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 Abstract 
 

Most of the current anomaly detection methods for network traffic rely on the packet 
header for studying network traffic behavior. We believe that significant information lies 
in the payload of the packet and hence it is important to model the payload as well. Since 
many protocols exist and new protocols are frequently introduced, parsing the payload 
based on the protocol specification is time-consuming.  Instead of relying on the 
specification, we propose four different characteristics of streams of bytes, which can 
help us develop algorithms for parsing the payload into tokens. We feed the extracted 
tokens from the payload to anomaly detection algorithm.  Our empirical results indicated 
that our parsing techniques can extract tokens that can improve the detection rate. 
 

 
1. Introduction 
 

Motivation:  Traditional intrusion detection systems use misuse/signature detection, 
which models known attacks, and generally cannot detect novel attacks.   Anomaly 
detection models normalcy and identifies deviations, which potentially can be novel 
attacks.  During training, network anomaly detection models the normal patterns of 
network traffic. During detection, scores are assigned to anomalous events and significant 
anomalies cause alerts indicating possible attacks. Existing anomaly detection techniques 
usually reply on information derived only from the packet headers; however, this is not 
sufficient since more sophisticated attacks involve the application payload.  Parsing 
packet headers is relatively simple as there are few commonly used protocols such as IP, 
TCP, UDP, and ICMP.  However, for application payloads, parsing is more challenging 
due to the large number of application protocols available and relatively frequent 
introduction of new protocols.  Hard coding the parser for each application protocol 
could be time consuming, particularly when the protocols are complicated.  Furthermore, 
updates to existing protocols or introduction of new protocols will require additional 
efforts. 
 
Problem statement: We desire to parse application payload into tokens without explicit 
knowledge of the application protocols.  Given a set of exemplar payloads, an algorithm 
learns a model that can parse the payloads into “meaningful” tokens.  Furthermore, the 
algorithm needs to be independent of the protocols and a model can be built for each 
protocol using the same algorithm.  The extracted tokens can then be used as attributes 
for modeling normal traffic for anomaly detection (the same techniques can also be used 



to identify tokens for misuse detection as well, but anomaly detection is the focus of this 
paper).  
 
Approach: We propose four characteristics of relevant tokens in a continuous stream of 
bytes, and based on them, design algorithms that propose possible boundaries for tokens.  
We use these characteristics individually and in combination to estimate boundaries. The 
sequence of bytes between the two successive boundaries is considered a token which 
can be used to model the behavior of the payload. The characteristics are based on 
Boundary Entropy, Frequency, Augmented Expected Mutual Information, and Minimum 
Description Length. These characteristics do not depend on any particular property of a 
protocol. 
 
Contributions:  

• We describe four algorithms based on the characteristics mentioned above, and 
apply them to parse the payload to extract tokens from network traffic.  

• We also explore techniques using more than one such characteristic in 
combination.  

• We discuss four evaluation techniques to evaluate such tokens.  
• We demonstrate that the tokens found by our algorithm can improve the detection 

rate of the LERAD anomaly detection algorithm. 
 

Organization: The next section, Section 2, discusses the related work. Section 3 details 
the four characteristics and the associated algorithms. In section 4 we discuss results 
obtained from our experimental evaluation, and finally we conclude in Section 5. 
 
 

2. Related work 
 

Varieties of approaches have been adopted for the boundary detection problem. 
Some of them are unique and achieve interesting results. 
 
One of the early, works include that described in Forrest et al. [1] They used fixed 
length patterns to represent the process model and used it for intrusion detection 
purpose. However, a main limitation of this approach is that there is no rationale 
for selecting the optimal pattern length, which has a major influence on the 
detection capabilities of the intrusion detection system. In addition, it uses fixed 
length patterns, which makes it a difficult task to select the optimal pattern length. 
Long patterns are expected to be more process specific than short patterns. Our 
approach is independent of such a parameter like length and hence overcomes this 
problem. 
 
Wespi et al. [9] use Teiresias algorithm in combination with a pattern reduction 
algorithm to construct patterns. All maximal variable length patterns contained in 
the set of training sequences are determined and a reduction algorithm is applied 
to prune the entries in the pattern table. Their pattern-matching algorithm returns 
the g groups of consecutive uncovered events and the length (l (i)) of each of 



these groups. The greater the length l (i), the more likely it is that an intrusion is 
observed. 

 
Liao et al. [2] use k-Nearest Neighbor classifier to characterize program behavior 
as normal or intrusive depending on the short sequences of system calls. Even 
though the computation required for this technique is reduced, it is unable to 
detect attacks that consist of abuse of a legal attack, e.g. Process table attack. 
Some text categorization work is also done by Dumais et. Al [10]. 
 
Jiang et al. [6] consider both Intra pattern and Inter pattern anomalies. They 
provide a pattern extraction algorithm to identify maximal patterns. Then they use 
a Pattern overlap relationship module where adjacency lists are formed from 
patterns in which overlap relationship between patterns is stored.  Pattern 
adjacency lists are then traversed at real time to identify both intra pattern and 
inter pattern mismatches. Significant deviations from the normal behavior cause 
the module to raise alerts.  
 
Valdes [5] proposes a system that maintains a library of patterns that may be 
initially empty. When a pattern is observed, its similarity with respect to other 
patterns in the library is observed. If it matches one or more stored patterns above 
a configurable threshold, then the new pattern is considered to belong to the class 
of the best matching. However, Their approach works only with a small set of 
alphabet and small number of actual observed patterns. 
 
Michael [8] uses suffix trees of a fixed height to find frequent occurring 
sequences of system calls.  Very frequent sequences are replaced with meta-
symbols, resulting in a more compact representation of the system calls.  Based 
on the revised vocabulary, a regular language is learned to represent the normal 
behavior of system call traces. 
 
One of the algorithms, SEQUITUR proposed by Manning and Witten [4] gives a 
technique for parsing the text, which is our first step. It is based on the principle 
that phrases, which appear more than once, can be replaced by a grammatical rule 
that generates that phrase. The rule generated is different from conventional 
grammar since the rules are not generalized and they generate only one token. 
 
Another algorithm proposed by Cohen et al. [3], called VOTING EXPERTS 
consists of experts that evaluate the features of the episodes, namely Boundary 
Entropy and Frequency, and votes for boundaries in the corpus based on these 
features. A window is passed through the corpus and each location garners 0 or 1 
vote from each expert. The location with least boundary entropy and highest 
frequency receive votes from the two experts respectively. The drawback of their 
technique is that their votes are binary; the confidence in a particular boundary 
cannot be indicated. 

 
 



3. Approach 
 

Our approach consists of parsing the payload and extracting tokens providing 
some information about the payload, and using these tokens to model the network 
behavior for anomaly detection. This approach demands is a good algorithm to 
parse the payload. There are characteristics that can categorize bytes belonging to 
some relevant token.  Hence, these characteristics can be exploited to detect 
boundaries in a continuous stream of characters. By extracting the token between 
two boundaries, we can derive the set of bytes belonging to the same token. 
 
Our approach is inspired by VOTING EXPERTS [3] as in features are used to 
detect boundaries. However, there are many differences in the details of the 
approaches. Not only have we created more experts for casting votes and 
combined those experts, we also intend to make a system that allows certain 
feature to cast multiple votes, depending on how strongly that feature believes 
that a boundary exists at that location. In VOTING EXPERTS, each feature was 
independent and could cast only binary votes, whether the feature strongly 
suggested a boundary or there was just a slight indication of the same. Since the 
features we use to assess potential boundaries are statistical, our approach is 
independent of the language or in our case, independent of the protocol of the 
application layer. Hence, our technique is domain independent.  
 
The general working of the algorithm includes a window of arbitrary size (given 
as an input), say w, which is slid through the corpus to be segmented. At each 
instant, w bytes from the corpus are observed. Each feature evaluates the value for 
each possible boundary within the window, and decides whether the value is good 
enough for a boundary or not. If yes, a vote is cast, otherwise the window simply 
slides one character forward, examining again the token of length w, differing in 
one byte from the previous token. Two parses are required for this approach on 
the corpus, first to evaluate the feature value for each possible token, second to 
compare the various possible boundary locations based on the evaluated feature 
value and to assign votes. 
 
There are four features used to cast votes in our model. Two of them are similar to 
the ones in VOTING EXPERTS: Boundary Entropy and Frequency. The other 
two are Augmented Expected Mutual Information (AEMI) and Minimum 
Description length. Finally, we propose techniques by combining some or all of 
them. Each one is discussed in some detail below. 
 
 
3.1 Boundary Entropy 
 
The entropy in patterns exhibits a trend that is exploited in this technique. It starts 
with a relatively high value, then drops as we go further, and peaks at the end of a 
valid word. This is because entropy gives us the uncertainty or degree of 
randomness in a system. When we see the first few characters of a word, it is 



difficult to predict what the word is. E.g., given the character ‘W’, it is difficult to 
say what the word is. It could be ‘what’, ‘where’ or any other such word. Hence, 
the entropy after ‘W’ is relatively high. However, as we move further, the 
uncertainty drops. E.g., if we have the token ‘Wha’ then we know that the word 
probably is ‘What’. At the end of the meaningful token, the entropy peaks. This is 
because it becomes very uncertain what the following word is going to be, and 
hence what the next character should be. Like in our example, any word could 
follow ‘What’, so it is difficult to say what the next character will be. 
 
We exploit this property to create an expert to detect boundaries. The entropy at 
each possible location is calculated using the formula, similar to voting experts, 
i.e. 

 
               ∑− )(log)( xPxP                                               (1) 

 
P(x) is the probability of the byte x following the current window. (More 
precisely, P(x) is actually P(x|s), where s is the sequence of bytes in the window 
of size w.) The entire expression gives us the uncertainty of the byte following the 
token in the window.  During the first parse, the window is moved across the file 
and the byte following the window is noted and P(x) is estimated. In the second 
parse, the window is moved again and Boundary entropy at the end of each 
window is calculated using the formula given above.      
 
The positions that have the maximum entropy get a vote from the expert. 
However, since we desire to signal only boundaries with reasonable confidence, 
we introduce a threshold that suppresses votes from boundaries with low entropy 
values.   We use the average boundary entropy of the corpus to be the threshold. 
To allow fair voting among experts, the boundary entropies are normalized before 
votes are cast. The votes cast are proportional to the number of standard 
deviations away from the mean value. 
 
 
3.2 Frequency 
 
This method computes the frequency of each token that occurs in the corpus. The 
most frequent set of tokens are assumed to be valid tokens and boundaries are 
assigned at the ends of such tokens. As the window moves forward, the frequency 
of each possible token of length 1 to the window size, within the window, is 
calculated. E.g. if the window consists of  “examsare”, then the frequency of ‘e’, 
‘ex’, ‘exa’ and so on is calculated. Boundary is voted at the end of the most 
frequent token.  The votes given are proportional to the number of standard 
deviations that the frequency of the token is away from the mean. 
 
The window is moved through the corpus and each token formed is counted. 
Hence, at the end of the parse, we have a list of all possible words, which the 
window may consist of, and their frequency. Generally, in most domains, there is 



a relationship between the length and frequency of patterns. Short patterns tend to 
be more common than the long ones.  E.g., ‘t’  would be more common than ‘the’  
even though ‘the’  is a valid word and ‘t’  is not. We want to compare how unusual 
a pattern is, not just how frequent it is. Therefore, comparing the frequencies of 
short patterns with that of long patterns would not be appropriate. To 
accommodate this, we normalize the frequencies of the tokens. We subtract the 
sample mean from the value and divide by the sample standard deviation. 

  
 
3.3 Augmented Expected Mutual Information (AEMI) 
 
A lot of information can be gathered about a character based on the context it 
appears in.  Generally, the concept of mutual information is used to evaluate the 
relationship between two events. Mutual Information can estimate the likelihood 
of the occurrence a token given some other token. E.g. talking about food, given 
that we have seen ‘POP’  it is very likely that the next word would be ‘CORN’ . 
Hence, this approach is based on co-occurrence of tokens: if two tokens appear 
together frequently, they are probably part of the same word. Mutual information 
is given by: 
 
                                     ))]()(/(),(log[),( bPaPbaPbaMI =                                  (2) 
 
In other words, MI gives us the reduction of uncertainty in presence of ‘b’  in the 
window if presence of ‘a’  is known (or vice versa). However, this metric only 
considers the presence of both the words but not the absence of either of them. 
That is, it does not consider what the probability of seeing one token in the 
absence of the other. This leads to misinterpretations if the token whose 
occurrence is being measured is highly frequent. E.g., we would expect that ‘pop-
corn’  is more correlated than ‘is in’ , however since ‘is’  is relatively more 
common. This would lead to a high MI value. The presence of one token without 
the other one counts for adverse correlation and proves to be counter evidence. To 
capture this idea, Augmented Expected Mutual Information (AEMI) is used. 
AEMI appropriately incorporates the counter evidence. It is given by: 
 

               ),(),(),(),(),(),(),( baMIbaPbaMIbaPbaMIbaPBAAEMI ¬¬−¬¬−=       (3) 
  

Equation 3 sums the supporting evidence and subtracts the counter evidence. A is 
defined as the event of the first token, and B is the event of the token following 
the first one. Higher values of AEMI indicate that A and B are probably part of the 
same word. We only consider three cases with each pair of tokens. occurrences 
when both the tokens appear together, when token a appears without token b, and  
token b appears without token a. The case when neither a nor b appears is 
disregarded since it does not really present much information about whether a and 
b co-occur or not. The window is again moved across for each possible boundary, 
the left and right sub tokens are considered. E.g. If a window contains “abcdef” 
we consider left and right sub tokens ‘a’  and ‘bcdef’ , then ‘ab’  and ‘cdef’ , then 



‘abc’  and ‘def’  and so on. Then for each set of left and right sub tokens within a 
window, AEMI value is computed and compared. For each window, the location 
with the minimum AEMI value suggests a boundary, and the expert gives votes 
proportional to the standard deviations from the average AEMI. 
 
 
3.4 Minimum Description Length 
 
In coding theory, tokens that are more frequent are assigned a shorter code so that 
the overall coding length is minimized for a message with multiple tokens.  
Minimum Description Length (MDL) assumes a perfect encoding and measures 
the fewest number of bits necessary to encode a message. We calculate the 
description length per byte of a token by: 
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where ti denotes the two tokens on the left and right of the possible boundaries, 
P(ti) is the probability of ti and | ti | is the length of ti in bytes. The assumption is 
that if we were to compress the file, we would assign minimum number of bits to 
the most frequently occurring token, hence, it would have the minimum length. –
lg [P(ti)] gives us the number of bits used for ti, dividing it by the length of ti, | ti |, 
gives us the number of bits per byte of the token or its description length.  
 
The preprocessing is similar to that in AEMI. The first parse is used to look at all 
the left and right sub tokens and compute the probability of seeing those two 
tokens. This probability is then used in the second phase, which computes the sum 
of the description lengths of left and right sub tokens. As the window slides over 
the data, the boundary that yields the shortest coding length is voted as the 
boundary and the number of votes is again proportional to the number of standard 
deviations from the average coding length. 
 
 
3.5 Combined Approach 
 
All the approaches discussed so far use single expert to suggest boundaries. We 
desire to design a model that combines the opinions from all the experts and then 
decides upon the boundary. In this method, we allow each expert to run a scan on 
the file and decide where to vote, and how much to vote. Votes from each expert 
are normalized, as some approaches may tend to assign more votes than the others 
do. These votes are then combined to locate positions most strongly suggested as 
the boundary after consideration by all the experts. A list of votes from all the 
experts is gathered. This list is normalized so that the votes from each expert 
indicate the confidence of the expert and are on the same scale. In order to 
normalize the list, the standard deviation of the votes is computed and each value 
in the list is divided by the standard deviation. This scales the value with respect 



to the other values in the list. In order to give more weight to a particular expert, 
the votes from this expert can be increased by a certain factor. For each boundary, 
the final votes from each expert, after normalization, are summed. A threshold is 
set depending on the final set of votes. A boundary is placed at a certain position 
if and only if the votes at that position exceed the threshold. 
 
We tried combining all the algorithms and then combining the strongest 
algorithms, frequency and minimum description length. 
 
3.6 Anomaly Detection 
 
Once we have placed the boundaries according to our experts, we can easily 
extract the meaningful tokens from the file. Our anomaly detection system, 
LERAD [7], forms rules based on attributes picked from the network data 
(including header and payload). Currently, it uses tokens from the payload that are 
“space” separated. Instead, we modify it to use tokens that are separated by 
boundaries identified by the algorithms discussed above. 
 
 

4. Experimental Evaluation 
 

4.1 Evaluation Criteria 
 

We present four different types of evaluations depending on various attributes that 
would indicate the “meaningfulness” of the tokens retrieved in the output file. 
 
The first evaluation, Evaluation A, is based on how many words, present in the 
input file, were we able to retrieve in the output file with the boundaries placed at 
positions suggested by the expert. All space or punctuation separated tokens are 
assumed to be “meaningful” tokens. This evaluation works for text-based 
protocols only. It doesn’ t work for non-text based protocols because bytes that 
represent “spaces” usually do not exist. Moreover, Evaluation A only 
approximates how "tokens" are defined. E.g. a file name could consist of ‘/’  to 
denote the path of the file. The entire path should be considered as one token, 
however since our evaluation would consider ‘/’  as space, it will consider each 
directory a unique token. Also, for hyphenated words, even though they would 
logically be the same token, this evaluation would evaluate them as being separate 
tokens. Based on the space-separated words, we report the percentage of words 
recovered by our methods. 

 
The second evaluation, Evaluation B, is similar to the first evaluation except that 
it looks for certain keywords that are characteristic of the particular application 
protocol. These keywords are collected from the specification of each protocol 
(Request for Comments or RFC). However, this evaluation is limited to text-
based protocols for the reasons mentioned above and is an approximation since 



tokens between two keywords are not specified.  Based on the known keywords, 
we report the percentage of keywords recovered by our methods. 
  
The third evaluation, Evaluation C, calculates the entropies of the output files. 
The motivation for this evaluation is that if the expert was successful and it found 
most of meaningful tokens, then the tokens should be repeated often in the output 
file, leading to less randomness in the output file and therefore to lower entropy 
values for the file. Thus, in our evaluation, the lower the entropy value of the 
output file, the better is the feature or expert. This evaluation is independent of 
any text-based assumptions and hence can be used for all kinds of ports. It gives a 
good estimate of the output file. It can be used to compare the performance of an 
approach on any kind of protocol.  
 
The fourth evaluation, Evaluation D, is the detection rate evaluation, which is the 
most important evaluation, while Evaluations A-C are intermediate 
approximations. We measure the number of detections at various false alarm rates 
and compare the performance of the original LERAD with LERAD using tokens 
extracted by our proposed methods.  
 
4.2 Evaluation Data and Procedures  

 
The proposed methods were evaluated using the 1999 DARPA Intrusion 
Detection Evaluation Data Set [11]. The test bed involved a simulation of an air 
force base that has machines that are under frequent attack. These machines 
comprise of Linux, SunOS, Sun Solaris and Windows NT. Various intrusion 
detection systems have been evaluated using this test bed. It comprises of three 
weeks of training data obtained from network sniffers, audit logs, nightly file 
system dumps and BSM logs from Solaris machine that trace system calls and 
two weeks of testing data. Weeks 1 and 3 of the data are attack free while various 
attacks are present in Weeks 4 and 5 of the data.  
 
For our first three evaluations, where we compute the number of words retrieved, 
number of keywords retrieved, and the entropy of the output file, we use only the 
data from Week 3. The reason for using week 3 for evaluations A, B, and C is that 
Weeks 4 and 5 are for testing only and we do not want to have the advance 
knowledge of which tokenization methods work better in Weeks 4 and 5. We used 
the first four days of Week 3 for training and the last three days for testing. This 
gives us an estimate of how predictive the approaches are, and how well they 
would perform on unseen data in the network traffic. We studied the ports with 
the most traffic and results from these ports are reported. The window size was a 
parameter set to six, which was experimentally observed to be the best value. 
 
The anomaly detection system LERAD [7] works in three phases. In the first 
phase, it samples training pairs to suggest rules. In the second and third phases, it 
removes redundant rules and rules that generate alarms on attack free traffic 
respectively. LERAD learns rules based on 23 attributes taken from the TCP 



header and the payload. First 15 attributes are picked from the packet header and 
the remaining eight are picked from the payload. LERAD, originally picks the 
first eight space separated tokens from the payload--space as boundary is not 
applicable to non-text protocols.  We replace these eight space separated tokens 
with the more intelligently found boundary separated words from our approaches.  
For Evaluation D, we use Week 3 for training and Weeks 4 and 5 for testing.�
 
 
4.3 Experimental Results and analysis 

 
We present results for six different approaches, four approaches being the results 
of the four algorithms independently, fifth being the combination of all the 
algorithms and fourth being the combination of two of the strongest algorithms, 
Frequency and MDL. The reason for combining Frequency and MDL is that, from 
our experience with this data set, they provide maximum coverage and 
complement each other. 

 
4.3.1 Evaluation A: Space Separated Tokens 
 

Table 4.3.1 Evaluation A: % of Space-Separated Tokens Recovered 
 

Method Port #25 
 

Port #80 
 

Port#21 
  

Port #79  
 

Frequency 31 28 13 99 
Min Desc. Length 7 6 3 25 
AEMI 9 5 4 32 
Boundary Entropy 3 2 1 9 
All 4 experts 12 13 5 12 
Freq + MDL 30 36 21 81 

 
Table 4.3.1 reports the results of all the approaches on popular ports with text-
based protocols, SMTP (25), HTTP (80), FTP (21) and Finger (79), based on 
Evaluation A. For all these ports, Boundary Entropy gives the poorest results. 
Frequency performs the best for SMTP and Finger, however Freq + MDL 
performs best for HTTP and FTP. On qualitative analysis, Freq + MDL seems 
to give a more consistent output with long relevant tokens. Hence, we suggest 
that Freq + MDL together gives the best results followed by the single approach 
of Frequency. The model of all the algorithms combined follows these two 
techniques. MDL performs better than Frequency when trained and tested on 
the same set, however it is not very predictive. Frequency on the other hand, is 
highly predictive. Hence, these two algorithms tend to find different kinds of 
words. When combined they give maximum coverage and hence best results.  
 
 
 
 



 
 

4.3.2  Evaluation B: Keywords in RFCs 
 

Table  4.3.2 Evaluation B: % of Keywords in RFCs Recovered 
 

Method Port#25 
 

Port#80 
 

Port#21 

Frequency 31 28 40 
Min Desc. Length 7 6 1 
AEMI 9 5 2 
Boundary Entropy 3 2 2 
All 4 experts 12 13 21 
Freq + MDL 40 36 59 

 
 
Table 4.3.2 reports the results for all the methods based on Evaluation B. 
Results for port #79 are absent since no keywords were available for port 79. 
Here again Frequency + MDL performs the best for ports #80 and #21. 
However, for port #25, frequency alone performs better. The ranking of the 
algorithms remains the same and reinforces our conclusions from the previous 
evaluation. 
 
4.3.3 Evaluation C: Entropy 
 

Table  4.3.3 Evaluation C: Entropy of Output 
 

Method Port#25 Port#80  
 

Port#21 
 

Port#79 
  

Port#1023 
 

Port#22 
 

Frequency 9.19 5.11 5.17 3.78 0.86 5.79 
Min Desc. Length 8.61 5.26 5.50 1.43 0.77 8.61 
AEMI 8.66 5.74 9.23 6.27 1.10 7.32 
Boundary Entropy 7.89 5.36 6.79 2.63 0.96 7.75 
All 4 experts 9.52 5.07 5.36 6.32 1.39 5.74 
Freq + MDL 7.94 4.98 9.04 4.31 1.91 8.32 

 
 
Table 4.3.3 reports the results of all the approaches based on Evaluation C on 
four text based and two non text based ports, Smtp (25), Http (80), Ftp (21), 
Finger (79), SSH (22), and TCP Reserved (1023). This evaluation compares the 
schemes on both text based as well as non-text based ports and allows us to 
compare the techniques without any bias. The relative values vary for different 
ports. For port #25 Boundary Entropy gives the best results, however for ports 
#79 and #1023, Minimum Description Length gives lowest entropy. Frequency 
gives lowest entropy values for port #22, Freq + MDL and the combination of 
all four methods achieve the lowest entropy for #80 and #21 respectively.  Since 



all techniques are very close in this evaluation, it is difficult to say which 
technique is best for all ports based on this evaluation only. However we can 
make port specific conclusions like for port #80, Freq + MDL is the best 
technique. 

 
 

4.3.4 Evaluations on Combined models 
 

Table 4.3.4 Results from Additional Ports for Freq + MDL and ALL 
 
Port # Evaluation A 

% Words Found 
Evaluation B 

% Keywords Found 
Evaluation C 

Entropy 
 Frq+MDL ALL Frq+MDL  ALL Frq+MDL ALL 
23 13 7 5 3   7.88 8.08 
113 43 20 -- --   4.45 5.18 
515 38 14 -- --   7.66 7.27 

 
Since Frequency + MDL and the model combined of all algorithms have the 
potential of giving better boundaries indicated by evaluations A-B and 
evaluation C respectively, we performed experiments on the remaining ports 
with these two techniques. Table 4.3.4 reports results of the two models, 
Frequency + MDL and the combination of all algorithms on additional ports, for 
all three evaluations. Based on these results, it is evident that Frq+MDL 
performs better than the model combining all four approaches. Even though 
Frq+MDL performs very well, the inclusion of the other two techniques 
weakens the model. This could be attributed to the probability that with the 
inclusion of AEMI and BE the model gets confused and results deteriorate. 
Boundary Entropy in particular attempts to vote at too many positions and 
lowers the performance. 
 

 
4.3.5 Evaluation D: Detection Rate 

 
Based on our first three evaluations, we picked the most promising technique for 
our fourth and most important evaluation. From the previous evaluations, it was 
obvious that certain techniques may be better depending on the port. However, the 
model consisting of Frequency and Minimum Description Length gave a good 
performance consistently. Thus, we decided to perform our final evaluation on 
this technique. 
 
 
 
 
 
 
 



 
 
Table  4.3.5 Detection Rate for Space Separated LERAD and Boundary Separated 

LERAD using Freq + MDL tokenization 
 

PORT# 10 FP/day 100 FP/day 
 Space-

Separated 
Boundary-
Separated 

Space-
Separated 

Boundary-
Separated 

20 2 2 4 5 
21 14 16 14 17 
22 3 3 3 3 
23 13 14 13 14 
25 15 16 16 16 
79 3 3 3 3 
80 10 10 11 13 
113 2 2 2 2 

 
LERAD forms conditional rules that are used to test tuples from test data. The 
alarms generated were evaluated for two different allowed false alarm rates – 10 
and 100 per day respectively.  The results, reported in Table 4.3.5, indicate some 
improvements in the total number of detections for both text based and non-text 
based protocols. Port #20 shows an improvement of one detection when the false 
alarm rate is set to 100 per day. Considerable improvement for port #s 21, 23 is 
observed for both false alarm rates. Port #25 and #80 also show an improvement 
of one attack each at false alarm rates of 10 per day and 100 per day respectively. 
For other ports where the results are comparable, we suggest two possible 
reasons. Firstly, the training data for these ports was not sufficient for the experts 
to cast vote during the testing phase. In addition, for certain ports, it never 
generated any rules based on the tokens from the payload—LERAD did not find 
the payload tokens to be indicative of normal behavior. In such cases, even if 
tokens that are more meaningful were extracted by our algorithms would not 
affect the results. 

 
We also performed experiments using a combined model of all the ports instead 
of using port specific data. Even then LERAD with space-separated tokens finds 
36 attacks in week 4 data as compared to 38 attacks detected if boundary 
separated tokens are considered. The false alarm rate was 10 per day for this 
result. On increasing this rate to 100 per day, the former still detects 36 attacks 
while the latter detects 39. Data for week 5 was not used for these results and 
experiments are still being conducted to evaluate this technique on week 5 data of 
the DARPA data set. 

 
 
 
 
 



5. Concluding Remarks 
 

In this paper, we present the four algorithms based on characteristics mentioned 
above, and apply them to parse the payload to extract more information about the 
traffic. The results of each of those techniques applied independently and then 
applied in various combinations based on these evaluations are given. According 
to the experimental results obtained from the DARPA 99 dataset, we observed 
that Frequency and MDL are two strong experts individually and achieve good 
results. MDL works even better when training and testing sets are more similar. 
Frequency is highly predictive and does well on different training and testing sets. 
When combined, the model formed by combining Frequency and MDL is found 
to be the strongest.  Combining all four methods does not do as well as Frequency 
+ MDL. This payload parsing method, when applied to the LERAD anomaly 
detection algorithm, leads to an increase in the detection rate in two 
configurations: individual LERAD model per port or single LERAD model for all 
ports. 

 
Our goal is to use these approaches to improve the features used by the anomaly 
detection algorithm LERAD [7].  Another improvement can be made by instead 
of using the first eight boundary separated tokens, the tokens which are likely to 
give maximum information should be used. This property of the tokens can be 
measured by again looking at features like frequency, AEMI and so on. Of the 
words that are retrieved in the output, the ones with maximum feature value are 
likely to give us maximum information.  In addition, the first two evaluations, A 
and B are not very accurate. They are more suited for algorithms that intend to 
parse natural language. We will try to build more evaluations that can give us a 
better idea of our output before feeding it into the IDS. Entropy is one such 
evaluation and we should try to build more. Especially for non-text based 
protocols, this is important. We will also try to integrate our technique, i.e. 
incorporating information from the payload to more intrusion detection systems. 
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