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Abstract:  
In this work, we first have proposed a technique to define the “causes” of inconsistency on 
an online point based reasoning constraint network. Second, we introduce an algorithm that 
proposes the user a minimal set of relations to remove when inconsistencies are detected. 
We have developed and implemented a battery of algorithms for the purpose of this type of 
reasoning. Some useful theorems and properties are defined for proving the ‘minimal’ 
aspect of the algorithm. Finally, we found that our investigation was a polynomially 
solvable sub problem of the vertex cover problem. 
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1 - Introduction 
 
A constraint satisfaction problem (CSP) has typically three objectives. (1) It tries to detect 
if a problem instance is satisfiable or not, (2) in case the problem instance is satisfiable, it 
wants to find a solution, or all (or more than one) solutions, and (3) in case there exists 
some objective function associated to the problem, it tries to find a optimal or sub-optimal 
solution (constraint optimization problem). Any CSP algorithm would stop after detecting 
“inconsistency” in a problem instance, depending on the expected  level of consistency e.g., 
the (arc consistency, the k-consistency for integer k>=1, or global-consistency, etc.). 
However, in a practical situation it is somewhat frustrating for a user, and such a user 
would often like to know why the input is wrong/inconsistent. Works in the CSP literature 
have rarely addressed that issue.  
 
One of the reasons researchers avoided addressing the issue of detecting any “cause” for 
inconsistency is the ambiguity in identifying such a cause. For example, for a set of 
comparable objects a, b, and c, the information a<b, b<c, and c<a, is inconsistent (Figure 
1). There is no preferred constraint here that could be identified as the cause for 
inconsistency, any one of them could be declared as being responsible. However, if we 
have {a<b, b<c, b<d, d<e, e<a, c<a}, then the constraint a<b becomes a clear choice as the 
culprit (Figure 2). In this work, we have started an investigation on such issues of detecting 
the “reason” behind inconsistency. We have launched our research with a simple domain of 
point-based temporal reasoning that is tractable and is well understood in the literature. The 
objective here is to detect a minimal set of constraints that should be eliminated in order to 
restore consistency in an otherwise inconsistent problem instance. Also, our work picks up 



the problem of incremental reasoning (online problem) that is more applicable in real life 
situations, where information is gradually added to a database. 
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We expect our work on identifying the responsible set of constraints causing inconsistency 
in a problem instance will be very useful in the diagnosis area, for quite obvious reasons. 
Adding such a capability would enhance the user-friendliness of any CSP system and thus, 
enhance its usage. 
 
In the next section we introduce the problem of online interactive reasoning scheme with 
qualitative constraints between time-points. The algorithms for solving this problem are 
described in the subsequent section. That section also introduces our approach in defining 
the “causes” for inconsistency and an algorithm to find it. Following this is an example 
using our algorithm before turning to some useful theorem and properties used for the next 
section: the proof of the algorithm. A following section discusses the significance of this 
work in a more general framework than the incremental problem primarily addressed here 
and mentions our future directions. We have discussed some related works after that, and 
then concluded the paper. 
 
2 - Incremental Point-based Reasoning 
 
Point-based temporal reasoning constitutes the simplest form of spatio-temporal reasoning 
(Vilain and Kautz, 1986). The scheme has three basic relations {<, >, =} and the 
corresponding relational algebra is comprised of its power set that is closed under the 
traditional reasoning operators like composition, inverse, set union, and set intersection. 
Some recent works have shown interests in the point-based reasoning in one dimension 
with its incremental version (Mitra et al, 1999). In an incremental CSP a new object (a 
time-point) is inserted into a set of objects already committed in a space (a time-line), i.e., 
the new point is inserted within a sequence of points, satisfying the binary constraints 
between the new point and the old ones. The problem could be viewed as a database entry, 
where a consistency checking needs to be first performed before committing the entry 
operation. 
 



Mitra et al (1999) have found some interesting results in the point-based incremental 
reasoning problem. They have observed that a satisfiable region for a new point within a 
sequence of points would be either a null set of regions (inconsistent) or a contiguous 
region (an interval) possibly excluding some old points within the interval. They have 
utilized this property to devise an efficient algorithm for preprocessing before finding the 
actual valid regions for the new point satisfying the binary constraints.  
 
In this work we have attempted to attack the problem of finding the “cause” behind 
inconsistency when the latter is detected and have developed an algorithm for the purpose. 
We have adopted Mitra et al’s algorithm and extended for the purpose of first detecting the 
inconsistency in an incremental problem instance. The following is Mitra et al’s algorithm. 
 
Algorithm 1D (Mitra et al, 1999):  Scan the sequence of existing points from left to right on 
the time-line and their relationship/constraints with respect to the “new” node that is to be 
inserted (within the sequence, satisfying those constraints). Keep a status variable that 
keeps track of whether the left end (of the list of valid regions for the new point, or as it is 
called, the “box”) has been found, or an equality relation (new = xi) has been found, or the 
right boundary has been found. The “box” is found when the constraint from the new point 
to the current point xi changes from >, or >= to < or <=, for i running over all the old 
points. The inequality (<>) and the tautology (< = >) are ignored in this scan. A singleton 
equality relation is a hard constraint, making the box converge to that old point. After a 
“box” is found, if any constraint demands the new point to be outside the “box,” then an 
inconsistency would be detected, otherwise with a second scan over the “box” the 
algorithm would elicit the exact set of valid regions checking if the old points within the 
box themselves  are valid regions or not. For example, a set of valid region may be {[x5, 
x5], [x5, x6], [x6, x7], [x7, x7], [x7, x8]}, indicating that the new point may be assigned 
anywhere on the box [x5, x8) except on the points x6 and x8. 
 
On detection of inconsistency we run a second algorithm to find the conflict set between 
the constraints. In the next section we describe those issues. 
 
3 - Detecting Constraints Causing Inconsistency 
 
Many sets of constraints together could cause inconsistency, such that removal (or fixing) 
the constraints in this set would make the system consistent. We call this problem the 
“consistency restoration” problem and such a set of constraints as the “responsible set.” It 
is quite inconceivable that all the provided constraints need to be removed/fixed to solve 
the “consistency restoration” problem. Actually this assertion could be easily proved. A 
related question here is then which particular set we chose as a solution to the problem, and 
subsequently report to the user. Our proposal is that we choose a responsible set that is of 
minimal cardinality out of all possible responsible sets. We call such a minimal cardinality-
responsible set as the “minimal set” or MinSet. Of course, there could be more than one 
such minimal set with equal cardinality values, but we would like to find any one of them. 
 
Definition 1: The degree of conflict of a given constraint in a CSP is the number of other 
constraints that it conflicts with.  



 
If a system contains n constraints, then the degree of conflict for any constraint will be at 
most n-1, since a relation cannot conflict with itself, and at least 0. 
 
Example 1: Let S be a set of constraints S = {c1, c2, c3, c4, c5, c6}.                           

 

c1 c2 

c6 c3

c5 c4 
Figure 3 

 
Here, the degree of conflict for c1 is zero, since c1 does not conflict with any other 
constraint. The degree of conflict for c2 is three, for c3, c4 and c6 each it is one, and for c5 
it is two. Removing relation c2 and one of the relations between c5 and c4 would be 
enough to make the system consistent. Hence, {c2, c4} and {c2, c5} are both MinSets here, 
whereas {c6, c5, c3} is another responsible set that is not a MinSet. 
 
The following algorithm finds the conflict set for constraints and the corresponding degree 
of conflict for each constraint. 
 
Algorithm GenerateConflictSet (list of constraints between ‘new’ and the point-sequence) 
ConflictSet = null; 
For i =1 to N do DegreeOfConflict[i] = 0;  // N number of points in the sequence 
 
For each constraint ci from i =1 to N do      // for a relation (new ci xi) 
 for each constraint cj from j = i+1 to N do 
  if (ci is “<”, or “<=”, or “=”)  and (cj is “>”, or “>=”, or “=”) then 
   ConflictSet = ConflictSet U {(ci, cj)}; 
   DegreeOfConflict[i]++; 
   DegreeOfConflict[j]++; 
  end if; 
 
End Algorithm. 

 
This is obviously an O(N^2) algorithm. 
 
The problem of finding a minimal set of constraints removal/fixing of which would restore 
consistency in a system (constraint network) is solved by the following greedy algorithm. 
 



Algorithm FindMinset (ConflictSet, DegreeOfConflict) 
  Minset = empty;  // set of minimal nodes to be removed 
AggregateDegreeOfConflict = Sum over ConflictSet [DegreeOfConflict];  
 
  While AggregateDegreeOfConflict =/= 0  do      // O(N) 

Let c = a constraint with the maximum DegreeofConflict;   // O(N log N) 
Minset = Minset U {c}; 
for each element (c, ci) in ConflictSet do    // O(N) 

  ConflictSet = ConflictSet  -  (c,ci);   
DegreeOfConflict[c] = DegreeOfConflict[c] -1; 
DegreeOfConflict[ci] = DegreeOfConflict[ci] -1; 
AggregateDegreeOfConflict = AggregateDegreeOfConflict -2;  

 end for;  
  end while; 
  return Minset; 
End Algorithm. 
 
As shown with comments in the algorithm, O (N2 log N) is the asymptotic time complexity. 
The problem has a flavor of the well known “vertex cover” problem, and hence a 
polynomial algorithm is unlikely to be a complete algorithm in general (subject to P =/= 
NP). However, at least in the point-sequencing problem it could be easily shown that a 
graph generated over the conflict set (with nodes being the constraints and edges being the 
conflicting constraints) is a bipartite graph (see properties section). The vertex cover 
problem is tractable over bipartite graph and the above algorithm is a complete one in this 
situation. We will show this pattern in one of the following sections. 
 
4 - Implementation 
 
All the three algorithms mentioned here have been implemented with a graphical user 
interface to the software. It displays the valid regions (if consistent) on the time-line with 
the existing point-sequence, and allows the user to commit the new point on one of the 
valid regions interactively. Then it goes to the next iteration for accepting the next new 
point. In case of detecting inconsistency it runs the third algorithm FindMinset and dumps 
the Minset for any possible corrective action by the user. 
For the sake of our investigation, we developed a program implementing both algorithms 
described above. A graphical interface allows the user to add points in an online fashion, 
and at each new point, the system reacts giving the user the informationabout consistency. 
 
 



 
 
 
The interface shows the time line basis and a set 
of buttons allowing the user to Add a new point, 
load a pre-computed example, or reset the 
current database. 

 
 
 
 
At each stage, if the system is consistent the 
program tells the user what is the valid set to 
insert the new point and highlights this set on the 
time line base. 

 
 
In case of inconsistency, the program suggests 
the user a minimal set of relations to remove 
from the previous query in order to make the 
system consistent. 

 
  

 
5 - Notations 
 
 S = set of all relations making the system inconsistent 
 n = number of relations in S 
 Ri = Relation with index I. Typically,  1 < i < n 
 I = a set of minimal relation to remove in order to make the system consistent 



mi = degree of inconsistency of relation Ri 
∑ mi(S) = Sum of all degree of inconsistency of the set S 
∑ mi (I) = Sum of all degree of inconsistency of the set I (each mi (I) is set 
whenever Ri is added to I ) 
N = number of pairs of relations conflicting with each other in a set S 
Ri * Rj = Relation Ri conflicts with relation Rj. 

 
 
Given a set of relations generating inconsistency S = { R1, R2, …, Rn}. Let’s suppose n is 
the number of relations conflicting with each others.  
 
1) R1 * Ri 
2) Rj * Rk 
…. 
n) Rn-1* Rn 
 
*Each one of these relations has its own degree of inconsistency. 
 
*If n = 0, ∑ mi(S) = 0, then the relation is consistent. 
 
*Each relation R in the set conflicts with at least one other relation in the set. The number 
of relation this relation R conflicts with defines the ‘degree of inconsistency’ of a given 
relation. Thus, that number will be at most n-1, since a relation cannot conflict with itself, 
and will be at least one. 
 
6 - Some Theorems and properties 
 
Property 1: 
Considering a set S = {R1, .. ,Rn} where Ri is a relation making a system inconsistent, and 
mi is the degree of inconsistency of Ri (as defined above). Then the number of conflicting 
pairs is 
 

  N = ∑ mi(S)/2   
 
 
 (∑ mi(S) will always be an even number, since inconsistent relations are exists by pairs ) 
  
Proof: 
Every time a relation appears in a pair of conflicting relation, both relations have their 
inconsistency degree increased by one, hence the sum of all inconsistency degree is twice 
the number of conflicting pairs. (Trivial proof) 
 
Property 2: 
If  

    ∑ mi (I) >= N, the system is consistent    
 



With mi (I) being the inconsistency degree of relation Ri when it is added to the set I, and N 
being the number of initial conflicting pairs in S. 
Note that ∑ mi (I) = N is a sufficient condition for the system to be consistent. Moreover, in 
our algorithm, ∑ mi (I) will never be greater than N, since the goal of our investigation is to 
find a minimal set of conflicting relations. 
 
Proof: 
Removing a relation Ri will also remove exactly one instance of each relation that 
previously conflicted with Ri. So, the sum of inconsistency degree of S will be lowered by 
2*mi. Recall that when ∑ mi(S) reaches 0, the system is consistent. So, if  
2* ∑ mi (I) = ∑ mi(S), the system is consistent; ∑ mi (I) = ∑ mi(S)/2 =N 
 
Lemma 1: 
From properties 1 and 2, we can conclude that if  
 
     ∑mi(I) >= ∑mi(S)/2, the system is consistent    
 
Inversely, if ∑mi(I) < ∑mi(S)/2, then the system is not consistent. 
 
 
 
From this point onward in the paper, we will handle inconsistencies caused by equalities as 
a different case. 
 
Property 3: 
The set S is a bipartite graph. Therefore, it can be divided into two sub graphs such that: 
 

  S is a bipartite graph with two partitions S1 and S2   
 
 
Where no node of Sk is connected with another node of Sk. 
 
Proof: 
Whenever an element is added to S, it is conflicting with another element in S. let us call 
these two elements V1 and V2. Then, either: 
V1 (> or >=) V2 OR V1 (< or <=) V2. According to their relation with each other, V1 and V2 
will be stored in their respective bipartite sub graph. 
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Property 4: 
If either  
 

|S1| = 0 or |S2| = 0, then both |S1| = 0 and |S2| = 0, therefore the system is consistent 
 
Similarly, |S1| or |S2| = 0 is a sufficient condition for |S| = 0. 
 
Proof: 
If S1 or S2 is empty, then the graph S is totally disconnected and no conflicting constraint 
remains, hence |S| = 0. 
 
Property 5: 
 
The element with the highest number of edges of each bipartite sub graph is 
connected with all elements of the other sub graph. 
 
Proof: 
The element with highest inconsistency degree in each sub graph is on the right most 
position for the element of the ‘>’ partition (none can be greater) and on the left most 
position for the ‘<’ partition (none can be smaller). 



Bunch of points 
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Conflicts with all ‘>’ 
relations 

Conflicts with all ‘<’ 
relations 

Theorem 1: 
 
The set of edges of each element in one sub graph is the subset of all the set of edges of 
each element with degree equal or greater than this element. 
 
Proof: 
From property 5, we know that all elements in one sub graph S1 are connected with the 
element with the highest number of adjacent edge of the other sub graph S2. Therefore, any 
set of edges of any element in S2 with a degree smaller or equal to the highest one in S2 will 
be a subset of the set of edges of the element with highest degree. 
If we now remove this element from S2 (highest number of adjacent edges), the second 
element with highest number of adjacent edges in S2 becomes the one with highest number 
of adjacent edges. Thus, all other set of edges of all other relations will be subsets of the set 
of edges of the ‘new’ relation with highest number of edges. This can be applied until there 
remains only one element in the sub graph. Inversely, all set of edges of any elements in S1 
with degree less than or equal to the element with highest inconsistency degree is a subset 
of the set of edges of the element with highest inconsistency degree.  
 
Property 6: 
 
Each time a relation is chosen by Algorithm 1, it has a number of adjacent edges of 
exactly: Max (|S1|,| S2|) 
 
Proof: 
The element with the highest number of adjacent edges is the element in the smaller sub 
graph and is connected with all elements of the bigger sub graph. 
 
Adding equality  
 
 
Property 7: 
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Inconsistencies involving equality can be spitted in two sub relations, each of which appear in 

its respective sub graph and do not change the nature of the bipartite graph. 
 
 
In order to add equality, keeping the properties of a bipartite graph, we split equality as if it was two 
different conflicts in the bipartite graph as well as 2 different points on the same line. In other words, 
for (new = xi) we replace it with (new <= xi1) and (new >= xi2) where xi1 and xi2 are the two names 
for the same point xi2. The two constraints go to two different partitions of the conflict graph. Each 
equality relation is composed of two sub relations: <= and >=. Each sub point will be stored in its 
respective sub graph. Therefore, all relation can be thought in terms of two partitions: “<”and“>”. 
The “<”partition includes the following relations: {<, <=, and the <= part of the equality}. 
The “>”partition includes the following relations: {>, >=, and the >= part of the equality}. 
 



If the two partitions of every = relations are thought as an element of one of the two sub graphs 
formed by the bipartite graph, then all properties hold for all the relations, including equality. 
Recall that <=> never creates inconsistency, and since multiple point assignment is not allowed (xi = 
xnew and xi > xnew is not allowed), <> neither will create inconsistency.  
 
Property 8: 
 
  The maximum sufficient number of elements to remove to make the system consistent is 

<= Min (|S1|, |S2|)   
 

Proof: 
At most, removing the entire smallest set will remove inconsistency (bipartite graph) 
 
Lemma 8: 

        Algorithm 1 finishes with a set |I| <= Min (|S1|, |S2|)         
 
Proof: 
From property 6, we know that each time algorithm 1 chooses a relation, it is the one 
conflicting with Smax = Max(|S1|, |S2|). Then Algorithm 1 chooses a relation in Smin  = 
Min(|S1|, |S2|). After each step, exactly one relation is removed from Smin, and some 
relation(s) may be removed from Smax. Then, either Smax becomes less than Smin, in 
which case the next element to be picked up will be in Smax, or Smin still the minimal set, 
and the next element will be picked up in it. At most, Smin still all along the minimal set, 
and will be totally removed by successive choices of algorithm 1. 
 
 
 
Property 9: 
 
This is not a strong or correct proof, but this fact has to be mentioned since it could become a crucial 
issue to prove algorithm FindMinSet in the future. 
 

Two different sets I1a and I1b found with algorithm 1 have the same minimal 
cardinality for a given input: 

 
The goal is to obtain min |I| by removing Max (S1, S2) at each stage until the number of 
connecting edges reaches 0. Two sets found with algorithm 1 will not necessarily have the 
same set of elements. If at any stage, a tie occurs between two elements in Max (S1, S2), or 
if |S1| = |S2|, then the algorithm has the choice among several elements to remove. 
Let us consider these two cases separately. 
First, if two elements are tied in Max(S1, S2): R1 and R2 (R1, R2 ε Si), then both elements 
will be picked up by the algorithm in any order. 
Second, if at any stage |S1| = |S2|, R1 is element max in S1, and R2 is element max in S2. 
removing R1 will possibly make |S1| < |S2|, then at the next stage, R2 will be picked up. 
Otherwise, it could make |S1| > |S2|, meaning that removing R1 removed also at least 2 
elements in S2. Then the next element to be picked up will be in S2. 



 
7 - An example running the algorithm FindMinSet 
 
Consider the set S = {R1, R2, R3, R4, R5} with the following rule of conflict (note that it 
contains 7 pairs, so ∑ mi(S) will be 14): 

 
R1 * R2 
R1 * R3 
R1 * R4 
R1 * R5 
R2 * R4 
R2 * R5 
R3 * R4 

 
Then, the corresponding inconsistency degree <Ri> will be: 

 
<R1> =  4 
<R2> =  3 
<R3> =  2 
<R4> =  3 
<R5> =  2 

 
Our algorithm chooses R1 and adds it to the set I, ∑ mi (I) = 4, and the corresponding 
inconsistency degree <Ri> becomes: 
 

<R2> =  2 
<R3> =  1 
<R4> =  2 
<R5> =  1 

 
Now, we can either add R2 or R4 to I since they have the same inconsistency degree.  Lets 
choose R4. Now ∑ mi (I) = 4 + 2 = 6, we then obtain:  
 

<R2> =  1 
<R5> =  1 

 
We now can remove either R2 or R5 since, once again, they have the same degree of 
inconsistency (choose R2). 
 ∑mi(I) = 6 + 1 = 7 which is equal to the original number of pairs. The system is now 
consistent and a minimal set I = {R1, R4, R2} is now found. 
 
8 - Proof of the algorithm FindMinSet 
 
Last Update of the proof :(11/19/03) 
Proof direction 1: 
*Consistent: 



When the algorithm finishes, n = 0 and S is empty. When S is empty, every inconsistent 
relation have been removed, consequently, the system becomes consistent.  
 
* Minimal: 

Assumption:                                                                                                                                              
 
There exist a minimal set of relations I2 within an inconsistent system to remove to regain 
consistency, which contains less elements than I1. 
The set of constraints to remove from an inconsistent system found by Algorithm 1 is not 
unique. In fact, Algorithm 1 proposes one of theses set if it exists. The choice of this set 
depends on the ordering of the variables as algorithm one picks the first occurrence of 
maximal conflict based cardinality within the set of all inconsistent relations. Hence, 
according to the constraint ordering, Algorithm 1 may find different sets with same 
cardinality (minimal). Let us call the set of all different sets possibly found by Algorithm 1: 
GI = {I1a, I1b, I1c, ...} 
No proper subset of any set found by Algo 1 can make the system consistent; hence, I2 is 
not a proper subset of I1i for any i (1 ≤ i ≤ | GI |). 
S1, and S2 are the sets held by the two subset of the bipartite set before the algorithms run. 
(original bipartite sets) 
s1, and s2 are the sets held by the two subset of the bipartite set while the algorithms are 
running. (dynamic bipartite sets) 
 

Proof: 
 
At one time, |s1| ≠ |s2| and Algo1 will pick the element with highest inconsistency degree, 
but I2 will not in order to have a different set from I1. Since the element picked by Algo1 is 
connected with all elements of the other set of the bipartite graph, Algo2 MUST pick all 
elements of this last set MAX(s1, s2) (ie, the set with the highest number of elements). But 
from property 8, removing MIN(s1, s2) is enough to have the bipartite graph totally 
disconnected. Therefore, the previous assumption is false, leading the proof to a 
contradiction. 
 

Sj Si 

 

Sxz ElmtI1
I1 = {  .   .   .      ElmtI1    . } Rk1

Rk2

… 
 

Rkk

… 
Sxz 

I2 = {  .   .   .          .   .   .}               ………... … 

If I2 does not pick ElmtI1, it has to pick the whole set Sxz 



 
9 –Interval Algebra 
 
Discussion about ORD-Horn cases: 
 
 Search for inconsistency and for minimal set to remove to get consistency back can 
be done in polynomial time when the set of constraints being involved belong to the class 
of ORD-Horn relations. 
ORD-Horn algebra is the maximal tractable subset of Allen algebra containing all 13 basic 
relations. It can always be expressed in a conjunctive normal form where each literal 
contains at most one relation of the type <= or =, and any number of relations of type /=. 
 
Relation with Allen’s algorithm  
 
(A new proof of Tractability for ORD-Horn Relations, Ligozat) 
Important clauses about ORD-Horn cases: 

1. A constraint network with labels in the ORD-Horn class is consistent if and only if 
it is path consistent. 

2. The class of ORD-Horn relations is the maximal sub-class of Allen’s algebra 
containing the atomic relations, closed by non-empty intersection, conversion and 
composition, which is tractable. 

3. The class of ORD-Horn relations is defined as the set of relations that can be 
represented by Horn clauses involving beginning and end points. 

 
Simple application of interval algebra problems: 
 
While investigating on a crime that has been committed, inspector Harry gets the following 
facts from the three witnesses (A, B and C) that were present during the scene: 

• A left when C arrived 
• B arrived and left before C arrived 
• B left after A arrived, and before A left. 

Inspector Harry knows that one and only one of the witnesses lies and committed the 
crime.  
Just before giving up, a new witness (D) appears and tells inspector Harry the following 
facts: 

• B left when D arrived 
• D arrived before A arrived, and left before A left 
• D left when C arrived. 

This simple problem can be solved intuitively, but may lead to major errors when solving 
larger problems. The algorithms presented at the end of this section however would easily 
solve this kind of problems, and of course much larger problems, by minimizing the 
number of relations to be taken apart. 
 
 
Relation between Point and Interval algebra: 
 



Do point algebra algorithms can be applied to interval relations? 
This is the case when dealing with ORD-Horn relations as far as Interval algebra is 
concerned. However, the problem of finding consistency for interval algebra is obviously 
more complex than for point algebra since interval has 13 basic relations against 5 for point 
algebra. The extra set of relations comes from the fact that the constraints not only deals 
with a unique discrete point, but with a starting point and an ending point. Some algorithms 
are already under investigation to serve the purpose of finding consistency, and restoring 
consistency in case of inconsistency. We will introduce some of them in this report, but 
first, we need to define interval reasoning, and to build up some graphical conventions to 
illustrate the different examples we will use. 
 
The set of all possible relations for interval relation is defined as follows (Ligozat, A New 
Proof of Tractability for ORD-Horn Relations). 
 
Among the 13 atomic relations, six are of dimension 2: 
 

• b (before) 
ex: B b A 

 
B

A

• (overlap) 
ex: B o A 

 

A
B

• d (during) 
ex: B d A 

 

A
B

and their respective inverses. 
 
six are of dimension 1: 
 

• m (meet) 
 ex B m A 

 

A
B

• s (start) 
 ex B s A 



 

A
B

• f (finish) 
 ex B f A 

 

A
B

One is of dimension 0: 
 

• eq (equal) 
 ex B eq A 

I
n order to illustrate the resulting relation of two constrained intervals, we will use some 
symbols for which an explanation is required: 

A
B

 

 

4 
Basic representation of the 
“Start inverse relation”

: Required Starting point 

: Required Ending point 

: Forbidden Start/End point 

A
A starts along with B 

B

1 is the required starting point 
2 is a forbidden region for either starting or 
ending point (it is comprised between г and O)
3 is a forbidden region for either starting or 
ending point 
4 is a required region for ending point 

1 2 3 

 

 
 
 
 
Example one (non ORD-Horn case) 



 
• D mi, o C 
• D si, f, d A 
• D b, m, s B 

 

 

A
B

C

1
Bloc 1: 
D mi C 
D o C 

2

3
Bloc 2: 
A s D 
D f A 
D d A 

4

5

6
Bloc 3: 
D d B 
D m B 
D s B 

7

8

2 |3, 8

3 |2, 8

8 |2, 8

Set of 
possible 
solutions 

 
 
 
Example two (non ORD-Horn case) 
 

• D s, o, f A 
• D m, d, s B 
• D f, d, o C 

 



 

A
B

C

1
Bloc 1: 
D s A 
D o A 
D f A 

2

3

4
Bloc 2: 
D m B 
D d B 
D s B 

5

6

7
Bloc 3: 
D f C 
D d C 
D o C 

8

9

Blocks 1 and 3 doesn’t support each others at all (no 
variable satisfying any constraint in 1 can satisfy any 
constraint in 3), same remark for blocks 2 and 3. 
=> The system is inconsistent 

Set of 
possible 
solutions 

 
 
In the next example, we just changed a constraint form the previous block 3 in order to 
restore consistency 
 
 
Example three (non ORD-Horn case) 
 

• D s, o, f A 



• D m, d, s B 
• D f, d, b C 

 

A
B 

C

1
Bloc 1: 
D s A 
D o A 
D f A 

2

3

4
Bloc 2: 
D m B 
D d B 
D s B 

5

6

7
Bloc 3: 
D f C 
D d C 
D b C 

8

9

1 |5, 9

2 |5-6, 9

5 |2, 9

6 |2, 9

9 |1, 5

9 |2, 5-6

Set of 
possible 
solutions 



Example four (ORD-Horn case) 
 

• D o, s, d A 
• D b, m, o B 
• D si, mi, oi C 



 

A
B 

C

1
Bloc 1: 
D o A 
D s A 
D d A 

2

3

4
Bloc 2: 
D b B 
D m B 
D o B 

5

6

7
Bloc 3: 
D si C 
D oi C 
D mi C 

8

9

1 |4, 7

1 |5, 7

1 |6, 7

2 |4, 8

2 |4, 8

3 |4, 9

3 |6, 8

3 |6, 9

Set of 
possible 
solutions 
(every 
combination 
of solution is 
here unique)

 
 



Here is a first proposition we studied. However, this algorithm is not guaranteed to 
finish and is not a polynomial algorithm since it does not takes advantage of ORD-
Horn properties. 
 
Algorithm Interval-Consistency 
 

• Split every multiple constraint into unary constraint, and store them in their 
respective blocks. 

 
• Merge Blocks 2 by 2 by reducing every possible 2 constraint in each block. Prune 

every constraint that does not have at least one support in the other block. If a block 
becomes empty at any time, then the system is not consistent. 

 
Nb: If for some constraint x ε Block 1, y ε Block 2, z, 
ε Block 3, … 
C1x ∩ C2y ∩ C3z ∩ … ≠  Ø, then the system is 
consistent. Otherwise, the system is inconsistent. 

 
• The last resulting block is the set of all possible solutions. 
 
FUNCTION interval-Consistency (setOfComposedCstreWithNew) : Blocks 
BEGIN 
 consistent <- true; 
 Blocks[] <- createBlocks (setOfComposedCstreWithNew); 
 WHILE (sizeOfBlocks > 1 & consistent) 
 DO 
  Blocks [last-1] <- mergeBlocks (Blocks [last], Blocks [last-1]); 
  consistent <- (Blocks [last-1] = null); 
  Blocks [] <- Blocks [] - Blocks [last]; //Just remove the last Block 
 END 
 return Blocks [1]; //Set of solution if consistent, null otherwise 
END 
 
PROCEDURE createBlocks (setOfComposedCstreWithNew) : []Blocks 
 i = 0; 
 WHILE ( setOfComposedCstreWithNew != NULL) 
 DO 
  ComposedConstraint <- any composed constraint from    
     setOfComposedCstreWithNew; 
  Blocks [i+1] <- decompose (ComposedConstraint); 
  setOfComposedCstreWithNew =       
   setOfComposedCstreWithNew – ComposedConstraint; 
 END 
 return Blocks[]; 
END 
 



 
 
 
 
PROCEDURE mergeBlocks (Block_A, Block_B) : Blocks 
 Block_C <- null; 
 FOR all unary constraint c_A in Block_A DO 
  c_C <- null 
  FOR all unary constraint c_B in Block_B DO 
   IF compatible (c_A, c_B) DO //   or IF (c_A ∩ c_B ≠ null) 
    c_C <- c_A ∩ c_B; 
    Block_C <- Block_C U c_C; 
   END 
  END 
 END 
 return Block_C; 
END 
    
PROCEDURE decompose (ComposedConstraint) : Blocks 
 Blocks_R <- null; 
 FOR c[k] <- each constraint in ComposedConstraint DO 
  Blocks_R <- Blocks_R U c[k]; 
 END 
 return Blocks_R; 
END 
 
 
 

Algorithm build-conflict-set: 
 
 Many directions could be investigated to build a conflict set when inconsistency is 
detected. This will facilitate the regain of consistency for such systems, either by removing 
the (most) culprit constraints, or by suggesting the smallest changes to do to some 
constraints to restore consistency. 
 In a first approach of the discovery of these algorithms, we will only focus on 
ORD-Horn cases that are proved solvable in polynomial time. We will here explore two of 
them, even though none of them may be best. This is a first approach of the subject and 
may be subject to major changes (12/03/2003). 
 
Proposition 1: (detecting inconsistent unary relation) 
 

• Mark every unary relation within each Block each time it does not get support from 
a whole block.  

 
• Get the minimal mark value within each Block and store it in MinConflictValue. 
 



• Remove all constraint of the Block which has highest MinConflictValue until the 
system is consistent 

 
• For each empty block, set (try?) a unary constraint that satisfies all other Blocks. 
 
 

Proposition 2: (detecting inconsistent Blocks) 
 

• Check two by two and mark every block that does not support each other. 
 
• Run the algorithm FindMinset on the set of blocks in order to find the most 

culprit(s) blocks.  
 

• Remove the culprit(s) block(s), or suggest a (some) consistent block(s). 
 
 Proposition 1 would require an algorithm. Although proposition 2 wouldn’t, or 
some minor changes from the point based algorithm FindMinSet, the first solution seems to 
be more flexible (when dealing with non ORD Horn-cases). 
 
Partial Constraint Satisfaction 
 
Our work seems to go the opposite direction from “Partial Constraint Satisfaction” Eugene 
C. Freuder and Richard J. Wallace, Artificial intelligence 58 (1992) 21 – 70. 
In this work, the authors try to solve inconsistent problems by finding a partial solution 
from the original problem by satisfying the maximum number of constraints. As far as we 
are concerned, we try to minimize the number of relations to remove to get back to 
consistency, which seems more convenient when dealing with incremental problem (we 
know that ‘up to this point’, the system is consistent) 
 
 
Future works 
 
 In future works, we hope to find some tractable cases for general Interval problems, 
including non ORD-Horn cases. The applications for such algorithm are various and may 
apply to such diverse domains as plan scheduling, travel itinerary setting, time decision 
making…  
 
This is the algorithm we use to resolve ORD-Horn cases. It works in a polynomial 
time and is guaranteed to finish. 
 
 

1. First, we convert each constraint into conjunctive normal ORD-Horn form as in the 
example 3 above. Thus, the whole set of constraints C becomes a conjunctive 
normal formula, where each literal is a constraint between one of the boundary 
points of the new interval n to the one of the committed points on the time-line 
belonging to the old intervals in the database. Also, each clause has at most one 



positive literal. For a consistent problem instance this formula must be true, or each 
clause must be true.  

2. Then, we pick up the unit clauses (clauses that contain only one literal), which are, 
by definition the tightest constraints.  

3. In the next step we choose a literal involving inequality (the less constraining 
relations) from each non-unit clause, making sure that no inequality conflicts with 
an “=” relation picked up the previous step. 

4. In the subsequent step, we group the literals into two groups: one involving the n- 
and the other involving n+. 

5. We then run the PoSeq algorithm described before on each group for finding a Box 
for each of the two boundary points of n, call them Box- and Box+ respectively.  

• If none of the Boxes is null, and Box+ does not precede Box-, then it is 
feasible to assign n- and n+ satisfying the constraints, and the system is 
consistent.  

• If any Box is null, then run the two algorithms, GenerateConflictSet and 
FindMinSet described before, in order to find the independent culprits, 
involving the start point and the end point. 

 
 
Some examples performed with the above algorithm. 
Consistent ORD Horn, non-pointizable case: 
Existing set of intervals: 
 

 

A B

N d,eq,o~ A 

 

s~

f

s d

o~ m~

eq 

b~
d~

f~

o

m

b

N1 ≤ N2, N1 ≠ N2, 
A1 ≤ A2, A1 ≠ A2, 
A1 ≤ N1, N1 ≤ A2, N1 ≠ A2, 
(N1 ≠ A1 V N2 ≤ A2) 
(N1 ≠ A1 V A2 ≤ N2) 
 
 



N m,o,d~,eq B 
 
 b~

eq 

m~

m

o~

d

f~

o

d~

b

s

f

s~ 
 
 
 
 
 
 
 
 
 
 
N1 ≤ N2, N1 ≠ N2, 
B1 ≤ B2, B1 ≠ B2, 
N1 ≤ B1, 
B1 ≤ N2, 
(N1 ≠ B1 V N2 ≤ B2), 
(N1 ≠ B1 V B2 ≤ N2), 
(N2 ≠ B2 V N1 ≤ B1) 
(N2 ≠ B2 V B1 ≤ N1) 
 
From the existing intervals, we know that: 
B1 ≤ A1, B1 ≠ A1 
B2 ≤ A1, B2 ≠ A1 
B2 ≤ A2, B2 ≠ A2 
 
Now, let us choose the lowest dimension relations from the disjunction cited above. The set 
of point relations then becomes: 
 
N1 ≤ N2, N1 ≠ N2, 
A1 ≤ A2, A1 ≠ A2, 
A1 ≤ N1, N1 ≤ A2, N1 ≠ A2, 
N1 ≠ A1, 
N1 ≤ N2, N1 ≠ N2, 
B1 ≤ B2, B1 ≠ B2, 
N1 ≤ B1, 
B1 ≤ N2, 
N1 ≠ B1, 
N2 ≠ B2 
 
Next step consists in finding the ‘boxes’ for starting point and ending point individually. 

• Grouping all relations for the starting point related to some old points: 
A1 ≤ N1, N1 ≤ A2, N1 ≠ A2, 
N1 ≠ A1, 



N1 ≤ N2, N1 ≠ N2, 
N1 ≤ B1, 
N1 ≠ B1 
This gives a valid box for N1: 
A1<N1<A2 

 
• Grouping all relations for the ending point related to some old points: 

B1 ≤ N2, 
N2 ≠ B2 
Is the valid box for N2. 

Since valid boxes have been found for both, starting and ending point, and the start box is 
before the end box, we are now confident that the system is consistent. 
 
Now, let us recomputed the same example but with the assumption that B is before A. 
 
 
Inconsistent ORD Horn, non-pointizable cases: 
Existing set of intervals: 
 

 

B A

N d,eq,o~ A 
 
N1 ≤ N2, N1 ≠ N2, 
A1 ≤ A2, A1 ≠ A2, 
A1 ≤ N1, N1 ≤ A2, N1 ≠ A2, 
(N1 ≠ A1 V N2 = A2) 
 
 
N m,o,d~,eq B 
 
N1 ≤ N2, N1 ≠ N2, 
B1 ≤ B2, B1 ≠ B2, 
N1 ≤ B1, 
B1 ≤ N2, 
(N1 ≠ B1 V N2 = B2), 
(N2 ≠ B2 V N1 = B1) 
 
From the existing intervals, we know that: 
B1 ≤ A1, B1 ≠ A1 
B2 ≤ A1, B2 ≠ A1 
B2 ≤ A2, B2 ≠ A2 
 
The same lower dimension relation choice leads to the following set of point relations 
 



N1 ≤ N2, N1 ≠ N2, 
A1 ≤ A2, A1 ≠ A2, 
A1 ≤ N1, N1 ≤ A2, N1 ≠ A2, 
N1 ≠ A1, 
N1 ≤ N2, N1 ≠ N2, 
B1 ≤ B2, B1 ≠ B2, 
N1 ≤ B1, 
B1 ≤ N2, 
N1 ≠ B1, 
N2 ≠ B2 
 
We now look for the ‘boxes’ for starting point and ending point individually. 

• Grouping all relations for the starting point related to some old points: 
A1 ≤ N1, N1 ≤ A2, N1 ≠ A2, 
N1 ≠ A1, 
N1 ≤ N2, N1 ≠ N2, 
N1 ≤ B1, 
N1 ≠ B1 

But here, since B1 < A1, the relations A1< N1 and N1 < B1 conflict with each other. No 
box can be found and the system is hence inconsistent.  
 
 
 
10 - Inconsistency Detection in Other CSPs 
 
A point to note here is that in general CSP (“offline” problem or a full-CSP rather than the 
incremental one) it may not be possible to detect conflicts between pair of constraints. For 
instance, (a<b, b<c, and c<a) conflict with each other but one cannot identify any pair here 
that has mutual conflict independent of the third constraint. However, in the “online” 
version of the problem that we addressed in the paper some constraints are “committed,” or 
irrevocable, as with the older point-sequence. Only the constraints between the new point 
and the older points are under scrutiny, and hence, we could create the conflict set as a set 
of pairs of conflicting constraints. In a full CSP, elements in the conflict set may have to be 
multi-aried tuples rather than the binary tuples as in our case. The idea of having a 
minimum set of constraints - removal of which would eliminate all conflicts from the CSP 
will still be valid in the offline problem as well.  
 
In the discrete CSP the online problem addressed here would appear as committing a value 
for each variable interactively (by the user), while the system only suggests the satisfiable 
values for the new variable to be added. Alternatively, on detection of inconsistency, it 
suggests the sources of inconsistency, expecting the user to change some constraints 
involving that new variable. Hence, there is no backtracking needed. Variables’ values 
once committed becomes unchangeable, on the other hand the constraints (with the “new” 
variable and only the “old” committed ones) are “soft” and changeable. A future direction 
of our work will address how to incorporate interactive backtracking by suggesting user 
with some possible changes in the values of the committed variables as well. In the point-



sequencing problem that issue would raise some interesting unexplored question about the 
topology of the solution space (different from the search space in the sense of problem 
solving).  
 
Extending the work to the multi-dimensional point-based reasoning as with Cardinal-
directions calculus of Ligozat (1998) or with Star-calculi of Mitra (2002) is another 
obvious future direction for us. 
 
11 - Related Works 
 
The search for “cause” of inconsistency is not new to the CSP community. Identification of 
such causes for improving the search algorithm is routinely explored over the last two 
decades. Recent works like that in (Jussien and Lhomme, 2000) proposes optimization for 
existing consistency search algorithms same as the Tabu search (Glover, 1989 and 1990) 
and backtracking-based algorithms. For example, backjumping and dynamic backtracking 
attempts to find the right constraints at the time of backtracking. Other works using 
Dynamic Variables Ordering (Bacchus and van Run, 1995) tend to ameliorate performance 
by looking forward in the tree search, applying a method to sort the variables in such a way 
that the general computation of known algorithms becomes faster and more efficient. The 
purpose of another algorithm called "Ng learning" (Hirayama and Yokoo, 2000) is to build 
and maintain a set of No-Good constraints, leading to inconsistencies or for which 
optimization is not efficient. Hirayama and Yokoo combined this method with 
asynchronous weak-commitment search algorithm and improved the technique of no-good 
learning. Similarly, tabu-search explores different arrangements of conflicting sets, 
keeping track of some solutions that should not be explored in the next iterations, rendering 
them Tabu. Several of such ‘optimization algorithms’ have been attempted within the last 
few years as it is in the (Klau et al, 2002) where the user, once again is solicited to 
ameliorate the efficiency of the search. No-Good backmarking (Richards et al, 1995) works 
almost the same way. It processes learning of constraints during search for which a failure 
occurred and intends to ‘repair’ some non-optimal paths. A sense of topological relations 
between the solutions is implicit in this heuristic. However, only a few works have 
investigated the direction of providing suggestions to the user (as a valid output of the 
system on detection of inconsistency) for the purpose of his/her interacting with the 
algorithm by keeping or relaxing some constraints. Amilhastre et al (2002) suggest 
considering the user's choices as assumptions. This paper proposes an extension of the CSP 
framework for which interactive decisions involves a method for computing a maximum 
subset of user’s choices to ensure consistency. Thus, many of such “intelligent” 
backtracking heuristics (or other extensions of classical CSP) may be useful for further 
investigation on consistency restoration in constraint reasoning systems. 
 
In the current framework, we handle all constraints to be of the same importance. But some 
externally imposed ordering could attach some measures on the constraints. Detecting 
“minimal cause” for inconsistency will be an optimization problem in that set up. Partial 
Constraint Satisfaction Problems provide a framework for such a reasoning scheme 
(Freuder and Wallace, 1992).   
 



12 - Conclusion 
 
In this paper we have described our ongoing experiments with the idea of detecting the 
causes of inconsistency when the later is found out in a constraint network. We have 
chosen the point-sequencing online problem as our first test bed. A greedy algorithm for 
the purpose has been developed and implemented. Identification of such causes behind 
inconsistency might help a user of a constraint reasoning system in “diagnosing” the 
data/knowledge base. A set of serious questions arises from this work. For instance, the 
“solutions” to a CSP might form a topological space of their own. Explicit knowledge of 
this space could possibly help in intelligent backtracking, or in our online framework – 
helping user to fix the “bug” by providing suggestions. This type of help will enhance the 
power of any practically deployed CSP system (e.g., a constraint database) significantly. 
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