

Algorithms for String Searching on A Beowulf Cluster

by

Kishore Ramakrishna Kattamuri

A thesis
submitted to the Department of Computer Science

at Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
December, 2003

© Copyright 2003 Kishore Ramakrishna Kattamuri
All Rights Reserved

The author grants permission to make single copies _________________________

We the undersigned committee hereby recommend
that the attached document be accepted as fulfilling in

part the requirements for the degree of
Masters of Science in Computer Science

Algorithms for String Searching on A Beowulf Cluster

by
Kishore Ramakrishna Kattamuri

William D Shoaff, Ph.D.

Associate Professor
Program Chair, Department of Computer Sciences

Marius Calin Silaghi, Ph.D.

Assistant Professor
Department of Computer Sciences

David Carroll, Ph.D.
Assistant Professor

Department of Biological Sciences

iii

Abstract

Title:
Algorithms for String Searching on A Beowulf Cluster

Author:
Kishore Ramakrishna Kattamuri

Principle Advisor:
William D Shoaff, Ph.D.

String matching is a subject of both theoretical and practical interest in

computer science. Theoretically, time and space complexity of the algorithms and

on the practical side searching for keywords, names, phrases etc., is common.

Searching for patterns in DNA (Deoxyribose Nucleic Acid) is one such application

and is the ultimate area for this study.

This study resulted in efficient parallel way to search for patterns, the

program being operated on a parallel computer. This research provides basis for a

further study and help in selecting the search algorithms for broader use.

The algorithms proposed in this research try to solve the problem in both

the single pattern and multiple pattern search areas. The outcome of this study was

very encouraging and paved path for the possible future study. The algorithms were

written in C using the MPI model on the Beowulf cluster of Florida Tech

iv

(Bluemarlin). The timings were compared against each other. The test data set used

was kept uniform throughout the experiments.

 Though several ideas were formulated and were tried to be implemented in

the search, only three algorithms (KTV, KTV2 and KPrime) were designed. Of

these, KTV and KTV2 showed good results where as the KPrime took lot more

time than expected. Investigation on the algorithm revealed a further tweaking

which is left as a part for the further study.

v

Table of Contents

List of Figures…...………………………………………………………………..viii

List of Tables…….…………………....………………………………………….…x

Acknowledgement…………………....………………………………………….…xi

Dedication …...…….…………………....…………………………………………xii

Chapter 1 – Introduction .. 1

1.1 Purpose of study... 1
1.2 Background and rationale ... 1
1.3 Terminology... 3

1.3.1 Computer Memory and Storage .. 3
1.3.2 Deoxyribose Nucleic Acid .. 3
1.3.3 String Searching ... 4
1.3.4 String Searching Algorithms... 5
1.3.5 Parallel Computing ... 6

1.4 Research question... 6
1.5 Study design... 7
1.6 Significance of study.. 7
1.7 Study limitations .. 7

Chapter 2 – Background Study .. 8

2.1 Parallel Computing... 8
2.2 Programming Models ... 9
2.3 Beowulf ... 10
2.4 Search Algorithms.. 12
2.5 DNA .. 12
2.6 GenBank .. 14

Chapter 3 – Single Pattern Algorithms ... 15

3.1 Brute Force Algorithm ... 15
3.1.1 Description ... 15
3.1.2 Algorithm Listing ... 15
3.1.3 Algorithm Implementation.. 16

3.2 Knuth Morris Pratt Algorithm .. 17

vi

3.2.1 Description ... 17
3.2.2 Algorithm Listing ... 18
3.2.3 Algorithm Implementation.. 18

3.3 Kishore Treber Vaz (KTV) Algorithm.. 19
3.3.1 Description ... 19
3.3.2 Algorithm Implementation.. 23

Chapter 4 – Multiple Pattern Algorithms.. 25

4.1 Kim’s Multiple String-Pattern Matching Algorithm.............................. 25
4.1.1 Description ... 25
4.1.2 Partial Code Listing .. 26
4.1.3 Algorithm Limitations .. 27

4.2 Aho and Corasick Algorithm.. 27
4.2.1 Description ... 27
4.2.2 Algorithm Listing ... 28
4.2.3 Algorithm Limitations .. 30

4.3 KTV2 Algorithm.. 31
4.3.1 Description ... 31
4.3.2 Algorithm implementation.. 31

4.4 KPrime Algorithm.. 33
4.4.1 Description ... 33
4.4.2 Algorithm Implementation.. 38

Chapter 5 – Experiments and Results... 42

5.1 Hardware.. 42
5.2 Text.. 42
5.3 Patterns .. 44
5.4 Single Pattern Search.. 46

5.4.1 Results for Pattern 5.3 a 1 ... 47
5.4.2 Results for Pattern 5.3 a 2... 49
5.4.3 Results for Pattern 5.3 a 3... 51
5.4.4 Results for Pattern 5.3 a 4... 53
5.4.5 Results for Pattern 5.3 a 5... 55
5.4.6 Comment .. 57

5.5 Multiple Pattern Search .. 57
5.5.1 Results for Pattern 5.3 b 1... 58
5.5.2 Results for Pattern 5.3 b 2... 61
5.5.3 Results for Pattern 5.3 b 3... 64
5.5.4 Results for Pattern 5.3 b 4... 67
5.5.5 Results for Pattern 5.3 b 5... 69
5.5.6 Results for Pattern 5.3 b 6... 71
5.5.7 Results for Pattern 5.3 b 7... 74

vii

5.5.8 Results for Pattern 5.3 b 8... 76
5.5.9 Results for Pattern 5.3 b 9... 78
5.5.10 Comment .. 80

Chapter 6 – Future Work ... 81

References ..83

Appendix A………………………..……………………………………………….86

Appendix B………………………..……………………………………………….92

Appendix C………………………..……………………………………………….98

Appendix D……………………………………………………………………….108

Appendix E……………………………………………………………………….120

viii

List of Figures

Figure 2-1 : Adenine and Guanine Structures [source: unknown] 13
Figure 2-2 : Thymine and Cytosine Structures [source: unknown] 14

Figure 3-1 : Position, KTV Structure and Alpha arrays .. 21
Figure 3-2 : Position, KTV Structure and Alpha arrays .. 21
Figure 3-3 : Position, KTV Structure and Alpha arrays .. 21
Figure 3-4 : Illustrating search for 'ggg' - failure... 22
Figure 3-5 : Illustrating search for 'ggg' - success ... 23

Figure 4-1 : Patterns array.. 34
Figure 4-2 : pValue array... 34
Figure 4-3 : pRowOccurances array... 34
Figure 4-4 : Primes array ... 35
Figure 4-5 : mValue array.. 35
Figure 4-6 : Active patterns in the search ... 35
Figure 4-7 : mValue array.. 35
Figure 4-8 : Illustration of Search .. 36
Figure 4-9 : Illustration of Search .. 37
Figure 4-10 : Illustration of Search... 37
Figure 4-11 : Illustration of Search... 37
Figure 4-12 : Patterns, Occurrences at end of Search.. 38

Figure 5-1 : Search Results for 5.3 a 1 ... 47
Figure 5-2 : Search Results for 5.3 a 2 ... 49
Figure 5-3 : Search Results for 5.3 a 3 ... 51
Figure 5-4 : Search results for 5.3 a 4... 53
Figure 5-5 : Search results for 5.3 a 5... 55
Figure 5-6 : KPrime results for 5.3 b 1 ... 58
Figure 5-7 : KTV2 results for 5.3 b 1 ... 59
Figure 5-8 : KPrime results for 5.3 b 2... 61
Figure 5-9 : KTV2 results for 5.3 b 2 ... 62
Figure 5-10 : KPrime results for 5.3 b 3 ... 64
Figure 5-11 : KTV2 results for 5.3 b 3 ... 65
Figure 5-12 : KPrime results for 5.3 b 4 ... 67
Figure 5-13 : KTV2 results for 5.3 b 4 ... 67
Figure 5-14 : KPrime results for 5.3 b 5 ... 69
Figure 5-15 : KTV2 results for 5.3 b 5 ... 69

ix

Figure 5-16 : KPrime results for 5.3 b 6 ... 71
Figure 5-17 : KTV2 results for 5.3 b 6 ... 72
Figure 5-18 : KTV2 results for 5.3 b 7 ... 74
Figure 5-19 : KTV2 results for 5.3 b 8 ... 76
Figure 5-20 : KTV2 results for 5.3 b 9 ... 78

x

List of Tables

Table 1-1: The Alphabet used in Genetics for Nucleic Acids.................................. 4
Table 5-1: Text Data for the experiments ... 43
Table 5-2: Search Results for 5.3 a 1.. 48
Table 5-3: Search Results for 5.3 a 2.. 50
Table 5-4: Search Results for 5.3 a 3.. 52
Table 5-5: Search Results for 5.3 a 4.. 54
Table 5-6: Search Results for 5.3 a 5.. 56
Table 5-7: Search Results for 5.3 b 1 ... 60
Table 5-8: Search Results for 5.3 b 2 ... 63
Table 5-9: Search Results for 5.3 b 3 ... 66
Table 5-10: Search Results for 5.3 b 4.. 68
Table 5-11: Search Results for 5.3 b 5.. 70
Table 5-12: Search Results for 5.3 b 6.. 73
Table 5-13: Search Results for 5.3 b 7.. 75
Table 5-14: Search Results for 5.3 b 8.. 77
Table 5-15: Search Results for 5.3 b 9.. 79

xi

Acknowledgement

I greatly appreciate the generous help and guidance provided by my

advisor, Dr. William D Shoaff, throughout the development of this thesis.

I also thank the committee members Dr. David Carroll and

Dr. Marius Silaghi for their constructive suggestions and insightful comments.

Daniel Vaz and Hugues Treiber need a very special mention for their help during

the implementation and testing of the KTV algorithm.

I also would like to thank Dr. Ryan Stansifer, Dr. Ronaldo Menezes,

Dr. Cem Kaner, Madhan Thirukonda, Sujit Raghavan and Anusha Madhavan for

their help at various stages of this thesis.

xii

Dedication

To My parents, Chalam and Kumari, and to my sisters, Shyamala and

Kiranmai, for their continued support and encouragement throughout my

educational and professional career.

1

Chapter 1
Introduction

1.1 Purpose of study

The purpose of this study was to use a parallel computer to find

effective ways of searching for occurrences of finite strings in a given long

string. Several known algorithms were studied: Brute Force [9], Knuth

Morris Pratt (KMP) [10], Kim’s Fast Multiple Pattern Matching [12] and

Aho Corasick [11] of which Brute Force, KMP were implemented. Real data

along with simulated samples with sizes ranging from 40MB to 3GB were

used as the input to the above algorithms and searchs were performed with

patterns of different length ranging from 5 to 100. Processors used ranged

from 1 to 40. The outcome of the study was to compare the results of these

algorithms in terms of time taken to search for these patterns. In the course of

this study I developed two new search techniques KTV and KPrime. These

algorithms were designed and tested against the same set of data.

1.2 Background and rationale

String matching can be defined as “The problem of finding

occurrence(s) of a pattern string within another string or body of text” [1]

String matching is a subject of both theoretical and practical interest in

2

computer science. Theoretically, time and space complexity of the algorithms

is of interest. On the practical side, searching for keywords, names, phrases

etc., is common in web-based and bibliographic searches which exemplify

the above definition. Searching for patterns in DNA has interesting scientific

implications and is the ultimate use for this study.

With the advent of computers into the bio-informatics field, searching

and string matching was no longer difficult. DNA sequences coded were

ranging from somewhere below one mega byte (1,000,000 bases) to

somewhere around 6 mega bytes (6,000,000 bases) and the storage

constraints and the computing power were enough for those range of files.

These DNA sequences belonged to the lower ranked living organisms

(e.g. Salmonellae). Every good thing comes complimented with a problem of

its own. As the study was extended to higher ranked organisms like mouse

and Homo sapiens, the base count exceeded 3 Giga Bytes in size

(3,000,000,000 bases). The first and foremost problem with this is the storage

space. Secondly the memory and the CPU speed available to compute the

search and other required operations. At this juncture the power of parallel

computing has come to the rescue. This piece of work uses the power of

parallel computer (Beowulf) to do the same with a large data on hand. This

study is not to do the language specific (MPI specific) implementations but to

make use of the storage and the computation efficiency and arrive at the

3

results. The basis for this study is an implementation proposed in a class

project by Sowmya Padmanabhan using the message passing programming

model [2]. Implementation of this kind is the first on the Beowulf cluster at

Florida Tech.

1.3 Terminology

In this section we list and provide short definitions for major terms

and ideas used in the thesis. In most cases these ideas will be explained upon

in later chapters.

1.3.1 Computer Memory and Storage

 A bit is a fundamental storage unit in computing. A bit records an on

or off state; high or low voltage; or the more common interpretation of 1 or

0. From historical implementations, bits are often grouped in sets of 8

called as byte. Bytes are collected into a larger group, for example a

kilobyte (210 bytes) which in turn make up a Mega Byte (220 bytes) or a

Giga Byte (230 bytes)

1.3.2 Deoxyribose Nucleic Acid

 DNA is a nucleic acid that constitutes the genetic material of all

cellular organisms. “The digital information that underlies biochemistry,

cell biology, and development can be represented by a simple string of G’s,

A’s, T’s and C’s. This string is the root data structure of an organism’s

biology” [3]. RNA is another nucleic acid that is part of the mechanism of

4

cellular organisms. The alphabet used in genetics for nucleic acid is

presented in Table 1-1: The Alphabet used in Genetics for Nucleic Acids.

Code Nucleotides

A Adenine

C Cytosine

G Guanine

T Thymine

U Uracil

R Purine (A or G)

Y Pyrimidine (C or T/U)

M A or C

W A or T/U

S C or G

K G or T/U

D A, G or T/U

H A, C or T/U

V A, C, or G

B C, G, or T/U

N A, C, G, or T/U

No Base

Table 1-1: The Alphabet used in Genetics for Nucleic Acids

1.3.3 String Searching

 String searching is the problem of finding occurrence(s) of a pattern

within text. Precisely it can be termed as checking for equality

5

(contiguously) of all the characters in the pattern against the set of

characters of equal length in a text string.

1.3.4 String Searching Algorithms

• Single Pattern

o Brute Force is the naive algorithm used to find patterns. It

continually checks to see if the pattern occurs at text positions 1,

2, 3…., until the end of the text is reached. (Refer 3.1 for

algorithm)

o KMP (Knuth-Morris-Pratt) is a string matching algorithm which

uses a finite state machine generated from the pattern to avoid

restarting the search from the next text position. It then runs the

machine with the string to be searched as the input string (Refer

3.2 for algorithm)

o KTV (Refer 3.3 for algorithm)

• Multiple Pattern

o Kim’s Fast Multiple String-Pattern Matching is a simple and

efficient multiple string matching algorithm based on a compact

encoding scheme[12]

o Aho Corasick is a simple, efficient algorithm to locate all

occurrences of any of a finite number of keywords in a string of

text [11]

6

o KTV2 (Refer 4.3 for algorithm)

o KPrime (Refer 4.4 for algorithm)

1.3.5 Parallel Computing

• Parallel Computer can be termed as a computer that has multiple

arithmetic units or logic units that are used to accomplish parallel

operations or parallel processing [7]

• Parallel processing pertains to the concurrent or simultaneous

execution of two or more processes in a single unit [8]

• Beowulf is a high-performance, massive parallel computer that

performs similarly to a supercomputer for a fraction of the price. The

computer is made up of a cluster of nodes connected by a high-speed

network that perform intense computing tasks. The system is

connected to the external world through a single head node [4]

• Bluemarlin, Florida Tech's Beowulf cluster is a distributed memory

supercomputer cluster that is in the MIMD (Multiple Instruction

Multiple Data) paradigm. It contains 47 compute nodes and one head

node running Red Hat Linux 6.2 [4]

1.4 Research question

What search algorithm is advisable in a parallel environment while

searching for patterns in a DNA?

7

1.5 Study design

The algorithms were written in C using the MPI model on the

Beowulf cluster of Florida Tech (Bluemarlin). The timings are taken from the

output file and compared against each other. The data set used is kept

uniform throughout the experiments with different algorithms.

1.6 Significance of study

The study will find efficient parallel way to search for patterns, the

program being operated on a parallel computer. This study will help us to

achieve more work in the given time. Also this study is aimed at providing

basis for a future study and help in selecting the search algorithms for real

data search.

1.7 Study limitations

• The data being used for search is the DNA data of Homo sapiens’s

chromosomes.

• Complete MPI based implementation (data scattering, gathering) is

avoided to remove the factor of extra time consuming processes

• The study is not a comparison of string search algorithms but rather

the outcome of application of these algorithms BruteForce, KMP,

KTV, KPrime and KTV2 in the case of DNA alphabet.

8

Chapter 2
Background Study

2.1 Parallel Computing

“With ability of being able to perform a few hundred arithmetic

computations each second, clamor for more power increased which currently

reached about quadrillions of operations per second (105). The basic

paradigm of observe, theorize and test through experiment is being followed

very closely. Simulations help us avoid building high costing prototypes.

Apart from this another closely attached problem is that of the development

of vastly greater storage requirements. Hence greater computational power is

in fact a combination of both greater speed and storage”. [21]

“Consider an analogous problem described in Peter, a Roman

contractor, has laborers capable of excavating 1000 cubic feet a day. He

could solve the problem of having to excavate 100,000 cubic feet a day by

having 100 men on his workforce. Comparing the same with the processors

and memory, we should obtain more processors and memory to solve the

computation problem. Buying more processors will not solve this since there

should be a way to have them communicate amongst themselves. If the job of

building the physical machine and the design of the software is avoided in the

discussion, we are left with the communication problem”.

9

2.2 Programming Models

Data Parallelism is a way of applying same operation to multiple

elements of a data structure. A data-parallel program is made up of sequences

of such operations. Each operation on data element can be thought of as an

independent task, computation is small, and the concept of locality does not

arise. Due to this, data-parallel compilers often require information about

how data are to be distributed over processors and how data is to be

partitioned into tasks. The compiler translates this data-parallel program into

an SPMD formulation, and generates communication code. [2]

Message passing is most widely used parallel programming model.

Message-passing programs create multiple tasks with each task encapsulating

local data which are identified by a unique name. Tasks interact by sending

and receiving messages to and from named tasks. Message passing differ

from the task/channel model only in the mechanism used for data transfer.

This model avoids dynamic creation of tasks, execution of multiple tasks per

processor, or the execution of different programs by different tasks. In

practice most message-passing systems create a fixed number of identical

tasks at program startup and do not allow tasks to be created or destroyed

during program execution. These systems are said to implement a single

program multiple data (SPMD) programming model because each task

executes the same program but operates on different data. SPMD model is

10

sufficient for a wide range of parallel programming problems but does hinder

some parallel algorithm developments. [2]

In a shared-memory model, tasks share a common address space,

which they read and write asynchronously by using locks and semaphores

control access to the shared memory. An advantage of this model from the

programmer's point of view is that there is no need to specify explicitly the

communication of data from producers to consumers. This model can

simplify program development. However, understanding and managing

locality hinders the most shared-memory architectures. It is also more

difficult to write deterministic programs [2]

2.3 Beowulf

The first Beowulf was built with DX4 processors and 10Mbit/s

Ethernet. The processors were too fast for a single Ethernet and Ethernet

switches were still too expensive. To balance the system Don Becker rewrote

his Ethernet drivers for Linux and built a "channel bonded" Ethernet where

the network traffic was striped across two or more Ethernets. As 100Mbit/s

Ethernet and 100Mbit/s Ethernet switches have become cost effective, the

need for channel bonding has diminished (at least for now). In late 1997, a

good choice for a balance system was 16, 200MHz P6 processors connected

by Fast Ethernet and a Fast Ethernet switch. The exact network configuration

of a balanced cluster will continue to change and will remain dependent on

11

the size of the cluster and the relationship between processor speed and

network bandwidth and the current price list for each of components. An

important characteristic of Beowulf clusters is that these sorts of changes---

processors type and speed, network technology, relative costs of components-

--do not change the programming model. Therefore, users of these systems

can expect to enjoy more forward compatibility then we have experienced in

the past.

A Beowulf class cluster computer is distinguished from a Network of

Workstations by several subtle but significant characteristics. First, the nodes

in the cluster are dedicated to the cluster. This helps ease load balancing

problems, because the performance of individual nodes is not subject to

external factors. Also, since the interconnection network is isolated from the

external network, the network load is determined only by the application

being run on the cluster. [25]

Florida Tech's Beowulf cluster is a supercomputer cluster that is in

the MIMD paradigm. It contains 47 compute nodes and one head node. Head

node has Red Hat Linux 6.2. Each node has Pentium III 866 MHz processor

and 512Mb of RAM which are interconnected and channel bonded. The

portable batch system (PBS) has been implemented to ensure priority

queuing system. Argonne's version of mpich [23] is installed for MPI [24]

usage [22]

12

2.4 Search Algorithms

Following algorithms were implemented and tested -

• Brute Force [Refer 3.1]

• KMP [Refer 3.2]

• KTV [Refer 3.3]

• KPrime [Refer 4.4]

• KTV2 [Refer 4.3]

Following algorithms were studied -

• Kim’s Multiple String-Pattern Matching Algorithm [Refer 4.1]

• Aho & Corasick Algorithm [Refer 4.2]

• Baker’s Boyer Moore-type Algorithm [37]

• Sunday’s Substring Search Algorithm [38]

2.5 DNA

Deoxyribose Nucleic Acid is a polymer. The monomer units of DNA

are nucleotides, and the polymer is known as a polynucleotide. Each

nucleotide consists of a 5-carbon sugar (Deoxyribose), a nitrogen containing

base attached to the sugar, and a phosphate group. There are four different

types of nucleotides found in DNA, differing only in the nitrogenous base.

The four nucleotides are given one letter abbreviations as shorthand for the

four bases.

13

A (adenine), G (guanine), C (cytosine) and T (thymine). Adenine and

guanine are purines. Purines are the larger of the two types of bases found in

DNA. Structures are shown below:

Figure 2-1 : Adenine and Guanine Structures [source: unknown]

The 9 atoms that make up the fused rings (5 Carbon, 4 Nitrogen) are

numbered 1-9. All ring atoms lie in the same plane. Cytosine and thymine

are pyrimidines. The 6 stoms (4 carbon, 2 nitrogen) are numbered 1-6. Like

purines, all pyrimidine ring atoms lie in the same plane.

14

Figure 2-2 : Thymine and Cytosine Structures [source: unknown]

2.6 GenBank

GenBank® is the NIH (National Institutes of Health) genetic

sequence database, an annotated collection of all publicly available DNA

sequences (Nucleic Acids Research 2002 Jan 1; 30(1):17-20). There are

approximately 22,617,000,000 bases in 18,197,000 sequence records as of

August 2002. As an example, you may view the record for a Saccharomyces

cerevisiae gene. GenBank is part of the International Nucleotide Sequence

Database Collaboration, which comprises the DNA DataBank of Japan

(DDBJ), the European Molecular Biology Laboratory (EMBL), and GenBank

at NCBI. These three organizations exchange data on a daily basis.

15

Chapter 3
Single Pattern Algorithms

3.1 Brute Force Algorithm

3.1.1 Description

 In this naive method, we align the left end of P [pattern] with the left

end of T [text] and then compare the characters of P and T left to right until

either two unequal characters are found or until P is exhausted, in which

case an occurrence of pattern is noted. Using n to denote the length of

pattern and m to denote the length of text, at most n(m-n+1) number of

comparisons are made. [18]. This matching procedure can be interpreted

graphically as a sliding “template” containing the pattern over the text,

noting for which shifts all of the characters on the template equal the

corresponding characters in text. [27]

3.1.2 Algorithm Listing

Compare the size n pattern with the first m characters of the
text.
REPEAT
 If a match is found, note the shift position and increment the
count.
 Move the pattern right one position.
 Compare the size n pattern with the next m chars of the
string.
UNTIL there are no more characters to compare

16

3.1.3 Algorithm Implementation

 For a complete program listing used for the testing please refer to

 Appendix B

long int BruteForce(char *text, char *pattern)
{

 int i, j, k;
 long int count = 0, occurences = 0;
 int first = 0;

 const long int length_of_pattern = strlen(pattern);
 const long int length_of_text = strlen(text);
 const long int limit = length_of_text - length_of_pattern;

 for (i = 0; i < limit; i++)
 {
 count = 0;

 for(j = i, k = 0; k < (length_of_pattern) ; j++, k++)
 {
 if(*(text + j) != *(pattern + k))
 {
 break;
 }
 else
 {
 count++;
 }

 if(count == length_of_pattern)
 {
 occurences++;
 }

 }
 }

return occurences;
}

17

3.2 Knuth Morris Pratt Algorithm

3.2.1 Description

KMP is a string matching algorithm which turns the search string

into a finite state machine, then runs the machine with the string to be

searched as the input string [10]. The design of the Knuth-Morris-Pratt

algorithm follows a tight analysis of the Morris-Pratt algorithm. The major

problem with the brute-force search is that characters in the text may be re-

examined multiple times and this can lead to poor performance in some

cases. The algorithm of Knuth, Morris and Pratt provides a way to alleviate

the repeated accesses to the text and, as a result, it gives us a guaranteed

linear time searching algorithm [26]. The key aspect of the Knuth-Morris-

Pratt(KMP) algorithm is that a failed attempt to find a match yields useful

information to be used on the next attempt. Specifically, if a mismatch is

detected when considering the characters pat[j] and text[k], we do not need

to start the next attempt at text[k-j+1] as we know the characters text[k–j],

text[k-j+1] … text[k-1] are identical to the prefix of the pattern, pat[0],

pat[1]…pat[j-1]. By using this information we can access the text

characters sequentially and alleviate the need to back-up the text. The KMP

algorithm is essentially the brute-force algorithm with a more intelligent re-

initialisation of pointers when a mismatch is detected. In most practical

situations the running time for KMP is not much better than for brute-force,

18

however KMP guarantees a linear bound and it is well suited to extensions

for more difficult problems.

3.2.2 Algorithm Listing

KMP (T,P)
n ß Length[T]
m ß Length[P]
? ß Compute-Prefix-Funtion(P)
q ß 0
for i ß 1 to n
 do while q > 0 and P[q+1] ? T[i]
 do q ß ? [q]
 if P[q+1] = T[i]
 then q ß q + 1
 if q = m
 then print “Pattern occurs with shift” I – m
 q ß ? [q]

Compute-Prefix-Function(P)
M ß length[P]
? [1] ß 0
k ß 0
for q ß 2 to m
 do while k > 0 and P[k+1] ? P[q]
 do k ß ? [k]
 if P[k+1] = P[q]
 then k ß k+1
 ? [q] ß k
return ?

3.2.3 Algorithm Implementation

 For a complete program listing used for the testing please refer to

 Appendix B

void preKmp(char *string, int string_len, int kmpNext[])
{
 int i, j;
 i = 0;
 j = kmpNext[0] = -1;
 while (i < search_string_len)

19

 {
 while (j > -1 && string[i] != string[j])
 j = kmpNext[j];
 i++;
 j++;
 if (string[i] == string[j])
 kmpNext[i] = kmpNext[j];
 else
 kmpNext[i] = j;
 }
}

long int KMP(char *string, int string_len, char *text, int text_len)
{
 int i, j, k, kmpNext[SIZE];
 preKmp(string, string_len, kmpNext);
 i = j = k = 0;
 while (j < string_len)
 {
 while (i > -1 && string[i] != text[j])
 i = kmpNext[i];
 i++;
 j++;
 if (i >= string_len)
 {
 k++;
 i = kmpNext[i];
 }
 }
return k;
}

3.3 Kishore Treiber Vaz (KTV) Algorithm

3.3.1 Description

This algorithm has been designed for speed in searching a pattern.

The efficiency of this algorithm can be seen when the starting character of

the pattern being searched does not exist in the text. The important part of

the algorithm is the preprocessing phase. Following explanations of the

20

algorithms use an example with pattern being searched as ‘ggg’ and the

text in which it is being searched is ‘agcggg’.

a) Pre processing part :

This is the main part where the complete text is scanned and the KTV

structure is created. A KTV structure is made up of two pointers. The

first one is a character pointer and the next one is a KTV structure

pointer. The algorithm also takes help of two other character arrays

called as ‘Position’ and ‘Alpha’. ‘Alpha’ is initialized with the 26

alphabets. All the elements of the ‘Position’ array are initialized to

NULL. The first occurrence of characters in the ‘Alpha’ is stored in

‘Position’ with first position (index 0) being ‘a’ and last position being

‘z’ (index 25). An array of KTV structures is declared whose size is

equal to the size of the text. For each character in the text the character

pointer of the structure array is initialized so as that it points to the

correct character in the ‘Alpha’ array. If the index of the character

being processed in the ‘Position’ is Null then the KTV pointer at index

is updated in such a way that it points to this structure. Also at the

same time using a temporary pointer array the position of this

character is stored. When another character same as this is encountered

then, using the temporary pointer array the previous structure’s KTV

pointer is updated so that it points to this new character. This process

21

is followed until all the characters of the text are processed. Following

is the illustration with respect to the above example.

• Initial Stage:

: : : : : : : …………… : :

:

a b c d e f g …………… y z

 Figure 3-1 : Position, KTV Structure and Alpha arrays

• After first character is processed

 : : : : : : …………… : :

 :

a b c d e f g …………… y z

 Figure 3-2 : Position, KTV Structure and Alpha arrays

• After all characters are processed

 : : : : …………… : :

 : : :

a b c d e f g …………… y z

 Figure 3-3 : Position, KTV Structure and Alpha arrays

b) Searching :

Once the whole text is processed and the KTV structure array is

created the first character of the search string is considered. Using the

‘Position’ array, the search is started from the position which is

22

indicated by the pointer. From this point onwards the rest of the

characters of the pattern are compared with the consecutive character

pointers of the KTV structure. If all the characters of the pattern are

completed then the occurrences counter is incremented by one. In the

case of failure of the comparison, using the ‘Next’ pointer of the KTV

structure where the previous search started, the current position is

updated and the search is started again. Using the example above we

have the following. First attempt starts at position two. The search fails

since the next character is not equal to ‘g’.

g g g

 : : : : …………… : :

 : : :

a b c d e f g …………… y z

 Figure 3-4 : Illustrating search for 'ggg' - failure

Using the second position’s KTV structure pointer the search is started

again at position four. This search will result in occurrences to be

incremented by one since the next two characters are equal to the

consecutive characters in the KTV structure.

23

g g g

 : : : : …………… : :

 : : :

a b c d e f g …………… y z

 Figure 3-5 : Illustrating search for 'ggg' - success

3.3.2 Algorithm Implementation

For a complete program listing used for the testing please refer to
 Appendix B

struct aa
{ char *c;
 struct aa *next; };

struct aa *p;
struct aa positions[26];
struct aa *prev[26];
char *alpha[26]={"a","b","c","d",NULL,NULL,"g","h",NULL,
 NULL, "k",NULL,"m","n",NULL,NULL,NULL,
 "r","s","t", "u","v","w",NULL,"y",NULL};
long int totaloccurances;

void preKTV(char *data, long int length)
{
 long int i;
 int pos;

 p = (struct aa *) malloc (sizeof(struct aa)*length);
 for(i = 0;i<length;i++)
 {
 pos = data[i] - 97;
 if(pos<0 || pos>26)
 break;
 p[i].c = alpha[pos];
 p[i].next = NULL;
 if(positions[pos].c != NULL)
 prev[pos]->next = &p[i];
 else

24

 {
 positions[pos].c = alpha[pos];
 positions[pos].next = &p[i];
 }
 prev[pos] = &p[i];
 }
 p[i].c=NULL;
 p[i].next = NULL;
}
long int KTV(char *data, char *pattern)
{
 struct aa *current;
 long int occurances=0;
 long int index;
 int plength = strlen(pattern);

 preKTV(data,strlen(data));
 current = positions[pattern[0]-97].next;
 while(current != NULL && (current+plength-1)->c !=NULL)
 {
 for(index = 1; index<plength;index++)
 {
 if(pattern[index] != *(current+index)->c) break;
 }
 if (index == plength) occurances++;
 current = current->next;
 }
 free(p);
 return occurances;
}

25

Chapter 4
Multiple Pattern Algorithms

4.1 Kim’s Multiple String-Pattern Matching Algorithm

4.1.1 Description

This algorithm scans text from left to right while encoding

characters in the text based on the alphabet that occurs in the input patterns.

The simple scanning algorithm demonstrates the ability to handle a very

large number of input patterns simultaneously. The compact encoding

scheme can be summarized as follows:

1) Scan input pattern P and determine how many bits E are needed

for compact encoding

2) Define the encoding function ENCODE for each symbol in P and

any symbol that does not occur in P.

3) Encode each symbol in P and T by function ENCODE.

 The multiple string pattern matching algorithm was summarized as below.

1) Scan the input patterns to determine the number in bits, E, for each

character encoding and define the ENCODE function.

2) Encode each pattern Pi and set the associated mask PMASKi

3) Set the hash mask HMASK according to the hash table size.

4) Initialize the text scanning variable T to 0.

26

5) While scanning the text character by shifting T E bits left, perform

the pattern testing procedure for all patterns at the hash entry

position computed by logically ANDing T and H. If the hash entry

at the position is empty, skip the pattern testing procedure and

scan the next text character.

4.1.2 Partial Code Listing

 struct hash_entry
 {
 PAT P;
 PATMASK pmask;
 struct hash_entry * next;
 };
 PAT HMASK;

 for(i = 1; i <= n; i++)
 insert_pattern_into_hash_table(P[i]);

 T = encode_ncharacters(text, S);
 i = S +1;

 while (i <= Tlen)
 {
 if (HTBL[T&HMASK] != NULL)
 {
 candidate = HTBL[T&HMASK];
 while(candidate)
 {
 if (((T & candidate -> pmask) ^ candidate -> p) = = 0)
 report_pattern_match(candidate);

 candidate = candidate -> next;
 }
 }
 T = T << E | ENCODE(text[i]);
 i ++;
 }

27

4.1.3 Algorithm Limitations

The algorithm relies on hashing techniques, was made it essential to

reduce the number of collisions in the hash entries to speed up the pattern

searching. The test cases discussed in the paper are based on text sizes less

than 13 MB in size [for English pattern searching] and 19MB [for DNA]

with patterns of lengths 3 and up until 20000. There are no test results

discussed in the paper for sizes other than those indicated above. The

Adaptive string matching technique as discussed in the paper when

implemented will increase the runtime complexity as the function will take

a bit more time to adapt to the character set. This algorithm was used as

reference in understanding the logic behind applying string searching

techniques to multiple patterns. The encoding technique was also

considered for the algorithm KPrime and KTV2 but due to time complexity

the ideas was dropped.

4.2 Aho & Corasick Algorithm

4.2.1 Description

The algorithm consists of constructing a finite state pattern

matching machine from the keywords and then using the pattern matching

machine to process the text string in a single pass. The finite state pattern

matching algorithm was used in a library bibliographic search program.

The purpose of the program was to enable a bibliographer to find in a

28

citation index all titles satisfying some Boolean function of keywords and

phrases. This algorithm resulted in running times which are fifth to a tenth

of the original straightforward string matching algorithm. Construction of

the pattern matching machine takes time proportional to the sum of the

lengths of the patterns. The number of state transitions made by the pattern

matching machine in processing the text string is independent of the

number of patterns. The algorithm is divided into three parts as the pattern

matching machine, goto function and failure function.

4.2.2 Algorithm Listing

• Algorithm 1: Pattern Matching Machine

Input.
 A text string x = a I a 2 - - • a n where each a i is an
 input symbol and a pattern matching machine M with goto
 function g, failure function f, and output function output, as
 described above.
Output.
 Locations at which keywords occur in x.
Method.
begin
 state ~ 0
 for i ~ 1 until n do
 begin
 while g (state, a i) = fail do state ~ f (s t a t e)
 state ~ g (state, a i)
 if output (state) ;~ empty then
 begin
 print i
 print output (state)
 end
 end
end

29

• Algorithm 2: Goto Function

Input.
 Set of keywords K = {Yl, Y2 Yk}.
Output.
 Goto function g and a partially computed output func-
 tion output.
Method.
 We assume output(s) is empty when state s is first
 created, and g (s , a) = f a i l if a is undefined or if g(s, a)
 has not yet been defined. The procedure enter(y) inserts into
 the goto graph a path that spells out y.

begin
 newstate ß 0
 for i ß 1 until k do enter(y i)
 for all asuch that g(O, a) = fail do g(O, a) ß 0
end

procedure enter(a 1 a 2 • • • a m):
begin
 state ß 0; j ß 1
 while g (state, aj) ? fail do
 begin
 state ß g (state, a))
 j ß j + l
 end
 for p ß j until m do
 begin
 newstate ß newstate + 1
 g (state, ap) ß newstate
 state ß newstate
 end
 output(state) ß { a I a 2 . . . a m}
end

• Algorithm 3: Failure Function

Input.
 Goto function g and output function output from Algo 2.

30

Output.
 Failure function fand output function output.
Method.
begin
 queue ß empty
 for each a such that g(O, a) = s ß 0 do
 begin
 queue ß queue LI {s }
 f (s)ß 0
 end
 while queue ß empty do
 begin
 let r be the next state in queue
 queue ß queue - {r}
 for each a such that g(r, a) = s ? fail do
 begin
 queue ß queue t2 {s }
 state ß f (r)
 while g (state, a)= fail do state ß f (state)
 f (s) ß g(state, a)
 output(s) ß output(s) U output(f(s))
 end
 end
end

4.2.3 Algorithm Limitations

This pattern matching scheme is well suited for applications in

which we are looking for a large numbers of keywords in text strings.

According to [28] the text used for testing is of 107 size which is equal to

roughly 10MB. For this size of text the algorithm took 0.18 hrs (roughly

11mins) for 15 keywords and 0.21 hrs (roughly 13mins) which are quite

longer times than anticipated. The main construction of the pattern

matching machine is the part where there is more consumption of time is

involved.

31

4.3 KTV2 Algorithm

4.3.1 Description

This is the modified version of the algorithm described in 3.3. This

algorithm takes advantage of the already created KTV structure to search

for all the patterns instead of re-creating the whole structure. The search is

the same but is repeated with all the different patterns and the results are

stored in an array.

4.3.2 Algorithm implementation

struct aa *p;
struct aa positions[26];
struct aa *prev[26];
char *alpha[26]={"a","b","c","d",NULL,NULL,"g","h",NULL,
 NULL, "k",NULL,"m","n",NULL,NULL,NULL,
 "r","s","t","u","v","w",NULL,"y",NULL};
long int *totaloccurances;

void preKTV(char *data, long int length)
{
 long int i;
 int pos;

 p = (struct aa *)malloc(sizeof(struct aa)*length);
 for(i = 0;i<length;i++)
 {
 pos = data[i] - 97;
 if(pos<0 || pos>26)
 {
 break;
 }
 p[i].c = alpha[pos];
 p[i].next = NULL;
 if(positions[pos].c != NULL)
 prev[pos]->next = &p[i];
 else

32

 {
 positions[pos].c = alpha[pos];
 positions[pos].next = &p[i];
 }
 prev[pos] = &p[i];
 }
 p[i].c=NULL;
 p[i].next = NULL;
}

long int * KTV(char *data)
{
 struct aa *current;
 long int *occurances;
 long int index;
 int plength;
 int i;
 preKTV(data,strlen(data));
 occurances =(long int *)malloc(sizeof(long int)*pCount);
 for(i=0;i<pCount;i++)
 {
 occurances[i]=0;
 plength = strlen(patterns[i]);
 current = positions[patterns[i][0]-97].next;
 while(current !=NULL &&(current+plength-1)->c!=NULL)
 {
 for(index = 1; index<plength;index++)
 {
 if(patterns[i][index] != *(current+index)->c)
 break;
 }
 if (index == plength)
 occurances[i]=occurances[i]+1;
 current = current->next;
 }
 }
 free(p);
 return occurances;
}

33

4.4 KPrime Algorithm

4.4.1 Description

This algorithm has been designed to handle multiple patterns and

search for their occurrences in the text by using the concept of prime

numbers. The algorithm has both preprocessing and actual search phases.

They are explained below with an example where patterns being searched

are ‘gc’, ‘aa’, ‘a’ & ‘gcgg’ and the text in which it is being searched is

‘gcggga’.

a) Pre processing part :

This is the main part where all the patterns are read into the patterns

array called as ‘Patterns’. Using the pre assigned primes array called as

‘Primes’, the respective values are stored in the values array called as

‘pValue’. The algorithm also takes help of the array ‘pRowOccurances’

which is of the size 26 by length of the largest pattern. This array is

used as a Boolean array to check whether the character indicated by the

index occurs at the first position or not. Also the patterns are checked to

get the maximum length and stored in ‘pLength’. Using a neutral

character, a character which we know for sure doesn’t exist in the text

[in the test case I used character “ ` ”], pad the rest of the patterns so

that every one of them are of the same size. This character’s prime

value is 1. The Occurrences array which is being used to store the

34

number of occurrences is also initialized with zeros. Every element of

mValue array is also initialized to 1. This array is used to store the

multiplied values of the values of the patterns.

g c ` `
a a ` `
a ` ` `
g c g g

 Figure 4-1 : Patterns array

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

 Figure 4-2 : pValue array

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Figure 4-3 : pRowOccurances array

35

1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59

61 67 71 73 79 83 89 97 101

 Figure 4-4 : Primes array

1 1 1 1

 Figure 4-5 : mValue array

b) Searching:

The first step of searching is to call the pre processing method. The

main text is also padded using the character of the pre processing phase

so that the text is a multiple of the pLength. The search takes place as

follows. Using the values in the pValue array, the product of all the

values in the same column positions is stored in mValue array. The

multiplication is done in such a way that multiple values are avoided.

To illustrate the mValue array after the initial multiplication:

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

 Figure 4-6 : Active patterns in the search

34 10 17 17

 Figure 4-7 : mValue array

At first a character is read from the text. The value of the character

from the primes array is used to divide the first value in the mValue

36

array. If the remainder of the operation is zero then the character is

existing in any of the patterns at the first position. Prime numbers are

those which are divisible by one or by itself. This algorithm uses this

property to check the existence of the character in the patterns. Once

the reminder is zero, the multiply function is called but this time with

only those values of the patterns whose first character is equal to the

character from the text. This process is followed with the rest of the

characters of the text until pLength is reached. After that comparison,

the patterns that are still a valid candidate for search are the strings

that are equal to the characters of the text read or a substring of the

text. Hence occurrences of these patterns are updated by one. The

search is restarted again from the second character onwards. This

procedure is followed until the end of text is reached. Following is the

illustration of search starting at position one.

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

g c g g g a ` ` `

 (34 mod 17) = 0

34 10 17 17

 Figure 4-8 : Illustration of Search

37

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

17 5 17 17

 (5 mod 5) = 0

g c g g g a ` ` `

 Figure 4-9 : Illustration of Search

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

17 5 17 17

 (17 mod 17) = 0

g c g g g a ` ` `

 Figure 4-10 : Illustration of Search

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

17 5 17 17

 (17 Mod 17) = 0

g c g g g a ` ` `

 Figure 4-11 : Illustration of Search

38

17 5 1 1
2 2 1 1
17 1 1 1
17 5 17 17

1 0 1 1

 Figure 4-12 : Patterns, Occurrences at end of Search

As it can be observed the characters read from the text were ‘gcgg’.

The patterns found at the end of the first cycle of search are ‘gc’, ‘g’

& ‘gcgg’. The search is stopped when sizeof(text -1) is reached. This

position doesn’t give error with regards to memory since we already

padded the text with the neutral character. At the end of the complete

search for the example in discussion the resultant occurrences array is

{1, 0, 4, 1}.

4.4.2 Algorithm Implementation

int primes[]=
 {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,
 47,53,59,61,67,71,73,79,83,89,97,101};
int pCount;
int pLength;
long int **pValue;
int **pRowOccurances;
long int *mValue;
int *tmpValue;
char **patterns;

long int* preKPrime()
{
 int i=0;
 int j=0;
 long int *Occurances;

39

 pValue =(long int **)malloc(sizeof(long int *)*pCount);
 pRowOccurances = (int **)malloc(sizeof(int *)*27);
 Occurances =
 (long int *)malloc(sizeof(long int *)*pCount);
 for(i=0;i<27;i++)
 {
 pRowOccurances[i] = (int *)malloc(sizeof(int)*pLength);
 Occurances[i]=0;
 for(j=0;j<pCount;j++)
 pRowOccurances[i][j]=0;
 }
 mValue =(long int *)malloc(sizeof(long int)*pLength);
 for(i=0;i<pCount;i++)
 {
 pValue[i] = (long int *)malloc(sizeof(long int)*pLength);
 pRowOccurances[patterns[i][0]-96][i]=1;
 for(j=0;j<pLength;j++)
 {
 pValue[i][j]=primes[patterns[i][j]-96];
 mValue[j] = 1;
 }
 }
 return Occurances;
}

long int* KPrime(char *str,int mode)
{
 char *mainString;
 long int i=0, j=0, k=0, tmp1=0, adjustment=0;
 long int count=0;
 long int Value,Start;
 long int stringlen=0;
 long int *occurances;

 occurances = preKPrime();
 tmpValue = (int *)malloc(sizeof(int)*pCount);
 stringlen= strlen(str);

 if (mode == 0)
 {
 mainString = (char *)malloc(sizeof(char)*(stringlen));

40

 strcpy(mainString,str);
 }
 else
 {
 mainString =
 (char *)malloc(sizeof(char)*(stringlen+pLength-1));
 strcpy(mainString,str);
 for(i=0;i<(pLength-1);i++)
 strcat(mainString,"`");
 }
 stringlen= (long int)strlen(mainString);
 while((k+(pLength)-1) < stringlen)
 {
 for(j=0;j<pCount;j++)

 tmpValue[j]=
 pRowOccurances[mainString[k]-96][j];

 for(j=0;j<pLength;j++)
 mValue[j]=1;
 multiplyValues();

 for(i=0,count=0;i<pLength && count < 2;i++)
 count += (tmpValue[i] == 1) ? 1 : 0;
 switch(count)
 {
 case 1:
 for(i=0;i<pLength;i++)
 if (mValue[i] != 1)
 if ((mValue[i] %
 primes[mainString[k+i]-96]) != 0)
 break;
 if (i == pLength)
 for(i=0;i<pCount;i++)
 if (tmpValue[i]==1)
 {
 occurances[i] += 1;
 break;
 }
 break;

 case 0:

41

 break;

 default:
 for(i=0;i<pLength-1;i++)
 {
 if (mValue[i] != 1)
 if ((mValue[i] %
 primes[mainString[k+i]-96]) != 0)
 break;
 Value = mainString[k+i+1]-96;
 Start = i+1;
 for(j=0;j<pCount;j++)
 tmpValue[j] =
 (tmpValue[j] == 0)?
 0 :(((pValue[j][Start] ==
 primes[Value])|| pValue[j][Start] ==
 1)? 1 : 0);
 multiplyValues();
 }
 if (i == pLength-1)
 for(i=0;i<pCount;i++)
 if (tmpValue[i]==1)
 occurances[i] += 1;
 break;
 }
 k++;
 }
 return occurances;
}

42

Chapter 5
Experiments and Results

5.1 Hardware

The experiments were conducted on a parallel computer named

Beowulf. The idea was to see that all the test cases to get almost the same set

of resources each time. The different nodes were used to act as single

computer. Settings for each node:

• x330 series with 1 PIII 866 MHz processor

• 512 MB SDRAM RDIMM2 of which 500MB was available

• 18.2 GB Ultra 160 HDD

The text files used as the text are copied to all the nodes. The

programs were written in such a way that these files are read from the nodes

in which the program is being executed. While executing the test cases the

number of nodes used was in the range of 1 to 20 [in the case of single

patterns] and 40 [in the case of multiple patterns].

5.2 Text

The text used for the experiments of the ASCII text version of the

chromosome data of Human Genome. These are listed in the following table

with sizes indicated in bytes.

43

Sl.No Chromosome Size (bytes)

1 Chromosome 01 245,203,898

2 Chromosome 02 243,315,028

3 Chromosome 03 199,411,731

4 Chromosome 04 191,610,523

5 Chromosome 05 180,967,295

6 Chromosome 06 170,740,541

7 Chromosome 07 158,431,299

8 Chromosome 08 145,908,738

9 Chromosome 09 134,505,819

10 Chromosome 10 135,480,874

11 Chromosome 11 134,978,784

12 Chromosome 12 133,464,434

13 Chromosome 13 114,151,656

14 Chromosome 14 105,311,216

15 Chromosome 15 100,114,055

16 Chromosome 16 89,995,999

17 Chromosome 17 81,691,216

18 Chromosome 18 77,753,510

19 Chromosome 19 63,790,860

20 Chromosome 20 63,644,868

21 Chromosome 21 46,976,537

22 Chromosome 22 49,476,972

23 Chromosome X 152,634,166

24 Chromosome Y 50,961,097

 Table 5-1: Text Data for the experiments

44

By using different number of nodes various sizes were tested for the

algorithms. For example using Chromosome1 file of size 245MB and 10

nodes, each node gets a text of size 24.5 MB and hence the results from all

these nodes can be averaged for 24.5MB size, whereas the total can be used

for checking for a 245Mb size. For the multiple patterns the nodes used were

fixed at 40, which means that the maximum size tested for the algorithms is

approximately 6MB (245,203,898 / 40).

5.3 Patterns

Patterns of different sizes were used in the testing of the algorithms.

The patterns used in different searches are listed below:

a) Single Pattern Search

1. z
2. a
3. atattaggt
4. atattaggtatatta
5. ccatttattcacctgttatcaattacaggcattgtatttaaagatcagatgttttatattta

tttcttcaaatttcattcatggtgccataagtgaaggt

b) Multiple Pattern Search

1. • a
• atattaggt
• atattaggtatatta
• catttattcacctgttatcaattacaggcattgtatttaaagatcagatgttttata

 tttatttcttcaaatttcattcatggtgccataagtgaaggt

2. • atattaggtatattaatatt

• ccatttattcacctgttatc
• aattacaggcattgtattta
• aagatcagatgttttatatt
• tatttcttcaaatttcattc

45

3. All the patterns in 5.3 b 2
• atggtgccataagtgaaggt
• ccattgagtcgtagcttaat
• ggtatatcactattactatt
• cagtatattctagtcagtac
• attatagcattatgattaga

4. All the patterns in 5.3 b 3

• tttgtagtatagtgatgata
• catgatcgtactgatcgtac
• tagatagctagacatcgaat
• aaataggagcagcgactaga
• aggatcaggcagctagacta

5. All the patterns in 5.3 b 4

• ggaggatcattcaggagcta
• gagtattatgattaggtatg
• ttatattgagacaggagaga
• ccgcgattaggcccgaggat
• ttttaggaggattggggata

6. • a
• at
• ata
• atat
• atatt
• atatta
• atattag
• atattagg
• atattaggt
• atattaggta
• atattaggtat
• atattaggtata
• atattaggtatat
• atattaggtatatt
• atattaggtatatta
• atattaggtatattaa
• atattaggtatattaat
• atattaggtatattaata
• atattaggtatattaatat
• atattaggtatattaatatt

46

7. All patterns in 5.3 b 5 repeated twice
Repeat the first 10 lines of pattern in 5.3 b 5

8. All patterns in 5.3 b 7 repeated twice.

9. All patterns in 5.3 b 7 repeated thrice.

5.4 Single Pattern Search

The test cases designed for single pattern search algorithms include a

pattern which does not exist in the text. This we know for sure because the

test case adopted ‘z’ in this case, is not part of the DNA alphabet. Other test

cases were pseudorandom generated strings of the DNA alphabet. These

strings were randomly taken from the DNA data of zebra fish and also from

the actual text in which they are searched. The maximum size of the pattern

which was tested was 100 characters in length. The other test cases include

patterns in length of 1, 9 and 15 characters.

47

5.4.1 Results for Pattern 5.3 a 1

This test was done in order to check the efficiency built into the

algorithms under test to check for a character that does not exist in the text

being searched. As it can be seen from Figure 5-1 Brute Force and KMP

were almost linearly increasing in time along with the size of the text

whereas the KTV algorithm acted differently. It showed a little increase in

time as compared to the other two algorithms. It almost averaged at 0.3

seconds. In the preprocessing stage as the Position array was being updated

the corresponding character that did not exist was pointing to nothing.

Search Results for 5.3 a 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

BruteForce KMP KTV

Figure 5-1 : Search Results for 5.3 a 1

48

Search Time in Seconds

S.No Sample Size Occurrences BF KMP KTV

1 46,976,537 - 0.757481 0.788041 0.053924

2 49,476,972 - 0.785963 0.829355 0.058255

3 50,961,097 - 0.803733 0.857521 0.058848

4 63,644,868 - 1.015911 1.067487 0.071989

5 63,790,860 - 1.008220 1.070992 0.072092

6 77,753,510 - 1.225231 1.302336 0.086881

7 81,691,216 - 1.283535 1.365692 0.096492

8 89,995,999 - 1.418662 1.505741 0.099034

9 100,114,055 - 1.572478 1.674647 0.112859

10 105,311,216 - 1.655221 1.756888 0.119492

11 114,151,656 - 1.793934 1.905149 0.128979

12 133,464,434 - 2.095320 2.228942 0.178677

13 134,505,819 - 2.114270 2.245151 0.149774

14 134,978,784 - 2.124924 2.250289 0.151805

15 135,480,874 - 2.125514 2.262828 0.150584

16 145,908,738 - 2.288132 2.434612 0.164225

17 152,634,166 - 2.394981 2.547484 0.171306

18 158,431,299 - 2.487196 2.640976 0.176680

19 170,740,541 - 2.681511 2.850161 0.192104

20 180,967,295 - 2.838816 3.019265 0.203536

21 191,610,523 - 3.007935 3.198592 0.213308

22 199,411,731 - 3.129303 3.324192 0.220759

23 243,315,028 - 3.815656 4.054258 0.271210

24 245,203,898 - 3.845615 4.086006 0.272053

 Table 5-2: Search Results for 5.3 a 1

49

5.4.2 Results for Pattern 5.3 a 2

This test uses a pattern of one character length which is one of the

DNA alphabet that exists in the text we are searching. This test case

actually revealed that the algorithms were dependent not only on the size

but also number of occurrences. But as it can be seen from Figure 5-2 KTV

does perform well with average time way below the other two. The dips in

the results are due to less occurrences of the pattern being searched. The

sudden dip in the time when the size reaches 245MB is due to the fact that

the corresponding text was containing unknown value for most part of it.

This observation holds for all the test cases that follow.

Search Results for 5.3 a 2

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

BruteForce KMP KTV

Figure 5-2 : Search Results for 5.3 a 2

50

Search Time in Seconds

S.No Sample Size Occurrences BF KMP KTV

1 46,976,537 10,062,440 1.226420 1.295841 1.021599

2 49,476,972 8,978,002 1.210903 1.280126 0.774751

3 50,961,097 6,890,018 1.141688 1.212898 0.590703

4 63,644,868 16,503,721 1.807034 1.904953 1.361593

5 63,790,860 14,381,985 1.701668 1.786864 1.220484

6 77,753,510 22,427,279 2.316282 2.441205 1.785455

7 81,691,216 21,082,323 2.308541 2.429316 1.743744

8 89,995,999 22,007,159 2.481774 2.615588 1.819688

9 100,114,055 23,458,690 2.711950 2.868382 1.914170

10 105,311,216 25,670,202 2.903965 3.063273 2.079309

11 114,151,656 29,324,966 3.214664 3.396818 2.328671

12 133,464,434 38,292,633 3.955090 4.171520 3.080859

13 134,505,819 33,807,672 3.755813 3.963801 2.744183

14 134,978,784 38,183,681 3.975309 4.193568 3.086076

15 135,480,874 38,156,953 3.981836 4.215943 3.069523

16 145,908,738 42,448,402 4.350663 4.592824 3.395131

17 152,634,166 44,668,508 4.561584 4.826400 3.543843

18 158,431,299 45,788,455 4.708755 4.966777 3.666394

19 170,740,541 50,409,420 5.126437 5.409791 3.990255

20 180,967,295 53,602,345 5.443963 5.764939 4.250215

21 191,610,523 57,657,548 5.803383 6.123233 4.527539

22 199,411,731 58,359,484 5.963724 6.307639 4.636781

23 243,315,028 70,765,429 7.249469 7.668920 5.635446

24 245,203,898 63,719,743 6.942533 7.329491 5.145736

 Table 5-3: Search Results for 5.3 a 2

51

5.4.3 Results for Pattern 5.3 a 3

This test case uses a pattern of length nine characters. As it can be

seen in Figure 5-3, KTV again performed well. The results show a variance

in time from the previous results. Both Brute Force and KMP almost

recorded same time while KTV averaged at lower seconds. Also it can be

inferred that KTV almost averaged less than a linear increase where as the

other two are almost linear with the size of the text.

Search Results for 5.3 a 3

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

BruteForce KMP KTV

Figure 5-3 : Search Results for 5.3 a 3

52

Search Time in Seconds

S.No Sample Size Occurrences BF KMP KTV

1 46,976,537 172 1.183336 1.204694 0.827198

2 49,476,972 93 1.154213 1.206738 0.763175

3 50,961,097 112 1.110685 1.148062 0.597393

4 63,644,868 206 1.713512 1.768929 1.363157

5 63,790,860 142 1.601199 1.670222 1.209462

6 77,753,510 390 2.215396 2.239184 1.817822

7 81,691,216 218 2.180977 2.402149 1.760086

8 89,995,999 269 2.357198 2.435740 1.814971

9 100,114,055 300 2.591508 2.655136 1.912107

10 105,311,216 473 2.784181 2.835398 2.095868

11 114,151,656 559 3.128077 3.126510 2.361092

12 133,464,434 661 3.780210 3.833279 3.078556

13 134,505,819 549 3.595887 3.667474 2.745531

14 134,978,784 633 3.798156 3.858948 3.080993

15 135,480,874 606 3.813668 3.864854 3.084623

16 145,908,738 723 4.167585 4.212731 3.427952

17 152,634,166 830 4.384217 4.412222 3.607223

18 158,431,299 763 4.500066 4.556501 3.698874

19 170,740,541 831 4.909691 4.955164 4.202163

20 180,967,295 967 5.218560 5.270413 4.294843

21 191,610,523 1,154 5.605319 5.590453 4.617117

22 199,411,731 1,061 5.723980 5.766655 4.661800

23 243,315,028 1,189 6.960146 7.042328 5.663650

24 245,203,898 1,028 6.655266 6.778885 5.152020

 Table 5-4: Search Results for 5.3 a 3

53

5.4.4 Results for Pattern 5.3 a 4

This test case uses a pattern of length fifteen characters. As it can be

inferred from Table 5-5, though the occurrences are few,

still the time taken is almost in the same range as that in the previous test

case. Investigation on this regard revealed that the test case in 5.4.1

contains a non existing character at the first position. KTV works more

efficiently on the time factor if the first character is a not existing. But still

as it can be seen its performance is better than the other two.

Search Results for 5.3 a 4

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

BruteForce KMP KTV

Figure 5-4 : Search results for 5.3 a 4

54

Search Time in Seconds

S.No Sample Size Occurrences BF KMP KTV

1 46,976,537 - 1.184113 1.208396 0.835451

2 49,476,972 - 1.155488 1.207899 0.771346

3 50,961,097 - 1.118051 1.149814 0.607726

4 63,644,868 - 1.718562 1.765926 1.371414

5 63,790,860 - 1.602760 1.673810 1.221291

6 77,753,510 - 2.221112 2.240561 1.926467

7 81,691,216 1 2.183906 2.254807 1.748245

8 89,995,999 - 2.371620 2.432553 1.919472

9 100,114,055 1 2.598303 2.658129 1.936921

10 105,311,216 2 2.785693 2.836850 2.105441

11 114,151,656 - 3.106957 3.127952 2.383976

12 133,464,434 - 3.782394 3.838906 3.106516

13 134,505,819 1 3.596987 3.667718 2.768048

14 134,978,784 - 3.797974 3.862060 3.114173

15 135,480,874 1 3.798754 3.869809 3.107110

16 145,908,738 - 4.169155 4.222570 3.437215

17 152,634,166 - 4.403023 4.426241 3.606982

18 158,431,299 1 4.502660 4.563108 3.711432

19 170,740,541 1 4.923796 4.974983 4.065468

20 180,967,295 1 5.242719 5.274171 4.331305

21 191,610,523 3 5.606663 5.615917 4.638695

22 199,411,731 2 5.732169 5.788630 4.712458

23 243,315,028 2 6.962249 7.024011 5.733794

24 245,203,898 2 6.637968 6.771017 5.216083

 Table 5-5: Search Results for 5.3 a 4

55

5.4.5 Results for Pattern 5.3 a 5

This test case produced interesting results than expected depending

on the performances acquired in the previous test cases. The results

indicate that the results might be dependent on three factors – size of text,

size of pattern and the number of occurrences. But as it can be seen the

number of occurrences doesn’t make much of a difference in the resulting

times. But the performance of the algorithms did get affected by the size of

pattern and the size of text. Also it can be observed the dip in the time at

size 245MB is much lower than the previous test cases. Investigation in

this aspect revealed that the difference was due to the size of the pattern

and fact that there were more of non existing characters in the pattern.

Search Results for 5.3 a 5

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

BruteForce KMP KTV

Figure 5-5 : Search results for 5.3 a 5

56

Search Time in Seconds

S.No Sample Size Occurrences BF KMP KTV

1 46,976,537 - 1.013712 1.045499 0.694154

2 49,476,972 - 1.110987 1.138230 0.781607

3 50,961,097 - 0.980296 1.027381 0.488876

4 63,644,868 - 1.521961 1.560839 1.252262

5 63,790,860 1 1.547399 1.580038 1.257569

6 77,753,510 - 1.804601 1.853631 1.463302

7 81,691,216 - 1.995354 2.033904 1.664766

8 89,995,999 - 2.128197 2.180330 1.701525

9 100,114,055 - 2.250391 2.315806 1.676751

10 105,311,216 - 2.354057 2.425747 1.752925

11 114,151,656 - 2.516179 2.588573 1.846552

12 133,464,434 - 3.137305 3.213536 2.568236

13 134,505,819 - 3.052809 3.135511 2.323556

14 134,978,784 - 3.196125 3.274228 2.631125

15 135,480,874 - 3.198427 3.279073 2.629903

16 145,908,738 - 3.409637 3.500014 2.804972

17 152,634,166 - 3.544420 3.637510 2.872177

18 158,431,299 - 3.726988 3.822464 3.064220

19 170,740,541 - 3.977433 4.080839 3.254164

20 180,967,295 - 4.221601 4.331382 3.447777

21 191,610,523 - 4.397034 4.518192 3.555599

22 199,411,731 - 4.647971 4.761495 3.781932

23 243,315,028 - 5.692548 5.836513 4.650336

24 245,203,898 1 5.655801 5.832116 4.481596

 Table 5-6: Search Results for 5.3 a 5

57

5.4.6 Comment

As it can be seen from the results KTV performed well for all the

test cases. Using it for larger pattern lengths could give us decent results as

compared to the regularly used simple search algorithms. Also as it can be

seen from the test cases that follow in section 5.5, KTV proves more

helpful less times by repeating the search for different patterns.

5.5 Multiple Pattern Search

The test cases were designed so as to test for the performance of the

algorithms KPrime and KTV2. The first test case has the patterns discussed

in 5.4.2 through 5.4.5. This was to ensure that we get the same results. Other

test cases include patterns of fixed size of twenty characters, but the number

of patterns were kept increasing except for the test case discussed in 5.5.6.

These strings were randomly taken from the DNA data of zebra fish and also

from the actual text in which they are searched. The maximum number of

patterns which were tested was hundred. Also the patterns were searched

individually in KTV2 where as they were handled as one in KPrime.

58

5.5.1 Results for Pattern 5.3 b 1

This test case was designed to see if the search algorithms were

giving correct results as the single pattern search algorithms in terms of

occurrences found.

KPrime results were pretty discouraging as it can be seen from

Figure 5-6. Investigation in this regard revealed that this was due to the

repetitive multiplication function which the search algorithm uses. Since

this is the most important part of the algorithm, this function could not be

eliminated.

Search Results for 5.3 b 1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KPrime

Figure 5-6 : KPrime results for 5.3 b 1

59

As far as KTV2 was concerned, it gave good results with respect to

time. Though the shape of the graphs are almost the same but were on a

different time scale. This is mainly due to the fact that the algorithm takes

help of the Position array, which keeps track of the first occurrence of the

first character in the pattern being searched.

Search Results for 5.3 b 1

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-7 : KTV2 results for 5.3 b 1

60

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 1381.803843 2.367941

2 49,476,972 1255.205689 3.160540

3 50,961,097 972.571558 2.260309

4 63,644,868 2240.740123 5.647738

5 63,790,860 1972.967295 5.804579

6 77,753,510 3029.333463 7.343389

7 81,691,216 2873.009802 7.159451

8 89,995,999 3009.579697 7.421235

9 100,114,055 3220.801205 7.667375

10 105,311,216 3508.995002 8.300159

11 114,151,656 3996.323747 9.342560

12 133,464,434 5192.469819 12.304571

13 134,505,819 4604.669653 10.946519

14 134,978,784 5167.210499 11.261290

15 135,480,874 5172.714954 12.522197

16 145,908,738 5732.925406 13.533954

17 152,634,166 6022.705938 14.174241

18 158,431,299 6183.687670 14.701045

19 170,740,541 6798.711792 15.958586

20 180,967,295 7228.347241 17.008667

21 191,610,523 7769.102322 18.027493

22 199,411,731 7932.631668 18.529769

23 243,315,028 9614.849818 22.683024

24 245,203,898 8711.546778 20.682601

 Table 5-7: Search Results for 5.3 b 1

61

5.5.2 Results for Pattern 5.3 b 2

This test case used five different patterns of twenty characters in

length. This was designed to see how well the algorithms handle the

patterns when they are different in data but same in length. The effect can

be seen in the KPrime. The search time drastically reduced. The

assumption that the pattern length has effect on the search time in the

previous test results was proved correct.

Search Results for 5.3 b 2

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KPrime

Figure 5-8 : KPrime results for 5.3 b 2

62

As far as KTV2 was concerned the results given were decent. The

number of occurrences or the size of the largest pattern did not make much

of a difference. The test results were almost the same as compared to the

previous test case.

Search Results for 5.3 b 2

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-9 : KTV2 results for 5.3 b 2

63

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 70.843180 4.292034

2 49,476,972 67.889560 4.192291

3 50,961,097 57.972309 2.970446

4 63,644,868 113.221785 7.334186

5 63,790,860 104.272518 6.560908

6 77,753,510 149.042988 9.463691

7 81,691,216 146.363336 9.347251

8 89,995,999 153.725761 9.694050

9 100,114,055 165.281883 10.079919

10 105,311,216 178.371709 11.045695

11 114,151,656 198.805587 12.237198

12 133,464,434 253.955965 16.227524

13 134,505,819 232.000821 14.417742

14 134,978,784 254.177998 16.299633

15 135,480,874 254.400557 16.292190

16 145,908,738 278.856510 17.866517

17 152,634,166 293.532634 18.735664

18 158,431,299 303.746398 19.506384

19 170,740,541 333.356197 21.132365

20 180,967,295 351.981832 22.490933

21 191,610,523 375.623941 23.906428

22 199,411,731 386.703268 24.662541

23 243,315,028 466.386033 29.832875

24 245,203,898 433.375599 27.219134

 Table 5-8: Search Results for 5.3 b 2

64

5.5.3 Results for Pattern 5.3 b 3

This test case used ten different patterns of twenty characters in

length. This was designed to see how well the algorithms handle the

patterns when they are different in data but same in length. The following

comments hold true for the test cases discussed in 5.5.4 through 5.5.9

except for 5.5.6.

This test induced a steep increase in the times for the KPrime

algorithm. The increase in the number of patterns did have an effect on the

algorithm though the number of occurrences did hardly make any

difference.

Search Results for 5.3 b 3

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KPrime

Figure 5-10 : KPrime results for 5.3 b 3

65

The KTV2 algorithm did show some increase in times but not a

much variation. It was quite acceptable due to the fact that the number of

patterns was doubled. As in the previous test cases the graphs retained the

same shape but the scales are quite different.

Search Results for 5.3 b 3

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-11 : KTV2 results for 5.3 b 3

66

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 164.317820 7.253664

2 49,476,972 162.015770 7.251675

3 50,961,097 124.810282 4.930707

4 63,644,868 268.694970 12.572023

5 63,790,860 249.396011 11.696838

6 77,753,510 345.927683 16.061259

7 81,691,216 349.752210 16.761641

8 89,995,999 366.220840 16.870338

9 100,114,055 381.432416 17.239325

10 105,311,216 411.127467 18.546939

11 114,151,656 457.523157 20.409496

12 133,464,434 597.348787 27.502861

13 134,505,819 542.617557 24.510082

14 134,978,784 601.743237 27.770173

15 135,480,874 601.678641 27.794656

16 145,908,738 657.393412 30.166849

17 152,634,166 687.087129 31.492380

18 158,431,299 713.798132 32.852983

19 170,740,541 773.081986 35.530958

20 180,967,295 824.016922 37.825344

21 191,610,523 876.987297 39.873452

22 199,411,731 901.978398 41.305512

23 243,315,028 1101.062432 50.416683

24 245,203,898 1023.634967 46.434099

 Table 5-9: Search Results for 5.3 b 3

67

5.5.4 Results for Pattern 5.3 b 4

Search Results for 5.3 b 4

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KPrime

Figure 5-12 : KPrime results for 5.3 b 4

Search Results for 5.3 b 4

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-13 : KTV2 results for 5.3 b 4

68

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 249.938868 12.295118

2 49,476,972 237.465761 12.047602

3 50,961,097 184.466109 8.347660

4 63,644,868 410.392144 21.159558

5 63,790,860 370.428253 19.427896

6 77,753,510 542.342084 27.066946

7 81,691,216 530.510131 27.387178

8 89,995,999 556.417115 28.332412

9 100,114,055 580.327464 29.158087

10 105,311,216 632.781179 31.492105

11 114,151,656 705.729336 34.876788

12 133,464,434 921.637252 46.723866

13 134,505,819 830.479819 41.548884

14 134,978,784 924.451361 47.072879

15 135,480,874 927.080994 47.058871

16 145,908,738 1019.372926 51.340945

17 152,634,166 1070.145230 53.687677

18 158,431,299 1104.270223 55.835056

19 170,740,541 1201.156834 60.574243

20 180,967,295 1285.004529 64.481658

21 191,610,523 1367.577783 68.227217

22 199,411,731 1401.562513 70.341474

23 243,315,028 1706.473388 85.851043

24 245,203,898 1566.962922 78.717328

 Table 5-10: Search Results for 5.3 b 4

69

5.5.5 Results for Pattern 5.3 b 5

Search Results for 5.3 b 5

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KPrime

Figure 5-14 : KPrime results for 5.3 b 5

Search Results for 5.3 b 5

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-15 : KTV2 results for 5.3 b 5

70

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 374.646187 15.252259

2 49,476,972 367.997563 15.197695

3 50,961,097 273.564777 10.313441

4 63,644,868 633.849308 26.478501

5 63,790,860 581.474922 24.560212

6 77,753,510 814.176035 33.538428

7 81,691,216 821.717676 34.390308

8 89,995,999 854.757586 35.571729

9 100,114,055 882.926216 36.318339

10 105,311,216 959.846299 39.129896

11 114,151,656 1068.723946 43.087808

12 133,464,434 1411.583747 58.029516

13 134,505,819 1260.248818 51.645791

14 134,978,784 1420.033986 58.563558

15 135,480,874 1416.240376 58.554648

16 145,908,738 1548.870139 63.717285

17 152,634,166 1626.844657 66.529301

18 158,431,299 1688.983883 69.544777

19 170,740,541 1833.714744 75.044808

20 180,967,295 1941.458411 79.914697

21 191,610,523 2069.842370 84.238497

22 199,411,731 2133.535634 87.140797

23 243,315,028 2597.011803 106.491267

24 245,203,898 2414.369072 98.145369

 Table 5-11: Search Results for 5.3 b 5

71

5.5.6 Results for Pattern 5.3 b 6

This test case was designed to check the effect of increasing pattern

length on the algorithms. The patterns were used ranged from lengths one

to twenty. This would give us occurrences which are decrementing in

number. This test case quite useful to check the various assumptions made

during the previous test cases.

KPrime did show the effect on the time recorded but still retained

the shape.

Search Results for 5.3 b 6

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KPrime

Figure 5-16 : KPrime results for 5.3 b 6

72

KTV2 on the other hand did work as expected. Number of

occurrences did not have much effect on the time recorded. But the number

of patterns and size of them did increase the time factor.

Search Results for 5.3 b 6

0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-17 : KTV2 results for 5.3 b 6

73

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 445.081425 16.407512

2 49,476,972 385.393059 14.991219

3 50,961,097 326.371686 11.288010

4 63,644,868 700.706340 27.261644

5 63,790,860 605.452300 24.051447

6 77,753,510 982.438214 36.458769

7 81,691,216 885.964361 34.822973

8 89,995,999 947.340884 36.351625

9 100,114,055 1024.208292 38.310050

10 105,311,216 1133.670682 42.041212

11 114,151,656 1320.171226 47.613044

12 133,464,434 1679.196913 62.350967

13 134,505,819 1496.604366 55.183839

14 134,978,784 1668.703294 62.392889

15 135,480,874 1662.930480 62.271020

16 145,908,738 1870.743890 68.994909

17 152,634,166 1975.448803 72.668177

18 158,431,299 2006.043498 74.580830

19 170,740,541 2225.897266 79.562140

20 180,967,295 2371.913484 87.109532

21 191,610,523 2573.696959 93.378465

22 199,411,731 2581.022843 94.778641

23 243,315,028 3123.458211 115.108887

24 245,203,898 2787.274100 104.066357

 Table 5-12: Search Results for 5.3 b 6

74

5.5.7 Results for Pattern 5.3 b 7

This test case was not used for testing the KPrime algorithm because

of the times recorded were way larger than those recorded in 5.5.1. This

comment holds true for the other test cases that follow.

Search Results for 5.3 b 7

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-18 : KTV2 results for 5.3 b 7

75

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 - 39.379163

2 49,476,972 - 39.105183

3 50,961,097 - 26.613804

4 63,644,868 - 68.384062

5 63,790,860 - 63.692960

6 77,753,510 - 86.771678

7 81,691,216 - 88.756190

8 89,995,999 - 91.697530

9 100,114,055 - 93.847029

10 105,311,216 - 101.172617

11 114,151,656 - 111.543413

12 133,464,434 - 150.099079

13 134,505,819 - 133.532575

14 134,978,784 - 151.408488

15 135,480,874 - 151.381402

16 145,908,738 - 164.734304

17 152,634,166 - 172.044750

18 158,431,299 - 179.335775

19 170,740,541 - 194.179371

20 180,967,295 - 206.697578

21 191,610,523 - 218.010220

22 199,411,731 - 225.374151

23 243,315,028 - 275.477268

24 245,203,898 - 253.194739

 Table 5-13: Search Results for 5.3 b 7

76

5.5.8 Results for Pattern 5.3 b 8

Search Results for 5.3 b 8

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-19 : KTV2 results for 5.3 b 8

77

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 - 79.592837

2 49,476,972 - 78.944370

3 50,961,097 - 53.758858

4 63,644,868 - 137.947255

5 63,790,860 - 127.677649

6 77,753,510 - 175.260865

7 81,691,216 - 179.089369

8 89,995,999 - 185.037572

9 100,114,055 - 189.496933

10 105,311,216 - 204.298518

11 114,151,656 - 225.386368

12 133,464,434 - 303.248940

13 134,505,819 - 269.728069

14 134,978,784 - 305.869150

15 135,480,874 - 306.611373

16 145,908,738 - 332.890987

17 152,634,166 - 347.693934

18 158,431,299 - 362.289322

19 170,740,541 - 392.499012

20 180,967,295 - 417.679800

21 191,610,523 - 440.648249

22 199,411,731 - 455.461220

23 243,315,028 - 556.485166

24 245,203,898 - 511.372055

 Table 5-14: Search Results for 5.3 b 8

78

5.5.9 Results for Pattern 5.3 b 9

Search Results for 5.3 b 9

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260

File Size (MB)

T
im

e(
se

cs
)

KTV2

Figure 5-20 : KTV2 results for 5.3 b 9

79

Search Time in Seconds

S.No Sample Size KPrime KTV2

1 46,976,537 - 119.742555

2 49,476,972 - 118.742539

3 50,961,097 - 80.713170

4 63,644,868 - 207.554101

5 63,790,860 - 192.094629

6 77,753,510 - 263.836822

7 81,691,216 - 269.526463

8 89,995,999 - 278.480827

9 100,114,055 - 285.192685

10 105,311,216 - 307.505523

11 114,151,656 - 339.971031

12 133,464,434 - 456.406343

13 134,505,819 - 405.932011

14 134,978,784 - 460.663512

15 135,480,874 - 460.154998

16 145,908,738 - 501.054100

17 152,634,166 - 523.299532

18 158,431,299 - 545.284831

19 170,740,541 - 590.791370

20 180,967,295 - 628.688668

21 191,610,523 - 663.349130

22 199,411,731 - 685.532280

23 243,315,028 - 837.675736

24 245,203,898 - 769.694385

 Table 5-15: Search Results for 5.3 b 9

80

5.5.10 Comment

As is evident from the test cases used the KPrime algorithm requires

a lot of tweaking and implementation changes so as to be able to get good

results on par with the KTV2 algorithm. KPrime algorithm recorded high

times due to the fact of multiplication operation over the pattern. Future

work will include replacing this function and finding best replacement.

Further during the future work the conceptualized ideas may be

implemented and used in the redesign of the algorithm.

81

Chapter 6
Future Work

As it can be seen from the results KTV gives good results both in the case

of single pattern and multiple patterns. It can also be seen that it is more efficient in

the multiple pattern because the time complexity is greatly reduced due to the fact

that the regeneration of KTV structure is not necessary. KPrime algorithm on the

other hand works fine with fewer patterns of a small length. A more efficient

implementation than the one used for testing can be used and tested for the same

patterns as above.

The algorithms and the test cases used to test them were DNA specific.

These algorithms can be modified so as to handle the entire English alphabet along

with the Arabic numerical.

During the research of the algorithms described in 4.1 and 4.2, many new

theories were formulated but were discarded since they were out of scope of this

thesis. The future work would also include implementation of these ideas and

applying them to the above said algorithms.

82

References

[1] National Institute of Standards and Technology (2003, April). String
matching. Retrieved on May 25, 2003, from URL:
http://www.nist.gov/dads/HTML/stringMatching.html

[2] Ian Foster (1995). A Parallel Programming Model. Retrieved on May
25, 2003, from URL:
http://www-unix.mcs.anl.gov/dbpp/text/node9.html

[3] M.V. Olson, 1995. A time to sequence, Science, 270:394-396.

[4] Florida Institute of Technology (2002, September). The Beowulf
Project at Florida Tech. Retrieved on February 02, 2003 from URL:
http://my.fit.edu/beowulf/

[5] [Unknown]. Pattern Matching. Retrieved on May 01, 2003 from
URL: http://www.dcs.shef.ac.uk/~u0rf/pattern.htm

[6] James S. Huggins (2003). How Much Data Is That? Retrieved on
May 25, 2003 from URL:
http://www.jamesshuggins.com/h/tek1/how_big.htm

[7] Telecommunications: Glossary of Telecommunication terms (2003).
Parallel Computer. Retrieved on March 10, 2003 from URL:
http://glossary.its.bldrdoc.gov/fs-1037/dir-026/_3841.htm

[8] Telecommunications: Glossary of Telecommunication terms (2003).
Parallel Processing. Retrieved on March 10, 2003 from URL:
http://glossary.its.bldrdoc.gov/fs-1037/dir-026/_3843.htm

[9] National Institute of Standards and Technology (2003, April). Brute
Force String Search. Retrieved on March 10, 2003 from URL:
http://www.nist.gov/dads/HTML/bruteForceStringSearch.html

[10] National Institute of Standards and Technology (2003, April). Knuth-
Morris-Pratt algorithm. Retrieved on March 10, 2003 from URL:
http://www.nist.gov/dads/HTML/knuthMorrisPratt.html

[11] ACM Journal, 1975, Communications of the ACM, Vol. 18, No 6,
Association of Computing Machinery, Inc.

83

[12] Sun Kim, Yanggon Kim, 1997, A Fast Multiple String-Pattern
Matching Algorithm, ACM Journal of Experimental Algorithmics.

[13] David A Bader (2002, October) Para Scope: A Listing of Parallel
Computing Sites. Retrieved on March 10,2003 from URL:
http://www.computer.org/parascope/

[14] Al Kelley, Ira Pohl, 1987. C by Dissection: The Essentials of C
programming, Benjamin/Cummings Publishing Co.

[15] Chandra Rohit, 2001. Parallel Programming in OpenMP, Morgan
Kaufmann Publishers.

[16] Kai Zhang, 1993. A comparative study of fast full-text search
algorithms, Thesis (M.S)--Florida Institute of Technology.

[17] Maxime Crochemore, Wojciech Rytter, 1994. Text algorithms, Oxford
University Press

[18] Dan Gusfield, 1999. Algorithms on Strings, Trees and Sequences,

Computer science and computational Biology, Cambridge
University Press.

[19] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 1997.

Computer algorithms / C++, Computer Science Press.

[20] Gary Bronson, Stephen J. Menconi, 1991. A first book of C:
Fundamentals of C programming, West Publishing. Co.

[21] Peter S. Pacheco, 1997. Parallel Programming with MPI, Morgan
Kaufmann Publishers, Inc.

[22] Florida Institute of Technology (2002, September). The Beowulf
Project at Florida Tech. Retrieved on February 02, 2003 from URL:
http://my.fit.edu/beowulf/papers/userguide.txt

[23] Mathematics and Computer Science Division, Argonne National
Laboratory (2003, March). MPICH-A Portable Implementation of
MPI. Retrieved on March 10, 2003 from URL:
http://www-unix.mcs.anl.gov/mpi/mpich/index.html

84

[24] Mathematics and Computer Science Division, Argonne National
Laboratory (2003, March). The Message Passing Interface (MPI)
standard. Retrieved on March 10, 2003 from URL:
http://www-unix.mcs.anl.gov/mpi/index.html

[25] Beowulf.org -- Beowulf cluster information (2000). Beowulf History.

Retrieved on March 10,2003 from URL:
http://www.beowulf.org/beowulf/history.html

[26] Michael John LIDDELL (1997, December). Knuth, Morris and Pratt.
Retrieved on March 10, 2003 from URL:
http://www.cs.mu.oz.au/~mjl/thesis/node5.html

[27] Alfred V. Aho, Margaret J. Corasick, 1975. Efficient String
Matching: An Aid to Bibliographic Search, Association of
Computing Machinery, Inc.

[28] Michael E Smith, 2003. Digital Signal Processing Techniques In The

Prediction Of Protein Secondary Structures, Thesis(MS), Florida
Institute of Technology

[29] Baldi, P., Brunak S, 2001. Bioinformatics, The Machine Learning
Approach. MIT Press

[30] Bourne, Philip E., Weissig, Helge, 2003. Structural Bioinformatics.

John Wiley & Sons.

[31] Brandon C., Tooze J., 1999. Introduction to Protein Structure.

Garland Publishing.

[32] Dunbrack, R.. 1999. Comparative Modeling of CASP3 Targets

Using PSI-BLAST and SCWRL. PROTEINS: Structure, Function
and Genetics 3:81-87

[33] Person, W.R., Wood, T., Zhang, Z., and Miller, W., 1997.
Comparision of DNA sequences with protein sequences, Genomics
46: 24-36

[34] Setubal J., Meidanis J., 1997. Introduction to Computational

Molecular Biology. PWS Publishing Company.

85

[35] Westbrook, J., Feng, Z., Jain, S., Bhat, T., Thanki, N., Ravichandran,
V., Gilliland, G., Bluhm, W., Weissig, H., Greer, D., Bourne, P.,
Berman, H. 2002. The Protein Data Bank: unifying the archive.
Nucleic Acids Research vol. 30 no. 1:245-248

[36] Zhang, C., Lin, Z.S., Zhang, Z.D., Yan, M., 1998. Prediction of the

helix/strand content of globular proteins based on their primary
sequences. Protein Engineering, Vol. 11, No. 11, 971-979

[37] Brenda S. Baker, 1995. Parameterized Pattern Matching by Boyer-

Moore-type Algorithms. ATA&T Bell Laboratories.

[38] Daniel M. Sunday, 1990. Avery Fast Substring Search Algorithm.

ACM 0001-0782/90/0300-0132.

86

Appendix A
Brute Force Program Listing

// BruteForce_01.cpp - Kishore R Kattamuri
// MS(CS) Thesis - Florida Tech

/* Required include files
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mpi.h"

/* This is the text in which the search is performed
 */
#define inFile "Chromosome01.txt"
/* This is the file which contains patterns
 */
#define serFile "patterns.txt"
/* This is the text file which is stored on the nodes
 */
#define inFile2 "/scr/Chromosome01.txt"

/* Predeclaration of the Bruteforce
 */
long int BruteForce(char *,char *);

/* This array will hold number of Occurances
 */
long int totaloccurances;

/* Various variables required for timing the search
 */
double start,end,startmain,endmain,swatch;

87

/* Function to get the filesize of the passed parameter file
 */
long int getFileSize(char file[])
{
 long int size;
 FILE *filename = fopen(file,"r");
 fseek(filename,0,SEEK_END);
 size = ftell(filename);
 fclose(filename);
 return size;
}

/* Function to calculate the size to be read by each node
 along with the overlap
 */
long int* getOptimumSizeToRead(long int mainFileSize,
 int processors,
 long int overlap)
{
 long int* optimumSize;
 long int tempSize;
 long int estimate;
 long int tmpProcs;
 int counter;

 if (processors < 1) return 0;
 tempSize = mainFileSize;
 estimate = (tempSize % processors == 0)
 ? (tempSize / processors)
 : (tempSize / processors) + 1;
 tmpProcs = tempSize / estimate;
 optimumSize = (long int *)malloc(sizeof(long int) * processors);
 tempSize = tempSize - estimate;
 optimumSize[0] = estimate;
 for(counter=1;counter<processors;counter++)
 {
 optimumSize[counter] = (counter<=tmpProcs)
 ? estimate + overlap : 0;
 }

 return optimumSize;
}

88

/* Function to caluclate the overlap
 */
long int getOverlap(long int size)
{
 return size - 1;
}

/* The main function of the program
 */
main(int argc, char* argv[])
{
 /* Required variables
 */
 int my_rank;
 int p;
 int source;
 int dest;
 int tag=0;
 char message[1000];
 char num[1000];
 MPI_Status status;
 FILE *fp;
 char *searchstring;
 char *docstring;
 long int occur=0;
 long int sizefile;
 long int overlap;
 long int *optimumSize;

 /* Initialising the MPI environment variables
 */
 MPI_Init(&argc,&argv);
 /* Start Timer for the complete program
 */
 startmain=MPI_Wtime();
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 sizefile = getFileSize(serFile);
 searchstring = (char *)malloc((sizefile)*sizeof(char));

89

 fp=fopen(serFile,"r");
 fgets(searchstring,sizefile,fp);
 fclose(fp);

 overlap = getOverlap(sizefile);
 sizefile = getFileSize(inFile);

 optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap);

/* If the process is not being run on parent Node
 */
 if(my_rank != 0)
 {
 /* Open the text file and allocate memory to docstring
 */
 fp = fopen(inFile2,"r");
 docstring = (char *)malloc
 ((optimumSize[my_rank-1]+1)*sizeof(char));
 /* If the node is first in the current node set the
 filepointer to position 0
 */
 if (my_rank == 1)
 {
 fseek(fp,0,SEEK_SET);
 }
 /* Otherwise set it to Optimum size time the node rank
 */
 else
 {
 fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET);
 }
 /* Read the text data into docstring
 */
 fgets(docstring,optimumSize[my_rank-1]+1,fp);
 /* Do the search and catch the results in Occurances array
 */
 occur = BruteForce(docstring,searchstring);
 /* Store the values in the message array
 */
 sprintf(message,"%ld %f",occur,end-start);
 /* Set the destination to parent node
 */

90

 dest=0;
 fclose(fp);
 /* Send the message array to the parent node
 */
 MPI_Send(message,strlen(message)+1,
 MPI_CHAR,dest,tag,MPI_COMM_WORLD);
 }
 /* If the process is being run on parent Node
 */
 else
 {
 /* For all the nodes in the node set except the parent node
 recieve the message array sent by them and process them
 accordingly
 */
 for(source=1;source<p;source++)
 {
 MPI_Recv(message,1000,
 MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);
 printf("Processor with Rank %2d : %s\n",source,message);
 totaloccurances += atol(strtok(message," "));
 swatch += atof(strtok(NULL," "));
 }
 /* Stop the timer for the complete program
 */
 endmain=MPI_Wtime();
 /* Print the results to the standard output
 */
 printf("Total Occurances : %ld\n",totaloccurances);
 printf("Total Time for Searching : %f\n",swatch);
 printf("Total Time for Execution : %f\n",endmain-startmain);
 }
 /* Close the MPI environment
 */
 MPI_Finalize();
}

/* Implementation of Brute Force
 */
long int BruteForce(char *string, char *search_string)
{
 int i, j, k;

91

 long int count = 0, occurences = 0;
 int first = 0;

 const long int len_search_string = strlen(search_string);
 const long int len_given_string = strlen(string);
 const long int limit = len_given_string - len_search_string;
 start = MPI_Wtime();
 for (i = 0; i <= limit; i++)
 {
 count = 0;
 for(j = i, k = 0; k < (len_search_string) ; j++, k++)
 {
 if(*(string + j) != *(search_string + k))
 {
 break;
 }
 else
 {
 count++;
 }
 if(count == len_search_string)
 {
 occurences++;
 }
 }
 }
 end = MPI_Wtime();
return occurences;
}

92

Appendix B
KMP Program Listing

// KMP_01.cpp - Kishore R Kattamuri
// MS(CS) Thesis - Florida Tech

/* Required include files
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mpi.h"

/* This is the text in which the search is performed
 */
#define inFile "Chromosome01.txt"
/* This is the file which contains patterns
 */
#define serFile "patterns.txt"
/* This is the text file which is stored on the nodes
 */
#define inFile2 "/scr/Chromosome01.txt"
/* Maximum size of the pattern
 */
#define MAX_PAT_SIZE 255

/* Predeclaration of the preKMP
 */
void preKmp(char *,long int,long int *);
/* Predeclaration of the KMP
 */
long int KMP(char *,long int, char *,long int);

/* This array will hold number of Occurances
 */
long int totaloccurances;

93

/* Various variables required for timing the search
 */
double start,end,startmain,endmain,swatch;

/* Function to get the filesize of the passed parameter file
 */
long int getFileSize(char file[])
{
 long int size;
 FILE *filename = fopen(file,"r");
 fseek(filename,0,SEEK_END);
 size = ftell(filename);
 fclose(filename);
 return size;
}

/* Function to calculate the size to be read by each node
 along with the overlap
 */
long int* getOptimumSizeToRead(long int mainFileSize,
 int processors,
 long int overlap)
{
 long int* optimumSize;
 long int tempSize;
 long int estimate;
 long int tmpProcs;
 int counter;

 if (processors < 1) return 0;
 tempSize = mainFileSize;
 estimate = (tempSize % processors == 0)
 ? (tempSize / processors)
 : (tempSize / processors) + 1;
 tmpProcs = tempSize / estimate;
 optimumSize = (long int *)malloc(sizeof(long int) * processors);
 tempSize = tempSize - estimate;
 optimumSize[0] = estimate;
 for(counter=1;counter<processors;counter++)
 {
 optimumSize[counter] = (counter<=tmpProcs) ? estimate + overlap : 0;
 }

94

 return optimumSize;
}

/* Function to caluclate the overlap
 */
long int getOverlap(long int size)
{
 return size - 1;
}

/* The main function of the program
 */
main(int argc, char* argv[])
{
 /* Required variables
 */
 int my_rank;
 int p;
 int source;
 int dest;
 int tag=0;
 char message[1000];
 char num[1000];
 MPI_Status status;
 FILE *fp;
 char *searchstring;
 char *docstring;
 long int occur=0;
 long int sizefile;
 long int overlap;
 long int *optimumSize;

 /* Initialising the MPI environment variables
 */
 MPI_Init(&argc,&argv);
 /* Start Timer for the complete program
 */
 startmain=MPI_Wtime();
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &p);

95

 sizefile = getFileSize(serFile);
 searchstring = (char *)malloc((sizefile)*sizeof(char));

 fp=fopen(serFile,"r");
 fgets(searchstring,sizefile,fp);
 fclose(fp);

 overlap = getOverlap(sizefile);
 sizefile = getFileSize(inFile);

 optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap);

 /* If the process is not being run on parent Node
 */
 if(my_rank != 0)
 {
 /* Open the text file and allocate memory to docstring
 */
 fp = fopen(inFile2,"r");
 docstring = (char *)malloc
 ((optimumSize[my_rank-1]+1)*sizeof(char));
 /* If the node is first in the current node set the
 filepointer to position 0
 */
 if (my_rank == 1)
 {
 fseek(fp,0,SEEK_SET);
 }
 /* Otherwise set it to Optimum size time the node rank
 */
 else
 {
 fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET);
 }
 /* Read the text data into docstring
 */
 fgets(docstring,optimumSize[my_rank-1]+1,fp);
 /* Do the search and catch the results in Occurances array
 */
 occur = KTV(docstring,searchstring);
 /* Store the values in the message array
 */

96

 sprintf(message,"%ld %f",occur,end-start);
 /* Set the destination to parent node
 */
 dest=0;
 fclose(fp);
 /* Send the message array to the parent node
 */
 MPI_Send(message,strlen(message)+1,
 MPI_CHAR,dest,tag,MPI_COMM_WORLD);
 }
 /* If the process is being run on parent Node
 */
 else
 {
 /* For all the nodes in the node set except the parent node
 recieve the message array sent by them and process them
 accordingly
 */
 for(source=1;source<p;source++)
 {
 MPI_Recv(message,1000,
 MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);
 printf("Processor with Rank : %2d %s\n",source,message);
 totaloccurances += atol(strtok(message," "));
 swatch += atof(strtok(NULL," "));
 }
 /* Stop the timer for the complete program
 */
 endmain=MPI_Wtime();
 /* Print the results to the standard output
 */
 printf("Total Occurances : %ld\n",totaloccurances);
 printf("Total Time for Searching : %f\n",swatch);
 printf("Total Time for Execution : %f\n",endmain-startmain);
 }
 /* Close the MPI environment
 */
 MPI_Finalize();
}

/* Implementation of the function preKMP
 */

97

void preKmp(char *search_string,long int search_string_len,long int kmpNext[])
{
 long int i, j;
 i = 0;
 j = kmpNext[0] = -1;
 while (i < search_string_len)
 {
 while (j > -1 && search_string[i] != search_string[j])
 j = kmpNext[j];
 i++;
 j++;
 if (search_string[i] == search_string[j])
 kmpNext[i] = kmpNext[j];
 else
 kmpNext[i] = j;
 }
}

/* Implementation of the function KMP
 */
long int KMP(char *search_string, long int search_string_len,
 char *string, long int string_len)
{
 long int i, j, k, kmpNext[105];
 preKmp(search_string, search_string_len, kmpNext);
 start = MPI_Wtime();
 i = j = k = 0;
 while (j < string_len)
 {
 while (i > -1 && search_string[i] != string[j])
 i = kmpNext[i];
 i++;
 j++;
 if (i >= search_string_len)
 {
 k++;
 i = kmpNext[i];
 }
 }
 end = MPI_Wtime();
return k;
}

98

Appendix C
KTV Program Listing

// KTV_01.cpp - Kishore R Kattamuri
// MS(CS) Thesis - Florida Tech

/* Required include files
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mpi.h"

/* This is the text in which the search is performed
 */
#define inFile "Chromosome01.txt"
/* This is the file which contains patterns
 */
#define serFile "patterns.txt"
/* This is the text file which is stored on the nodes
 */
#define inFile2 "/scr/Chromosome01.txt"
/* Maximum size of the pattern
 */
#define MAX_PAT_SIZE 255

/* Predeclaration of the preKTV
 */
void preKTV(char *, long int);

/* Predeclaration of the KTV
 */
long int KTV(char *, char *);

99

/* Definition of KTV structure
 */
struct aa
{
 char *c;
 struct aa *next;
};

/* The KTV2 structure array which is built in the preKTV
 */
struct aa *p;

/* Positions array
 */
struct aa positions[26];

/* Temporary array to hold the previous occurance of
 the character
 */
struct aa *prev[26];

/* Alpha array which holds all the available characters
 in the text under tes
 */
char *alpha[26]={
 "a","b","c","d",NULL,NULL,"g","h",NULL,NULL,"k",
 NULL,"m","n",NULL,NULL,NULL,"r","s","t","u","v",
 "w",NULL,"y",NULL};

/* This array will hold number of Occurances
 */
long int *totaloccurances;

/* Various variables required for timing the search
 */
double start,end,startmain,endmain,swatch;

/* Number of patterns used for search
 */
int pCount;

100

/* Patterns used for search
 */
char **patterns;

/* Maximum pattern length read
 */
int pLength;

/* Function to read patterns from the file passed
 as argument into the variable Patterns
 */
void readPatterns(char file[])
{

 FILE *filename = fopen(file,"r");
 int i = 0,j,k,tpLength;

 /* Allocating enough memory
 */
 patterns = (char **)malloc(sizeof(char *)*1);
 patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE);

 /* Reading pattern one and storing it
 */
 fgets(patterns[i],MAX_PAT_SIZE,filename);
 patterns[i][strlen(patterns[j])-1]='\0';

 /* Intialise the pLength
 */
 pLength = strlen(patterns[i]);

 /* Reading rest of the patterns
 */
 while(!feof(filename))
 {
 i++;
 patterns = (char **)realloc(patterns,sizeof(char *)*(i+1));
 patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE);
 fgets(patterns[i],MAX_PAT_SIZE,filename);
 patterns[i][strlen(patterns[i])-1]='\0';

101

 /* Updating pLength depending on the length of the current
 pattern read
 */
 pLength
 = (pLength < strlen(patterns[i]))
 ? strlen(patterns[i]) : pLength;
 }
 pCount = i;
 patterns[pCount]=NULL;
 fclose(filename);
}

/* Function to get the filesize of the passed parameter file
 */
long int getFileSize(char file[])
{
 long int size;
 FILE *filename = fopen(file,"r");
 fseek(filename,0,SEEK_END);
 size = ftell(filename);
 fclose(filename);
 return size;
}

/* Function to calculate the size to be read by each node
 along with the overlap
 */
long int* getOptimumSizeToRead(long int mainFileSize,
 int processors,
 long int overlap)
{
 long int* optimumSize;
 long int tempSize;
 long int estimate;
 long int tmpProcs;
 int counter;

 if (processors < 1) return 0;
 tempSize = mainFileSize;
 estimate = (tempSize % processors == 0)
 ? (tempSize / processors)
 : (tempSize / processors) + 1;

102

 tmpProcs = tempSize / estimate;
 optimumSize = (long int *)malloc(sizeof(long int) * processors);
 tempSize = tempSize - estimate;
 optimumSize[0] = estimate;
 for(counter=1;counter<processors;counter++)
 {
 optimumSize[counter] = (counter<=tmpProcs)
 ? estimate + overlap : 0;
 }
 return optimumSize;
}

/* Function to caluclate the overlap
 */
long int getOverlap(long int size)
{
 return size - 1;
}

/* The main function of the program
 */
main(int argc, char* argv[])
{
 /* Required variables
 */
 int my_rank;
 int p;
 int source;
 int dest;
 int tag=0;
 char message[1000];
 MPI_Status status;
 FILE *fp;
 char *searchstring;
 char *docstring;
 long int occur=0;
 long int sizefile;
 long int overlap;
 long int *optimumSize;
 long int *Occurances;

103

 /* Initialising the MPI environment
 */
 MPI_Init(&argc,&argv);
 /* Start Timer for the complete program
 */
 startmain=MPI_Wtime();
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 /* Read the patterns and calculate filesizes
 */
 readPatterns(serFile);
 sizefile = pLength;
 overlap = getOverlap(sizefile);
 sizefile = getFileSize(inFile);

 /* Estimate the optimum size for each node
 */
 optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap);

 /* If the process is not being run on parent Node
 */
 if(my_rank != 0)
 {
 /* Open the text file and allocate memory to docstring
 */
 fp = fopen(inFile2,"r");
 docstring = (char *)malloc
 ((optimumSize[my_rank-1]+1)*sizeof(char));
 /* If the node is first in the current node set the
 filepointer to position 0
 */
 if (my_rank == 1)
 {
 fseek(fp,0,SEEK_SET);
 }
 /* Otherwise set it to Optimum size time the node rank
 */
 else
 {
 fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET);
 }

104

 /* Read the text data into docstring
 */
 fgets(docstring,optimumSize[my_rank-1]+1,fp);
 /* Do the search and catch the results in Occurances array
 */
 occur = KTV(docstring,searchstring);
 /* Store the values in the message array
 */
 sprintf(message,"%ld %f",occur,end-start);
 /* Set the destination to parent node
 */
 dest=0;
 fclose(fp);
 /* Send the message array to the parent node
 */
 MPI_Send(message,strlen(message)+1,

 MPI_CHAR,dest,tag,MPI_COMM_WORLD);
 }
 /* If the process is being run on parent Node
 */
 else
 {
 /* For all the nodes in the node set except the parent node
 recieve the message array sent by them and process them
 accordingly
 */
 for(source=1;source<p;source++)
 {
 MPI_Recv(message,1000,

 MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);
 printf("Processor with Rank : %2d %s\n",source,message);
 totaloccurances += atol(strtok(message," "));
 swatch += atof(strtok(NULL," "));
 }
 /* Stop the timer for the complete program
 */
 endmain=MPI_Wtime();
 /* Print the results to the standard output
 */
 printf("Total Occurances : %ld\n",totaloccurances);
 printf("Total Time for Searching : %f\n",swatch);
 printf("Total Time for Execution : %f\n",endmain-startmain);

105

 }
 /* Close the MPI environment
 */
 MPI_Finalize();
}

/* Impelementation of Function preKTV
 */
void preKTV(char *data, long int length)
{
 long int i;
 int pos;

 /* Allocate memory to the KTV2 structure variable p
 */
 p = (struct aa *)malloc(sizeof(struct aa)*length);

 /* Start building the KTV2 structure
 */
 for(i = 0;i<length;i++)
 {
 /* Get the position of the character at i
 */
 pos = data[i] - 97;

 /* Invalid character, exit the function
 */
 if(pos<0 || pos>26)
 {
 break;
 }
 /* Store the character
 */
 p[i].c = alpha[pos];
 /* Point the next pointer to NULL
 */
 p[i].next = NULL;

 /* If this character is not NULL in the postions array
 then store the address of this KTV nodes in the prev
 array
 */

106

 if(positions[pos].c != NULL)
 {
 prev[pos]->next = &p[i];
 }
 /* Otherwise assign the address to the corresponding
 character position index of the positions array
 */
 else
 {
 positions[pos].c = alpha[pos];
 positions[pos].next = &p[i];
 }
 /* Update the prev position
 */
 prev[pos] = &p[i];
 }
 p[i].c=NULL;
 p[i].next = NULL;
}

/* Implementation of the Function KTV
 */
long int KTV(char *data, char *pattern)
{
 struct aa *current;
 long int occurances=0;
 long int index;
 int plength = strlen(pattern);

 /* Call the preKTV function with the text and length of it
 */
 preKTV(data,strlen(data));
 /* Start the timer for the search
 */
 start = MPI_Wtime();
 /* Using the postions array go to the first incidence of the
 first character in the pattern
 */
 current = positions[pattern[0]-97].next;
 while(current != NULL && (current+plength-1)->c !=NULL)
 {

107

 /* check the remaining characters of the pattern with the
 adjacent KTV structures
 */
 for(index = 1; index<plength;index++)
 {
 if(pattern[index] != *(current+index)->c) break;
 }
 /* If all the characters have been matched increment the
 number of occurances of the pattern
 */
 if (index == plength) occurances++;
 /* Move to the next incidence of the first character of the
 current pattern
 */
 current = current->next;
 }
 /* Stop the timer for the search
 */
 end = MPI_Wtime();
 /* Destroy the KTV2 strucutre
 */
 free(p);
 /* Return the occurances array
 */
 return occurances;
}

108

Appendix D
KPrime Program Listing

// KPrime_01.cpp - Kishore R Kattamuri
// MS(CS) Thesis - Florida Tech

/* Required include files
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mpi.h"

/* This is the text in which the search is performed
 */
#define inFile "Chromosome01.txt"
/* This is the file which contains patterns
 */
#define serFile "patterns.txt"
/* This is the text file which is stored on the nodes
 */
#define inFile2 "/scr/Chromosome01.txt"
/* Maximum size of the pattern
 */
#define MAX_PAT_SIZE 255

/* This array will hold number of Occurances
 */
long int *totaloccurances;

/* Various variables required for timing the search
 */
double start,end,startmain,endmain,swatch;

/* prime numbers for characters with ascii code from 96 to 122
 */
int primes[]={1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,
 59,61,67,71,73,79,83,89,97,101};

109

/* number of patterns
 */
int pCount;
/* length of the largest pattern
 */
int pLength;
/* values of all the characters in the pattern
 */
long int **pValue;
/* following array has the first occuring pattern number
 */
int **pRowOccurances;
/* holds the multiplied values of the patterns
 */
long int *mValue;
/* temporary values holder
 */
int *tmpValue;

/* Stores the patterns
 */
char **patterns;

/* Function used to multiply the prime values of the characters
 in the pattern
 */
void multiplyValues()
{
 int i;
 int j;

 for(i=0;i<pCount;i++)
 if (tmpValue[i]==1)
 for(j=0;j<pLength;j++)
 mValue[j]= (i==0) ? pValue[i][j] :
 (((mValue[j] % pValue[i][j]) == 0)
 ? mValue[j] : (mValue[j] * pValue[i][j]));

}

110

/* Function to read patterns from the file passed
 as argument into the variable Patterns
 */
void readPatterns(char file[])
{

 FILE *filename = fopen(file,"r");
 int i = 0,j,k,tpLength;

 /* Allocating enough memory
 */
 patterns = (char **)malloc(sizeof(char *)*1);
 patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE);

 /* Reading pattern one and storing it
 */
 fgets(patterns[i],MAX_PAT_SIZE,filename);
 patterns[i][strlen(patterns[j])-1]='\0';

 /* Intialise the pLength
 */
 pLength = strlen(patterns[i]);

 /* Reading rest of the patterns
 */
 while(!feof(filename))
 {
 i++;
 patterns = (char **)realloc(patterns,sizeof(char *)*(i+1));
 patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE);
 fgets(patterns[i],MAX_PAT_SIZE,filename);
 patterns[i][strlen(patterns[i])-1]='\0';

 /* Updating pLength depending on the length of the current
 pattern read
 */
 pLength
 = (pLength < strlen(patterns[i]))
 ? strlen(patterns[i]) : pLength;
 }
 pCount = i;
 patterns[pCount]=NULL;

111

 fclose(filename);
}

/* Implementation of the function preKPrime
 */
long int* preKPrime()
{
 int i=0;
 int j=0;
 long int *Occurances;

 /* Allocate memory
 */
 pValue =(long int **)malloc(sizeof(long int *)*pCount);
 pRowOccurances = (int **)malloc(sizeof(int *)*27);
 Occurances = (long int *)malloc(sizeof(long int *)*pCount);
 /* Intialise the second dimension of the pRowOccurances
 */
 for(i=0;i<27;i++)
 {
 pRowOccurances[i] = (int *)malloc(sizeof(int)*pLength);
 Occurances[i]=0;
 for(j=0;j<pCount;j++)
 pRowOccurances[i][j]=0;
 }
 /* Intiailise the mValue array
 */
 mValue =(long int *)malloc(sizeof(long int)*pLength);

 /* Store the first Occurances of the characters in all the
 patterns we are searching
 */
 for(i=0;i<pCount;i++)
 {
 pValue[i] = (long int *)malloc(sizeof(long int)*pLength);
 pRowOccurances[patterns[i][0]-96][i]=1;
 for(j=0;j<pLength;j++)
 {
 pValue[i][j]=primes[patterns[i][j]-96];
 mValue[j] = 1;
 }
 }

112

 return Occurances;
}

/* Implementation of the KPrime function
 */
long int* KPrime(char *str,int mode)
{
 char *mainString;
 long int i=0, j=0, k=0, tmp1=0, adjustment=0;
 long int count=0;
 long int Value,Start;
 long int stringlen=0;
 long int *occurances;

 /* Call the preKprime function
 */
 occurances = preKPrime();

 tmpValue = (int *)malloc(sizeof(int)*pCount);

 stringlen= strlen(str);

 /* if mode = 0 allocate the memory and store the
 text in the mainString
 */
 if (mode == 0)
 {
 mainString = (char *)malloc(sizeof(char)*(stringlen));
 strcpy(mainString,str);
 }
 /* else pad the aminString to make it multiple of the lagest pattern size
 */
 else
 {
 mainString = (char *)malloc(sizeof(char)*(stringlen+pLength-1));
 strcpy(mainString,str);
 for(i=0;i<(pLength-1);i++)
 strcat(mainString,"`");
 }
 stringlen= (long int)strlen(mainString);

113

 /* while not the end is reached continue the search
 */
 while((k+(pLength)-1) < stringlen)
 {
 for(j=0;j<pCount;j++)
 tmpValue[j]= pRowOccurances[mainString[k]-96][j];

 for(j=0;j<pLength;j++)
 mValue[j]=1;

 multiplyValues();

 /* Check how many patterns are active in the search
 */
 for(i=0,count=0;i<pLength && count < 2;i++)
 count += (tmpValue[i] == 1) ? 1 : 0;

 switch(count)
 {
 /* If the patterns left is one

 */
 case 1:
 for(i=0;i<pLength;i++)
 if (mValue[i] != 1)
 if ((mValue[i] % primes[mainString[k+i]-96]) != 0)
 break;
 if (i == pLength)
 for(i=0;i<pCount;i++)
 if (tmpValue[i]==1)
 {
 occurances[i] += 1;
 break;
 }
 break;
 /* If no patterns then go to next character
 */
 case 0:
 break;

114

 /* if more than one pattern is active in the search
 */
 default:
 for(i=0;i<pLength-1;i++)
 {
 if (mValue[i] != 1)
 if ((mValue[i] % primes[mainString[k+i]-96]) != 0)
 break;
 Value = mainString[k+i+1]-96;
 Start = i+1;
 for(j=0;j<pCount;j++)
 tmpValue[j] = (tmpValue[j] == 0) ? 0
 : (((pValue[j][Start] ==
 primes[Value])|| pValue[j][Start] == 1)
 ? 1 : 0);
 multiplyValues();
 }
 if (i == pLength-1)
 for(i=0;i<pCount;i++)
 if (tmpValue[i]==1)
 occurances[i] += 1;
 break;

 }
 k++;
 }
 return occurances;
}

/* Function to get the filesize of the passed parameter file
 */
long int getFileSize(char file[])
{
 long int size;
 FILE *filename = fopen(file,"r");
 fseek(filename,0,SEEK_END);
 size = ftell(filename);
 fclose(filename);
 return size;
}

115

/* Function to calculate the size to be read by each node
 along with the overlap
 */
long int* getOptimumSizeToRead(long int mainFileSize,
 int processors,
 long int overlap)
{
 long int* optimumSize;
 long int tempSize;
 long int estimate;
 long int tmpProcs;
 int counter;

 if (processors < 1) return 0;
 tempSize = mainFileSize;
 estimate = (tempSize % processors == 0)
 ? (tempSize / processors)
 : (tempSize / processors) + 1;
 tmpProcs = tempSize / estimate;
 optimumSize = (long int *)malloc(sizeof(long int) * processors);
 tempSize = tempSize - estimate;
 optimumSize[0] = estimate;
 for(counter=1;counter<processors;counter++)
 {
 optimumSize[counter] = (counter<=tmpProcs)
 ? estimate + overlap : 0;
 }

 return optimumSize;
}

/* Function to caluclate the overlap
 */
long int getOverlap(long int size)
{
 return size - 1;
}

/* The main function of the program
 */
main(int argc, char* argv[])
{

116

 /* Required variables
 */
 int my_rank;
 int p;
 int source;
 int dest;
 int tag=0;
 char message[1000];
 char num[1000];
 MPI_Status status;
 FILE *fp;
 char *searchstring;
 char *docstring;
 long int occur=0;
 long int sizefile;
 long int overlap;
 long int *optimumSize;

 long int *Occurances;
 int i;

 /* Initialising the MPI environment variables
 */
 MPI_Init(&argc,&argv);
 /* Start Timer for the complete program
 */
 startmain=MPI_Wtime();
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 /* Read the patterns and calculate filesizes
 */
 readPatterns(serFile);

 sizefile = pLength;
 overlap = getOverlap(sizefile);
 sizefile = getFileSize(inFile);

 /* Estimate the optimum size for each node
 */
 optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap);

117

 /* If the process is not being run on parent Node
 */
 if(my_rank != 0)
 {
 fp = fopen(inFile2,"r");
 docstring = (char *)malloc
 ((optimumSize[my_rank-1]+1)*sizeof(char));
 /* If the node is first in the current node set the
 filepointer to position 0
 */
 if (my_rank == 1)
 {
 fseek(fp,0,SEEK_SET);
 }
 /* Otherwise set it to Optimum size times the node rank
 */
 else
 {
 fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET);
 }
 /* Read the text data into docstring
 */
 fgets(docstring,optimumSize[my_rank-1]+1,fp);

 /* if the node is the last one in the set
 */
 if((p-1) == my_rank)
 {
 start=MPI_Wtime();
 /* Do the search in mode 1 and catch the results in Occurances array
 */
 Occurances = KPrime(docstring,1);
 end=MPI_Wtime();
 }
 /* otherwise
 */
 else
 {
 start=MPI_Wtime();
 /* Do the search in mode 0 and catch the results in Occurances array
 */
 Occurances = KPrime(docstring,0);

118

 end=MPI_Wtime();
 }

 /* Store the values in the message array
 */
 sprintf(message,"%ld",Occurances[0]);
 for(i=1;i<pCount;i++)
 sprintf(message,"%s %ld",message, Occurances[i]);
 /* Append the time taken to the message array
 */
 sprintf(message,"%s %f",message, end-start);
 /* Set the destination to parent node
 */
 dest=0;
 fclose(fp);
 /* Send the message array to the parent node
 */

MPI_Send(message,strlen(message)+1,MPI_CHAR,dest,tag,MPI_COMM_WORL
D);
 }
 /* If the process is being run on parent Node
 */
 else
 {
 /* Allocate memory to the totaloccurances array
 */
 totaloccurances = (long int *)malloc(sizeof(long int)*pCount);
 /* Initialise all the values to 0
 */
 for(i=0;i<pCount;i++)
 totaloccurances[i] = 0;

 /* For all the nodes in the node set except the parent node
 recieve the message array sent by them and process them
 accordingly
 */
 for(source=1;source<p;source++)
 {
 MPI_Recv(message,1000,

 MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);
 printf("Processor with Rank : %2d %s\n",source,message);

119

 /* Update the total occurances
 */
 totaloccurances[0] += atol(strtok(message," "));
 for(i=1;i<pCount;i++)
 totaloccurances[i] += atol(strtok(NULL," "));
 /* Store the time taken in swatch
 */
 swatch += atof(strtok(NULL," "));
 }
 /* Stop the timer for the complete program
 */
 endmain=MPI_Wtime();
 /* Print the results to the standard output
 */
 for(i=0;i<pCount;i++)
 printf("Total Occurances of %s : %ld\n",
 patterns[i],totaloccurances[i]);
 printf("Total Time for Searching : %f\n",swatch);
 printf("Total Time for Execution : %f\n",endmain-startmain);
 }
 /* Close the MPI environment
 */
 MPI_Finalize();
}

120

Appendix E
KTV2 Program Listing

// KTV2_01.cpp - Kishore R Kattamuri
// MS(CS) Thesis - Florida Tech

/* Required include files
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mpi.h"

/* This is the text in which the search is performed
 */
#define inFile "Chromosome01.txt"
/* This is the file which contains patterns
 */
#define serFile "patterns.txt"
/* This is the text file which is stored on the nodes
 */
#define inFile2 "/scr/Chromosome01.txt"
/* Maximum size of the pattern
 */
#define MAX_PAT_SIZE 255

/* Predeclaration of the preKTV
 */
void preKTV2(char *, long int);

/* Predeclaration of the KTV2
 */
long int KTV2(char *, char *);

121

/* Definition of KTV2 structure
 */
struct aa
{
 char *c;
 struct aa *next;
};

/* The KTV2 structure array which is built in the preKTV
 */
struct aa *p;

/* Positions array
 */
struct aa positions[26];

/* Temporary array to hold the previous occurance of
 the character
 */
struct aa *prev[26];

/* Alpha array which holds all the available characters
 in the text under tes
 */
char *alpha[26]={
 "a","b","c","d",NULL,NULL,"g","h",NULL,NULL,"k",
 NULL,"m","n",NULL,NULL,NULL,"r","s","t","u","v",
 "w",NULL,"y",NULL};

/* This array will hold number of Occurances
 */
long int *totaloccurances;

/* Various variables required for timing the search
 */
double start,end,startmain,endmain,swatch;

/* Number of patterns used for search
 */
int pCount;

122

/* Patterns used for search
 */
char **patterns;

/* Maximum pattern length read
 */
int pLength;

/* Function to read patterns from the file passed
 as argument into the variable Patterns
 */
void readPatterns(char file[])
{

 FILE *filename = fopen(file,"r");
 int i = 0,j,k,tpLength;

 /* Allocating enough memory
 */
 patterns = (char **)malloc(sizeof(char *)*1);
 patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE);

 /* Reading pattern one and storing it
 */
 fgets(patterns[i],MAX_PAT_SIZE,filename);
 patterns[i][strlen(patterns[j])-1]='\0';

 /* Intialise the pLength
 */
 pLength = strlen(patterns[i]);

 /* Reading rest of the patterns
 */
 while(!feof(filename))
 {
 i++;
 patterns = (char **)realloc(patterns,sizeof(char *)*(i+1));
 patterns[i] = (char *)malloc(sizeof(char)*MAX_PAT_SIZE);
 fgets(patterns[i],MAX_PAT_SIZE,filename);
 patterns[i][strlen(patterns[i])-1]='\0';

123

 /* Updating pLength depending on the length of the current
 pattern read
 */
 pLength
 = (pLength < strlen(patterns[i]))
 ? strlen(patterns[i]) : pLength;
 }
 pCount = i;
 patterns[pCount]=NULL;
 fclose(filename);
}

/* Function to get the filesize of the passed parameter file
 */
long int getFileSize(char file[])
{
 long int size;
 FILE *filename = fopen(file,"r");
 fseek(filename,0,SEEK_END);
 size = ftell(filename);
 fclose(filename);
 return size;
}

/* Function to calculate the size to be read by each node
 along with the overlap
 */
long int* getOptimumSizeToRead(long int mainFileSize,
 int processors,
 long int overlap)
{
 long int* optimumSize;
 long int tempSize;
 long int estimate;
 long int tmpProcs;
 int counter;

 if (processors < 1) return 0;
 tempSize = mainFileSize;
 estimate = (tempSize % processors == 0)
 ? (tempSize / processors)
 : (tempSize / processors) + 1;

124

 tmpProcs = tempSize / estimate;
 optimumSize = (long int *)malloc(sizeof(long int) * processors);
 tempSize = tempSize - estimate;
 optimumSize[0] = estimate;
 for(counter=1;counter<processors;counter++)
 {
 optimumSize[counter] = (counter<=tmpProcs) ? estimate + overlap : 0;
 }

 return optimumSize;
}

/* Function to caluclate the overlap
 */
long int getOverlap(long int size)
{
 return size - 1;
}

/* The main function of the program
 */
main(int argc, char* argv[])
{
 /* Required variables
 */
 int my_rank;
 int p;
 int source;
 int dest;
 int tag=0;
 char message[1000];
 MPI_Status status;
 FILE *fp;
 char *searchstring;
 char *docstring;
 long int occur=0;
 long int sizefile;
 long int overlap;
 long int *optimumSize;
 long int *Occurances;

125

 /* Initialising the MPI environment
 */
 MPI_Init(&argc,&argv);
 /* Start Timer for the complete program
 */
 startmain=MPI_Wtime();
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 /* Read the patterns and calculate filesizes
 */
 readPatterns(serFile);
 sizefile = pLength;
 overlap = getOverlap(sizefile);
 sizefile = getFileSize(inFile);

 /* Estimate the optimum size for each node
 */
 optimumSize = getOptimumSizeToRead(sizefile,p-1,overlap);

 /* If the process is not being run on parent Node
 */
 if(my_rank != 0)
 {
 /* Open the text file and allocate memory to docstring
 */
 fp = fopen(inFile2,"r");
 docstring = (char *)malloc ((optimumSize[my_rank-1]+1)*sizeof(char));
 /* If the node is first in the current node set the
 filepointer to position 0
 */
 if (my_rank == 1)
 {
 fseek(fp,0,SEEK_SET);
 }
 /* Otherwise set it to Optimum size time the node rank
 */
 else
 {
 fseek(fp,(((my_rank-1)*optimumSize[0])-(overlap)),SEEK_SET);
 }

126

 /* Read the text data into docstring
 */
 fgets(docstring,optimumSize[my_rank-1]+1,fp);
 /* Do the search and catch the results in Occurances array
 */
 Occurances = KTV2(docstring);
 /* Store the values in the message array
 */
 sprintf(message,"%ld",Occurances[0]);
 for(i=1;i<pCount;i++)
 sprintf(message,"%s %ld",message, Occurances[i]);
 /* Append the time taken to the message array
 */
 sprintf(message,"%s %f",message, end-start);
 /* Set the destination to parent node
 */
 dest=0;
 fclose(fp);
 /* Send the message array to the parent node
 */
 MPI_Send(message,strlen(message)+1,

MPI_CHAR,dest,tag,MPI_COMM_WORLD);
 }
 /* If the process is being run on parent Node
 */
 else
 {
 /* Allocate memory to the totaloccurances array
 */
 totaloccurances = (long int *)malloc(sizeof(long int)*pCount);
 /* Initialise all the values to 0
 */
 for(i=0;i<pCount;i++)
 totaloccurances[i] = 0;
 /* For all the nodes in the node set except the parent node
 recieve the message array sent by them and process them
 accordingly
 */
 for(source=1;source<p;source++)
 {
 MPI_Recv(message,1000,

MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);

127

 printf("Processor with Rank : %2d %s\n",source,message);

 /* Update the total occurances
 */
 totaloccurances[0] += atol(strtok(message," "));
 for(i=1;i<pCount;i++)
 totaloccurances[i] += atol(strtok(NULL," "));
 /* Store the time taken in swatch
 */
 swatch += atof(strtok(NULL," "));
 }
 /* Stop the timer for the complete program
 */
 endmain=MPI_Wtime();
 /* Print the results to the standard output
 */
 for(i=0;i<pCount;i++)
 printf("Total Occurances of %s : %ld\n",
 patterns[i],totaloccurances[i]);
 printf("Total Time for Searching : %f\n",swatch);
 printf("Total Time for Execution : %f\n",endmain-startmain);
 }
 /* Close the MPI environment
 */
 MPI_Finalize();
}

/* Impelementation of Function preKTV2
 */
void preKTV2(char *data, long int length)
{
 long int i;
 int pos;

 /* Allocate memory to the KTV2 structure variable p
 */
 p = (struct aa *)malloc(sizeof(struct aa)*length);

 /* Start building the KTV2 structure
 */
 for(i = 0;i<length;i++)
 {

128

 /* Get the position of the character at i
 */
 pos = data[i] - 97;

 /* Invalid character, exit the function
 */
 if(pos<0 || pos>26)
 {
 break;
 }
 /* Store the character
 */
 p[i].c = alpha[pos];
 /* Point the next pointer to NULL
 */
 p[i].next = NULL;

 /* If this character is not NULL in the postions array
 then store the address of this KTV nodes in the prev
 array
 */
 if(positions[pos].c != NULL)
 {
 prev[pos]->next = &p[i];
 }
 /* Otherwise assign the address to the corresponding
 character position index of the positions array
 */
 else
 {
 positions[pos].c = alpha[pos];
 positions[pos].next = &p[i];
 }
 /* Update the prev position
 */
 prev[pos] = &p[i];
 }
 p[i].c=NULL;
 p[i].next = NULL;
}
/* Implementation of the Function KTV2
 */

129

long int KTV2(char *data, char **pattern)
{
 struct aa *current;
 long int *occurances;
 long int index;
 int plength;

 /* Call the preKTV2 function with the text and length of it
 */
 preKTV(data,strlen(data));
 /* Start the timer for the search
 */
 start = MPI_Wtime();
 /* Allocate memory to the occurances array
 */
 occurances =(long int *)malloc(sizeof(long int)*pCount);
 /* For each pattern in the patterns array do the search
 */
 for(i=0;i<pCount;i++)
 {
 occurances[i]=0;
 plength = strlen(pattern[i]);
 /* Using the postions array go to the first incidence of the
 first character in the current pattern
 */
 current = positions[pattern[i][0]-97].next;

 /* while the current is not NULL and not reached the end of the
 KTV structure
 */
 while(current != NULL && (current+plength-1)->c !=NULL)
 {
 /* check the remaining characters of the pattern with the
 adjacent KTV structures
 */
 for(index = 1; index<plength;index++)
 {
 pattern[i][index] != *(current+index)->c) break;
 }
 /* If all the characters have been matched increment the
 number of occurances of the current pattern
 */

130

 if (index == plength)
 occurances[i]=occurances[i]+1;
 /* Move to the next incidence of the first character of the
 current pattern
 */
 current = current->next;
 }
 }
 /* Stop the timer for the search
 */
 end = MPI_Wtime();
 /* Destroy the KTV2 strucutre
 */
 free(p);
 /* Return the occurances array
 */
 return occurances;
}

