

Determining the Number of Clusters/Segments in
Hierarchical Clustering/Segmentation Algorithms

Stan Salvador and Philip Chan
Dept. of Computer Sciences Technical Report CS-2003-18

Florida Institute of Technology
Melbourne, FL 32901

{ssalvado, pkc}@cs.fit.edu

ABSTRACT
We investigate techniques to automatically determine the number
of clusters to return from hierarchical clustering and
segmentation algorithms. We propose an efficient algorithm, the
L Method, that finds the “knee” in a ‘# of clusters vs. clustering
evaluation metric’ graph. Using the knee is well-known, but is
not a particularly well-understood method to determine the
number of clusters. We explore the feasibility of this method,
and attempt to determine in which situations it will and will not
work.

1. INTRODUCTION
Motivation. While clustering and segmentation algorithms are
unsupervised learning processes, users are usually required to set
some parameters for these algorithms. These parameters vary
from one algorithm to another, but most clustering/segmentation
algorithms require a parameter that either directly or indirectly
specifies the number of clusters/segments. This parameter is
typically either k, the number of clusters/segments to return, or
some other parameter that indirectly controls the number of
clusters to return, such as an error threshold. Setting these
parameters requires either detailed pre-existing knowledge of the
data, or time-consuming trial and error. The latter case still
requires that the user has sufficient domain knowledge to know
what a good clustering “looks” like. However, if the data set is
very large or is multi-dimensional, human verification could
become difficult. To automatically find a reasonable number of
clusters, many existing methods must be run repeatedly with
different parameters (trial and error), and are impractical for real
world data sets, which can be quite large.

Problem. We desire to develop an algorithm that can
automatically and efficiently determine a reasonable number of
clusters/segments to return from any hierarchical
clustering/segmentation algorithm.

Approach. In order to identify the correct number of clusters to
return from a hierarchical clustering/segmentation algorithm, we
introduce the L Method. Hierarchical algorithms either merge
the two most similar clusters together (bottom-up), or split the
least internally homogeneous cluster into two (top-down). The
definition of a “cluster” is not well-defined and measuring
cluster quality is rather subjective. Thus, there is a large number
of clustering algorithms with unique similarity functions and
correspondingly unique notions of what a good cluster “looks”
like. The L Method uses the same similarity function used in a

hierarchical algorithm to construct an evaluation graph where the
x-axis is the number of clusters and the y-axis is the value of the
similarity function during the merge or split at x clusters. This
knee, or the point of maximum curvature of this graph, is used as
the number of clusters to return. The knee is determined by
finding the area between the two lines that most closely fit the
curve. Our approach needs only a single pass over the dataset,
and the overhead is trivial compared to the runtime of the
clustering/segmentation algorithm.

Contributions. Our main contributions are: (1) we demonstrate
an accurate method to efficiently determine a reasonable number
of clusters to return from any hierarchical clustering or
segmentation algorithm; (2) we introduce a novel method to find
the knee of a curve; (3) we explore the feasibility and limitations
of using the “knee” of a curve to determine the number of
clusters to return by evaluating its performance on several
different algorithms and data sets.

Organization. The next section gives an overview of related
work. Section 3 provides a detailed explanation of our “L
Method,” which is able to efficiently and accurately determine a
good number of clusters to return from hierarchical
clustering/segmentation algorithms. Section 4 discusses
experimental evaluations of the L Method using several
clustering and segmentation algorithms, and Section 5
summarizes our study.

2. RELATED WORK
Clustering Algorithms. Clustering is an unsupervised machine
learning process that creates clusters such that data points inside
a cluster are close to each other, and also far apart from data
points in other clusters. There are four main categories of
clustering algorithms: partitioning, hierarchical, density-based,
and grid-based. Hierarchical clustering algorithms can be
agglomerative or divisive. The agglomerative (bottom-up)
approach repeatedly merges two clusters, while the divisive (top-
down) approach repeatedly splits a cluster into two. CURE [3]
and Chameleon [5] are examples of two hierarchical clustering
algorithms.

Segmentation Algorithms. Segmentation algorithms take time
series data as input and produce a Piecewise Linear
Representation (PLR) as output. A PLR is a set of consecutive
line segments that tightly fit the original time series.
Segmentation algorithms are somewhat related to clustering

algorithms in that each segment can be though of as a cluster.
However, segmentation algorithms typically create a finer grain
partitioning than clustering algorithms. There are three common
approaches to time series segmentation [6]. First, in the Sliding
Window approach, a segment is grown until the error of the line
is above a specified threshold, then a new segment is started.
Second, in the Top-down approach, the entire time series is
recursively split until the desired number of segments or an error
threshold is reached. Third, the Bottom-up approach typically
starts off with n/2 segments, and the 2 most similar adjacent
segments are repeatedly joined until the desired number of
segments or the error threshold is reached. Gecko [9] is a
bottom-up segmentation algorithm that merges clusters based on
slope and creates its initial fine-grain approximation by first
performing a top-down pass.

Determining the Number of Clusters/Segments. Six common
approaches to estimating the dimension of a model (such as the
number of clusters or segments) are: cross-validation, penalized
likelihood estimation, permutation tests, resampling, and finding
the knee of an error curve.

Cross-validation techniques create models that attempt to fid the
data as accurately as possible. Monte Carlo cross-validation [10]
has been successfully used to prevent over fitting (too many
clusters/segments). Penalized likelihood estimation also
attempts to find a model that fits the data as accurately as
possible, but also attempts to minimize the complexity of the
model. Specific methods to penalize models based on their
complexity are: MML [1], MDL [4], BIC [2], AIC, and SIC [11].
Permutation tests [14] have been used to prevent segmentation
algorithms from creating a PLR that over-fits the data.
Resampling [8] attempts to find the correct number of clusters by
repeatedly clustering samples of the data set, and determining at
what number of clusters the clusterings of the various samples
are the most “stable.”

The “knee” of an error curve is a well known, but little
understood method to determine an appropriate number of
clusters or segments. There are other methods that transform the
error curve into a new curve where the minimum or maximum
value in the transformed curve is used as the number of
clusters/segments to return. Such methods include the Gap
statistic [13] and prediction strength [12]. These methods
generally require the entire clustering or segmentation algorithm
to be run for each potential value of k.

Finding the Knee of a Curve. The knee of a curve is loosely
defined as the point of maximum curvature. The knee in a “# of
clusters vs. classification error” graph can be used to determine
the number of clusters to return. Various methods to find the
knee of a curve are:

1. The largest magnitude difference between two points.
2. The first data point with a second derivative above some

threshold value.
3. The data point with the largest second derivative.
4. The point on the curve that is furthest from a line fitted to

the entire curve.
5. Our L-method, which finds the boundary between the pair

of straight lines that most closely fit the curve.

This list is ordered from the methods that make a decision about
the knee locally, to the methods that locate the knee globally by
considering more points of the curve. The first two methods use
only single pairs of adjacent points to determine where the knee
is. The third method uses more than one pair of points, but still
only considers local trends in the graph. The last two methods
consider all data points at the same time. Local methods may
work well for smooth, monotonically increasing/decreasing
curves. However, they are very sensitive to outliers and local
trends, which may not be globally significant. The 4th method
takes every point into account, but only works well for
continuous functions, and not curves where the knee is a sharp
jump. Our L Method considers all points to keep local trends or
outliers from preventing the true knee to be located, and is able
to find knees that exist as sharp jumps in the curve.

3. APPROACH
Our L Method attempts to automatically determine an
appropriate number of clusters/segments to return, by finding the
knee in an evaluation graph.

3.1 Evaluation Graphs
The information required to determine an appropriate number of
clusters/segments to return is contained in an evaluation graph
that is created by the clustering/segmentation algorithm. The
evaluation graph is a two-dimensional plot where the x-axis is
the number of clusters, and the y-axis is a measure of the quality
or error of a clustering consisting of x clusters. Other approaches
use similar graphs, however they are usually generated by re-
running the entire clustering or segmentation algorithm for every
value on the x-axis, which is quite inefficient. In hierarchical
algorithms, which either split or merge clusters at each step, all
clusterings containing ‘1’ to ‘the number of clusters in the initial
(or final) fine-grain clustering’ clusters can be produced by
running the clustering algorithm only once.

The y-axis values in the evaluation graph can be any evaluation
metric, such as: distance, similarity, error, or quality. These
metrics can be computed globally or greedily. Global
measurements compute the evaluation metric based on the entire
clustered data set. A common example is the sum of all the
pairwise distances between points in each cluster. Most global
evaluation metrics are computed in O(N2) time. Thus, in many
cases, it takes longer to evaluate a single set of clusters than it
takes to create them. Since the evaluation function must be run
for every potential number of clusters, this method is often too
inefficient to be practical. The alternative is to use greedy
measurements. The greedy method works in hierarchical
algorithms by evaluating only the two clusters that are involved
in the current merge or split, rather than the entire data set.

Many “external” evaluation methods attempt to determine a
reasonable number of clusters by evaluating the output of an
arbitrary clustering algorithm. Each evaluation method has its
own notion of cluster similarity. Most external methods use
distance functions that are heavily biased towards spherical
clusters. Such methods would be unsuitable for a clustering
algorithm that has a different notion of cluster
distance/similarity. For example, Chameleon [5] uses a complex
similarity function that can produce interesting non-spherical

clusters, and even clusters within clusters. Therefore, the
L Method is integrated into the clustering algorithm and the
metric used in the evaluation graph is the same metric used in
the clustering algorithm.

Figure 1. A sample evaluation graph.

An example of an evaluation graph produced by the Gecko
segmentation algorithm is shown in Figure 1. The y-axis values
are the distances between the two clusters that are most similar
at x clusters. This is a greedy approach, since only the two
closest clusters are used to generate the value on the y-axis. The
curve in Figure 1 has three distinctive areas: a rather flat region
to the right, a sharply-sloping region to the left, and a curved
transition area in the middle.

In Figure 1, starting from the right end, where the merging
process begins at the initial fine grain clustering, there are many
very similar clusters to be merged and the trend continues to the
left in a rather straight line for some time. In this region, many
clusters are similar to each other and should be merged. Another
distinctive area of the graph is on the far left side where the
merge distances grow very rapidly (moving right to left). This
rapid increase in distance indicates that very dissimilar clusters
are being merged together, and that the quality of the clustering
is becoming poor because clusters are no longer internally
homogeneous. If the best available remaining merges start
becoming increasingly poor, it means that too many merges have
already been performed.

A reasonable number of clusters is therefore in the curved area,
or the “knee” of the graph. This knee region is between the low
distance merges that form a nearly straight line on the right side
of the graph, and the quickly increasing region on the left side.
Clusterings in this region contain a balance of clusters that are
both highly homogeneous, and also dissimilar to each other. To
the left of the knee clusters are no longer homogeneous, and to
the right of the knee clusters are too similar to each other.
Determining the number of clusters where this region exists will
therefore give a reasonable number of clusters to return.

3.2 Finding the Knee via the L Method
In order to determine the location of the transition area or knee of
the evaluation graph, we take advantage of a property that exists
in these evaluation graphs. The regions to both the right and the
left of the knee (see Figure 2) are often approximately linear. If
a line is fitted to the right side and another line is fitted to the
left side, then the area between the two lines will be in the same
region as the knee. The value of the x-axis at the knee can then

be used as the number of clusters to return. Figure 2 depicts an
example.

Figure 2. Finding the number of clusters using the L

Method.
To create these two lines that intersect at the knee, we will find
the pair of lines that most closely fit the curve. Figure 3 shows
all possible pairs of best-fit lines for a graph that contains seven
data points (eight clusters were repeatedly merged into a single
cluster). Each line must contain at least two points, and must
start at either end of the data. Both lines together cover all of the
data points, so if one line is small, the other is large to cover the
rest of the remaining data points. The lines cover sequential sets
of points, so the total number of line pairs is
numOfInitialClusters-4. Of the four possible line pairs in Figure
3, the pair that fits their respective data points with the minimum
amount of error is the pair on the bottom left.

Figure 3. All four possible pairs of best-fit lines for a small

evaluation graph.
Consider a ‘# of clusters vs. evaluation metric' graph with values
on the x axis up to x=b. The x-axis varies from 2 to b, hence
there are b-1 data points in the graph. Let Lc and Rc be the left
and right sequences of data points partitioned at x=c; that is, Lc

has points with x=2...c, and Rc has points with x=c+1…b, where
c=3…b-2. Equation 1 defines the total root mean squared error
RMSEc, when the partition of Lc and Rc is at x=c:

)(
1

)(
1
1

ccc RRMSE
b

cbLRMSE
b
cRMSE ×

−
−+×

−
−= [1]

where RMSE(Lc) is the root mean squared error of the best-fit
line for the sequence of points in Lc (and similarly for Rc). The
weights are proportional to the lengths of Lc (c-1) and Rc (b-c).
We seek the value of c, c^, such that RMSEc is minimized, that
is:

 cc RMSEc minarg^ = [2]

The location of the knee at x=c^ is used as the number of clusters
to return.

3.3 Refinements to the L Method
Iterative Refinement of the Knee. Some bottom-up algorithms
create an initial fine-grain clustering by initially treating every
data point as a cluster. This can cause an evaluation graph to be
as large as the original data set. If such an evaluation graph has
thousands of merge values, the ones representing merges at
extremely fine-grain clusterings (large values of x) are irrelevant.
Such a large number of irrelevant data points in the evaluation
graph can prevent an “L” shaped curve, or more specifically a
flat region to the right of the knee.

Figure 4. Full and partial evaluation graphs created by

CURE. Only the first 100 points are shown on the right side.
Figure 4 shows a 9,000 point evaluation graph on the left, and
the first 100 data points of the same graph on the right. The
graph on the right is a more natural “L” shaped curve, and the L
Method is able to correctly identify that there are 9 clusters in
the data set. However, in the full evaluation graph, there are so
many data points to the right side of the “correct” knee, that the
very few points on the left of that knee become statistically
irrelevant. The L Method performs best when the sizes of the
two lines on each side of the knee are reasonably balanced.
When there are far too many points on the right side of the actual
knee, the knee that is located by the L Method will most likely
be larger than the actual knee. In the full evaluation graph,
containing 9,000 data points, the knee is incorrectly detected at
x=359, rather than x=9. However, when many of the irrelevant
points are removed from the evaluation graph, such as all points
greater than x=100 (see the right side of Figure 4), the correct
knee is located at x=9. The following algorithm iteratively
refines the knee by adjusting the focus region and reapplying the
L Method (note that the clustering algorithm is NOT reapplied).

This algorithm initially runs the L Method on the entire
evaluation graph. The value of the knee becomes the middle of
the next focus region and the L Method becomes more accurate
because the lines on each side of the true knee are becoming
more balanced. Since the iteration stops when the knee does not
move to the left, the focus region decreases in size. The true
knee is located when the L Method returns the same value as the
previous iteration (line #10, or if the current pass returns a knee
that has a roughly balanced number of points on each side of the
knee (also line #10). The 9,000 point evaluation graph in Figure
4 takes four iterations to correctly determine that there are 9
clusters in the data set. The cutoff value is not permitted to drop
below 20 in the “LMethod(),” because the L Method does not
work well if only a very small number of points are in the
evaluation graph.

Refinements for Segmentation Algorithms. Evaluation graphs
for some segmentation algorithms can often be very jumpy when
segmenting noisy data. The exact nature of the curve may be
easily to determine visually, but there can be many points that do
not fit the curve. These stray points generally do not occur
consecutively. These stray points can prevent the L Method from
accurately locating the knee. However, because they do not
usually occur consecutively, the curve can be smoothed by only
using the highest valued point of every consecutive pair when
computing the best-fit lines of the curve.

Another potential problem is that sometimes the evaluation graph
will reach a maximum (moving from right to left) and then start
to decrease. This can be seen in Figure 2, where the distance
between the closest clusters reaches a maximum at x=4. This
can prevent an “L” shaped curve from existing in the evaluation
graph. The data points to the left of the maximum value (the
‘worst’ merge) can be ignored because they represent clusterings
that have already had very dissimilar segments merged together.

4. EMPIRICAL EVALUATION
The goal of this evaluation is to demonstrate the ability of the
L Method to identify a reasonable number of clusters to return in
hierarchical clustering and hierarchical segmentation algorithms.
Each algorithm will be run on a number of data sets and the

Iterative Refinement of the Knee

Input: EvalGraph a full evaluation graph
Output: the x-axis value location of the knee (also the

suggested number of clusters to return)

 1| int cutoff =
 2| lastKnee =
 3| currentKnee = EvalGraph.size()
 4|
 5| REPEAT
 6| {
 7| lastKnee = currentKnee
 8| currentKnee = LMethod(evalGraph, cutoff)
 9| cutoff = currentKnee*2
10| } UNTIL currentKnee ≥ lastKnee
11|
12| RETURN currentKnee

number of clusters that the L Method identifies is compared to
the ‘correct’ answer.

4.1 Identifying the Number of Clusters
4.1.1 Procedures and Criteria
The seven diverse data sets used to evaluate the L Method in
clustering algorithms vary in size, number of clusters, separation
of clusters, density, and amount of outliers.

Figure 5. Data sets 1, 2, 4, 5, 6, and 7 for evaluating the L

Method in clustering algorithms.
The seven spatial data sets that were used are (see Figure 5):

1. A data set with four well separated spherical clusters (4,000
pts).

2. Nine square clusters connected at the corners (9,000 pts).
3. Five spherical clusters of equal size and density. The

clusters are all close to each other and slightly overlapping
(5,000 pts, not in Figure 5).

4. Ten spherical clusters. Five overlapping clusters similar to
data set #3, as well as five additional well-separated
clusters and a uniform distribution of outliers (5,200 pts).

5. Ten well-separated clusters of varying size and density
(5,000 pts).

6. A 9 cluster data set used in the Chameleon paper, but with
the outliers removed. Non-spherical clusters with clusters
completely contained within other clusters and a moderate
amount of outliers (~9,100 pts).

7. An 8 cluster data set used in the Chameleon paper, but with
the outliers removed. Non-spherical clusters with clusters
partially enveloping other clusters and a moderate amount of
outliers (~7,600 pts).

The clustering algorithms used are Chameleon and CURE.
Chameleon was implemented locally and was run with the
parameters: k=10, minSize=3%, and α=2. CURE was
implemented as specified in the CURE paper [3], with the
shrinking factor set to 1/3 and the number of representative
points for each cluster set to 10.

The experimental procedure for evaluating the performance of
the L Method for hierarchical clustering algorithms consists of
running all four clustering algorithms, which have been modified
to automatically determine the number of clusters to return
through use of the L Method, on seven diverse data sets (shown
in Figure 5). The number of clusters automatically returned by
the clustering algorithm will be compared to the correct number
of clusters.

4.1.2 Results and Analysis
The correct number of clusters was determined 6 out of 7 times
for Chameleon and 4 out of 5 times for the CURE algorithm. A
summary of the results is contained in Table 1. The actual
number of clusters suggested for CURE on data set #4 was 9. In
the presence of outliers, CURE creates many very small clusters
that contain only outliers. After removing these small clusters,
only 6 clusters remained. Data sets #6 and #7 contain complex
clusters and could only be properly clustered by Chameleon.

Table 1. Results of using the L Method with two hierarchical
clustering algorithms.

Data Set Number of Clusters
Predicted

data set #
correct

number of
clusters

Chameleon CURE

1 4 4 4

2 9 9 9

3 5 5 5

4 10 11 6 (9)

5 10 10 10

6 9 9 N/A

7 8 8 N/A

Examples of evaluation graphs produced by the clustering
algorithms are shown in Figure 6. Notice that the y-axis values
in CURE evaluation graphs generally increase from right to left,
and the Chameleon evaluation graphs generally decrease from
right to left. This is because CURE’s evaluation metric is cluster
distance and Chameleon’s evaluation metric is cluster similarity.

Figure 6. Actual number of clusters and the correct number

predicted by the L Method (axes: x= # of clusters,
y=evaluation metric – lines: solid lines=correct # of clusters,

dashed lines=# of clusters determined by L Method).
The correct number of clusters was not determined for either
algorithm on data set #4, which contained many outliers. The
poor performance in the presence of outliers is due to a lack of a
knee at a position that would indicate the correct number of
clusters. In the evaluation graph for CURE, there is a large
smooth knee that spans approximately 200 data points. Most of
these merges in this region are between outliers, but there are
merges of the five overlapping clusters mixed in. There is no
sharp knee until after all of the five overlapping clusters have
already been merged together. The clusters returned by CURE
were not ‘correct’, but they weren’t too bad either. The six
clusters returned were the five well-separated clusters, and the
connected clusters in the center were all treated as a single
cluster. A correct answer probably would have been determined
by the L Method if the center cluster of 5 clusters were well
separated. The answer given for Chameleon was only off by one
because the knee was also off by one. This may be due to a
weakness in our Chameleon implementation, which does not use
a graph bisection algorithm that is as powerful as the one used in
the original Chameleon implementation.

4.2 Identifying the Number of Segments
4.2.1 Procedures and Criteria
The experimental procedure for evaluating the L Method in
segmentation algorithms consists of running three different
segmentation algorithms on seven different data sets and
determining if a ‘reasonable’ number of segments is suggested
by the L Method.

The time series data sets used to evaluate the L Method for
hierarchical segmentation algorithms are a combination of both
real-world and synthetic data sets. The seven time series data
sets used for this evaluation (shown in Figure 7) are:

1. A synthetic data set consisting of 20 perfectly straight line
segments (2,000 pts).

2. The same as #1, but with a moderate amount of random
noise added (2,000 pts, not in Figure 7).

3. The same as #1, but with a substantial amount of random
noise added (2,000 pts).

4. An ECG of a pregnant woman (from the Time Series Data
Mining Archive [7]). It contains a recurring pattern (a heart
beat) that is repeated 13 times (2,500 pts).

5. Measurements from a sensor in an industrial dryer (from the
Time Series Data Mining Archive [7]). The time series
seems to have a fractal structure (876 pts).

6. A data set depicting sunspot activity over time (from the
Time Series Data Mining Archive [7]). This time series
contains 22 roughly evenly spaced sunspot cycles, however
the intensity of each cycle can vary significantly (2,900 pts).

7. A time series of a space shuttle valve energizing and de-
energizing (1,000 pts).

Figure 7. Data sets 1, 3, 4, 5, 6, 7 for evaluating the L Method

in segmentation algorithms.
The ‘correct’ number of segments for a data set and a particular
segmentation algorithm is obtained by running the algorithm
with various values of k (controls the number of segments
returned), and determining what particular value(s) or range of
values of k produces a ‘reasonable’ PLR (piecewise linear
representation). The PLRs that are considered ‘reasonable’ are
those at a value of k, where no adjacent segments are very
similar to each other and all segments are internally
homogeneous (roughly linear). The synthetic data sets have a
single correct value for k. The other data sets have no single
correct answer, but rather a range of reasonable values. If there
are ‘best’ values of k within the reasonable range, they are
recorded.

The segmentation algorithms used in this evaluation are: Gecko,
bottom-up segmentation (greedy), and bottom-up segmentation
(global). The Gecko and Bottom-up segmentation (BUS)
algorithms were explained in Section 2. BUS-greedy’s y-axis in
the evaluation graph is the increase in error of the 2 most similar
segments when they are merged, and BUS-global’s y-axis is the
error of the entire linear approximation when there are x
segments. All three algorithms used in this evaluation make use
of an initial top-down pass to create the initial fine-grain

segments. The minimum size of each initial cluster generated in
the top down pass was 10.

4.2.2 Results and Analysis
A summary of the results of the L Method’s ability to

automatically determine the number of segments to return from
segmentation algorithms is contained in Table 2. For each
algorithm and data set, the ‘reasonable’ range of correct answers
is listed as well as the number of segments returned by the L
Method. The first three data sets are synthetic and have a single
correct answer, but the other data sets have a range of
‘reasonable’ answers. Numbers in brackets after the reasonable
range are the best answers within that reasonable range. The
signature in data set #5 was fractal in nature and had no ‘correct’
clustering. Note that BUS-greedy and BUS-global perform
identically and therefore have identical ‘reasonable’ answers.
However, their evaluation graphs differ and the L Method returns
different answers for the two algorithms.

Table 2. Results of using the L Method with three
hierarchical segmentation algorithms. Numbers in brackets

are the ‘best’ answers within a range of correct answers.

 Gecko Bottom-up-
greedy

Bottom-up-
global

Data
Set

‘C
orrect’ # of
segm

ents

N
um

 of
segm

ents given

‘C
orrect’ # of
segm

ents

N
um

 of
segm

ents given

‘C
orrect’ # of
segm

ents

N
um

 of
segm

ents given

1 20 20 20 20 20 25

2 20 20 20 20 20 37

3 20 N/A 20 20 20 37

4 42-~123
[42, ~56] 92

42-
~123+
[42]

46 42-123+
[42] 133

5 ? 32 ? 14 ? 13

6 44-57
[44] 45 45-53

[45] 48 45-53
[45] 31

7 9-20
[10, 17] 17 14-21

[15] 9 14-21
[15] 19

The L Method works very well for both BUS-greedy and Gecko.
It correctly identified a number of segments for BUS-greedy that
was within the reasonable range in 5 out of the 6 applicable data
sets. For data sets #4 and #6 it also identified a number of
clusters that is very close to the ‘best’ value in the range of
reasonable values. Gecko, which also uses a greedy evaluation
metric, had the L Method suggest a number of segments within
the reasonable range for all 5 applicable data sets. For the two
greedy algorithms, Gecko and BUS-greedy, the L Method was
able to correctly determine that the three synthetic data sets
contained exactly twenty clusters. BUS-global did not fare so
well. The L Method was only able to return a reasonable number
of clusters for BUS-global in a single test case.

Figure 8. The reasonable range for # of clusters vs. the

number returned by the L Method. (axes: x=# of clusters,
y=evaluation metric – lines: small solid line=the ‘best’ # of

clusters, small dashed line=# of clusters determined by the L
Method, large lines=marks the boundaries of the reasonable

range for the # of clusters.
Some of the evaluation graphs produced are showin in Figure 8.
In the evaluation graph in the top left, the ‘best’ number of
correct clusters was very close to being identified. Remember,
that for segmentation algorithms, all data ponits to the left of the
data point with the maximum value are ignored.

The evaluation graph shown in the upper-right portion of Figure
8 is also very close to identifying the ‘best’ number of clusters.
Even though there is apparently no significant knee in this
evaluation graph, the ‘best’ number of clusters can still be
determined by the L Method. This is because the knee found by
the L Method does not necessarily have to be the point of
maxium curveature. It is the location between the two regions
that have relatively steady trends. Thus, the L Method is able to
determine the location where there is a significant change in the
evaluation graph and it becomes erratic…in this case it indicates
that too many clusters have been merged together and the
distance function is no longer as well-defined.

The poor performance of BUS-global is due to a lack of
prominence in the knee of the curve compared to greedy methods
(see the graph on the lower right in Figure 8). Another potential
problem is if more than one knee exists in the evaluation graph.
This is typically not a problem if one knee is significantly more
prominent than the others. If there are two equally prominent
knees, the L Method is likely to return a number of clusters that
falls somewhere between those two knees. This is acceptable if
all of the values between the two knees are reasonable. If not, a
poor number of clusters will most likely be returned by the L
Method.

5. CONCLUDING REMARKS
We have detailed our L Method, which has been shown to work
reasonably well in determining the number of clusters or
segments for hierarchical clustering/segmentation algorithms.
Hierarchical algorithms that have greedy evaluation metrics
(most do) perform especially well. In our evaluation, the L
Method was able to determine a reasonable number of clusters in
10 out of 11 instances for greedy hierarchical segmentation

algorithms, and in 10 out of 12 instances for hierarchical
clustering algorithms. Algorithms with global evaluation metrics
are not likely to work well with the L Method because the knees
in their evaluation graphs are not prominent enough to be
reliably detected.

Iterative refinement of the knee is a very important part of the L
Method. Without it, the L Method would only be effective in
determining the number of clusters/segments within a certain
range. The iterative refinemenet algorithm explained in this
paper enables the L Method to always run under optimal
conditions: balanced lines on each side of the knee nomatter how
large the evaluation graph is or where the knee is located.

Like most existing methods, the L Method is unable to determine
if the entire data set is an even distribution and consists of only a
single cluster (the null hypothesis). However, the L Method also
has the limitation that it cannot determine if only two clusters
should be returned.

Future work will involve testing the L Method with additional
clustering and segmentation algorithms on a greater number of
data sets to help further understand the algorithm’s strengths and
weaknesses. We will explore possible modifications to the L
Method that will enable it to determine when only one or two
clusters should be returned. Work will also focus on directly
comparing the L Method to other methods that attempt to
determine the number of clusters in a data set.

6. ACKNOWLDEGEMENTS
This research is partially supported by NASA.

7. REFERENCES
[1] Baxter, R. A. & J. J. Oliver. The Kindest Cut: Minimum

Message Length Segmentation. 1996.

[2] Fraley, C. & E. Raftery. How many clusters? Which
clustering method? Answers via model-based Cluster
Analysis. In Computer Journal, vol. 41, pp. 578-588, 1998.

[3] Guha, S., R. Rastogi & K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. In Proc. Of

ACM SIGMOD Intl. Conf. on Management of Data, pp. 73-
82, 1998.

[4] Hansen, M. & B. Yu. Model Selection and the Principle of
Minimum Description Length. In JASA, vol. 96, pp.746-
774, 2001.

[5] Karypis, G., E. Han & V. Kumar. Chameleon: A
hierarchical clustering algorithm using dynamic modeling.
IEEE Computer, 32(8) pp. 68-75, 1999.

[6] Keogh, E., S. Chu, D. Hart & M. Pazanni. An Online
Algorithm for Segmenting Time Series. In Proc. IEEE Intl.
Conf. on Data Mining, pp. 289-296, 2001.

[7] Keogh, E. & T. Folias (2003). The UCR Time Series Data
Mining Archive [http://www.cs.ucr.edu/~eamonn/TSDMA/
index.html]. Riverside, CA. University of California –
Computer Science and Engineering Department.

[8] Roth, V., T. Lange, M. Braun & J. Buhmann. A
Resampling Approach to Cluster Validation. In Intl. Conf.
on Computational Statistics, pp. 123-1298, 2002.

[9] Salvador, S., P. Chan & J. Brodie. Learning States and
Rules for Time Series Anomaly Detection. Technical
Report CS-2003-05, Florida Institute of Technology,
Melbourne, FL, 2003. [http://cs.fit.edu/~tr/cs-2003-05.pdf].

[10] Smyth, P. Clustering Using Monte-Carlo Cross-Validation.
In Proc. 2nd KDD, pp.126-133, 1996.

[11] Sugiyama, M. & H. Ogawa. Subspace Information Criterion
for Model Selection. In Neural Computation, vol. 13, no.8,
pp. 1863-1889, 2001.

[12] Tibshirani, R., G. Walther, D. Botstein & P. Brown. (2001)
Cluster validation by prediction strength.

[13] Tibshirani, R., G. Walther & T. Hastie. Estimating the
number of clusters in a dataset via the Gap statistic. In
JRSSB, 2003.

[14] Vasko, K. & T. Toivonen. Estimating the number of
segments in time series data using permutation tests. In
Proc. IEEE Intl. Conf. on Data Mining, pp. 466-473, 2002.

