

An Automated Oracle for Verifying

 GUI Objects

by

Juichi Takahashi

Bachelor of Science

in Production Engineering

Tokai University, Japan

1989

A thesis submitted to Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Software Engineering

Melbourne, Florida

December 2000

We the undersigned committee hereby recommended that the attached document be

accepted as fulfilling in part the requirements for the degree of

Master of Science in Software Engineering.

“An Automated Oracle for Verifying GUI Objects”

a thesis by Juichi Takahashi

James A. Whittaker, Ph.D.
Associate Professor, Software Engineering
Thesis Advisor

Cem Kaner, J.D., Ph. D.
Professor, Computer Science
Committee Member

Harold K. Brown, Ph. D.
Associate Professor, Electrical and
Computer Engineering
Committee Member

William D. Shoaff, Ph. D.
Associate Professor and Program Chair
Computer Science

Copyright 2000 Juichi Takahashi

All Right Reserved.

ABSTRACT

Title:

An Automated Oracle for verifying GUI objects

Author:

Juichi Takahashi

Thesis Advisor:

James A. Whittaker, Ph. D.

 The promise of test automation - the automatic application of software inputs to

find bugs - is tempered by the difficult of automatically verifying behavior. Indeed, the

lack of tools for behavior verification is a major factor in keeping automated testing out of

the mainstream.

This thesis develops a technique that aids automatic behavior verification for a

particularly difficult problem: determining the correction of screen output. A methodology

to capture and compare screen output is presented and a case study using Microsoft®

PowerPoint® is described.

iii

TABLE OF CONTENTS

Abstract...iii
Table of Contents..iv
List of Figures...vi
List of Tables ..viii
List of Tables ..viii
List of Abbreviations ..ix
Acknowledgement ...x
Dedication...xi
1 Background and Introduction..1

1.1 Manual Testing...2
1.2 Automated Testing ...3

1.2.1 Design and Develop Test Cases...4
1.2.2 Test Case Execution...4
1.2.3 Verification ..5

1.3 Automated Testing Versus Manual Testing ...5
1.3.1 When to Automate ...5
1.3.2 When Not to Automate ..8
1.3.3 Current Trends ...9

2 The Verification Problem..10
2.1 Background of Comparison Techniques ..11
2.2 Verification for Graphic Object..12

2.2.1 Bit-by-Bit Comparison Model ...13
2.2.2 API Comparison...13

2.3 Benefit of using the API Comparison Approach..15
2.4 Disadvantage of using the API Comparison Approach..19

2.4.1 Bitmap Images ...19
2.4.2 Advanced Graphical Controlled Applications ...19
2.4.3 Graphical Device Dependency Applications ...20

iv

3 A Solution Using API Call Comparison ...21
3.1 Point-based Comparison...21
3.2 Vector Comparison...23

4 Tool Development ..26
4.1 Design and Development Environment..26
4.2 Microsoft PowerPoint File Structure..26

4.2.1 Calling the gdi23.dll...27
4.3 Gdi23.dll Development ..27
4.4 Main Control Program..31

5 An Example: Microsoft PowerPoint ...37
5.1 Graphic Objects ..37
5.2 Type of Graphical Bugs ...38

5.2.1 Improperly Constrained Computing Coordinate..38
5.2.2 Improperly Computing Color Information ..40
5.2.3 Improperly Constrained Output ...40
5.2.4 Testing ...41

6 Conclusion ..49
6.1 Summary of This Thesis...49
6.2 Future Work ...50

References ...52
Appendix A ...55
Appendix B..59

..65 Appendix C

v

LIST OF FIGURES

Figure 2.1: API Comparison Model...14
Figure 2.2: Masking Technique 1 ..16
Figure 2.3: Masking Technique 2 ..16
Figure 2.4: Oracle Testing 1...18
Figure 2.5: Oracle Testing 2...18
Figure 2.6: Oracle Testing 2...19
Figure 3.1: Point-based Comparison 1...22
Figure 3.2: Point-based Comparison 2...22
Figure 3.3: Vector Comparison..23
Figure 3.4: 50% Zooming ..24
Figure 4.1: Original Binary Image for GRAPH9.EXE ..27
Figure 4.2: Changed Binary Image for GRAPH9.EXE ...27
Figure 4.3: Gdi32.dll Behavior Flowchart ...28
Figure 4.4: Flowchart for Gdi23.dll ...29
Figure 4.5: Sample Program for Gdi23.dll...30
Figure 4.6: Main Screen...31
Figure 4.7: Fetching Information ...32
Figure 4.8: Sample Stored Information..33
Figure 4.9: Regenerating Points Information...34
Figure 4.10: Flowchart for Gdi23.dll ...35
Figure 4.11: Class Structure...35
Figure 4.12: Sample Program for Gdi23.dll...36
Figure 5.1: Pre-saved Bitmap Image..39
Figure 5.2: Actual Bitmap Image...39
Figure 5.3: Graphical Object Output..41
Figure 5.4: Original Object ..42
Figure 5.5: Modified Object...43
Figure 5.6: Regenerated Object (Original)...43

vi

Figure 5.7: Regenerated Object (Modified) ...44
Figure 5.8: Original Object for Case2..46
Figure 5.9: Regenerated Original Object for Case2...46
Figure 5.10: Destination Object for Case2...47
Figure 5.11: Regenerated for Destination Object for Case2 ..47
Figure C.1: ...65 Main Screen

Figure C.2: ...66 File Saving

Figure C.3: ..66 Logging

Figure C.4: ..67 Build a File

Figure C.5: ...68 Compare Objects

vii

LIST OF TABLES

Table 3.1 Comparison Result...23
Table A.1 Point-based Verification 1 ...55
Table A.2 Point-based Verification 2 ...56
Table A.3 Point-based Verification 3 ...57
Table A.4 Point-based Verification 3 ...58
Table B.1 Vector-Based Verification 1 ..59
Table B.2 Vector-Based Verification 2 ..60
Table B.3 Vector-Based Verification 3 ..61
Table B.4 Vector-Based Verification 4 ..62

 ..63 Table B.5 Vector-Based Verification 5

 ..64 Table B.6 Vector-Based Verification 6

viii

LIST OF ABBREVIATIONS

ANSI American National Standard Institute

API Application Program Interface

CAD Computer Added Design

DDE Dynamic Data Exchange

GIF Graphics Interchange Format

HTML Hyper Text Markup Language

JPEG Joint Photographic Expert Group

PC Personal Computer

RTF Rich Text Format

XML eXtensible Markup Language

ix

ACKNOWLEDGEMENT

I wish to thank the members of the thesis committee, Dr. Whittaker, Dr. Kaner, and

Dr. Brown who have provided comments, suggestions, and reviews of my work. In

particular, I would like to thank Dr. Whittaker for his guidance in completing my thesis.

x

DEDICATION

To my wife, Yumiko, support, and encouragement while withstanding numerous lost

night and weekend as I pursed this research.

xi

Chapter 1

1 BACKGROUND AND INTRODUCTION

Testing is the process of executing a program with the intent of finding errors.

Glenford J. Myers

“The Art of Software Testing” [Myers79]

A test that reveals a problem is a success. A test that did not reveal a problem was a waste

of time.

Cem Kaner, Jack Falk, Hung Quoc Nguyen

“Testing Computer Software” [Kaner93]

Testing is the process that testers use to find bugs. Of course, determining that

software works correctly is also part of the testing endeavor. Beizer [Beizer99] mentioned:

We test software in order to: “Validate the object, that is, show that it works. “

Boriz Beizer

“Black-Box Testing”

1

To find bugs and determine that software works correctly, testers [Whittak2]:

- Input variables

- Input combinations

- Input sequence

Testers are expected to input variable in order that the software works correctly. In

addition, testers have to prove not only that the software works with variables for each

independent user interface, but also that it works with variables across given software

interface to operate the overall software. In the case that there are various inputting

combinations, so these combinations may cause defects and be numerous. The inputting

sequence also can cause defects. A number of testers are usually very less than that of

users, and testers cannot simulate users’ input sequence. There are incredible amount of

input sequence, which may imply whether software works or fail. Because testers analyze

and test all the things above, testing is an expensive endeavor. Whittaker [Whittak3] uses

the analogy that using software is akin to walking a jungle path. The test cases applied by

testers represent the path. The more testing, the wider the path. The challenge for users is

to walk the path by applying only pre-tested input. Applying untested inputs means

straying from the path and facing jungle predators. The best thing testers can do for users

is to blaze a wide path. This is where automation comes into play: it allows a substantially

larger number of tests to be run. Automated testing is a tool for exploring the jungle (and

widening the path through it) efficiently and quickly.

1.1 Manual Testing
In the 1970’s, there were only a limited number of testing methods [Myers79] and

they were mostly executed manually. Manual testing is defined as testing each case by

hand, so these expected and unexpected outputs are verified by the faculty of sight (In a

later section we will discuss the differences between manual and automated testing costs).

We find that the most important issue for manual testing is that people tend to make

mistakes. Unfortunately, we do not have any research on how or why people make

2

mistakes. However, it is certain that people make mistakes sometimes during testing

[Beizer99][Whittak2]. Testers may type wrong keys or judge a test result incorrectly.

1.2 Automated Testing
Automated testing involves executing test cases and verifying the result

programmatically instead of relying on human ability. Automated testing has the ability to

reduce testing costs. Research shows automated testing can save up to 80% [Fewst99]

[Bach99] of testing costs because automated tests can execute test cases much faster than

manual testing.

In the 1960’s, Myers said “determining the number of unique logic paths is the

same as determining the total number of unique ways of moving from point A to point B

(assuming that all decisions in the program are independent from one another). This

number is approximately 1014 or 100 trillion” [Myers79]. Though there are now many

ways to reduce these kinds of test case paths, such as domain analysis [Beizer83][Dalal97],

large numbers of test cases are still necessary. The Black box testing has the same story.

If 8-alphabetic characters are inputted, there will be 268 test cases for complete coverage.

In these circumstances, testers can use automated tests.

Usually when an application is tested using automated testing, there are four

phases:

• Design test cases

• Develop the test cases

• Execute the test cases

• Verify results

Each of these phases is discussed below.

3

1.2.1

1.2.2

Design and Develop Test Cases

The automated test case design concept is similar to manual-based test case design.

Almost all the existing test case design techniques, such as, boundary value analysis and

path coverage can be used for automated test case design. Yet sometimes testers design

test cases for specific automated tasks. For example, if it were arduous to design test cases

for a drawing tool, testers would reduce the number of drawing-related test cases or shorten

each individual test case. Automated test techniques are still being developed, and some

testing techniques cannot be done with automated testing [Dustin991][Kaner97]. In such

cases, it is better to use manual testing.

On the other hand, there are certain test cases, which are preferably developed for

automation (see section ”When to Automate”). It is suggested that testers or test managers

decide which tests should be automated before developing test cases.

Test Case Execution

 Test execution means running or exercising test cases to find failures and

demonstrate that software functions as specified.

Robert M. Poston [Poston96]

“Automating Specification-based Software Testing”

Automated test execution means coding an automatic input delivery mechanism to

replace hands-on-the-keyboard manual testing.

Prior to the 1990s, there were a small number of test execution tools. Many testers

were forced to develop their own execution tools. Since then, many software companies

have developed a diverse range of test execution tools, such as capture-playback, code

coverage, data tracking, and metrics tools. The general idea in automated execution is to

take the human out of the test case generation, execution and verification process.

4

1.2.3

1.3

1.3.1

Verification

Test results must be verified during or after test execution. In advance of test

executing an expected result is stored in an automated test script. The verification tool

then compares the actual result with the stored expected result. When the result is different

from the stored expected result, the tool lets testers know that the test case failed.

Conversely, when the result is the same as the expected one, the tool tells that the test case

passes. Verification matters will be discussed more in a later section.

Automated Testing Versus Manual Testing

“Testing is an activity most of us have endured or experienced, and on which we spend a

great deal of time and money”

Bill Hetzel [Hetzel88]

“The Complete Guide to Software Testing”

Since 1960s, testers have struggled with reducing the cost of testing. Clearly,

automated testing has the potential to help in this endeavor. In this section, the cost of

automated and manual testing will be analyzed.

When to Automate

There are some situations in which automated testing is more expensive than

manual testing. Since cost varies from case to case, neither method is universally superior.

Developing an automated test and then running it once costs more than running a

single manual test [Maric98]. Manual testing should be used whenever only one test cycle

is needed. However, when two or more tests are needed, testers can use either manual or

5

automated testing. Certain types of tests have historically been pursued with automation as

described below.

1.3.1.1 Build Verification Test (Smoke Test)

Modern product-build environments are complicated, and the size of source code is

much larger than even a decade ago. Consequently, there are often defects that are caused

by developers using the wrong version of header files, libraries, and so on. Thus, it is

common to briefly test each build in terms of the main functions before delivering the build

to testers. This is called a build verification test or smoke test [Dustin992]. In the case that

the build verification test fails, the developers will debug immediately and then build again.

When the build verification test passes, the build is delivered to testers. Since the build

verification test is needed in every build and should be done quickly, there is good reason

to consider automating the build verification testing.

1.3.1.2 Regression Test

Regression testing is one of the major areas in which test automation is pursed

[Pettic99][Korek98][Kit99]. In general, regression tests are more frequently executed than

other tests. Therefore, regression tests are suitable tests to be automated.

Normally, we do not find a lot of bugs during regression testing. However, if a

large percentage of bugs are found, managers might question the overall design of the

software. Project managers usually count cumulative defects as a test metric [Grady92],

yet it is difficult to distinguish re-activated bugs from new bugs without regression testing

every build. If we do not execute a regression testing on every build, we might fail to see

that the project is out of control. Therefore, testers often develop automated regression

tests as early as possible and use the regression bug rate as one of metrics to determine a

project’s health.

Regression tests are time consuming when the tests are started from beginning of

the development phase because designs and requirements often change during that period

6

[Black99]. But even though automated test development cost is high, finding development

problems are well worth the cost.

1.3.1.3 API Testing

API testing is an obvious place to use automated testing

[Fewst99][Pettic99][Pettic96], and it is generally straightforward to develop, execute, and

verify. Because the verified objects are always text, testers do not have to deal with a

complicated graphical output. API automated testing tools are developed by testers using

programming languages, such as C language [Jorgen00] or Perl [Pettic99]. Testers also

can use GUI oriented commercial tools, such as Rational Robot and Mercury WinRunner

[Zambe98] to exercise APIs.

1.3.1.4 Stress /Performance Testing

Stress and performance testing is adaptable for automated testing

[Fewst99][Maric98]. For example, in e-mail server testing, testers often need to load the

mail server with incoming e-mail. It is difficult to send thousands of messages over a

short period of time by hand and to assemble enough human testers to send e-mail for

stress/performance test.

1.3.1.5 Internationalization Testing

In international testing, the international characters sometimes cause specific types

of bugs. Testers must test an application with a large number of characters variations

[Taka00]. In the case that international applications use 3 byte character encoding scheme,

the applications use 1,638,400 types of characters. Testers can use automated testing so

that a large number of these characters can be tested.

7

1.3.1.6 Multiplatform Compatibility Testing (Configuration Testing)

In terms of automated tests, the number of tests that can be executed is an issue.

Multiplatform compatibility testing is executed many times and can be automated

[Pettic99]. Software usually does not directly communicate with hardware but with the

operating system. There are sometimes compatibility problems between an operating

system and hardware. These problems show up when an application uses functions of the

operating system. From the user’s point of view, incompatibility problems with the

operating system are seen as defects. Thus, application testers need to execute

configuration testing to verify the absence of such problems.

In PC application testing, there are hundreds or even thousands of hardware

configuration tests that need to be executed if the application rely on hardware

performance or use new hardware technology. If the application is for multiplatform, such

as Windows, Linux and Unix, the number of test cases increases dramatically. Thus,

automated tests are helped when the application has hardware dependency issues or runs

on multiplatform. Prior to the development of automated tests, testers must make sure the

automated tools support the application running on various platforms [Dustin992].

1.3.2 When Not to Automate

1.3.2.1 Drawing and Image Processing Application Testing

Because capturing and comparing drawing objects are tricky and can easily give

the wrong result, graphical based application testing is not usually automated

[Maric98][Fewst99][Dustin991]. In this thesis, a reliable and cost-effective form of

graphical automated testing is offered for comparing drawing objects.

8

1.3.3 Current Trends

The current trend is still focused on whether automated testing is too time

consuming. It has been estimated that the cost of automating tests can be recovered after

reusing the tests two or three projects [Binder99] [Beizer99]. But as software development

costs continue to rise, automation is likely to increase in importance over the foreseeable

future.

9

Chapter 2

2 THE VERIFICATION PROBLEM

“A necessary part of a test case is a definition of the expected output or result”.

Glenford J. Myers

“The Art of Software Testing”[Myers79]

Verification of behavior is a key part of the automated testing process. Automated

scripts should verify that the application correctly processes input supplied. For

verification, we compare the specified behavior of the software with observed behavior to

determine if the observed behavior is the same as the specified behavior. The automated

test scripts show the test result, which is either pass or fail (there are some observable

differences in behavior). For example, when we run an automated test script, which

compares a Windows title with a pre-saved Windows title string, an automated verification

function tells whether the pre-stored Windows title and the actual title string are equivalent.

If the pre-stored Windows caption string is equivalent to actual Windows title string, the

test passes.

The best situation is when both execution and verification are automated. In some

cases, execution is automatic and verification is manual. This is a non-optimal situation

because the main benefit of automated testing is to increase the number of test cases that

can be applied. Sitting in front of computer to manually verify test results negates the time

saving gained through automated execution.

10

2.1 Background of Comparison Techniques
One problem with testing desktop applications and web applications is that

verifying graphically rendered object is difficult to automate. Automated tools have

difficulty fetching and comparing these graphical objects. For example, web applications

should handle many types of object controls and images. However most existing

automation tools usually have trouble fetching the object’s information. These are the same

issues testers face when using third party interface controls [Dustin991] and custom

controls [Kaner002]. In these cases testers must physically watch the running test case on

their computer screen because the tools do not have ability to automatically verify behavior

of such objects. Although, there are many objects which cannot be verified by automated

tools, some common objects can be handled and verified by tools, such as:

Strings

There are ANSI code, Unicode, and multi-byte character strings. Most automated

testing tools have the capability to fetch these objects. There are also font and text formats

such as HTML, RTF, and XML. Automated test tools support some of these formats, but

not all of them. Before starting the test, testers should make sure the tool can handle

specific format requirements for their application.

Files

Testers can easily compare files by operating system commands such as ‘diff’ and

native APIs. Most automated test tools usually have a function for comparing files as well.

In addition, testers can confirm if certain file exists, what its permissions are, etc.

Memory Information

Using modern programming languages and operating systems, it is not

recommended that developers store data directly into system memory where automated

tools cannot get stored data information. But there are some standardized ways to save

information into memory, such as the DDE function in Windows, and this data could then

be used as a verification object [Rational99].

Menus

11

The Windows operating system offers a menu system to developers and users.

Automated tools treat menus as objects and fetch menu information, such as strings and

key accelerations based on the handle assigned to the object by the operating system.

Windows

Window operating systems also offer window-oriented operations. Automated test

tools can fetch their size, attribute, caption string, handle, and class information.

Images

Image objects, such as disk or screen images, are stored on the file system.

Testers can perform standard binary file comparison to compare such images. In screen

images, testers compare between images bit-by-bit. However, in the case that an

application uses graphical images, bit-by-bit comparison is the only way to compare them.

It is thus difficult to compare actual images with expected images because of storage

constraints (the images tend to be large) and time constraints (bit-by-bit comparison is

computationally intense).

Although almost all the automated verification tools have the capability of

comparing drawing objects, several researchers do not recommend capture/replay

automated testing for drawing object because the verification is overly sensitive to any

change [Maric98][Fewst99][Dustin991][Kaner97].

Communication Data

Testers can easily compare communication data by treating it as a file. When

testers test communication protocols, the application may use a socket to communicate

between computers. Testers simply consider the socket to be a storage device and perform

the comparison using the file comparing techniques mentioned above.

2.2 Verification for Graphic Object

12

The previous section gave an explanation of various objects which can be verified

with existing tests. An enormous issue for verification is how to compare graphical objects

because the bit-by-bit verification method offers limited applicability. In this section, our

discussion begins with bit-by-bit and API comparison methods and their benefits and

drawback.

2.2.1

2.2.2

Bit-by-Bit Comparison Model

This method compares graphical images bit-by-bit and most commercial tools use

this method. The problem with this method is that it is too difficult to compare pre-saved

bitmap images with actual bitmap images. For example, some testers save an image with

Windows title bar and some testers do not. Consequently, when testers compare the pre-

saved bitmap with actual bitmap images, the comparison program may judge that the

verification failed because the two objects are not equivalent.

On the other hand, there are other techniques to compare objects intelligently by

bitmap image. Various biometric verifications [Pentl00], such as print finger, face

[Panka00], signature, and iris are used in the real world. However these methods are still

being researched and their algorithms have not yet to be applied to software testing.

API Comparison

In modern commercial operating systems, such as Windows and Unix, applications

do not access the CPU or graphic device directly because the operating systems are

designed for multi-tasking to protect conflict of shared hardware resources. Therefore,

applications use the same system APIs to access hardware. Drawing applications also use

APIs to render screen images. We interrupt calls to such APIs and store the information as

drawing information (Figure 2.1).

13

Developed System

Operating System

Normal System

API
API

Fetch and Store
API data

Application Operating System

API
Application

Figure 2.1: API Comparison Model

The benefit of this approach is that an application does not require any special

development or operating system hooks. We can test any type of application on any

operating system by the API comparison method.

14

2.3 Benefit of Using the API Comparison Approach

2.3.1.1 System Configuration

Bit-by-bit verification is extremely sensitive to changes [Fewst99]. Various

uncontrollable factors can often affect results. For example, it is very difficult to have the

same type of machines and graphic systems in a testing team. A tester may have an

advanced graphic system, which can display over 1600 x 1200 resolution. Another tester

may have a normal graphic system, which displays 1024 x 768. If there are differences

between computing environments, the differences can cause failure even when screen

images match.

2.3.1.2 Disk Size

When testers store a drawing image as 1600 x 1200 screen resolution at 3 byte per

pixel, the image requires 5.76 M bytes (1600 x 1200 x 3). Storing files of this size is

acceptable only when a test case is considered strategically crucial. In this case, we might

use image-compressing methods to reduce the file size or chosen the API comparison

method.

2.3.1.3 Processing Speed

 The issues of speed are similar to issues for disk size. Bit-by-bit comparison

requires time. For example, comparing 300x300 dot drawing objects, a verification

program will substantially calculates 300 times 300, requiring 90000 operations. Because

of the same reason in the section 2.3.1.2 (disk size), it is recommended that we use either

image compression methods to reduce the calculations or API comparison method.

15

2.3.1.4 Masking Technique

Testers often use a masking technique to compare results. For example, when the

target object includes date or time (Figure 2.2).

Figure 2.2: Masking Technique 1

When testers want to remove or ignore the date or time when comparing graphical

objects (because the time changes as test are run) , they can mask the data or time string

(black squares) from the bitmap image by existing tools (Figure 2.3) [Rational99].

Figure 2.3: Masking Technique 2

16

However, in this case, not only the text but also parts of target graphical objects are

masked. Therefore, automated tests may not verify parts of the object and then by give the

wrong result. On the other hand, an API comparison system can simply remove or ignore

the time or data string. For example, API comparison method can easily eliminate Win32

TextOut() API call from the whole graphical API set. Consequently, testers can fetch the

target API calls.

2.3.1.5 Expansion and Reduction Testing

A number of drawing and CAD applications support object expansion and

reduction functions. When testing such applications, testers are required to exercise and

verify expansion and reduction functions.

Testing expansion and reduction functions using the bit-by-bit method require that

we store images for every zoom rate possible. When testing the zoom rate of 1% thorough

100% in increments of 1%, there will be 100 test cases and testers must store 100 bitmaps

to verify results. These storage tasks are time consuming and require large amounts of

hard drive space. In addition, verification is not straightforward because only small bitmap

differences can cause failure of the bit-by-bit comparison techniques.

On the other hand, testers can test any type of expansion and reduction by the API

comparison method. Testers do not have to store 100 images to compare the results.

Storing only one image is enough to compare the original result and the post-tested result

for any degree of zoom rate. More detail is provided in a later section.

2.3.1.6 Oracle Testing

Considering the PowerPoint graph below:

17

0
5

10
15
20
25
30
35
40

1st Qtr 2nd Qtr

East
West

Figure 2.4: Oracle Testing 1

Testers must test a variety of values including this shown Figure in 2.5, 2.6, and

2.6 (boundary test cases).

0

5

10

15

20

25

30

1st Qtr 2nd Qtr

East
West

Figure 2.5: Oracle Testing 2

18

0

5

10

15

20

25

30

1st Qtr 2nd Qtr

East
West

Figure 2.6: Oracle Testing 3

It is easy to see that between such extremes lay a vast number of intermediate tests.

Verifying each of this using bit-by-bit comparison is more computationally intense.

However, the API comparison method offers a much faster and more reliable solution.

2.4

2.4.1

2.4.2

Limitations of the API Comparison Approach

Bitmap Images

When applications draw graphical objects as bitmap images, the API comparison

method does not have any advantage over the bit-by-bit comparison method. It is possible

for testers to fetch the bitmap images by using bitmap operation APIs, however the

fetching bitmap images operations are same as bit-by-bit comparison method.

Advanced Graphical Controlled Applications

Some applications optimize rendering algorithms based on the performance of

various graphic cards and may not benefit from the API comparison method. Because the

19

applications draw graphical objects based on graphical performance and change the

drawing APIs to realize best performance, the API comparison method would become

unwieldy. Consequently, API comparison method cannot fetch correct API information.

For example, when users use 1600 x 1200 graphic cards, some applications will draw

larger graphical objects. When user use 640 x 400 graphic cards, the applications draw

smaller objects. In this case, API commands are changed by applications in ways not

accessible to the API comparison method. Thus, API comparison method may give

inaccurate test results.

2.4.3 Graphical Device Dependency Applications

In PC games and other applications, which directly access hardware, API

comparison method may not fetch API commands. These applications often directly

access graphic cards (direct access to video memory) without using any Win32 APIs to

realize higher performance. When the applications do so, API comparison method cannot

fetch API commands, which are passed from applications to the operating system. Thus,

the API comparison method cannot verify test results.

20

Chapter 3

A SOLUTION USING API CALL

COMPARISON
3

In this thesis, two kinds of API comparison models are offered to reduce the need

for bit-by-bit comparison. The solutions are point-based and vector-based comparison.

In the API comparison technique, testers can use images as logical objects, such as

lines, circles, and triangles. As explained in the previous section, the API comparison

system will fetch the API command. Drawing a line on screen coordinates (0, 0) to (100,

100), an application calls an API as follows (on Microsoft Windows platform).

POINT pPoint[2];

PPoint[0].x = 0;

PPoint[0].y = 0;

PPoint[1].x = 100

PPoint[1].y = 100

LineTo(pPoint);

Then the tool fetches the information and stores it for comparison.

3.1 Point-based Comparison
 Once an API command from an application is fetched, the API command

information is saved as point information to be analyzed and compared.

21

)

)

y

Figu

(0, 0)

y

Figu

(10, 50)
re 3.1: Point-base

(10, 10)

re 3.2: Point-base

22
(50, 50
x

(50, 10)
(0, 0
(10, 10)
d Comparison

(70,

d Comparison
 1

)
(10, 40)
 (70, 50
x

10)
 2

 For instance, when there is a rectangle (Figure 3.1), and the rectangle coordinates

are (10, 10), (50, 40), (10, 10), and (50, 10), coordinates will be compared one by one

between objects. The result is Table 3.1:

Table 3.1 Comparison Result

Figure 3.1 Figure 3. 2 Result

(10, 10) (10, 10) Pass

(10, 50) (10, 50) Pass

(50, 10) (70, 10) Fail

(50, 50) (70, 50) Fail

3.2 Vector Comparison
 In a vector comparison system, point information generates vector information,

which is structured by length and angle (Figure 3.3).

θ

(50, 40)

(0, 0)

(10, 10)

length

x

y

Figure 3.3: Vector Comparison

In Figure 3.3, the vector value (10, 10) through (50, 40) is calculated by:

23

length = 22)4010()5010(−+−

θ=sin-1 ()
length

1040 −

The vector comparison technique is useful because testers can easily accomplish

expansion and reduction testing, which is explained the “Expansion and reduction testing”

section above. For example, Figure 3.3 shows the line zoomed out 50% (Figure 3.4)

(25, 20)

(0, 0)
(5, 5)

length

x

y

Figure 3.4: 50% Zooming

The length and angle are:

length = 22)2010()2510(−+−

θ=sin-1 ()
length

1025 −

Even when the application zooms out of 50%, the angle remains the same. The

length can also be calculated by:

24

Original length = (Zoom Rate) × (Changed length)

Between similar objects, the angles are the same and the lengths are similar. The

bit-by-bit comparison method cannot directly compare between similar objects.

25

Chapter 4

4 TOOL DEVELOPMENT

To use the API comparison method, a tool has been developed. The tool is capable

of:

• Fetching drawing information from API calls made by an application.

• Reproducing rendered objects based on the information from API calls.

• Comparing rendered objects via either point-to-point comparison or vector

comparison.

4.1

4.2

Design and Development Environment
Microsoft® Visual C++® Version 6.0 used for tool development because the C++

programs can directly access memory. Assembly language could be used for the tool

development, but the assembly programming is time-consuming. Visual C++ offers in-line

assembly code and higher-level C++ syntax. Java, on the other hand, offers limited

memory access and we could not find better Java development environment for Windows

2000 than that offered by Visual C++. For the reason, Visual C++ was chosen. All source

code in the CD attached to this thesis .

Microsoft PowerPoint File Structure
PowerPoint uses Microsoft® Office® common components. When drawing graph

objects, PowerPoint uses the Office components, which is GRAPH9.EXE.

26

4.2.1 Calling the gdi23.dll

In order to store API information, we developed a program to changes

GRAPH9.EXE file to capture the API information. GRAPH9.EXE file is edited using

binary editor. Figure 4.1 shows the original GRAPH9.EXE. A GRAPH9.EXE’s string is

changed from “GDI32.dll” (Figure 4.1) to “GDI23.dll” (Figure 4.2)

Figure 4.1: Original Binary Image for GRAPH9.EXE

Figure 4.2: Changed Binary Image for GRAPH9.EXE

After changing the string, GRAPH9.EXE calls gdi23.dll when PowerPoint uses

graphical APIs such as LineTo() and Polygon().

4.3 Gdi23.dll Development

After editing GRAPH9.EXE, the graphical APIs are passed to the gdi23.dll.

Gdi23.dll has two functions: to store API information and to pass the API information to

27

the operating system. As Figure 4.3 shows, the API information goes into gdi23.dll and is

passed into gdi32.dll. Consequently, the API information is stored on the hard drive. The

stored information is used to compare objects (this comparison will be discussed in a later

section). An example of the source code and flow chart are shown in Figure 4.4 and Figure

4.5.

 LineTo()

PowerPnt.exe

gdi32.dll

Figure 4.3

GRAPH9.EXE
l

Store APIs
information

Graphic driver
:
gdi23.dl
Gdi32.dll Behavior Flowchart

28

Calling API

Figure 4.4
Load gdi32.dll
S

Pass the API
gdi32.dllI
29

Return

tore the API
information

: Flowchart for Gdi23.dll

30

KERNEL23_API BOOL WINAPI myLineTo(HDC hdc, int iX, int iY)

{

 typedef BOOL (CALLBACK *LPFN)(HDC, int, int);

 HINSTANCE bltH_Dll;

 LPFN bltPtrFn_Function;

 BOOL ReturnValue;

 //Loading Dll

 char ptrChr_DllPath[MAX_STR];

 GetSystemDirectory(ptrChr_DllPath, MAX_STR);

 strcat(ptrChr_DllPath, "\\gdi32.Dll");

 bltH_Dll=LoadLibrary(ptrChr_DllPath);

 //In case failing the library

 _ASSERT(bltH_Dll);

 if (bltH_Dll==NULL)

 {

 ErrorLoading("LineTo");

 return 0;

 }

 bltPtrFn_Function=(LPFN)GetProcAddress(bltH_Dll, "LineTo");

 //In case failing the function

 _ASSERT(bltPtrFn_Function);

 if (bltPtrFn_Function == NULL)

 {

 ErrorLoading("LineTo");

 FreeLibrary (bltH_Dll);

 return 0;

 }

 FreeLibrary (bltH_Dll);

 ReturnValue = bltPtrFn_Function(hdc, iX, iY);

 LogFile2("LineTo(*hdc,", iX, iY, LINETO_LOG);

 return ReturnValue;

}

Figure 4.5: Sample Program for Gdi23.dll

4.4 Main Control Program
To make graphical object comparisons, a main control program was developed. An

interface is shown at Figure 4.6.

Figure 4.6: Main Screen

The main control program has three major functions: fetching rendered information,

regenerating graphical objects, and comparing graphical objects. Its detailed operations are

in Appendix C.

4.4.1.1 Fetching Rendered Information

As explained in an earlier section, gdi23.dll can store API information. However,

when gdi23.dll stores information from all graphical API’s, a large number of duplicated

API calls are stored on the hard drive. Thus, the main control program restricts the

outcome of gdi23.dll API calls.

In the Windows operating system, when part of or all screen images are required to

redraw because windows move or resize, the operating system sends WM_PAINT

messages to an application so that the application redraws graphical objects. In some cases

the operating system may keep sending WM_PAINT messages, and gdi23.dll may keep

31

this information. Consequently, it becomes difficult to compare original and test result

objects because there is duplicated information. The main control program is programmed

only to fetch unique API information. In order to do that, the main control program does

two things:

- Close and resize an application window forceably.

- Command to start and stop logging API’s information.

When an application forceably closes and resizes, the Windows operating system

sends a WM_PAINT message. The main control program only fetches unique graphical

API information. However, some applications redraw graphical objects without receiving

WM_PAINT messages and the operating system may send WM_PAINT message without

any reason. In this case, the main control tool may receive the same API messages

multiple times. Thus, the main control program commands gdi23.dll only to store

information for a very short time between starting a close and finishing resizing the

window.

0
5

10
15
20
25
30
35

1st Qtr

East
West

Figure 4.7: Fetching Information

Looking at the object in Figure 4.7 object, the tool could fetch the points of the

polygons (Figure 4.8).

32

Polygon 1 (34, 172), (53, 158), (248, 158), (229, 172), (34, 172)

Polygon 2 (34, 172), (34, 22), (53, 8), (53, 158), (34, 172)

Polygon 3 (53, 158), (53, 8), (248, 8), (248, 158), (53, 158)

Polygon 4 (248, 158), (229, 172), (34, 172), (53, 158), (248, 158),

Polygon 5 (34, 172), (34, 22), (53, 8), (53, 158), (34, 172)

Polygon 6 (53, 158), (53, 8), (248, 8), (248, 158), (53, 158)

Polygon 7 (132, 172), (132, 85), (150, 70), (150, 158), (132, 172),

Polygon 8 (76, 172), (76, 85), (132, 85), (132, 172), (76, 172),

Polygon 9 (132, 85), (150, 70), (95, 70), (76, 85), (132, 85),

Polygon 10 (187, 172), (187, 41), (206, 27), (206, 158), (187, 172)

Polygon 11 (132, 172), (132, 41), (187, 41), (187, 172), (132, 172)

Polygon 12 (187, 41), (206, 27), (150, 27), (132, 41), (187, 41)

Figure 4.8: Sample Stored Information

4.4.1.2 Regenerating Graphical Object

The tool also has a regenerating function. After the tool fetches rendered

information, the information reforms it into C++ code: “LineTo(10, 10, 50, 50)”, and it

binds it to a prepared C++ file to render the object data to the screen. The bound file is

then compiled and linked to show the regenerated objects. For example, the main program

can generate a rendered object (Figure 4.9) from the stored information (Figure 4.8).

33

Figure 4.9: Regenerating Points Information

4.4.1.3 Comparing Graphical Objects

In order to compare an original object and a test result, the main control program has

a comparison function. After the main control program stores the original information and

the test result, it binds the original program and the test result and prepares a C++ program

that includes APIs comparison routine. And then the bound file is compiled and linked to

compare the original rendered object and the test result (Figure 4.10).

 The comparison program is developed in C++ and implemented in an object

oriented fashion. A root class is the whole graph object and inherits to child classes such

as LineTo, MoveTo, and Polygon class (Figure 4.11). An example program (Figure 4.12)

shows both a root class (Graph class) and a child class (Polygon class). Additionally, this

object oriented design can expand to other APIs without any major design changes.

34

35

Test result API
information

Original API
information

Control
C++ code

Show comparison
result

Build a bound file

Bind C++ files

Figure 4.10: Flowchart for Gdi23.dll

LineTo class Polygon class MoveTo class

Root Class
Graph object

Figure 4.11: Class Structure

/**

 * Polygon Class

 **/

class CPolygon

{

private:

 POINT *pPoint; //Points information

 float *pLength; //Length information

 float *pAngle; //Angle information

 int iNum; //Number of polygon

public:

 CPolygon(void);

 int GetNumber(void){return iNum;}

 POINT* GetPoints(void){return pPoint;}

 float* GetLength(void){return pLength;}

 float* GetAngle(void){return pAngle;}

 void Add(POINT *point, int num);

 char Compare(POINT *plygon, int num, float

 *dstAngle, float *dstLength);

};

/**

 * Graph Object Class

 **/

class CGraph : CPolygon{

private:

 int iNumLine; //Number of lines

 CPolygon *cPolygon; //Polygon object pointer

 int iNumPolygon;//Number of polygon

 int iNumPolygonNotSameAsPoint;//Not same polygon No.

 int iNumPolygonNotSameAsAngle;//Not same angle No.

 int iNumPolygonNotSameAsLength;//Not same length No.

public:

 CGraph(void);

 void AddLine(int ixstart, int iystart, int ixend, int iyend);

 void AddPolygon(POINT *point, int num);

 CPolygon* GetPolygon(int LineNo);

 int GetPolygonNumber(void){return iNumPolygon;}

 int GetSamePolygonNumber_Point(void);

 int GetSamePolygonNumber_Angle(void);

 int GetSamePolygonNumber_Length(void);
 BOOL CompareLine(CGraph *graph);

 BOOL ComparePolygon(CGraph *graph);

};

36

Figure 4.12: Sample Program for Gdi23.dll

Chapter 5

5

5.1

AN EXAMPLE: MICROSOFT

POWERPOINT

Microsoft PowerPoint is used as a sample application to confirm the API technique.

PowerPoint is one of the most popular graphical presentation applications and is

complicated enough to demonstrate the API comparison technique working on a real

application.

In this chapter, we will examine which types of graphical objects PowerPoint uses

and which types of bugs may be attributed to test object. Furthermore, to fully realize API

comparison, a tool is developed that implements the method on the Win32 platform. The

tool has many advanced abilities for comparing graphical objects. A case study applying

the tool to PowerPoint is conducted and the results are reported.

 Graphic Objects
In this section, we will examine the types of graphical objects used by PowerPoint.

Line, triangle, and rectangle

Most drawing objects are composed using simple line objects. A triangle is made up

of 3 connected lines, a rectangle is 4 lines, and a polygon is 4 or more lines. It is possible

to fetch and compare these objects by the API comparison method because the APIs

contain the information that describes the lines that compose the graphical object.

Bitmap fonts

37

Text is displayed by using font or text APIs. When an application uses text-

handling API, any commercial automation testing tools can fetch text information. Yet, for

a variety of reasons, developers sometimes choose not to use text-handling API to display

text. In such cases, bitmap fonts are used so that text information is rendered a bitmap

instead of using text-handling APIs. When it is stored as a bitmap, existing commercial

automation testing tools cannot fetch text information. The only way to fetch such

information is to load and store the information as a bitmap object. .

Image object

Because a large number of multimedia applications and tools were developed over

a decade ago, testers are required to test a large number of image types such as bitmap, GIF,

and JPEG.

5.2

5.2.1

Type of Graphical Bugs
Software failure is categorized into improperly constrained input, improperly

constrained stored data, improperly constrained computation, and improperly constrained

output that API compassion confined [Whittak1]. Based on Whittaker’s idea, we can

categorize the types of graphical bugs. These are improperly constrained computing

coordinate, improperly computing color information, and improperly constrained output.

Improperly Constrained Computing Coordinate

One common bug is that drawing objects are often rendered at the wrong

coordinate. Consider the following bug report:

38

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Figure 5.1: Pre-saved Bitmap Image

Figure 5.2: Actual Bitmap Image

Bug Report:

Application: Microsoft PowerPoint 2000

Steps:

1. Launch Microsoft PowerPoint

2. Insert a graph (Figure 5.1).

3. Minimize the graph

39

4. Click at another location (not on the graph)

5. Restore the original size

Expected Result:

The graph is shown as original image (Figure 5.1)

Result:

 The graph is shown with corruption (Figure 5.2)

5.2.2

5.2.3

Improperly Computing Color Information

Applications use graphical APIs to show objects with color information. First, the

operating system receives APIs calls from the application and then calculates the color

information based on specific capabilities of the installed graphic card. Next, the operating

system passes the information to a driver for the graphic card. The problem is that users

tend to have vastly different graphic device with varying ability to display colors.

Therefore, it is difficult to develop an application to adjust to all of these graphic systems.

Another problem is that drawing a graphic uses multiple software modules and hardware,

including: the application, operating system, graphic card drivers, and graphic card

hardware (Figure 5.3). Consequently, bugs may be in the application, may come from the

operating system, the graphic driver or any combination thereof.

Although improperly constrained computing coordinate bugs may have the same

type of the problems, which are not from the application, it does not often happen because

the range of the typical monitor is simply 0 through a couple of thousand but the range of

color is from black and white through over millions of colors.

Improperly Constrained Output

It is obvious that some graphic driver software and hardware have defect.

However some bugs are not from the graphics driver and it is difficult to find the bug and

40

the cause of the defect. As explained above, to output graphic image, the data, which

application made, go through application, API, operating system, graphic driver, and

graphic card software (Figure 5.3)

Application

API: such as LineTo(10, 10, 50, 40);

Figure 5.3: Graphical Object Output

Interface bugs are between the application and API; API and operating system;

operating system and graphic driver; graphic driver and graphic card software. Therefore,

even when testers find a bug, which is graphically related, it is not easy to find the cause of

defect. To find the cause of defects, testers often attempt to test using another graphic card

and operating system. Though this work is time consuming, there is no other way to

distinguish the application’s bugs from others bug. In addition, both API comparison and

bit-by-bit comparison cannot find this type bugs.

5.2.4 Testing

Testing is executed by another tool written for PowerPoint. The target object is

one of PowerPoint Graph’s functions (Figure.5.4). The Graph’s object is mainly structured

in terms of polygons. To simplify the analysis and results, only the polygon object

information is tested by the tool.

Operating System Graphic Driver Graphic Card
Software

Output

41

42

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Figure 5.4: Original Object

5.2.4.1 Point Comparison

In the point comparison method, two objects (Figure 5.4 and Figure. 5.5) are

compared. The Figure 5.5 is only changed at 1st qtr East value from the original object

(Figure 5.4). The comparison program is supposed to show that only one polygon is

different. The following is a test case:

Case 1: Compare two slightly different objects

1. Launch PowerPoint

2. Insert graph object (Figure 5.4)

3. Save the object as original object

4. Change a value 1st quarter East to “90” (Figure 5.5)

5. Save the object as destination object

Expected result: The comparison program shows differences between objects

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Figure 5.5: Modified Object

Running on the Figure 5.4 objects, the tool fetches and stores Figure 5.6’s point

information as original information.

Figure 5.6: Regenerated Object (Original)

Running on the Figure 5.5 object, the tool fetches and stores Figure 5.7 point

information as destination information.

43

Figure 5.7: Regenerated Object (Modified)

Test Analysis:

• 42 polygons are detected

• 2 polygons have different point values

• 9 lines have different values

• 168 points are detected

• All detailed results are in Appendix A.

Test Result: PASS

In this case, there are 42 polygons. Comparing between Figures 5.4 and 5.5, the

program detects two polygons that are different, this includes 9 lines that are different.

Therefore, the tool can detect the difference as expected (more details are described in

Appendix A).

44

5.2.4.2 Vector Comparison

To illustrate vector comparison, 2 test cases are performed below.

Case 1: Compare two slightly different objects

1. Launch PowerPoint

2. Insert graph object(Figure 5.8)

3. Save the object as original object

4. Change a value 1st quarter East to “90”(Figure 5.5)

5. Save the object as destination object

Expected result: The comparison program shows the difference between objects

Case2: Compare two similar objects.

1. Launch PowerPoint

2. Insert graph object(Figure 5.8)

3. Save the object as original object

4. Zoom 33%(Figure 5.10)

5. Save the object as destination object

Expected result: The comparison program shows objects are not the same but similar.

Case1 shows that the vector comparison method works to detect the object

differences as the point comparison method did above. Case 2 confirms that the vector

comparison method distinguishes an object from a similar object. PowerPoint has a zoom

function, which can change object viewing from 10% through 400%. Even when the zoom

rate is changed, the comparison process can detect that they are similar objects.

45

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Figure 5.8: Original Object for Case2

The tool fetches and stores the rendered objects point’s information (Figure 5.9) from

Figure 5.8 as an original object.

Figure 5.9: Regenerated Original Object for Case2

The tool fetches and stores point’s information (Figure 5.11) from Figure 5.101 as a

destination object.

46

0

20

40

60

80

100

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East
W est
North

Figure 5.10: Destination Object for Case2

Figure 5.11: Regenerated for Destination Object for Case2

Test Analysis:

• 42 polygons are detected

• 168 lines are detected

• 168 angles are same between original and destination object

• 168 vector lengths have same rate between original and destination object.

• All details are described in Appendix B.

Test Result: PASS

47

The comparison program shows objects are not same but similar because:

• All angles are the same.

• All points are different.

• Original and destination lengths have the same proportion.

Thus, the tool can distinguish between objects with similar characteristics.

48

 Chapter 6

6 CONCLUSION

6.1 Summary of This Thesis
The thesis has succeeded in providing the concept that API comparison method

can be useful comparing graphical objects automatically. This is a great advancement for

automated verification work of what has traditionally been a manual intensive-process.

Though testers have struggled to compare bitmap and drawing images automatically, we

can now offer an alternative method to verify rendered images using API call comparison.

This research has demonstrated the basic steps to accomplish API comparison

techniques:

 Point-based comparison was demonstrated on Microsoft PowerPoint to compare

each point in a rendered polygon.

Vector-based comparison was also demonstrated on Microsoft PowerPoint to

allow more advanced comparison of vectors that polygon points represent. This allows

more advanced behavior like scaling on object.

The use of a real application like Microsoft PowerPoint was chosen to show that

the technique work on actual retail applications.

49

6.2 Future Work
This thesis demonstrated innovative approach to automatically verifying rendered

screen object. A number of extensions are possible.

Graphical object comparison with color Information: In this thesis, color

information was not considered in the comparison of graphical objects. However, since

color information is contained the API call information, it is available to this technique.

Random and smart monkey testing: For PowerPoint and other graphical

applications, it was demonstrated that testers could verify rendered objects by the API

comparison method. To expand this method, we could possibly perform random and

monkey tests by the API comparison method [Nyma00]. A major problem with random

testing and monkey testing for drawing object is manual verification of the test result.

Testers now have the API comparison method and can execute random and smart monkey

with automate verification.

Integration with commercial automated tools: During this research, a tool

comparing drawing objects was developed. Consequently, it is natural that the tool can be

integrated into commercial automated testing products like Rational Robot, Rational Visual

Test, and Mercury WinRunner.

Web application testing: Web application testing is much more important than it

was a decade ago. Every year, web software is incorporating many existing objects such as

JPEG, MPEG, and XML. Testers can potentially use the API comparison technique for

comparing these objects.

Testing print functions: Printing is a very complex test because it is difficult to

compare between printed objects and screen objects image by automation. Especially,

drawing objects are difficult to compare. For example, CAD applications require

mathematical accuracy for matching between printed and screen images. The API

comparison model can offer the possibility of accuracy by automating comparisons

between printed and screen images. For example, Win32s API represents a line as:

50

LineTo(10, 10, 50, 50)

And Postscripts language represents the same line as:

10 10 moveto

50 50 lineto

Therefore, it is possible to compare Postscript and screen object based on

information contained in the API call stream.

Operational testing: Beta testing and field testing are important and difficult

because ordinary customers do not have the skill to report bugs. Thus, capturing

information from user session would be valuable way to capture debugging information.

Steven has stated [Steave00] that the Java based operational testing method captures

various input information better than commercial tools such as Rational Robot and Visual

Test do.

It is clear that the API comparison method can help diagnose a customer facing a

problem because the API comparison method is not only capable of fetching the output

information, it can also fetch input information. The most difficult issue when the problem

is found on the customer side, is the difficultly to distinguish between a general bug and a

specific configuration bug. In case of finding a configuration bug, input capturing

information is not enough to reproduce the defect. Both output information in addition to

input information will aid in problem reproduction and diagnosis.

51

REFERENCES

[Bach99] Bach, James. “Test automation snake oil.” 14th International conference on

Testing Computer Software, US Professional Development Institute, June

1997.

[Beizer99] Beizer, Boris. Black-Box Testing, John Wiley & Sons, Inc, New York, 1995.

[Beizer83] Beizer, Boris. Software Testing Techniques, Van Nostrand Reinhold, New

York, 1983.

[Binder99] Binder, Robert V. Testing Object-Oriented Systems, Addison Wesly

Longman, Massachusetts, 1999.

[Black99] Black, Rex. Managing the Testing Process, Redmond WA, Microsoft Press,

1999.

[Dalal97] Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C. “The AETG

System: An Approach to Testing Based on Combinatorial Design.” IEEE

Transaction on Software Engineering, Vol. 23, Issue 7, July 1997, pp. 437-

444.

[Dustin991] Dustin Elfriede. “Lessons in Test Automation” Software Testing & Quality

Magazine, September/October 1999

<http://www.stqemagazine.com/featured.asp?id=6>.

[Dustin992] Dustin, Elfriede, Rashka Jeff., and Paul, John. Automated Software Testing,

Addison-Wesley, 1999.

[Fewst99] Fewster, Mark. Software Test Automation, Addison Wesley, New York,

1999.

[Grady92] Grady, Robert B. Practical Software Metrics for Project Management and

Process improvement, Pentice Hall, New Jersey, 1992.

[Hetzel88] Hetzel, Bill. The Complete Guide to Software Testing, John Wiley & Sons,

New York, 1988.

[Jorgen00] Jorgensen, Alan. Class lectures on Advanced Software Testing, Florida

Institute of Technology, May 2000.

52

[Kaner93] Kaner, Cem. Falk Jack., and Nguyen, Hung Quoc. Testing Computer

Software, International Thomson Computer Press, MA, 1993.

[Kaner97] Kaner, Cem. “Improving the Maintainability of Automated Test Suites.”

Quality Week ‘97, 1997.

[Kaner001] Kaner, Cem. Class lectures on the Software Test and Quality, Florida

Institute of Technology, Sep 2000.

[Kaner002] Kaner, Cem. Architectures of Test Automation, Class handout on the

Software Test and Quality, Florida Institute of Technology, Sep 2000.

[Kit99] Kit, Edward. “Integrated, Effective Test Design and Automation.” Software

Development Magazine, Feb 1999, pp. 27-41.

[Korek98] Korel, Bogdan., and AI-Yami, Ali M. “Automated Regression Test

Generation.” International Symposium on Software Testing and Analysis,

March 1998.

[Maric98] Brian Marick. “When should a Test Be Automated?” International Software

Quality Week, May 1998.

[Myers79] Myers, Glenford J. The Art of Software Testing, John Wiley & Sons, New

York, 1979.

[Nyma00] Nyman, Noel. “Using Monkey Test Tools.” Testing and Quality Magazine,

Vol. 2, Issue 1, Jan/Feb 2000, pp 18-26

[Panka00] Pankanti, Sharath., and Bolle, Rund M. “Biometrics: The Future of

Identification.” IEEE Computer, Vol. 33, Issue 2, February 2000, pp. 46-49.

[Pettic96] Pettichord, Bret, “Success with Test Automation.” International Software

Quality Week, 1996

[Pettic99] Pettichord, Bret. “Seven Steps to Test Automation Success.” STAR West,

November 1999.

[Pentl00] Pentland, Alex S., and Choubury, Tanzeem. “Face Recognition for Smart

Environments.” IEEE Computer, Vol. 33, Issue 2, February 2000, pp. 50-55.

[Poston96] Poston, Robert M. Automating Specification-Based Software Testing, IEEE

Computer Society Press, CA, 1996.

[Rational99] Using Rational Robot Release 7.5, Rational Software Corporation, MA,

1999.

53

[Steave00] Steven, John. “jRapture: A Capture/Replay Tool for Observation-based

Testing” International Symposium on Software Testing and Analysis, 2000.

[Taka00] Takahashi, Juichi. “Is Special Software Testing Necessary Before Releasing

Products to an International Market?” International Quality Week, June

2000.

[Whittak1] Whittaker, James., and Jorgensen, Alan. Why Software Fails,

<http://se.fit.edu/ papers/SwFails.pdf>.

[Whittak2] Whittaker, James A. “What Is Software Testing? And Why Is It So Hard?”

IEEE Software, Vol. 17, Issue 1, January-February 2000, pp. 70-79.

[Whittak3] Whittaker, James A. Class lectures on the Software Test & Quality, Florida

Institute of Technology, September 1999.

[Zambe98] Zambelich, Keith. Using GUI-based Automated Test Tools to Test Legacy

Applications <http://www.sqa-test.com/w_paper2.html>.

54

APPENDIX A

In this appneix, test results for point-based verification, which is discussed in

chapter 5, is showed.

Table A.1 Point-based Verification 1

Polygon No. Original Destination Result Polygon No. Original Destination Result

1 (40, 172) (40, 172) Pass 4 (236, 169) (236, 169) Pass
 (43, 169) (43, 169) Pass (233, 172) (233, 172) Pass
 (236, 169) (236, 169) Pass (40, 172) (40, 172) Pass
 (233, 172) (233, 172) Pass (43, 169) (43, 169) Pass
 (40, 172) (40, 172) Pass (236, 169) (236, 169) Pass

2 (40, 172) (40, 172) Pass 5 (40, 172) (40, 172) Pass
 (40, 19) (40, 19) Pass (40, 19) (40, 19) Pass
 (43, 17) (43, 17) Pass (43, 17) (43, 17) Pass
 (43, 169) (43, 169) Pass (43, 169) (43, 169) Pass
 (40, 172) (40, 172) Pass (40, 172) (40, 172) Pass

3 (43, 169) (43, 169) Pass 6 (43, 169) (43, 169) Pass
 (43, 17) (43, 17) Pass (43, 17) (43, 17) Pass
 (236, 17) (236, 17) Pass (236, 17) (236, 17) Pass
 (236, 169) (236, 169) Pass (236, 169) (236, 169) Pass
 (43, 169) (43, 169) Pass (43, 169) (43, 169) Pass

55

Table A.2 Point-based Verification 2

Polygon No. Original Destination Result Polygon No. Original Destination Result

7 (59, 172) (59, 172) Pass 13 (80, 172) (80, 172) Pass
 (59, 137) (59, 19) Fail (80, 94) (80, 94) Pass
 (62, 134) (62, 16) Fail (84, 91) (84, 91) Pass
 (62, 169) (62, 169) Pass (84, 169) (84, 169) Pass
 (59, 172) (59, 172) Pass (80, 172) (80, 172) Pass

8 (48, 172) (48, 172) Pass 14 (69, 172) (69, 172) Pass
 (48, 137) (48, 19) Fail (69, 94) (69, 94) Pass
 (59, 137) (59, 19) Fail (80, 94) (80, 94) Pass
 (59, 172) (59, 172) Pass (80, 172) (80, 172) Pass
 (48, 172) (48, 172) Pass (69, 172) (69, 172) Pass

9 (59, 137) (59, 19) Fail 15 (80, 94) (80, 94) Pass
 (62, 134) (62, 16) Fail (84, 91) (84, 91) Pass
 (52, 134) (52, 16) Fail (73, 91) (73, 91) Pass
 (48, 137) (48, 19) Fail (69, 94) (69, 94) Pass
 (59, 137) (59, 19) Fail (80, 94) (80, 94) Pass

10 (69, 172) (69, 172) Pass 16 (107, 172) (107, 172) Pass
 (69, 120) (69, 120) Pass (107, 125) (107, 125) Pass
 (73, 117) (73, 117) Pass (110, 122) (110, 122) Pass
 (73, 169) (73, 169) Pass (110, 169) (110, 169) Pass
 (69, 172) (69, 172) Pass (107, 172) (107, 172) Pass

11 (59, 172) (59, 172) Pass 17 (96, 172) (96, 172) Pass
 (59, 120) (59, 120) Pass (96, 125) (96, 125) Pass
 (69, 120) (69, 120) Pass (107, 125) (107, 125) Pass
 (69, 172) (69, 172) Pass (107, 172) (107, 172) Pass
 (59, 172) (59, 172) Pass (96, 172) (96, 172) Pass

12 (69, 120) (69, 120) Pass 18 (107, 125) (107, 125) Pass
 (73, 117) (73, 117) Pass (110, 122) (110, 122) Pass
 (62, 117) (62, 117) Pass (100, 122) (100, 122) Pass
 (59, 120) (59, 120) Pass (96, 125) (96, 125) Pass
 (69, 120) (69, 120) Pass (107, 125) (107, 125) Pass

56

Table A.3 Point-based Verification 3

Polygon No. Original Destination Result Polygon No. Original Destination Result
19 (117, 172) (117, 172) Pass 25 (155, 172) (155, 172) Pass

 (117, 106) (117, 106) Pass (155, 19) (155, 19) Pass
 (121, 103) (121, 103) Pass (159, 16) (159, 16) Pass
 (121, 169) (121, 169) Pass (159, 169) (159, 169) Pass
 (117, 172) (117, 172) Pass (155, 172) (155, 172) Pass

20 (107, 172) (107, 172) Pass 26 (144, 172) (144, 172) Pass
 (107, 106) (107, 106) Pass (144, 19) (144, 19) Pass
 (117, 106) (117, 106) Pass (155, 19) (155, 19) Pass
 (117, 172) (117, 172) Pass (155, 172) (155, 172) Pass
 (107, 172) (107, 172) Pass (144, 172) (144, 172) Pass

21 (117, 106) (117, 106) Pass 27 (155, 19) (155, 19) Pass
 (121, 103) (121, 103) Pass (159, 16) (159, 16) Pass
 (110, 103) (110, 103) Pass (148, 16) (148, 16) Pass
 (107, 106) (107, 106) Pass (144, 19) (144, 19) Pass
 (117, 106) (117, 106) Pass (155, 19) (155, 19) Pass

22 (128, 172) (128, 172) Pass 28 (166, 172) (166, 172) Pass
 (128, 92) (128, 92) Pass (166, 113) (166, 113) Pass
 (132, 89) (132, 89) Pass (169, 110) (169, 110) Pass
 (132, 169) (132, 169) Pass (169, 169) (169, 169) Pass
 (128, 172) (128, 172) Pass (166, 172) (166, 172) Pass

23 (117, 172) (117, 172) Pass 29 (155, 172) (155, 172) Pass
 (117, 92) (117, 92) Pass (155, 113) (155, 113) Pass
 (128, 92) (128, 92) Pass (166, 113) (166, 113) Pass
 (128, 172) (128, 172) Pass (166, 172) (166, 172) Pass
 (117, 172) (117, 172) Pass (155, 172) (155, 172) Pass

24 (128, 92) (128, 92) Pass 30 (166, 113) (166, 113) Pass
 (132, 89) (132, 89) Pass (169, 110) (169, 110) Pass
 (121, 89) (121, 89) Pass (159, 110) (159, 110) Pass
 (117, 92) (117, 92) Pass (155, 113) (155, 113) Pass
 (128, 92) (128, 92) Pass (166, 113) (166, 113) Pass

57

Table A.4 Point-based Verification 3

Polygon No. Original Destination Result Polygon No. Original Destination Result
31 (176, 172) (176, 172) Pass 37 (214, 172) (214, 172) Pass

 (176, 95) (176, 95) Pass (214, 118) (214, 118) Pass
 (180, 93) (180, 93) Pass (217, 115) (217, 115) Pass
 (180, 169) (180, 169) Pass (217, 169) (217, 169) Pass
 (176, 172) (176, 172) Pass (214, 172) (214, 172) Pass

32 (166, 172) (166, 172) Pass 38 (203, 172) (203, 172) Pass
 (166, 95) (166, 95) Pass (203, 118) (203, 118) Pass
 (176, 95) (176, 95) Pass (214, 118) (214, 118) Pass
 (176, 172) (176, 172) Pass (214, 172) (214, 172) Pass
 (166, 172) (166, 172) Pass (203, 172) (203, 172) Pass

33 (176, 95) (176, 95) Pass 39 (214, 118) (214, 118) Pass
 (180, 93) (180, 93) Pass (217, 115) (217, 115) Pass
 (169, 93) (169, 93) Pass (207, 115) (207, 115) Pass
 (166, 95) (166, 95) Pass (203, 118) (203, 118) Pass
 (176, 95) (176, 95) Pass (214, 118) (214, 118) Pass

34 (203, 172) (203, 172) Pass 40 (224, 172) (224, 172) Pass
 (203, 137) (203, 137) Pass (224, 97) (224, 97) Pass
 (207, 134) (207, 134) Pass (228, 94) (228, 94) Pass
 (207, 169) (207, 169) Pass (228, 169) (228, 169) Pass
 (203, 172) (203, 172) Pass (224, 172) (224, 172) Pass

35 (192, 172) (192, 172) Pass 41 (214, 172) (214, 172) Pass
 (192, 137) (192, 137) Pass (214, 97) (214, 97) Pass
 (203, 137) (203, 137) Pass (224, 97) (224, 97) Pass
 (203, 172) (203, 172) Pass (224, 172) (224, 172) Pass
 (192, 172) (192, 172) Pass (214, 172) (214, 172) Pass

36 (203, 137) (203, 137) Pass 42 (224, 97) (224, 97) Pass
 (207, 134) (207, 134) Pass (228, 94) (228, 94) Pass
 (196, 134) (196, 134) Pass (217, 94) (217, 94) Pass
 (192, 137) (192, 137) Pass (214, 97) (214, 97) Pass
 (203, 137) (203, 137) Pass (224, 97) (224, 97) Pass

58

APPENDIX B

In this appneix, test results for vector-based verification, which is discussed in

chapter 5, is showed.

Table B.1 Vector-Based Verification 1

Polygon No. Angle Length Result
 Original Destination Original Destination

1 -0.785 -0.785 4.243 4.243 Pass
 0.000 0.000 193.000 193.000 Pass
 0.785 0.785 4.243 4.243 Pass
 0.000 0.000 193.000 193.000 Pass

2 -1.571 -1.571 153.000 153.000 Pass
 -0.588 -0.588 3.606 3.606 Pass
 1.571 1.571 152.000 152.000 Pass
 0.785 0.785 4.243 4.243 Pass

3 -1.571 -1.571 152.000 152.000 Pass
 0.000 0.000 193.000 193.000 Pass
 1.571 1.571 152.000 152.000 Pass
 0.000 0.000 193.000 193.000 Pass

4 0.785 0.785 4.243 4.243 Pass
 0.000 0.000 193.000 193.000 Pass
 -0.785 -0.785 4.243 4.243 Pass
 0.000 0.000 193.000 193.000 Pass

5 -1.571 -1.571 153.000 153.000 Pass
 -0.588 -0.588 3.606 3.606 Pass
 1.571 1.571 152.000 152.000 Pass
 0.785 0.785 4.243 4.243 Pass

6 -1.571 -1.571 152.000 152.000 Pass
 0.000 0.000 193.000 193.000 Pass
 1.571 1.571 152.000 152.000 Pass
 0.000 0.000 193.000 193.000 Pass

7 -1.571 -1.571 35.000 153.000 Fail
 -0.785 -0.785 4.243 4.243 Pass
 1.571 1.571 35.000 153.000 Fail
 0.785 0.785 4.243 4.243 Pass

59

Table B.2 Vector-Based Verification 2

Polygon No. Angle Length Result
 Original Destination Original Destination

8 -1.571 -1.571 35.000 153.000 Fail
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 35.000 153.000 Fail
 0.000 0.000 11.000 11.000 Pass

9 -0.785 -0.785 4.243 4.243 Pass
 0.000 0.000 10.000 10.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

10 -1.571 -1.571 52.000 52.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 52.000 52.000 Pass
 0.644 0.644 5.000 5.000 Pass

11 -1.571 -1.571 52.000 52.000 Pass
 0.000 0.000 10.000 10.000 Pass
 1.571 1.571 52.000 52.000 Pass
 0.000 0.000 10.000 10.000 Pass

12 -0.644 -0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass
 0.785 0.785 4.243 4.243 Pass
 0.000 0.000 10.000 10.000 Pass

13 -1.571 -1.571 78.000 78.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 78.000 78.000 Pass
 0.644 0.644 5.000 5.000 Pass

14 -1.571 -1.571 78.000 78.000 Pass
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 78.000 78.000 Pass
 0.000 0.000 11.000 11.000 Pass

15 -0.644 -0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

60

Table B.3 Vector-Based Verification 3

Polygon No. Angle Length Result
 Original Destination Original Destination

16 -1.571 -1.571 47.000 47.000 Pass
 -0.785 -0.785 4.243 4.243 Pass
 1.571 1.571 47.000 47.000 Pass
 0.785 0.785 4.243 4.243 Pass

17 -1.571 -1.571 47.000 47.000 Pass
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 47.000 47.000 Pass
 0.000 0.000 11.000 11.000 Pass

18 -0.785 -0.785 4.243 4.243 Pass
 0.000 0.000 10.000 10.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

19 -1.571 -1.571 66.000 66.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 66.000 66.000 Pass
 0.644 0.644 5.000 5.000 Pass

20 -1.571 -1.571 66.000 66.000 Pass
 0.000 0.000 10.000 10.000 Pass
 1.571 1.571 66.000 66.000 Pass
 0.000 0.000 10.000 10.000 Pass

21 -0.644 -0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass
 0.785 0.785 4.243 4.243 Pass
 0.000 0.000 10.000 10.000 Pass

22 -1.571 -1.571 80.000 80.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 80.000 80.000 Pass
 0.644 0.644 5.000 5.000 Pass

23 -1.571 -1.571 80.000 80.000 Pass
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 80.000 80.000 Pass
 0.000 0.000 11.000 11.000 Pass

61

Table B.4 Vector-Based Verification 4

Polygon No. Angle Length Result
 Original Destination Original Destination

24 -0.644 -0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

25 -1.571 -1.571 153.000 153.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 153.000 153.000 Pass
 0.644 0.644 5.000 5.000 Pass

26 -1.571 -1.571 153.000 153.000 Pass
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 153.000 153.000 Pass
 0.000 0.000 11.000 11.000 Pass

27 -0.644 -0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

28 -1.571 -1.571 59.000 59.000 Pass
 -0.785 -0.785 4.243 4.243 Pass
 1.571 1.571 59.000 59.000 Pass
 0.785 0.785 4.243 4.243 Pass

29 -1.571 -1.571 59.000 59.000 Pass
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 59.000 59.000 Pass
 0.000 0.000 11.000 11.000 Pass

30 -0.785 -0.785 4.243 4.243 Pass
 0.000 0.000 10.000 10.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

31 -1.571 -1.571 77.000 77.000 Pass
 -0.464 -0.464 4.472 4.472 Pass
 1.571 1.571 76.000 76.000 Pass
 0.644 0.644 5.000 5.000 Pass

62

Table B.5 Vector-Based Verification 5

Polygon No. Angle Length Result
 Original Destination Original Destination

32 -1.571 -1.571 77.000 77.000 Pass
 0.000 0.000 10.000 10.000 Pass
 1.571 1.571 77.000 77.000 Pass
 0.000 0.000 10.000 10.000 Pass

33 -0.464 -0.464 4.472 4.472 Pass
 0.000 0.000 11.000 11.000 Pass
 0.588 0.588 3.606 3.606 Pass
 0.000 0.000 10.000 10.000 Pass

34 -1.571 -1.571 35.000 35.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 35.000 35.000 Pass
 0.644 0.644 5.000 5.000 Pass

35 -1.571 -1.571 35.000 35.000 Pass
 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 35.000 35.000 Pass
 0.000 0.000 11.000 11.000 Pass

36 -0.644 -0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

37 -1.571 -1.571 54.000 54.000 Pass
 -0.785 4.243 4.243
 1.571 54.000 54.000 Pass
 0.785 0.785

-0.785 Pass
1.571

4.243 4.243 Pass
38 -1.571 -1.571 54.000 54.000 Pass

 0.000 0.000 11.000 11.000 Pass
 1.571 1.571 54.000 54.000 Pass
 0.000 0.000 11.000 11.000 Pass

39 -0.785 -0.785 4.243 4.243 Pass
 0.000 0.000 10.000 10.000 Pass
 0.644 0.644 5.000 5.000 Pass
 0.000 0.000 11.000 11.000 Pass

63

Table B.6 Vector-Based Verification 6

Polygon No. Angle Length Result
 Original Destination Original Destination

40 -1.571 -1.571 75.000 75.000 Pass
 -0.644 -0.644 5.000 5.000 Pass
 1.571 1.571 75.000 75.000 Pass
 0.644 0.644 5.000 5.000 Pass

41 -1.5708 -1.5708 75.000 75.000 Pass
 0 0 10.000 10.000 Pass
 1.570796 1.570796 75.000 75.000 Pass
 0 0 10.000 10.000 Pass

42 -0.6435 -0.6435 5.000 5.000 Pass
 0 0 11.000 11.000 Pass
 0.785398 0.785398 4.243 4.243 Pass
 0 0 10.000 10.000 Pass

64

APPENDIX C

In this section, developed tool operation is succinctly explained.

Requirement to run the tool:

Operating System: Microsoft Windows 2000 (Build 2195)

Invoking:

Invoking a tool, Figure C.1’s screen shows.

Figure C.1: Main Screen

65

File Saving

• File/Save as Original: Save a file as original (Figure C.2)

• File/Save as Destination: Save a file as destination

Figure C.2: File Saving

Logging

• Log/Execute: Forcibly redraw target drawing object and log GDI information

• Log/Show Result: Show the logging result

• Log/Delete Log: Delete the log file.

Figure C.3: Logging

66

Building

• Build/Bind Files: Bind the saved file and prepared C file.

• Build/Show C Source File: Show the bound C file, which can be compiled

• Build/Build All: Build bound C file

• Build/Recover the Picture: Regenerate and show saved drawing object.

Figure C.4: Build a File

67

Comparing

• Compare/Bind Org and Dst: Bind the original and destination file.

• Compare/Build: Build the bound file

• Compare/Compare and Show Result: Compare original and destination object

and show the result.

• Compare/Error Rate (Optional):

Figure C.5: Compare Objects

68

Thesis

Version 1.0

Printed Date: 5/28/2003

Word Count: 10509

1

	Background and Introduction
	Manual Testing
	Automated Testing
	Design and Develop Test Cases
	Test Case Execution
	Verification

	Automated Testing Versus Manual Testing
	When to Automate
	Build Verification Test (Smoke Test)
	Regression Test
	API Testing
	Stress /Performance Testing
	Internationalization Testing
	Multiplatform Compatibility Testing (Configuration Testing)

	When Not to Automate
	Drawing and Image Processing Application Testing

	Current Trends

	The Verification Problem
	Background of Comparison Techniques
	Verification for Graphic Object
	Bit-by-Bit Comparison Model
	API Comparison

	Benefit of Using the API Comparison Approach
	
	System Configuration
	Disk Size
	Processing Speed
	Masking Technique
	Expansion and Reduction Testing
	Oracle Testing

	Limitations of the API Comparison Approach
	Bitmap Images
	Advanced Graphical Controlled Applications
	Graphical Device Dependency Applications

	A Solution Using API Call Comparison
	Point-based Comparison
	Vector Comparison

	Tool Development
	Design and Development Environment
	Microsoft PowerPoint File Structure
	Calling the gdi23.dll

	Gdi23.dll Development
	Main Control Program
	
	Fetching Rendered Information
	Regenerating Graphical Object
	Comparing Graphical Objects

	An Example: Microsoft PowerPoint
	Graphic Objects
	Type of Graphical Bugs
	Improperly Constrained Computing Coordinate
	Improperly Computing Color Information
	Improperly Constrained Output
	Testing
	Point Comparison
	Vector Comparison

	Conclusion
	Summary of This Thesis
	Future Work

