH) (HH HH)
(NN NN) (VHI VHI) (UU UH),(HH HH) (HH HH) ("" "H) (VHY "") (NH HH)’(HH HH)’
(NN NN) (VHI VHI) (UH UH),(HH HH) (HH HH) ("" "H) (VHY "") (NH HH)’(HH HH)’
(HH HH) ("" "") (H" "") ("" "") (H" HH) ("" "H) ("" "") ("" "") (H" H")
(HH HH) ("" "") (H" "") ("" "") (H" HH) ("" "H) ("" "") ("" "") (H" H")
(HH HH) ("" "") (Vl" Vlll) (HN NN) (HN HH) (HH ll‘l) (IHV llll) (HIV Nll) (HH ll")
(HH HH) ("" "") (Vl" Vlll) (HN NN) (HN HH) (HH ll‘l) (IHV llll) (HIV Nll) (HH ll")
(HH HH) (HH HH) (HH HH) |]

REG1 = "20"
REG2 = "¢3"

Before executing instruction 8, the variables x, wl, and w2 contain
values 4, r3, and 20 respectively as a result of instructions 4-6, and register 1
contain value 20 as a result of instruction 7.

67

INSTRUCTION 8: JUMP Mem initialNormalCont

MEMORY =

| (ovﬂ" "Ovﬂ") (HXH H4H) (H 1” Hr3’|) (H 2" "20") (Vl 4" "20") (HH HH)
(NN NN) (VHI VHI) (UH HH) (HH HH) (HH HH) ("" "H) (VHY "") ("H HH)’(HH HH)
(NN’NN nn VHI) (UH HH),(HH,HH) (HH HH) ("" "H) (VHY "") ("H HH)’(HH me ,
(HH HH) ("" "") ("" "") ("" "") (H" HH) ("" "H) ("" "") ("" "") (H" H")
(HH HH) ("" "") ("" "") ("" "") (H" HH) ("" "H) ("" "") ("" "") (H" H")
(HH HH) ("" "ll) (Vl" Vl") (HN NN) (HN HH) (HH ll‘l) (HH llll) (HIV Nll) (HN ll")
(HH HH) ("" "ll) (Vl" Vl") (HN NN) (HN HH) (HH ll‘l) (HH llll) (HIV Nll) (HN ll")
(HH HH) ("" "") (HH HH) (HH HH) (HH HH) (HH HH) (IHY HH) (HH HH) (HH HH)
(HH HH) ("" "") (HH HH) (IVH HH) (HH HH) (HH HH) (IHY HH) (HH HH) (HH HH)
(NN NN) (VHI VHI) (UH HH),(HH HH) (HH HH) (H" "H) (VHY "") ("H HH)’(HH HH)’
(NN NN) (VHI VHI) (UH HH),(HH HH) (HH HH) (H" "H) (VHY "") ("H HH)’(HH HH)’
(HH HH) ("" "") ("" "") ("" "") |]

REG1 = "20"
REG2 = "t3"

At the end of the program, register 1 contain the result of the

multiplication (instruction 11 assigned it). In memory variable x4 get the same

value which was passed as a parameter in instruction 10.

68

5 Exception-Handling Overhead

This chapter considers the implementation of exception handling. We
examine programs written in the functional language ML. We tested two
compilers: SML/N]J version 110.0.7 and OCAML version 3.06. We show that
these programs with exception handling have runtime overhead even when no
exceptions are thrown. Last, we describe the source of the overhead in programs

compiled with the SML/N]J compiler.

5.1 Introduction

Many modern programming languages, for example, Java, Modula-3, and
SML, provide mechanisms for dealing with exceptional conditions detected by
hardware or software. They also allow the programmer to define other unusual
events and use the same mechanisms to deal with them when they arise. These
mechanisms are collectively called exception handling.

An exception can be defined as a condition brought to the attention of
the operation’s invoker, which becomes part of normal exit or return; or as an
error or an event that occurs unexpectedly or infrequently, and includes an error
or a signal. The exception handler is the code attached to an entity (program,

procedure, object, expression, etc) that is executed when an exception occurs

69

[LS98]. A handler may catch one or more kinds of exceptions and may fail to

handle other kinds of exceptions.

Though the syntax is different, exception handling in most modern
programming languages is pretty much the same. In Ada [Ada95] and Modula-3
[Nel91] exceptions are declared using the keyword exception. The raise
statement raises an exception. A begin ... exception ... end construct is used to
associate handlers to some block of code in Ada. In C++ [Str91] there is no
specific declaration for an exception. Users can raise an ordinary object as an
exception by using the statement throw. A try{...} catch{...} structure attaches
handlers led by the keyword catch to a guarded block of code led by the keyword
try. Modula 3 uses the construct try ... except ... end and try ... finally ... end
that are used to bind handlers to a code block and to clean up resources. The
code led by the keyword finally is executed whether or not exceptions are raised.
One interesting feature of Java [GJS96] is that it throws objects that are instances
of the predefined class Throwable.

Some functional languages have exception handling. Some do not. Lazy
functional languages like Haskell [Hud90], try to eliminate dependencies on the
order of evaluation. Some exception handling introduces such situations. For
example in the expression (raise x, raise y) the order of evaluation depends of
which exception is first raised. Consequently, these languages do not have

exception handling mechanisms.

70

Eager functional languages, on the other hand, sometimes have exception
handling mechanisms like the imperative languages. In ML [MTH90], exceptions
are declared with the keyword exception, and raised with the keyword raise. An
exception can be handled with the construct <expression> handle <match>
where match is a set of patterns (P) of the type P, =>E, | ... | P,=>E and E
is an expression (see SML example in chapter 2). CAML [Ler00] uses a similar
syntax. When declaring an exception, it uses the keyword exception too. The
keyword raise is used for throwing an exception, and try <expression> with

<match> for handling the exception.

5.2 Implementation of exceptions (SML/N])

In chapter 3 we showed an example of translating a HANDLE and
RAISE lambda expression into a corresponding CPS expression. We also
described the algorithm to convert any lambda expression (like HANDLE and
RAISE) into a CPS expression. In this section we give more details about the
implementation of exception handling expressions in lambda and CPS language.

The SML/NJ [AM91, App92, and AT89] compiler translates a source
program into a machine-language program in several phases