
Design and Implementation of Exception
Handling with Zero Overhead in

Functional Languages

By

Ramon Zatarain Cabada

A dissertation
submitted to the College of Engineering at

Florida Institute of Technology
in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
May, 2003

Abstract

Title: Design and Implementation of Exception Handling with Zero
Overhead in Functional Languages

Author: Ramon Zatarain Cabada
Major Advisor: Ryan Stansifer, Ph.D.

This dissertation considers the implementation of exception handling

specifically for functional languages. Some implementations incur overhead for

using exception handling even when no exceptions are raised. We show the

results of some experiments with the SML of New Jersey and OCAML

compilers, two well-known compilers for functional languages. Imperative

languages avoid this overhead by using tables, but the approach does not easily

transfer to compilers using continuation passing style (CPS). This dissertation

proposes an approach that works with CPS compilers like SML of New Jersey.

We first present an experiment where programs in SML are written with

and without exception handlers. From these results, we conclude that programs

with exception handling produce overhead even when no exceptions are raised.

Then, we analyze the source of the exception handling overhead in the SML of

New Jersey compiler. We present a solution to the problem. The new approach

uses two continuations instead of the one continuation. One continuation

encapsulates the rest of the normal computation as usual. A second continuation

is used for passing the abnormal computation. The second continuation is not

 iii

passed as an extra argument but is passed as a displacement from the first

continuation.

We have implemented a basic CPS compiler for functional languages

with exception handling. With it we were able to implement the new approach to

exception handling and compare it side-by-side with the approach taken by the

SML of New Jersey compiler. We show that the new approach to exception

handling adds no overhead to the normal flow of control.

The importance of our new approach to exception handling for CPS

compilers proposed in this dissertation is the improved run-time performance in

every case in which an exception handler is used.

 iv

Table of Content

List of Figures ...vii

Acknowledgment ... viii

Dedication ... ix

Chapter 1 – Introduction.. 1

1.1 Overview of the problem...3
1.2 Outline of Dissertation ...4

Chapter 2 – Related Work..6

2.1 Functional Programming...6
2.2 Continuation-passing style (CPS)...13
2.3 Exceptions ..16

Chapter 3 – A Model Of CPS Translation And Interpretation...................24

3.1 A minicompiler for miniML...26
3.2 A conceptual and executable framework ...49

Chapter 4 – The Abstract Machine ..60

4.1 A generator of abstract machine code (AMC) ...61
4.2 A simulator for the AMC..65

Chapter 5 – Exception Handling Overhead ...69

5.1 Introduction..69
5.2 Implementation of exceptions (SML/NJ) ..71
5.3 Overhead in Exception Handling of SML/NJ ..76
5.4 Overhead in Exception Handling of OCAML ..78
5.5 The source of the Exception Handling Overhead in SML........................80

Chapter 6 – Zero Overhead Exception Handling85

6.1 Exception table technique..86
6.2 Low overhead using two continuations...96
6.3 Zero overhead with one continuation and displacement103

Chapter 7 – Experiments And Performance.. 109

7.1 Experimental measurements..109
7.2 Experimental examples...110

 v

7.3 Performance evaluation ..125
7.4 Analysis of the performance..128

Chapter 8 – Conclusions And Future Work... 129

8.1 Conclusions...129
8.2 Future work...130

References .. 132

Appendix .. 138

 vi

List of Figures

Figure 3.1 Overview of the compiler for the experiments.....................................24

Figure 3.2 Model of translation-interpretation ...26

Figure 3.3 Datatype for a lambda expression ...27

Figure 3.4 Datatype for a lambda expression ...32

Figure 3.5 Syntax tree for a lambda expression..41

Figure 3.6 Conceptual and executable framework...50

Figure 4.1 Components of the Abstract Machine ...60

Figure 4.2 Datatype for an abstract machine instruction....................................61

Figure 5.1 Comparison between using and not

 using exceptions in SML/NJ..77

Figure 5.2 Comparison between using and not

 using exceptions in OCAML..79

Figure 6.1 Inclusion of compensation code..107

Figure 7.1 Performance of program 2 from 10 to 1000 steps.............................126

Figure 7.2 Performance of program 2 from 10000 to 1000000 steps................127

Figure 7.3 Performance of program 2 from 10 to 1000000 steps127

 vii

Acknowledgment

 First and foremost I would like to thank my advisor Dr. Ryan Stansifer

for all the effort he spent in guiding my dissertation. He not only inspired me to

work in functional languages but also help to improve my abilities as a

programmer, as a writer, and most at all as a computer scientist. I also highly

appreciate his company and friendship during this last five years.

 I would also like to acknowledge my committee, Dr. Phil Bernhard, Dr.

Pat Bond, and Dr. Dennis Jackson for theirs valuable comments about this

research. Special thanks to Dr. George (Jorge) Abdo for his words and advice he

provided during this last five years.

 I also thank many faculty members from the Florida Institute of

Technology for providing insight and comprehensive explanations to their many

fields of expertise.

 Finally, I want to give my gratitude to my wife for her support not only as

a wife but also as a computer professional. She not only gave me her love and

understanding but also gave me valuable comments and suggestions during my

research.

 viii

Dedication

This dissertation is dedicated to the memory of my father

Rosalio Zatarin Osuna (1930-2003)

to my mother Delia T. Cabada Amarillas

to my wife Lucia and

to my three precious daughters Zyanya, Ana, and Naomi

 ix

1 I n t r o d u c t i o n

The value of exception handling is well-known in the field of software

engineering. The first high-level language to have a mechanism for exception

handling was PL/I [Ans76]. Before that, a common form of processing

exceptions or error conditions was made by using IF statements inside the

normal code in order to check the return code of some operations. When an

exception occurred, normal processing activities were ended.

PL/I allowed a programmer to handle and propagate exceptions

dynamically. The exceptions were associated to statements (today most

programming languages like Ada and Java associate it to blocks of code). When

an exception was raised the flow of control continued at the beginning of the

statement which raised the exception.

A very important paper on exception handling was written for

Goodenough [Goo75]. This paper describes a notation for an exception handling

mechanism. Today, many models of exception handling in different

programming languages are based in that notation.

Another language which pioneered exception handling facilities was CLU

[LS79]. This programming language associated exceptions with blocks of code

(procedures). A drawback in CLU was that exception propagation did not

existed, and that exception was handled by the calling procedure.

 1

After PL/I and CLU, a substantial amount of work has been done in

programming languages to design alternative methods of exception handling.

Ada [BR86], COMMON LISP [Ste84], SML [MTH90], Modula-3 [CDGJKN],

C++ [Str91], and Java [GJS96] all support exception handling techniques.

There are several advantages to supporting exception handling in a

language. One is to avoid cluttering programs with code for detecting error

conditions. Another is to allow an exception to be propagated in its dynamic

chain of calls. That provides a caller the possibility of knowing about the failure

of an operation and is named dynamic propagation. But, most important is that

the language encourages programmers to consider all events that can throw an

exception during program execution.

Exception handing is very often the most important part of the system

because it deals with abnormal situations. For a variety of reasons, not least

among which is the fact that more than half of the code is often devoted to

exception detection and handling, many failures are caused by the incomplete or

incorrect handling of these abnormal situations. The requirements for correct

system behavior during exception handling are in some sense even greater than

for the system operating in normal mode.

 2

1.1 Overview of the problem

When declaring and using exception handling the syntax and semantic of

a language is pretty much the same. On the other hand, when we talk about

efficiency we come to different results. Compilers of imperative languages like

Java, Ada, and C++ implement exception handling without imposing overhead

on normal execution [LYKPMEA, BR86, and Din00]. When a program defines

an exception handler, the runtime performance of that program would be the

same without exception handler definition. We can say that there is no runtime

penalty for defining an exception handler which is never used. In other words, no

runtime overhead occurs in the case in which no exceptions are raised. However,

compilers of functional languages like SML/NJ [AM91] or CAML [Ler00]

produce code that has exception handling overhead. We made some experiments

in order to verify this. We found also the source of the overhead in the SML/NJ

[AM91] compiler.

In this dissertation we present a new approach to implementing exception

handling in functional programming languages. The new approach incorporates a

method for implementing exception handling without imposing overhead on

normal execution. In order to test the new approach, we had first to build a

compiler for a functional language, where we implemented the two approaches:

the traditional approach (the one used in the SML/NJ compiler), and the new

approach proposed in this dissertation.

 3

1.2 Outline of dissertation

 Some material about functional languages and programming in them,

especially SML, would be helpful for a reader of this dissertation [Har98, Hen80,

Pau91, and Ull98].

Chapter 2 covers introductory and support material in functional

programming, continuation-passing style, and exception handling. The material is

presented with explanations and some code in different languages.

Chapter 3 describes the design and implementation of a model of

translation and execution of programs. The translator generates CPS

(continuation-passing style) programs, which are executed by an evaluator of CPS

code. The chapter presents a set of examples used in testing the compiler in SML

and CPS code.

Chapter 4 presents the abstract machine used to interpret the target code

produced by the translator. We also show some examples of programs produced

and tested in the machine.

Chapter 5 explains how the SML/NJ compiler implements exception

handling. It also shows the experiments that we made in order to verify that the

SML/NJ and OCAML compilers produce overhead in programs with exception

handlers. Last, we explain the source of the overhead in SML programs by using

an example.

 4

Chapter 6 presents the new approach for exception handling

implemented in our compiler. We start by describing a method used in imperative

languages. This method uses a table of assembly code regions. Then, we explain

the first part of the new approach where code produced by the compiler contains

two continuations, and last we explain how zero overhead can be reached by

doing some modifications to that approach.

Chapter 7 shows the experiments we did in order to test the performance

of the new approach. First, it explains the experimental methodology and

examples used in the tests. Second, it presents the results of performance of the

programs using the old and new approach. Last, it makes an analysis of the

results.

Finally, chapter 8 describes some conclusions of the work and the future

research to be done.

 5

2 Related Work

This chapter sets the stage for the presentations in chapter 3, 4, and 5.

First, we review the fundamental concepts of functional programming; then we

present an introduction of continuation passing style (CPS); finally, we describe

exceptions in modern programming languages like SML, Java, and Ada.

2.1 Functional Programming

Functional languages

 Functional languages focus on data values described by expressions (built

from function applications and definitions of functions) with automatic

evaluation of expressions. Programs can be viewed as descriptions declaring

information about values rather than instructions for the computation of values

or of effects [Rea89]. In functional programming languages there is no distinction

between statements and expressions; names are only used to identify expressions

and functions (and not memory locations); like in imperative languages they allow

functions to be passed as arguments to other functions, or returned as results

(higher-order functions) [WM95].

Functional Languages are divided in eager and lazy functional languages.

In eager functional languages, the evaluation of arguments in a function

application is made before the function is applied. This gives as a result that the

 6

same expression can be evaluated more than one time. On the other hand, lazy

functional languages evaluate expressions in a demand drive way named call by

need. In this technique the arguments of functions are evaluated once at most

[Rea89]. For example, assuming double is defined by:

fun double x = plus x x

The evaluation of double (fact 5) begins with:

 Double (fact 5) = plus (fact 5) (fact 5)

With call by need, fact 5 needs to be evaluated only one time.

Examples of eager functional languages are Scheme [SSJ78], SML

[MTH90], and CAML [Ler00]. Miranda [Tur85], Lazy ML [Aug84], Ponder

[Fai82], and Haskell [Hud90] are all examples of lazy functional languages.

Eager functional languages

 Functions that are always undefined with undefined arguments are called

strict. A functional language that uses strict evaluation (to evaluate the arguments

of the functions) is named eager (or strict) language. This evaluation technique in

conventional programming languages like Pascal and C have been called call by

value, while for functional languages is also called applicative reduction order.

Some of the functional programming languages that use eager evaluation are ML,

Scheme, and CAML.

 7

The ML and SML programming languages

 ML [MTH90] is a general-purpose programming language designed for

large projects. It was developed in the late 1970s as the Meta-Language of the

Edinburgh Logic for Computable Functions (LCF) theorem-proving system. It is

an eager and functional programming language where current statements as

blocks, conditional, assignments, etc. are encapsulated as expressions. Every

expression has a statically determined type and will only evaluate to values of that

type. Standard ML of New jersey (abbreviated SML/NJ) is a compiler and

programming environment for ML written in ML with associated libraries, tools,

and documentation [AM91, SML03]. SML/NJ is free, open source software. The

core of the SML/NJ system is an aggressively optimizing compiler that produces

native machine code for most commonly used architectures: x86 (IA32), Sparc,

MIPS, IBM Power 1 (PowerPC), HPPA, and Alpha [SML03]. The compiler

translates a source program into a target machine language program in several

phases.

Lazy functional languages

 Functions that can give defined results even when arguments are

undefined are called non-strict. For example the expression (3 = 3) or ((5 div 0) =

4) might give a defined result of true (true or x = true), if we ignore the result of

the second sub-expression (undefined). A functional language that uses non-

 8

strict evaluation (to evaluate the arguments of the functions) is named lazy (or

non-strict) language. A program using lazy evaluation will not evaluate any

expression unless its value is demanded by some other part of the computation.

Lazy evaluation, also called call-by-need, is a modification of call-by-name that

never evaluates the same thunk (sub-expression) twice. In this technique, lambda

expressions are represented by graphs.

Lambda Calculus

 Lambda calculus is a mathematical calculus for computable functions

proposed by Alonzo Church in 1941 in order to establish the limits of what was

computable. It is the theoretical foundation of functional languages. Next, we

have a definition of a context free grammar for lambda calculus [Sta95]:

V --> x | y | z | v |….. {Variables)
F --> a | b | c | f | g |…. {Set of functional symbols}
L --> V | F | λ V.L | L L | (L)

Examples: x, f x, f (g x), λx.b, f (λ x.b), λy.(g x)

Lambda calculus provides a behavioral explanation of terms in the form

of rewriting or reduction rules [Rea89]. They are used to simplify lambda terms.

The most important reduction is the (β) reduction rule. This is given by:

Beta reduction (β): (λv.E1)E2 ====> E1[E2/v]

It means that the bound variable v in the body E1 of the abstraction is

substituted by the argument E2. It can be interpreted as saying that a function

 9

λv.E1 applied to the actual argument E2 means the same as the body E1 where

all occurrences of the formal parameter v have been replaced by E2. The variable

v is bound to E2. This is essentially the call-by-name rule in ALGOL 60.

Examples: (λ x. + x x) 4 ====> + 4 4
 (λ v.v) c ====> c
 (λ x. λ y. * y x) 3) 7 ====> (λ y. * y 3) 7
 (λ y. * y 3) 7 ====> * 7 3

A very important note is that we can represent any element of a

programming language like a number, a primitive operation, a selection,

recursion, etc. in lambda calculus.

Combinators

 A free variable (non-local variable) affects the efficiency of a program

(binding of free variables with its values). Combinators are a technique for

transforming lambda expression into expressions that only include applications

and combinators. These expressions are called closed expressions (expressions

with no free variables). The idea is first, to translate a lambda expression into a

combinator term in which no variables appear, and second, to translate a

combinatory term into a combinatory using an algorithm named bracket

abstraction.

 10

Example: Consider the lambda expression (λ x. + x 1). It will be transformed to

a combinatory term and then into a combinator as follow [Sta95].

(λ x. + x 1) =========>
[x] (+ x 1) =========>{combinator term)

 S ([x] (+ x)) ([x] 1) =========>{use of bracket abstraction}
 S (S ([x] +) ([x] x)) [x] 1 =========>{use of bracket abstraction}
 S (S (K +) I) (K 1) {combinator}

Where the rules of evaluation are:

 S x y z ====> x z (y z)
 K x z ====> x
 I x ====> x

Example: We evaluate the corresponding lambda expression and combinatory

and we get the same result.

 Lambda expression Combinator
 (λ x. + x 1) S (S (K +) I) (K 1)
 (λ x. + x 1) 3 S (S (K +) I) (K 1) 3

 (+ 3 1) S (K +) I 3 (K 1 3)
 4 (K + 3) (I 3) (1)

+ 3 1
4

Something remarkable to establish is that the third combinatory I can be built

with combinators K and S. Then, any program can be described entirely by these

two primitives.

Closures

 In languages such as C without nested procedures, the run-time

representation of a function value can be the address of the machine code for that

 11

function [App98]. This address can be passed as an argument, stored in a variable,

and so on; when it is time to call the function, the address is loaded into a

machine register, and the “call to address contained in register” instruction is

used.

 But this will not work for nested functions, where a function can return a

function as a value (high-order functions). The problem is the non-local

environment can not be found without the static link. The solution is to represent

a function-variable as closure: a record that contains the machine-code pointer

and a way to access the necessary free (non-local) variables. One simple kind of

closure is just a pair of code pointer and static link; following the static link can

permit access to the non-local variables. The portion of the closure giving access

to values of variables is often called the environment.

Tail recursion

 A function call f(x) within the body of another function g(y) is in tail

position if “calling f is the last thing that g will do before returning”. Applications

of functions in tail positions can be implemented by direct jumps instead of the

more sophisticated context switches needed for other function calls in most

language implementations.

Example: (non-tail recursive function):

fun fact (n)=
 if n=0 then 1 else fact(n-1) * n

 12

The call to function fact is not the last operation of the function (the last

operation is the multiplication operation), and then this is a non-tail recursive

function.

Example: (tail recursive function):

fun fact (n)=
 if n=0 then 1 else n * fact(n-1)

The call to function fact is the last operation in the function.

2.2 Continuation-passing style (CPS)

Definitions of CPS

 The purpose of CPS is to make every aspect of control flow and data

flow explicit [App92].

 It combines tail recursion with extra parameters (the continuations) in a

function. In section 2.1.5 we showed an example that shows a transformation of

a non-tail recursive function into a tail recursive function by using a continuation

named k. Into the continuation we pass the context of the function (instead of

using a stack for saving). Then the function does not need to return for doing last

operations.

Another way of looking at CPS is as “a style of programming in which

every user function f takes an extra argument k known as a continuation.

Whenever f would normally return a result r to its caller, it instead returns the

 13

result of applying the continuation to r. The continuation thus represents the

whole of the rest of the computation” [FOL].

Example: The program,

 if x < 0 then x else f(x)

can be broken up into the expression

 x < 0

and the continuation (expressed here as an evaluation context)

 if [] then x else f(x)

The expression is evaluated and then passed into the continuation, which takes it

the rest of the way.

Writing the continuation as a function, we can transform this program into:

 (λv. if v then x else f(x))(x < 0)

Applying this transformation to every part of the program, we produce a program

in continuation-passing style (CPS).

Thus, CPS is a style of writing programs where the events in the future,

i.e. the rest of the computation, is passed as an explicit parameter. The value

passed as this parameter is the continuation. A continuation is a procedure that

takes the value of the current expression and computes the rest of the

computation. Procedures do not return values; instead, they invoke the

continuation with the result. If a program is fully CPS converted then there are

no procedure return. Every procedure call is tail call, and the program's control

memory is not stored in some invisible stack but explicity as the continuation.

 14

Advantages of CPS

• No need for a stack (values go on and off the stack too many times),

because functions never return.

• Every intermediate value of a computation is given a name (possible

corresponding to a machine register). This allows an easy translation to

machine code.

• Functional language compilers use CPS to transform the structure of

the function from a lambda calculus form to an imperative form. We

can then, apply conventional techniques like code optimization and

generation to the transformed form.

• Beta reductions and others optimizations are easier to do too.

How can CPS be useful?

CPS can be useful in several different ways. When there are two or

more possible continuations (one for success and one for failure), it is more

convenient to let the procedure choose between its continuations than to force

its caller always to perform a test based on some returned result, particularly

since the nature of the information that must be returned depends on how the

computation is to continue. Another use of CPS is to return multiple results by

passing them to a multiple-argument continuation. This is often better than

 15

returning some data structure out of which the caller of the procedure would

have to extract the values.

2.3 Exceptions

Exception handling techniques

 An exception is the union of error, exceptional case, rare situation,

and unusual event [LS98]. The entity that is raising an exception stops and waits

for the completion of the exception processing. Exceptions are usually divided

into two classes: predefined and user-defined. Predefined exceptions are declared

implicitly and are associated with conditions that are detected by the underlying

hardware or operating system; they are also called system-defined exceptions. In

any case languages with exception handling allow the program to regain control.

 The idea of exception handling is seen as the immediate response and

consequent action taken to handle the exceptions. An exception handler is the

code attached to (or associated with) an entity for one or several exceptions and is

executed when any of these exceptions occur within the entity. Depending on the

exception-handling mechanism, an entity can be a program, a procedure, a

statement, an expression, an object, or data. Exception handling can be

embedded into the operating system or into a programming language.

 16

Exception handling in programming languages

 Goodenough’s notation is the first structured exception-handling

mechanism proposed [Goo75]. It either terminates or resumes the program’s

execution after an exception is handled. If an exception is raised from an

operation, the mechanism first tries to find local handlers, which is in the same

context as the operation.

The programming language CLU [Lis79] is based on a simple model of

exception handling and can support termination. The mechanism searches only

one level up besides the local context. If a user wants to raise an exception several

levels up, he must raise the same exception explicitly in the handler of each level.

This exception propagation mechanism is called explicit propagation.

Ada [Ada95] declares exceptions by the statement exception. An

exception not handled is automatically raised into the upper levels along the

calling chain until a handler is found or until a program boundary is reached.

Therefore, this propagation method is called automatic or dynamic

propagation.

Example:

 1 -- propagation.adb: illustrate exception propagation
 2
 3 with Ada.Text_IO; use Ada;
 4
 5 procedure Propagation is
 6
 7 E, F, G, H: exception;
 8

 17

http://www.adahome.com/rm95/rm9x-A-10-01.html

 9 procedure A is
 10 begin
 11 Text_IO.Put_Line ("Begin A");
 12 -- ***********************************
 13 -- suppose an exception is raised here
 14 -- ***********************************
 15 Text_IO.Put_Line ("End A");
 16 end A;
 17
 18 procedure B is
 19 procedure C is
 20 begin
 21 Text_IO.Put_Line ("Begin C");
 22 A;
 23 Text_IO.Put_Line ("End C");
 24 exception
 25 when E => Text_IO.Put_Line ("Caught E");
 26 end C;
 27 begin
 28 Text_IO.Put_Line ("Begin B");
 29 C;
 30 Text_IO.Put_Line ("End B");
 31 exception
 32 when F => Text_IO.Put_Line ("Caught F");
 33 end B;
 34
 35 begin
 36 Text_IO.Put_Line ("Begin Main");
 37 B;
 38 Text_IO.Put_Line ("End Main");
 39 exception
 40 when G => Text_IO.Put_Line ("Caught G");
 41 end Propagation

 The program starts execution (main program) writing a line, and then

calls procedure B. procedure B starts also writing a line, and then calls procedure

C. Procedure C calls procedure A after writing a line. In procedure A, the

program writes a line, and then an exception is thrown (a supposition). Because

 18

procedure A has not an exception handler, the exception is propagated into

upper levels along the calling chain. The upper level in this case is procedure C

which has declared an exception handler (for exception E). If the exception is not

caught in procedure C, then the exception is reraised and propagated to

procedure B. This procedure has a handler that will try to catch again the

exception. The propagation can continue until a handler is found or until a

program boundary is reached.

In C++ [Str91], there is no specific declaration for exceptions. User can

raise an ordinary object as an exception by using the statement throw. A

try…catch structure attaches handlers led by catch to a guarded block of code

led by try. If the handler for a raised exception cannot be found locally, C++

unwinds the stack of the try block and propagates the exception to its caller. This

procedure continues until a handler is found or until a default handler is called,

which then aborts the program.

Java [GJS96] uses a mechanism similar to C++, adding the clause finally

to the try…catch structure. The statements in finally are executed whether or

not exceptions are raised.

Example:

 1 class One_Exception extends Exception {
 2 int argument;
 3 public One_Exception (int i) { argument=i; }
 4 }
 5

 19

 6 class Another_Exception extends Exception {}
 7
 8 public class Try_Block {
 9
 10 public static void main (String argv[]) {
 11
 12 // Java "try" block with "catch" and "finally"
 13
 14 try {
 15
 16 // block of statements; may raise exceptions,
 17 // "break", "continue", or return.
 18
 19 if (1==0) {
 20 throw new One_Exception (5);
 21 } else {
 22 throw new Another_Exception ();
 23 }
 24
 25 } catch (One_Exception e) {
 26 // one handler
 27 System.out.println (e.argument);
 28
 29 } catch (Another_Exception e) {
 30 // another handler
 31 e.printStackTrace (System.err);
 32
 33 } finally {
 34 // final wishes; always executed no matter whether
 35 // we leave the block normally, with an exception,
 36 // because of a "break", "continue", or return
 37 }
 38 }
 39 }

 When the Java program enters in the try block, it tests the condition

(1==0). In this case the condition is false, so the program will raise the exception

Another_Exception (). Inside the try block there are two exception handlers:

one for exception One_Exception and another for Another_Exception. The

 20

first handler will fail to catch the exception that was raised, but the second

handler will success, and it will execute the code of the handler (e.printStackTrace

(System.err)).

 SML [MTH90] like Java has exceptions that are themselves values. An

exception name in Standard ML is a constructor of the built-in type exn [Pau91].

The exception declaration exception exc_name makes exc_name a new

constructor of type exn. Raising an exception creates an exception packet

containing a value of type exn. For example, raise Ex throws exception Ex.

During evaluation, exception packets propagate under the call-by-value rule. If

expression E returns an exception packet then that is the result of the

application f(E) for any function f. An exception handler tests whether the result

of an expression is an exception packet. SML uses the construct E handle P1 =>

E1 | … | Pn => En to define an exception handler [Paulson].

Example:

exception Neg
local
 fun search (n,i) = if n<0 then raise Neg else
 i*i<=n
 andalso (n mod i = 0 orelse search (n,i+1))
in
 fun composite n = search (n,2)
 fun prime n = not (composite n)
end;

(prime ~7) handle Neg => (print("The number is negative: \n");false)

 21

 The program finds whether a number is a prime number or not. It first

declares an exception handler named Neg which is thrown when a negative

number is passed to the function search. If the exception Neg is raised then the

handler (last line of code) will catch it and its code (print(“The number…”)..) will

be executed. Shall another kind of exception be raised in some of the three

functions; the system will follow the calling chain (automatic propagation) to

upper levels. Because there is no another exception handler, the exception will be

considered an uncaught exception (the program terminates and returns to the

operating system).

Handler binding

 Handler binding attaches handlers to certain exceptions to catch their

occurrences in the whole program or part of the program. There are three ways

to bind handlers with exceptions [LS98]: static, where once a handler is attached

to an exception, the same handler is used for every occurrence of that exception

in the whole program or process; semidynamic, used by Ada, C++, and

Modula-3, where different handlers associates with the exception in different

context during an exception propagation; and dynamic, where different handlers

can be attached to an exception in the same context.

 22

Implementing exception handling

 It is the process of receiving the notification, identifying the exception,

and determining the association handler. There are several methods, which are

divided into the following categories [LS98]:

• Stack unwinding. The handler defined first is checked first. If none can be

found to handle the raised exception, the context stack is unwound, and

the search begins within the new context. This is the method used in Ada,

C++ and Modula 3.

• Handler pool. It is a handler chain, or lined list, or a table of handlers,

each of which has been bound to a specific exception or group of

exceptions. To find an associated handler, the pool is searched linearly.

• Combination of stack unwinding and handler pool. A separate handler

chain is stored within the stack frame.

• Backtracking exception identifier bindings. It “backtracks” exception

identifier bindings to determine a matching handler.

• Scanning instances of objects. It scans all the instances of an object for

handler determination, since users can supply different handlers for the

same exception raised in different instances.

 23

3 A Model of CPS Translation and
Interpretation

The middle part and key transformation in some functional language

compilers is the conversion to CPS (continuation-passing style) language, which

was defined and explained in chapter 2. We use CPS as our intermediate

representation in our functional language compiler that was built for our

experiments (figure 3.1).

Source Program
(Lambda code)

Translation to CPS

CPS Program

 Translation to flat CPS

 Flat CPS code (no free variables)

Translation to Abstract
Machine code

Abstract machine code

 Figure 3.1 Overview of the compiler for the experiments

 24

The CPS language is well-designed to match both the lambda calculus,

which is the source language in our compiler, and the model of a von Neumann

machine (represented by the abstract machine code). The compiler first translates

lambda code into CPS expressions. Then, CPS expressions are translated into a

free variables representation which is called Flat CPS. Flat CPS code consists of

only one CPS function (no inner functions as in a normal CPS expression). Last,

Flat CPS is translated into an abstract machine code.

We present in this chapter, a model of translation and execution that

allows a programmer (or student/teacher) to write, translate, and execute

programs in a source functional language (an extended lambda language) and a

target CPS language. Both systems are based on the definitions of a semantic for

CPS and a model of translation by Appel [App92]. The main contribution of our

model is to collect everything (the model of translation and semantics) together

into a working program and to create a whole framework which can be used to

execute programs, allowing studying a wide range of performance assessments

that can be discussed, highlighting the performance relationships among different

elements. Figure 3.1, shows this model of translation-interpretation.

As we can observe in figure 3.2, a program written in an intermediate

representation of a functional language like SML (in this case lambda code), is

translated into a CPS program and then, evaluated using a specific input as data.

After the evaluation, a value (the result) is obtained.

 25

Intermediate Representation
 Of SML programs
 (Lambda code)

Translator
To CPS

CPS Program

Evaluator
Of CPS Input Value

 Figure 3.2 Model of translation-interpretation

3.1 A minicompiler for miniML

The first part of model described above, is a translator to CPS. This

translator takes a program written in a lambda language (encoded into a tree-like

data structure), and then makes a recursive traversal over the source-language

program producing a CPS program.

The Lambda language

Figure 3.3 shows the definition of a lambda expression as an ML datatype.

 26

type var=string

 datatype lexp=
 VAR of var
 |INT of int
 |STRING of string
 |FN of var * lexp
 |FIX of var list * lexp list * lexp
 |APP of lexp * lexp
 |PLUS
 |SUB
 |MULT
 |LESS
 |EQ
 |MAKEREF
 |RAISE of lexp
 |HANDLE of lexp * lexp
 |COND of lexp * lexp * lexp (* switch *)

Figure 3.3 Datatype for a lambda expression.

In this case, each value (a constructor) of type lexp can represent:

• A variable (VAR), an integer (INT), or a string (STRING);

• An anonymous (lambda) function (FN);

• A function declaration (FIX) where function names (var list) are bound

to anonymous functions (lexp list) under the scope of a lambda

expression;

• A function-calling construct (APP);

• A set of primitive operations for making arithmetic (PLUS, SUB, and

MULT); comparisons (LESS, and EQ); and creation of references to

memory (we use them when exceptions are declared).

 27

• A primitive operation to evaluate an expression of type exception and to

throw a user-defined or system exception (RAISE).

• A primitive operation HANDLE which evaluates the first argument, and

if an exception is raised, then applies the second argument (handler) to

the exception.

• A primitive operator COND used to test conditions EQ and LESS.

Besides normal testing, this primitive is very important when a

HANDLE tests for a determined exception.

Examples: The next table shows several examples of different lambda

expressions using our notation. We also show, for clarity purposes, the

corresponding code of the lambda expression in SML code.

SML LAMBDA

1 INT 1

289 – (17 * 17)

APP(SUB,RECORD [INT 289,
 APP(MULT,RECORD [INT 17,INT 17])])

(fn x => x) FN ("x",VAR "x")

(fn x => 3) FN ("x",INT 3)

(fn x => 3) 9 APP (FN ("x",INT 3), INT 9)

(fn x => x) 9

APP(FN ("x",VAR "x"),INT 9)

 28

if (3 = 5) then 2 else 7 COND(APP(EQ,RECORD[INT 3,INT 5]),INT2,INT 7)

if (2 < ((fn x => x) 3))
then 2
else ((fn x => x) 7)

COND(APP(LESS,RECORD[INT 2,
 APP(FN("x",VAR "x"),INT 3)]),
 INT 2,APP(FN ("x",VAR "x"),INT 7))

let
 Fun fact(n)=
 if n<1 then
 1
 else
 n*(fact(n-1)
in
 Fact(6)
end

APP(FIX(["fact"],
 [FN("n",
 COND(APP(LESS,RECORD [VAR "n",INT 1]),
 INT 1,
 APP(MULT,RECORD[VAR "n",
 APP (VAR "fact",
 APP (SUB,RECORD [VAR "n",INT 1]))])))],
 VAR "fact"),INT 6)

“a string” STRING "a string"

Exception Astring APP (MAKEREF, STRING "Astring")

 let
 fun f(n)=n*n
 in
 f(0)
 end

FIX(["f"],
 [FN("n",APP
 (MULT,RECORD [VAR "n",VAR "n"]))],
 APP(VAR "f",INT 0))

let
 fun f(n)=n*n handle
 ovfl=>0
in
 f(1700)
end

FIX (["f"],
 [FN ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN("e",COND (APP (EQ,RECORD
 [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e")))))],APP (VAR "f",INT 1700))

let
 fun g(x)=f(x)
 handle DIV=>2
 fun f(y)= raise DIV
 handle MULT=>1
in
 g(2)
end

FIX (["g","f"],
 [FN ("x",
 HANDLE
 (APP (VAR "f",VAR "x"),
 FN ("e",
 COND
 (APP (EQ,RECORD [VAR "e",
 APP (MAKEREF,STRING "DIV")]),INT 2,
 RAISE (VAR "e"))))),
 FN ("y",
 HANDLE
 (RAISE (APP (MAKEREF,STRING "DIV")),
 FN ("e",
 COND

 29

 (APP (EQ,RECORD [VAR "e",
 APP (MAKEREF,STRING "MULT")]),INT 1,
 RAISE (VAR "e")))))],
 APP (VAR "g",INT 2))

let
 fun f(n)=n*n
 handle ovfl=>n
 fun run(x)=
 if x>1000 then
 f(17)
 else
 (run(x+f(17)-288))
in
 run(0)
end

FIX
 (["f","run"],
 [FN
 ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN
 ("e",
 COND
 (APP (EQ,RECORD
 [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e"))))),
 FN
 ("x",
 COND
 (APP (EQ,RECORD
 [VAR "x",INT 10]),APP (VAR "f",INT 1700),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD
 [VAR "x",
 APP (SUB,RECORD
 [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

Table 3.1 Examples of SML and Lambda expressions.

 30

The CPS language

The CPS language used in our translator has three big differences with

respect to those traditional compilers which use also CPS as an intermediate

representation [App92]:

• Every function has a name.

• There is an operator for defining mutually recursive functions (instead of

fixed point function).

• There are n-tuple primitive operators.

Besides that, we use the ML datatype declaration in order to prohibit ill-

formed expressions. One important property of CPS is that every intermediate

value of a computation is given a name. This makes easier the translation later, to

any kind of machine code. For example the SML expression 289 – (17 * 17) is

translated to

 PRIMOP(*,[INT 17,INT 17],["w2"],
 [PRIMOP (-,[INT 289,VAR "w2"],
 ["w1"],[APP (VAR "k",[VAR "w1"])])])

in CPS notation, where w1 and w2 are intermediate names produced by the

translator. We will explain in more detail later this example.

 Another important aspect of CPS operations is that every argument is

atomic; that means that only variables or constants are allowed to be arguments.

The definition of a CPS expression as an ML datatype is shown in Figure 3.4.

 31

datatype primop=
 gethdlr
 |sethdlr
+
*
<
equal
makeref

type var=string;
datatype value =

 VAR of var
 |INT of int
 |STRING of string

datatype cexp=
 |APP of value * value list
 |FIX of (var * var list * cexp) list * cexp
 |PRIMOP of primop * value list * var list * cexp
 list

Figure 3.4 Datatype for a CPS expression.

A primitive operator can be:

• gethdlr and sethdlr. Both are used for handling exceptions. The operator

gethdlr obtains the current exception handler (or saving the old handler),

and sethdlr updates the store with a current handler (re-install a new

handler).

• +, -, *. Arithmetic operators for adding, subtracting, and multiplying two

arguments.

• <, equal. Testing (comparison) operators for less than and equal to.

• makeref. This operator is used to create a reference (a pointer) to

memory. We use makeref mainly to declare an exception.

 32

A value datatype is defined as all the different kind of atomic arguments

that can be used in a CPS operator. A value or argument can be a variable (VAR),

an integer (INT), or a string constant (STRING).

Our CPS language has just three different kinds of expressions. They are:

• APP. It is used for calling a function (whose name is of type value),

passing one or more arguments (using a list of values).

• FIX. As we mentioned before, in CPS all functions have a name. There

are no anonymous functions. FIX is used to define a general-purpose

mutually recursive function definition. The syntax of FIX defines a list of

zero or more functions, with a name (type var), arguments (type var list),

and bodies (type cexp). All of these functions can be called (using the

APP operator), from each body of the function or from the main body of

the FIX expression (type cexp).

• PRIMOP. This stands for primitive operator. All primitives like

handling exception, arithmetic, testing, and references, are built by using

this constructor. The first field is the primitive name (primop type), the

second and third fields are used for arguments and/or result names, and

the fourth field is the continuation expression of the primitive operator.

A set of examples will clarify CPS notation. Next tables show the same

examples from last table but including lambda code and corresponding CPS

code.

 33

Example # 1

INT 1
APP (VAR "k",[INT 1])

Where APP(VAR “k”, [result]) is the initial continuation for any program in the

CPS expression. This continuation is really what is called in functional

programming, the identity function (fn x => x).

Example # 2

APP(SUB,RECORD [INT 289,
 APP(MULT,RECORD [INT 17,INT 17])])
PRIMOP (*,[INT 17,INT 17],["w2"],
 [PRIMOP (-,[INT 289,VAR "w2"],["w1"],[APP (VAR "k",[VAR "w1"])])])

CPS evaluates first the multiplication operator, giving as a result w2, and then the

continuation is evaluated (subtraction). At the end, the result is given to the initial

continuation (VAR w1), which is also a continuation from the subtraction

operation.

Example # 3

FN ("x",VAR "x")
FIX ([("F3",["x","k4"],APP (VAR "k4",[VAR "x"]))],APP (VAR "k",[VAR "F3"]))

 34

A lambda function (anonymous or named function) corresponds to a FIX

function, which uses a determined name. In this example, we can see that F3 is

the name assigned for the compiler to the function. Besides, this function has two

arguments. The first one is variable x (same as lambda expression), and another

one for k4. This is the continuation that takes the rest of the computation when

the function is called from an application.

Example # 4

FN ("x",INT 3)
FIX ([("F5",["x","k6"],APP (VAR "k6",[INT 3]))],APP (VAR "k",[VAR "F5"]))

This example is very similar to the last one.

Example # 5

APP (FN ("x",INT 3), INT 9)
FIX
 ([("r7",["x8"],APP (VAR "k",[VAR "x8"]))],
 FIX
 ([("F9",["x","k10"],APP (VAR "k10",[INT 3]))],
 APP (VAR "F9",[INT 9,VAR "r7"])))

An anonymous function is applied a value (INT 9). Inside the body of the

function, the bound variable is not used. So, the result will give just INT 3. In the

CPS code we see two functions. The inner function corresponds to the

anonymous function of the lambda expression. The outer function r7

 35

corresponds to the rest of the computation after the inner function has been

evaluated. We can interpret r7 as the normal return from the function. The CPS

flow of execution starts calling function F9, which takes two arguments. F9 then

call k10 (which takes the value r7), and last the identity function is evaluated.

Example # 6

COND(APP(EQ,RECORD[INT 3,INT 5]),INT2,INT 7)
FIX
 ([("F15",["z16"],
 PRIMOP
 (equal,[VAR "z16",INT 0],[],
 [APP (VAR "k",[INT 2]),APP (VAR "k",[INT 7])]))],
 PRIMOP
 (equal,[INT 3,INT 5],[],
 [APP (VAR "F15",[INT 0]),APP (VAR "F15",[INT 1])]))

A condition expression in lambda language produces a function in CPS language.

The condition test for two arguments (3 and 5), and depending of the result of

the test, make first or second options (2 or 7). With CPS, the evaluation start also

testing the arguments, continuing with a call to F15 with argument INT 0 if the

result of the test was true, or a call to F15 with argument INT 1 if it was false.

The Function F15 begins testing for the argument; if zero (true) then it finish

with the identity continuation with argument INT 2 as a result. If not zero then

the continuation is with argument 7.

 36

Example # 7

APP(FIX(["fact"],
 [FN("n",
 COND(APP(LESS,RECORD [VAR "n",INT 1]),
 INT 1,
 APP(MULT,RECORD[VAR "n",
 APP (VAR "fact",
 APP (SUB,RECORD [VAR "n",INT 1]))])))],
 VAR "fact"),INT 6)
FIX
 ([("r29",["x30"],APP (VAR "k",[VAR "x30"]))],
 FIX
 ([("fact",["n","w31"],
 FIX
 ([("F32",["z33"],
 PRIMOP
 (equal,[VAR "z33",INT 0],[],
 [APP (VAR "w31",[INT 1]),
 FIX
 ([("r35",["x36"],
 PRIMOP
 (*,[VAR "n",VAR "x36"],["w34"],
 [APP (VAR "w31",[VAR "w34"])]))],
 PRIMOP
 (-,[VAR "n",INT 1],["w37"],
 [APP (VAR "fact",[VAR "w37",VAR "r35"])]))]))],
 PRIMOP
 (<,[VAR "n",INT 1],[],
 [APP (VAR "F32",[INT 0]),APP (VAR "F32",[INT 1])])))],
 APP (VAR "fact",[INT 6,VAR "r29"])))

This example corresponds to the classical factorial function. The lambda code is

built by using one FIX function (fact) which binds an anonymous function for

the body of the factorial function. The factorial of 6 is evaluated. The CPS

expression contains three FIX functions. One is for applying the identity function

(r29); another one for the function factorial; and another one for the condition

expression. The main difference in both programs is the way it accumulates the

result. In the lambda code, the argument n-1 and a return address are pushed into

a stack and then the values and addresses are popped in order to get the factorial.

 37

But with CPS we do not have return from calling function. The CPS code passes

also the argument n-1, but instead of passing the return address, CPS passes a

function (name) which contains the rest of the computation (see code in italic

form). In this case, variable w37 corresponds to the argument n-1 passed to the

factorial function, and variable r35 is the function which corresponds to the rest

of the computation. Function r35 is an iterative function which computes the

factorial by calling itself n number of times. In this case, the call to function w31

is really to function r35, the value bound to r31 (however in the last call w31 has

value r29, the initial argument passed in the first call to function fact, and the last

function called in the program).

Example # 8

RAISE(APP(MAKEREF, STRING "except1"))
PRIMOP
 (makeref,[STRING "except1"],["w50"],
 [PRIMOP (gethdlr,[],["h49"],[APP (VAR "h49",[VAR "w50"])])])

The raise operator is used to throw an exception which is later caught or

uncaught by a handler. In this example, we first create an exception named

except1, which is thrown later. In CPS, the current exception handler is first

returned (gethdlr), and then a jump to this handler is made using the declared

exception (w50) as an argument.

 38

Example # 9

FIX (["f"],
 [FN ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN("e",COND (APP (EQ,RECORD
 [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e")))))],APP (VAR "f",INT 1700))
FIX
 ([("f",["n","w55"],
 PRIMOP
 (gethdlr,[],["h56"],
 [FIX
 ([("k58",["x67"],APP (VAR "w55",[VAR "x67"])),
 ("n65",["e57"],
 PRIMOP
 (sethdlr,[VAR "h56"],[],
 [FIX
 ([("F59",["e","k60"],
 FIX
 ([("F61",["z62"],
 PRIMOP
 (equal,[VAR "z62",INT 0],[],
 [APP (VAR "k60",[VAR "n"]),
 PRIMOP
 (gethdlr,[],["h63"],
 [APP (VAR "h63",[VAR "e"])])]))],
 PRIMOP
 (equal,[VAR "e",VAR "ovfl"],[],
 [APP (VAR "F61",[INT 0]),
 APP (VAR "F61",[INT 1])])))],
 APP (VAR "F59",[VAR "e57",VAR "k58"]))]))],
 PRIMOP
 (sethdlr,[VAR "n65"],[],
 [PRIMOP
 (*,[VAR "n",VAR "n"],["w66"],
 [PRIMOP
 (sethdlr,[VAR "h56"],[],
 [APP (VAR "k58",[VAR "w66"])])])]))]))],
 FIX
 ([("r68",["x69"],APP (VAR "k",[VAR "x69"]))],
 APP (VAR "f",[INT 1700,VAR "r68"])))

We will explain the lambda expression handle with more details. This expression

has two parts. The first part is the expression that is going to be evaluated

 39

(multiplication expression). The second part is evaluated only if an exception is

raised from the first part. The lambda code implements the second part using an

anonymous function with one condition inside it. Whenever an exception is

raised in the first part expression, the bound variable (e) of the function takes the

exception name, and then the condition expression compares the bound variable

(the exception) against a defined exception (ovfl). If the condition is true the

handler catches the exception and continues with the first continuation (VAR n).

If the condition is false it continues with second continuation (raise e).

 As we explained before in this section, CPS implements exception

handling by using two primitives: gethdlr and sethdlr. The first primitive getdlr

executed (variable h56), saves the current handler in memory (at the end of the

expression it will be restored). Next, primitive sethdlr with variable n65 sets a

new current handler (function n65). If the multiplication raises an exception

(like overflow), a jump to the current handler (function n65) is performed. The

first instruction to be executed in function n65 is the restoration of the old

current handler (sethdlr with variable h56). The rest of the code in function n65

is the checking of the raised exception against exception overflow. At the end of

the function a jump to function k58 is made (this ends the execution of the

handler). On the other hand, if the multiplication does not raise an exception, the

next primitive sethdlr with variable h56 restores the old current handler. Both

cases (exception thrown or not), end jumping to function k58, which in turn

jumps to the exit of the program: function r68. A more detailed description of

 40

implementing exception handling in the SML/NJ compiler is presented later in

chapter 5.

The translator to CPS

 The translation from a lambda expression to a corresponding CPS

expression is made by a recursive traversal of the lambda expression. We saw in

the last examples, that each lambda expression is represented in a hierarchical

structure (a syntax tree) where each node represents an operation, and the

children of a node represent the argument of the operation. For example, the tree

for the lambda expression

 FIX([“f”],
 [FN(“n”,APP (MULT,RECORD [VAR “n”,VAR “n”]))], APP(VAR “f”,INT 0))

is shown in figure 3.5.

FIX

(["f"], [FN APP

("n", APP (VAR "f", INT 0))

(MULT, RECORD….

Figure 3.5 Syntax tree for a lambda expression.

 41

We will describe the algorithm to convert any lambda expression to one

in CPS. We do this by giving an ML function f, which transforms the ML data

structure for lambda expressions given earlier. We also include a ML function

newVar: unit -> lexp

to create new variables. The function f and corresponding comments are

shown in next table. We showed before several examples of the CPS translation.

local
 val count = ref 0;
 fun incr () = (count := !count + 1);
in
 type var = string;
 fun newVar (x) = (incr(); x^Int.toString (!count))
end

We start declaring a function to create new variables. That function uses a

reference which is initialized with zero, and keeps increasing by one for each new

variable. The new variables are created by concatenating a string of length one to

a number (count).

fun f(lamb.VAR v, c) = c(VAR v)
| f(lamb.INT i, c) = c(INT i)
| f(lamb.STRING s,c) = c(STRING s)

To CPS convert a lambda variable, integer, or string, the continuation c is applied

to the variable or constant. For example, in next function

f (lamb.INT 7,(fn x1=>APP (VAR "k",[x1])))

the continuation c is the second argument of function f, and it will produce

 APP(VAR “k”,[INT 7])

 42

| f(lamb.HANDLE (A,B), c) = g (A,B,c)

Function g makes the translation of HANDLE. The explanation of the

translation of primitive HANDLE is complex. In order to explain it with great

detail, we will present next, the version written in the book of Appel [App92],

which is a little easier to understand than the implementation.

f (HANDLE (A,B),c) =
 PRIMOP(gethdlr,[],[h],
 FIX([(k,[x],c(VAR x)),
 (n,[e], PRIMOP(sethdlr,[VAR h],[],[
 f (B, λf.APP (f,[VAR e, VAR k]))]))],
 PRIMOP(sethdlr,[VAR n],[],
 [f (A, λv.PRIMOP(sethdlr,[VAR h],[],[APP(VAR k,[v])]))])))

A lambda HANDLE operator is translated into two mutually recursive functions,

k and n, and a set of gethdlr and sethdlr CPS primitive operators inside and

outside those functions. Function n will be the exception handler of the

expression. Function k will apply continuation c (the continuation received by the

whole expression), to the argument x (the result of the whole expression). This

function will be called wherever or not an exception is raised (inside or outside

the exception handler n). So, the flow of execution of this code will be:

• Start saving the current handler h (first gethdlr).

• Next, set the new handler n (sethdlr with variable n). It will be used only

when an exception is raised in the first part of the expression).

 43

• If an exception is raised in A (the code produced after translation of A), a

jump to the new handler n is performed. Then, the handler will set the

old current handler (sethdlr with variable h), and the code produced by

the translation of B will be performed. In this code, a jump to function k

will always be performed as the last operation of the function. This is

because k is the continuation of B.

• If no exception is raised in A then there is no jump to the handler n, so a

sethdlr of the old current handler h is executed, ending with a jump to

function k.

| f(lamb.RAISE E, c) =
 let
 val h = newVar ("h")
 in
 f(E,(fn w=>cps.PRIMOP(cps.gethdlr,[],[h],
 [cps.APP(cps.VAR h,[w])])))
 end

The code produced by the translator can be divided in two parts:

• There is some code produced from translation of E. This code is

referenced by w in second part.

• The second part of the produced code, just gets the current handler h,

and then jump to this handler passing w as an argument.

| f(lamb.FN (v,E), c) =
 let
 val F = newVar ("F");
 val k = newVar ("k");
 in
 cps.FIX([(F,[v,k],f(E,(fn z=>cps.APP
 (cps.VAR k,[z]))))],c(cps.VAR F))
 end

 44

Two names of variables are needed. One is for the name of the CPS function,

and another one for continuation k. The translator transforms a lambda function

into a named FIX function. We know CPS functions do not return. Then a jump

to continuation k is needed, taking z (The result of expression E) as an argument.

Argument v has the same meaning in the CPS expression.

| f(lamb.FIX(hx,bx,E),c) =
 let
 val w = newVar ("w")
 fun g(h1::h,lamb.FN(v,B)::b)=
 (h1,[v,w], f(B, fn z=>
 cps.APP(cps.VAR w,[z])))::g(h,b)
 | g(nil,nil) = nil
 in
 cps.FIX (g(hx,bx), f(E,c))
 end

Both types of FIX functions (lambda and CPS) are used for defining a set of

named mutually recursive functions. Lambda function names and bodies are

contained in two lists (hx, bx). Function g transforms both lists into a single list,

containing function names, arguments, and bodies. The main expression E is also

transformed with the current continuation c.

| f(lamb.APP(lamb.MAKEREF,E),c) =
 let
 val w = newVar ("w")
 in
 f(E,fn v=>cps.PRIMOP(cps.makeref,[v],[w],
 [c(cps.VAR w)]))
 end

This is an operator that takes one argument: the name of the exception. It is used

to declare an exception. The operator does return a result, and continue in one

way. E should be a string, which is later bound with the name v, to create a

 45

reference in the store. The result, a reference to the store, will be kept in w, which

is then used in the continuation.

| f(lamb.APP(lamb.PLUS,b.RECORD [x,y]),c) =
 convert_bin (cps.+, x, y,c)
| f(lamb.APP(lamb.SUB,b.RECORD [x,y]),c) =
 convert_bin (cps.-, x, y,c)
| f(lamb.APP(lamb.MULT,b.RECORD [x,y]),c) =
 convert_bin (cps.*, x, y,c)

Primitive arithmetic operators (PLUS, SUB, and MULT) are translated using the

same format. As MAKEREF, they return one result, and continue in one way.

Function convert_bin makes this transformation.

| f(lamb.APP (lamb.LESS,b.RECORD [x,y]),c) =
 convert_jmp (cps.<,x,y,c)

Primitive operators for conditional branches (LESS and EQ) returns no result

and continue in one of two ways. Function convert_jmp make this

transformation.

| f(lamb.APP (lamb.EQ,b.RECORD [x,y]),c) =
 convert_jmp (cps.equal,x,y,c)

| f(lamb.APP (F,E), c) =
 let
 val r= newVar ("r");
 val x= newVar ("x");
 in
 cps.FIX([(r,[x],c(cps.VAR x))],
 f(F,(fn f2=>f(E,(fn e=>cps.APP(f2,
 [e,cps.VAR r]))))))
 end

 46

CPS functions do not have returns. Then, if we want to translate a lambda

function call, we need to create a continuation function (it will replace the return

address). This function is named r. We also need to evaluate F and E, from

which f2 and e, will refer to these values. Next, a jump to f2 using e as the first

argument and r (the continuation) as the second will be applied.

| f(lamb.COND (test,exp1,exp2),c) =
 let
 val fname= newVar ("F")
 val z= newVar ("z")
 val E1= f (exp1, c)
 val E2= f (exp2, c)
 val f2= (fname, [z], cps.PRIMOP (cps.equal,
 [cps.VAR z,cps.INT 0],[],[E1,E2]))
 in
 cps.FIX ([f2], f (test, (fn v=>cps.APP
 (cps.VAR fname,[v]))))
 end

For the primitive condition COND we need to create a FIX function. In the

body of the recursive function there is a primitive operator for conditional branch

(equal), that test if the argument of the function is zero. The main expression of

the FIX operator is the translated code for the test.

and
 g(A,B,c1)=
 let
 val h= newVar ("h")
 val e= newVar ("e")
 val k= newVar ("k")
 val n= newVar ("n")

 val seth1=
 cps.PRIMOP(cps.sethdlr,[cps.VAR h],
 [],[f(B,(fn f2=>cps.APP(f2,[cps.VAR e,
 cps.VAR k])))])
 val seth2=
 cps.PRIMOP(cps.sethdlr,[cps.VAR n],

 47

 [],[f(A,(fn v=>cps.PRIMOP(cps.sethdlr,
 [cps.VAR h],[],[cps.APP(cps.VAR k,
 [v])])))])
 val x= newVar ("x")
 val fix1=
 cps.FIX([(k,[x],c1(cps.VAR x)),(n,
 [e], seth1)], seth2)
 in
 cps.PRIMOP(cps.gethdlr,[],[h],[fix1])
 end

Function g implements lambda operator HANDLE. First, four new variables are

created for the names of the functions (n and k), the handler h, and an argument

e. Then, seth1 contains the code of the body for new handler n, and seth2 the

code for the main expression of FIX. Name fix1 contains the code of the entire

FIX expression, including seth1 and seth2. And finally, The whole code for

HANDLE is contained in cps.PRIMOP(cps.gethdlr,[],[h],[fix1]).

and
 convert_bin (bin_op, x, y, c) =
 let
 val w= newVar ("w")
 fun c2 vx vy =
 cps.PRIMOP (bin_op, [vx,vy],[w],
 [c (cps.VAR w)])
 in
 f (x, (fn xv => f (y, c2 xv)))
 end

This function converts primitive arithmetic operators PLUS, SUB, and MULT.

We need first to convert the argument expressions of the primitive, which are

always two (x and y). Conversion of y is made first, taking a PRIMOP operator

as a continuation. Then, conversion of x is performed taking also a PRIMOP

operator as continuation. So, the result will give a primitive operator for x inside

 48

another primitive operator for y. The last continuation is always the initial c

continuation applied to the last result w.

and
 convert_jmp (jmp_op, x, y, c) =
 let
 val w=newVar ("w")
 fun c2 vx vy = cps.PRIMOP (jmp_op, [vx,vy],
 [], [c (cps.INT 0), c (cps.INT 1)])
 in
 f (x, (fn xv => f (y, c2 xv)))
 end

Observing the code produced by this function, we find only two differences with

respect to the code for function convert_bin. The CPS primitive operators

produced have not result (the third field is the empty list), and there are two

possible continuations for that primitive. These continuations take as arguments

INT 0 or INT 1 which represent true or false respectively.

3.2 A conceptual and executable framework

 The semantic of CPS is described by Appel [App92] in chapter 3, where

he explains the meaning of CPS expressions by using denotational or

continuation semantics. This semantics is defined as a functor in SML. The

functor takes a CPS structure, a datatype for the values allowed in the semantics,

and some data definitions as arguments. Then, a function evaluates a CPS

expression, using an empty environment and store at the beginning of the

evaluation.

 49

 We implemented this continuation semantic by defining some needed

functions, an initial environment, and a store. Also, we linked some other

programs like the translator of CPS, and together we had as a result a conceptual

and executable framework of functional programming (see figure 3.6).

Translator
To CPS

Evaluator
Of CPS

LAMBDA
CODE

STORE
AND
ENVIRONMENT

 Translator
to Flat CPS
and Abstract

machine code
(optional)

RESULT

RESULT

Figure 3.6 Conceptual and executable framework.

This conceptual framework focuses on the experience of learning the

CPS concepts by using a framework of CPS programming. It can serve as an aid

in gaining a coherent understanding of the CPS programming. The most

important element of this framework is that programs in lambda and CPS code

 50

can be directly compiled and executed and, the programmer can see how this

source code (lambda) is transformed into correspondent CPS code together with

important components of the framework, like an environment and a store. From

this framework a teacher and/or student should be able to write their own

programs, test them with different data, make experiments, etc. Research based

upon the experiment approach can be conducted in order to study the different

structures to use in a program, and so to determine what the best approach is.

Evaluator of CPS

 The evaluator of CPS is a program which takes a CPS program, an input,

and performs an evaluation or execution of the CPS program, giving as a result a

denotable value (which is later converted into a string). The input is formed by

two components:

• An environment. This is a function that maps CPS variables to denotable

values (result values). The initial environment of the evaluator is created

by three functions:

val env0 = fn v=>raise Undefined (v)
val env1 = bind(env0,"k", FUNC ic)
val env2 = bind (env1, "ovfl", overflow_exn)

 The first value bound to the environment is the empty environment

(raise Undefined); the second value is the initial continuation (identity

continuation); and the third value is a predefined exception (overflow).

 51

• A store. A function that maps locations (addresses) to denotable values.

The initial store of the evaluator are three functions:

 val store0 = (100, fn l=>raise Exc_Overflow l,fn _=>0)
 val store1 = upd(store0,handler_ref,FUNC default_handler)
 val store2 = upd(store1, overflow_loc, STRING "-overflow-")

Store0 establish that the first unused location is address 100. Addresses before

100 are used for keeping values like system exceptions. This store is the empty

location (a raise to an exception); the second location has the initial default

handler; and the third location has the predefined overflow exception handler.

The output or result is a denotable value. It can be any of these values:

• INT. It denotes the type integer.

• FUNC. A constructor of function type. It takes a list of denotable

values, and a store, yielding an answer (a string).

• STRING. It denotes the string.

• ARRAY. An array of locations. Our implementation uses it to store

references to exceptions.

In next tables, we show the implementation and some comments of the evaluator

of CPS.

type nextloc= loc -> loc
fun nextloc (l)=l+1
type answer = string
type var = string
datatype dvalue =
 INT of int
 |FUNC of dvalue list ->

 52

 (loc*(loc->dvalue)*(loc->int))->
 answer
 |STRING of string
 |ARRAY of loc list

Function nextloc is used to generate new locations in the store. Answer is the

result of all the execution of a program. The datatype dvalue define a set of

constructors representing the denotable values of the semantic. Denotable Values

can be used as arguments, variables, etc. They can be an integer, a string, an array

or a function. ARRAY values are a list of type loc (integers) and they are a

mutable data structure (they can be modified using the upd function). We use

dvalues of type ARRAY to store references, used when an exception is declared.

A dvalue of type function takes a list of actual dvalues and a store.

type store = loc * (loc -> dvalue) * (loc -> int)
type handler_ref= loc
val overflow_loc = 7;
val overflow_exn: dvalue = ARRAY [overflow_loc]

The type of the store is loc*(loc->dvalue)*(loc->int), where loc represent the

next unused location, (loc->dvalue) a mapping from locations to dvalues, and

(loc->int) a mapping from locations to integers. The current handler is kept in

a special location in store. We decided to store the address (reference) of the

overflow exception in the element 7 of a dvalue ARRAY.

fun upd ((n,f,g):store, l: loc, v: dvalue) =
 (n, fn i => if i=l then v else f i, g)

 53

Function upd is used to modify the store, given a location and its value. We use

upd every time a new exception handler is set by the operator sethdlr, or when a

new reference is created by the operator makeref (remember we use it to create

new exceptions).

fun fetch ((_,f,_): store) (l: loc) = f l

Function fetch is used for getting a value (denotable value) from store using a

determined location.

exception Undefined of var and Exc_Overflow of loc

We define two exceptions: Undefined that is used when a value is not in the

environment (undefined variable), and Exc_Overflow when a value is not in the

store.

fun do_raise exn s =
 let val FUNC f= fetch s handler_ref in f [exn] s end

Function do_raise catches overflow exceptions for arithmetic operations. It can

be though as a system exception handling for the CPS. The function uses the

default handler, which is bound in the store with location handler_ref, and then

passes parameter exn to this default handler.

fun overflow(n:unit->int, c:dvalue list ->store->answer)=
 if (n() >=minint andalso n() <=maxint)
 handle Overflow=>false
 then c [INT(n())]
 else do_raise overflow_exn

 54

Function overflow checks for limit (minimum and maximum) in results of

arithmetic operations. There is a handle expression which catches SML overflow

exceptions (in the metalanguage). The function calls do_raise function if there is

a violation of the limits allowed in the program. If there is not overflow, then the

result of the arithmetic operation is passed to the continuation c.

exception bad_equality and Error

Two exceptions are defined: bad_equality is raised when two non compatible

denotable values are compared; Error is raised when the result of the program is

not a denotable value.

fun evalprim (a.gethdlr, [], [c]) =
 (fn s => c [fetch s handler_ref] s)
| evalprim (a.sethdlr, [h], [c]) =
 (fn s => c [] (upd(s,handler_ref,h)))
| evalprim (a.+,[INT i, INT j],[c]) =
 overflow(fn ()=> (i + j),c)
| evalprim (a.-,[INT i, INT j],[c]) =
 overflow(fn ()=> (i - j),c)
| evalprim (a.*,[INT i, INT j],[c]) =
 overflow(fn ()=> (i * j),c)
| evalprim (a.<,[INT i, INT j],[t,f]) =
 if i<j then t[] else f[]
| evalprim (a.equal,[INT i, INT j],[t,f]) =
 if i=j then t[] else f[]
| evalprim (a.equal,[ARRAY [i],ARRAY [j]], [t,f]) =
 if i=j then t[] else f[]
| evalprim (a.makeref,[v],[c])=
 (fn (l,f,r)=>c [ARRAY [l]] (upd ((nextloc l,f,r),l,v)))
| evalprim (a.equal, [_,_], [t,f]) = raise bad_equality

 55

Function evalprim evaluates a primitive operator (PRIMOP) applied to

arguments. The first two primitive operators: gethdlr and sethdlr are used for

exception handling. A gethdlr operator fetches the current exception handler

(handler_ref) from the store. A sethdlr operator sets (updates) a new current

handler in the store. Integer addition, subtraction, and multiplication just make

the computation and if there is no overflow, applies c to the result. Integer

comparison just tests two integers, and depending of the result, it applies one of

two continuations (for true or false) to the empty list. Primitive makeref is

important in exception declaration. The operator first inserts the denotable value

v which can be the name of the exception, in the first available location in the

store. Then, it inserts the store location where v was saved in the environment.

type env = a.var -> dvalue

The type of the environment is a function from a variable (string) to a denotable

value.

fun V env (a.INT i) = INT i
| V env (a.STRING s) = STRING s
| V env (a.VAR v) = env v

Fun V converts CPS values to denotable values. For variables the function has to

lock up the environment.

fun bind (env:env, v:a.var, d) =
 fn w => if v=w then d
 else env w

 56

Function bind produces a new environment (a function of type a.var -> dvalue)

by binding a new variable with a denotable value.

fun E (a.APP(f,vl)) env =
 let val FUNC g = V env f
 in g (map (V env) vl)
 end

Function E is the function which takes the whole CPS expression, an

environment, and a store, and then it evaluates the expression giving as a result a

value of type answer (a string). Function application first locks up for function f

in the current environment; this gives as a result a function which is applied to a

set of arguments obtained (converted) from the environment.

| E (a.PRIMOP(p,vl,wl,el)) env =
 evalprim(p,
 map (V env) vl,
 map (fn e => fn al =>
 E e (bindn(env,wl,al)))
 el)

In order to evaluate a primitive operator, we first convert the arguments using the

current environment (map (V env) vl). Then the continuation (a function) of the

evalprim function is built by using the continuation of this function (E), and a

new environment with the addition of element wl.

| E (a.FIX(fl,e)) env =
 let fun h r1 (f,vl,b) =
 FUNC(fn al => E b (bindn(g r1,vl,al)))
 and g r = bindn(r, map #1 fl, map (h r) fl)
 in E e (g env)
 end

 57

Function E with a mutually recursive function FIX (fl,e) evaluates expression e

in the augmented environment g. The augmented environment is built by

binding the list of recursive function names (map #1 fl), with the list of bodies

(map (h r) fl) of each of these recursive functions (FUNC(fn al => E b (bindn(g

r1,vl,al)))) , and using theirs respective local variables (bindn(g r1,vl,al)).

fun ic [INT i] _ = Int.toString i
| ic [STRING s] _ = s
| ic [FUNC _] _ = "fn"
| ic [ARRAY [l]] _= "ref "^(Int.toString l)
| ic _ _= raise Error

This function (ic), is used to produce answer (an string) as a result of the

evaluation. The function just transforms a denotable value to a string.

fun default_handler [ARRAY [l]] s =
 let
 val STRING e =fetch s l
 in
 "EXCEPTION "^e
 end
| default_handler [_,ARRAY [l]] s =
 let
 val STRING e =fetch s l
 in
 "EXCEPTION "^e
 end

This function allows the program to display the output EXCEPTION

name_exception whenever a user defined exception is raised. Remember that the

name of the exception (string) is saved in memory, maintaining the location l in a

 58

denotable value of type ARRAY. So, using l as the location and the fetch

function we can access the name of the raised exception.

val env0 = fn v=>raise Undefined (v)
val env1 = bind(env0,"k", FUNC ic)
val env2 = bind (env1, "ovfl", overflow_exn);

val store0 = (100, fn l=>raise Exc_Overflow l,fn _=>0)
val store1 = upd(store0,handler_ref,FUNC default_handler)
val store2 = upd(store1, overflow_loc, STRING "-overflow-")

We initialize the environment with three new bindings (fn v=>raise Undefined

(v), FUNC ic, and overflow_exn), and the store with three new store locations

(fn l=>raise Exc_Overflow, FUNC default_handler, STRING "-overflow-"),

where the last one is the handler for the overflow exception.

fun eval (vl,e) dl = E e env2 store2

Finally, function eval will take a CPS expression e, two lists of variables and

denotable values (vl and dl), and it will call function E passing formal parameters

e, env2, and store2.

 59

4 The Abstract Machine

Continuation-passing style is the representation that we use as

intermediate code because it is closely related to Church’s lambda calculus and

to the model of von Neumann, represented by our target abstract machine

language (see figure 3.1). Each operator of CPS corresponds to one operator in

our target abstract machine code. In order to test the performance of the CPS

code we implemented an abstract machine.

The machine has an instruction set, a register set and a model of

memory, and executes programs written in abstract machine code. Figure 4.1

illustrates the components of the abstract machine.

AMC ProgramMemory

Simulator of
 AMC Result

Registers

Figure 4.1 Components of the Abstract Machine

 60

4.1 A generator of abstract machine code (AMC)

 Flat CPS is in a form which is easily translated to abstract machine code

(see figure 3.1). The abstract machine is modeled after a conventional von

Neumann machine. The AMC is essentially an assembly-language program, and

like any abstract machine it has some advantages with respect to a real machine:

first, performance analysis is easier, and second it is easier to simulate.

The abstract machine language

Figure 4.2 shows the definition of the abstract machine instructions as an ML

datatype.

 datatype instruction =
 LABEL of string

 |JUMP of string
 |CJUMP of relop * exp * exp * string * string
 |LOAD of exp * exp
 |STORE of exp * exp
 |ADD of exp * exp * exp
 |SUB of exp * exp * exp
 |MUL of exp * exp * exp

and exp=
 MEM of string

 |NAME of string
 |CONST of int
 |STRING of string
 |REG of int

and relop= EQ | LT

Figure 4.2 Datatype for an abstract machine instruction

 61

Where a data or expression exp can be:

• An address of memory represented by a name (string) of a register,

variable, etc.

• The name of a label, which represents an address.

• A constant for an integer data.

• A string data.

• The number (integer) of a register.

And an abstract machine instruction can be:

• A label which is really not an instruction, but just an address. Whenever

the simulator finds a label it just increases the program pointer, in order

to read the next instruction.

• A jump instruction is an unconditional branch to a label.

• A CJUMP is a conditional jump to one of two labels depending of the

result of the test.

• A load or move from memory into a register.

• A store from a register or a string into a memory address.

• Arithmetic operations to add, subtract, or multiply two values, producing

a result which is stored into memory.

 62

We illustrate the abstract machine code with a complete program in SML,

Lambda, CPS, flat CPS, and abstract machine code.

SML

let
 fun f(x)= x*5
in
 f(4)
end

LAMBDA

FIX(["f"], [FN ("x",
 APP(b.MULT,RECORD [VAR "x",INT 5]))],
 APP(VAR "f",INT 4))

CPS

FIX
 ([("f",["x","w1"],
 PRIMOP (*,[VAR "x",INT 5],["w2"],[APP (VAR "w1",[VAR "w2"])]))],
 FIX
 ([("r3",["x4"],APP (VAR "initialNormalCont",[VAR "x4"]))],
 APP (VAR "f",[INT 4,VAR "r3"])))

FLAT CPS

FIX
 ([("f",["x","w1"],
 PRIMOP (*,[VAR "x",INT 5],["w2"],[APP (VAR "w1",[VAR "w2"])])),
 ("r3",["x4"],APP (VAR "initialNormalCont",[VAR "x4"]))],
 APP (VAR "f",[INT 4,VAR "r3"]))

AMC

0 LOAD Const 4,Reg 1
1 LOAD Mem r3,Reg 2
2 JUMP Name f
3 LAB f:
4 STORE Reg 1,Mem x
5 STORE Reg 2,Mem w1
6 MUL Mem x,Const 5,Mem w2
7 LOAD Mem w2,Reg 1

 63

8 JUMP Mem w1
9 LAB r3:
10 STORE Reg 1,Mem x4
11 LOAD Mem x4,Reg 1
12 JUMP Mem initialNormalCont
13 LAB end:

We can see the different representations of the program after each phase of the

compilation process, especially the last one: the abstract machine code. The code

in the AMC performs the following operations:

• Instructions 0 and 1 pass the parameters in registers 1 and 2.

• Instruction 2 is a jump to label f.

• Instructions 4 and 5 store the parameters in memory.

• Instruction 6 multiplies first parameter (constant 4) by constant 5.

• Instruction 7 passes as a parameter the result of the multiplication in

register 1.

• Instruction 8 is a jump to address r3 (the value of variable w1).

• Instruction 10 stores the parameter into memory address x4.

• Instruction 11 passes the value of x4 into register 1. This register always

keeps the final result.

 64

• Instruction 12 jumps to the initial continuation initialNormalCont, a

fixed address or constant in memory that represents the end of any

program (in the first CPS example of section 3.1 we explained the

meaning of the initial continuation in a CPS program).

 4.2 A simulator for the AMC

 The simulator is a program which emulates a real computer. It is a piece

of software that runs an AMC program. In order to emulate a real computer it

uses three data structures which mimic a memory for data values, a memory for

code, and a set of registers (see figure 4.1). It also uses two variables that keep the

current program pointer (PC) for the code, and the current stack pointer (SP) for

the data. The main routine of the simulator is a recursive function that keeps

reading instructions from the AMC program. Next, we describe the algorithm

that carries out the simulation of an AMC program.

Input: An AMC program (list of instructions).

Output: A value or result after executing the AMC program.

Method:

• Convert the list (AMC program) into an array (more convenient for the

simulation)

• Initialize PC and memory pointers with initial address. PC points to first

AMC instruction and memory pointer to address zero in memory.

 65

• Start main function which keeps reading instructions pointed by PC,

executing the operations (storing, loading, jumping, adding, etc.), and

updating the value of PC.

Example: We now show the execution by the simulator of the AMC program

shown in the last section. We display different stages of execution with the

respective values in memory and registers. Memory and register values are

shown before the displayed instruction is executed. As you can observe in the

example, the memory of the abstract machine is an array of tuples, where the

left component of the tuple is used for names or variables and the second for

the value assigned to such names or variables.

INSTRUCTION 0: LOAD Const 4,Reg 1

MEMORY =
 [|("ovfl","ovfl"),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("","")|]

REG1 = ""
REG2 = ""

At the beginning memory only contains the value of a pre-defined

exception (overflow). Registers 1 and 2 are empty.

 66

INSTRUCTION 2: JUMP Name f

MEMORY =
 [|("ovfl","ovfl"),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("","")|]

REG1 = "4"
REG2 = "r3"

Before executing instruction 2, registers 1 and 2 already contain the
values passed as parameters.

INSTRUCTION 8: JUMP Mem w1

MEMORY =
 [|("ovfl","ovfl"),("x","4"),("w1","r3"),("w2","20"),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("","")|]

REG1 = "20"
REG2 = "r3"

Before executing instruction 8, the variables x, w1, and w2 contain
values 4, r3, and 20 respectively as a result of instructions 4-6, and register 1
contain value 20 as a result of instruction 7.

 67

INSTRUCTION 8: JUMP Mem initialNormalCont

MEMORY =
 [|("ovfl","ovfl"),("x","4"),("w1","r3"),("w2","20"),("x4","20"),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),("",""),
 ("",""),("",""),("",""),("","")|]

REG1 = "20"
REG2 = "r3"

At the end of the program, register 1 contain the result of the

multiplication (instruction 11 assigned it). In memory variable x4 get the same

value which was passed as a parameter in instruction 10.

 68

5 Exception-Handling Overhead

 This chapter considers the implementation of exception handling. We

examine programs written in the functional language ML. We tested two

compilers: SML/NJ version 110.0.7 and OCAML version 3.06. We show that

these programs with exception handling have runtime overhead even when no

exceptions are thrown. Last, we describe the source of the overhead in programs

compiled with the SML/NJ compiler.

5.1 Introduction

 Many modern programming languages, for example, Java, Modula-3, and

SML, provide mechanisms for dealing with exceptional conditions detected by

hardware or software. They also allow the programmer to define other unusual

events and use the same mechanisms to deal with them when they arise. These

mechanisms are collectively called exception handling.

 An exception can be defined as a condition brought to the attention of

the operation’s invoker, which becomes part of normal exit or return; or as an

error or an event that occurs unexpectedly or infrequently, and includes an error

or a signal. The exception handler is the code attached to an entity (program,

procedure, object, expression, etc) that is executed when an exception occurs

 69

[LS98]. A handler may catch one or more kinds of exceptions and may fail to

handle other kinds of exceptions.

 Though the syntax is different, exception handling in most modern

programming languages is pretty much the same. In Ada [Ada95] and Modula-3

[Nel91] exceptions are declared using the keyword exception. The raise

statement raises an exception. A begin … exception … end construct is used to

associate handlers to some block of code in Ada. In C++ [Str91] there is no

specific declaration for an exception. Users can raise an ordinary object as an

exception by using the statement throw. A try{...} catch{…} structure attaches

handlers led by the keyword catch to a guarded block of code led by the keyword

try. Modula 3 uses the construct try … except … end and try … finally … end

that are used to bind handlers to a code block and to clean up resources. The

code led by the keyword finally is executed whether or not exceptions are raised.

One interesting feature of Java [GJS96] is that it throws objects that are instances

of the predefined class Throwable.

 Some functional languages have exception handling. Some do not. Lazy

functional languages like Haskell [Hud90], try to eliminate dependencies on the

order of evaluation. Some exception handling introduces such situations. For

example in the expression (raise x, raise y) the order of evaluation depends of

which exception is first raised. Consequently, these languages do not have

exception handling mechanisms.

 70

 Eager functional languages, on the other hand, sometimes have exception

handling mechanisms like the imperative languages. In ML [MTH90], exceptions

are declared with the keyword exception, and raised with the keyword raise. An

exception can be handled with the construct <expression> handle <match>

where match is a set of patterns (P) of the type P1 =>E1 | … | Pn => En and E

is an expression (see SML example in chapter 2). CAML [Ler00] uses a similar

syntax. When declaring an exception, it uses the keyword exception too. The

keyword raise is used for throwing an exception, and try <expression> with

<match> for handling the exception.

5.2 Implementation of exceptions (SML/NJ)

 In chapter 3 we showed an example of translating a HANDLE and

RAISE lambda expression into a corresponding CPS expression. We also

described the algorithm to convert any lambda expression (like HANDLE and

RAISE) into a CPS expression. In this section we give more details about the

implementation of exception handling expressions in lambda and CPS language.

 The SML/NJ [AM91, App92, and AT89] compiler translates a source

program into a machine-language program in several phases. The first phase

produces an abstract syntax tree. The second phase transforms this tree into

lambda expressions. Then, the third phase translates the lambda code into

continuation passing style (CPS) code, which is later converted into a no nesting

function code (flattened CPS code). Last, many optimizations are performed, and

 71

machine code is produced. The run-time system uses a heap instead a stack. The

absence of function return (a call-with-continuation instruction does not return

like a normal function) means that a run-time stack is not required to execute

programs. SML/NJ keeps all the activation records (closures) on the garbage-

collected heap.

 We study a simplified version of the SML programming language

represented by the data type lexp (lambda expression)

datatype lexp = VAR of lexp |
 FN of var * lexp |
 ……
 RAISE of lexp |
 HANDLE of lexp * lexp

 Where RAISE and HANDLE are the kind of lambda expressions for

exception handling in the lambda language of the compiler. An exception handler

in ML is a set of patterns P of the type P1 =>E1 | … | Pn => En where P is a

pattern, usually an exception name, and E is a given expression. So the exception

handler resembles a case construct. In the lambda language, a handler is just a

function taking an expression exn as an argument. RAISE evaluates an

expression of type exn and then raises that exception. HANDLE evaluates its

first argument, and if an exception occurs it applies the second argument to that

exception. The second argument is an expression of type exn A, where A is the

type of the first argument. To implement exception handlers, there is a

distinguished location in the store, containing the current exception handler; each

 72

exception handler is just a continuation taking an exn argument. A HANDLE

just installs a new exception handler upon entry, and re-installs the previous

handler upon exit. A RAISE just passes its argument to the current handler.

In the third phase of the compilation, and after some optimizations and

representation decisions have been made, the lambda code is translated into CPS

code.

 The CPS primitive operators used by the SML/NJ compiler for

exceptions are gethdlr (get the current exception handler) and sethdlr (update

the store with a new exception handler). A complete explanation of gethdlr and

sethdlr operators with some examples was given in chapter 3. The store has a

special location (a special register) in which the “current exception handler” is

kept. This is a function, which is called in order to “raise” an exception. Primitive

operators and CPS expressions are described in ML as follows:

datatype primop = gethdlr | sethdlr | makeref | * | - | + | < | …
datatype cexp = PRIMOP of primop * value list
 * var list * cexp list
 |FIX of (var * var list * cexp)list * cexp
 |APP of value * value list

The primitive operators gethdlr and sethdlr, take 2 arguments, return no

result, and continues in only one way. This type of operator is executed only for

the side effect on the store. The semantics of the primitive operators gethdlr and

sethdlr are:

 73

 Evalprim (gethdlr, [], [c]) = (fn s => c [fetch s handler_ref] s)

 Evalprim (sethdlr, [h], [c]) = (fn s => c [] (upd(s, handler_ref,h)))

 Where fetch is a function for obtaining a value (the current exception

handler) from a location in the value store s; upd is a function for updating a

location with a new value h, producing a new store s; handler_ref is the address

where the actual or current exception handler is stored in the store; h is the

exception handler to fetch or to set; and c is the current continuation. So, in the

first operator a fetch for recovering the current exception handler to the store s

in location handler_ref is performed. In the second operator, an update of the

store s in location handler_ref with the value of exception handler h is made.

 A function convert (or function f like in chapter 3) performs the

translation. We show again the case of convert for lambda expressions HANDLE

and RAISE (it was also described in section 3.2). The function convert takes two

arguments: a lambda-language expression lexp and a continuation function c. The

result is a CPS expression cexp: the original lambda expression, converted to CPS.

convert(HANDLE (A,B),c) =

PRIMOP(gethdlr,[],[h],
 FIX([(k,[x],c(VAR x)),
 (n,[e], PRIMOP(sethdlr,[VAR h],[],[
 convert(B, λ f.APP (f,[VAR e, VAR k]))]))],
 PRIMOP(sethdlr,[VAR n],[],
 [convert(A,λv.PRIMOP(sethdlr,[VAR h],[],[APP(VAR k,[v])]))])))

 74

 The translation of HANDLE must first save the old handler h. Then, it

makes a continuation k corresponding to the context of the entire handle

expression. Next, it makes and installs a new exception handler n. Finally, the first

operand A of the handle expression is executed, with a continuation that re-

installs h and then invokes k.

 The new handler n, if invoked, first re-installs h and then evaluates the

second operand B of the HANDLE expression, continuing with k.

Raising an exception is much simpler:

convert (RAISE(E), c) = convert(E,
 λw.PRIMOP(gethdlr,[],[h], [APP(VAR h, [w])]))

The function first evaluates the exception value E, yielding a value

referred to by metavariable w. Then the current handler h is extracted and

applied to w. In other terms, we first extract the current exception handler h

from the store (at a specific location) and then apply it to the expression E. The

continuation c is ignored completely because raising an exception disrupts the

normal flow of control. This is the way the SML/NJ compiler translates

exception handling.

 75

5.3 Overhead in Exception Handling of SML/NJ

 Implementing exception handling in SML/NJ produces runtime

overhead. In order to experimentally verify this, we wrote two small programs in

SML.

Program 1: Exception Handler

val t=Timer.startRealTimer();
local
 fun f(n)= n*n handle Overflow=>n
in
 fun run(m) = if m > 1000000 then f(17)
 else (f(17) ; run(m+1))
end;
run(0);
val ct=Time.toReal(Timer.checkRealTimer t);

Program 2: No Exception Handler

val t=Timer.startRealTimer();
local
 fun f(n)= n*n
in

fun run(m) = if m > 1000000 then f(17)
 else (f(17) ; run(m+1))
end;
run(0);
val ct=Time.toReal(Timer.checkRealTimer t);

 Program 1 does not actually raise an exception at all because only small

values, named 17, and so, are ever multiplied. Program 1 is for all practical

purposes the same as program 2. The only difference between the two programs

is that program 1 defines an exception handler and program 2 does not. We ran

 76

both programs modifying the test in the “if-statement” (n > 1000000), starting

with 1000, then 50000, 100000, 200000, 400000, 600000, 800000 and finally

1000000. This controls the number of times the function f is called. The graph in

figure 5.1 shows the time spent in program 1 (with exception handler) and

program 2 (no exception handler). The difference between the curves in the

graph shows the overhead when a program has an exception handler (even when

no exception is raised).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

steps (in thousands)

tim
e

(in
 s

ec
)

without
handler
with handler

1 50 20
0

40
0

60
0

80
0

10
00

Figure 5.1 Comparison between using and not using exceptions in

SML/NJ.

Looking at the code produced by the compiler for both programs (with

and without handlers), we have 159 SPARC instructions (bcc, ld, st, jmp, etc) for

 77

the program with exception handling as opposed to 98 SPARC instructions for

the program without exception handling.

5.4 Overhead in Exception Handling of OCAML

Implementing exception handling in OCAML also produces overhead.

We tried the same experiment. We wrote essentially the same two programs in

OCAML. The main difference between the implementation is the mechanism for

getting the system time.

Program 1: Exception Handler
let
 f n = try n*n with overflow -> n
in
 let rec run m = if m>1000000 then f(17)
 else (f(17);run(m+1))

in
run(0);;

let x1=times();;
print_float(x1.tms_utime);;print_newline();;
print_float(x1.tms_stime);;print_newline();;

Program 2: No Exception Handler
let
 f n = n*n
in
 let rec run m = if m>1000000 then f(17)
 else (f(17);run(m+1))

in
run(0);;

let x1=times();;
print_float(x1.tms_utime);;print_newline();;
print_float(x1.tms_stime);;print_newline();;

Again, as in SML, the only difference between these two programs is the

exception handler. We ran both programs modifying the test. The graph in figure

 78

5.2 shows the time spent in program 1 and program 2. The curves we got on the

graph prove that the OCAML compiler also produces overhead when a program

has exception handlers.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

steps (in thousands)

tim
e

(in
 s

ec
)

without
handler
with handler

1 50 20
0

40
0

60
0

80
0

10
00

Figure 5.2 Comparison between using and not using exceptions in

OCAML

We examined the assembly code of both programs. Program 1 has 78

SPARC instructions while program 2 has 41 instructions. Conclusions are

difficult to draw, but CAML programs with exception handlers always ran slower

than programs without handlers even when no exceptions were thrown.

 79

5.5 The source of the Exception Handling
Overhead in SML

We will explain the source of the overhead in SML programs, by

presenting different stages in compilations of program 1 and program 2. The

lambda code of program 1 is:

FIX
 (["f","run"],
 [FN
 ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN
 ("e",
 COND
 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e"))))),
 FN
 ("x",
 COND
 (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD
 [VAR "x",
 APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

Next, the compiler translates the source code (lambda) into a CPS

program. This CPS program is later transformed into a flat program, which is just

one large FIX definition of mutually recursive functions with no free variables,

and no internal FIX operators. Here is the flattened CPS code for program 1.

 80

FIX
 ([("f",["n","w1","x"],
 PRIMOP
 (gethdlr,[],["h2"],
 [PRIMOP
 (sethdlr,[VAR "n11"],[],
 [PRIMOP
 (*,[VAR "n",VAR "n"],["w12"],
 [PRIMOP
 (sethdlr,[VAR "h2"],[],
 [APP (VAR "k4",[VAR "w12",VAR "w1",VAR "x"])])])])])),
 ("k4",["x13","w1","x"],APP (VAR "w1",[VAR "x13",VAR "x"])),
 ("n11",["e3"],
 PRIMOP (sethdlr,[VAR "h2"],[],
 [APP (VAR "F5",[VAR "e3",VAR "k4"])])),
 ("F5",["e","k6"],
 PRIMOP(equal,[VAR "e",VAR "ovfl"],[],
 [APP (VAR "F7",[INT 0]),APP (VAR "F7",[INT 1])])),
 ("F7",["z8"],
 PRIMOP(equal,[VAR "z8",INT 0],[],
 [APP (VAR "k6",[VAR "n"]),
 PRIMOP (gethdlr,[],["h9"],[APP (VAR "h9",[VAR "e"])])])),
 ("run",["x","w1"],
 PRIMOP(equal,[VAR "x",INT 10],[],
 [APP (VAR "F14",[INT 0,VAR "x"]),
 APP (VAR "F14",[INT 1,VAR "x"])])),
 ("F14",["z15","x"],
 PRIMOP(equal,[VAR "z15",INT 0],[],
 [APP (VAR "f",[INT 17,VAR "r16",VAR "x"]),
 APP (VAR "f",[INT 17,VAR "r22",VAR "x"])])),
 ("r16",["x17","x"],APP (VAR "r25",[VAR "x17"])),
 ("r18",["x19"],APP (VAR "w1",[VAR "x19"])),
 ("r22",["x23","x"],
 PRIMOP
 (-,[VAR "x23",INT 288],["w21"],
 [PRIMOP
 (+,[VAR "x",VAR "w21"],["w20"],
 [APP (VAR "run",[VAR "w20",VAR "r18"])])])),
 ("r25",["x26"],APP (VAR "initialNormalCont",[VAR "x26"]))],
 APP (VAR "run",[INT 0,VAR "r25"]))

 81

 Function f starts executing two operations: a gethdlr and a sethdlr. The

gethdlr operation stores the current handler in variable h2. The sethdlr operation

installs the new handler n11 (push). This handler is used only when an exception

is raised (for example, an exception is thrown from the multiplication operation).

After executing the multiplication operation, the old handler h2 is reinstalled as

the current handler (pop), and then a jump to function k4 is performed.

 The exception handling overhead is produced because these two

operations gethdlr and sethdlr are always executed. They install a new handler

even when an exception is never thrown in the program.

 We found that another source of overhead is an extra function produced

by the compiler named k (k4 in our CPS program). This function is used to

invoke the continuation which is received by the function which declares the

exception handler. But this code is invoked only if the exception is raised.

Now, let us see the lambda and CPS code of program # 2.

First, here is the lambda code:

FIX
 (["f","run"],
 [FN ("n",APP (MULT,RECORD [VAR "n",VAR "n"])),
 FN
 ("x",
 COND
 (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD

 82

 [VAR "x",
 APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

Here is the flattened CPS code:

FIX
 ([("f",["n","w1","x"],
 PRIMOP
 (*,[VAR "n",VAR "n"],["w2"],
 [APP (VAR "w1",[VAR "w2",VAR "x"])])),
 ("run",["x","w1"],
 PRIMOP
 (equal,[VAR "x",INT 10],[],
 [APP (VAR "F3",[INT 0,VAR "x"]),
 APP (VAR "F3",[INT 1,VAR "x"])])),
 ("F3",["z4","x"],
 PRIMOP
 (equal,[VAR "z4",INT 0],[],
 [APP (VAR "f",[INT 17,VAR "r5",VAR "x"]),
 APP (VAR "f",[INT 17,VAR "r11",VAR "x"])])),
 ("r5",["x6","x"],APP (VAR "r14",[VAR "x6"])),
 ("r7",["x8"],APP (VAR "w1",[VAR "x8"])),
 ("r11",["x12","x"],
 PRIMOP
 (-,[VAR "x12",INT 288],["w10"],
 [PRIMOP
 (+,[VAR "x",VAR "w10"],["w9"],
 [APP (VAR "run",[VAR "w9",VAR "r7"])])])),
 ("r14",["x15"],APP (VAR "initialNormalCont",[VAR "x15"]))],
 APP (VAR "run",[INT 0,VAR "r14"]))

Because program 2 has no handle declaration, the CPS code has no

instances where gethdlr and sethdlr are used. We can observe that function f has

 83

just one primitive operator which is the multiplication operator. This means

program 2 executes faster than program 1.

In conclusion, exception handling in a program produces overhead

because the operations, gethdlr and sethdlr, are executed even if an exception is

never throw in the program. Our investigation found another possible source of

overhead in function k (k4 in the CPS program), produced by the handle

operation. This function is only used to invoke the continuation which is received

by the function which declares the exception handler. We can observe in the CPS

code of program 2 that this function does not exist. However, we believe that

optimization of the compiler can avoid calling this function.

 84

6 Zero Overhead Exception Handling

 In chapter 5 we showed that some implementations incur overhead for

using exception handling even when no exception are thrown. We also showed

the results of some experiments with the SML/NJ and OCAML compilers, and

then we identified and explained the source of the overhead in SML programs.

 In this chapter we present the solution for the exception handling

overhead problem. First, we explain a technique that some imperative language

compilers use to implement exception handling. Particularly, we explain

exception handling implementations using an exception table in Java and Ada.

This technique uses a table where it keeps every possible exception to be handled

along with related information for that exception. It is important to say that this

technique has proven to deliver zero overhead exception handling.

Next, we present the implementation of the exception table technique in

a functional programming language. This implementation presented some

problems and/or weakness concerning dynamic propagation which are discussed

and commented at the end of the section.

Last, we present a different approach that uses two continuations instead

of one during the passing of parameters in the calling process. In this new

approach one continuation encapsulates the rest of the normal continuation, and

a second continuation is used for passing the abnormal computation. The second

 85

continuation is not passed as an extra argument but is passed as a displacement

from the first continuation. This new technique can deliver zero overhead

exception handling.

6.1 Exception table technique

Some imperative languages like Ada, C++, and Java have a different approach to

implement exception handling [Din00, BR86, LYKPMEA, and Ven99]. We now

describe how Java and Ada implement exception handling.

Java implementation of exception handling

We consider a program for computing the remainder.

 static int remainder (int dividend, int divisor)
 throws OverflowException, DivideByZeroException {
 if ((dividend = = Integer.MIN_VALUE) && (divisor = = -1)) {
 throw new OverflowException ();
 try {
 return dividend % divisor;
 } catch (ArithmeticException e) {
 throw new DivideByZeroException ();
 }
 }
 }

 86

The Java compiler generates the following bytecode sequence for the remainder

method:

 0 iload_0

 1 ldc #1 <Integer –2147483648>

 3 if_icmpne 19

 6 iload_1

Body 7 iconst_m1

 8 if_icmpne 19

 11 new #4 <Class OverflowException>

 14 dup

 15 invokespecial #10 <Method OverflowException ()>

 18 athrow

 19 iload_0

 20 iload_1

 21 irem

 22 ireturn

 23 pop

 Handler 24 new #2 <Class DivideByZeroException>

 27 dup

 28 invokespecial #9 <Method DivideByZeroException ()>

 31 athrow

 87

The bytecode sequence of the remainder method has two separate parts.

The first part is the normal path of execution for the method. This part goes

from pc offset zero through 22. The second part is the catch clause, which goes

from pc offset 23 through 31. There appears to be no jump or entry into this part

of the code; but as we will see, the runtime system may jump to this catch clause.

It corresponds to the exception handler in the source program.

The irem instruction in the main bytecode sequence might throw an

ArithmeticException. If this situation occurs, the Java virtual machine knows

to jump to the bytecode sequence that implements the catch clause by looking

up and finding the exception in a table. Each method that catches exceptions is

associated with an exception table that is found in the class file along with the

bytecode sequence of the method. The exception table has one entry for each

exception that is caught by each try block. Each entry has four pieces of

information:

• The start point

• The end point

• The pc offset within the bytecode sequence to jump to

• A constant pool index of the exception class that is being caught

The following is the exception table for the remainder method:

Exception table:

From to target type

19 23 23 <Classjava.lang.ArithmeticException>

 88

The preceding exception table indicates that from pc offset 19 through

22, inclusive, ArithmeticException is caught. The try block’s endpoint value,

listed in the table under the label “to,” is always one more then the last pc offset

for which the exception is caught. In this case the endpoint value is listed as 23,

but the last pc offset for which the exception is caught is 22. This range, 19 to 22

inclusive, corresponds to the bytecode sequence that implements the code inside

the try block of remainder function. The target listed in the preceding table is the

pc offset to jump to if an ArithmeticException is thrown between the pc

offsets 19 to 22, inclusive.

 If an exception is thrown during the execution of a method, the Java

virtual machine searches through the exception table for a matching entry. An

exception table entry matches if the current program counter is within the range

specified by the entry, and if the exception class thrown is the exception class

specified by the entry (or is a subclass of the specified exception class). The Java

virtual machine searches through the exception table in the order in which the

entries appear in the table. When the first match is found, the virtual machine sets

the program counter to the new pc offset location and continues execution there.

If no match is found, the virtual machine pops the current stack frame and

rethrows the same exception.

 If no exception is thrown, the Java virtual machine continues the normal

execution of the program, with no use of the exception table. Thus, the exception

 89

handler of the method (catch block) has no effect on the performance of the

method.

Ada implementation of exception handling

 In Ada [Ada95], an exception handler consists of a sequence of

statements. Exception handlers appear in a case like structure at the end of a

frame or block. For example,

Exception

 when E1 | E2 … ; -- handler for E1 and E2

 when E3 … ; -- handler for E3

 when others … ; -- handler for other exceptions

specifies a set of exceptions to which each handler applies.

 The information in this case structure can be translated into code to be

executed whenever an exception is raised or into a table to be searched by a

recovery routine at runtime.

 Some Ada compilers, like the DEC Ada compiler for the VAX/VMS

system, implement responding to an exception by using a technique named

dynamic tracking [BR86]. Here, the current context for exception handling is

posted in a predictable location. Keeping this information up to date means that

 90

changes in the context for exception handling must be tracked dynamically. This

technique needs a stack for storing the exception contexts. Upon entry to a

frame, a new context record must be added to the top of the stack. Upon exit

from a frame, the top context record must be popped from the stack. This

technique is simple but produces overhead to normal execution. An alternative of

dynamic tracking is to use a static “map” of the portion of memory that

contains executable code, indicating the boundaries of each frame, and the

boundaries of the sequence of statements within each frame. The map is

implemented as a table of exceptions. Constructing the table requires

knowledge of the exact address of each contiguous block of code for each frame.

It must therefore involve cooperation of the compiler, the linker, and the virtual

address translator. In particular, any relocation of code modules must be reflected

by corresponding adjustments to the map. This method does not produce any

overhead on normal execution, but requires a degree of coordination of

compilation, linking, loading, and virtual address translation. The Intermetric Ada

compiler for the IBM mainframes has a particular simple scheme for a mix of

static and dynamic tracking.

Implementation of exception handling using tables in
ML
 The main idea of this implementation is to use an exception table where

we can keep in each entry of the table, the range of the protected code, the

address of the exception handler, and the exception name. Now, the

 91

implementation in ML would be different because the structure of a functional

language is different than the structure of an imperative language. Instead of

using blocks like “try and catch,” ML uses expressions. The syntax for an

expression of type “handler” in SML:

 <expression> handle <match>

where <expression> can be an id, or a const expression, an if expression, etc.; and

<match> can be a pattern, followed by the symbol “=>” and an expression. As

we mentioned before, CAML uses a notation for defining exception handlers

similar to SML.

 The exception table is created when abstract machine code is generated.

We describe a machine-level translation of a program with exception handling to

produce code along with the exception table:

• Eliminate the primitive operators which cause the overflow in the

program (gethdlr and sethdlr operators).

• Obtain the range of the protected code

• Produce machine code for the protected code

• For user-defined exceptions insert a Jump instruction (its address will be

the first entry of the corresponding exception table). For system-defined

exceptions the compiler will not produce a Jump instruction. This kind of

 92

exception is raised by the run-time system, even though a handler in the

program can catch them.

• An entry in the exception table is inserted. The entry content is the range

of the protected code, the address of the corresponding handle, and the

exception name.

• Finally, we make a small optimization in order to avoid making two

consecutive jumps; that is means calling function “k” (“k4” in the last

program), from outside of the handler.

We show in the next table part of the final code (abstract machine code)

produced by our compiler. If an exception is thrown during the execution of the

expression n*n (line 6 of code), our runtime system searches through the

exception table (line 74) for a matching entry. An exception table entry matches,

when the current program counter is within the range specified by the entry (in

this example the PC is pointing to line 6), and the exception type thrown is one

of the exceptions specified by the entry (“ovfl” was specified in the SML code).

The simulator searches through the exception table in the order in which entries

appear in the table (just one entry for this example). When the first match is

found, the run-time system sets the program counter to the new pc offset

location (it takes the address of the handler “n10” which is 16), and continues the

execution.

 93

(* MACHINE CODE WITH EXCEPTION *)

0 LOAD Const 0,Reg 1
1 LOAD Mem r24,Reg 2
2 JUMP run
 LAB f:
3 STORE Reg 1,Mem w1
4 STORE Reg 2,Mem n
5 STORE Reg 3,Mem x
6 MUL Mem n,Mem n,
 Mem w11
7 LOAD Mem w11,Reg 1
8 LOAD Mem x,Reg 2
9 JUMP w1
 LAB k4:
10 STORE Reg 1,Mem x12
11 STORE Reg 2,Mem w1
12 STORE Reg 3,Mem x
13 LOAD Mem x12,Reg 1
14 LOAD Mem x,Reg 2
15 JUMP w1
 LAB n10:
16 STORE Reg 1,Mem e3
17 LOAD String h2,
 Reg 99
18 LOAD Mem e3,Reg 1
19 LOAD Mem k4,Reg 2
20 JUMP F5
 .
 .
 LAB run:
37 STORE Reg 1,Mem x
38 STORE Reg 2,Mem w1
39 CJUMP EQ,Mem x,Const
 10,L4,L5
 LAB L4:
40 LOAD Const 0,Reg 1
41 LOAD Mem x,Reg 2
42 JUMP F13
 .
 .
 LAB r15:
57 STORE Reg 1,Mem x16
58 STORE Reg 2,Mem x
59 LOAD Mem x16,Reg 1
60 JUMP r24
 LAB r17:
61 STORE Reg 1,Mem x18
62 LOAD Mem x18,Reg 1
63 JUMP w1
 LAB r21:
64 STORE Reg 1,Mem x22
65 STORE Reg 2,Mem x
66 SUB Mem x22,Const
 288,Mem w20
67 ADD Mem x,Mem w20,
 Mem w19
68 LOAD Mem w19,Reg 1
69 LOAD Mem r17,Reg 2
70 JUMP run
 LAB r24:
71 STORE Reg 1,Mem x25
72 LOAD Mem x25,Reg 1

(* MACHINE CODE WITH NO EXCEPTION *)

0 LOAD Const 0,Reg 1
1 LOAD Mem r14,Reg 2
2 JUMP run
 LAB f:
3 STORE Reg 1,Mem n
4 STORE Reg 2,Mem w1
5 STORE Reg 3,Mem x
6 MUL Mem n,Mem n,
 Mem w2
7 LOAD Mem w2,Reg 1
8 LOAD Mem x,Reg 2
9 JUMP w1
 LAB run:
10 STORE Reg 1,Mem x
11 STORE Reg 2,Mem w1
12 CJUMP EQ,Mem x,
 Const 10,L0,L1
 LAB L0:
13 LOAD Const 0,Reg 1
14 LOAD Mem x,Reg 2
15 JUMP F3
 LAB L1:
16 LOAD Const 1,Reg 1
17 LOAD Mem x,Reg 2
18 JUMP F3
 LAB F3:
19 STORE Reg 1,Mem z4
20 STORE Reg 2,Mem x
21 CJUMP EQ,Mem z4,
 Const 0,L2,L3
 LAB L2:
22 LOAD Const 17,Reg 1
23 LOAD Mem r5,Reg 2
24 LOAD Mem x,Reg 3
25 JUMP f
 LAB L3:
26 LOAD Const 17,Reg 1
27 LOAD Mem r11,Reg 2
28 LOAD Mem x,Reg 3
29 JUMP f
 LAB r5:
30 STORE Reg 1,Mem x6
31 STORE Reg 2,Mem x
32 LOAD Mem x6,Reg 1
33 JUMP k
 LAB r7:
34 STORE Reg 1,Mem x8
35 LOAD Mem x8,Reg 1
36 JUMP w1
 LAB r11:
37 STORE Reg 1,Mem x12
38 STORE Reg 2,Mem x
39 SUB Mem x12,
 Const 288,
 Mem w10
40 ADD Mem x,Mem w10,
 Mem w9
41 LOAD Mem w9,Reg 1
42 LOAD Mem r7,Reg 2
43 JUMP run
 LAB r14:

 94

73 JUMP k
 LAB ETab:
74 ExT 3,6,n10,ovfl
 LAB end:

44 STORE Reg 1,Mem x15
45 LOAD Mem x15,Reg 1
46 JUMP k
 LAB end:

If no match is found, the run-time system rethrows the same exception

from the point where the last call was executed. Now, if no exception is thrown

during the execution of the multiplication expression, the program jump to k4

(line 10), which is a continuation from the handle operation.

Implementation weakness

We tested our implementation with different examples, finding major

difficulties concerning dynamic propagation. As we explained in chapter two, an

exception not handled is automatically raised to other frames along the calling

chain until a handler is found or until a program boundary is reached. This

propagation method is called automatic or dynamic propagation. If the

handler for a raised exception cannot be found locally, a Java, Ada or C++

program unwinds the stack of the try block and propagates the exception to its

caller. This procedure continues until a handler is found or until a default handler

is called, which then aborts the program.

Our implementation creates the exception table during the compilation of

the program. With the help of the table the program can find the handler if it is in

 95

the same context. However, when the handler for the thrown exception is in

another context or frame from the calling chain then the table does not work. In

order to implement dynamic propagation, we use a different approach: using two

continuation for normal and abnormal (exception) procedures. In the next

section we explain that approach.

6.2 Low overhead using two continuations

 Now, we present an implementation which can be used with programs

where dynamic propagation occurs. This exception handling implementation can

deliver a good performance in handling exceptions where we obtain a decrement

of the overhead with respect to the normal method of implementation (see

chapter 5).

 In the analysis we made in chapter 5, we concluded that unnecessary

utilization of gethdlr and sethdlr operators (along with the use of function k),

produces the main overhead of SML programs. Those two operators are used to

save and restore the handlers of the programs. We designed a different CPS

conversion program, where those operators (gethdlr and sethdlr) are not longer

needed. The main idea of the new CPS code is the use of a second continuation

for abnormal situations. The next example will serve to illustrate the new

technique. We will show again the SML, lambda, and CPS code.

 96

The SML code of the program is

exception mult
let
 fun f(n)= h(n) handle mult => n
 fun h(m)= g(m)
 fun g(v)= (raise mult) handle ovfl => v
in
 f(17)
end

and the respective lambda code is

APP
 (FN
 ("mult",
 FIX
 (["f","h","g"],
 [FN
 ("n",
 HANDLE
 (APP (VAR "h",VAR "n"),
 FN
 ("e1",
 COND
 (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n",
 RAISE (VAR "e1"))))),
 FN ("m",APP (VAR "g",VAR "m")),
 FN
 ("v",
 HANDLE
 (RAISE (VAR "mult"),
 FN
 ("e2",
 COND
 (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v",
 RAISE (VAR "e2")))))],APP (VAR "f",INT 17))),
 APP (MAKEREF,STRING "MUL"))

Observing the lambda code, we see in boldface the handler defined in

the SML function f. A handler with the old technique produces the operations

gethdlr and sethdlr which cause the main overhead in a program. With the

new approach or design of the conversion program the handler is passed as a

 97

second continuation (we call it abnormal continuation). This second

continuation could be used if a raise operation of such exception is executed.

The CPS code with the new technique is

FIX
 ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])),

 ("e'3",["z4"],APP (VAR "initialAbnormalCont",[VAR "z4"])),

 ("F5",["mult","k6","ak7"],
 APP (VAR "f",[a.INT 17,VAR "r26",VAR "e'28",VAR "mult"])),

 ("f",["n","w8","ak9","mult"],
 APP (VAR "h",[VAR "n",VAR "r14",VAR "e'16",VAR "mult"])),

 ("H10",["e1","mult","v"],
 PRIMOP(equal,[VAR "e1",VAR "mult"],[],
 [APP (VAR "F11",[a.INT 0,VAR "v"]),
 APP (VAR "F11",[a.INT 1,VAR "v"])])),

 ("F11",["z12","n"],
 PRIMOP(equal,[VAR "z12",a.INT 0],[],
 [APP (VAR "r26",[VAR "n"]),
 APP (VAR "ak9",[VAR "e1"])])),

 ("r14",["x15"],APP (VAR "w8",[VAR "x15"])),

 ("e'16",["z17","mult","v"],APP (VAR "H10",[VAR "z17",VAR "mult",VAR "v"])),

 ("h",["m","w8","ak9","mult"],

APP (VAR "g",[VAR "m",VAR "r18",VAR "e'20",VAR "mult"])),

 ("r18",["x19"],APP (VAR "w8",[VAR "x19"])),

 ("e'20",["z21","mult","v"],APP (VAR "e'16",[VAR "z21",VAR "mult",VAR "v"])),

 ("g",["v","w8","ak9","mult"],

APP (VAR "H22",[VAR "mult",VAR "w8",VAR "v",VAR "mult"])),

 ("H22",["e2","w8","v","mult"],
 PRIMOP(equal,[VAR "e2",VAR "ovfl"],[],
 [APP (VAR "F23",[a.INT 0,VAR "w8",VAR "v",VAR "e2",VAR "mult"]),
 APP (VAR "F23",[a.INT 1,VAR "w8",VAR "v",VAR "e2",VAR "mult"])])),

 ("F23",["z24","w8","v","e2","mult"],

 98

 PRIMOP(equal,[VAR "z24",a.INT 0],[],
 [APP (VAR "w8",[VAR "v",VAR "mult"]),
 APP (VAR "e'20",[VAR "e2",VAR "mult",VAR "v"])])),

 ("r26",["x27"],APP (VAR "r1",[VAR "x27"])),

 ("e'28",["z29"],APP (VAR "ak7",[VAR "z29"]))],

 PRIMOP(makeref,[a.STRING "MUL"],["w30"],
 [APP (VAR "F5",[VAR "w30",VAR "r1",VAR "e'3"])]))

When function h is invoked (first boldface text), the normal continuation

(r14) and the abnormal continuations (e’16) are passed as arguments. This second

continuation, is the name of a function whose main body contains an invocation

to the handler H10 and will be used later in the program. Function h, then just

invokes function g passing the two continuations r18 and e’20. Last, function g

has an invocation to the handler H22 (produced by the RAISE operation of the

lambda program). This handler, H22, will not catch the exception, so an

invocation to the first handler (H10) will be performed by using the abnormal

continuation contained in variable ak9.

The new conversion program

 In chapter 3, we presented the algorithm to convert a lambda expression

into a corresponding continuation expression. The conversion function f takes

two arguments: a lambda expression and a continuation function. The result is a

CPS expression [App92]. Our new approach is a modification to the mutually-

recursive function f of Appel. We modified the translation by adding a new

 99

continuation for abnormal computations. The new function convert takes three

arguments: a lambda expression, a continuation function c for normal

computations, and a continuation function e for abnormal computations.

 All functions in the lambda language have exactly one argument. When

translated to CPS with one continuation, the continuation adds one argument.

Now in the translation with two continuation every function become a function

with three arguments.

The first part of the algorithm is the same than in the old algorithm (like

function f of Appel [App92] we need to create new variables).

Function f (we call it now convert) takes two continuations functions (c

and e) as arguments, besides the lambda expression.

fun convert(lambda.VAR v, c, e) = c(VAR v)
| convert(lambda.INT i, c, e) = c(INT i)
| convert(lambda.STRING s,c, e) = c(STRING s)

A lambda HANDLE definition translates into a single CPS function

definition. This function is given a name H, and corresponds to the handler of

the produced continuation expression. The body of H is given by converting

subexpression B (the second operand of the HANDLE expression) into a CPS

expression. Last, the main body of the FIX expression is the result of translating

the first operand A of the HANDLE expression. In the translation of A, the

continuation function e’ is used as a third argument. If A contains a RAISE

expression then this function e’ is used as the normal continuation. Then, when

 100

A is done executing, it will bind its result to some variable w and then apply H to

that variable.

conve t(HANDLE (A,FN(z,B)),c, e) = r

r

r

let
val H = newVar ("H")

 fun e' w = APP(VAR H,[w])
in
 FIX([(H,[z],convert(B,c , e))], convert (A,c,e'))
end

A RAISE expression is converted by applying the abnormal continuation

into the expression E. Because the abnormal continuation is a handler, then the

result of the translations is the invocation of that handler.

conve t(RAISE E, c, e) = convert(E,e,e)

In the case of function definitions, the modifications (shown in

boldface below) consist in adding a third argument ak for the abnormal

continuation.

conve t(FN (v,E), c, e) =
let
 val F = newVar ("F");
 val k = newVar ("k");
 val ak = newVar ("ak");
 fun e' z = APP(VAR ak,[z])
in
 FIX([(F,[v,k,ak],convert (E,(fn z=>APP
 (VAR k,[z])), e'))],c(VAR F))
end

 101

With respect to lambda expressions constructed using FIX, the

modifications again consist of adding a third argument to each mutually recursive

function.

conve t(FIX(hx,bx,E),c, e) = r

r

let
 val w = newVar ("w")
 val ak = newVar ("ak")
 fun e'' w = APP(VAR ak,[w])
 fun g(h1::h,FN(v,B)::b)=
 (h1,[v,w,ak], convert (B, fn z=>
 APP(VAR w,[z]), e''))::g(h,b)
 | g(nil,nil) = nil
in
 FIX (g(hx,bx),convert (E,c, e))
end

In a function call, we need to add a new return address e’ for abnormal

continuation. This address will be used when an exception is raised and the

abnormal continuation is taken as the normal continuation to execute.

conve t(APP (F,E), c, e) =
let
 val r= newVar ("r");
 val x= newVar ("x");
 val e'= newVar ("e'");
 val z= newVar ("z");
in
 FIX([(r,[x],c(VAR x)),
 (e',[z],e(VAR z))],
 convert(F,(fn f2=>convert(E,(fn e2=>APP(f2, [e2,VAR r,VAR e'])), e)), e))
end

In the rest of the cases, the only modification to make is adding the third

continuation in the list of calling and receiving arguments .

 102

6.3 Zero overhead with one continuation and
displacement

 The use of an extra argument for the abnormal continuation, provides

better performance in normal execution of programs with exception declarations.

However, the extra argument imposes some overhead of its own during the

normal execution of a program. We can remove that overhead by making some

small changes to the compiler; specifically the program that converts to CPS

code. The main idea is passing only one continuation address for the normal and

abnormal continuations. Both continuation addresses are consecutive functions

whose names differ only by an apostrophe. Next, we illustrate this technique by

using the same example shown in the previous section, but with the

modifications discussed before.

FIX
 ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])),

 ("r1'",["z3"],APP (VAR "initialAbnormalCont",[VAR "z3"])),

 ("F4",["mult","k5"],
 APP (VAR "f",[a.INT 17,VAR "r23",VAR "mult"])),

 ("f",["n","w7","mult"],
 APP (VAR "h",[VAR "n",VAR "r13",VAR "mult"])),

 ("H9",["e1","mult","v"],
 PRIMOP(equal,[VAR "e1",VAR "mult"],[],
 [APP (VAR "F10",[a.INT 0,VAR "v"]),
 APP (VAR "F10",[a.INT 1,VAR "v"])])),

 ("F10",["z11","n"],
 PRIMOP(equal,[VAR "z11",a.INT 0],[],
 [APP (VAR "r23",[VAR "n"]),
 APP (VAR "w7",[VAR "e1"])])),

 103

 ("r13",["x14"],APP (VAR "w7",[VAR "x14"])),

 ("r13'",["z15","mult","v"],APP (VAR "H9",[VAR "z15",VAR "mult",VAR "v"])),

 ("h",["m","w7","mult"],APP (VAR "g",[VAR "m",VAR "r16",VAR "mult"])),

 ("r16",["x17"],APP (VAR "w7",[VAR "x17"])),

 ("r16'",["z18","mult","v"],APP (VAR "r13'",[VAR "z18",VAR "mult",VAR "v"])),

 ("g",["v","w7","mult"],APP (VAR "H19",[VAR "mult",VAR "w7",VAR "v",VAR "mult"])),

 ("H19",["e2","w7","v","mult"],
 PRIMOP(equal,[VAR "e2",VAR "ovfl"],[],
 [APP (VAR "F20",[a.INT 0,VAR "w7",VAR "v",VAR "e2",VAR "mult"]),
 APP (VAR "F20",[a.INT 1,VAR "w7",VAR "v",VAR "e2",VAR "mult"])])),

 ("F20",["z21","w7","v","e2","mult"],
 PRIMOP(equal,[VAR "z21",a.INT 0],[],
 [APP (VAR "w7",[VAR "v",VAR "mult"]),
 APP (VAR "r16'",[VAR "e2",VAR "mult",VAR "v"])])),
 ("r23",["x24"],APP (VAR "r1",[VAR "x24"])),

 ("r23'",["z25"],APP (VAR "ak6",[VAR "z25"]))],

 PRIMOP(makeref,[a.STRING "MUL"],["w26"],
 [APP (VAR "F4",[VAR "w26",VAR "r1"])]))

 The program starts invoking function F4, and passing w26 and r1, the

return address from normal continuation. There is no need to pass r1’, the return

address from abnormal continuation, because it can be referenced by just adding

the apostrophe to the name of the normal continuation. Next, from function F4

there is an invocation to function f where the normal continuation r23 is passed

as the second argument. Then, there is an invocation to function h passing the

continuation r13 as second argument, and from function h there is a call to

function g passing continuation r16 as one of the arguments. Next, function g

calls the function H19 function passing continuation w7 (which contains the

 104

value r16) as the second argument. In function H19, the condition checks if e2

(exception mult) is equal to ovfl (overflow). Because it is false, then there is a

jump to F20 passing again continuation w7. The condition of function F20 only

checks the validity of last condition (function H19). Because it was false then it

calls for function r16’ (the abnormal continuation) instead of function r16 (the

normal continuation). Function r16’ invokes function r13’ (abnormal

continuation too), and function r13’ calls for function H9, that is the handler of

function f (see last SML code). The condition of the handler function H9 is true

(the raised exception is equal to mult exception), and the program finishes calling

functions F10, r23, and r1 consecutively.

Problems due to optimization

 This method does not impose any obvious overhead on normal

execution. On the other hand, a problem in a real compiler (like SML/NJ) is that

during optimization the compiler relocates consecutive functions of the program.

This problem is also faced by others compilers that use exception tables [BR86,

Din00]. As a solution to this problem we mentioned before that Ada [BR86]

compilers interact with the linker, the loader, and the virtual address translator.

The Ada compiler uses a static “map” of the portion of memory that contains

executable code, indicating the boundaries of each frame, and the boundaries of

the sequence of statements within each frame. The map is implemented as an

 105

exception table. Constructing the table requires knowledge of the exact address of

each contiguous block of code for each frame. Any relocation of the code during

optimization must be reflected by corresponding adjustments to the table. A

global static table corresponds to each main program. The table contains

information like the low address of the segment (one segment is the code of a

sequence of statements, an exception handler, etc.), the address of the code to be

executed (handler) when an exception is raised within the code segment

beginning with this lower address, etc. If the optimizer of the compiler relocates

the code, then the linker/loader modifies the information in the table by adding

or subtracting a constant to the low addresses of code segment and the exception

handler address. The disadvantage of this technique is the dependency of the

compiler with the linker and other programs. On the other hand, some C++

compilers like the HP C++ compiler follow a different method for dealing with

the problem of relocation due to optimizations [Din00]. They also use exception-

handling tables. They divide the code of a program in exception-handling code

and normal code. The normal or nonexceptional code is optimized while

compensation code is placed along the exceptional path to restore program state

(before executing the exception handlers) to what it would have been if the

optimization had not taken place. The place where such compensation code is

added is called a landing pad, which serves as an alternate return path for each

call.

 106

 In our compiler, we can work with this last approach; that is, including

compensation code, in order to restore the program state to what it would be if

optimization had not been done in the main control flow (see figure 6.1).

PROGRAM

f f
f’ + …Compensation

code
optimization

f’

No exception
Is raised OK

… execution
Exception
Is raised

restore

Figure 6.1 Inclusion of compensation code

If an exception is raised the compensation code would do some

operations, the most important would be to restore the program state to what it

would be if optimization had not been done in the main control flow. The

implementation of this method has not yet been accomplished.

 107

 Another solution to the problem is including a block with two jump

operations (e and e’) before the code of the functions for normal and abnormal

continuations. One jump will be to the normal continuation f; another jump will

be to the abnormal continuation f’. Then, every reference to the normal or

abnormal continuations from the main program will be first a reference to that

block of consecutive jumps e and e’.

 108

7 Experiments and Performance

 This chapter presents a set of examples or experiments we made in order

to test the performance of the new approaches. We also present a set of graphs

comparing the performance between the traditional technique of exception

handling and the new techniques that we designed and implemented. The set of

graphs demonstrate that a functional program using exception handling can reach

low and zero overhead when using the two-continuations and one-continuation-

displacement techniques respectively.

7.1 Experimental measurements

 All measurement in the experiments are made by counting the number of

instructions executed by the simulated programs. As we explained in chapter 4,

we implemented a simulator of a real machine. The simulator “executes” a

program in abstract machine code, and obtain information like the number of

instructions performed by that program. The abstract machine code can be

produced by three different compilers. One using the original approach (using the

gethdlr and sethdlr operators), a second that uses the two-continuations

approach, and a third that uses the one-continuation-displacement approach.

Some comparisons in the experiments are between programs that declare and use

exception handlers; and some are between programs that declare and never use

 109

exception handlers which is, of course, the most important situation for our

research.

7.2 Experimental examples

 Next, we present a set of examples to be used in the experiments. For

each program we show the code in SML language (for clarity reasons), lambda

code, and CPS (flat) code. The abstract machine code of that programs is found

in the appendix.

 The next program was compiled by using the original (old) approach in

the translation of lambda expressions to CPS code. The program has three

functions (f, h, and g), where two of them (f and g) have handler definitions. The

program start by calling function f. This function in turn call function h, and then

function h call function g. This last function raises an exception (exception mult).

The handler of the last function (g) can not catch the exception mult. So, the

exception is propagated by following in reverse order the actual calling chain,

until the exception is caught by the handler of function f.

PROGRAM 1 - Old technique

SML code

exception mult
let
 fun f(n)= h(n) handle mult => n
 fun h(m)= g(m)
 fun g(v)= (raise mult) handle ovfl => v
in
 f(17)
end

 110

Lambda code

APP
 (FN
 ("mult",
 FIX
 (["f","h","g"],
 [FN
 ("n",
 HANDLE
 (APP (VAR "h",VAR "n"),
 FN
 ("e1",
 COND
 (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n",
 RAISE (VAR "e1"))))),FN ("m",APP (VAR "g",VAR "m")),
 FN
 ("v",
 HANDLE
 (RAISE (VAR "mult"),
 FN
 ("e2",
 COND
 (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v",
 RAISE (VAR "e2")))))],APP (VAR "f",INT 17))),
 APP (MAKEREF,STRING "MUL"))

CPS code

 FIX
 ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])),

 ("F3",["mult","k4"],APP (VAR "f",[a.INT 17,VAR "r33",VAR "mult"])),

 ("f",["n","w5","mult"],
 PRIMOP(gethdlr,[],["h6"],
 [PRIMOP(sethdlr,[VAR "n15"],[],
 [APP (VAR "h",[VAR "n",VAR "r16",VAR "mult",VAR "h6"])])])),

 ("k8",["x18"],APP (VAR "r33",[VAR "x18"])),

 ("n15",["e7","h6","v","mult"],
 PRIMOP(sethdlr,[VAR "h6"],[],
 [APP (VAR "F9",[VAR "e7",VAR "k8",VAR "mult",VAR "v"])])),

 ("F9",["e1","k10","mult","n"],
 PRIMOP(equal,[VAR "e1",VAR "mult"],[],
 [APP (VAR "F11",[a.INT 0,VAR "n"]),
 APP (VAR "F11",[a.INT 1,VAR "n"])])),

 111

 ("F11",["z12","n"],
 PRIMOP(equal,[VAR "z12",a.INT 0],[],
 [APP (VAR "k8",[VAR "n"]),
 PRIMOP(gethdlr,[],["h13"],
 [APP (VAR "h13",[VAR "e1"])])])),

 ("r16",["x17"],
 PRIMOP(sethdlr,[VAR "h6"],[],
 [APP (VAR "k8",[VAR "x17"])])),

 ("h",["m","w5","mult","h6"],

APP (VAR "g",[VAR "m",VAR "r19",VAR "mult",VAR "h6"])),

 ("r19",["x20"],APP (VAR "w5",[VAR "x20"])),

 ("g",["v","w5","mult","h6"],
 PRIMOP(gethdlr,[],["h21"],
 [PRIMOP(sethdlr,[VAR "n30"],[],
 [PRIMOP(gethdlr,[],["h31"],
 [APP (VAR "h31",

[VAR "mult",VAR "h21",VAR "h6",VAR "v",VAR "mult"])])])])),

 ("k23",["x32"],APP (VAR "w5",[VAR "x32"])),

 ("n30",["e22","h21","h6","v","mult"],
 PRIMOP(sethdlr,[VAR "h21"],[],
 [APP (VAR "F24",[VAR "e22",VAR "k23",VAR "h6",VAR "v",VAR "mult"])])),

 ("F24",["e2","k25","h6","v","mult"],
 PRIMOP(equal,[VAR "e2",VAR "ovfl"],[],
 [APP (VAR "F26",[a.INT 0,VAR "e2",VAR "h6",VAR "v",VAR "mult"]),
 APP (VAR "F26",[a.INT 1,VAR "e2",VAR "h6",VAR "v",VAR "mult"])])),

 ("F26",["z27","e2","h6","v","mult"],
 PRIMOP(equal,[VAR "z27",a.INT 0],[],
 [APP (VAR "k25",[VAR "v"]),
 PRIMOP(gethdlr,[],["h28"],
 [APP (VAR "h28",[VAR "e2",VAR "h6",VAR "v",VAR "mult"])])])),

 ("r33",["x34"],APP (VAR "r1",[VAR "x34"]))],

 PRIMOP(makeref,[a.STRING "MUL"],["w35"],
 [APP (VAR "F3",[VAR "w35",VAR "r1"])]))

 112

Now, program 1 is compiled by using the new approach in the translation

of lambda expressions to CPS code. In the new approach two continuations are

produced when producing the CPS code. We can observe, in the next CPS code,

two continuations. One is for passing normal computations (the rest of the

function computation), and another one for passing abnormal computations

(exception handlers).

PROGRAM 1 - Two-continuation technique

SML code

exception mult
let
 fun f(n)= h(n) handle mult => n
 fun h(m)= g(m)
 fun g(v)= (raise mult) handle ovfl => v
in
 f(17)
end

Lambda code

APP
 (FN
 ("mult",
 FIX
 (["f","h","g"],
 [FN
 ("n",
 HANDLE
 (APP (VAR "h",VAR "n"),
 FN
 ("e1",
 COND
 (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n",
 RAISE (VAR "e1"))))),FN ("m",APP (VAR "g",VAR "m")),

 113

 FN
 ("v",
 HANDLE
 (RAISE (VAR "mult"),
 FN
 ("e2",
 COND
 (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v",
 RAISE (VAR "e2")))))],APP (VAR "f",INT 17))),
 APP (MAKEREF,STRING "MUL"))

CPS code

FIX
 ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])),

 ("e'3",["z4"],APP (VAR "initialAbnormalCont",[VAR "z4"])),

 ("F5",["mult","k6","ak7"],
 APP (VAR "f",[a.INT 17,VAR "r26",VAR "e'28",VAR "mult"])),

 ("f",["n","w8","ak9","mult"],
 APP (VAR "h",[VAR "n",VAR "r14",VAR "e'16",VAR "mult"])),

 ("H10",["e1","mult","v"],
 PRIMOP(equal,[VAR "e1",VAR "mult"],[],
 [APP (VAR "F11",[a.INT 0,VAR "v"]),
 APP (VAR "F11",[a.INT 1,VAR "v"])])),

 ("F11",["z12","n"],
 PRIMOP(equal,[VAR "z12",a.INT 0],[],
 [APP (VAR "r26",[VAR "n"]),
 APP (VAR "ak9",[VAR "e1"])])),

 ("r14",["x15"],APP (VAR "w8",[VAR "x15"])),

 ("e'16",["z17","mult","v"],APP (VAR "H10",[VAR "z17",VAR "mult",VAR "v"])),

 ("h",["m","w8","ak9","mult"],

APP (VAR "g",[VAR "m",VAR "r18",VAR "e'20",VAR "mult"])),

 ("r18",["x19"],APP (VAR "w8",[VAR "x19"])),

 ("e'20",["z21","mult","v"],APP (VAR "e'16",[VAR "z21",VAR "mult",VAR "v"])),

 ("g",["v","w8","ak9","mult"],

APP (VAR "H22",[VAR "mult",VAR "w8",VAR "v",VAR "mult"])),

 ("H22",["e2","w8","v","mult"],
 PRIMOP(equal,[VAR "e2",VAR "ovfl"],[],

 114

 [APP (VAR "F23",[a.INT 0,VAR "w8",VAR "v",VAR "e2",VAR "mult"]),
 APP (VAR "F23",[a.INT 1,VAR "w8",VAR "v",VAR "e2",VAR "mult"])])),

 ("F23",["z24","w8","v","e2","mult"],
 PRIMOP(equal,[VAR "z24",a.INT 0],[],
 [APP (VAR "w8",[VAR "v",VAR "mult"]),
 APP (VAR "e'20",[VAR "e2",VAR "mult",VAR "v"])])),

 ("r26",["x27"],APP (VAR "r1",[VAR "x27"])),

 ("e'28",["z29"],APP (VAR "ak7",[VAR "z29"]))],

 PRIMOP(makeref,[a.STRING "MUL"],["w30"],
 [APP (VAR "F5",[VAR "w30",VAR "r1",VAR "e'3"])]))

Last, program 1 is compiled by using the modification to the new

approach in the translation of lambda expressions to CPS code. The new CPS

code produced by this compilation changes the name of some functions

(functions which computes abnormal continuations). The new name is similar to

the name of the previous function that computes the normal continuation.

Another important modification to the CPS code is that now it only passes as a

parameter the normal continuation (the abnormal continuation can be referenced

or located using a displacement from the normal continuation).

PROGRAM 1 - One-continuation-displacement technique

SML code

exception mult
let
 fun f(n)= h(n) handle mult => n
 fun h(m)= g(m)
 fun g(v)= (raise mult) handle ovfl => v
in
 f(17)
end

 115

Lambda code

APP
 (FN
 ("mult",
 FIX
 (["f","h","g"],
 [FN
 ("n",
 HANDLE
 (APP (VAR "h",VAR "n"),
 FN
 ("e1",
 COND
 (APP (EQ,RECORD [VAR "e1",VAR "mult"]),VAR "n",
 RAISE (VAR "e1"))))),FN ("m",APP (VAR "g",VAR "m")),
 FN
 ("v",
 HANDLE
 (RAISE (VAR "mult"),
 FN
 ("e2",
 COND
 (APP (EQ,RECORD [VAR "e2",VAR "ovfl"]),VAR "v",
 RAISE (VAR "e2")))))],APP (VAR "f",INT 17))),
 APP (MAKEREF,STRING "MUL"))

CPS code

FIX
 ([("r1",["x2"],APP (VAR "initialNormalCont",[VAR "x2"])),

 ("r1'",["z3"],APP (VAR "initialAbnormalCont",[VAR "z3"])),

 ("F4",["mult","k5"],
 APP (VAR "f",[a.INT 17,VAR "r23",VAR "mult"])),

 ("f",["n","w7","mult"],
 APP (VAR "h",[VAR "n",VAR "r13",VAR "mult"])),

 ("H9",["e1","mult","v"],
 PRIMOP(equal,[VAR "e1",VAR "mult"],[],
 [APP (VAR "F10",[a.INT 0,VAR "v"]),
 APP (VAR "F10",[a.INT 1,VAR "v"])])),

 ("F10",["z11","n"],
 PRIMOP(equal,[VAR "z11",a.INT 0],[],
 [APP (VAR "r23",[VAR "n"]),
 APP (VAR "w7",[VAR "e1"])])),

 116

 ("r13",["x14"],APP (VAR "w7",[VAR "x14"])),

 ("r13'",["z15","mult","v"],APP (VAR "H9",[VAR "z15",VAR "mult",VAR "v"])),

 ("h",["m","w7","mult"],APP (VAR "g",[VAR "m",VAR "r16",VAR "mult"])),

 ("r16",["x17"],APP (VAR "w7",[VAR "x17"])),

 ("r16'",["z18","mult","v"],APP (VAR "r13'",[VAR "z18",VAR "mult",VAR "v"])),

 ("g",["v","w7","mult"],APP (VAR "H19",[VAR "mult",VAR "w7",VAR "v",VAR "mult"])),

 ("H19",["e2","w7","v","mult"],
 PRIMOP(equal,[VAR "e2",VAR "ovfl"],[],
 [APP (VAR "F20",[a.INT 0,VAR "w7",VAR "v",VAR "e2",VAR "mult"]),
 APP (VAR "F20",[a.INT 1,VAR "w7",VAR "v",VAR "e2",VAR "mult"])])),

 ("F20",["z21","w7","v","e2","mult"],
 PRIMOP(equal,[VAR "z21",a.INT 0],[],
 [APP (VAR "w7",[VAR "v",VAR "mult"]),
 APP (VAR "r16'",[VAR "e2",VAR "mult",VAR "v"])])),

 ("r23",["x24"],APP (VAR "r1",[VAR "x24"])),

 ("r23'",["z25"],APP (VAR "ak6",[VAR "z25"]))],

 PRIMOP(makeref,[a.STRING "MUL"],["w26"],
 [APP (VAR "F4",[VAR "w26",VAR "r1"])]))

Program 2 contains two functions: f and run. At the beginning function

run is called passing a value of zero as a parameter. Function run loops 10 times,

calling the same number of times function f and making a computation. On the

other hand, function f computes the expression n*n (actually 17*17). The result

of the computation never raises an exception so the handler ovfl is never

 117

evaluated. The program was compiled by using the original (old) approach in the

translation of lambda expressions to CPS code.

We showed before that this program produces exception handling

overhead (see chapter 5).

PROGRAM 2 - Old technique with exception handler

SML code

let

fun f(n)=n*n handle ovfl=>n
 fun run(x)=if x>10 then f(17) else (run(x+f(17)-288))
in
 run(0)
end

Lambda code

FIX
 (["f","run"],
 [FN
 ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN
 ("e",
 COND
 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e"))))),
 FN
 ("x",
 COND
 (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD
 [VAR "x",
 APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

 118

CPS code

FIX
 ([("f",["n","w1","x"],
 PRIMOP(gethdlr,[],["h2"],
 [PRIMOP(sethdlr,[VAR "n11"],[],
 [PRIMOP(a.*,[VAR "n",VAR "n"],["w12"],
 [PRIMOP(sethdlr,[VAR "h2"],[],
 [APP (VAR "k4",[VAR "w12",VAR "w1",VAR "x"])])])])])),

 ("k4",["x13","w1","x"],APP (VAR "w1",[VAR "x13",VAR "x"])),

 ("n11",["e3"],
 PRIMOP(sethdlr,[VAR "h2"],[],
 [APP (VAR "F5",[VAR "e3",VAR "k4"])])),

 ("F5",["e","k6"],
 PRIMOP(equal,[VAR "e",VAR "ovfl"],[],
 [APP (VAR "F7",[a.INT 0]),
 APP (VAR "F7",[a.INT 1])])),

 ("F7",["z8"],
 PRIMOP(equal,[VAR "z8",a.INT 0],[],
 [APP (VAR "k6",[VAR "n"]),
 PRIMOP(gethdlr,[],["h9"],
 [APP (VAR "h9",[VAR "e"])])])),

 ("run",["x","w1"],
 PRIMOP(equal,[VAR "x",a.INT 10],[],
 [APP (VAR "F14",[a.INT 0,VAR "x"]),
 APP (VAR "F14",[a.INT 1,VAR "x"])])),

 ("F14",["z15","x"],
 PRIMOP(equal,[VAR "z15",a.INT 0],[],
 [APP (VAR "f",[a.INT 17,VAR "r16",VAR "x"]),
 APP (VAR "f",[a.INT 17,VAR "r22",VAR "x"])])),

 ("r16",["x17","x"],APP (VAR "r25",[VAR "x17"])),

 ("r18",["x19"],APP (VAR "w1",[VAR "x19"])),

 ("r22",["x23","x"],
 PRIMOP(a.-,[VAR "x23",a.INT 288],["w21"],
 [PRIMOP(a.+,[VAR "x",VAR "w21"],["w20"],
 [APP (VAR "run",[VAR "w20",VAR "r18"])])])),

 ("r25",["x26"],APP (VAR "initialNormalCont",[VAR "x26"]))],

 APP (VAR "run",[a.INT 0,VAR "r25"]))

 119

In next version of program 2, we eliminate the exception handler from

function f, and then we compile it again using the original approach in the

translation of lambda expressions to CPS code.

PROGRAM 2 - Old technique without exception handler

SML code

let
 fun f(n)=n*n
 fun run(x)=if x>1000 then f(17) else (run(x+f(17)-288))
in
 run(0)
end

Lambda code

FIX
 (["f","run"],
 [FN ("n",APP (MULT,RECORD [VAR "n",VAR "n"])),
 FN
 ("x",
 COND
 (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD
 [VAR "x",
 APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

CPS code

FIX
 ([("f",["n","w1","x"],
 PRIMOP (a.*,[VAR "n",VAR "n"],["w2"],
 [APP (VAR "w1",[VAR "w2",VAR "x"])])),

 ("run",["x","w1"],

 120

 PRIMOP(equal,[VAR "x",a.INT 10],[],
 [APP (VAR "F3",[a.INT 0,VAR "x"]),
 APP (VAR "F3",[a.INT 1,VAR "x"])])),

 ("F3",["z4","x"],
 PRIMOP(equal,[VAR "z4",a.INT 0],[],
 [APP (VAR "f",[a.INT 17,VAR "r5",VAR "x"]),
 APP (VAR "f",[a.INT 17,VAR "r11",VAR "x"])])),

 ("r5",["x6","x"],APP (VAR "r14",[VAR "x6"])),

 ("r7",["x8"],APP (VAR "w1",[VAR "x8"])),

 ("r11",["x12","x"],
 PRIMOP(a.-,[VAR "x12",a.INT 288],["w10"],
 [PRIMOP(a.+,[VAR "x",VAR "w10"],["w9"],
 [APP (VAR "run",[VAR "w9",VAR "r7"])])])),

 ("r14",["x15"],APP (VAR "initialNormalCont",[VAR "x15"]))],

 APP (VAR "run",[a.INT 0,VAR "r14"]))

Now, program 2 (with no handler) is compiled by using the new

approach in the translation of lambda expressions to CPS code. As we can see in

the produced CPS code , there are two continuations for normal and abnormal

computations. Both continuations are passed as arguments by the different

functions.

PROGRAM 2 - Two-continuation technique

SML code

let
 fun f(n)=n*n handle ovfl=>n
 fun run(x)=if x>10 then f(17) else (run(x+f(17)-288))
in
 run(0)
end

 121

Lambda code

FIX
 (["f","run"],
 [FN
 ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN
 ("e",
 COND
 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e"))))),
 FN
 ("x",
 COND
 (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD
 [VAR "x",
 APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

CPS code

FIX
 ([("f",["n","w1","ak2","x"],
 PRIMOP (a.*,[VAR "n",VAR "n"],["w7"],
 [APP (VAR "w1",[VAR "w7",VAR "x"])])),

 ("H3",["e"],
 PRIMOP(equal,[VAR "e",VAR "ovfl"],[],
 [APP (VAR "F4",[a.INT 0]),
 APP (VAR "F4",[a.INT 1])])),

 ("F4",["z5"],
 PRIMOP(equal,[VAR "z5",a.INT 0],[],
 [APP (VAR "w1",[VAR "n"]),
 APP (VAR "ak2",[VAR "e"])])),

 ("run",["x","w1","ak2"],
 PRIMOP(equal,[VAR "x",a.INT 10],[],
 [APP (VAR "F8",[a.INT 0,VAR "x"]),
 APP (VAR "F8",[a.INT 1,VAR "x"])])),

 ("F8",["z9","x"],
 PRIMOP(equal,[VAR "z9",a.INT 0],[],

 122

 [APP (VAR "f",[a.INT 17,VAR "r10",VAR "e'12",VAR "x"]),
 APP (VAR "f",[a.INT 17,VAR "r20",VAR "e'22",VAR "x"])])),

 ("r10",["x11","x"],APP (VAR "r25",[VAR "x11"])),

 ("e'12",["z13"],APP (VAR "ak2",[VAR "z13"])),

 ("r14",["x15"],APP (VAR "w1",[VAR "x15"])),

 ("e'16",["z17"],APP (VAR "ak2",[VAR "z17"])),

 ("r20",["x21","x"],
 PRIMOP(a.-,[VAR "x21",a.INT 288],["w19"],
 [PRIMOP(a.+,[VAR "x",VAR "w19"],["w18"],
 [APP(VAR "run",
 [VAR "w18",VAR "r14",VAR "e'16"])])])),

 ("e'22",["z23"],APP (VAR "ak2",[VAR "z23"])),

 ("r25",["x26"],APP (VAR "initialNormalCont",[VAR "x26"])),

 ("e'27",["z28"],APP (VAR "initialAbnormalCont",[VAR "z28"]))],

 APP (VAR "run",[a.INT 0,VAR "r25",VAR "e'27"]))

Last, program 2 is compiled by using the modification to the new

approach in the translation of lambda expressions to CPS code. As we mentioned

before, names of functions for normal and abnormal consecutive computations

are similar, and the abnormal continuation is not passed as a parameter.

PROGRAM 2 - One-continuation-displacement technique

SML code

let
 fun f(n)=n*n handle ovfl=>n
 fun run(x)=if x>10 then f(17) else (run(x+f(17)-288))
in
 run(0)
end

 123

Lambda code

FIX
 (["f","run"],
 [FN
 ("n",
 HANDLE
 (APP (MULT,RECORD [VAR "n",VAR "n"]),
 FN
 ("e",
 COND
 (APP (EQ,RECORD [VAR "e",VAR "ovfl"]),VAR "n",
 RAISE (VAR "e"))))),
 FN
 ("x",
 COND
 (APP (EQ,RECORD [VAR "x",INT 10]),APP (VAR "f",INT 17),
 APP
 (VAR "run",
 APP
 (PLUS,
 RECORD
 [VAR "x",
 APP (SUB,RECORD [APP (VAR "f",INT 17),INT 288])]))))],
 APP (VAR "run",INT 0))

CPS code

FIX
 ([("f",["n","w1","x"],
 PRIMOP (a.*,[VAR "n",VAR "n"],["w7"],
 [APP (VAR "w1",[VAR "w7",VAR "x"])])),

 ("H3",["e"],
 PRIMOP(equal,[VAR "e",VAR "ovfl"],[],
 [APP (VAR "F4",[a.INT 0]),
 APP (VAR "F4",[a.INT 1])])),

 ("F4",["z5"],
 PRIMOP(equal,[VAR "z5",a.INT 0],[],
 [APP (VAR "w1",[VAR "n"]),
 APP (VAR "w1",[VAR "e"])])),

 ("run",["x","w1"],
 PRIMOP(equal,[VAR "x",a.INT 10],[],
 [APP (VAR "F8",[a.INT 0,VAR "x"]),
 APP (VAR "F8",[a.INT 1,VAR "x"])])),

 ("F8",["z9","x"],
 PRIMOP(equal,[VAR "z9",a.INT 0],[],

 124

 [APP (VAR "f",[a.INT 17,VAR "r10",VAR "x"]),
 APP (VAR "f",[a.INT 17,VAR "r18",VAR "x"])])),

 ("r10",["x11","x"],APP (VAR "r22",[VAR "x11"])),

 ("r10'",["z12"],APP (VAR "ak2",[VAR "z12"])),

 ("r13",["x14"],APP (VAR "w1",[VAR "x14"])),

 ("r13'",["z15"],APP (VAR "ak2",[VAR "z15"])),

 ("r18",["x19","x"],
 PRIMOP(a.-,[VAR "x19",a.INT 288],["w17"],
 [PRIMOP(a.+,[VAR "x",VAR "w17"],["w16"],
 [APP (VAR "run",[VAR "w16",VAR "r13"])])])),

 ("r18'",["z20"],APP (VAR "ak2",[VAR "z20"])),

 ("r22",["x23"],APP (VAR "initialNormalCont",[VAR "x23"])),

 ("r22'",["z24"],APP (VAR "initialAbnormalCont",[VAR "z24"]))],

 APP (VAR "run",[a.INT 0,VAR "r22"]))

7.3 Performance evaluation

 In the last section, we presented two different programs. We can say that

the goal of both programs is different. Program 1 is a program used to test

dynamic propagation in the execution of a program. So, the three different

versions of program 1 raise one exception in the last called function, which is

then caught by the handler defined in the first function. On the other hand,

program 2 is a program used to test the performance of the execution of a

program. More precisely, it tests the overhead of exception handling in a

program. For this case, we present 4 different versions. The first one, is a version

of a program that declares and never raises an exception. This version was

produced by the compiler that uses the traditional technique of exception

 125

handling. This program was presented on chapter 5. The second version is like

first version, only with no exception declaration. The third version is again like

version one, but using the compiler that implements the two-continuation

technique. Finally, the last version is like first version but using the compiler that

implements the one-continuation-displacement technique. The next three figures

illustrates the performance of program 2 on its four different versions.

0

5

10

15

20

25

30

10 50 100 500 1000

Th
ou

sa
nd

s

STEPS

IN
ST

RU
CT

IO
NS

 in

with handler no handler/new approach two-cont

Figure 7.1 Performance of program 2 from 10 to 1000 steps

 126

0

5000

10000

15000

20000

25000

30000

10 50 100 500 1000

Th
ou

sa
nd

s

STEPS in thousands

IN
ST

RU
CT

IO
NS

 in

with handler no handler/new approach two-cont

Figure 7.2 Performance of program 2 from 10000 to 1000000 steps

0

5000

10000

15000

20000

25000

30000

10
100

1000
10000

100000

1000000

Th
ou

sa
nd

s

STEPS

IN
ST

RU
CT

IO
NS

 in

with handler no handler/new approach two-cont

Figure 7.3 Performance of program 2 from 10 to 1000000 steps

 127

7.4 Analysis of performance

 Clearly, the last three graphs show three differences in performance of

the four versions in program 2. The first version show the worst performance

from the four versions. The reason, as we established before, is the overhead

created by operators gethdlr and sethdlr. Because version 2 has no exception

declaration, then it has zero overhead exception handling. So, it is the main

parameter to compare with relation to the other programs. Version 3 is the

program that incorporates the two-continuation technique. The curves of the

graphs show that this version decreases the amount of overhead of version 1.

Analyzing the code of programs using the two-continuation technique, our

conclusion is that the source of overhead is the extra parameter added to each

function that passes the normal continuation. Finally, the graphs shows that the

curves of version 1 and version 4 are “tied” or follow exactly the same direction.

That means, that there is no exception handling overhead in the program that

uses the one-continuation-displacement technique.

 128

8 C o n c l u s i o n s a n d F u t u r e
W o r k

8.1 Conclusions

We have implemented a basic CPS compiler for functional languages with

exception handling. With it we were able to implement the new approach to

exception handling and compare it with the approach taken by the SML of New

Jersey compiler. By identifying the source of the overhead we show that all the

overhead is moved from the normal flow of control to the code executed when

an exception is raised.

The main contributions of this dissertation are:

• We develop a model of translation and execution that allows a

programmer (or student/teacher) to write, translates, and executes

programs in a source functional language (an extended lambda language)

and a target CPS language. The model can be seen as a framework that

can be used to execute programs, allowing studying a wide range of

performance assessments.

• We implemented an abstract machine. The machine has an instruction

set, a register set, a model of memory, a code generator which transforms

programs into abstract machine code (AMC), and a simulator which

 129

executes AMC programs. The AMC is essentially an assembly-language

program, and like any abstract machine it has some advantages with

respect to a real machine: first, we can make very good analysis and

experiments of performance, and second it is easy to transport to real

architectures.

• We showed that the implementation of exception handling in the

SML/NJ and OCAML compilers produces runtime overhead on normal

execution.

• We demonstrated the source of the exception handling overhead in SML

programs.

• We designed and implemented a new approach where all the overhead is

moved from the normal flow of control to the code executed when an

exception is raised.

8.2 Future work

The research presented in this dissertation can be extended in the

following directions:

• Writing generators of code for real machines. Remember that our

generator produces code for an abstract machine.

• Continuing the compiler with the next phase: optimization. We could test

our new method of exception handling and see if the code produced by

 130

this method is affected by the optimizer. If this is the case, we could

implement some mechanism used in imperative compilers like Ada, Java,

or C++ (we discussed some of these techniques in chapter 5).

• Implementing the approach of exception table, or a mix of the two-

continuation approach with the exception table approach.

• Our research focused on CPS compilers. Another direction can be

working on implementation that use other techniques like combinators.

OCAML could be a good example to study.

 131

References

[Ada95] Ada 95 Reference Manual: The Language, The Standard Libraries,
January 1995. ANSI/ISO/IEC-8652: 1995.

[AM87] Appel, A.W. and MacQueen, D.B. A standard ML compiler. In
Gilles Kahn, editor, Functional Programming Languages and Computer
Architecture, pages 301-324. Springer-Verlag, Berlin, 1987. Lecture
Notes in Computer Science 274; Proceedings of Conference held
at Portland, Oregon.

[AM91] Appel, A.W. and MacQueen D.B. Standard ML of New Jersey.
Proceedings of the Third International Symposium on Programming
Language Implementation and Logic Programming, (LNCS 528, Springer-
Verlag) pp. 1-13, August 1991.

[Ans76] American National Standard Programming Language PL/I. ANSI
X3.53-1976. American National Standards Institute, New Jork.

[App85] Appel, A.W. Semantics-Directed Code Generation. Proceedings of
the Twelfth ACM Symposium on Principles of Programming Languages,
January 1985.

[App92] Appel, A.W. Compiling with Continuations. Cambridge University
Press, Cambridge, England, 1992.

[App98] Appel, A.W. Modern Compiler Implementation in Java. Cambridge
university press, 1998.

[ASU86] Aho, A.V., Sethi, R. and Ullman, J.D. Compilers: Principles,
Techniques and Tools. Addison-Wesley, Reading, Mass., 1986.

[AT89] Appel, A.W. and Trevor, J. Continuation-Passing, Closure-
Passing Style. Proceedings of the 16th ACM Symposium on Principles on
Programming Languages, ACM, New York, 1989, pp. 293-302.

[Aug84] Augustsson, L. A Compiler for Lazy ML. ACM Symposium on
LISP and Functional Programming, Austin, Texas, August 1984.

 132

[Boq99] Boquist, U. Code Optimization Techniques for Lazy Functional
Languages. PhD Dissertation, Chalmers University of Technology,
Gothenburg, Sweden, April 1999.

[BR86] Baker, T.P. and Riccardi, G. A. Implementing Ada Exceptions.
IEEE software, September 1986, 42-51.

[Car84] Cardelli, L. Compiling a Functional Language. Proceedings of the
1984 Symposium on Lisp and Functional Programming. ACM, New
York, 1984, pp. 208-226.

[CDGJKN] Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B.,
and Nelson, G. Modula-3 Report (revised). Digital System
Research Center, Palo Alto, CA., 1989.

[Cur93] Curien, P.L. Categorical Combinators, Sequential Algorithms and
Functional Programming. Second edition, CNRS-LIENS, 1993.

[DF98] Douence R., and Fradet, P. A Systematic Study of Functional
Language Implementations, ACM Transactions on Programming
Languages and Systems. Vol. 20, No.2, March 1998, Pages 344-387.

[DGL] Drew, S., Gough, K.J. and Ledermann, J. Implementing Zero
Overhead Exception Handling. technical report. 95-12, Faculty of
Information Technology, Queensland U. of technology, Brisbane,
Australia.

[Din00] Dinechin, C. de. C++ Exception Handling. IEEE Concurrency,
Vol. 8, No.4, October-December 2000, Pages 72-79.

[Fai82] Fairbairn, J. Ponder and its Type System, University of Cambridge
Computer Laboratory Technical Report No. 31, November 1982.

[FH88] Field, A.J. and Harrison, P.G. Functional Programming. Addison-
Wesley, 1988.

[FL91] Fradet, P. and Le Metayer, D. Compilation of Functional
Languages by Program Transformation. ACM Transactions on
Programming Languages and Systems. Vol.13, No.1, January 1991,
Pages 21-51.

[FOL] FOLDOC Free On-line Dictionary of Computing. Available:
http://wombat.doc.ic.ac.uk/foldoc Retrieved: february 27, 2003.

 133

[FWH92] Friedman, D. P., Wand, M. and Haynes, Ch. T. Essentials of
Programming Languages. McGraw-Hill, 1992, Chapters 8-10.

[GJS96] Gosling, J., Joy, B. and Steele, G.L. The Java Language Specification.
The Java Series. Addison-Wesley, Reading, Massachusetts, 1996.

[Goo75] Goodenough, J.B. Exception Handling: Issues and a Proposed
Notation. Communications ACM 18, 683-696, 1975.

[Har98] Harper, R. Programming in Standard ML (notes). Available:
http://www-2.cs.cmu.edu/People/rwh/introsml/ Retrieved: January 10,
2003.

[Hen80] Henderson, P. Functional Programming, Applications and
Implementation. Prentice-Hall, 1980.

[HC95] Hilzer Jr., R. C. and Crowl, L.A. A Survey of Sequential and
Parallel Implementation Techniques for Functional Programming
Languages. Avalilable: http://www.cs.orst.edu/ ~crowl/paper/ reports
/1995R-ORSTCS-95-60-05 Retrieved: January 10, 2003.

[Hud90] Hudak, P. Report on the Programming Language HASKELL.
Technical Report YALEU/DCS/RR-777. Yale University, CS
Dept., 1990.

[KH89] Kelsey, R., and Hudak, P. Realistic Compilation by Program
Transformation. Proceedings of the 16th ACM Symposium on Principles of
Programming Languages, ACM, New York, 1989, pp. 281-292

[KS90] Koenig, A. and Stroustrup, B. Exception Handling for C++. In
USENIX C++, pages 149-176, April 1990.

[Lan64] Landin, P.J. The Mechanical Evaluation of Expressions. Computer
Journal, Vol.6, No. 4, 1964, Pages 308-320.

[Ler00] Leroy, X. The Objective CAML System: Documentation and User’s
Manual, 2000. With Damien Doligez, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. Available: http: //caml.inria.fr.
Retrieved: January 10, 2003.

[LS79] Liskov, B., and Snyder, A. Exception Handling in CLU. IEEE
Trans. Software Eng. 5, 6 (1979), 546-558.

 134

[LS98] Lang, J. and Stewart, D.B.. A Study of the Applicability of
Existing Exception-Handling Techniques to Component-Based
Real-Time Software Technology ACM transactions on programming
languages and systems, Vol. 20, No. 2, March 1998, pages 274-301.

[LYKPMEA] Lee, S., Yang, B., Kim, S., Park, S., Moon, S., Ebcioglu, K. and
Altman E. Efficient Java Exception Handling in Just-in-Time
Compilation. Available: http://latte.snu.ac.kr/publications/
exception_java00_letter.pdf Retrieved: January 10, 2003.

[MS86] Mauny, M. and Suarez, A. Implementing Functional Languages in
the Categorical Abstract Machine. Proceedings of the 1986 ACM
Symposium on Lisp and Functional Programming, ACM, New York,
1986, pp. 266-278

[MTH90] Milner, R., Tofte, M., and Harper Jr., R.W. The Definition of
Standard ML. MIT Press, Cambridge, Massachussetts, 1990.

[Nel91] Nelson, G. editor. Systems Programming with Modula-3. Prentice Hall
series in innovative technology. Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

[OKN01] Ogasawara, T., Komatsu, H. and Nakatani, T. A Study of
Exception Handling and its Dynamic Optimization in Java.
OOPSLA 2001. Tampa Bay, FL.

[Pau91] Paulson, L.C. ML for the Working Programmer. Cambridge
University Press, 1991.

[PRHM99] Peyton Jones S., Reid A., Hoare T. and Marlow, S., A Semantic
for Imprecise Exceptions. Proceedings of the SYGPLAN Symposium
on Programming Language Design and Implementation (PLDI’99),
Atlanta, Georgia, 1999.

[PL92] Peyton Jones, S. and Lester, D. Implementing Functional Languages: a
Tutorial. Prentice-Hall, 1992.

[Rea89] Reade, Ch. Elements of Functional Languages. Addison-Wesley, 1989.

[RP00] Ramsey, N. and Peyton Jones, S. A Single Intermediate Language
that Supports Multiple Implementations of Exceptions. PLDI
2000, Vancouver, British Clumbia, Canada.

 135

[Seb99] Sebesta, R.W. Concepts of Programming Languages. Addison-Wesley,
fourth edition, 1999.

[Sha94] Shao, Z. Compiling Standard ML for Efficient Execution on
Modern Machines. PhD Dissertation, Princeton university, 1994.

[Sha97] Shao, Z.. An Overview of the FLINT/ML Ccompiler. Proceedings
of the 1997 ACM SIGPLAN Workshop on Types in Compilation
(TIC'97). Amsterdam, The Netherlands, June 1997.

[SML03] Standard SML of New Jersey. Available: http://www-
2.cs.cmu.edu/People/rwh/introsml/ Retrieved: January 10, 2003.

[SML03b] Standard SML of New Jersey: Compilation Manager (CM).
Available: http://cm.bell-labs.com/cm/cs/what/smlnj/doc/CM/
index.html Retrieved: January 10,2003.

[SML03c] Standard SML of New Jersey: The Compiler Structure. Available:
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/Compiler/
pages/compiler.html Retrieved: January 10, 2003.

[SSJ78] Steele, G.L. Jr., and Sussman, G.J. The Revised Report on SCHEME.
Artificial Intelligence Memo 452. Massachusetts institute of
Technology, Cambridge, MA, 1978.

[Sta95] Stansifer, R. The Study of Programming Languages. Prentice-Hall,
1995.

[Sta03] Stansifer, R. Exception Handling in Java. Available:
http://cs.fit.edu/~ryan/java/language/exception.html Retrieved:
January 10, 2003.

[Sta03b] Stansifer, R. cse 4250/cse 5250: Programming Languages.
Available: http://cs.fit.edu/~ryan/cse4250 Retrieved: January 10,
2003.

[Ste84] Steele, G. L. Jr. Common LISP. Digital Press, Burlington, MA,
1984.

[Str91] Stroustrup, B. The C++ Programming Language. 2d. ed.
Addison-Wesley, Reading, MA, 1991.

[Tur79] Turner, D.A. A New Iimplementation Technique for Applicative
Languages. Software-Practice and Experience. Vol. 9, (1979), 31-49.

 136

[Tur85] Turner, D.A. Miranda: A Non Strict Functional Language with
Polymorphic Types. Proceedings of the IFIP International Conference on
Functional Programming Languages and Computer Architectures, Lecture
Notes in Computer Science (vol. 201), Springer-Verlag, Nancy,
France, September 1985.

[Ull98] Ullman, J.D. Elements of ML Programming. Prentice-Hall, 1998.

[Ven99] Venners, B. Inside the Java 2 Virtual Machine. McGraw-Hill,
second edition, 1999.

[WM95] Wilhelm, R. and Maurer, D. Compiler Design. Addison-Wesley,
1995.

[Yal] Yale University Department of Computer Science. THE FLINT
PROJECT. Available: http://Flint.cs.yale.edu. Retrieved: January
10, 2003.

[ZS03] Zatarain, R. and Stansifer, R. Exception Handling for CPS Compilers.
ACMSE 2003,….

 137

Appendix

PROGRAM 1 - Old technique

Abstract Machine Code

0 STORE String MUL,Mem w35
1 LOAD Mem w35,Reg 1
2 LOAD Mem r1,Reg 2
3 JUMP Name F3
 LAB r1:
4 STORE Reg 1,Mem x2
5 LOAD Mem x2,Reg 1
6 JUMP Mem initialNormalCont
 LAB F3:
7 STORE Reg 1,Mem mult
8 STORE Reg 2,Mem k4
9 LOAD Const 17,Reg 1
10 LOAD Mem r33,Reg 2
11 LOAD Mem mult,Reg 3
12 JUMP Name f
 LAB f:
13 STORE Reg 1,Mem n
14 STORE Reg 2,Mem w5
15 STORE Reg 3,Mem mult
16 STORE Reg 99,Mem h6
17 LOAD String n15,Reg 99
18 LOAD Mem n,Reg 1
19 LOAD Mem r16,Reg 2
20 LOAD Mem mult,Reg 3
21 LOAD Mem h6,Reg 4
22 JUMP Name h
 LAB k8:
23 STORE Reg 1,Mem x18
24 LOAD Mem x18,Reg 1
25 JUMP Name r33
 LAB n15:
26 STORE Reg 1,Mem e7
27 STORE Reg 2,Mem h6
28 STORE Reg 3,Mem v
29 STORE Reg 4,Mem mult
30 LOAD String h6,Reg 99
31 LOAD Mem e7,Reg 1
32 LOAD Mem k8,Reg 2
33 LOAD Mem mult,Reg 3
34 LOAD Mem v,Reg 4

 138

35 JUMP Name F9
 LAB F9:
36 STORE Reg 1,Mem e1
37 STORE Reg 2,Mem k10
38 STORE Reg 3,Mem mult
39 STORE Reg 4,Mem n
40 CJUMP EQ,Mem e1,Mem mult,L0,L1
 LAB L0:
41 LOAD Const 0,Reg 1
42 LOAD Mem n,Reg 2
43 JUMP Name F11
 LAB L1:
44 LOAD Const 1,Reg 1
45 LOAD Mem n,Reg 2
46 JUMP Name F11
 LAB F11:
47 STORE Reg 1,Mem z12
48 STORE Reg 2,Mem n
49 CJUMP EQ,Mem z12,Const 0,L2,L3
 LAB L2:
50 LOAD Mem n,Reg 1
51 JUMP Name k8
 LAB L3:
52 STORE Reg 99,Mem h13
53 LOAD Mem e1,Reg 1
54 JUMP Mem h13
 LAB r16:
55 STORE Reg 1,Mem x17
56 LOAD String h6,Reg 99
57 LOAD Mem x17,Reg 1
58 JUMP Name k8
 LAB h:
59 STORE Reg 1,Mem m
60 STORE Reg 2,Mem w5
61 STORE Reg 3,Mem mult
62 STORE Reg 4,Mem h6
63 LOAD Mem m,Reg 1
64 LOAD Mem r19,Reg 2
65 LOAD Mem mult,Reg 3
66 LOAD Mem h6,Reg 4
67 JUMP Name g
 LAB r19:
68 STORE Reg 1,Mem x20
69 LOAD Mem x20,Reg 1
70 JUMP Mem w5
 LAB g:
71 STORE Reg 1,Mem v
72 STORE Reg 2,Mem w5
73 STORE Reg 3,Mem mult
74 STORE Reg 4,Mem h6
75 STORE Reg 99,Mem h21
76 LOAD String n30,Reg 99

 139

77 STORE Reg 99,Mem h31
78 LOAD Mem mult,Reg 1
79 LOAD Mem h21,Reg 2
80 LOAD Mem h6,Reg 3
81 LOAD Mem v,Reg 4
82 LOAD Mem mult,Reg 5
83 JUMP Mem h31
 LAB k23:
84 STORE Reg 1,Mem x32
85 LOAD Mem x32,Reg 1
86 JUMP Mem w5
 LAB n30:
87 STORE Reg 1,Mem e22
88 STORE Reg 2,Mem h21
89 STORE Reg 3,Mem h6
90 STORE Reg 4,Mem v
91 STORE Reg 5,Mem mult
92 LOAD String h21,Reg 99
93 LOAD Mem e22,Reg 1
94 LOAD Mem k23,Reg 2
95 LOAD Mem h6,Reg 3
96 LOAD Mem v,Reg 4
97 LOAD Mem mult,Reg 5
98 JUMP Name F24
 LAB F24:
99 STORE Reg 1,Mem e2
100 STORE Reg 2,Mem k25
101 STORE Reg 3,Mem h6
102 STORE Reg 4,Mem v
103 STORE Reg 5,Mem mult
104 CJUMP EQ,Mem e2,Mem ovfl,L4,L5
 LAB L4:
105 LOAD Const 0,Reg 1
106 LOAD Mem e2,Reg 2
107 LOAD Mem h6,Reg 3
108 LOAD Mem v,Reg 4
109 LOAD Mem mult,Reg 5
110 JUMP Name F26
 LAB L5:
111 LOAD Const 1,Reg 1
112 LOAD Mem e2,Reg 2
113 LOAD Mem h6,Reg 3
114 LOAD Mem v,Reg 4
115 LOAD Mem mult,Reg 5
116 JUMP Name F26
 LAB F26:
117 STORE Reg 1,Mem z27
118 STORE Reg 2,Mem e2
119 STORE Reg 3,Mem h6
120 STORE Reg 4,Mem v
121 STORE Reg 5,Mem mult
122 CJUMP EQ,Mem z27,Const 0,L6,L7

 140

 LAB L6:
123 LOAD Mem v,Reg 1
124 JUMP Mem k25
 LAB L7:
125 STORE Reg 99,Mem h28
126 LOAD Mem e2,Reg 1
127 LOAD Mem h6,Reg 2
128 LOAD Mem v,Reg 3
129 LOAD Mem mult,Reg 4
130 JUMP Mem h28
 LAB r33:
131 STORE Reg 1,Mem x34
132 LOAD Mem x34,Reg 1
133 JUMP Name r1
 LAB end:

 141

PROGRAM 1 - Two-continuation technique

Abstract Machine Code

0 STORE String MUL,Mem w30
1 LOAD Mem w30,Reg 1
2 LOAD Mem r1,Reg 2
3 LOAD Mem e'3,Reg 3
4 JUMP Name F5
 LAB r1:
5 STORE Reg 1,Mem x2
6 LOAD Mem x2,Reg 1
7 JUMP Mem initialNormalCont
 LAB e'3:
8 STORE Reg 1,Mem z4
9 LOAD Mem z4,Reg 1
10 JUMP Mem initialAbnormalCont
 LAB F5:
11 STORE Reg 1,Mem mult
12 STORE Reg 2,Mem k6
13 STORE Reg 3,Mem ak7
14 LOAD Const 17,Reg 1
15 LOAD Mem r26,Reg 2
16 LOAD Mem e'28,Reg 3
17 LOAD Mem mult,Reg 4
18 JUMP Name f
 LAB f:
19 STORE Reg 1,Mem n
20 STORE Reg 2,Mem w8
21 STORE Reg 3,Mem ak9
22 STORE Reg 4,Mem mult
23 LOAD Mem n,Reg 1
24 LOAD Mem r14,Reg 2
25 LOAD Mem e'16,Reg 3
26 LOAD Mem mult,Reg 4
27 JUMP Name h
 LAB H10:
28 STORE Reg 1,Mem e1
29 STORE Reg 2,Mem mult
30 STORE Reg 3,Mem v
31 CJUMP EQ,Mem e1,Mem mult,L0,L1
 LAB L0:
32 LOAD Const 0,Reg 1
33 LOAD Mem v,Reg 2
34 JUMP Name F11
 LAB L1:
35 LOAD Const 1,Reg 1
36 LOAD Mem v,Reg 2
37 JUMP Name F11
 LAB F11:
38 STORE Reg 1,Mem z12

 142

39 STORE Reg 2,Mem n
40 CJUMP EQ,Mem z12,Const 0,L2,L3
 LAB L2:
41 LOAD Mem n,Reg 1
42 JUMP Name r26
 LAB L3:
43 LOAD Mem e1,Reg 1
44 JUMP Mem ak9
 LAB r14:
45 STORE Reg 1,Mem x15
46 LOAD Mem x15,Reg 1
47 JUMP Mem w8
 LAB e'16:
48 STORE Reg 1,Mem z17
49 STORE Reg 2,Mem mult
50 STORE Reg 3,Mem v
51 LOAD Mem z17,Reg 1
52 LOAD Mem mult,Reg 2
53 LOAD Mem v,Reg 3
54 JUMP Name H10
 LAB h:
55 STORE Reg 1,Mem m
56 STORE Reg 2,Mem w8
57 STORE Reg 3,Mem ak9
58 STORE Reg 4,Mem mult
59 LOAD Mem m,Reg 1
60 LOAD Mem r18,Reg 2
61 LOAD Mem e'20,Reg 3
62 LOAD Mem mult,Reg 4
63 JUMP Name g
 LAB r18:
64 STORE Reg 1,Mem x19
65 LOAD Mem x19,Reg 1
66 JUMP Mem w8
 LAB e'20:
67 STORE Reg 1,Mem z21
68 STORE Reg 2,Mem mult
69 STORE Reg 3,Mem v
70 LOAD Mem z21,Reg 1
71 LOAD Mem mult,Reg 2
72 LOAD Mem v,Reg 3
73 JUMP Name e'16
 LAB g:
74 STORE Reg 1,Mem v
75 STORE Reg 2,Mem w8
76 STORE Reg 3,Mem ak9
77 STORE Reg 4,Mem mult
78 LOAD Mem mult,Reg 1
79 LOAD Mem w8,Reg 2
80 LOAD Mem v,Reg 3
81 LOAD Mem mult,Reg 4
82 JUMP Name H22

 143

 LAB H22:
83 STORE Reg 1,Mem e2
84 STORE Reg 2,Mem w8
85 STORE Reg 3,Mem v
86 STORE Reg 4,Mem mult
87 CJUMP EQ,Mem e2,Mem ovfl,L4,L5
 LAB L4:
88 LOAD Const 0,Reg 1
89 LOAD Mem w8,Reg 2
90 LOAD Mem v,Reg 3
91 LOAD Mem e2,Reg 4
92 LOAD Mem mult,Reg 5
93 JUMP Name F23
 LAB L5:
94 LOAD Const 1,Reg 1
95 LOAD Mem w8,Reg 2
96 LOAD Mem v,Reg 3
97 LOAD Mem e2,Reg 4
98 LOAD Mem mult,Reg 5
99 JUMP Name F23
 LAB F23:
100 STORE Reg 1,Mem z24
101 STORE Reg 2,Mem w8
102 STORE Reg 3,Mem v
103 STORE Reg 4,Mem e2
104 STORE Reg 5,Mem mult
105 CJUMP EQ,Mem z24,Const 0,L6,L7
 LAB L6:
106 LOAD Mem v,Reg 1
107 LOAD Mem mult,Reg 2
108 JUMP Mem w8
 LAB L7:
109 LOAD Mem e2,Reg 1
110 LOAD Mem mult,Reg 2
111 LOAD Mem v,Reg 3
112 JUMP Name e'20
 LAB r26:
113 STORE Reg 1,Mem x27
114 LOAD Mem x27,Reg 1
115 JUMP Name r1
 LAB e'28:
116 STORE Reg 1,Mem z29
117 LOAD Mem z29,Reg 1
118 JUMP Mem ak7
 LAB end:

 144

PROGRAM 1 - One-continuation-displacement technique

Abstract Machine Code

0 STORE String MUL,Mem w26
1 LOAD Mem w26,Reg 1
2 LOAD Mem r1,Reg 2
3 JUMP Name F4
 LAB r1:
4 STORE Reg 1,Mem x2
5 LOAD Mem x2,Reg 1
6 JUMP Mem initialNormalCont
 LAB r1':
7 STORE Reg 1,Mem z3
8 LOAD Mem z3,Reg 1
9 JUMP Mem initialAbnormalCont
 LAB F4:
10 STORE Reg 1,Mem mult
11 STORE Reg 2,Mem k5
12 LOAD Const 17,Reg 1
13 LOAD Mem r23,Reg 2
14 LOAD Mem mult,Reg 3
15 JUMP Name f
 LAB f:
16 STORE Reg 1,Mem n
17 STORE Reg 2,Mem w7
18 STORE Reg 3,Mem mult
19 LOAD Mem n,Reg 1
20 LOAD Mem r13,Reg 2
21 LOAD Mem mult,Reg 3
22 JUMP Name h
 LAB H9:
23 STORE Reg 1,Mem e1
24 STORE Reg 2,Mem mult
25 STORE Reg 3,Mem v
26 CJUMP EQ,Mem e1,Mem mult,L0,L1
 LAB L0:
27 LOAD Const 0,Reg 1
28 LOAD Mem v,Reg 2
29 JUMP Name F10
 LAB L1:
30 LOAD Const 1,Reg 1
31 LOAD Mem v,Reg 2
32 JUMP Name F10
 LAB F10:
33 STORE Reg 1,Mem z11
34 STORE Reg 2,Mem n
35 CJUMP EQ,Mem z11,Const 0,L2,L3
 LAB L2:
36 LOAD Mem n,Reg 1
37 JUMP Name r23

 145

 LAB L3:
38 LOAD Mem e1,Reg 1
39 JUMP Mem w7
 LAB r13:
40 STORE Reg 1,Mem x14
41 LOAD Mem x14,Reg 1
42 JUMP Mem w7
 LAB r13':
43 STORE Reg 1,Mem z15
44 STORE Reg 2,Mem mult
45 STORE Reg 3,Mem v
46 LOAD Mem z15,Reg 1
47 LOAD Mem mult,Reg 2
48 LOAD Mem v,Reg 3
49 JUMP Name H9
 LAB h:
50 STORE Reg 1,Mem m
51 STORE Reg 2,Mem w7
52 STORE Reg 3,Mem mult
53 LOAD Mem m,Reg 1
54 LOAD Mem r16,Reg 2
55 LOAD Mem mult,Reg 3
56 JUMP Name g
 LAB r16:
57 STORE Reg 1,Mem x17
58 LOAD Mem x17,Reg 1
59 JUMP Mem w7
 LAB r16':
60 STORE Reg 1,Mem z18
61 STORE Reg 2,Mem mult
62 STORE Reg 3,Mem v
63 LOAD Mem z18,Reg 1
64 LOAD Mem mult,Reg 2
65 LOAD Mem v,Reg 3
66 JUMP Name r13'
 LAB g:
67 STORE Reg 1,Mem v
68 STORE Reg 2,Mem w7
69 STORE Reg 3,Mem mult
70 LOAD Mem mult,Reg 1
71 LOAD Mem w7,Reg 2
72 LOAD Mem v,Reg 3
73 LOAD Mem mult,Reg 4
74 JUMP Name H19
 LAB H19:
75 STORE Reg 1,Mem e2
76 STORE Reg 2,Mem w7
77 STORE Reg 3,Mem v
78 STORE Reg 4,Mem mult
79 CJUMP EQ,Mem e2,Mem ovfl,L4,L5
 LAB L4:
80 LOAD Const 0,Reg 1

 146

81 LOAD Mem w7,Reg 2
82 LOAD Mem v,Reg 3
83 LOAD Mem e2,Reg 4
84 LOAD Mem mult,Reg 5
85 JUMP Name F20
 LAB L5:
86 LOAD Const 1,Reg 1
87 LOAD Mem w7,Reg 2
88 LOAD Mem v,Reg 3
89 LOAD Mem e2,Reg 4
90 LOAD Mem mult,Reg 5
91 JUMP Name F20
 LAB F20:
92 STORE Reg 1,Mem z21
93 STORE Reg 2,Mem w7
94 STORE Reg 3,Mem v
95 STORE Reg 4,Mem e2
96 STORE Reg 5,Mem mult
97 CJUMP EQ,Mem z21,Const 0,L6,L7
 LAB L6:
98 LOAD Mem v,Reg 1
99 LOAD Mem mult,Reg 2
100 JUMP Mem w7
 LAB L7:
101 LOAD Mem e2,Reg 1
102 LOAD Mem mult,Reg 2
103 LOAD Mem v,Reg 3
104 JUMP Name r16'
 LAB r23:
105 STORE Reg 1,Mem x24
106 LOAD Mem x24,Reg 1
107 JUMP Name r1
 LAB r23':
108 STORE Reg 1,Mem z25
109 LOAD Mem z25,Reg 1
110 JUMP Mem ak6
 LAB end:

 147

PROGRAM 2 - Old technique with exception handler

Abstract Machine Code

0 LOAD Const 0,Reg 1
1 LOAD Mem r25,Reg 2
2 JUMP Name run
 LAB f:
3 STORE Reg 1,Mem n
4 STORE Reg 2,Mem w1
5 STORE Reg 3,Mem x
6 STORE Reg 99,Mem h2
7 LOAD String n11,Reg 99
8 MUL Mem n,Mem n,Mem w12
9 LOAD String h2,Reg 99
10 LOAD Mem w12,Reg 1
11 LOAD Mem w1,Reg 2
12 LOAD Mem x,Reg 3
13 JUMP Name k4
 LAB k4:
14 STORE Reg 1,Mem x13
15 STORE Reg 2,Mem w1
16 STORE Reg 3,Mem x
17 LOAD Mem x13,Reg 1
18 LOAD Mem x,Reg 2
19 JUMP Mem w1
 LAB n11:
20 STORE Reg 1,Mem e3
21 LOAD String h2,Reg 99
22 LOAD Mem e3,Reg 1
23 LOAD Mem k4,Reg 2
24 JUMP Name F5
 LAB F5:
25 STORE Reg 1,Mem e
26 STORE Reg 2,Mem k6
27 CJUMP EQ,Mem e,Mem ovfl,L0,L1
 LAB L0:
28 LOAD Const 0,Reg 1
29 JUMP Name F7
 LAB L1:
30 LOAD Const 1,Reg 1
31 JUMP Name F7
 LAB F7:
32 STORE Reg 1,Mem z8
33 CJUMP EQ,Mem z8,Const 0,L2,L3
 LAB L2:
34 LOAD Mem n,Reg 1
35 JUMP Mem k6
 LAB L3:
36 STORE Reg 99,Mem h9
37 LOAD Mem e,Reg 1

 148

38 JUMP Mem h9
 LAB run:
39 STORE Reg 1,Mem x
40 STORE Reg 2,Mem w1
41 CJUMP EQ,Mem x,Const 10,L4,L5
 LAB L4:
42 LOAD Const 0,Reg 1
43 LOAD Mem x,Reg 2
44 JUMP Name F14
 LAB L5:
45 LOAD Const 1,Reg 1
46 LOAD Mem x,Reg 2
47 JUMP Name F14
 LAB F14:
48 STORE Reg 1,Mem z15
49 STORE Reg 2,Mem x
50 CJUMP EQ,Mem z15,Const 0,L6,L7
 LAB L6:
51 LOAD Const 17,Reg 1
52 LOAD Mem r16,Reg 2
53 LOAD Mem x,Reg 3
54 JUMP Name f
 LAB L7:
55 LOAD Const 17,Reg 1
56 LOAD Mem r22,Reg 2
57 LOAD Mem x,Reg 3
58 JUMP Name f
 LAB r16:
59 STORE Reg 1,Mem x17
60 STORE Reg 2,Mem x
61 LOAD Mem x17,Reg 1
62 JUMP Name r25
 LAB r18:
63 STORE Reg 1,Mem x19
64 LOAD Mem x19,Reg 1
65 JUMP Mem w1
 LAB r22:
66 STORE Reg 1,Mem x23
67 STORE Reg 2,Mem x
68 SUB Mem x23,Const 288,Mem w21
69 ADD Mem x,Mem w21,Mem w20
70 LOAD Mem w20,Reg 1
71 LOAD Mem r18,Reg 2
72 JUMP Name run
 LAB r25:
73 STORE Reg 1,Mem x26
74 LOAD Mem x26,Reg 1
75 JUMP Mem initialNormalCont
 LAB end:

 149

PROGRAM 2 - Old technique without exception handler

Abstract Machine Code

0 LOAD Const 0,Reg 1
1 LOAD Mem r14,Reg 2
2 JUMP Name run
 LAB f:
3 STORE Reg 1,Mem n
4 STORE Reg 2,Mem w1
5 STORE Reg 3,Mem x
6 MUL Mem n,Mem n,Mem w2
7 LOAD Mem w2,Reg 1
8 LOAD Mem x,Reg 2
9 JUMP Mem w1
 LAB run:
10 STORE Reg 1,Mem x
11 STORE Reg 2,Mem w1
12 CJUMP EQ,Mem x,Const 10,L0,L1
 LAB L0:
13 LOAD Const 0,Reg 1
14 LOAD Mem x,Reg 2
15 JUMP Name F3
 LAB L1:
16 LOAD Const 1,Reg 1
17 LOAD Mem x,Reg 2
18 JUMP Name F3
 LAB F3:
19 STORE Reg 1,Mem z4
20 STORE Reg 2,Mem x
21 CJUMP EQ,Mem z4,Const 0,L2,L3
 LAB L2:
22 LOAD Const 17,Reg 1
23 LOAD Mem r5,Reg 2
24 LOAD Mem x,Reg 3
25 JUMP Name f
 LAB L3:
26 LOAD Const 17,Reg 1
27 LOAD Mem r11,Reg 2
28 LOAD Mem x,Reg 3
29 JUMP Name f
 LAB r5:
30 STORE Reg 1,Mem x6
31 STORE Reg 2,Mem x
32 LOAD Mem x6,Reg 1
33 JUMP Name r14
 LAB r7:
34 STORE Reg 1,Mem x8
35 LOAD Mem x8,Reg 1
36 JUMP Mem w1
 LAB r11:

 150

37 STORE Reg 1,Mem x12
38 STORE Reg 2,Mem x
39 SUB Mem x12,Const 288,Mem w10
40 ADD Mem x,Mem w10,Mem w9
41 LOAD Mem w9,Reg 1
42 LOAD Mem r7,Reg 2
43 JUMP Name run
 LAB r14:
44 STORE Reg 1,Mem x15
45 LOAD Mem x15,Reg 1
46 JUMP Mem initialNormalCont
 LAB end:

 151

PROGRAM 2 - Two-continuation technique

Abstract Machine Code

0 LOAD Const 0,Reg 1
1 LOAD Mem r25,Reg 2
2 LOAD Mem e'27,Reg 3
3 JUMP Name run
 LAB f:
4 STORE Reg 1,Mem n
5 STORE Reg 2,Mem w1
6 STORE Reg 3,Mem ak2
7 STORE Reg 4,Mem x
8 MUL Mem n,Mem n,Mem w7
9 LOAD Mem w7,Reg 1
10 LOAD Mem x,Reg 2
11 JUMP Mem w1
 LAB H3:
12 STORE Reg 1,Mem e
13 CJUMP EQ,Mem e,Mem ovfl,L0,L1
 LAB L0:
14 LOAD Const 0,Reg 1
15 JUMP Name F4
 LAB L1:
16 LOAD Const 1,Reg 1
17 JUMP Name F4
 LAB F4:
18 STORE Reg 1,Mem z5
19 CJUMP EQ,Mem z5,Const 0,L2,L3
 LAB L2:
20 LOAD Mem n,Reg 1
21 JUMP Mem w1
 LAB L3:
22 LOAD Mem e,Reg 1
23 JUMP Mem ak2
 LAB run:
24 STORE Reg 1,Mem x
25 STORE Reg 2,Mem w1
26 STORE Reg 3,Mem ak2
27 CJUMP EQ,Mem x,Const 10,L4,L5
 LAB L4:
28 LOAD Const 0,Reg 1
29 LOAD Mem x,Reg 2
30 JUMP Name F8
 LAB L5:
31 LOAD Const 1,Reg 1
32 LOAD Mem x,Reg 2
33 JUMP Name F8
 LAB F8:
34 STORE Reg 1,Mem z9
35 STORE Reg 2,Mem x

 152

36 CJUMP EQ,Mem z9,Const 0,L6,L7
 LAB L6:
37 LOAD Const 17,Reg 1
38 LOAD Mem r10,Reg 2
39 LOAD Mem e'12,Reg 3
40 LOAD Mem x,Reg 4
41 JUMP Name f
 LAB L7:
42 LOAD Const 17,Reg 1
43 LOAD Mem r20,Reg 2
44 LOAD Mem e'22,Reg 3
45 LOAD Mem x,Reg 4
46 JUMP Name f
 LAB r10:
47 STORE Reg 1,Mem x11
48 STORE Reg 2,Mem x
49 LOAD Mem x11,Reg 1
50 JUMP Name r25
 LAB e'12:
51 STORE Reg 1,Mem z13
52 LOAD Mem z13,Reg 1
53 JUMP Mem ak2
 LAB r14:
54 STORE Reg 1,Mem x15
55 LOAD Mem x15,Reg 1
56 JUMP Mem w1
 LAB e'16:
57 STORE Reg 1,Mem z17
58 LOAD Mem z17,Reg 1
59 JUMP Mem ak2
 LAB r20:
60 STORE Reg 1,Mem x21
61 STORE Reg 2,Mem x
62 SUB Mem x21,Const 288,Mem w19
63 ADD Mem x,Mem w19,Mem w18
64 LOAD Mem w18,Reg 1
65 LOAD Mem r14,Reg 2
66 LOAD Mem e'16,Reg 3
67 JUMP Name run
 LAB e'22:
68 STORE Reg 1,Mem z23
69 LOAD Mem z23,Reg 1
70 JUMP Mem ak2
 LAB r25:
71 STORE Reg 1,Mem x26
72 LOAD Mem x26,Reg 1
73 JUMP Mem initialNormalCont
 LAB e'27:
74 STORE Reg 1,Mem z28
75 LOAD Mem z28,Reg 1
76 JUMP Mem initialAbnormalCont
 LAB end:

 153

PROGRAM 2 - One-continuation-displacement technique

Abstract Machine Code

0 LOAD Const 0,Reg 1
1 LOAD Mem r22,Reg 2
2 JUMP Name run
 LAB f:
3 STORE Reg 1,Mem n
4 STORE Reg 2,Mem w1
5 STORE Reg 3,Mem x
6 MUL Mem n,Mem n,Mem w7
7 LOAD Mem w7,Reg 1
8 LOAD Mem x,Reg 2
9 JUMP Mem w1
 LAB H3:
10 STORE Reg 1,Mem e
11 CJUMP EQ,Mem e,Mem ovfl,L0,L1
 LAB L0:
12 LOAD Const 0,Reg 1
13 JUMP Name F4
 LAB L1:
14 LOAD Const 1,Reg 1
15 JUMP Name F4
 LAB F4:
16 STORE Reg 1,Mem z5
17 CJUMP EQ,Mem z5,Const 0,L2,L3
 LAB L2:
18 LOAD Mem n,Reg 1
19 JUMP Mem w1
 LAB L3:
20 LOAD Mem e,Reg 1
21 JUMP Mem w1
 LAB run:
22 STORE Reg 1,Mem x
23 STORE Reg 2,Mem w1
24 CJUMP EQ,Mem x,Const 10,L4,L5
 LAB L4:
25 LOAD Const 0,Reg 1
26 LOAD Mem x,Reg 2
27 JUMP Name F8
 LAB L5:
28 LOAD Const 1,Reg 1
29 LOAD Mem x,Reg 2
30 JUMP Name F8
 LAB F8:
31 STORE Reg 1,Mem z9
32 STORE Reg 2,Mem x
33 CJUMP EQ,Mem z9,Const 0,L6,L7
 LAB L6:

 154

34 LOAD Const 17,Reg 1
35 LOAD Mem r10,Reg 2
36 LOAD Mem x,Reg 3
37 JUMP Name f
 LAB L7:
38 LOAD Const 17,Reg 1
39 LOAD Mem r18,Reg 2
40 LOAD Mem x,Reg 3
41 JUMP Name f
 LAB r10:
42 STORE Reg 1,Mem x11
43 STORE Reg 2,Mem x
44 LOAD Mem x11,Reg 1
45 JUMP Name r22
 LAB r10':
46 STORE Reg 1,Mem z12
47 LOAD Mem z12,Reg 1
48 JUMP Mem ak2
 LAB r13:
49 STORE Reg 1,Mem x14
50 LOAD Mem x14,Reg 1
51 JUMP Mem w1
 LAB r13':
52 STORE Reg 1,Mem z15
53 LOAD Mem z15,Reg 1
54 JUMP Mem ak2
 LAB r18:
55 STORE Reg 1,Mem x19
56 STORE Reg 2,Mem x
57 SUB Mem x19,Const 288,Mem w17
58 ADD Mem x,Mem w17,Mem w16
59 LOAD Mem w16,Reg 1
60 LOAD Mem r13,Reg 2
61 JUMP Name run
 LAB r18':
62 STORE Reg 1,Mem z20
63 LOAD Mem z20,Reg 1
64 JUMP Mem ak2
 LAB r22:
65 STORE Reg 1,Mem x23
66 LOAD Mem x23,Reg 1
67 JUMP Mem initialNormalCont
 LAB r22':
68 STORE Reg 1,Mem z24
69 LOAD Mem z24,Reg 1
70 JUMP Mem initialAbnormalCont
 LAB end:

 155

 156

	Tail recursion
	2.3 Exceptions
	Exception handling in programming languages
	Handler binding

