
 1

Identifying Outliers via Clustering for Anomaly Detection
TR CS-2003-19

Muhammad H. Arshad and Philip K. Chan

Department of Computer Sciences
Florida Institute of Technology Melbourne, FL 32901

{marshad, pkc}@cs.fit.edu

ABSTRACT
Detecting known vulnerabilities (Signature Detection) is not
sufficient for complete security. This has raised recent interest in
Anomaly Detection (AD), in which a model is built from normal
behavior and signification deviations from this model are flagged
anomalous. However, most AD algorithm assumes clean training
data, which could be hard to obtain. Our proposed algorithm
relaxes. For this, we define the notion a strong outlier, which is
suspicious at both local and global levels. Finally, we illustrate
the effectiveness of our approach on the DARPA ‘ 99 dataset and
find that our approach is at par in number of detections at 10
FA/day with the best participants in the original evaluation who
employed a hybrid of techniques.

1. INTRODUCTION
Motivation. The network is proving its usefulness in more
ways everyday while also becoming an integral part of our daily
lives. However, ease of access, outward anonymity, and wide
prevalence of saving sensitive information on computers has
attracted a large number of criminals and hacker hobbyists. This
has resulted in an overwhelming increase in attacks; for instance,
Symantec estimates that 10 to 15 new viruses are discovered each
day. With this kind of proliferation, just detecting known
vulnerabilities (Signature Detection) is not sufficient of complete
security. This has raised recent interest in Anomaly Detection, in
which a model is built of normal behavior and significant
deviations from the model are flagged anomalous.
Most of the anomaly detection algorithms require the training
datasets to be free of attacks. However, clean data entails
considerable difficulty for removal of all attacks, including new
attacks. Removal of all attacks is vital since any hostile activity
present during training will be deemed innocuous. Alternatively,
simulated network traffic has been used for evaluation of various
approaches. The most widely dataset used is the Lincoln
Laboratory’s dataset [L00]. [MC02] contrast the simulated traffic
against real traffic and discover several idiosyncrasies, which
enable some attacks to be detected easily. All is not lost, since
[LO], while conducting a comparative study, illustrates the ability
of approaches, originally evaluated over simulated data, to detect
attacks in real traffic.
Identifying noise from a dataset can be viewed as one of spotting
outliers. Identifying outliers is a well-studied problem [BL98].
However, current work in outlier detection requires apriori
knowledge of the underlying probability distributions and is

mainly geared towards univariate data [BL98]. We have aimed at
minimizing such an assumption in pursuit of greater generality.

Problem Statement. Given a data set with possible
unlabelled attacks, we desire an algorithm that learns a model for
anomaly detection. That is, we do not assume the training data to
be free of attacks, however, we assume that the majority of the
training data is normal, otherwise, attacks constitute “normal
behavior.” We also desire the algorithm to be of low time
complexity, and the learned models to achieve relatively high
detection rates with low false alarm rates.

Approach. We propose a clustering algorithm (CLAD) that
can identify suspicious clusters that are far away and of an
unusual size. To identify these clusters, we examine a cluster’s
size and its position relative to other clusters, by this we aim to
encompass strong outliers i.e. those that are suspicious both at the
global and local level. For our approach to work we make one
additional assumption that under a reasonable metric, innocuous
points are distinguishable from malicious. CLAD has a time
complexity of O(kN) for k clusters and N data points.

Contributions. Our main contributions are:

• For clustering, we propose statistically derived cluster-
width (radius) instead of user-defined.

• Novel approach for measuring distance among discrete
values which is geared specifically for employing
outlier detection techniques.

• A global view of outliers through introduction of notion
of strong outliers. We illustrate that our approach can
detect attacks in the DARPA ’99 dataset not identifiable
through conventional k-NN or LOF [BK00].

Organization. After discussing related work in Section 2,
Section 3 details our CLAD algorithm. Section 4 analyzes results
through two methods and we finally conclude in Section 5.

2. Related Work
Clustering is a well studied problem [8]. However, majority of
work done is intended to optimize clustering. While some do
provide a mechanism to handle noise but only to the extent of
milding its affect on the overall quality of clusters. In more recent
work, clustering (or a closely related approach) has been used to
locate outliers in datasets [BK00, RR00, AY01, KN98].

 2

[KN98] define an outlier as an object with at least p fraction of
the dataset is farther than distance D from the object, where p and
D are parameters specified by the users. They also propose an
efficient cell-based approach for mining such outliers in high
dimensional data. Like [KN98], [RR00] opt for a local
perspective and investigate the problem of efficiently finding the
top n outliers. They are optimizations are based on pruning those
partitions that can’t contain any outliers. The notion of a “cell” is
closely related to of a cluster, also by their [KN98, RR00]
definition dense regions cannot contain outliers. Interestingly, in
our domain of network traffic some DOS attacks do generate
large amounts of traffic and can possibly reside in dense regions.

Instead of a global perspective [KN98], LOF [BK00] uses a local
perspective and locates outliers with respect to the density in the
local/neighboring region. They illustrate the inability of
conventional approaches to detect such outliers. LOF has two
short-comings: one, their approach is very sensitive to the choice
of MinPts, which specifies the minimum number of objects
allowed in the local neighborhood (similar to k in k-NN, k-
Nearest Neighbor); second, and more importantly, their approach
is not well-suited for very high dimensional data such as network
traffic data.

[AY01] address the problem of mining outliers in high
dimensional data. They calculate the sparsity coefficient, which
compares the observed and expected number of data points, in
“cubes" (spatial grid cells) generated by projections on the
dataset. Their approach is computationally expensive, while they
do provide theoretical examples of data points that are outliers in
certain subsets of the feature space whose effect can possibly be
offset by “noise” in the complimentary subset. They provide no
practical example of such a scenario materializing, put another
way they don’t empirically illustrate discovery of any outlier
which would have been missed by the current distance-based
outlier paradigm.

[EP02] and [P00] use clustering as an approximation of k-NN to
find sparse clusters and label them as anomalous. Our work is
inspired from theirs, however CLAD is not an approximation of
k-NN—though similar; we also use inter-cluster distance as an
additional characteristic to locate suspicious clusters.

3. Clustering for Anomaly Detection (CLAD)
We chose to use a relatively simple clustering algorithm because
we wanted to investigate the effectiveness of a simple approach
that has a low time complexity. The clustering part of the
algorithm is essentially the same as one used in [P00, EP02], but
differs in how points are assigned, represented and how cluster-
width (radius) is computed.
CLAD dissects the clustering process in to two phases: Phase 1
creates the clusters and Phase 2 assigns data points to additional
clusters. Fig. 1 illustrates the steps of the 2 phases. Given a
dataset, D, Phase 1 creates clusters of fixed width, W (discussed
in following subsection), and assigns data points, d to D, to the
created clusters. If a data point is further away than width W from
any existing cluster, the data point becomes the centroid of a new
cluster; otherwise it is assigned to all existing clusters that are not
further away than W.

Phase 2 assigns data points to appropriate clusters that Phase 1
missed. This is necessary since in phase 1 data points can only be
assigned to existing clusters; some data points might miss
assignment to clusters that are subsequently created. And we find
empirically that making this distinction significantly affects the
size of some clusters while also improving performance. As for
assignment to all clusters: [P00] chooses to assign a datum to only
the closest cluster, while [EP02] assigns the datum to all
allowable clusters. We choose the latter, although this implies that
clusters won’t be mutually exclusive. Mutual exclusion is not a
concern since outlier clusters would be distant from the rest, but
assigning a datum to all allowable clusters is vital since cluster
size is taken to represent the density of that region.

Figure 1: Overview of Clustering

3.1 Cluster Width
The cluster width, W, specifies the local neighborhood of clusters
that are considered close. We choose a fixed W because we intend
to compare density of clusters through number of points within a
cluster; since “area” is complex for higher dimensional data we
can ignore it if it is under a constant W.

The width is specified by the user in [P00, EP02]. However, we
notice that performance—both in terms of number of attacks
detected and time—is very sensitive to the choice of W and
accordingly suggest a standardized method to dynamically derive
W. The notion of a cluster is that it should represent a certain type
(or sub-type) of data i.e. under a reasonable translation, data
points that are very close to each other should reside in the same
cluster. We use this as guidance for our width-derivation
algorithm. CLAD derives the width from the smallest distances
between pairs of data points. To efficiently calculate the width,
CLAD randomly draws a sample, of size S = 1% of |D|, from the
entire dataset, D, and calculates the pair-wise distances—we only
require the pair-wise distance since our distance function enjoys
symmetry. The bottom 1% of the pair-wise distances (i.e., 1% of
S(S - 1)/2 pairs) are considered the smallest and their average is
the cluster width. That is, CLAD samples pair-wise distances and
uses the average distance of the closest neighbors as W. Though
CLAD has a fixed parameter of 1% for deriving W, it is much less

Input: Dataset D
Output: Set of Clusters C

1. Initialize the set of cluster, C, to Ø
 Phase 1: Creating Clusters
2. For d ∈ D
3. For c ∈ C

4. If distance(d,c) ≤W, assign d to c
5. If d is not assigned
6. create cluster c` with d as centroid and add c` to C

 Phase 2: Assigning points to additional clusters

7. For d ∈ D
8. For c ∈ C

9. If distance(d,c) ≤W, if d is not assigned to c
10. assign d to c

 3

ad hoc than asking the user to specify W, which becomes a
parameter. Our parameter is similar to specifying k in k-NN
methods, but our parameter is in relative percentage, which is
different from the absolute count of k and is conceptually easier to
specify and understand. More importantly, it will enable CLAD to
easily adapt to different TCP services and possibly to different
data sets.

3.2 Feature Map
Although feature space is an application dependant element, we
devise a general way to transform an input space vector to a
feature space vector. In this section we propose solutions to two
problems inherent to distance functions: how to measure distance
within a discrete attribute and ensuring summation over attribute-
distances is meaningful. Former is solved through Translation
while Normalization is geared towards the latter.

3.2.1 Translation (T)
 T translates an input data point represented as an input vector
(X) which is a mixture of discrete and continuous attributes to a
real-vector (Y) which is only composed of continuous attributes.

Continuous attributes which are already of numerical nature are
not translated or alternatively their translation is a vacuous one.
For an attribute a of input vector, X:

AttributesContinuousaXXTY aaa ∈∀== ,)((1)

where a is an attribute and Xa and Ya are the corresponding
component of X and Y.

Current approaches are inadequate for AD: binary distance and
variants [HK01] does not provide different degrees of distance,
VDM[SW86] measures how close the frequency of two values are
in the same class, but class information is not available in our
case. In anomaly detection, we consider values that occur more
frequently to be more normal (and vice versa), therefore we use
the frequency of values (instead of the value) to be in the feature
vector. That is, the distance between two discrete values is based
on the their frequency. More formally,

 tributesDiscreteAtaNXTY
aXaaa ∈∀== = ,)((2)

where Na=x is the number of times attribute a had value x.
3.2.2 Normalization
Normalization takes as input the translated vector, Y, and
transforms to a normalized vector, Z, such that summation over
different attributes becomes meaningful—for they can be possibly
in different units, etc [HK01]. Current related approaches use z-
score-normalization (i.e. number of standard deviations (SDs)
away from average) to remedy this problem. Average is only
useful for distributions similar to normal. For more exotic
distributions like Cauchy not only is average (or SD) a bad
approximation but is also misleading [BL98]. We further
empirically verified this and found that using SD gives inferior
performance to the approach proposed below.

Our normalization is a two-step process: quantization and scaling.
By quantization we are smoothing by (exponentially increasing)
bin boundaries [HK01], because in our domain continuous
attributes, including those transformed from discrete attributes,

usually exhibit a power-law distribution smaller values are much
more frequent than larger values. Distances involving the
infrequent large values are large and “drowns” the distances
involving only small values. We achieve quantization by applying
logarithm and floor operations. Furthermore, in order to consider
each attribute equally, the values of each attribute are
dynamically scaled to the range [0,1].
More formally:

 ())()(aaa YquantizescaleYnormalizeZ == (3)

  )1ln()(+≡ YYquantize a (4)

 ()aaaa MINMAXYYscale −÷≡ `)`((5)

In (4) “+ 1” is required in order for ln to be well-defined. In (5)
MAXa and MINa represent the maximum and minimum values
observed in attribute a, respectively.

Consider the following example:

• Values observed in a field: 0, e-1,e2-1, e4-1, e8-1

• Maximum Distance(MD) = (e8-1) - 0

• Distance(e4-1,0) = (e4 - 1) / MD = 0.01

Although the distance was significant but because the smallest
value was quite small and the largest value was quite large
therefore the distance in between is “drowned”. Let's take another
look at the same example with the aforementioned remedy:

• () observedvalues _ln = 0, 1, 2, 4, 8

• Maximum Distance = 8 - 0 = 8

• Distance(4,0) = (4 – 0) / 8 = 0.5

3.3 Distance Function
There is a wide variety of distance functions available for real-
continuous spaces; to mention a few: Quadratic, Mahalanobis,
Correlation, and Chi-square. However, we choose Euclidean:

 Distance(Z1, Z2) = [] 2
||

1
21

1

∑
=

=

−
Zi

i
ii ZZ (6)

Primarily because it leads to a Metric space, that is it has
properties such as symmetry, reflexive, and transitivity. Also,
individual attribute differences rise faster than the sum—thanks to
power of 2. Moreover, it is the most widely used in distance based
approaches [WM98], while also being quite efficient.

3.4 Defining Outlier Clusters
To determine if a cluster is an outlier, CLAD relies on two
properties of a cluster: density and distance from the other
clusters. Since each cluster has the same W (and hence “area"),
we define the density of cluster, ci, as the number of data points,
Counti, in ci. For the distance from the other clusters, we calculate
the average inter-cluster distance (ICD) between ci and the other
clusters. Formally, we denote ICDi as the ICD of cluster ci and
define ICDi as:

 4

 ()1||,(distance)

||

,1

−÷







= ∑

=

≠=

CccICD j

Cj

ijj
ii (7)

where C, as similarly defined before, is the set of clusters and |C|
represents the cardinality of that set. Clusters that are distant and
sparse are considered outliers and anomalous. A cluster ci is
considered distant if ICDi is more than a standard deviation away
from the average ICD. From our initial experiments, we observe
that the distribution of Count exhibits a power-law distribution;
when we use average and SD for Count, the average is very small
and few/no clusters have Counti one SD smaller than the average.
Since median absolute deviation (MAD) is more robust to outliers
and skewed distributions [HK01] we use it to determine the
surprising Counti s. Where MAD for a population of values, P, is:

})|:)(({|)(PpPmedianpmedianPMAD ∈−= (8)

A Cluster ci is considered sparse when Counti is more than one
MAD smaller than the median Count. Interestingly, in our domain
an attack could be composed of many data points (e.g., flooding
attacks), and hence dense regions could be attacks as well. We
will discuss this issue further in the next section when we evaluate
CLAD. Accordingly, we define dense clusters, which have Counti
more than one MAD larger than the median Count. More
formally, the set of distant clusters Cdistant, sparse clusters Csparse,
and dense clusters Cdense, are defined as:
 Cdistant = {ci ∈ C | ICDi > AVG(ICD) + SD(ICD)} (9)
 Csparse = {ci ∈ C | Counti < AVG(Count) - MAD(Count)} (10)
 Cdense = {ci ∈ C | Counti > AVG(Count) + MAD(Count)} (11)
where AV G is the average function.

A sparse cluster/region is essentially a local outlier, i.e., it reflects
how many neighbors are within W. This is similar to k-NN which
computes distance to the closest k neighbors, whereas by our
mechanism k is dynamically determined through W. [BL98]
defines an outlier value as surprisingly extreme; extreme values
reside at both ends: very small and very large. Therefore, we
extend the notion of a local outlier to encompass regions which
are surprisingly and extremely dense. This is also in agreement
with Hawkins’ definition (Def. 1) since an oddly dense region is
suspicious with respect to the rest of Count.

Definition 1: “an outlier is an observation that deviates so much
from other observations so as to arise suspicion that it was

generated by a different mechanism.” [H80]

Labeling a region distant is equivalent to saying that the region is
a global outlier. This can be thought of as a special of k-NN
applied at the cluster-level, that is with N equal to number of
clusters.. We investigated the effects on performance for different
values of k at this level (Since the number of clusters can be large
we binned clusters on basis of CID to bring it down to a
reasonable number). We observed that new attacks were found
due to virtually each bin. Suggesting that useful information about
outliers was available approximately in all values less than N.

Finally, we define a strong outlier as one which is both an outlier
at the global and local level. CLAD only raises strong outliers as
alarms. For each strong outlier cluster only the centriod is raised
an alarm since it’s representative of the cluster (detail in Section

4.3). The alarms are further sorted with respect to how strong
outliers they are. Outlier is deviation from normal behavior and
ICDi of a cluster captures this concept. Intuitively, the farther a
cluster [from the rest] the more anomalous it becomes. Therefore,
for an anomalous cluster, ci, the centriod has an anomaly score of
ICDi. As it will be explained later that we build multiple models
and we eventually merge all alarms, we need to normalize the
anomaly scores. We use z-score-normalization for this purpose.
More formally, Anomaly Score (ASi) for a cluster, ci:

 [])()(ICDSDICDAVGICDAS ii ÷−= (12)

4. Experimental Evaluation
4.1 Evaluation Data and Procedure
We tested CLAD on the 1999 DARPA intrusion detection
evaluation data [L00]. The data is from a local network for a
simulated air force base. The objective is to detect attacks given
the offline audit data of the network traffic and other data. The
original participants were provided with the three weeks of data:
with 1st and 3rd being clean with 2nd containing labeled attacks.
The systems were then evaluated on 4th and 5th weeks of data,
which contain 201 attacks in all. Like the original participants,
evaluation is done in an off-line manner. For our experiment we
only use the inbound TCP dump data. The TCP dump data was
preprocessed to form TCP connection records for well-known
ports (< 1024), same data used in [MC01], before being fed into
our system. Attributes of the input vector (X, Sec 3.2) are: Date &
Time (ignored in Clustering, only used for reporting alarms),
Source IP, Source Port, Destination IP, Destination Port, Length,
duration, first and last 2 TCP flags and 10 raw bytes from
payload. [Length and Duration are continuous initially.]

We partition the data into subsets according to the destination
port. For ports that have little traffic (< 1% of the data), we
lumped them into the “OTHER” subset. Initially, we used data
from only the 4th and 5th weeks, however there was too little data
on some ports, which made mining outliers harder. So we append
data from weeks 1 and 3 which is clean to the above to ensure that
attacks are in a small minority (< 5%). The port share for different
services is shown in Table 1. The last three columns will be
explained in the following subsection.

Table 1:Characteristics of ports for Weeks 1,3,4,5 (total
TCP Connection Records = 243907)

Port % of Records MPN Attacks
Detectable

TP/FP

20 7 0.96 54 9/5

21 1 0.75 66 29/45

23 6 0.34 97 35/89

25 21 0.75 107 33/100

53 1 0.007 15 7/0

79 2 0.4 33 9/94

80 22 0.85 68 39/100

110 7 0 6 3/0

 5

Port % of Records MPN Attacks
Detectable

TP/FP

111 1 0 5 6/0

143 2 0 10 4/0

OTHER 26 0.02 45 14/16

Combined - - - 74/100

Such partitioning enables us to process data more efficiently and
with lighter memory requirements. More importantly, different
ports have different behaviors and building an individual model
for each port can cater to its behavior. For instance, we would
expect FTP traffic to be, on average, substantially longer than
HTTP traffic. Therefore, we believe modeling each service
independently enables us to build a more accurate model and
make outliers more prominent.
4.2 Number of Detections and False Alarms
The original intrusion detection systems were evaluated by the
number of attacks detected (True Positives or TP) and number of
false alarms (False Positives or FP), therefore we primarily use
this as measure of performance. Like in the original evaluation, an
attack is counted as detected if the system correctly reports the IP
address of the victim, and the date and time of the attack within
60 seconds of any portion of the attack. Moreover, multiple
detections of the same attack are counted only once. The inside
network traffic for one day (week 4, day 2) is missing, so we omit
the 12 attacks during this period, leaving 189 of the original 201.
We also discovered by examining the data that two attacks (an
apache2 and phf attack) were not labeled. However, we chose not
to label these for our results in fairness to the original participants.
We used the same EVAL implementation used in other work at
our laboratory [MC01].

Since labels for attacks at the connection level are not available,
we cannot precisely estimate the proportion of attacks versus
normal connections. To roughly characterize the proportion of
normal connection records in our data, we measure the minimum
proportion of normalcy (MPN) by counting the number of false
alarms generated by a "naive" detector that indiscriminately raises
an alert on every connection record. We stress that this is a rough
approximation of the actual percentage of normal data, and is a
lower bound of the actual percentage (mainly because of normal
traffic to the victim host during the attack period and the 60-
second detection windows before and after an attack). A small
MPN suggests attacks could be frequent and be detected easily
according to the detection criteria, and some of these detections
could be coincidental. A larger MPN indicates that attacks are
harder to detect and detections are not likely to be by chance
(statistically). Table 1 shows the MPN for the respective models.
This also introduces some objectivity in measuring the goodness
of the results since it can be seen that on ports 110,111, and 143
any alarm will be counted as a detection. Thus, results of any
system tested on these ports would be seemingly impressive. By
using the "naive" detector, we can also measure the maximum
number of attacks that are detectable (column 4 in Table 1). The
number of detectable attacks is the upper bound on attacks
present for the same reasons of why MPN is the lower bound on
normal traffic.

Table 1 also summarizes the TP rate at 100 FA for each specific
model and “Combined” which merges all alarms; those with
lesser false alarms indicate that not enough alarms were generated
with current definitions of (9,10,11). Entries can be interpreted as:
port 80 has a significant share of the data (22%) with a relatively
large amount of normal records (0.85 MPN) and our learned
model detected 39 attacks with 100 false alarms. For merged, we
detected 74 attacks at 100 FA, whereas the top 2 system in the
original evaluation detected 80-85 attacks [L00]. It is worth
pointing out that these systems used a variety of techniques: both
signature and anomaly detection, and both host and network
based
methods, whereas ours only looked at assembled TCP streams and
more importantly had no a priori knowledge of attacks i.e. AD.
Note that the majority of detections come from ports which have
significant share of the data and/or high MPN e.g. 21, 25 and 80.
We, in general, do worst for ports with a small share of the data
and/or low MPN. This is not surprising because for outlier
detection, it is critical that normal data are in significantly large
quantities, that is, large MPN. Also, a small share of data might
not provide enough information to identify normal clusters.

Figure 2: Detection vs. False Alarm(DFA) Curve for
“Combined” CLAD performance

Figure 2 provides a more detailed view of the performance of the
Combined model (TP on the y-axis and FP on the x-axis). Blank
entries indicate where no measurement was taken because with
current threshold (Cdistant was relaxed ci ∈ C | ICDi > AVG(ICD)
in order to generate more alarms) not enough false alarms could
be generated. Figure 2 shows three curves; in all 3 cases all
clusters are far away the variable changed is density: dense only
(diamond), sparse only (square), dense or sparse (triangle). Dense
region anomalies are those which couldn’t have been spotted with
current outlier techniques i.e. they only concentrate on sparse
regions. As it is apparent from figure 2., dense area contains
attacks not found in sparse regions and consequently “dense or
sparse” results in the best performance. However, “sparse or
dense” curve rises slower than “dense only”; this is due to the
scoring function being only based on ICD i.e. it currently is not
sensitive to extremeness in ICDi as an outlying factor.
4.3 Quality of Clusters

DFA Curve for CLAD

0

20

40

60

80

100

120

0 100 200 300 400 500 600
False Alarms (FP)

D
et

ec
tio

ns
 (T

P)

DENSE ONLY

SPARSE ONLY

SPARSE OR DENSE

 6

Here we take a closer look at the contents of the clusters. Since
we do not have exact labels, we define CD (Counted as
Detection) of a cluster as the percentage of data points in the
cluster, when used to trigger an alert, is counted as a detection of
an attack. This is an indirect rough approximation of the
likelihood of an attack present in the cluster. We plot clusters with
CD < 20% (“unlikely anomalies") against Count and ICD (Sec
3.3) in Fig. 3a and similarly for CD > 80% (“likely anomalies") in
Fig. 3b. Both Count and ICD are in log scale. As we compare the
two plots, we observe that the likely anomalies occur more often
in regions with larger ICD, and the opposite for unlikely
anomalies with smaller ICD. The same observation cannot be
made for Count (which estimates density). This is related to the
fact that some attacks can occur in dense clusters as we explained
previously. For port 80 in Fig 4, similar observations can be
made. The figures also indicate that sparse or dense and distant
clusters, which we use to trigger alerts, are likely to detect attacks.

It is also worth noting here that a high CD does not necessitate a
legitimate detection (for the same reasons as MPN is minimal);
we suspect this is the reason why some high CD (fig. 3b & 4b)
clusters reside in low ICD regions. Conversely, high ICD clusters
for low CD, at port 80 (Fig. 4a), are due to the two mislabeled
attacks in the dataset (explained earlier).

Moreover, we use notion of a cluster (Section 3.1) as a measure of
cluster quality. For port 80, 96% of the clusters have CD = 100%
or < 9% (similarly for port 25). This indicates that most of the
clusters are near homogeneous and hence our combination of
feature vectors, distance function, and cluster width can
sufficiently characterize the data. Also, note that this means that if
a cluster contains an anomalous point then it is probable that all
points in it are such. This means that if we just output the
centriods of clusters deemed anomalous, we won’t sacrifice much
on detection but drastically curtail FP rate. Since high FP is one

SMTP (Port 25)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

ln (COUNT)

ln
 (I

C
D

)

CD <0.2

Fig. 3a: Count and ICD of clusters for port 25 with CD < 20%

SMTP (Port 25)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

ln (COUNT)

ln
 (I

C
D

)

CD > 0.8

Fig. 3b: Count and ICD of clusters for port 25 with CD > 80%

HTTP (Port 80)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

Ln (COUNT)

Ln
 (I

C
D

)

CD < 0.2

Fig. 4a: Count and ICD of clusters for port 80 with CD < 20%

HTTP (Port 80)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

Ln (COUNT)

Ln
 (I

C
D

)

CD > 0.8

Fig. 4b: Count and ICD of clusters for port 80 with CD >80

 7

of the biggest problems for anomaly detection we opt to do so.

4.4 Analysis of Detections and False Alarms
Table 2:Attack type Statistics; detected at 100 FA (“Combined”)

The ’99 DARPA dataset contains following types of attacks
[K99]:

• Probe: gathering information before an attack, for
example, scanning for available ports.

• Denial Of Service (DOS): degrading or disabling a host
or network.

• Remote To Local (R2L): gaining unauthorized access to
execute commands on a host remotely.

• User To Root (U2R) and Data: gaining privileged
(system administrator) access to a host or network.

For the Combined model, the number of detections in each attack
type with at most 100 false alarms is summarized in Table 2. We
also analyze why some of the attacks were or were not detected.
However, due to space limitations we are not able to report results
for all attacks types. As a sample, we report analysis of DOS
attacks and show how to interpret some of the entries:

• We detect almost all instances (3 out of 4) of the
apache2 attack. The associated data points are found in
anomalous clusters due to strange values (frequency in
this case) of Source IP and first 2 and last 2 TCP flags.

• CLAD cannot detect smurf since it uses ICMP protocol
whereas we only use TCP connection records.

• Mailbomb generates huge amounts of traffic and resides
in the dense region, but it is not identified at the 100 FA
rate.

• Finally, the last row indicates how many attacks were
detectable (45) by the system out of the total attacks
(63) of that type—the difference is due to our input
data; those marked with asterisk are not detectable with
reason given in []—of which 25 are detected.

Table 3: DOS Attack Analysis

DOS Number Detected Contributing Attributes

apache2 4 3 Source IP, TCP flags

arppoison 5
3

Long duration caused by
unclosed TCP connections

back 4 3 Duration, 7- 10th payload
bytes (with value = ‘/’)

crashiis 7 7 Detected due to long
duration.

dosnuke 4
1

Duration: unclosed TCP
connections

land 1 1 Source and Destination IP

mailbomb 3 0 [resides in dense region;
detected at FA rate of 200]

neptune 4 3 Source IP and 3rd TCP flag

Pod* 4 0 [used ICMP]

processtable 3 2 Long duration: incomplete
TCP connections

Selfping* 3 0 [issued locally]

Smurf* 5 0 [uses ICMP]

Syslogd* 4 0 [used UDP]

Tcpreset 3 2 2nd TCP flag

Teardrop* 3
0

[Not visible in TCP
connection traffic]

Udpstrom* 2 0 [uses UDP]

warez 4 0 [missed because generated
moderate traffic]

Total 63 –
(4+3+5+4+3+2)

=42 25

4. Concluding Remarks
In this paper we explored a clustering technique (CLAD) for
identifying attacks through outlier detection. For this, we define
the notion of a strong outlier which is suspicious at both local and
global levels. This novel notion also encompasses strangely dense
regions which are far away [from rest] as anomalous and it is
empirically shown to contain attacks; this encompassing identifies
a new area for potential attacks, an area overlooked by current
approaches [KN98, BK00, RR00]. For clustering, we proposed a
dynamic statistical derivation of cluster-width rather than an ad-
hoc value. For measuring distance we defined a metric for
measuring distance in discrete attributes and empirically show
that simple scaling is better then z-score-normalization since it
makes no assumption about the underlying distribution. Finally,
we illustrate the effectiveness of our approach on the DARPA ‘
99 dataset by identifying 74 attacks at 100 false alarms whereas
the best contestant, Expert 1, detected 85 attacks (at 100 FA) and
has built-in knowledge about attacks [L00]. Also note that in the
original evaluation 100 FA was based on 10 FA per day (10 days
of data in weeks 4 & 5), but more data is fed into CLAD i.e.
weeks 1 & 3. Although this makes it harder on our system (by
giving an average of less than 5 alarms per day) but we opted to
do so in order to make the results comparable.

Currently CLAD operates under a closed world assumption. This
is evident from use of frequency for discrete values; behavior is
not defined for an unseen value. We intend to explore smoothing
techniques to address this problem. For results, we observed that
many attacks were identified at more than one port which is
evident from the fact that the “naive” sum of detections for
individual models is far greater than total detections which counts
multiple detections only once. This suggests that more
sophisticated merging of alarms can improve performance.
Furthermore, we are analyzing payload for extracting useful
attributes which could be incorporated into CLAD. Finally, to

Attack Type Number Detected

Probe 28 19 (70%)

DOS 42 25(59%)

R2L 41 15(37%)

U2R/Data 37 14(38%)

Total 148 74(50%)

 8

address the problem of simulation artifacts in simulated data our
group has collected real data off of our university server. We
intend to explore effectiveness of our approach on this real data.

6. ACKNOWLEDGMENTS
Our special thanks to Matt Mahoney for his support, insightful
comments and providing us with the source codes for assembling
TCP streams and evaluation of alarms. This research was partially
funded by DAPRA (F30602-00-1-0603).

7. REFERENCES
[AY01] C. C. Aggarwal, P S. Yu. Outlier Detection for High
Dimensional Data, Proceedings of the ACM SIGMOD
Conference, 2001.

[BK00] M. Breunig, H. Kriegel, R. T. Ng, J. Sander. LOF:
Identifying Density-Based Local Outliers, Proceedings of the
ACM SIGMOD Conference, 2000.

[BL98] V. Barnett, T. Lewis, Outliers in statistical Data, John
Wiley and Sons, 1998.

[EP02] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo. A
Geometric Framework for Unsupervised Anomaly Detection:
Detecting Intrusions in Unlabeled Data, Applications of Data
Mining in Computer Security, Kluwer, 2002.

[H80] D. M. Hawkins. Identification of Outliers, Monographs on
Applied Probability & Statistics. Chapman and Hall, London,
1980.

[HK01] J. Han, M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers, 2001.

[K99] K. Kendall, A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems, Masters Thesis,
Massachusetts Institute of Technology,1999.

[KN98] E M. Knorr, R. T. Ng. Algorithms for Mining Distance-
Based Outliers in Large Datasets,Proceedings of the VLDB
Conference,1998.

[L00] R. Lippmann The 1999 DARPA Off-Line Intrusion
Detection Evaluation, Computer Networks (34) 579-595, 2000.

[LO] A. lazarevic, A. Ozgur, L. Ertoz, J. Srivastava, V. Kumar. A
comparative study of Anomaly Detection Schemes in Network
Intrusion Detection. (unpublished)

[MC01] Matthew V. Mahoney and Philip K. Chan Learning
Models of Network Traffic for Detecting Novel Attacks, Florida
Institute of Technology Technical Report CS-2002-08 , 2002.

[MC02] Matthew V. Mahoney and Philip K. Chan, An Analysis
of the 1999 DARPA/Lincoln Laboratories Evaluation Data for
Network Anomaly Detection, TR-CS-2003-02, Florida Tech.

[P00] Leonid Portnoy. Intrusion detection with unlabeled data
using clustering, Undergraduate Thesis, Columbia University,
2000.

[RR00] S. Ramaswamy, R. Rastogi, K. Shim. Efficient
Algorithms for Mining Outliers from Large Data Sets,
Proceedings of the ACM SIGMOD Conference, 2000.

[SW86] C. Stanfill, D. Waltz. Toward Memory-Based Reasoning,
1986.

[WM98] D. Wilson, T. Martinez, Reduction Techniques for
Exemplar-based Learning Algorithms, Machine Learning, 1998.

