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Abstract 
 
 

Title: 
Algorithms for String Searching on A Beowulf Cluster 

 
 

Author: 
Kishore Ramakrishna Kattamuri 

 
 

Principle Advisor: 
William D Shoaff, Ph.D. 

 
 
 

String matching is a subject of both theoretical and practical interest in 

computer science. Theoretically, time and space complexity of the algorithms and 

on the practical side searching for keywords, names, phrases etc., is common. 

Searching for patterns in DNA (Deoxyribose Nucleic Acid) is one such application 

and is the ultimate area for this study. 

This study resulted in efficient parallel way to search for patterns, the 

program being operated on a parallel computer. This research provides basis for a 

further study and help in selecting the search algorithms for broader use. 

The algorithms proposed in this research try to solve the problem in both 

the single pattern and multiple pattern search areas. The outcome of this study was 

very encouraging and paved path for the possible future study. The algorithms were 

written in C using the MPI model on the Beowulf cluster of Florida Tech 
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(Bluemarlin). The timings were compared against each other. The test data set used 

was kept uniform throughout the experiments. 

 Though several ideas were formulated and were tried to be implemented in 

the search, only three algorithms (KTV, KTV2 and KPrime) were designed. Of 

these, KTV and KTV2 showed good results where as the KPrime took lot more 

time than expected. Investigation on the algorithm revealed a further tweaking 

which is left as a part for the further study. 
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Chapter 1  
Introduction 

 
 
 

1.1 Purpose of study 

The purpose of this study was to use a parallel computer to find 

effective ways of searching for occurrences of finite strings in a given long 

string. Several known algorithms were studied: Brute Force [9],   Knuth 

Morris Pratt (KMP) [10], Kim’s Fast Multiple Pattern Matching [12] and 

Aho Corasick [11] of which Brute Force, KMP were implemented. Real data 

along with simulated samples with sizes ranging from 40MB to 3GB were 

used as the input to the above algorithms and searchs were performed with 

patterns of different length ranging from 5 to 100. Processors used ranged 

from 1 to 40. The outcome of the study was to compare the results of these 

algorithms in terms of time taken to search for these patterns. In the course of 

this study I developed two new search techniques KTV and KPrime. These 

algorithms were designed and tested against the same set of data. 

1.2 Background and rationale 

String matching can be defined as “The problem of finding 

occurrence(s) of a pattern string within another string or body of text” [1] 

String matching is a subject of both theoretical and practical interest in 
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computer science. Theoretically, time and space complexity of the algorithms 

is of interest. On the practical side, searching for keywords, names, phrases 

etc., is common in web-based and bibliographic searches which exemplify 

the above definition. Searching for patterns in DNA has interesting scientific 

implications and is the ultimate use for this study.  

With the advent of computers into the bio-informatics field, searching 

and string matching was no longer difficult. DNA sequences coded were 

ranging from somewhere below one mega byte (1,000,000 bases) to 

somewhere around 6 mega bytes (6,000,000 bases) and the storage 

constraints and the computing power were enough for those range of files. 

These DNA sequences belonged to the lower ranked living organisms  

(e.g. Salmonellae). Every good thing comes complimented with a problem of 

its own. As the study was extended to higher ranked organisms like mouse 

and Homo sapiens, the base count exceeded 3 Giga Bytes in size 

(3,000,000,000 bases). The first and foremost problem with this is the storage 

space. Secondly the memory and the CPU speed available to compute the 

search and other required operations. At this juncture the power of parallel 

computing has come to the rescue. This piece of work uses the power of 

parallel computer (Beowulf) to do the same with a large data on hand. This 

study is not to do the language specific (MPI specific) implementations but to 

make use of the storage and the computation efficiency and arrive at the 
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results. The basis for this study is an implementation proposed in a class 

project by Sowmya Padmanabhan using the message passing programming 

model [2]. Implementation of this kind is the first on the Beowulf cluster at 

Florida Tech. 

1.3 Terminology 

In this section we list and provide short definitions for major terms 

and ideas used in the thesis. In most cases these ideas will be explained upon 

in later chapters. 

1.3.1 Computer Memory and Storage 

 A bit is a fundamental storage unit in computing. A bit records an on 

or off state; high or low voltage; or the more common interpretation of 1 or 

0. From historical implementations, bits are often grouped in sets of 8 

called as byte. Bytes are collected into a larger group, for example a 

kilobyte (210 bytes) which in turn make up a Mega Byte (220 bytes) or a 

Giga Byte (230 bytes)  

1.3.2 Deoxyribose Nucleic Acid   

 DNA is a nucleic acid that constitutes the genetic material of all 

cellular organisms. “The digital information that underlies biochemistry, 

cell biology, and development can be represented by a simple string of G’s, 

A’s, T’s and C’s. This string is the root data structure of an organism’s 

biology” [3]. RNA is another nucleic acid that is part of the mechanism of 
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cellular organisms. The alphabet used in genetics for nucleic acid is 

presented in Table 1-1: The Alphabet used in Genetics for Nucleic Acids. 

 
Code Nucleotides 

A Adenine 

C Cytosine 

G Guanine 

T Thymine 

U Uracil 

R Purine ( A or G ) 

Y Pyrimidine (C or T/U) 

M A or C 

W A or T/U 

S C or G 

K G or T/U 

D A, G or T/U 

H A, C or T/U 

V A, C, or G 

B C, G, or T/U 

N A, C, G, or T/U 

No Base 

Table 1-1: The Alphabet used in Genetics for Nucleic Acids 

  

1.3.3 String Searching 

 String searching is the problem of finding occurrence(s) of a pattern 

within text. Precisely it can be termed as checking for equality 



 

5 

(contiguously) of all the characters in the pattern against the set of 

characters of equal length in a text string.  

1.3.4 String Searching Algorithms 

• Single Pattern  

o Brute Force is the naive algorithm used to find patterns. It 

continually checks to see if the pattern occurs at text positions 1, 

2, 3…., until the end of the text is reached. (Refer 3.1 for 

algorithm) 

o KMP (Knuth-Morris-Pratt) is a string matching algorithm which 

uses a finite state machine generated from the pattern to avoid 

restarting the search from the next text position. It then runs the 

machine with the string to be searched as the input string (Refer 

3.2 for algorithm) 

o KTV (Refer 3.3 for algorithm) 

• Multiple Pattern 

o Kim’s Fast Multiple String-Pattern Matching is a simple and 

efficient multiple string matching algorithm based on a compact 

encoding scheme[12] 

o Aho Corasick is a simple, efficient algorithm to locate all 

occurrences of any of a finite number of keywords in a string of 

text [11] 
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o KTV2 (Refer 4.3 for algorithm) 

o KPrime (Refer 4.4 for algorithm) 

1.3.5 Parallel Computing 

• Parallel Computer can be termed as a computer that has multiple 

arithmetic units or logic units that are used to accomplish parallel 

operations or parallel processing [7] 

• Parallel processing pertains to the concurrent or simultaneous 

execution of two or more processes in a single unit [8] 

• Beowulf is a high-performance, massive parallel computer that 

performs similarly to a supercomputer for a fraction of the price. The 

computer is made up of a cluster of nodes connected by a high-speed 

network that perform intense computing tasks. The system is 

connected to the external world through a single head node [4] 

• Bluemarlin, Florida Tech's Beowulf cluster is a distributed memory 

supercomputer cluster that is in the MIMD (Multiple Instruction 

Multiple Data) paradigm. It contains 47 compute nodes and one head 

node running Red Hat Linux 6.2 [4] 

 

1.4 Research question 

What search algorithm is advisable in a parallel environment while 

searching for patterns in a DNA? 
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1.5 Study design 

The algorithms were written in C using the MPI model on the 

Beowulf cluster of Florida Tech (Bluemarlin). The timings are taken from the 

output file and compared against each other. The data set used is kept 

uniform throughout the experiments with different algorithms.  

1.6 Significance of study 

The study will find efficient parallel way to search for patterns, the 

program being operated on a parallel computer. This study will help us to 

achieve more work in the given time. Also this study is aimed at providing 

basis for a future study and help in selecting the search algorithms for real 

data search. 

1.7 Study limitations 

• The data being used for search is the DNA data of Homo sapiens’s 

chromosomes.    

• Complete MPI based implementation (data scattering, gathering)  is 

avoided to remove the factor of extra time consuming processes 

• The study is not a comparison of string search algorithms but rather 

the outcome of application of these algorithms BruteForce, KMP, 

KTV, KPrime and KTV2 in the case of DNA alphabet. 
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Chapter 2  
Background Study 

 
 

2.1 Parallel Computing 

“With ability of being able to perform a few hundred arithmetic 

computations each second, clamor for more power increased which currently 

reached about quadrillions of operations per second (105).  The basic 

paradigm of observe, theorize and test through experiment is being followed 

very closely. Simulations help us avoid building high costing prototypes. 

Apart from this another closely attached problem is that of the development 

of vastly greater storage requirements. Hence greater computational power is 

in fact a combination of both greater speed and storage”. [21] 

“Consider an analogous problem described in Peter, a Roman 

contractor, has laborers capable of excavating 1000 cubic feet a day. He 

could solve the problem of having to excavate 100,000 cubic feet a day by 

having 100 men on his workforce. Comparing the same with the processors 

and memory, we should obtain more processors and memory to solve the 

computation problem. Buying more processors will not solve this since there 

should be a way to have them communicate amongst themselves. If the job of 

building the physical machine and the design of the software is avoided in the 

discussion, we are left with the communication problem”. 
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2.2 Programming Models 

Data Parallelism is a way of applying same operation to multiple 

elements of a data structure. A data-parallel program is made up of sequences 

of such operations. Each operation on data element can be thought of as an 

independent task, computation is small, and the concept of locality does not 

arise. Due to this, data-parallel compilers often require information about 

how data are to be distributed over processors and how data is to be 

partitioned into tasks. The compiler translates this data-parallel program into 

an SPMD formulation, and generates communication code. [2] 

Message passing is most widely used parallel programming model. 

Message-passing programs create multiple tasks with each task encapsulating 

local data which are identified by a unique name. Tasks interact by sending 

and receiving messages to and from named tasks. Message passing differ 

from the task/channel model only in the mechanism used for data transfer. 

This model avoids dynamic creation of tasks, execution of multiple tasks per 

processor, or the execution of different programs by different tasks. In 

practice most message-passing systems create a fixed number of identical 

tasks at program startup and do not allow tasks to be created or destroyed 

during program execution. These systems are said to implement a   single 

program multiple data (SPMD) programming model because each task 

executes the same program but operates on different data. SPMD model is 
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sufficient for a wide range of parallel programming problems but does hinder 

some parallel algorithm developments. [2] 

In a shared-memory model, tasks share a common address space, 

which they read and write asynchronously by using locks and semaphores 

control access to the shared memory. An advantage of this model from the 

programmer's point of view is that there is no need to specify explicitly the 

communication of data from producers to consumers. This model can 

simplify program development. However, understanding and managing 

locality hinders the most shared-memory architectures.  It is also more 

difficult to write deterministic programs [2] 

2.3 Beowulf 

The first Beowulf was built with DX4 processors and 10Mbit/s 

Ethernet. The processors were too fast for a single Ethernet and Ethernet 

switches were still too expensive. To balance the system Don Becker rewrote 

his Ethernet drivers for Linux and built a "channel bonded" Ethernet where 

the network traffic was striped across two or more Ethernets. As 100Mbit/s 

Ethernet and 100Mbit/s Ethernet switches have become cost effective, the 

need for channel bonding has diminished (at least for now). In late 1997, a 

good choice for a balance system was 16, 200MHz P6 processors connected 

by Fast Ethernet and a Fast Ethernet switch. The exact network configuration 

of a balanced cluster will continue to change and will remain dependent on 
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the size of the cluster and the relationship between processor speed and 

network bandwidth and the current price list for each of components. An 

important characteristic of Beowulf clusters is that these sorts of changes---

processors type and speed, network technology, relative costs of components-

--do not change the programming model. Therefore, users of these systems 

can expect to enjoy more forward compatibility then we have experienced in 

the past.  

A Beowulf class cluster computer is distinguished from a Network of 

Workstations by several subtle but significant characteristics. First, the nodes 

in the cluster are dedicated to the cluster. This helps ease load balancing 

problems, because the performance of individual nodes is not subject to 

external factors. Also, since the interconnection network is isolated from the 

external network, the network load is determined only by the application 

being run on the cluster. [25] 

Florida Tech's Beowulf cluster is a supercomputer cluster that is in 

the MIMD paradigm. It contains 47 compute nodes and one head node. Head 

node has Red Hat Linux 6.2. Each node has Pentium III 866 MHz processor 

and 512Mb of RAM which are interconnected and channel bonded. The 

portable batch system (PBS) has been implemented to ensure priority 

queuing system. Argonne's version of mpich [23] is installed for MPI [24] 

usage [22] 
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2.4 Search Algorithms 

Following algorithms were implemented and tested - 
 

• Brute Force [Refer 3.1] 
 

• KMP [Refer 3.2] 
 

• KTV [Refer 3.3] 
 

• KPrime [Refer 4.4] 
 

• KTV2 [Refer 4.3] 
 

Following algorithms were studied - 
 

• Kim’s Multiple String-Pattern Matching Algorithm [Refer 4.1] 
 

• Aho & Corasick Algorithm [Refer 4.2] 
 

• Baker’s Boyer Moore-type Algorithm [37] 
 

• Sunday’s Substring Search Algorithm [38] 
 

2.5 DNA 

Deoxyribose Nucleic Acid is a polymer. The monomer units of DNA 

are nucleotides, and the polymer is known as a polynucleotide.  Each 

nucleotide consists of a 5-carbon sugar (Deoxyribose), a nitrogen containing 

base attached to the sugar, and a phosphate group. There are four different 

types of nucleotides found in DNA, differing only in the nitrogenous base. 

The four nucleotides are given one letter abbreviations as shorthand for the 

four bases. 
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A (adenine), G (guanine), C (cytosine) and T (thymine). Adenine and 

guanine are purines. Purines are the larger of the two types of bases found in 

DNA. Structures are shown below:  

 
Figure 2-1 : Adenine and Guanine Structures [source: unknown] 

 
 

The 9 atoms that make up the fused rings (5 Carbon, 4 Nitrogen) are 

numbered 1-9. All ring atoms lie in the same plane.  Cytosine and thymine 

are pyrimidines. The 6 stoms (4 carbon, 2 nitrogen) are numbered 1-6. Like 

purines, all pyrimidine ring atoms lie in the same plane.  



 

14 

 
Figure 2-2 : Thymine and Cytosine Structures [source: unknown] 

 
 
 
2.6 GenBank 

GenBank® is the NIH (National Institutes of Health) genetic 

sequence database, an annotated collection of all publicly available DNA 

sequences (Nucleic Acids Research 2002 Jan 1; 30(1):17-20). There are 

approximately 22,617,000,000 bases in 18,197,000 sequence records as of 

August 2002. As an example, you may view the record for a Saccharomyces 

cerevisiae gene. GenBank is part of the International Nucleotide Sequence 

Database Collaboration, which comprises the DNA DataBank of Japan 

(DDBJ), the European Molecular Biology Laboratory (EMBL), and GenBank 

at NCBI. These three organizations exchange data on a daily basis.  
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Chapter 3  
Single Pattern Algorithms 

 
 

3.1 Brute Force Algorithm 

3.1.1 Description 

 In this naive method, we align the left end of P [pattern] with the left 

end of T [text] and then compare the characters of P and T left to right until 

either two unequal characters are found or until P is exhausted, in which 

case an occurrence of pattern is noted.  Using n to denote the length of 

pattern and m to denote the length of text, at most n(m-n+1) number of 

comparisons are made. [18]. This matching procedure can be interpreted 

graphically as a sliding “template” containing the pattern over the text, 

noting for which shifts all of the characters on the template equal the 

corresponding characters in text. [27] 

3.1.2 Algorithm Listing 

Compare the size n pattern with the first m characters of the 
text. 
REPEAT 
   If a match is found, note the shift position and increment the 
count.  
   Move the pattern right one position. 
   Compare the size n pattern with the next m chars of the 
string. 
UNTIL there are no more characters to compare    
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3.1.3 Algorithm Implementation 

 For a complete program listing used for the testing please refer to 

 Appendix B 

 
long int BruteForce(char *text, char *pattern) 
{ 
 
    int i, j, k; 
    long int count = 0, occurences = 0; 
    int first = 0; 
         
    const long int length_of_pattern = strlen(pattern); 
    const long int length_of_text = strlen(text); 
    const long int limit = length_of_text - length_of_pattern; 
 
    for (i = 0; i < limit; i++ ) 
    { 
        count = 0; 
 
        for(j = i, k = 0; k < (length_of_pattern) ; j++, k++) 
        { 
            if(*(text + j) != *(pattern + k) ) 
            { 
                break; 
            } 
            else 
            { 
                count++; 
            } 
 
            if(count == length_of_pattern ) 
            { 
                occurences++; 
            } 
 
       } 
    } 
 
return occurences; 
} 
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3.2 Knuth Morris Pratt Algorithm 

3.2.1 Description 

KMP is a string matching algorithm which turns the search string 

into a finite state machine, then runs the machine with the string to be 

searched as the input string [10]. The design of the Knuth-Morris-Pratt 

algorithm follows a tight analysis of the Morris-Pratt algorithm. The major 

problem with the brute-force search is that characters in the text may be re-

examined multiple times and this can lead to poor performance in some 

cases. The algorithm of Knuth, Morris and Pratt provides a way to alleviate 

the repeated accesses to the text and, as a result, it gives us a guaranteed 

linear time searching algorithm [26]. The key aspect of the Knuth-Morris-

Pratt(KMP) algorithm is that a failed attempt to find a match yields useful 

information to be used on the next attempt. Specifically, if a mismatch is 

detected when considering the characters pat[j] and text[k], we do not need 

to start the next attempt at  text[k-j+1] as we know the characters text[k–j], 

text[k-j+1] … text[k-1] are identical to the prefix of the pattern, pat[0], 

pat[1]…pat[j-1]. By using this information we can access the text 

characters sequentially and alleviate the need to back-up the text. The KMP 

algorithm is essentially the brute-force algorithm with a more intelligent re-

initialisation of pointers when a mismatch is detected. In most practical 

situations the running time for KMP is not much better than for brute-force, 
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however KMP guarantees a linear bound and it is well suited to extensions 

for more difficult problems. 

3.2.2 Algorithm Listing 

KMP (T,P) 
n ß Length[T] 
m ß Length[P] 
?  ß Compute-Prefix-Funtion(P) 
q ß 0 
for i ß 1 to n 
 do while q > 0 and P[q+1] ? T[i] 
  do q ß ? [q] 
     if P[q+1] = T[i]   
  then q ß q + 1 
     if q = m  
        then print “Pattern occurs with shift” I – m 
             q ß ? [q] 
 
Compute-Prefix-Function(P) 
M ß length[P] 
? [1] ß 0 
k ß 0 
for q ß 2 to m 
 do while k > 0 and P[k+1] ? P[q] 
  do k ß ? [k] 
    if P[k+1] = P[q] 
   then k ß k+1 
 ? [q] ß k 
return ?      
 

3.2.3 Algorithm Implementation 

 For a complete program listing used for the testing please refer to 

 Appendix B 

void preKmp(char *string, int string_len, int kmpNext[]) 
{ 
    int i, j; 
    i = 0; 
    j = kmpNext[0] = -1; 
    while (i < search_string_len) 
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    { 
        while (j > -1 && string[i] != string[j]) 
            j = kmpNext[j]; 
        i++; 
        j++; 
        if (string[i] == string[j]) 
            kmpNext[i] = kmpNext[j]; 
        else 
            kmpNext[i] = j; 
    } 
} 
 
long int KMP(char *string, int string_len, char *text, int text_len) 
{ 
     int i, j, k, kmpNext[SIZE]; 
    preKmp(string, string_len, kmpNext); 
    i = j = k = 0; 
    while (j < string_len) 
    { 
        while (i > -1 && string[i] != text[j]) 
            i = kmpNext[i]; 
        i++; 
        j++; 
        if (i >= string_len) 
        { 
            k++; 
            i = kmpNext[i]; 
        } 
    } 
return k; 
} 
 

3.3 Kishore Treiber Vaz (KTV) Algorithm 

3.3.1 Description 

This algorithm has been designed for speed in searching a pattern. 

The efficiency of this algorithm can be seen when the starting character of 

the pattern being searched does not exist in the text. The important part of 

the algorithm is the preprocessing phase. Following explanations of the 
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algorithms use an example with pattern being searched as ‘ggg’ and the 

text in which it is being searched is ‘agcggg’. 

a) Pre processing part : 

This is the main part where the complete text is scanned and the KTV 

structure is created. A KTV structure is made up of two pointers. The 

first one is a character pointer and the next one is a KTV structure 

pointer. The algorithm also takes help of two other character arrays 

called as ‘Position’ and ‘Alpha’. ‘Alpha’ is initialized with the 26 

alphabets. All the elements of the ‘Position’ array are initialized to 

NULL. The first occurrence of characters in the ‘Alpha’ is stored in 

‘Position’ with first position (index 0) being ‘a’ and last position being 

‘z’ (index 25). An array of KTV structures is declared whose size is 

equal to the size of the text. For each character in the text the character 

pointer of the structure array is initialized so as that it points to the 

correct character in the ‘Alpha’ array. If the index of the character 

being processed in the ‘Position’ is Null then the KTV pointer at index 

is updated in such a way that it points to this structure. Also at the 

same time using a temporary pointer array the position of this 

character is stored. When another character same as this is encountered 

then, using the temporary pointer array the previous structure’s KTV 

pointer is updated so that it points to this new character. This process 
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is followed until all the characters of the text are processed. Following 

is the illustration with respect to the above example. 

• Initial Stage:  

: : : : : : : …………… : : 
  

: 
 

a b c d e f g …………… y z 

           Figure 3-1 : Position, KTV Structure and Alpha arrays 

• After first character is processed 

 : : : : : : …………… : : 
   

 :  
 

a b c d e f g …………… y z 

           Figure 3-2 : Position, KTV Structure and Alpha arrays 

• After all characters are processed 

 :  : : :  …………… : : 
   
 

 :      :         :  
 

a b c d e f g …………… y z 

           Figure 3-3 : Position, KTV Structure and Alpha arrays 

b) Searching : 

Once the whole text is processed and the KTV structure array is 

created the first character of the search string is considered. Using the 

‘Position’ array, the search is started from the position which is 
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indicated by the pointer. From this point onwards the rest of the 

characters of the pattern are compared with the consecutive character 

pointers of the KTV structure. If all the characters of the pattern are 

completed then the occurrences counter is incremented by one. In the 

case of failure of the comparison, using the ‘Next’ pointer of the KTV 

structure where the previous search started, the current position is 

updated and the search is started again. Using the example above we 

have the following. First attempt starts at position two. The search fails 

since the next character is not equal to ‘g’. 

g g g 
 
 

 :  : : :  …………… : : 
   
 

 :      :         :  
 

a b c d e f g …………… y z 

       Figure 3-4 : Illustrating search for 'ggg' - failure 

Using the second position’s KTV structure pointer the search is started 

again at position four. This search will result in occurrences to be 

incremented by one since the next two characters are equal to the 

consecutive characters in the KTV structure. 
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g g g 
 
 

 :  : : :  …………… : : 
   
 

 :      :         :  
 

a b c d e f g …………… y z 

         Figure 3-5 : Illustrating search for 'ggg' - success 

3.3.2 Algorithm Implementation 

For a complete program listing used for the testing please refer to  
 Appendix B 

 
struct aa 
{    char *c; 
    struct aa *next; }; 
      
struct aa *p; 
struct aa positions[26]; 
struct aa *prev[26]; 
char *alpha[26]={"a","b","c","d",NULL,NULL,"g","h",NULL, 
                              NULL, "k",NULL,"m","n",NULL,NULL,NULL, 
                             "r","s","t", "u","v","w",NULL,"y",NULL}; 
long int totaloccurances;  
 
void preKTV(char *data, long int length) 
{ 
    long int i; 
    int pos; 
 
    p = (struct aa *) malloc (sizeof(struct aa)*length); 
    for(i = 0;i<length;i++) 
    { 
 pos = data[i] - 97; 
           if(pos<0 || pos>26) 
         break; 
 p[i].c = alpha[pos]; 
 p[i].next = NULL; 
 if(positions[pos].c != NULL)  
         prev[pos]->next = &p[i]; 
 else 
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 { 
         positions[pos].c = alpha[pos]; 
        positions[pos].next = &p[i]; 
    } 
 prev[pos] = &p[i]; 
   } 
   p[i].c=NULL; 
   p[i].next = NULL; 
} 
long int KTV(char *data, char *pattern) 
{ 
     struct aa *current; 
     long int occurances=0; 
     long int index; 
     int plength = strlen(pattern); 
  
     preKTV(data,strlen(data)); 
    current = positions[pattern[0]-97].next; 
    while(current != NULL && (current+plength-1)->c !=NULL) 
    { 
        for(index = 1; index<plength;index++) 
       { 
        if(pattern[index] != *(current+index)->c) break; 
       } 
       if (index == plength) occurances++; 
        current = current->next; 
    } 
   free(p); 
  return occurances; 
} 
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Chapter 4  
Multiple Pattern Algorithms 

 
 

4.1 Kim’s Multiple String-Pattern Matching Algorithm 

4.1.1 Description 

This algorithm scans text from left to right while encoding 

characters in the text based on the alphabet that occurs in the input patterns. 

The simple scanning algorithm demonstrates the ability to handle a very 

large number of input patterns simultaneously. The compact encoding 

scheme can be summarized as follows: 

1) Scan input pattern P and determine how many bits E are needed 

for compact encoding 

2) Define the encoding function ENCODE for each symbol in P and 

any symbol that does not occur in P. 

3) Encode each symbol in P and T by function ENCODE. 

 The multiple string pattern matching algorithm was summarized as below. 

1) Scan the input patterns to determine the number in bits, E, for each 

character encoding and define the ENCODE function. 

2) Encode each pattern Pi and set the associated mask PMASKi 

3) Set the hash mask HMASK according to the hash table size. 

4) Initialize the text scanning variable T to 0. 
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5) While scanning the text character by shifting T E bits left, perform 

the pattern testing procedure for all patterns at the hash entry 

position computed by logically ANDing T and H. If the hash entry 

at the position is empty, skip the pattern testing procedure and 

scan the next text character. 

4.1.2 Partial Code Listing 

 struct hash_entry  
            { 
  PAT                 P; 
  PATMASK            pmask; 
  struct hash_entry      * next;   
             }; 
 PAT   HMASK; 
  
 for(i = 1; i <= n; i++)   
      insert_pattern_into_hash_table(P[i]); 
  
 T = encode_ncharacters(text, S); 
 i = S +1; 
  
 while ( i <= Tlen)  
 { 
      if (HTBL[T&HMASK] != NULL)  
     { 
      candidate = HTBL[T&HMASK]; 
  while(candidate) 
   { 
       if (((T & candidate -> pmask) ^ candidate -> p) = = 0) 
             report_pattern_match(candidate); 
  
       candidate = candidate -> next;  
               } 
           } 
           T = T << E | ENCODE(text[i]); 
            i ++;  
         } 
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4.1.3 Algorithm Limitations 

The algorithm relies on hashing techniques, was made it essential to 

reduce the number of collisions in the hash entries to speed up the pattern 

searching. The test cases discussed in the paper are based on text sizes less 

than 13 MB in size [for English pattern searching] and 19MB [for DNA] 

with patterns of lengths 3 and up until 20000. There are no test results 

discussed in the paper for sizes other than those indicated above. The 

Adaptive string matching technique as discussed in the paper when 

implemented will increase the runtime complexity as the function will take 

a bit more time to adapt to the character set. This algorithm was used as 

reference in understanding the logic behind applying string searching 

techniques to multiple patterns. The encoding technique was also 

considered for the algorithm KPrime and KTV2 but due to time complexity 

the ideas was dropped. 

4.2 Aho & Corasick Algorithm 

4.2.1 Description 

The algorithm consists of constructing a finite state pattern 

matching machine from the keywords and then using the pattern matching 

machine to process the text string in a single pass. The finite state pattern 

matching algorithm was used in a library bibliographic search program. 

The purpose of the program was to enable a bibliographer to find in a 
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citation index all titles satisfying some Boolean function of keywords and 

phrases. This algorithm resulted in running times which are fifth to a tenth 

of the original straightforward string matching algorithm. Construction of 

the pattern matching machine takes time proportional to the sum of the 

lengths of the patterns. The number of state transitions made by the pattern 

matching machine in processing the text string is independent of the 

number of patterns. The algorithm is divided into three parts as the pattern 

matching machine, goto function and failure function. 

4.2.2 Algorithm Listing 

• Algorithm 1: Pattern Matching Machine 
 

Input. 
  A text string x = a I a 2 - - • a n where each a i is an  
 input symbol and a pattern matching machine M with goto 
 function g, failure function f, and output function output, as 
 described above. 
Output.  
 Locations at which keywords occur in x. 
Method. 
begin 
 state ~ 0 
 for i ~ 1 until n do 
 begin 
  while g (state, a i ) = fail do state ~ f ( s t a t e ) 
  state ~ g (state, a i ) 
  if output (state) ;~ empty then 
  begin 
   print i 
   print output (state) 
  end 
 end 
end 
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• Algorithm 2: Goto Function 
 

Input.  
 Set of keywords K = {Yl, Y2 . . . . . Yk}. 
Output. 
  Goto function g and a partially computed output func- 
 tion output. 
Method. 
  We assume output(s) is empty when state s is first 
 created, and g ( s , a) = f a i l if a is undefined or if g(s, a) 
 has not yet been defined. The procedure enter(y) inserts into 
 the goto graph a path that spells out y. 
 
begin 
 newstate ß 0 
 for i ß 1 until k do enter(y i ) 
 for all asuch that g(O, a) = fail  do g(O, a) ß 0 
end 
 
procedure enter(a 1 a 2 • • • a m ): 
begin 
 state ß 0; j ß 1 
 while g (state, aj ) ?  fail do 
 begin 
  state ß g (state, a) ) 
  j ß j + l 
 end 
 for p ß  j until m do 
 begin 
  newstate ß newstate + 1 
  g (state, ap ) ß newstate 
  state ß  newstate 
 end 
 output(state) ß { a I a 2 . . . a m} 
end 
 

• Algorithm 3: Failure Function 
 

Input.  
 Goto function g and output function output from Algo 2. 
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Output.  
 Failure function fand output function output. 
Method. 
begin 
 queue ß empty 
 for each a such that g(O, a ) = s ß 0 do 
 begin 
  queue ß queue LI {s } 
  f ( s )ß 0 
 end 
 while queue ß empty do 
 begin 
  let r be the next state in queue 
  queue ß queue - {r} 
  for each a such that g(r, a ) = s ? fail do 
  begin 
   queue ß queue t2 {s } 
   state ß f ( r ) 
   while g (state, a)= fail do state ß f (state) 
   f ( s ) ß g(state, a) 
             output(s) ß output(s) U output(f(s)) 
  end 
 end 
end 
 

4.2.3 Algorithm Limitations 

This pattern matching scheme is well suited for applications in 

which we are looking for a large numbers of keywords in text strings. 

According to [28] the text used for testing is of 107 size which is equal to 

roughly 10MB. For this size of text the algorithm took 0.18 hrs (roughly 

11mins) for 15 keywords and 0.21 hrs (roughly 13mins) which are quite 

longer times than anticipated. The main construction of the pattern 

matching machine is the part where there is more consumption of time is 

involved.  
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4.3 KTV2 Algorithm 

4.3.1 Description 

This is the modified version of the algorithm described in 3.3. This 

algorithm takes advantage of the already created KTV structure to search 

for all the patterns instead of re-creating the whole structure. The search is 

the same but is repeated with all the different patterns and the results are 

stored in an array. 

4.3.2 Algorithm implementation 

struct aa *p; 
struct aa positions[26]; 
struct aa *prev[26]; 
char *alpha[26]={"a","b","c","d",NULL,NULL,"g","h",NULL, 
        NULL, "k",NULL,"m","n",NULL,NULL,NULL, 
        "r","s","t","u","v","w",NULL,"y",NULL}; 
long int *totaloccurances; 
 
void preKTV(char *data, long int length) 
{ 
    long int i; 
    int pos; 
     
    p = (struct aa *)malloc(sizeof(struct aa)*length); 
    for(i = 0;i<length;i++) 
   { 
        pos = data[i] - 97; 
        if(pos<0 || pos>26) 
       { 
 break; 
       } 
       p[i].c = alpha[pos]; 
       p[i].next = NULL; 
       if(positions[pos].c != NULL)  
       prev[pos]->next = &p[i]; 
       else 
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      { 
            positions[pos].c = alpha[pos]; 
 positions[pos].next = &p[i]; 
       } 
       prev[pos] = &p[i]; 
    } 
    p[i].c=NULL; 
    p[i].next = NULL; 
} 
 
long int * KTV(char *data) 
{ 
    struct aa *current; 
    long int *occurances; 
    long int index; 
    int plength;  
    int i; 
    preKTV(data,strlen(data)); 
    occurances =(long int *)malloc(sizeof(long int)*pCount); 
    for(i=0;i<pCount;i++) 
    { 
 occurances[i]=0; 
 plength = strlen(patterns[i]); 
 current = positions[patterns[i][0]-97].next; 
 while(current !=NULL &&(current+plength-1)->c!=NULL) 
 { 
  for(index = 1; index<plength;index++) 
  { 
   if(patterns[i][index] != *(current+index)->c) 
    break; 
  } 
  if (index == plength)  
   occurances[i]=occurances[i]+1; 
  current = current->next; 
 } 
    } 
    free(p); 
    return occurances; 
} 
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4.4 KPrime Algorithm 

4.4.1 Description 

This algorithm has been designed to handle multiple patterns and 

search for their occurrences in the text by using the concept of prime 

numbers. The algorithm has both preprocessing and actual search phases. 

They are explained below with an example where patterns being searched 

are ‘gc’, ‘aa’, ‘a’ & ‘gcgg’ and the text in which it is being searched is 

‘gcggga’. 

a) Pre processing part : 

This is the main part where all the patterns are read into the patterns 

array called as ‘Patterns’. Using the pre assigned primes array called as 

‘Primes’, the respective values are stored in the values array called as 

‘pValue’. The algorithm also takes help of the array ‘pRowOccurances’ 

which is of the size 26 by length of the largest pattern. This array is 

used as a Boolean array to check whether the character indicated by the 

index occurs at the first position or not. Also the patterns are checked to 

get the maximum length and stored in ‘pLength’. Using a neutral 

character, a character which we know for sure doesn’t exist in the text 

[in the test case I used character “ ` ”], pad the rest of the patterns so 

that every one of them are of the same size. This character’s prime 

value is 1. The Occurrences array which is being used to store the 
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number of occurrences is also initialized with zeros. Every element of 

mValue array is also initialized to 1. This array is used to store the 

multiplied values of the values of the patterns.  

g c ` ` 
a a ` ` 
a ` ` ` 
g c g g 

           Figure 4-1 : Patterns array 

17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

           Figure 4-2 : pValue array 

0 1 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

           Figure 4-3 : pRowOccurances array 



 

35 

 
 

1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 
 
 

61 67 71 73 79 83 89 97 101 

                                          Figure 4-4 : Primes array 

 
1 1 1 1 

           Figure 4-5 : mValue array 

b) Searching: 

The first step of searching is to call the pre processing method. The 

main text is also padded using the character of the pre processing phase 

so that the text is a multiple of the pLength. The search takes place as 

follows. Using the values in the pValue array, the product of all the 

values in the same column positions is stored in mValue array. The 

multiplication is done in such a way that multiple values are avoided. 

To illustrate the mValue array after the initial multiplication: 

17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

        Figure 4-6 : Active patterns in the search 

34 10 17 17 

        Figure 4-7 : mValue array 

At first a character is read from the text. The value of the character 

from the primes array is used to divide the first value in the mValue 
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array. If the remainder of the operation is zero then the character is 

existing in any of the patterns at the first position. Prime numbers are 

those which are divisible by one or by itself. This algorithm uses this 

property to check the existence of the character in the patterns. Once 

the reminder is zero, the multiply function is called but this time with 

only those values of the patterns whose first character is equal to the 

character from the text. This process is followed with the rest of the 

characters of the text until pLength is reached. After that comparison, 

the patterns that are still a valid candidate for search are the strings 

that are equal to the characters of the text read or a substring of the 

text. Hence occurrences of these patterns are updated by one. The 

search is restarted again from the second character onwards. This 

procedure is followed until the end of text is reached. Following is the 

illustration of search starting at position one. 

17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

 
g c g g g a ` ` ` 

 
 
                 (34 mod 17) = 0 

 
 

34 10 17 17 

        Figure 4-8 : Illustration of Search 
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17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

 
17 5 17 17 

 
                  (5 mod 5) = 0 

 
 

g c g g g a ` ` ` 

        Figure 4-9 : Illustration of Search 

 
17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

 
17 5 17 17 

 
                  (17 mod 17) = 0 

 
 

g c g g g a ` ` ` 

        Figure 4-10 : Illustration of Search 

 
17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

 
17 5 17 17 

 
                  (17 Mod 17) = 0 

 
 

g c g g g a ` ` ` 

        Figure 4-11 : Illustration of Search 
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17 5 1 1 
2 2 1 1 
17 1 1 1 
17 5 17 17 

 
1 0 1 1 

        Figure 4-12 : Patterns, Occurrences at end of Search 

 
As it can be observed the characters read from the text were ‘gcgg’. 

The patterns found at the end of the first cycle of search are ‘gc’, ‘g’ 

& ‘gcgg’. The search is stopped when sizeof(text -1) is reached. This 

position doesn’t give error with regards to memory since we already 

padded the text with the neutral character. At the end of the complete 

search for the example in discussion the resultant occurrences array is 

{1, 0, 4, 1}.  

 
4.4.2 Algorithm Implementation 

int primes[]= 
  {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43, 
    47,53,59,61,67,71,73,79,83,89,97,101}; 
int pCount; 
int pLength; 
long int **pValue; 
int **pRowOccurances; 
long int *mValue; 
int *tmpValue; 
char **patterns; 
 
long int* preKPrime() 
{ 
    int i=0; 
    int j=0; 
    long int *Occurances; 
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    pValue =(long int **)malloc(sizeof(long int *)*pCount); 
    pRowOccurances = (int **)malloc(sizeof(int *)*27); 
    Occurances =  
  (long int *)malloc(sizeof(long int *)*pCount); 
    for(i=0;i<27;i++) 
    { 
        pRowOccurances[i] = (int *)malloc(sizeof(int)*pLength); 
        Occurances[i]=0; 
        for(j=0;j<pCount;j++) 
            pRowOccurances[i][j]=0; 
    } 
    mValue =(long int *)malloc(sizeof(long int)*pLength); 
    for(i=0;i<pCount;i++) 
    { 
        pValue[i] = (long int *)malloc(sizeof(long int)*pLength); 
        pRowOccurances[patterns[i][0]-96][i]=1; 
        for(j=0;j<pLength;j++) 
        { 
            pValue[i][j]=primes[patterns[i][j]-96]; 
         mValue[j] = 1; 
        } 
    } 
    return Occurances; 
} 
 
long int* KPrime(char *str,int mode) 
{ 
 char *mainString; 
    long int i=0, j=0, k=0, tmp1=0, adjustment=0; 
    long int count=0; 
    long int Value,Start; 
 long int stringlen=0; 
    long int *occurances; 
 
    occurances = preKPrime(); 
    tmpValue = (int *)malloc(sizeof(int)*pCount); 
    stringlen= strlen(str); 
 
    if (mode == 0) 
    { 
        mainString = (char *)malloc(sizeof(char)*(stringlen)); 
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     strcpy(mainString,str); 
    } 
    else 
    { 
        mainString =  
                (char *)malloc(sizeof(char)*(stringlen+pLength-1)); 
     strcpy(mainString,str); 
        for(i=0;i<(pLength-1);i++)  
      strcat(mainString,"`"); 
    } 
 stringlen= (long int)strlen(mainString); 
 while((k+(pLength)-1) < stringlen) 
 { 
        for(j=0;j<pCount;j++) 
 
  tmpValue[j]=  
                                    pRowOccurances[mainString[k]-96][j]; 
   
  for(j=0;j<pLength;j++) 
         mValue[j]=1; 
     multiplyValues(); 
 
   for(i=0,count=0;i<pLength && count < 2;i++) 
               count += (tmpValue[i] == 1) ? 1 : 0; 
  switch(count) 
  { 
        case 1:  
   for(i=0;i<pLength;i++) 
   if (mValue[i] != 1) 
   if ((mValue[i] %  
                    primes[mainString[k+i]-96]) != 0)  
         break; 
   if (i == pLength) 
       for(i=0;i<pCount;i++) 
          if (tmpValue[i]==1) 
          { 
    occurances[i] += 1;      
    break; 
          } 
       break; 
   
       case 0:  
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       break; 
       
       default:   
   for(i=0;i<pLength-1;i++) 
   {         
                                if (mValue[i] != 1) 
            if ((mValue[i] %    
    primes[mainString[k+i]-96]) != 0)  
              break; 
       Value = mainString[k+i+1]-96; 
                   Start = i+1; 
                      for(j=0;j<pCount;j++) 
                   tmpValue[j] =  
                                       (tmpValue[j] == 0)? 
     0 :(((pValue[j][Start] ==   
    primes[Value])|| pValue[j][Start] == 
    1 )? 1 : 0); 
      multiplyValues(); 
   } 
   if (i == pLength-1) 
        for(i=0;i<pCount;i++) 
    if (tmpValue[i]==1) 
         occurances[i] += 1;      
    break; 
  } 
  k++; 
 } 
  return occurances; 
} 
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Chapter 5  
Experiments and Results  

 
5.1 Hardware 

The experiments were conducted on a parallel computer named 

Beowulf. The idea was to see that all the test cases to get almost the same set 

of resources each time. The different nodes were used to act as single 

computer. Settings for each node:  

• x330 series with 1 PIII 866 MHz processor  

• 512 MB SDRAM RDIMM2 of which 500MB was available 

• 18.2 GB Ultra 160 HDD  

The text files used as the text are copied to all the nodes. The 

programs were written in such a way that these files are read from the nodes 

in which the program is being executed. While executing the test cases the 

number of nodes used was in the range of 1 to 20 [in the case of single 

patterns] and 40 [in the case of multiple patterns].  

5.2 Text 

The text used for the experiments of the ASCII text version of the 

chromosome data of Human Genome. These are listed in the following table 

with sizes indicated in bytes. 
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Sl.No Chromosome Size (bytes) 

1 Chromosome 01             245,203,898  

2 Chromosome 02             243,315,028  

3 Chromosome 03             199,411,731  

4 Chromosome 04             191,610,523  

5 Chromosome 05             180,967,295  

6 Chromosome 06             170,740,541  

7 Chromosome 07             158,431,299  

8 Chromosome 08             145,908,738  

9 Chromosome 09             134,505,819  

10 Chromosome 10             135,480,874  

11 Chromosome 11             134,978,784  

12 Chromosome 12             133,464,434  

13 Chromosome 13             114,151,656  

14 Chromosome 14             105,311,216  

15 Chromosome 15             100,114,055  

16 Chromosome 16               89,995,999  

17 Chromosome 17               81,691,216  

18 Chromosome 18               77,753,510  

19 Chromosome 19               63,790,860  

20 Chromosome 20               63,644,868  

21 Chromosome 21               46,976,537  

22 Chromosome 22               49,476,972  

23 Chromosome X             152,634,166  

24 Chromosome Y               50,961,097  

                           Table 5-1: Text Data for the experiments 
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By using different number of nodes various sizes were tested for the 

algorithms. For example using Chromosome1 file of size 245MB and 10 

nodes, each node gets a text of size 24.5 MB and hence the results from all 

these nodes can be averaged for 24.5MB size, whereas the total can be used 

for checking for a 245Mb size. For the multiple patterns the nodes used were 

fixed at 40, which means that the maximum size tested for the algorithms is             

approximately 6MB (245,203,898 / 40). 

5.3 Patterns 

Patterns of different sizes were used in the testing of the algorithms. 

The patterns used in different searches are listed below: 

a) Single Pattern Search 

1. z 
2. a 
3. atattaggt 
4. atattaggtatatta 
5. ccatttattcacctgttatcaattacaggcattgtatttaaagatcagatgttttatattta

tttcttcaaatttcattcatggtgccataagtgaaggt 
 

b) Multiple Pattern Search 

1. • a 
• atattaggt 
• atattaggtatatta 
• catttattcacctgttatcaattacaggcattgtatttaaagatcagatgttttata 

         tttatttcttcaaatttcattcatggtgccataagtgaaggt 
 
2. • atattaggtatattaatatt 

• ccatttattcacctgttatc 
• aattacaggcattgtattta 
• aagatcagatgttttatatt 
• tatttcttcaaatttcattc 
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3. All the patterns in 5.3 b 2  
• atggtgccataagtgaaggt 
• ccattgagtcgtagcttaat 
• ggtatatcactattactatt 
• cagtatattctagtcagtac 
• attatagcattatgattaga 

 
4. All the patterns in 5.3 b 3 

• tttgtagtatagtgatgata 
• catgatcgtactgatcgtac 
• tagatagctagacatcgaat 
• aaataggagcagcgactaga 
• aggatcaggcagctagacta 

 
5. All the patterns in 5.3 b 4 

• ggaggatcattcaggagcta 
• gagtattatgattaggtatg 
• ttatattgagacaggagaga 
• ccgcgattaggcccgaggat 
• ttttaggaggattggggata 
 

6. • a 
• at 
• ata 
• atat 
• atatt 
• atatta 
• atattag 
• atattagg 
• atattaggt 
• atattaggta 
• atattaggtat 
• atattaggtata 
• atattaggtatat 
• atattaggtatatt 
• atattaggtatatta 
• atattaggtatattaa 
• atattaggtatattaat 
• atattaggtatattaata 
• atattaggtatattaatat 
• atattaggtatattaatatt 
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7. All patterns in 5.3 b 5 repeated twice 
Repeat the first 10 lines of pattern in 5.3 b 5 

 
8. All patterns in 5.3 b 7 repeated twice. 

 
9. All patterns in 5.3 b 7 repeated thrice. 
 
 

5.4 Single Pattern Search 

 
The test cases designed for single pattern search algorithms include a 

pattern which does not exist in the text. This we know for sure because the 

test case adopted ‘z’ in this case, is not part of the DNA alphabet. Other test 

cases were pseudorandom generated strings of the DNA alphabet. These 

strings were randomly taken from the DNA data of zebra fish and also from 

the actual text in which they are searched. The maximum size of the pattern 

which was tested was 100 characters in length. The other test cases include 

patterns in length of 1, 9 and 15 characters. 
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5.4.1 Results for Pattern 5.3 a 1 

This test was done in order to check the efficiency built into the 

algorithms under test to check for a character that does not exist in the text 

being searched. As it can be seen from Figure 5-1 Brute Force and KMP 

were almost linearly increasing in time along with the size of the text 

whereas the KTV algorithm acted differently. It showed a little increase in 

time as compared to the other two algorithms. It almost averaged at 0.3 

seconds. In the preprocessing stage as the Position array was being updated 

the corresponding character that did not exist was pointing to nothing. 
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Figure 5-1 : Search Results for 5.3 a 1 
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Search Time in Seconds 

S.No Sample Size Occurrences BF KMP KTV 

1 46,976,537 - 0.757481 0.788041 0.053924 

2 49,476,972 - 0.785963 0.829355 0.058255 

3 50,961,097 - 0.803733 0.857521 0.058848 

4 63,644,868 - 1.015911 1.067487 0.071989 

5 63,790,860 - 1.008220 1.070992 0.072092 

6 77,753,510 - 1.225231 1.302336 0.086881 

7 81,691,216 - 1.283535 1.365692 0.096492 

8 89,995,999 - 1.418662 1.505741 0.099034 

9 100,114,055 - 1.572478 1.674647 0.112859 

10 105,311,216 - 1.655221 1.756888 0.119492 

11 114,151,656 - 1.793934 1.905149 0.128979 

12 133,464,434 - 2.095320 2.228942 0.178677 

13 134,505,819 - 2.114270 2.245151 0.149774 

14 134,978,784 - 2.124924 2.250289 0.151805 

15 135,480,874 - 2.125514 2.262828 0.150584 

16 145,908,738 - 2.288132 2.434612 0.164225 

17 152,634,166 - 2.394981 2.547484 0.171306 

18 158,431,299 - 2.487196 2.640976 0.176680 

19 170,740,541 - 2.681511 2.850161 0.192104 

20 180,967,295 - 2.838816 3.019265 0.203536 

21 191,610,523 - 3.007935 3.198592 0.213308 

22 199,411,731 - 3.129303 3.324192 0.220759 

23 243,315,028 - 3.815656 4.054258 0.271210 

24 245,203,898 - 3.845615 4.086006 0.272053 

                           Table 5-2: Search Results for 5.3 a 1 
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5.4.2 Results for Pattern 5.3 a 2 

This test uses a pattern of one character length which is one of the 

DNA alphabet that exists in the text we are searching. This test case 

actually revealed that the algorithms were dependent not only on the size 

but also number of occurrences. But as it can be seen from Figure 5-2 KTV 

does perform well with average time way below the other two. The dips in 

the results are due to less occurrences of the pattern being searched. The 

sudden dip in the time when the size reaches 245MB is due to the fact that 

the corresponding text was containing unknown value for most part of it. 

This observation holds for all the test cases that follow. 
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Figure 5-2 : Search Results for 5.3 a 2
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Search Time in Seconds 

S.No Sample Size Occurrences BF KMP KTV 

1 46,976,537 10,062,440 1.226420 1.295841 1.021599 

2 49,476,972 8,978,002 1.210903 1.280126 0.774751 

3 50,961,097 6,890,018 1.141688 1.212898 0.590703 

4 63,644,868 16,503,721 1.807034 1.904953 1.361593 

5 63,790,860 14,381,985 1.701668 1.786864 1.220484 

6 77,753,510 22,427,279 2.316282 2.441205 1.785455 

7 81,691,216 21,082,323 2.308541 2.429316 1.743744 

8 89,995,999 22,007,159 2.481774 2.615588 1.819688 

9 100,114,055 23,458,690 2.711950 2.868382 1.914170 

10 105,311,216 25,670,202 2.903965 3.063273 2.079309 

11 114,151,656 29,324,966 3.214664 3.396818 2.328671 

12 133,464,434 38,292,633 3.955090 4.171520 3.080859 

13 134,505,819 33,807,672 3.755813 3.963801 2.744183 

14 134,978,784 38,183,681 3.975309 4.193568 3.086076 

15 135,480,874 38,156,953 3.981836 4.215943 3.069523 

16 145,908,738 42,448,402 4.350663 4.592824 3.395131 

17 152,634,166 44,668,508 4.561584 4.826400 3.543843 

18 158,431,299 45,788,455 4.708755 4.966777 3.666394 

19 170,740,541 50,409,420 5.126437 5.409791 3.990255 

20 180,967,295 53,602,345 5.443963 5.764939 4.250215 

21 191,610,523 57,657,548 5.803383 6.123233 4.527539 

22 199,411,731 58,359,484 5.963724 6.307639 4.636781 

23 243,315,028 70,765,429 7.249469 7.668920 5.635446 

24 245,203,898 63,719,743 6.942533 7.329491 5.145736 

                           Table 5-3: Search Results for 5.3 a 2 
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5.4.3 Results for Pattern 5.3 a 3 

This test case uses a pattern of length nine characters. As it can be 

seen in Figure 5-3, KTV again performed well. The results show a variance 

in time from the previous results. Both Brute Force and KMP almost 

recorded same time while KTV averaged at lower seconds. Also it can be 

inferred that KTV almost averaged less than a linear increase where as the 

other two are almost linear with the size of the text. 
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Figure 5-3 : Search Results for 5.3 a 3
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Search Time in Seconds 

S.No Sample Size Occurrences BF KMP KTV 

1 46,976,537 172 1.183336 1.204694 0.827198 

2 49,476,972 93 1.154213 1.206738 0.763175 

3 50,961,097 112 1.110685 1.148062 0.597393 

4 63,644,868 206 1.713512 1.768929 1.363157 

5 63,790,860 142 1.601199 1.670222 1.209462 

6 77,753,510 390 2.215396 2.239184 1.817822 

7 81,691,216 218 2.180977 2.402149 1.760086 

8 89,995,999 269 2.357198 2.435740 1.814971 

9 100,114,055 300 2.591508 2.655136 1.912107 

10 105,311,216 473 2.784181 2.835398 2.095868 

11 114,151,656 559 3.128077 3.126510 2.361092 

12 133,464,434 661 3.780210 3.833279 3.078556 

13 134,505,819 549 3.595887 3.667474 2.745531 

14 134,978,784 633 3.798156 3.858948 3.080993 

15 135,480,874 606 3.813668 3.864854 3.084623 

16 145,908,738 723 4.167585 4.212731 3.427952 

17 152,634,166 830 4.384217 4.412222 3.607223 

18 158,431,299 763 4.500066 4.556501 3.698874 

19 170,740,541 831 4.909691 4.955164 4.202163 

20 180,967,295 967 5.218560 5.270413 4.294843 

21 191,610,523 1,154 5.605319 5.590453 4.617117 

22 199,411,731 1,061 5.723980 5.766655 4.661800 

23 243,315,028 1,189 6.960146 7.042328 5.663650 

24 245,203,898 1,028 6.655266 6.778885 5.152020 

                           Table 5-4: Search Results for 5.3 a 3 
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5.4.4 Results for Pattern 5.3 a 4 

This test case uses a pattern of length fifteen characters. As it can be 

inferred from                            Table 5-5, though the occurrences are few, 

still the time taken is almost in the same range as that in the previous test 

case. Investigation on this regard revealed that the test case in 5.4.1 

contains a non existing character at the first position. KTV works more 

efficiently on the time factor if the first character is a not existing. But still 

as it can be seen its performance is better than the other two. 
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Figure 5-4 : Search results for 5.3 a 4 
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Search Time in Seconds 

S.No Sample Size Occurrences BF KMP KTV 

1 46,976,537 - 1.184113 1.208396 0.835451 

2 49,476,972 - 1.155488 1.207899 0.771346 

3 50,961,097 - 1.118051 1.149814 0.607726 

4 63,644,868 - 1.718562 1.765926 1.371414 

5 63,790,860 - 1.602760 1.673810 1.221291 

6 77,753,510 - 2.221112 2.240561 1.926467 

7 81,691,216 1 2.183906 2.254807 1.748245 

8 89,995,999 - 2.371620 2.432553 1.919472 

9 100,114,055 1 2.598303 2.658129 1.936921 

10 105,311,216 2 2.785693 2.836850 2.105441 

11 114,151,656 - 3.106957 3.127952 2.383976 

12 133,464,434 - 3.782394 3.838906 3.106516 

13 134,505,819 1 3.596987 3.667718 2.768048 

14 134,978,784 - 3.797974 3.862060 3.114173 

15 135,480,874 1 3.798754 3.869809 3.107110 

16 145,908,738 - 4.169155 4.222570 3.437215 

17 152,634,166 - 4.403023 4.426241 3.606982 

18 158,431,299 1 4.502660 4.563108 3.711432 

19 170,740,541 1 4.923796 4.974983 4.065468 

20 180,967,295 1 5.242719 5.274171 4.331305 

21 191,610,523 3 5.606663 5.615917 4.638695 

22 199,411,731 2 5.732169 5.788630 4.712458 

23 243,315,028 2 6.962249 7.024011 5.733794 

24 245,203,898 2 6.637968 6.771017 5.216083 

                           Table 5-5: Search Results for 5.3 a 4 
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5.4.5 Results for Pattern 5.3 a 5 

This test case produced interesting results than expected depending 

on the performances acquired in the previous test cases. The results 

indicate that the results might be dependent on three factors – size of text, 

size of pattern and the number of occurrences. But as it can be seen the 

number of occurrences doesn’t make much of a difference in the resulting 

times. But the performance of the algorithms did get affected by the size of 

pattern and the size of text. Also it can be observed the dip in the time at 

size 245MB is much lower than the previous test cases. Investigation in 

this aspect revealed that the difference was due to the size of the pattern 

and fact that there were more of non existing characters in the pattern.  
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Figure 5-5 : Search results for 5.3 a 5 
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Search Time in Seconds 

S.No Sample Size Occurrences BF KMP KTV 

1 46,976,537 - 1.013712 1.045499 0.694154 

2 49,476,972 - 1.110987 1.138230 0.781607 

3 50,961,097 - 0.980296 1.027381 0.488876 

4 63,644,868 - 1.521961 1.560839 1.252262 

5 63,790,860 1 1.547399 1.580038 1.257569 

6 77,753,510 - 1.804601 1.853631 1.463302 

7 81,691,216 - 1.995354 2.033904 1.664766 

8 89,995,999 - 2.128197 2.180330 1.701525 

9 100,114,055 - 2.250391 2.315806 1.676751 

10 105,311,216 - 2.354057 2.425747 1.752925 

11 114,151,656 - 2.516179 2.588573 1.846552 

12 133,464,434 - 3.137305 3.213536 2.568236 

13 134,505,819 - 3.052809 3.135511 2.323556 

14 134,978,784 - 3.196125 3.274228 2.631125 

15 135,480,874 - 3.198427 3.279073 2.629903 

16 145,908,738 - 3.409637 3.500014 2.804972 

17 152,634,166 - 3.544420 3.637510 2.872177 

18 158,431,299 - 3.726988 3.822464 3.064220 

19 170,740,541 - 3.977433 4.080839 3.254164 

20 180,967,295 - 4.221601 4.331382 3.447777 

21 191,610,523 - 4.397034 4.518192 3.555599 

22 199,411,731 - 4.647971 4.761495 3.781932 

23 243,315,028 - 5.692548 5.836513 4.650336 

24 245,203,898 1 5.655801 5.832116 4.481596 

                           Table 5-6: Search Results for 5.3 a 5 
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5.4.6 Comment 

As it can be seen from the results KTV performed well for all the 

test cases. Using it for larger pattern lengths could give us decent results as 

compared to the regularly used simple search algorithms. Also as it can be 

seen from the test cases that follow in section 5.5, KTV proves more 

helpful less times by repeating the search for different patterns. 

 

5.5 Multiple Pattern Search 

The test cases were designed so as to test for the performance of the 

algorithms KPrime and KTV2. The first test case has the patterns discussed 

in 5.4.2 through 5.4.5. This was to ensure that we get the same results. Other 

test cases include patterns of fixed size of twenty characters, but the number 

of patterns were kept increasing except for the test case discussed in 5.5.6. 

These strings were randomly taken from the DNA data of zebra fish and also 

from the actual text in which they are searched. The maximum number of 

patterns which were tested was hundred. Also the patterns were searched 

individually in KTV2 where as they were handled as one in KPrime. 
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5.5.1 Results for Pattern 5.3 b 1 

This test case was designed to see if the search algorithms were 

giving correct results as the single pattern search algorithms in terms of 

occurrences found.  

KPrime results were pretty discouraging as it can be seen from 

Figure 5-6. Investigation in this regard revealed that this was due to the 

repetitive multiplication function which the search algorithm uses. Since 

this is the most important part of the algorithm, this function could not be 

eliminated.  
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Figure 5-6 : KPrime results for 5.3 b 1 
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As far as KTV2 was concerned, it gave good results with respect to 

time. Though the shape of the graphs are almost the same but were on a 

different time scale. This is mainly due to the fact that the algorithm takes 

help of the Position array, which keeps track of the first occurrence of the 

first character in the pattern being searched.  
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Figure 5-7 : KTV2 results for 5.3 b 1
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 1381.803843 2.367941 

2 49,476,972 1255.205689 3.160540 

3 50,961,097 972.571558 2.260309 

4 63,644,868 2240.740123 5.647738 

5 63,790,860 1972.967295 5.804579 

6 77,753,510 3029.333463 7.343389 

7 81,691,216 2873.009802 7.159451 

8 89,995,999 3009.579697 7.421235 

9 100,114,055 3220.801205 7.667375 

10 105,311,216 3508.995002 8.300159 

11 114,151,656 3996.323747 9.342560 

12 133,464,434 5192.469819 12.304571 

13 134,505,819 4604.669653 10.946519 

14 134,978,784 5167.210499 11.261290 

15 135,480,874 5172.714954 12.522197 

16 145,908,738 5732.925406 13.533954 

17 152,634,166 6022.705938 14.174241 

18 158,431,299 6183.687670 14.701045 

19 170,740,541 6798.711792 15.958586 

20 180,967,295 7228.347241 17.008667 

21 191,610,523 7769.102322 18.027493 

22 199,411,731 7932.631668 18.529769 

23 243,315,028 9614.849818 22.683024 

24 245,203,898 8711.546778 20.682601 

                           Table 5-7: Search Results for 5.3 b 1 
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5.5.2 Results for Pattern 5.3 b 2 

This test case used five different patterns of twenty characters in 

length. This was designed to see how well the algorithms handle the 

patterns when they are different in data but same in length. The effect can 

be seen in the KPrime. The search time drastically reduced. The 

assumption that the pattern length has effect on the search time in the 

previous test results was proved correct.  
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Figure 5-8 : KPrime results for 5.3 b 2 
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As far as KTV2 was concerned the results given were decent. The 

number of occurrences or the size of the largest pattern did not make much 

of a difference. The test results were almost the same as compared to the 

previous test case.  
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Figure 5-9 : KTV2 results for 5.3 b 2
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 70.843180 4.292034 

2 49,476,972 67.889560 4.192291 

3 50,961,097 57.972309 2.970446 

4 63,644,868 113.221785 7.334186 

5 63,790,860 104.272518 6.560908 

6 77,753,510 149.042988 9.463691 

7 81,691,216 146.363336 9.347251 

8 89,995,999 153.725761 9.694050 

9 100,114,055 165.281883 10.079919 

10 105,311,216 178.371709 11.045695 

11 114,151,656 198.805587 12.237198 

12 133,464,434 253.955965 16.227524 

13 134,505,819 232.000821 14.417742 

14 134,978,784 254.177998 16.299633 

15 135,480,874 254.400557 16.292190 

16 145,908,738 278.856510 17.866517 

17 152,634,166 293.532634 18.735664 

18 158,431,299 303.746398 19.506384 

19 170,740,541 333.356197 21.132365 

20 180,967,295 351.981832 22.490933 

21 191,610,523 375.623941 23.906428 

22 199,411,731 386.703268 24.662541 

23 243,315,028 466.386033 29.832875 

24 245,203,898 433.375599 27.219134 

                           Table 5-8: Search Results for 5.3 b 2 
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5.5.3 Results for Pattern 5.3 b 3 

This test case used ten different patterns of twenty characters in 

length. This was designed to see how well the algorithms handle the 

patterns when they are different in data but same in length. The following 

comments hold true for the test cases discussed in 5.5.4 through 5.5.9 

except for 5.5.6. 

This test induced a steep increase in the times for the KPrime 

algorithm. The increase in the number of patterns did have an effect on the 

algorithm though the number of occurrences did hardly make any 

difference. 
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Figure 5-10 : KPrime results for 5.3 b 3 
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The KTV2 algorithm did show some increase in times but not a 

much variation. It was quite acceptable due to the fact that the number of 

patterns was doubled. As in the previous test cases the graphs retained the 

same shape but the scales are quite different. 
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Figure 5-11 : KTV2 results for 5.3 b 3
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 164.317820 7.253664 

2 49,476,972 162.015770 7.251675 

3 50,961,097 124.810282 4.930707 

4 63,644,868 268.694970 12.572023 

5 63,790,860 249.396011 11.696838 

6 77,753,510 345.927683 16.061259 

7 81,691,216 349.752210 16.761641 

8 89,995,999 366.220840 16.870338 

9 100,114,055 381.432416 17.239325 

10 105,311,216 411.127467 18.546939 

11 114,151,656 457.523157 20.409496 

12 133,464,434 597.348787 27.502861 

13 134,505,819 542.617557 24.510082 

14 134,978,784 601.743237 27.770173 

15 135,480,874 601.678641 27.794656 

16 145,908,738 657.393412 30.166849 

17 152,634,166 687.087129 31.492380 

18 158,431,299 713.798132 32.852983 

19 170,740,541 773.081986 35.530958 

20 180,967,295 824.016922 37.825344 

21 191,610,523 876.987297 39.873452 

22 199,411,731 901.978398 41.305512 

23 243,315,028 1101.062432 50.416683 

24 245,203,898 1023.634967 46.434099 

                           Table 5-9: Search Results for 5.3 b 3  
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5.5.4 Results for Pattern 5.3 b 4 
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Figure 5-12 : KPrime results for 5.3 b 4 
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Figure 5-13 : KTV2 results for 5.3 b 4
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 249.938868 12.295118 

2 49,476,972 237.465761 12.047602 

3 50,961,097 184.466109 8.347660 

4 63,644,868 410.392144 21.159558 

5 63,790,860 370.428253 19.427896 

6 77,753,510 542.342084 27.066946 

7 81,691,216 530.510131 27.387178 

8 89,995,999 556.417115 28.332412 

9 100,114,055 580.327464 29.158087 

10 105,311,216 632.781179 31.492105 

11 114,151,656 705.729336 34.876788 

12 133,464,434 921.637252 46.723866 

13 134,505,819 830.479819 41.548884 

14 134,978,784 924.451361 47.072879 

15 135,480,874 927.080994 47.058871 

16 145,908,738 1019.372926 51.340945 

17 152,634,166 1070.145230 53.687677 

18 158,431,299 1104.270223 55.835056 

19 170,740,541 1201.156834 60.574243 

20 180,967,295 1285.004529 64.481658 

21 191,610,523 1367.577783 68.227217 

22 199,411,731 1401.562513 70.341474 

23 243,315,028 1706.473388 85.851043 

24 245,203,898 1566.962922 78.717328 

                           Table 5-10: Search Results for 5.3 b 4 
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5.5.5 Results for Pattern 5.3 b 5 
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Figure 5-14 : KPrime results for 5.3 b 5 
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Figure 5-15 : KTV2 results for 5.3 b 5
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 374.646187 15.252259 

2 49,476,972 367.997563 15.197695 

3 50,961,097 273.564777 10.313441 

4 63,644,868 633.849308 26.478501 

5 63,790,860 581.474922 24.560212 

6 77,753,510 814.176035 33.538428 

7 81,691,216 821.717676 34.390308 

8 89,995,999 854.757586 35.571729 

9 100,114,055 882.926216 36.318339 

10 105,311,216 959.846299 39.129896 

11 114,151,656 1068.723946 43.087808 

12 133,464,434 1411.583747 58.029516 

13 134,505,819 1260.248818 51.645791 

14 134,978,784 1420.033986 58.563558 

15 135,480,874 1416.240376 58.554648 

16 145,908,738 1548.870139 63.717285 

17 152,634,166 1626.844657 66.529301 

18 158,431,299 1688.983883 69.544777 

19 170,740,541 1833.714744 75.044808 

20 180,967,295 1941.458411 79.914697 

21 191,610,523 2069.842370 84.238497 

22 199,411,731 2133.535634 87.140797 

23 243,315,028 2597.011803 106.491267 

24 245,203,898 2414.369072 98.145369 

                           Table 5-11: Search Results for 5.3 b 5 
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5.5.6 Results for Pattern 5.3 b 6 

This test case was designed to check the effect of increasing pattern 

length on the algorithms. The patterns were used ranged from lengths one 

to twenty. This would give us occurrences which are decrementing in 

number. This test case quite useful to check the various assumptions made 

during the previous test cases. 

KPrime did show the effect on the time recorded but still retained 

the shape.  
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Figure 5-16 : KPrime results for 5.3 b 6 
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KTV2 on the other hand did work as expected. Number of 

occurrences did not have much effect on the time recorded. But the number 

of patterns and size of them did increase the time factor.  
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Figure 5-17 : KTV2 results for 5.3 b 6
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 445.081425 16.407512 

2 49,476,972 385.393059 14.991219 

3 50,961,097 326.371686 11.288010 

4 63,644,868 700.706340 27.261644 

5 63,790,860 605.452300 24.051447 

6 77,753,510 982.438214 36.458769 

7 81,691,216 885.964361 34.822973 

8 89,995,999 947.340884 36.351625 

9 100,114,055 1024.208292 38.310050 

10 105,311,216 1133.670682 42.041212 

11 114,151,656 1320.171226 47.613044 

12 133,464,434 1679.196913 62.350967 

13 134,505,819 1496.604366 55.183839 

14 134,978,784 1668.703294 62.392889 

15 135,480,874 1662.930480 62.271020 

16 145,908,738 1870.743890 68.994909 

17 152,634,166 1975.448803 72.668177 

18 158,431,299 2006.043498 74.580830 

19 170,740,541 2225.897266 79.562140 

20 180,967,295 2371.913484 87.109532 

21 191,610,523 2573.696959 93.378465 

22 199,411,731 2581.022843 94.778641 

23 243,315,028 3123.458211 115.108887 

24 245,203,898 2787.274100 104.066357 

                           Table 5-12: Search Results for 5.3 b 6 
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5.5.7 Results for Pattern 5.3 b 7 

This test case was not used for testing the KPrime algorithm because 

of the times recorded were way larger than those recorded in 5.5.1. This 

comment holds true for the other test cases that follow. 
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Figure 5-18 : KTV2 results for 5.3 b 7
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 - 39.379163 

2 49,476,972 - 39.105183 

3 50,961,097 - 26.613804 

4 63,644,868 - 68.384062 

5 63,790,860 - 63.692960 

6 77,753,510 - 86.771678 

7 81,691,216 - 88.756190 

8 89,995,999 - 91.697530 

9 100,114,055 - 93.847029 

10 105,311,216 - 101.172617 

11 114,151,656 - 111.543413 

12 133,464,434 - 150.099079 

13 134,505,819 - 133.532575 

14 134,978,784 - 151.408488 

15 135,480,874 - 151.381402 

16 145,908,738 - 164.734304 

17 152,634,166 - 172.044750 

18 158,431,299 - 179.335775 

19 170,740,541 - 194.179371 

20 180,967,295 - 206.697578 

21 191,610,523 - 218.010220 

22 199,411,731 - 225.374151 

23 243,315,028 - 275.477268 

24 245,203,898 - 253.194739 

                           Table 5-13: Search Results for 5.3 b 7 
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5.5.8 Results for Pattern 5.3 b 8 
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Figure 5-19 : KTV2 results for 5.3 b 8
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 - 79.592837 

2 49,476,972 - 78.944370 

3 50,961,097 - 53.758858 

4 63,644,868 - 137.947255 

5 63,790,860 - 127.677649 

6 77,753,510 - 175.260865 

7 81,691,216 - 179.089369 

8 89,995,999 - 185.037572 

9 100,114,055 - 189.496933 

10 105,311,216 - 204.298518 

11 114,151,656 - 225.386368 

12 133,464,434 - 303.248940 

13 134,505,819 - 269.728069 

14 134,978,784 - 305.869150 

15 135,480,874 - 306.611373 

16 145,908,738 - 332.890987 

17 152,634,166 - 347.693934 

18 158,431,299 - 362.289322 

19 170,740,541 - 392.499012 

20 180,967,295 - 417.679800 

21 191,610,523 - 440.648249 

22 199,411,731 - 455.461220 

23 243,315,028 - 556.485166 

24 245,203,898 - 511.372055 

                           Table 5-14: Search Results for 5.3 b 8 
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5.5.9 Results for Pattern 5.3 b 9 
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Figure 5-20 : KTV2 results for 5.3 b 9 
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Search Time in Seconds 

S.No Sample Size KPrime KTV2 

1 46,976,537 - 119.742555 

2 49,476,972 - 118.742539 

3 50,961,097 - 80.713170 

4 63,644,868 - 207.554101 

5 63,790,860 - 192.094629 

6 77,753,510 - 263.836822 

7 81,691,216 - 269.526463 

8 89,995,999 - 278.480827 

9 100,114,055 - 285.192685 

10 105,311,216 - 307.505523 

11 114,151,656 - 339.971031 

12 133,464,434 - 456.406343 

13 134,505,819 - 405.932011 

14 134,978,784 - 460.663512 

15 135,480,874 - 460.154998 

16 145,908,738 - 501.054100 

17 152,634,166 - 523.299532 

18 158,431,299 - 545.284831 

19 170,740,541 - 590.791370 

20 180,967,295 - 628.688668 

21 191,610,523 - 663.349130 

22 199,411,731 - 685.532280 

23 243,315,028 - 837.675736 

24 245,203,898 - 769.694385 

                           Table 5-15: Search Results for 5.3 b 9 
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5.5.10  Comment 

As is evident from the test cases used the KPrime algorithm requires 

a lot of tweaking and implementation changes so as to be able to get good 

results on par with the KTV2 algorithm. KPrime algorithm recorded high 

times due to the fact of multiplication operation over the pattern. Future 

work will include replacing this function and finding best replacement. 

Further during the future work the conceptualized ideas may be 

implemented and used in the redesign of the algorithm.  
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Chapter 6  
Future Work 

 
As it can be seen from the results KTV gives good results both in the case 

of single pattern and multiple patterns. It can also be seen that it is more efficient in 

the multiple pattern because the time complexity is greatly reduced due to the fact 

that the regeneration of KTV structure is not necessary. KPrime algorithm on the 

other hand works fine with fewer patterns of a small length. A more efficient 

implementation than the one used for testing can be used and tested for the same 

patterns as above. 

The algorithms and the test cases used to test them were DNA specific. 

These algorithms can be modified so as to handle the entire English alphabet along 

with the Arabic numerical. 

During the research of the algorithms described in 4.1 and 4.2, many new 

theories were formulated but were discarded since they were out of scope of this 

thesis. The future work would also include implementation of these ideas and 

applying them to the above said algorithms. 
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Appendix A 
Brute Force Program Listing 

 
// BruteForce_01.cpp - Kishore R Kattamuri 
// MS(CS) Thesis - Florida Tech 
 
/* Required include files 
 */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "mpi.h" 
 
/* This is the text in which the search is performed 
 */ 
#define inFile "Chromosome01.txt" 
/* This is the file which contains patterns 
 */ 
#define serFile "patterns.txt" 
/* This is the text file which is stored on the nodes 
 */ 
#define inFile2 "/scr/Chromosome01.txt" 
 
/* Predeclaration of the Bruteforce 
 */  
long int BruteForce(char *,char *); 
 
/* This array will hold number of Occurances 
 */ 
long int totaloccurances;  
 
/* Various variables required for timing the search 
 */ 
double start,end,startmain,endmain,swatch; 
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/* Function to get the filesize of the passed parameter file 
 */ 
long int getFileSize(char file[]) 
{ 
    long int size; 
    FILE *filename = fopen(file,"r"); 
    fseek(filename,0,SEEK_END); 
    size = ftell(filename); 
    fclose(filename); 
    return size; 
} 
 
/* Function to calculate the size to be read by each node 
   along with the overlap 
 */ 
long int* getOptimumSizeToRead(long int mainFileSize, 
                               int processors,  
                               long int overlap) 
{ 
    long int* optimumSize; 
    long int tempSize; 
    long int estimate; 
    long int tmpProcs; 
    int counter; 
 
    if (processors < 1) return 0; 
    tempSize = mainFileSize; 
    estimate = (tempSize % processors == 0)  
               ? (tempSize / processors)  
               : (tempSize / processors) + 1; 
    tmpProcs = tempSize / estimate; 
    optimumSize = (long int *)malloc(sizeof(long int) * processors); 
    tempSize = tempSize - estimate; 
    optimumSize[0] = estimate; 
    for(counter=1;counter<processors;counter++) 
    { 
       optimumSize[counter] = (counter<=tmpProcs)  
                              ? estimate + overlap : 0; 
    } 
  
    return optimumSize; 
} 
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/* Function to caluclate the overlap 
 */ 
long int getOverlap(long int size) 
{ 
    return size - 1; 
} 
 
/* The main function of the program 
 */ 
main(int argc, char* argv[]) 
{ 
    /* Required variables 
     */ 
    int my_rank; 
    int p; 
    int source; 
    int dest; 
    int tag=0; 
    char message[1000]; 
    char num[1000]; 
    MPI_Status status; 
    FILE *fp; 
    char *searchstring; 
    char *docstring; 
    long int occur=0; 
    long int sizefile; 
    long int overlap; 
    long int *optimumSize; 
    
    /* Initialising the MPI environment variables 
     */ 
    MPI_Init(&argc,&argv); 
    /* Start Timer for the complete program 
     */ 
    startmain=MPI_Wtime(); 
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &p); 
 
    sizefile = getFileSize(serFile); 
    searchstring = (char *)malloc((sizefile)*sizeof(char)); 
     



 

89 

    fp=fopen(serFile,"r"); 
    fgets(searchstring,sizefile,fp); 
    fclose(fp); 
 
    overlap = getOverlap(sizefile); 
    sizefile = getFileSize(inFile); 
 
    optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap); 
     
/* If the process is not being run on parent Node 
     */ 
    if(my_rank != 0)  
    { 
        /* Open the text file and allocate memory to docstring 
         */ 
        fp = fopen(inFile2,"r");  
        docstring = (char *)malloc 
                    ((optimumSize[my_rank-1]+1)*sizeof(char)); 
        /* If the node is first in the current node set the 
           filepointer to position 0 
         */ 
        if (my_rank == 1) 
        { 
            fseek(fp,0,SEEK_SET); 
        } 
        /* Otherwise set it to Optimum size time the node rank 
         */ 
        else 
        { 
            fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET); 
        } 
        /* Read the text data into docstring 
         */ 
        fgets(docstring,optimumSize[my_rank-1]+1,fp); 
        /* Do the search and catch the results in Occurances array 
         */ 
        occur = BruteForce(docstring,searchstring); 
        /* Store the values in the message array 
         */ 
        sprintf(message,"%ld %f",occur,end-start); 
        /* Set the destination to parent node 
         */ 



 

90 

        dest=0; 
        fclose(fp); 
        /* Send the message array to the parent node 
         */ 
        MPI_Send(message,strlen(message)+1, 
                           MPI_CHAR,dest,tag,MPI_COMM_WORLD); 
    }  
    /* If the process is being run on parent Node 
     */ 
    else 
    { 
        /* For all the nodes in the node set except the parent node 
           recieve the message array sent by them and process them 
           accordingly 
         */ 
        for(source=1;source<p;source++) 
        { 
            MPI_Recv(message,1000, 
                               MPI_CHAR,source,tag,MPI_COMM_WORLD,&status); 
            printf("Processor with Rank %2d : %s\n",source,message); 
            totaloccurances += atol(strtok(message," ")); 
            swatch += atof(strtok(NULL," ")); 
        } 
        /* Stop the timer for the complete program 
         */ 
        endmain=MPI_Wtime(); 
        /* Print the results to the standard output 
         */ 
        printf("Total Occurances : %ld\n",totaloccurances); 
        printf("Total Time for Searching : %f\n",swatch); 
        printf("Total Time for Execution : %f\n",endmain-startmain); 
    } 
    /* Close the MPI environment 
     */ 
    MPI_Finalize(); 
} 
 
/* Implementation of Brute Force 
 */ 
long int BruteForce(char *string, char *search_string) 
{ 
    int i, j, k; 
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    long int count = 0, occurences = 0; 
    int first = 0; 
         
    const long int len_search_string = strlen(search_string); 
    const long int len_given_string = strlen(string); 
    const long int limit = len_given_string - len_search_string; 
    start = MPI_Wtime();     
    for (i = 0; i <= limit; i++ ) 
    { 
        count = 0; 
        for(j = i, k = 0; k < (len_search_string) ; j++, k++) 
        { 
            if(*(string + j) != *(search_string + k) ) 
            { 
                break; 
            } 
            else 
            { 
                count++; 
            } 
            if(count == len_search_string ) 
            { 
                occurences++; 
            } 
       } 
    } 
    end = MPI_Wtime(); 
return occurences; 
}  
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Appendix B 
KMP Program Listing 

 
// KMP_01.cpp - Kishore R Kattamuri 
// MS(CS) Thesis - Florida Tech 
 
/* Required include files 
 */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "mpi.h" 
 
/* This is the text in which the search is performed 
 */ 
#define inFile "Chromosome01.txt" 
/* This is the file which contains patterns 
 */ 
#define serFile "patterns.txt" 
/* This is the text file which is stored on the nodes 
 */ 
#define inFile2 "/scr/Chromosome01.txt" 
/* Maximum size of the pattern 
 */ 
#define MAX_PAT_SIZE 255 
 
/* Predeclaration of the preKMP 
 */  
void  preKmp(char *,long int,long int *); 
/* Predeclaration of the KMP 
 */  
long int KMP(char *,long int, char *,long int); 
 
/* This array will hold number of Occurances 
 */ 
long int totaloccurances;  
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/* Various variables required for timing the search 
 */ 
double start,end,startmain,endmain,swatch; 
 
/* Function to get the filesize of the passed parameter file 
 */ 
long int getFileSize(char file[]) 
{ 
    long int size; 
    FILE *filename = fopen(file,"r"); 
    fseek(filename,0,SEEK_END); 
    size = ftell(filename); 
    fclose(filename); 
    return size; 
} 
 
/* Function to calculate the size to be read by each node 
   along with the overlap 
 */ 
long int* getOptimumSizeToRead(long int mainFileSize, 
                               int processors,  
                               long int overlap) 
{ 
    long int* optimumSize; 
    long int tempSize; 
    long int estimate; 
    long int tmpProcs; 
    int counter; 
 
    if (processors < 1) return 0; 
    tempSize = mainFileSize; 
    estimate = (tempSize % processors == 0)  
               ? (tempSize / processors)  
               : (tempSize / processors) + 1; 
    tmpProcs = tempSize / estimate; 
    optimumSize = (long int *)malloc(sizeof(long int) * processors); 
    tempSize = tempSize - estimate; 
    optimumSize[0] = estimate; 
    for(counter=1;counter<processors;counter++) 
    { 
       optimumSize[counter] = (counter<=tmpProcs) ? estimate + overlap : 0; 
    } 
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    return optimumSize; 
} 
 
/* Function to caluclate the overlap 
 */ 
long int getOverlap(long int size) 
{ 
    return size - 1; 
} 
 
/* The main function of the program 
 */ 
main(int argc, char* argv[]) 
{ 
    /* Required variables 
     */ 
    int my_rank; 
    int p; 
    int source; 
    int dest; 
    int tag=0; 
    char message[1000]; 
    char num[1000]; 
    MPI_Status status; 
    FILE *fp; 
    char *searchstring; 
    char *docstring; 
    long int occur=0; 
    long int sizefile; 
    long int overlap; 
    long int *optimumSize; 
    
    /* Initialising the MPI environment variables 
     */ 
    MPI_Init(&argc,&argv); 
    /* Start Timer for the complete program 
     */ 
    startmain=MPI_Wtime(); 
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &p); 
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    sizefile = getFileSize(serFile); 
    searchstring = (char *)malloc((sizefile)*sizeof(char)); 
     
    fp=fopen(serFile,"r"); 
    fgets(searchstring,sizefile,fp); 
    fclose(fp); 
 
    overlap = getOverlap(sizefile); 
    sizefile = getFileSize(inFile); 
 
    optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap); 
     
    /* If the process is not being run on parent Node 
     */ 
    if(my_rank != 0)  
    { 
        /* Open the text file and allocate memory to docstring 
         */ 
        fp = fopen(inFile2,"r");  
        docstring = (char *)malloc 
                    ((optimumSize[my_rank-1]+1)*sizeof(char)); 
        /* If the node is first in the current node set the 
           filepointer to position 0 
         */ 
        if (my_rank == 1) 
        { 
            fseek(fp,0,SEEK_SET); 
        } 
        /* Otherwise set it to Optimum size time the node rank 
         */ 
        else 
        { 
            fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET); 
        } 
        /* Read the text data into docstring 
         */ 
        fgets(docstring,optimumSize[my_rank-1]+1,fp); 
        /* Do the search and catch the results in Occurances array 
         */ 
        occur = KTV(docstring,searchstring); 
        /* Store the values in the message array 
         */ 
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        sprintf(message,"%ld %f",occur,end-start); 
        /* Set the destination to parent node 
         */ 
        dest=0; 
        fclose(fp); 
        /* Send the message array to the parent node 
         */ 
        MPI_Send(message,strlen(message)+1, 
                          MPI_CHAR,dest,tag,MPI_COMM_WORLD); 
    }  
    /* If the process is being run on parent Node 
     */ 
    else 
    { 
        /* For all the nodes in the node set except the parent node 
           recieve the message array sent by them and process them 
           accordingly 
         */ 
        for(source=1;source<p;source++) 
        { 
            MPI_Recv(message,1000, 
                               MPI_CHAR,source,tag,MPI_COMM_WORLD,&status); 
            printf("Processor with Rank : %2d %s\n",source,message); 
            totaloccurances += atol(strtok(message," ")); 
            swatch += atof(strtok(NULL," ")); 
        } 
        /* Stop the timer for the complete program 
         */ 
        endmain=MPI_Wtime(); 
        /* Print the results to the standard output 
         */ 
        printf("Total Occurances : %ld\n",totaloccurances); 
        printf("Total Time for Searching : %f\n",swatch); 
        printf("Total Time for Execution : %f\n",endmain-startmain); 
    } 
    /* Close the MPI environment 
     */ 
    MPI_Finalize(); 
} 
 
/* Implementation of the function preKMP 
 */ 
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void preKmp(char *search_string,long int search_string_len,long int kmpNext[]) 
{ 
    long int i, j; 
    i = 0; 
    j = kmpNext[0] = -1; 
    while (i < search_string_len) 
    { 
        while (j > -1 && search_string[i] != search_string[j]) 
            j = kmpNext[j]; 
        i++; 
        j++; 
        if (search_string[i] == search_string[j]) 
            kmpNext[i] = kmpNext[j]; 
        else 
            kmpNext[i] = j; 
    } 
} 
 
/* Implementation of the function KMP 
 */ 
long int KMP(char *search_string, long int search_string_len,  
                       char *string, long int string_len) 
{ 
    long int i, j, k, kmpNext[105]; 
    preKmp(search_string, search_string_len, kmpNext); 
    start = MPI_Wtime(); 
    i = j = k = 0; 
    while (j < string_len) 
    { 
        while (i > -1 && search_string[i] != string[j]) 
            i = kmpNext[i]; 
        i++; 
        j++; 
        if (i >= search_string_len) 
        { 
            k++; 
            i = kmpNext[i]; 
        } 
    } 
    end = MPI_Wtime(); 
return k; 
} 
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Appendix C 
KTV Program Listing 

 
// KTV_01.cpp - Kishore R Kattamuri 
// MS(CS) Thesis - Florida Tech 
 
/* Required include files 
 */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "mpi.h" 
 
/* This is the text in which the search is performed 
 */ 
#define inFile "Chromosome01.txt" 
/* This is the file which contains patterns 
 */ 
#define serFile "patterns.txt" 
/* This is the text file which is stored on the nodes 
 */ 
#define inFile2 "/scr/Chromosome01.txt" 
/* Maximum size of the pattern 
 */ 
#define MAX_PAT_SIZE 255 
 
/* Predeclaration of the preKTV 
 */  
void preKTV(char *, long int); 
 
/* Predeclaration of the KTV 
 */  
long int KTV(char *, char *); 
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/* Definition of KTV structure 
 */ 
struct aa 
{ 
 char *c; 
    struct aa *next; 
}; 
      
/* The KTV2 structure array which is built in the preKTV 
 */   
struct aa *p; 
 
/* Positions array 
 */ 
struct aa positions[26]; 
 
/* Temporary array to hold the previous occurance of  
   the character 
 */ 
struct aa *prev[26]; 
 
/* Alpha array which holds all the available characters 
   in the text under tes 
 */ 
char *alpha[26]={ 
     "a","b","c","d",NULL,NULL,"g","h",NULL,NULL,"k", 
     NULL,"m","n",NULL,NULL,NULL,"r","s","t","u","v", 
     "w",NULL,"y",NULL}; 
 
/* This array will hold number of Occurances 
 */ 
long int *totaloccurances;  
 
/* Various variables required for timing the search 
 */ 
double start,end,startmain,endmain,swatch; 
 
/* Number of patterns used for search 
 */ 
int pCount; 
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/* Patterns used for search 
 */ 
char **patterns; 
 
/* Maximum pattern length read 
 */ 
int pLength; 
 
/* Function to read patterns from the file passed  
   as argument into the variable Patterns 
 */ 
void readPatterns(char file[]) 
{ 
     
    FILE *filename = fopen(file,"r"); 
    int i = 0,j,k,tpLength; 
 
    /* Allocating enough memory  
     */ 
    patterns = (char **)malloc(sizeof(char *)*1); 
    patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE); 
     
    /* Reading pattern one and storing it 
     */ 
    fgets(patterns[i],MAX_PAT_SIZE,filename); 
    patterns[i][strlen(patterns[j])-1]='\0'; 
     
    /* Intialise the pLength 
     */ 
    pLength = strlen(patterns[i]); 
 
    /* Reading rest of the patterns 
     */ 
    while(!feof(filename)) 
    { 
        i++; 
        patterns = (char **)realloc(patterns,sizeof(char *)*(i+1)); 
        patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE); 
        fgets(patterns[i],MAX_PAT_SIZE,filename); 
        patterns[i][strlen(patterns[i])-1]='\0'; 
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        /* Updating pLength depending on the length of the current  
           pattern read 
         */ 
        pLength  
           = (pLength < strlen(patterns[i]))  
             ? strlen(patterns[i]) : pLength; 
    } 
    pCount = i; 
    patterns[pCount]=NULL; 
    fclose(filename);  
} 
 
/* Function to get the filesize of the passed parameter file 
 */ 
long int getFileSize(char file[]) 
{ 
    long int size; 
    FILE *filename = fopen(file,"r"); 
    fseek(filename,0,SEEK_END); 
    size = ftell(filename); 
    fclose(filename); 
    return size; 
} 
 
/* Function to calculate the size to be read by each node 
   along with the overlap 
 */ 
long int* getOptimumSizeToRead(long int mainFileSize, 
                               int processors,  
                               long int overlap) 
{ 
    long int* optimumSize; 
    long int tempSize; 
    long int estimate; 
    long int tmpProcs; 
    int counter; 
 
    if (processors < 1) return 0; 
    tempSize = mainFileSize; 
    estimate = (tempSize % processors == 0)  
               ? (tempSize / processors)  
               : (tempSize / processors) + 1; 
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    tmpProcs = tempSize / estimate; 
    optimumSize = (long int *)malloc(sizeof(long int) * processors); 
    tempSize = tempSize - estimate; 
    optimumSize[0] = estimate; 
    for(counter=1;counter<processors;counter++) 
    { 
       optimumSize[counter] = (counter<=tmpProcs)  
                              ? estimate + overlap : 0; 
    } 
    return optimumSize; 
} 
 
/* Function to caluclate the overlap 
 */ 
long int getOverlap(long int size) 
{ 
    return size - 1; 
} 
 
/* The main function of the program 
 */ 
main(int argc, char* argv[]) 
{ 
    /* Required variables 
     */ 
    int my_rank; 
    int p; 
    int source; 
    int dest; 
    int tag=0; 
    char message[1000]; 
    MPI_Status status; 
    FILE *fp; 
    char *searchstring; 
    char *docstring; 
    long int occur=0; 
    long int sizefile; 
    long int overlap; 
    long int *optimumSize; 
    long int *Occurances; 
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    /* Initialising the MPI environment 
     */ 
    MPI_Init(&argc,&argv); 
    /* Start Timer for the complete program 
     */ 
    startmain=MPI_Wtime(); 
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &p); 
 
    /* Read the patterns and calculate filesizes 
     */ 
    readPatterns(serFile);     
    sizefile = pLength;   
    overlap = getOverlap(sizefile); 
    sizefile = getFileSize(inFile); 
     
    /* Estimate the optimum size for each node 
     */ 
    optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap); 
     
    /* If the process is not being run on parent Node 
     */ 
    if(my_rank != 0)  
    { 
        /* Open the text file and allocate memory to docstring 
         */ 
        fp = fopen(inFile2,"r");  
        docstring = (char *)malloc 
                    ((optimumSize[my_rank-1]+1)*sizeof(char)); 
        /* If the node is first in the current node set the 
           filepointer to position 0 
         */ 
        if (my_rank == 1) 
        { 
            fseek(fp,0,SEEK_SET); 
        } 
        /* Otherwise set it to Optimum size time the node rank 
         */ 
        else 
        { 
            fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET); 
        } 
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        /* Read the text data into docstring 
         */ 
        fgets(docstring,optimumSize[my_rank-1]+1,fp); 
        /* Do the search and catch the results in Occurances array 
         */ 
        occur = KTV(docstring,searchstring); 
        /* Store the values in the message array 
         */ 
        sprintf(message,"%ld %f",occur,end-start); 
        /* Set the destination to parent node 
         */ 
        dest=0; 
        fclose(fp); 
        /* Send the message array to the parent node 
         */ 
        MPI_Send(message,strlen(message)+1, 

   MPI_CHAR,dest,tag,MPI_COMM_WORLD); 
    }  
    /* If the process is being run on parent Node 
     */ 
    else 
    { 
        /* For all the nodes in the node set except the parent node 
           recieve the message array sent by them and process them 
           accordingly 
         */ 
        for(source=1;source<p;source++) 
        { 
            MPI_Recv(message,1000, 

       MPI_CHAR,source,tag,MPI_COMM_WORLD,&status); 
            printf("Processor with Rank : %2d %s\n",source,message); 
            totaloccurances += atol(strtok(message," ")); 
            swatch += atof(strtok(NULL," ")); 
        } 
        /* Stop the timer for the complete program 
         */ 
        endmain=MPI_Wtime(); 
        /* Print the results to the standard output 
         */ 
        printf("Total Occurances : %ld\n",totaloccurances); 
        printf("Total Time for Searching : %f\n",swatch); 
        printf("Total Time for Execution : %f\n",endmain-startmain); 



 

105 

    } 
    /* Close the MPI environment 
     */ 
    MPI_Finalize(); 
} 
 
/* Impelementation of Function preKTV 
 */ 
void preKTV(char *data, long int length) 
{ 
    long int i; 
    int pos; 
    
    /* Allocate memory to the KTV2 structure variable p 
     */ 
    p = (struct aa *)malloc(sizeof(struct aa)*length); 
     
    /* Start building the KTV2 structure 
     */ 
    for(i = 0;i<length;i++) 
    { 
        /* Get the position of the character at i 
         */ 
        pos = data[i] - 97; 
 
        /* Invalid character, exit the function 
         */ 
        if(pos<0 || pos>26) 
        { 
            break; 
        } 
        /* Store the character 
         */ 
        p[i].c = alpha[pos]; 
        /* Point the next pointer to NULL 
         */ 
        p[i].next = NULL; 
 
        /* If this character is not NULL in the postions array 
           then store the address of this KTV nodes in the prev 
           array 
         */ 
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        if(positions[pos].c != NULL)  
        { 
            prev[pos]->next = &p[i]; 
        } 
        /* Otherwise assign the address to the corresponding  
           character position index of the positions array 
         */ 
        else 
        { 
            positions[pos].c = alpha[pos]; 
            positions[pos].next = &p[i]; 
        } 
        /* Update the prev position 
         */ 
        prev[pos] = &p[i]; 
    } 
    p[i].c=NULL; 
    p[i].next = NULL; 
} 
 
/* Implementation of the Function KTV 
 */ 
long int KTV(char *data, char *pattern) 
{ 
 struct aa *current; 
 long int occurances=0; 
 long int index; 
    int plength = strlen(pattern); 
  
    /* Call the preKTV function with the text and length of it 
     */ 
    preKTV(data,strlen(data)); 
    /* Start the timer for the search 
     */ 
    start = MPI_Wtime(); 
    /* Using the postions array go to the first incidence of the 
       first character in the pattern 
     */ 
    current = positions[pattern[0]-97].next; 
 while(current != NULL && (current+plength-1)->c !=NULL) 
 { 
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  /* check the remaining characters of the pattern with the  
           adjacent KTV structures 
         */ 
        for(index = 1; index<plength;index++) 
  { 
            if(pattern[index] != *(current+index)->c) break; 
  } 
        /* If all the characters have been matched increment the  
           number of occurances of the pattern 
         */ 
        if (index == plength) occurances++; 
        /* Move to the next incidence of the first character of the 
           current pattern 
         */ 
        current = current->next; 
    } 
    /* Stop the timer for the search 
     */ 
    end = MPI_Wtime(); 
    /* Destroy the KTV2 strucutre 
     */ 
    free(p); 
    /* Return the occurances array 
     */ 
    return occurances; 
} 
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Appendix D 
KPrime Program Listing 

 
 
// KPrime_01.cpp - Kishore R Kattamuri 
// MS(CS) Thesis - Florida Tech 
 
/* Required include files 
 */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "mpi.h" 
 
/* This is the text in which the search is performed 
 */ 
#define inFile "Chromosome01.txt" 
/* This is the file which contains patterns 
 */ 
#define serFile "patterns.txt" 
/* This is the text file which is stored on the nodes 
 */ 
#define inFile2 "/scr/Chromosome01.txt" 
/* Maximum size of the pattern 
 */ 
#define MAX_PAT_SIZE 255 
 
/* This array will hold number of Occurances 
 */ 
long int *totaloccurances;  
 
/* Various variables required for timing the search 
 */ 
double start,end,startmain,endmain,swatch; 
 
/* prime numbers for characters with ascii code from 96 to 122  
 */ 
int primes[]={1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, 
              59,61,67,71,73,79,83,89,97,101}; 
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/* number of patterns 
 */ 
int pCount; 
/* length of the largest pattern 
 */ 
int pLength; 
/* values of all the characters in the pattern 
 */ 
long int **pValue; 
/* following array has the first occuring pattern number 
 */ 
int **pRowOccurances; 
/* holds the multiplied values of the patterns 
 */ 
long int *mValue; 
/* temporary values holder 
 */ 
int *tmpValue; 
 
/* Stores the patterns 
 */ 
char **patterns; 
 
/* Function used to multiply the prime values of the characters 
   in the pattern 
 */ 
void multiplyValues() 
{ 
    int i; 
    int j; 
 
    for(i=0;i<pCount;i++) 
        if (tmpValue[i]==1) 
      for(j=0;j<pLength;j++) 
    mValue[j]= (i==0) ? pValue[i][j] :  
                           (((mValue[j] % pValue[i][j]) == 0)  
                            ? mValue[j] : (mValue[j] * pValue[i][j])); 
                 
} 
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/* Function to read patterns from the file passed  
   as argument into the variable Patterns 
 */ 
void readPatterns(char file[]) 
{ 
     
    FILE *filename = fopen(file,"r"); 
    int i = 0,j,k,tpLength; 
 
    /* Allocating enough memory  
     */ 
    patterns = (char **)malloc(sizeof(char *)*1); 
    patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE); 
     
    /* Reading pattern one and storing it 
     */ 
    fgets(patterns[i],MAX_PAT_SIZE,filename); 
    patterns[i][strlen(patterns[j])-1]='\0'; 
     
    /* Intialise the pLength 
     */ 
    pLength = strlen(patterns[i]); 
 
    /* Reading rest of the patterns 
     */ 
    while(!feof(filename)) 
    { 
        i++; 
        patterns = (char **)realloc(patterns,sizeof(char *)*(i+1)); 
        patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE); 
        fgets(patterns[i],MAX_PAT_SIZE,filename); 
        patterns[i][strlen(patterns[i])-1]='\0'; 
        
        /* Updating pLength depending on the length of the current  
           pattern read 
         */ 
        pLength  
           = (pLength < strlen(patterns[i]))  
             ? strlen(patterns[i]) : pLength; 
    } 
    pCount = i; 
    patterns[pCount]=NULL; 
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    fclose(filename);  
} 
 
/* Implementation of the function preKPrime 
 */ 
long int* preKPrime() 
{ 
    int i=0; 
    int j=0; 
    long int *Occurances; 
     
    /* Allocate memory 
     */ 
    pValue =(long int **)malloc(sizeof(long int *)*pCount); 
    pRowOccurances = (int **)malloc(sizeof(int *)*27); 
    Occurances = (long int *)malloc(sizeof(long int *)*pCount); 
    /* Intialise the second dimension of the pRowOccurances 
     */ 
    for(i=0;i<27;i++) 
    { 
        pRowOccurances[i] = (int *)malloc(sizeof(int)*pLength); 
        Occurances[i]=0; 
        for(j=0;j<pCount;j++) 
            pRowOccurances[i][j]=0; 
    } 
    /* Intiailise the mValue array 
     */ 
    mValue =(long int *)malloc(sizeof(long int)*pLength); 
 
    /* Store the first Occurances of the characters in all the 
       patterns we are searching 
     */ 
    for(i=0;i<pCount;i++) 
    { 
        pValue[i] = (long int *)malloc(sizeof(long int)*pLength); 
        pRowOccurances[patterns[i][0]-96][i]=1; 
        for(j=0;j<pLength;j++) 
        { 
            pValue[i][j]=primes[patterns[i][j]-96]; 
   mValue[j] = 1; 
        } 
    } 
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    return Occurances; 
} 
 
/* Implementation of the KPrime function 
 */ 
long int* KPrime(char *str,int mode) 
{ 
 char *mainString; 
    long int i=0, j=0, k=0, tmp1=0, adjustment=0; 
    long int count=0; 
    long int Value,Start; 
 long int stringlen=0; 
    long int *occurances; 
 
    /* Call the preKprime function 
     */ 
    occurances = preKPrime(); 
     
    tmpValue = (int *)malloc(sizeof(int)*pCount); 
 
    stringlen= strlen(str); 
     
    /* if mode = 0  allocate the memory and store the  
       text in the mainString 
     */ 
    if (mode == 0) 
    { 
        mainString = (char *)malloc(sizeof(char)*(stringlen)); 
     strcpy(mainString,str); 
    } 
    /* else pad the aminString to make it multiple of the lagest pattern size 
     */ 
    else 
    { 
        mainString = (char *)malloc(sizeof(char)*(stringlen+pLength-1)); 
     strcpy(mainString,str); 
        for(i=0;i<(pLength-1);i++)  
      strcat(mainString,"`"); 
    } 
 stringlen= (long int)strlen(mainString); 
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    /* while not the end is reached continue the search 
     */ 
 while((k+(pLength)-1) < stringlen) 
 { 
        for(j=0;j<pCount;j++) 
   tmpValue[j]= pRowOccurances[mainString[k]-96][j]; 
   
  for(j=0;j<pLength;j++) 
   mValue[j]=1; 
   
  multiplyValues(); 
 
        /* Check how many patterns are active in the search 
         */ 
        for(i=0,count=0;i<pLength && count < 2;i++) 
            count += (tmpValue[i] == 1) ? 1 : 0; 
 
  switch(count) 
  { 
      /* If the patterns left is one  

     */ 
                           case 1:  
                  for(i=0;i<pLength;i++) 
     if (mValue[i] != 1) 
          if ((mValue[i] % primes[mainString[k+i]-96]) != 0)  
    break; 
           if (i == pLength) 
    for(i=0;i<pCount;i++) 
         if (tmpValue[i]==1) 
        { 
             occurances[i] += 1;      
             break; 
         } 
    break; 
                           /* If no patterns then go to next character 
                            */ 
                           case 0:  
           break; 
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                          /* if more than one pattern is active in the search 
                           */ 
   default:   
         for(i=0;i<pLength-1;i++) 
        {         
                                   if (mValue[i] != 1) 
                        if ((mValue[i] % primes[mainString[k+i]-96]) != 0)  
            break; 
       Value = mainString[k+i+1]-96; 
                                       Start = i+1; 
                            for(j=0;j<pCount;j++) 
                       tmpValue[j] = (tmpValue[j] == 0) ? 0  
                                             : (((pValue[j][Start] ==  
                                                primes[Value])|| pValue[j][Start] == 1) 
                                                ? 1 : 0); 
                 multiplyValues(); 
         } 
         if (i == pLength-1) 
             for(i=0;i<pCount;i++) 
       if (tmpValue[i]==1) 
           occurances[i] += 1;      
             break; 
 
  } 
  k++; 
 } 
    return occurances; 
} 
 
/* Function to get the filesize of the passed parameter file 
 */ 
long int getFileSize(char file[]) 
{ 
    long int size; 
    FILE *filename = fopen(file,"r"); 
    fseek(filename,0,SEEK_END); 
    size = ftell(filename); 
    fclose(filename); 
    return size; 
} 
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/* Function to calculate the size to be read by each node 
   along with the overlap 
 */ 
long int* getOptimumSizeToRead(long int mainFileSize, 
                               int processors,  
                               long int overlap) 
{ 
    long int* optimumSize; 
    long int tempSize; 
    long int estimate; 
    long int tmpProcs; 
    int counter; 
 
    if (processors < 1) return 0; 
    tempSize = mainFileSize; 
    estimate = (tempSize % processors == 0)  
               ? (tempSize / processors)  
               : (tempSize / processors) + 1; 
    tmpProcs = tempSize / estimate; 
    optimumSize = (long int *)malloc(sizeof(long int) * processors); 
    tempSize = tempSize - estimate; 
    optimumSize[0] = estimate; 
    for(counter=1;counter<processors;counter++) 
    { 
       optimumSize[counter] = (counter<=tmpProcs)  
                              ? estimate + overlap : 0; 
    } 
  
    return optimumSize; 
} 
 
/* Function to caluclate the overlap 
 */ 
long int getOverlap(long int size) 
{ 
    return size - 1; 
} 
 
/* The main function of the program 
 */ 
main(int argc, char* argv[]) 
{ 
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    /* Required variables 
     */ 
    int my_rank; 
    int p; 
    int source; 
    int dest; 
    int tag=0; 
    char message[1000]; 
    char num[1000]; 
    MPI_Status status; 
    FILE *fp; 
    char *searchstring; 
    char *docstring; 
    long int occur=0; 
    long int sizefile; 
    long int overlap; 
    long int *optimumSize; 
 
    long int *Occurances; 
    int i; 
    
    /* Initialising the MPI environment variables 
     */ 
    MPI_Init(&argc,&argv); 
    /* Start Timer for the complete program 
     */ 
    startmain=MPI_Wtime(); 
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &p); 
 
    /* Read the patterns and calculate filesizes 
     */ 
    readPatterns(serFile); 
 
    sizefile = pLength; 
    overlap = getOverlap(sizefile); 
    sizefile = getFileSize(inFile); 
 
    /* Estimate the optimum size for each node 
     */ 
    optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap); 
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    /* If the process is not being run on parent Node 
     */ 
    if(my_rank != 0)  
    { 
        fp = fopen(inFile2,"r");  
        docstring = (char *)malloc 
                    ((optimumSize[my_rank-1]+1)*sizeof(char)); 
        /* If the node is first in the current node set the 
           filepointer to position 0 
         */ 
        if (my_rank == 1) 
        { 
            fseek(fp,0,SEEK_SET); 
        } 
        /* Otherwise set it to Optimum size times the node rank 
         */ 
        else 
        { 
            fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET); 
        } 
        /* Read the text data into docstring 
         */ 
        fgets(docstring,optimumSize[my_rank-1]+1,fp); 
         
        /* if the node is the last one in the set 
         */ 
        if((p-1) == my_rank)        
        { 
            start=MPI_Wtime(); 
            /* Do the search in mode 1 and catch the results in Occurances array 
             */ 
            Occurances = KPrime(docstring,1); 
            end=MPI_Wtime(); 
        } 
        /* otherwise 
         */ 
        else 
        { 
            start=MPI_Wtime(); 
            /* Do the search in mode 0 and catch the results in Occurances array 
             */ 
            Occurances = KPrime(docstring,0); 
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            end=MPI_Wtime(); 
        } 
 
        /* Store the values in the message array 
         */ 
        sprintf(message,"%ld",Occurances[0]); 
        for(i=1;i<pCount;i++) 
            sprintf(message,"%s %ld",message, Occurances[i]); 
        /* Append the time taken to the message array 
         */ 
        sprintf(message,"%s %f",message, end-start); 
        /* Set the destination to parent node 
         */ 
        dest=0; 
        fclose(fp); 
        /* Send the message array to the parent node 
         */ 
        
MPI_Send(message,strlen(message)+1,MPI_CHAR,dest,tag,MPI_COMM_WORL
D); 
    }  
    /* If the process is being run on parent Node 
     */ 
    else 
    { 
        /* Allocate memory to the totaloccurances array 
         */ 
        totaloccurances = (long int *)malloc(sizeof(long int)*pCount); 
        /* Initialise all the values to 0 
         */ 
        for(i=0;i<pCount;i++) 
            totaloccurances[i] = 0; 
 
        /* For all the nodes in the node set except the parent node 
           recieve the message array sent by them and process them 
           accordingly 
         */ 
        for(source=1;source<p;source++) 
        { 
            MPI_Recv(message,1000, 

       MPI_CHAR,source,tag,MPI_COMM_WORLD,&status); 
            printf("Processor with Rank : %2d %s\n",source,message); 
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            /* Update the total occurances 
             */ 
            totaloccurances[0] += atol(strtok(message," ")); 
            for(i=1;i<pCount;i++) 
               totaloccurances[i] += atol(strtok(NULL," ")); 
            /* Store the time taken in swatch 
             */ 
            swatch += atof(strtok(NULL," ")); 
        } 
        /* Stop the timer for the complete program 
         */ 
        endmain=MPI_Wtime(); 
        /* Print the results to the standard output 
         */ 
        for(i=0;i<pCount;i++) 
            printf("Total Occurances of %s : %ld\n", 
                    patterns[i],totaloccurances[i]); 
        printf("Total Time for Searching : %f\n",swatch); 
        printf("Total Time for Execution : %f\n",endmain-startmain); 
    } 
    /* Close the MPI environment 
     */ 
    MPI_Finalize(); 
} 
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Appendix E 
KTV2 Program Listing 

 
// KTV2_01.cpp - Kishore R Kattamuri 
// MS(CS) Thesis - Florida Tech 
 
/* Required include files 
 */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
#include "mpi.h" 
 
/* This is the text in which the search is performed 
 */ 
#define inFile "Chromosome01.txt" 
/* This is the file which contains patterns 
 */ 
#define serFile "patterns.txt" 
/* This is the text file which is stored on the nodes 
 */ 
#define inFile2 "/scr/Chromosome01.txt" 
/* Maximum size of the pattern 
 */ 
#define MAX_PAT_SIZE 255 
 
/* Predeclaration of the preKTV 
 */  
void preKTV2(char *, long int); 
 
/* Predeclaration of the KTV2 
 */  
long int KTV2(char *, char *); 
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/* Definition of KTV2 structure 
 */ 
struct aa 
{ 
 char *c; 
    struct aa *next; 
}; 
    
/* The KTV2 structure array which is built in the preKTV 
 */   
struct aa *p; 
 
/* Positions array 
 */ 
struct aa positions[26]; 
 
/* Temporary array to hold the previous occurance of  
   the character 
 */ 
struct aa *prev[26]; 
 
/* Alpha array which holds all the available characters 
   in the text under tes 
 */ 
char *alpha[26]={ 
     "a","b","c","d",NULL,NULL,"g","h",NULL,NULL,"k", 
     NULL,"m","n",NULL,NULL,NULL,"r","s","t","u","v", 
     "w",NULL,"y",NULL}; 
 
/* This array will hold number of Occurances 
 */ 
long int *totaloccurances;  
 
/* Various variables required for timing the search 
 */ 
double start,end,startmain,endmain,swatch; 
 
/* Number of patterns used for search 
 */ 
int pCount; 
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/* Patterns used for search 
 */ 
char **patterns; 
 
/* Maximum pattern length read 
 */ 
int pLength; 
 
/* Function to read patterns from the file passed  
   as argument into the variable Patterns 
 */ 
void readPatterns(char file[]) 
{ 
     
    FILE *filename = fopen(file,"r"); 
    int i = 0,j,k,tpLength; 
 
    /* Allocating enough memory  
     */ 
    patterns = (char **)malloc(sizeof(char *)*1); 
    patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE); 
     
    /* Reading pattern one and storing it 
     */ 
    fgets(patterns[i],MAX_PAT_SIZE,filename); 
    patterns[i][strlen(patterns[j])-1]='\0'; 
     
    /* Intialise the pLength 
     */ 
    pLength = strlen(patterns[i]); 
 
    /* Reading rest of the patterns 
     */ 
    while(!feof(filename)) 
    { 
        i++; 
        patterns = (char **)realloc(patterns,sizeof(char *)*(i+1)); 
        patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE); 
        fgets(patterns[i],MAX_PAT_SIZE,filename); 
        patterns[i][strlen(patterns[i])-1]='\0'; 
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        /* Updating pLength depending on the length of the current  
           pattern read 
         */ 
        pLength  
           = (pLength < strlen(patterns[i]))  
             ? strlen(patterns[i]) : pLength; 
    } 
    pCount = i; 
    patterns[pCount]=NULL; 
    fclose(filename);  
} 
 
/* Function to get the filesize of the passed parameter file 
 */ 
long int getFileSize(char file[]) 
{ 
    long int size; 
    FILE *filename = fopen(file,"r"); 
    fseek(filename,0,SEEK_END); 
    size = ftell(filename); 
    fclose(filename); 
    return size; 
} 
 
/* Function to calculate the size to be read by each node 
   along with the overlap 
 */ 
long int* getOptimumSizeToRead(long int mainFileSize, 
                               int processors,  
                               long int overlap) 
{ 
    long int* optimumSize; 
    long int tempSize; 
    long int estimate; 
    long int tmpProcs; 
    int counter; 
 
    if (processors < 1) return 0; 
    tempSize = mainFileSize; 
    estimate = (tempSize % processors == 0)  
               ? (tempSize / processors)  
               : (tempSize / processors) + 1; 
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    tmpProcs = tempSize / estimate; 
    optimumSize = (long int *)malloc(sizeof(long int) * processors); 
    tempSize = tempSize - estimate; 
    optimumSize[0] = estimate; 
    for(counter=1;counter<processors;counter++) 
    { 
       optimumSize[counter] = (counter<=tmpProcs) ? estimate + overlap : 0; 
    } 
  
    return optimumSize; 
} 
 
/* Function to caluclate the overlap 
 */ 
long int getOverlap(long int size) 
{ 
    return size - 1; 
} 
 
/* The main function of the program 
 */ 
main(int argc, char* argv[]) 
{ 
    /* Required variables 
     */ 
    int my_rank; 
    int p; 
    int source; 
    int dest; 
    int tag=0; 
    char message[1000]; 
    MPI_Status status; 
    FILE *fp; 
    char *searchstring; 
    char *docstring; 
    long int occur=0; 
    long int sizefile; 
    long int overlap; 
    long int *optimumSize; 
    long int *Occurances; 
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    /* Initialising the MPI environment 
     */ 
    MPI_Init(&argc,&argv); 
    /* Start Timer for the complete program 
     */ 
    startmain=MPI_Wtime(); 
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &p); 
 
    /* Read the patterns and calculate filesizes 
     */ 
    readPatterns(serFile);     
    sizefile = pLength;   
    overlap = getOverlap(sizefile); 
    sizefile = getFileSize(inFile); 
     
    /* Estimate the optimum size for each node 
     */ 
    optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap); 
     
    /* If the process is not being run on parent Node 
     */ 
    if(my_rank != 0)  
    { 
        /* Open the text file and allocate memory to docstring 
         */ 
        fp = fopen(inFile2,"r");  
        docstring = (char *)malloc ((optimumSize[my_rank-1]+1)*sizeof(char)); 
        /* If the node is first in the current node set the 
           filepointer to position 0 
         */ 
        if (my_rank == 1) 
        { 
            fseek(fp,0,SEEK_SET); 
        } 
        /* Otherwise set it to Optimum size time the node rank 
         */ 
        else 
        { 
            fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET); 
        } 
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        /* Read the text data into docstring 
         */ 
        fgets(docstring,optimumSize[my_rank-1]+1,fp); 
        /* Do the search and catch the results in Occurances array 
         */ 
        Occurances = KTV2(docstring); 
        /* Store the values in the message array 
         */ 
        sprintf(message,"%ld",Occurances[0]); 
        for(i=1;i<pCount;i++) 
            sprintf(message,"%s %ld",message, Occurances[i]); 
        /* Append the time taken to the message array 
         */ 
        sprintf(message,"%s %f",message, end-start); 
        /* Set the destination to parent node 
         */ 
        dest=0; 
        fclose(fp); 
        /* Send the message array to the parent node 
         */ 
      MPI_Send(message,strlen(message)+1, 

MPI_CHAR,dest,tag,MPI_COMM_WORLD); 
    }  
    /* If the process is being run on parent Node 
     */ 
    else 
    { 
        /* Allocate memory to the totaloccurances array 
         */ 
        totaloccurances = (long int *)malloc(sizeof(long int)*pCount); 
        /* Initialise all the values to 0 
         */ 
        for(i=0;i<pCount;i++) 
            totaloccurances[i] = 0; 
        /* For all the nodes in the node set except the parent node 
           recieve the message array sent by them and process them 
           accordingly 
         */ 
        for(source=1;source<p;source++) 
        { 
            MPI_Recv(message,1000, 

MPI_CHAR,source,tag,MPI_COMM_WORLD,&status); 
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            printf("Processor with Rank : %2d %s\n",source,message); 
             
            /* Update the total occurances 
             */ 
            totaloccurances[0] += atol(strtok(message," ")); 
            for(i=1;i<pCount;i++) 
               totaloccurances[i] += atol(strtok(NULL," ")); 
            /* Store the time taken in swatch 
             */ 
            swatch += atof(strtok(NULL," ")); 
        } 
        /* Stop the timer for the complete program 
         */ 
        endmain=MPI_Wtime(); 
        /* Print the results to the standard output 
         */ 
        for(i=0;i<pCount;i++) 
            printf("Total Occurances of %s : %ld\n", 
                    patterns[i],totaloccurances[i]); 
        printf("Total Time for Searching : %f\n",swatch); 
        printf("Total Time for Execution : %f\n",endmain-startmain); 
    } 
    /* Close the MPI environment 
     */ 
    MPI_Finalize(); 
} 
 
/* Impelementation of Function preKTV2 
 */ 
void preKTV2(char *data, long int length) 
{ 
    long int i; 
    int pos; 
    
    /* Allocate memory to the KTV2 structure variable p 
     */ 
    p = (struct aa *)malloc(sizeof(struct aa)*length); 
    
    /* Start building the KTV2 structure 
     */ 
    for(i = 0;i<length;i++) 
    { 
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        /* Get the position of the character at i 
         */ 
        pos = data[i] - 97; 
 
        /* Invalid character, exit the function 
         */ 
        if(pos<0 || pos>26) 
        { 
            break; 
        } 
        /* Store the character 
         */ 
        p[i].c = alpha[pos]; 
        /* Point the next pointer to NULL 
         */ 
        p[i].next = NULL; 
 
        /* If this character is not NULL in the postions array 
           then store the address of this KTV nodes in the prev 
           array 
         */ 
        if(positions[pos].c != NULL)  
        { 
            prev[pos]->next = &p[i]; 
        } 
        /* Otherwise assign the address to the corresponding  
           character position index of the positions array 
         */ 
        else 
        { 
            positions[pos].c = alpha[pos]; 
            positions[pos].next = &p[i]; 
        } 
        /* Update the prev position 
         */ 
        prev[pos] = &p[i]; 
    } 
    p[i].c=NULL; 
    p[i].next = NULL; 
} 
/* Implementation of the Function KTV2 
 */ 
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long int KTV2(char *data, char **pattern) 
{ 
    struct aa *current; 
    long int *occurances; 
    long int index; 
    int plength;  
 
    /* Call the preKTV2 function with the text and length of it 
     */ 
    preKTV(data,strlen(data)); 
    /* Start the timer for the search 
     */ 
    start = MPI_Wtime(); 
    /* Allocate memory to the occurances array 
     */ 
    occurances =(long int *)malloc(sizeof(long int)*pCount); 
    /* For each pattern in the patterns array do the search 
     */ 
    for(i=0;i<pCount;i++) 
    { 
        occurances[i]=0; 
        plength = strlen(pattern[i]); 
        /* Using the postions array go to the first incidence of the 
           first character in the current pattern 
         */ 
        current = positions[pattern[i][0]-97].next; 
 
        /* while the current is not NULL and not reached the end of the 
           KTV structure 
         */ 
        while(current != NULL && (current+plength-1)->c !=NULL) 
        { 
            /* check the remaining characters of the pattern with the  
               adjacent KTV structures 
             */ 
            for(index = 1; index<plength;index++) 
            { 
                pattern[i][index] != *(current+index)->c) break; 
            } 
            /* If all the characters have been matched increment the  
               number of occurances of the current pattern 
             */ 
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            if (index == plength)  
                occurances[i]=occurances[i]+1; 
            /* Move to the next incidence of the first character of the 
               current pattern 
             */ 
            current = current->next; 
        } 
    } 
    /* Stop the timer for the search 
     */ 
    end = MPI_Wtime(); 
    /* Destroy the KTV2 strucutre 
     */ 
    free(p); 
    /* Return the occurances array 
     */ 
    return occurances; 
} 
 


