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ABSTRACT 
Detecting known vulnerabilities (Signature Detection) is not 
sufficient for complete security. This has raised recent interest in 
Anomaly Detection (AD), in which a model is built from normal 
behavior and signification deviations from this model are flagged 
anomalous. However, most AD algorithm assumes clean training 
data, which could be hard to obtain. Our proposed algorithm 
relaxes. For this, we define the notion a strong outlier, which is 
suspicious at both local and global levels. Finally, we illustrate 
the effectiveness of our approach on the DARPA ‘ 99 dataset and 
find that our approach is at par in number of detections at 10 
FA/day with the best participants in the original evaluation who 
employed a hybrid of techniques. 

1. INTRODUCTION 
Motivation. The network is proving its usefulness in more 
ways everyday while also becoming an integral part of our daily 
lives. However, ease of access, outward anonymity, and wide 
prevalence of saving sensitive information on computers has 
attracted a large number of criminals and hacker hobbyists. This 
has resulted in an overwhelming increase in attacks; for instance, 
Symantec estimates that 10 to 15 new viruses are discovered each 
day. With this kind of proliferation, just detecting known 
vulnerabilities (Signature Detection) is  not sufficient of complete 
security. This has raised recent interest in Anomaly Detection, in 
which a model is built of normal behavior and significant 
deviations from the model are flagged anomalous. 
Most of the anomaly detection algorithms require the training 
datasets to be free of attacks.  However, clean data entails 
considerable difficulty for removal of all attacks, including new 
attacks. Removal of all attacks is vital since any hostile activity 
present during training will be deemed innocuous. Alternatively, 
simulated network traffic has been used for evaluation of various 
approaches. The most widely dataset used is the Lincoln 
Laboratory’s dataset [L00]. [MC02] contrast the simulated traffic 
against real traffic and discover several idiosyncrasies, which 
enable some attacks to be detected easily.  All is not lost, since 
[LO], while conducting a comparative study, illustrates the ability 
of approaches, originally evaluated over simulated data, to detect 
attacks in real traffic.   
Identifying noise from a dataset can be viewed as one of spotting 
outliers. Identifying outliers is a well-studied problem [BL98]. 
However, current work in outlier detection requires apriori 
knowledge of the underlying probability distributions and is 

mainly geared towards univariate data [BL98]. We have aimed at 
minimizing such an assumption in pursuit of greater generality. 

Problem Statement. Given a data set with possible 
unlabelled attacks, we desire an algorithm that learns a model for 
anomaly detection. That is, we do not assume the training data to 
be free of attacks, however, we assume that the majority of the 
training data is normal, otherwise, attacks constitute “normal 
behavior.” We also desire the algorithm to be of low time 
complexity, and the learned models to achieve relatively high 
detection rates with low false alarm rates. 

Approach. We propose a clustering algorithm (CLAD) that 
can identify suspicious clusters that are far away and of an 
unusual size. To identify these clusters, we examine a cluster’s 
size and its position relative to other clusters, by this we aim to 
encompass strong outliers i.e. those that are suspicious both at the 
global and local level.  For our approach to work we make one 
additional assumption that under a reasonable metric, innocuous 
points are distinguishable from malicious. CLAD has a time 
complexity of O(kN) for k clusters and N data points. 

Contributions.  Our main contributions are: 

• For clustering, we propose statistically derived cluster-
width (radius) instead of user-defined.  

• Novel approach for measuring distance among discrete 
values which is geared specifically for employing 
outlier detection techniques.  

• A global view of outliers through introduction of notion 
of strong outliers. We illustrate that our approach can  
detect attacks in the DARPA ’99 dataset not identifiable 
through conventional k-NN or LOF [BK00]. 

Organization.  After discussing related work in Section 2, 
Section 3 details our CLAD algorithm. Section 4 analyzes results 
through two methods and we finally conclude in Section 5.  

2. Related Work 
Clustering is a well studied problem [8].  However, majority of 
work done is intended to optimize clustering. While some do 
provide a mechanism to handle noise but only to the extent of 
milding its affect on the overall quality of clusters. In more recent 
work, clustering (or a closely related approach) has been used to 
locate outliers in datasets [BK00, RR00, AY01, KN98]. 
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[KN98] define an outlier as an object with at least p fraction of 
the dataset is farther than distance D from the object, where p and 
D are parameters specified by the users. They also propose an 
efficient cell-based approach for mining such outliers in high 
dimensional data. Like [KN98], [RR00] opt for a local 
perspective and investigate the problem of efficiently finding the 
top n outliers. They are optimizations are based on pruning those 
partitions that can’t contain any outliers. The notion of a “cell” is 
closely related to of a cluster, also by their [KN98, RR00] 
definition dense regions cannot contain outliers. Interestingly, in 
our domain of network traffic some DOS attacks do generate 
large amounts of traffic and can possibly reside in dense regions. 
 
Instead of a global perspective [KN98], LOF [BK00] uses a local 
perspective and locates outliers with respect to the density in the 
local/neighboring region. They illustrate the inability of 
conventional approaches to detect such outliers. LOF has two 
short-comings: one, their approach is very sensitive to the choice 
of MinPts, which specifies the minimum number of objects 
allowed in the local neighborhood (similar to k in k-NN, k-
Nearest Neighbor); second, and more importantly, their approach 
is not well-suited for very high dimensional data such as network 
traffic data. 
 
[AY01] address the problem of mining outliers in high 
dimensional data. They calculate the sparsity coefficient, which 
compares the observed and expected number of data points, in 
“cubes" (spatial grid cells) generated by projections on the 
dataset. Their approach is computationally expensive, while they 
do provide theoretical examples of data points that are outliers in 
certain subsets of the feature space whose effect can possibly be 
offset by “noise” in the complimentary subset. They provide no 
practical example of such a scenario materializing, put another 
way they don’t empirically illustrate discovery of any outlier 
which would have been missed by the current distance-based 
outlier paradigm. 
 
[EP02] and [P00] use clustering as an approximation of k-NN to 
find sparse clusters and label them as anomalous. Our work is 
inspired from theirs, however CLAD is not an approximation of 
k-NN—though similar; we also use inter-cluster distance as an 
additional characteristic to locate suspicious clusters.  

3. Clustering for Anomaly Detection (CLAD) 
We chose to use a relatively simple clustering algorithm because 
we wanted to investigate the effectiveness of a simple approach 
that has a low time complexity. The clustering part of the 
algorithm is essentially the same as one used in [P00, EP02], but 
differs in how points are assigned, represented and how cluster-
width (radius) is computed. 
CLAD dissects the clustering process in to two phases: Phase 1 
creates the clusters and Phase 2 assigns data points to additional 
clusters. Fig. 1 illustrates the steps of the 2 phases. Given a 
dataset, D, Phase 1 creates clusters of fixed width, W (discussed 
in following subsection), and assigns data points, d to D, to the 
created clusters. If a data point is further away than width W from 
any existing cluster, the data point becomes the centroid of a new 
cluster; otherwise it is assigned to all existing clusters that are not 
further away than W. 

Phase 2 assigns data points to appropriate clusters that Phase 1 
missed.  This is necessary since in phase 1 data points can only be 
assigned to existing clusters; some data points might miss 
assignment to clusters that are subsequently created. And we find 
empirically that making this distinction significantly affects the 
size of some clusters while also improving performance. As for 
assignment to all clusters: [P00] chooses to assign a datum to only 
the closest cluster, while [EP02] assigns the datum to all 
allowable clusters. We choose the latter, although this implies that 
clusters won’t be mutually exclusive. Mutual exclusion is not a 
concern since outlier clusters would be distant from the rest, but 
assigning a datum to all allowable clusters is vital since cluster 
size is taken to represent the density of that region.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Overview of Clustering 

3.1 Cluster Width 
The cluster width, W, specifies the local neighborhood of clusters 
that are considered close. We choose a fixed W because we intend 
to compare density of clusters through number of points within a 
cluster; since “area” is complex for higher dimensional data we 
can ignore it if it is under a constant W. 

The width is specified by the user in [P00, EP02]. However, we 
notice that performance—both in terms of number of attacks 
detected and time—is very sensitive to the choice of W and 
accordingly suggest a standardized method to dynamically derive 
W. The notion of a cluster is that it should represent a certain type 
(or sub-type) of data i.e. under a reasonable translation, data 
points that are very close to each other should reside in the same 
cluster. We use this as guidance for our width-derivation 
algorithm. CLAD derives the width from the smallest distances 
between pairs of data points. To efficiently calculate the width, 
CLAD randomly draws a sample, of size S = 1% of |D|, from the 
entire dataset, D, and calculates the pair-wise distances—we only 
require the pair-wise distance since our distance function enjoys 
symmetry. The bottom 1% of the pair-wise distances (i.e., 1% of 
S(S - 1)/2 pairs) are considered the smallest and their average is 
the cluster width. That is, CLAD samples pair-wise distances and 
uses the average distance of the closest neighbors as W. Though 
CLAD has a fixed parameter of 1% for deriving W, it is much less 

Input: Dataset D 
Output: Set of Clusters C 

1. Initialize the set of cluster, C, to Ø 
     Phase 1: Creating Clusters 
2. For d ∈ D 
3.    For c ∈ C 

4.       If distance(d,c) ≤W, assign d to c 
5.    If d is not assigned 
6.      create cluster c` with d as centroid and add c` to C 

             Phase 2: Assigning points to additional clusters 

7. For d ∈ D 
8.    For c ∈ C 

9.       If distance(d,c) ≤W, if d is not assigned to c 
10.          assign d to c 
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ad hoc than asking the user to specify W, which becomes a 
parameter. Our parameter is similar to specifying k in k-NN 
methods, but our parameter is in relative percentage, which is 
different from the absolute count of k and is conceptually easier to 
specify and understand. More importantly, it will enable CLAD to 
easily adapt to different TCP services and possibly to different 
data sets. 

3.2 Feature Map 
Although feature space is an application dependant element, we 
devise a general way to transform an input space vector to a 
feature space vector. In this section we propose solutions to two 
problems inherent to distance functions: how to measure distance 
within a discrete attribute and ensuring summation over attribute-
distances is meaningful. Former is solved through Translation 
while Normalization is geared towards the latter. 

3.2.1 Translation (T) 
 T translates an input data point represented as an input vector  
(X) which is a mixture of discrete and continuous attributes to a  
real-vector (Y) which is only composed of continuous attributes.  

Continuous attributes which are already of numerical nature are 
not translated or alternatively their translation is a vacuous one. 
For an attribute a of input vector, X: 

         
AttributesContinuousaXXTY aaa ∈∀== ,)(   (1) 

where a is an attribute and Xa and Ya are the corresponding 
component of X and Y. 

Current approaches are inadequate for AD: binary distance and 
variants [HK01] does not provide different degrees of distance, 
VDM[SW86] measures how close the frequency of two values are 
in the same class, but class information is not available in our 
case. In anomaly detection, we consider values that occur more 
frequently to be more normal (and vice versa), therefore we use 
the frequency of values (instead of the value) to be in the feature 
vector. That is, the distance between two discrete values is based 
on the their frequency.  More formally,  

 tributesDiscreteAtaNXTY
aXaaa ∈∀== = ,)(  (2) 

where Na=x is the number of times attribute a had value x. 
3.2.2 Normalization 
Normalization takes as input the translated vector, Y, and 
transforms to a normalized vector, Z, such that summation over 
different attributes becomes meaningful—for they can be possibly 
in different units, etc [HK01]. Current related approaches use z-
score-normalization (i.e. number of standard deviations  (SDs) 
away from average) to remedy this problem. Average is only 
useful for distributions similar to normal. For more exotic 
distributions like Cauchy not only is average (or SD) a bad 
approximation but is also misleading [BL98]. We further 
empirically verified this and found that using SD gives inferior 
performance to the approach proposed below. 

Our normalization is a two-step process: quantization and scaling. 
By quantization we are smoothing by (exponentially increasing) 
bin boundaries [HK01], because in our domain continuous 
attributes, including those transformed from discrete attributes, 

usually exhibit a power-law distribution smaller values are much 
more frequent than larger values. Distances involving the 
infrequent large values are large and “drowns” the distances 
involving only small values. We achieve quantization by applying 
logarithm and floor operations. Furthermore, in order to consider 
each attribute equally, the values of each attribute are 
dynamically scaled to the range [0,1]. 
More formally: 

      ( ))()( aaa YquantizescaleYnormalizeZ ==       (3) 

                   )1ln()( +≡ YYquantize a                         (4) 

           ( )aaaa MINMAXYYscale −÷≡ `)`(               (5)                           

In (4) “+ 1” is required in order for ln to  be well-defined. In (5) 
MAXa and MINa represent the maximum and minimum values 
observed in attribute a, respectively.   

Consider the following example: 

• Values observed in a field: 0, e-1,e2-1, e4-1, e8-1 

• Maximum Distance(MD) = (e8-1) - 0 

• Distance(e4-1,0) = (e4  - 1) / MD = 0.01 

Although the distance was significant but because the smallest 
value was quite small and the largest value was quite large 
therefore the distance in between is “drowned”. Let's take another 
look at the same example with the aforementioned remedy: 

• ( ) observedvalues _ln  = 0, 1, 2, 4, 8 

• Maximum Distance = 8 - 0 = 8 

• Distance(4,0) = (4 – 0) / 8 = 0.5 
 
3.3 Distance Function 
There is a wide variety of distance functions available for real-
continuous spaces; to mention a few: Quadratic, Mahalanobis, 
Correlation, and Chi-square. However, we choose Euclidean: 

                 Distance(Z1, Z2) = [ ] 2
||

1
21

1

∑
=

=

−
Zi

i
ii ZZ                 (6) 

Primarily because it leads to a Metric space, that is it has 
properties such as symmetry, reflexive, and transitivity. Also, 
individual attribute differences rise faster than the sum—thanks to 
power of 2. Moreover, it is the most widely used in distance based 
approaches [WM98], while also being quite efficient. 

3.4 Defining Outlier Clusters 
To determine if a cluster is an outlier, CLAD relies on two 
properties of a cluster: density and distance from the other 
clusters. Since each cluster has the same W (and hence “area"), 
we define the density of cluster, ci, as the number of data points, 
Counti, in ci. For the distance from the other clusters, we calculate 
the average inter-cluster distance (ICD) between ci and the other 
clusters. Formally, we denote ICDi as the ICD of cluster ci and 
define ICDi as: 
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where C, as similarly defined before, is the set of clusters and |C| 
represents the cardinality of that set. Clusters that are distant and 
sparse are considered outliers and anomalous. A cluster ci is 
considered distant if ICDi is more than a standard deviation away 
from the average ICD. From our initial experiments, we observe 
that the distribution of Count exhibits a power-law distribution; 
when we use average and SD for Count, the average is very small 
and few/no clusters have Counti one SD smaller than the average. 
Since median absolute deviation (MAD) is more robust to outliers 
and skewed distributions [HK01] we use it to determine the 
surprising Counti s. Where MAD for a population of values, P, is: 
 

})|:)(({|)( PpPmedianpmedianPMAD ∈−=   (8)                                                                                 
 
A Cluster ci is considered sparse when Counti is more than one 
MAD smaller than the median Count. Interestingly, in our domain 
an attack could be composed of many data points (e.g., flooding 
attacks), and hence dense regions could be attacks as well. We 
will discuss this issue further in the next section when we evaluate 
CLAD. Accordingly, we define dense clusters, which have Counti 
more than one MAD larger than the median Count. More 
formally, the set of distant clusters Cdistant, sparse clusters Csparse, 
and dense clusters Cdense, are defined as: 
     Cdistant = {ci ∈ C | ICDi > AVG(ICD) + SD(ICD)}             (9) 
  Csparse = {ci ∈ C | Counti < AVG(Count) - MAD(Count)}   (10) 
 Cdense = {ci ∈ C | Counti > AVG(Count) + MAD(Count)}    (11) 
where AV G is the average function. 
 
A sparse cluster/region is essentially a local outlier, i.e., it reflects 
how many neighbors are within W. This is similar to k-NN which 
computes distance to the closest k neighbors, whereas by our 
mechanism k is dynamically determined through W. [BL98] 
defines an outlier value as surprisingly extreme; extreme values 
reside at both ends: very small and very large. Therefore, we 
extend the notion of a local outlier to encompass regions which 
are surprisingly and extremely dense. This is also in agreement 
with Hawkins’ definition (Def. 1) since an oddly dense region is 
suspicious with respect to the rest of Count. 

Definition 1: “an outlier is an observation that deviates so much 
from other observations so as to arise suspicion that it was 

generated by a different mechanism.” [H80] 
 
Labeling a region distant is equivalent to saying that the region is 
a global outlier. This can be thought of as a special of k-NN 
applied at the cluster-level, that is with N equal to number of 
clusters.. We investigated the effects on performance for different 
values of k at this level (Since the number of clusters can be large 
we binned clusters on basis of CID to bring it down to a 
reasonable number). We observed that new attacks were found 
due to virtually each bin. Suggesting that useful information about 
outliers was available approximately in all values less than N. 

Finally, we define a strong outlier as one which is both an outlier 
at the global and local level. CLAD only raises strong outliers as 
alarms. For each strong outlier cluster only the centriod is raised 
an alarm since it’s representative of the cluster (detail in Section 

4.3). The alarms are further sorted with respect to how strong 
outliers they are. Outlier is deviation from normal behavior and 
ICDi of a cluster captures this concept. Intuitively, the farther a 
cluster [from the rest] the more anomalous it becomes. Therefore, 
for an anomalous cluster, ci,  the centriod has an anomaly score of 
ICDi. As it will be explained later that we build multiple models 
and we eventually merge all alarms, we need to normalize the 
anomaly scores. We use z-score-normalization for this purpose. 
More formally, Anomaly Score (ASi) for a cluster, ci: 

          [ ] )()( ICDSDICDAVGICDAS ii ÷−=          (12) 

4. Experimental Evaluation 
4.1 Evaluation Data and Procedure 
We tested CLAD on the 1999 DARPA intrusion detection 
evaluation data [L00]. The data is from a local network for a 
simulated air force base. The objective is to detect attacks given 
the offline audit data of the network traffic and other data. The 
original participants were provided with the three weeks of data: 
with 1st and 3rd being clean with 2nd containing labeled attacks. 
The systems were then evaluated on 4th and 5th weeks of data, 
which contain 201 attacks in all. Like the original participants, 
evaluation is done in an off-line manner. For our experiment we 
only use the inbound TCP dump data. The TCP dump data was 
preprocessed to form TCP connection records for well-known 
ports  (< 1024), same data used in [MC01], before being fed into 
our system. Attributes of the input vector (X, Sec 3.2) are: Date & 
Time (ignored in Clustering, only used for reporting alarms), 
Source IP, Source Port, Destination IP, Destination Port, Length, 
duration, first and last 2 TCP flags and 10 raw bytes from 
payload. [Length and Duration are continuous initially.] 
 
We partition the data into subsets according to the destination 
port. For ports that have little traffic (< 1% of the data), we 
lumped them into the “OTHER” subset. Initially, we used data 
from only the 4th and 5th weeks, however there was too little data 
on some ports, which made mining outliers harder. So we append 
data from weeks 1 and 3 which is clean to the above to ensure that 
attacks are in a small minority (< 5%). The port share for different 
services is shown in Table 1. The last three columns will be 
explained in the following subsection. 
 

Table 1:Characteristics of  ports for Weeks 1,3,4,5 (total 
TCP Connection Records = 243907) 

Port % of Records MPN Attacks 
Detectable 

TP/FP 

20 7 0.96 54 9/5 

21 1 0.75 66 29/45 

23 6 0.34 97 35/89 

25 21 0.75 107 33/100 

53 1 0.007 15 7/0 

79 2 0.4 33 9/94 

80 22 0.85 68 39/100 

110 7 0 6 3/0 
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Port % of Records MPN Attacks 
Detectable 

TP/FP 

111 1 0 5 6/0 

143 2 0 10 4/0 

OTHER 26 0.02 45 14/16 

Combined - - - 74/100 

 
Such partitioning enables us to process data more efficiently and 
with lighter memory requirements. More importantly, different 
ports have different behaviors and building an individual model 
for each port can cater to its behavior. For instance, we would 
expect FTP traffic to be, on average, substantially longer than 
HTTP traffic. Therefore, we believe modeling each service 
independently enables us to build a more accurate model and 
make outliers more prominent. 
4.2  Number of Detections and False Alarms 
The original intrusion detection systems were evaluated by the 
number of attacks detected (True Positives or TP) and number of 
false alarms (False Positives or FP), therefore we primarily use 
this as measure of performance. Like in the original evaluation, an 
attack is counted as detected if the system correctly reports the IP 
address of the victim, and the date and time of the attack within 
60 seconds of any portion of the attack. Moreover, multiple 
detections of the same attack are counted only once. The inside 
network traffic for one day (week 4, day 2) is missing, so we omit 
the 12 attacks during this period, leaving 189 of the original 201. 
We also discovered by examining the data that two attacks (an 
apache2 and phf attack) were not labeled. However, we chose not 
to label these for our results in fairness to the original participants. 
We used the same EVAL implementation used in other work at 
our laboratory [MC01].  
 
Since labels for attacks at the connection level are not available, 
we cannot precisely estimate the proportion of attacks versus 
normal connections. To roughly characterize the proportion of 
normal connection records in our   data, we measure the minimum 
proportion of normalcy (MPN) by counting the number of false 
alarms generated by a "naive" detector that indiscriminately raises 
an alert on every connection record.  We stress that this is a rough 
approximation of the actual percentage of normal data, and is a 
lower bound of the actual percentage (mainly because of normal 
traffic to the victim host during the attack period and the 60-
second detection windows before and after an attack). A small 
MPN suggests attacks could be frequent and be detected easily 
according to the detection criteria, and some of these detections 
could be coincidental.  A larger MPN indicates that attacks are 
harder to detect and detections are not likely to be by chance 
(statistically). Table 1 shows the MPN for the respective models. 
This also introduces some objectivity in measuring the goodness 
of the results since it can be seen that on ports 110,111, and 143 
any alarm will be counted as a detection. Thus, results of any 
system tested on these ports would be seemingly impressive. By 
using the "naive" detector, we can also measure the maximum 
number of attacks that are detectable (column 4 in Table 1). The 
number of detectable attacks is the upper bound on attacks 
present for the same reasons of why MPN is the lower bound on 
normal traffic. 

 
Table 1 also summarizes the TP rate at 100 FA for each specific 
model and “Combined” which merges all alarms; those with 
lesser false alarms indicate that not enough alarms were generated 
with current definitions of (9,10,11). Entries can be interpreted as: 
port 80 has a significant share of the data (22%) with a relatively 
large amount of normal records (0.85 MPN) and our learned 
model detected 39 attacks with 100 false alarms. For merged, we 
detected 74 attacks at 100 FA, whereas the top 2 system in the 
original evaluation detected 80-85 attacks [L00]. It is worth 
pointing out that these systems used a variety of techniques: both 
signature and anomaly detection, and both host and network 
based   
methods, whereas ours only looked at assembled TCP streams and 
more importantly had no a priori knowledge of attacks i.e. AD. 
Note that the majority of detections come from ports  which have 
significant share of the data and/or high MPN e.g. 21, 25 and 80.  
We, in general, do worst for ports with a small share of the data 
and/or low MPN. This is not surprising because for outlier 
detection, it is critical that normal data are in significantly large 
quantities, that is, large MPN.  Also, a small share of data might 
not provide enough information to identify normal clusters.  
 

Figure 2: Detection vs. False Alarm(DFA) Curve  for 
“Combined” CLAD performance 

 
Figure 2 provides a more detailed view of the performance of the 
Combined model (TP on the y-axis and FP on the x-axis). Blank 
entries indicate where no measurement was taken because with 
current threshold (Cdistant was relaxed ci ∈ C | ICDi > AVG(ICD) 
in order to generate more alarms) not enough false alarms could 
be generated.  Figure 2 shows three curves; in all 3 cases all 
clusters are far away the variable changed is density: dense only 
(diamond), sparse only (square), dense or sparse (triangle). Dense 
region anomalies are those which couldn’t have been spotted with 
current outlier techniques i.e. they only concentrate on sparse 
regions. As it is apparent from figure 2., dense area contains 
attacks not found in sparse regions and consequently “dense or 
sparse” results in the best performance.  However, “sparse or 
dense” curve rises slower than “dense only”; this is due to the 
scoring function being only based on ICD i.e. it currently is not 
sensitive to extremeness in ICDi as an outlying factor. 
4.3 Quality of Clusters 

DFA Curve for CLAD
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Here we take a closer look at the contents of the clusters. Since 
we do not have exact labels, we define CD (Counted as 
Detection) of a cluster as the percentage of data points in the 
cluster, when used to trigger an alert, is counted as a detection of 
an attack. This is an indirect rough approximation of the 
likelihood of an attack present in the cluster. We plot clusters with 
CD < 20% (“unlikely anomalies") against Count and ICD (Sec 
3.3) in Fig. 3a and similarly for CD > 80% (“likely anomalies") in 
Fig. 3b. Both Count and ICD are in log scale. As we compare the 
two plots, we observe that the likely anomalies occur more often 
in regions with larger ICD, and the opposite for unlikely 
anomalies with smaller ICD. The same observation cannot be 
made for Count (which estimates density). This is related to the 
fact that some attacks can occur in dense clusters as we explained 
previously. For port 80 in Fig 4, similar observations can be 
made. The figures also indicate that sparse or dense and distant 
clusters, which we use to trigger alerts, are likely to detect attacks. 

It is also worth noting here that a high CD does not necessitate a 
legitimate detection (for the same reasons as MPN is minimal); 
we suspect this is the reason why some high CD (fig. 3b & 4b) 
clusters reside in low ICD regions.  Conversely, high ICD clusters 
for low CD, at port 80 (Fig. 4a), are due to the two mislabeled 
attacks in the dataset (explained earlier). 
 
Moreover, we use notion of a cluster (Section 3.1) as a measure of 
cluster quality. For port 80, 96% of the clusters have CD = 100% 
or < 9% (similarly for port 25). This indicates that most of the 
clusters are near homogeneous and hence our combination of 
feature vectors, distance function, and cluster width can 
sufficiently characterize the data. Also, note that this means that if 
a cluster contains an anomalous point then it is probable that all 
points in it are such. This means that if we just output the 
centriods of clusters deemed anomalous, we won’t sacrifice much 
on detection but drastically curtail FP rate. Since high FP is one 
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Fig. 3a: Count and ICD of clusters for port 25 with CD < 20% 
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Fig. 3b: Count and ICD of clusters for port 25 with CD > 80% 
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Fig. 4a: Count and ICD of clusters for port 80 with CD < 20% 
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Fig. 4b: Count and ICD of clusters for port 80 with CD >80 
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of the biggest problems for anomaly detection we opt to do so. 
 
4.4 Analysis of Detections and False Alarms 
Table 2:Attack type Statistics; detected at 100 FA (“Combined”) 

The ’99 DARPA dataset contains following types of attacks 
[K99]: 

• Probe: gathering information before an attack, for 
example, scanning for available ports.  

• Denial Of Service (DOS): degrading or disabling a host 
or network. 

• Remote To Local (R2L): gaining unauthorized access to 
execute commands on a host remotely. 

• User To Root (U2R) and Data: gaining privileged 
(system administrator) access to a host or network. 

 
For the Combined model, the number of detections in each attack 
type with at most 100 false alarms is summarized in Table 2. We 
also analyze why some of the attacks were or were not detected. 
However, due to space limitations we are not able to report results 
for all attacks types. As a sample, we report  analysis of DOS 
attacks and show how to interpret some of the entries: 

• We detect almost all instances (3 out of 4) of the 
apache2 attack. The associated data points are found in 
anomalous clusters due to strange values (frequency in 
this case) of Source IP and first 2 and last 2 TCP flags. 

• CLAD cannot detect smurf since it uses ICMP protocol 
whereas we only use TCP connection records. 

• Mailbomb generates huge amounts of traffic and resides 
in the dense region, but it is not identified at the 100 FA 
rate. 

• Finally, the last row indicates how many attacks were 
detectable (45) by the system out of the total attacks 
(63) of that type—the difference is due to our input 
data; those marked with asterisk are not detectable with 
reason given in []—of  which 25 are detected. 

Table 3: DOS Attack Analysis 

DOS Number Detected Contributing Attributes 

apache2 4 3 Source IP, TCP flags  

arppoison 5 
3 

Long duration caused by 
unclosed TCP connections 

back 4 3 Duration, 7- 10th payload 
bytes (with value = ‘/’) 

crashiis 7 7 Detected due to long 
duration. 

dosnuke 4 
1 

Duration: unclosed TCP 
connections 

land 1 1 Source and Destination IP 

mailbomb 3 0 [resides in dense region;
detected at FA rate of 200] 

neptune 4 3 Source IP and 3rd TCP flag 

Pod* 4 0 [used ICMP] 

processtable 3 2 Long duration: incomplete 
TCP connections 

Selfping* 3 0 [issued locally] 

Smurf* 5 0 [uses ICMP] 

Syslogd* 4 0 [used UDP] 

Tcpreset 3 2 2nd TCP flag 

Teardrop* 3 
0 

[Not visible in TCP
connection traffic] 

Udpstrom* 2 0 [uses UDP] 

warez 4 0 [missed because generated 
moderate traffic] 

Total 63 –
(4+3+5+4+3+2) 

=42 25 

  

4. Concluding Remarks 
In this paper we explored a clustering technique (CLAD) for 
identifying attacks through outlier detection. For this, we define 
the notion of a strong outlier which is suspicious at both local and 
global levels. This novel notion also encompasses strangely dense 
regions which are far away [from rest] as anomalous and it is 
empirically shown to contain attacks; this encompassing identifies 
a new area for potential attacks, an area overlooked by current 
approaches [KN98, BK00, RR00]. For clustering, we proposed a 
dynamic statistical derivation of cluster-width rather than an ad-
hoc value. For measuring distance we defined a metric for 
measuring distance in discrete attributes and empirically show 
that simple scaling is better then z-score-normalization since it 
makes no assumption about the underlying distribution. Finally, 
we illustrate the effectiveness of our approach on the DARPA ‘ 
99 dataset by identifying 74 attacks at 100 false alarms whereas 
the best contestant, Expert 1, detected 85 attacks (at 100 FA) and 
has built-in knowledge about attacks [L00]. Also note that in the 
original evaluation 100 FA was based on 10 FA per day (10 days 
of data in weeks 4 & 5), but more data is fed into CLAD i.e. 
weeks 1 & 3. Although this makes it harder on our system (by 
giving an average of less than 5 alarms per day) but we opted to 
do so in order to make the results comparable. 
 
Currently CLAD operates under a closed world assumption. This 
is evident from use of frequency for discrete values; behavior is 
not defined for an unseen value. We intend to explore smoothing 
techniques to address this problem.  For results, we observed that 
many attacks were identified at more than one port which is 
evident from the fact that the “naive” sum of detections for 
individual models is far greater than total detections which counts 
multiple detections only once. This suggests that more 
sophisticated merging of alarms can improve performance. 
Furthermore, we are analyzing payload for extracting useful 
attributes which could be incorporated into CLAD. Finally, to 

Attack Type Number Detected 

Probe 28 19 (70%) 

DOS 42 25(59%) 

R2L 41 15(37%) 

U2R/Data 37 14(38%) 

Total 148 74(50%) 
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address the problem of simulation artifacts in simulated data our 
group has collected real data off of our university server. We 
intend to explore effectiveness of our approach on this real data.  
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