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ABSTRACT 
We investigate techniques to automatically determine the number 
of clusters to return from hierarchical clustering and 
segmentation algorithms.  We propose an efficient algorithm, the 
L Method, that finds the “knee” in a ‘# of clusters vs. clustering 
evaluation metric’ graph.  Using the knee is well-known, but is 
not a particularly well-understood method to determine the 
number of clusters. We explore the feasibility of this method, 
and attempt to determine in which situations it will and will not 
work. 

1. INTRODUCTION 
Motivation.  While clustering and segmentation algorithms are 
unsupervised learning processes, users are usually required to set 
some parameters for these algorithms.  These parameters vary 
from one algorithm to another, but most clustering/segmentation 
algorithms require a parameter that either directly or indirectly 
specifies the number of clusters/segments.  This parameter is 
typically either k, the number of clusters/segments to return, or 
some other parameter that indirectly controls the number of 
clusters to return, such as an error threshold.  Setting these 
parameters requires either detailed pre-existing knowledge of the 
data, or time-consuming trial and error.  The latter case still 
requires that the user has sufficient domain knowledge to know 
what a good clustering “looks” like.  However, if the data set is 
very large or is multi-dimensional, human verification could 
become difficult.  To automatically find a reasonable number of 
clusters, many existing methods must be run repeatedly with 
different parameters (trial and error), and are impractical for real 
world data sets, which can be quite large. 

Problem.  We desire to develop an algorithm that can 
automatically and efficiently determine a reasonable number of 
clusters/segments to return from any hierarchical 
clustering/segmentation algorithm.  

Approach.  In order to identify the correct number of clusters to 
return from a hierarchical clustering/segmentation algorithm, we 
introduce the L Method.  Hierarchical algorithms either merge 
the two most similar clusters together (bottom-up), or split the 
least internally homogeneous cluster into two (top-down).  The 
definition of a “cluster” is not well-defined and measuring 
cluster quality is rather subjective.  Thus, there is a large number 
of clustering algorithms with unique similarity functions and 
correspondingly unique notions of what a good cluster “looks” 
like.  The L Method uses the same similarity function used in a 

hierarchical algorithm to construct an evaluation graph where the 
x-axis is the number of clusters and the y-axis is the value of the 
similarity function during the merge or split at x clusters.  This 
knee, or the point of maximum curvature of this graph, is used as 
the number of clusters to return.  The knee is determined by 
finding the area between the two lines that most closely fit the 
curve.  Our approach needs only a single pass over the dataset, 
and the overhead is trivial compared to the runtime of the 
clustering/segmentation algorithm. 

Contributions.  Our main contributions are:  (1) we demonstrate 
an accurate method to efficiently determine a reasonable number 
of clusters to return from any hierarchical clustering or 
segmentation algorithm; (2) we introduce a novel method to find 
the knee of a curve; (3) we explore the feasibility and limitations 
of using the “knee” of a curve to determine the number of 
clusters to return by evaluating its performance on several 
different algorithms and data sets. 

Organization.  The next section gives an overview of related 
work.  Section 3 provides a detailed explanation of our “L 
Method,” which is able to efficiently and accurately determine a 
good number of clusters to return from hierarchical 
clustering/segmentation algorithms.  Section 4 discusses 
experimental evaluations of the L Method using several 
clustering and segmentation algorithms, and Section 5 
summarizes our study. 

2. RELATED WORK 
Clustering Algorithms.  Clustering is an unsupervised machine 
learning process that creates clusters such that data points inside 
a cluster are close to each other, and also far apart from data 
points in other clusters.  There are four main categories of 
clustering algorithms:  partitioning, hierarchical, density-based, 
and grid-based.  Hierarchical clustering algorithms can be 
agglomerative or divisive.  The agglomerative (bottom-up) 
approach repeatedly merges two clusters, while the divisive (top-
down) approach repeatedly splits a cluster into two.  CURE [3] 
and Chameleon [5] are examples of two hierarchical clustering 
algorithms. 

Segmentation Algorithms.  Segmentation algorithms take time 
series data as input and produce a Piecewise Linear 
Representation (PLR) as output.  A PLR is a set of consecutive 
line segments that tightly fit the original time series.  
Segmentation algorithms are somewhat related to clustering 



 

algorithms in that each segment can be though of as a cluster.  
However, segmentation algorithms typically create a finer grain 
partitioning than clustering algorithms.  There are three common 
approaches to time series segmentation [6].  First, in the Sliding 
Window approach, a segment is grown until the error of the line 
is above a specified threshold, then a new segment is started.  
Second, in the Top-down approach, the entire time series is 
recursively split until the desired number of segments or an error 
threshold is reached.  Third, the Bottom-up approach typically 
starts off with n/2 segments, and the 2 most similar adjacent 
segments are repeatedly joined until the desired number of 
segments or the error threshold is reached.  Gecko [9] is a 
bottom-up segmentation algorithm that merges clusters based on 
slope and creates its initial fine-grain approximation by first 
performing a top-down pass. 

Determining the Number of Clusters/Segments.  Six common 
approaches to estimating the dimension of a model (such as the 
number of clusters or segments) are:  cross-validation, penalized 
likelihood estimation, permutation tests, resampling, and finding 
the knee of an error curve. 

Cross-validation techniques create models that attempt to fid the 
data as accurately as possible.  Monte Carlo cross-validation [10] 
has been successfully used to prevent over fitting (too many 
clusters/segments).  Penalized likelihood estimation also 
attempts to find a model that fits the data as accurately as 
possible, but also attempts to minimize the complexity of the 
model.  Specific methods to penalize models based on their 
complexity are:  MML [1], MDL [4], BIC [2], AIC, and SIC [11].  
Permutation tests [14] have been used to prevent segmentation 
algorithms from creating a PLR that over-fits the data.  
Resampling [8] attempts to find the correct number of clusters by 
repeatedly clustering samples of the data set, and determining at 
what number of clusters the clusterings of the various samples 
are the most “stable.” 

The “knee” of an error curve is a well known, but little 
understood method to determine an appropriate number of 
clusters or segments.  There are other methods that transform the 
error curve into a new curve where the minimum or maximum 
value in the transformed curve is used as the number of 
clusters/segments to return.  Such methods include the Gap 
statistic [13] and prediction strength [12].  These methods 
generally require the entire clustering or segmentation algorithm 
to be run for each potential value of k. 

Finding the Knee of a Curve.  The knee of a curve is loosely 
defined as the point of maximum curvature.  The knee in a “# of 
clusters vs. classification error” graph can be used to determine 
the number of clusters to return.  Various methods to find the 
knee of a curve are: 

1. The largest magnitude difference between two points. 
2. The first data point with a second derivative above some 

threshold value. 
3. The data point with the largest second derivative. 
4. The point on the curve that is furthest from a line fitted to 

the entire curve. 
5. Our L-method, which finds the boundary between the pair 

of straight lines that most closely fit the curve. 

This list is ordered from the methods that make a decision about 
the knee locally, to the methods that locate the knee globally by 
considering more points of the curve.  The first two methods use 
only single pairs of adjacent points to determine where the knee 
is.  The third method uses more than one pair of points, but still 
only considers local trends in the graph.  The last two methods 
consider all data points at the same time.  Local methods may 
work well for smooth, monotonically increasing/decreasing 
curves.  However, they are very sensitive to outliers and local 
trends, which may not be globally significant.  The 4th method 
takes every point into account, but only works well for 
continuous functions, and not curves where the knee is a sharp 
jump.  Our L Method considers all points to keep local trends or 
outliers from preventing the true knee to be located, and is able 
to find knees that exist as sharp jumps in the curve. 

3. APPROACH 
Our L Method attempts to automatically determine an 
appropriate number of clusters/segments to return, by finding the 
knee in an evaluation graph. 

3.1 Evaluation Graphs 
The information required to determine an appropriate number of 
clusters/segments to return is contained in an evaluation graph 
that is created by the clustering/segmentation algorithm.  The 
evaluation graph is a two-dimensional plot where the x-axis is 
the number of clusters, and the y-axis is a measure of the quality 
or error of a clustering consisting of x clusters.  Other approaches 
use similar graphs, however they are usually generated by re-
running the entire clustering or segmentation algorithm for every 
value on the x-axis, which is quite inefficient.  In hierarchical 
algorithms, which either split or merge clusters at each step, all 
clusterings containing ‘1’ to ‘the number of clusters in the initial 
(or final) fine-grain clustering’ clusters can be produced by 
running the clustering algorithm only once. 

The y-axis values in the evaluation graph can be any evaluation 
metric, such as: distance, similarity, error, or quality.  These 
metrics can be computed globally or greedily.  Global 
measurements compute the evaluation metric based on the entire 
clustered data set.  A common example is the sum of all the 
pairwise distances between points in each cluster.  Most global 
evaluation metrics are computed in O(N2) time.  Thus, in many 
cases, it takes longer to evaluate a single set of clusters than it 
takes to create them.  Since the evaluation function must be run 
for every potential number of clusters, this method is often too 
inefficient to be practical.  The alternative is to use greedy 
measurements.  The greedy method works in hierarchical 
algorithms by evaluating only the two clusters that are involved 
in the current merge or split, rather than the entire data set.   

Many “external” evaluation methods attempt to determine a 
reasonable number of clusters by evaluating the output of an 
arbitrary clustering algorithm.  Each evaluation method has its 
own notion of cluster similarity.  Most external methods use 
distance functions that are heavily biased towards spherical 
clusters.  Such methods would be unsuitable for a clustering 
algorithm that has a different notion of cluster 
distance/similarity.  For example, Chameleon [5] uses a complex 
similarity function that can produce interesting non-spherical 



 

clusters, and even clusters within clusters.  Therefore, the 
L Method is integrated into the clustering algorithm and the 
metric used in the evaluation graph is the same metric used in 
the clustering algorithm. 

 
Figure 1. A sample evaluation graph. 

An example of an evaluation graph produced by the Gecko 
segmentation algorithm is shown in Figure 1.  The y-axis values 
are the distances between the two clusters that are most similar 
at x clusters.  This is a greedy approach, since only the two 
closest clusters are used to generate the value on the y-axis.  The 
curve in Figure 1 has three distinctive areas:  a rather flat region 
to the right, a sharply-sloping region to the left, and a curved 
transition area in the middle.   

In Figure 1, starting from the right end, where the merging 
process begins at the initial fine grain clustering, there are many 
very similar clusters to be merged and the trend continues to the 
left in a rather straight line for some time.  In this region, many 
clusters are similar to each other and should be merged.  Another 
distinctive area of the graph is on the far left side where the 
merge distances grow very rapidly (moving right to left).  This 
rapid increase in distance indicates that very dissimilar clusters 
are being merged together, and that the quality of the clustering 
is becoming poor because clusters are no longer internally 
homogeneous.  If the best available remaining merges start 
becoming increasingly poor, it means that too many merges have 
already been performed. 

A reasonable number of clusters is therefore in the curved area, 
or the “knee” of the graph.  This knee region is between the low 
distance merges that form a nearly straight line on the right side 
of the graph, and the quickly increasing region on the left side.  
Clusterings in this region contain a balance of clusters that are 
both highly homogeneous, and also dissimilar to each other.  To 
the left of the knee clusters are no longer homogeneous, and to 
the right of the knee clusters are too similar to each other.  
Determining the number of clusters where this region exists will 
therefore give a reasonable number of clusters to return. 

3.2 Finding the Knee via the L Method 
In order to determine the location of the transition area or knee of 
the evaluation graph, we take advantage of a property that exists 
in these evaluation graphs.  The regions to both the right and the 
left of the knee (see Figure 2) are often approximately linear.  If 
a line is fitted to the right side and another line is fitted to the 
left side, then the area between the two lines will be in the same 
region as the knee.  The value of the x-axis at the knee can then 

be used as the number of clusters to return.  Figure 2 depicts an 
example. 

 
Figure 2. Finding the number of clusters using the L 

Method. 
To create these two lines that intersect at the knee, we will find 
the pair of lines that most closely fit the curve.  Figure 3 shows 
all possible pairs of best-fit lines for a graph that contains seven 
data points (eight clusters were repeatedly merged into a single 
cluster).  Each line must contain at least two points, and must 
start at either end of the data.  Both lines together cover all of the 
data points, so if one line is small, the other is large to cover the 
rest of the remaining data points.  The lines cover sequential sets 
of points, so the total number of line pairs is 
numOfInitialClusters-4.  Of the four possible line pairs in Figure 
3, the pair that fits their respective data points with the minimum 
amount of error is the pair on the bottom left.  

 
Figure 3. All four possible pairs of best-fit lines for a small 

evaluation graph. 
Consider a ‘# of clusters vs. evaluation metric' graph with values 
on the x axis up to x=b.  The x-axis varies from 2 to b, hence 
there are b-1 data points in the graph.  Let Lc and Rc be the left 
and right sequences of data points partitioned at x=c; that is, Lc 

has points with x=2...c, and Rc has points with x=c+1…b, where 
c=3…b-2.  Equation 1 defines the total root mean squared error 
RMSEc, when the partition of Lc and Rc is at x=c: 
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where RMSE(Lc) is the root mean squared error of the best-fit 
line for the sequence of points in Lc (and similarly for Rc).  The 
weights are proportional to the lengths of Lc (c-1) and Rc (b-c).  
We seek the value of c, c^, such that RMSEc is minimized, that 
is: 

  cc RMSEc minarg^ =  [2] 

The location of the knee at x=c^ is used as the number of clusters 
to return. 

3.3 Refinements to the L Method 
Iterative Refinement of the Knee.  Some bottom-up algorithms 
create an initial fine-grain clustering by initially treating every 
data point as a cluster.  This can cause an evaluation graph to be 
as large as the original data set.  If such an evaluation graph has 
thousands of merge values, the ones representing merges at 
extremely fine-grain clusterings (large values of x) are irrelevant.  
Such a large number of irrelevant data points in the evaluation 
graph can prevent an “L” shaped curve, or more specifically a 
flat region to the right of the knee.   

 
Figure 4. Full and partial evaluation graphs created by 

CURE.  Only the first 100 points are shown on the right side. 
Figure 4 shows a 9,000 point evaluation graph on the left, and 
the first 100 data points of the same graph on the right.  The 
graph on the right is a more natural “L” shaped curve, and the L 
Method is able to correctly identify that there are 9 clusters in 
the data set.  However, in the full evaluation graph, there are so 
many data points to the right side of the “correct” knee, that the 
very few points on the left of that knee become statistically 
irrelevant.  The L Method performs best when the sizes of the 
two lines on each side of the knee are reasonably balanced.  
When there are far too many points on the right side of the actual 
knee, the knee that is located by the L Method will most likely 
be larger than the actual knee.  In the full evaluation graph, 
containing 9,000 data points, the knee is incorrectly detected at 
x=359, rather than x=9.  However, when many of the irrelevant 
points are removed from the evaluation graph, such as all points 
greater than x=100 (see the right side of Figure 4), the correct 
knee is located at x=9.  The following algorithm iteratively 
refines the knee by adjusting the focus region and reapplying the 
L Method (note that the clustering algorithm is NOT reapplied). 

 
This algorithm initially runs the L Method on the entire 
evaluation graph.  The value of the knee becomes the middle of 
the next focus region and the L Method becomes more accurate 
because the lines on each side of the true knee are becoming 
more balanced.  Since the iteration stops when the knee does not 
move to the left, the focus region decreases in size.  The true 
knee is located when the L Method returns the same value as the 
previous iteration (line #10, or if the current pass returns a knee 
that has a roughly balanced number of points on each side of the 
knee (also line #10).  The 9,000 point evaluation graph in Figure 
4 takes four iterations to correctly determine that there are 9 
clusters in the data set.  The cutoff value is not permitted to drop 
below 20 in the “LMethod(),” because the L Method does not 
work well if only a very small number of points are in the 
evaluation graph.   

Refinements for Segmentation Algorithms.  Evaluation graphs 
for some segmentation algorithms can often be very jumpy when 
segmenting noisy data.  The exact nature of the curve may be 
easily to determine visually, but there can be many points that do 
not fit the curve.  These stray points generally do not occur 
consecutively.  These stray points can prevent the L Method from 
accurately locating the knee.  However, because they do not 
usually occur consecutively, the curve can be smoothed by only 
using the highest valued point of every consecutive pair when 
computing the best-fit lines of the curve. 

Another potential problem is that sometimes the evaluation graph 
will reach a maximum (moving from right to left) and then start 
to decrease.  This can be seen in Figure 2, where the distance 
between the closest clusters reaches a maximum at x=4.  This 
can prevent an “L” shaped curve from existing in the evaluation 
graph.  The data points to the left of the maximum value (the 
‘worst’ merge) can be ignored because they represent clusterings 
that have already had very dissimilar segments merged together. 

4. EMPIRICAL EVALUATION 
The goal of this evaluation is to demonstrate the ability of the 
L Method to identify a reasonable number of clusters to return in 
hierarchical clustering and hierarchical segmentation algorithms.  
Each algorithm will be run on a number of data sets and the 

Iterative Refinement of the Knee
 

Input: EvalGraph  a full evaluation graph   
Output: the x-axis value location of the knee (also the 

suggested number of clusters to return)   
 
 1| int cutoff =   
 2|     lastKnee =  
 3|     currentKnee = EvalGraph.size() 
 4| 
 5| REPEAT  
 6| { 
 7|    lastKnee = currentKnee 
 8|    currentKnee = LMethod(evalGraph, cutoff)
 9|    cutoff = currentKnee*2   
10| } UNTIL currentKnee ≥ lastKnee 
11| 
12| RETURN currentKnee 



 

number of clusters that the L Method identifies is compared to 
the ‘correct’ answer. 

4.1 Identifying the Number of Clusters 
4.1.1 Procedures and Criteria 
The seven diverse data sets used to evaluate the L Method in 
clustering algorithms vary in size, number of clusters, separation 
of clusters, density, and amount of outliers. 

 
Figure 5. Data sets 1, 2, 4, 5, 6, and 7 for evaluating the L 

Method in clustering algorithms. 
The seven spatial data sets that were used are (see Figure 5): 

1. A data set with four well separated spherical clusters (4,000 
pts).  

2. Nine square clusters connected at the corners (9,000 pts). 
3. Five spherical clusters of equal size and density.  The 

clusters are all close to each other and slightly overlapping 
(5,000 pts, not in Figure 5). 

4. Ten spherical clusters.  Five overlapping clusters similar to 
data set #3, as well as five additional well-separated 
clusters and a uniform distribution of outliers (5,200 pts).  

5. Ten well-separated clusters of varying size and density 
(5,000 pts). 

6. A 9 cluster data set used in the Chameleon paper, but with 
the outliers removed.  Non-spherical clusters with clusters 
completely contained within other clusters and a moderate 
amount of outliers (~9,100 pts). 

7. An 8 cluster data set used in the Chameleon paper, but with 
the outliers removed.  Non-spherical clusters with clusters 
partially enveloping other clusters and a moderate amount of 
outliers (~7,600 pts). 

The clustering algorithms used are Chameleon and CURE.  
Chameleon was implemented locally and was run with the 
parameters:  k=10, minSize=3%, and α=2.  CURE was 
implemented as specified in the CURE paper [3], with the 
shrinking factor set to 1/3 and the number of representative 
points for each cluster set to 10. 

The experimental procedure for evaluating the performance of 
the L Method for hierarchical clustering algorithms consists of 
running all four clustering algorithms, which have been modified 
to automatically determine the number of clusters to return 
through use of the L Method, on seven diverse data sets (shown 
in Figure 5).  The number of clusters automatically returned by 
the clustering algorithm will be compared to the correct number 
of clusters. 

4.1.2 Results and Analysis 
The correct number of clusters was determined 6 out of 7 times 
for Chameleon and 4 out of 5 times for the CURE algorithm.  A 
summary of the results is contained in Table 1.  The actual 
number of clusters suggested for CURE on data set #4 was 9.  In 
the presence of outliers, CURE creates many very small clusters 
that contain only outliers.  After removing these small clusters, 
only 6 clusters remained.  Data sets #6 and #7 contain complex 
clusters and could only be properly clustered by Chameleon. 

Table 1. Results of using the L Method with two hierarchical 
clustering algorithms. 

Data Set Number of Clusters 
Predicted 

data set # 
correct 

number of 
clusters 

Chameleon CURE 

1 4 4 4 

2 9 9 9 

3 5 5 5 

4 10 11 6 (9) 

5 10 10 10 

6 9 9 N/A 

7 8 8 N/A 

Examples of evaluation graphs produced by the clustering 
algorithms are shown in Figure 6.  Notice that the y-axis values 
in CURE evaluation graphs generally increase from right to left, 
and the Chameleon evaluation graphs generally decrease from 
right to left.  This is because CURE’s evaluation metric is cluster 
distance and Chameleon’s evaluation metric is cluster similarity. 



 

 
Figure 6. Actual number of clusters and the correct number 

predicted by the L Method (axes:  x= # of clusters, 
y=evaluation metric – lines:  solid lines=correct # of clusters, 

dashed lines=# of clusters determined by L Method). 
The correct number of clusters was not determined for either 
algorithm on data set #4, which contained many outliers.  The 
poor performance in the presence of outliers is due to a lack of a 
knee at a position that would indicate the correct number of 
clusters.  In the evaluation graph for CURE, there is a large 
smooth knee that spans approximately 200 data points.  Most of 
these merges in this region are between outliers, but there are 
merges of the five overlapping clusters mixed in.  There is no 
sharp knee until after all of the five overlapping clusters have 
already been merged together.  The clusters returned by CURE 
were not ‘correct’, but they weren’t too bad either.  The six 
clusters returned were the five well-separated clusters, and the 
connected clusters in the center were all treated as a single 
cluster.  A correct answer probably would have been determined 
by the L Method if the center cluster of 5 clusters were well 
separated.  The answer given for Chameleon was only off by one 
because the knee was also off by one.  This may be due to a 
weakness in our Chameleon implementation, which does not use 
a graph bisection algorithm that is as powerful as the one used in 
the original Chameleon implementation. 

4.2 Identifying the Number of Segments 
4.2.1 Procedures and Criteria 
The experimental procedure for evaluating the L Method in 
segmentation algorithms consists of running three different 
segmentation algorithms on seven different data sets and 
determining if a ‘reasonable’ number of segments is suggested 
by the L Method. 

The time series data sets used to evaluate the L Method for 
hierarchical segmentation algorithms are a combination of both 
real-world and synthetic data sets.  The seven time series data 
sets used for this evaluation (shown in Figure 7) are: 

1. A synthetic data set consisting of 20 perfectly straight line 
segments (2,000 pts). 

2. The same as #1, but with a moderate amount of random 
noise added (2,000 pts, not in Figure 7). 

3. The same as #1, but with a substantial amount of random 
noise added (2,000 pts). 

4. An ECG of a pregnant woman (from the Time Series Data 
Mining Archive [7]).  It contains a recurring pattern (a heart 
beat) that is repeated 13 times (2,500 pts). 

5. Measurements from a sensor in an industrial dryer (from the 
Time Series Data Mining Archive [7]).  The time series 
seems to have a fractal structure (876 pts). 

6. A data set depicting sunspot activity over time (from the 
Time Series Data Mining Archive [7]).  This time series 
contains 22 roughly evenly spaced sunspot cycles, however 
the intensity of each cycle can vary significantly (2,900 pts). 

7. A time series of a space shuttle valve energizing and de-
energizing (1,000 pts). 

 
Figure 7. Data sets 1, 3, 4, 5, 6, 7 for evaluating the L Method 

in segmentation algorithms.  
The ‘correct’ number of segments for a data set and a particular 
segmentation algorithm is obtained by running the algorithm 
with various values of k (controls the number of segments 
returned), and determining what particular value(s) or range of 
values of k produces a ‘reasonable’ PLR (piecewise linear 
representation).  The PLRs that are considered ‘reasonable’ are 
those at a value of k, where no adjacent segments are very 
similar to each other and all segments are internally 
homogeneous (roughly linear).  The synthetic data sets have a 
single correct value for k.  The other data sets have no single 
correct answer, but rather a range of reasonable values.  If there 
are ‘best’ values of k within the reasonable range, they are 
recorded. 

The segmentation algorithms used in this evaluation are:  Gecko, 
bottom-up segmentation (greedy), and bottom-up segmentation 
(global).  The Gecko and Bottom-up segmentation (BUS) 
algorithms were explained in Section 2.  BUS-greedy’s y-axis in 
the evaluation graph is the increase in error of the 2 most similar 
segments when they are merged, and BUS-global’s y-axis is the 
error of the entire linear approximation when there are x 
segments.  All three algorithms used in this evaluation make use 
of an initial top-down pass to create the initial fine-grain 



 

segments.  The minimum size of each initial cluster generated in 
the top down pass was 10.  

4.2.2 Results and Analysis 
A summary of the results of the L Method’s ability to 

automatically determine the number of segments to return from 
segmentation algorithms is contained in Table 2.  For each 
algorithm and data set, the ‘reasonable’ range of correct answers 
is listed as well as the number of segments returned by the L 
Method.  The first three data sets are synthetic and have a single 
correct answer, but the other data sets have a range of 
‘reasonable’ answers.  Numbers in brackets after the reasonable 
range are the best answers within that reasonable range.  The 
signature in data set #5 was fractal in nature and had no ‘correct’ 
clustering.  Note that BUS-greedy and BUS-global perform 
identically and therefore have identical ‘reasonable’ answers.  
However, their evaluation graphs differ and the L Method returns 
different answers for the two algorithms. 

Table 2. Results of using the L Method with three 
hierarchical segmentation algorithms.  Numbers in brackets 

are the ‘best’ answers within a range of correct answers. 

 Gecko Bottom-up- 
greedy 

Bottom-up- 
global 

Data 
Set 

‘C
orrect’ # of 
segm

ents 

N
um

 of 
segm

ents given 

‘C
orrect’ # of 
segm

ents 

N
um

 of 
segm

ents given 

‘C
orrect’ # of 
segm

ents 

N
um

 of 
segm

ents given 

1 20 20 20 20 20 25 

2 20 20 20 20 20 37 

3 20 N/A 20 20 20 37 

4 42-~123 
[42, ~56] 92 

42-
~123+ 
[42] 

46 42-123+ 
[42] 133 

5 ? 32 ? 14 ? 13 

6 44-57 
[44] 45 45-53 

[45] 48 45-53 
[45] 31 

7 9-20   
[10, 17] 17 14-21 

[15] 9 14-21 
[15] 19 

The L Method works very well for both BUS-greedy and Gecko.  
It correctly identified a number of segments for BUS-greedy that 
was within the reasonable range in 5 out of the 6 applicable data 
sets.  For data sets #4 and #6 it also identified a number of 
clusters that is very close to the ‘best’ value in the range of 
reasonable values.  Gecko, which also uses a greedy evaluation 
metric, had the L Method suggest a number of segments within 
the reasonable range for all 5 applicable data sets.  For the two 
greedy algorithms, Gecko and BUS-greedy, the L Method was 
able to correctly determine that the three synthetic data sets 
contained exactly twenty clusters.  BUS-global did not fare so 
well.  The L Method was only able to return a reasonable number 
of clusters for BUS-global in a single test case. 

 
Figure 8. The reasonable range for # of clusters vs. the 

number returned by the L Method. (axes:  x=# of clusters, 
y=evaluation metric – lines:  small solid line=the ‘best’ # of 

clusters, small dashed line=# of clusters determined by the L 
Method, large lines=marks the boundaries of the reasonable 

range for the # of clusters. 
Some of the evaluation graphs produced are showin in Figure 8.  
In the evaluation graph in the top left, the ‘best’ number of 
correct clusters was very close to being identified.  Remember, 
that for segmentation algorithms, all data ponits to the left of the 
data point with the maximum value are ignored. 

The evaluation graph shown in the upper-right portion of Figure 
8 is also very close to identifying the ‘best’ number of clusters.  
Even though there is apparently no significant knee in this 
evaluation graph, the ‘best’ number of clusters can still be 
determined by the L Method.  This is because the knee found by 
the L Method does not necessarily have to be the point of 
maxium curveature.  It is the location between the two regions 
that have relatively steady trends.  Thus, the L Method is able to 
determine the location where there is a significant change in the 
evaluation graph and it becomes erratic…in this case it indicates 
that too many clusters have been merged together and the 
distance function is no longer as well-defined. 

The poor performance of BUS-global is due to a lack of 
prominence in the knee of the curve compared to greedy methods 
(see the graph on the lower right in Figure 8).  Another potential 
problem is if more than one knee exists in the evaluation graph.  
This is typically not a problem if one knee is significantly more 
prominent than the others.  If there are two equally prominent 
knees, the L Method is likely to return a number of clusters that 
falls somewhere between those two knees.  This is acceptable if 
all of the values between the two knees are reasonable.  If not, a 
poor number of clusters will most likely be returned by the L 
Method.   

5. CONCLUDING REMARKS 
We have detailed our L Method, which has been shown to work 
reasonably well in determining the number of clusters or 
segments for hierarchical clustering/segmentation algorithms.  
Hierarchical algorithms that have greedy evaluation metrics 
(most do) perform especially well.  In our evaluation, the L 
Method was able to determine a reasonable number of clusters in 
10 out of 11 instances for  greedy hierarchical segmentation 



 

algorithms, and in 10 out of 12 instances for hierarchical 
clustering algorithms.  Algorithms with global evaluation metrics 
are not likely to work well with the L Method because the knees 
in their evaluation graphs are not prominent enough to be 
reliably detected. 

Iterative refinement of the knee is a very important part of the L 
Method.  Without it, the L Method would only be effective in 
determining the number of clusters/segments within a certain 
range.  The iterative refinemenet algorithm explained in this 
paper enables the L Method to always run under optimal 
conditions:  balanced lines on each side of the knee nomatter how 
large the evaluation graph is or where the knee is located. 

Like most existing methods, the L Method is unable to determine 
if the entire data set is an even distribution and consists of only a 
single cluster (the null hypothesis).  However, the L Method also 
has the limitation that it cannot determine if only two clusters 
should be returned.   

Future work will involve testing the L Method with additional 
clustering and segmentation algorithms on a greater number of 
data sets to help further understand the algorithm’s strengths and 
weaknesses.  We will explore possible modifications to the L 
Method that will enable it to determine when only one or two 
clusters should be returned.  Work will also focus on directly 
comparing the L Method to other methods that attempt to 
determine the number of clusters in a data set. 
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