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Abstract. Natural-forming multi-agent systems (aka Swarms) can grow
to enormous sizes and perform seemingly complex tasks without the ex-
istence of any centralized control. Their success comes from the fact that
agents are simple and the interaction with the environment and neighbor-
ing agents is local in nature. In this paper we discuss the implementation
of SwarmLinda, a Linda-based system that abstracts Linda concepts in
terms of swarm intelligence constructs such as scents and stigmergy. The
goal of this implementation is to achieve many characteristics such as
scalability, adaptiveness and some level fault tolerance. This paper de-
scribes our initial version of SwarmLinda and future steps to improving
the implementation.

1 Introduction

Linda [7] is arguably the most important and most successful coordination
model ever proposed. Such a statement can be easily verified by looking at the
commercial implementations that spawned from Linda’s simple idea of genera-
tive communication (e.g. TSpaces [20], JavaSpaces [5], GigaSpaces [6]).

In the past 20 years, coordination models, and in particular Linda, have
proven to be quite successful in tackling the intricacies of medium-to-large-scale
open systems. Yet, Linda systems may not scale well with the number of tuple
spaces and processes. One of the reasons for the poor scalability is that the
design of these systems still inherits ideas from early Linda systems [7, 8] which
were focused on parallel computing.
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Swarm-based systems are famous for their organization and efficiency despite
their enormous sizes. Their activities are based on simple rules that can be
easily implemented as computer programs. Their interaction involves only local
communications.

We focus on the use of swarm-based techniques (such as approaches based
on ant-colonies [14]) in tuple space systems. Our goal is to tackle the scalability
problem studying how to improve the current scenario using techniques adapted
from models originating from biological collective organisms. In this paper, we
describe the implementation of SwarmLinda [11]. Although SwarmLinda consists
of several algorithms, we focus on the two main ones namely tuple distribution
and tuple retrieval.

This paper describes SwarmLinda and an initial implementation, developed
in Java, succinctly. First in Section 2 we discuss common characteristics of Linda
systems. Then, in Section 3 the two algorithms implemented are described. Next,
we describe how the current version of SwarmLinda has been implemented (in
Section 4). Last, in Section 5, we discuss the road-map to future versions of the
system.

2 Linda Systems

The Linda coordination model is based on the associative memory communi-
cation paradigm. This means that processes cannot communicate directly but
rather via shared associative memories, called tuple spaces. Access to these tuple
spaces occurs via the mechanism of matching.

Linda provides processes with primitives enabling them to store and retrieve
tuples from tuple spaces. Although the names of the primitives vary slightly in
different implementations, the functionalities are normally very similar. Pro-
cesses use the primitive out to store tuples. They retrieve tuples using the prim-
itives in and rd. These primitives take a template (a definition of a tuple) and
use associative matching to retrieve the desired tuple — while in removes a
matching tuple, rd takes a copy of the tuple. Both in and rd are blocking prim-
itives, that is, if a matching tuple is not found in the tuple space, the process
executing the primitive blocks until a matching tuple can be retrieved.

In addition to the primitives above some Linda implementations provide
non-blocking versions of in and rd, called inp and rdp respectively. These prim-
itives have the same semantics of their blocking counterparts when a matching
tuple can be found in the tuple space. However, they behave significantly differ-
ent if a matching tuple cannot be found — they fail instead of blocking.

There are a plethora of Linda implementations that have been proposed to
deal with various weaknesses of the original model. Some of the most important
include Lime [15], WCL [17], TuCSoN [13] and LogOp [18].



3 SwarmLinda

We have presented SwarmLinda in [19, 11] in condensed form while [12] is an
extended description on which we build here. SwarmLinda uses several adap-
tations of algorithms taken from abstraction of natural multi-agent systems [2,
14].

Over the past few years, new models originating from biology have been
studied in the field of computer science [16, 2, 3, 9]. The primary interest lies
on using these models as techniques for finding feasible solutions to NP-hard
problems.

In these models, actors (ants, termites, etc.) sacrifice individual goals (if
any) for the benefit of the collective. They act extremely decentralized. The
work is carried out by making purely local decisions and by taking actions that
require only few computations. These characteristics alone enable these systems
to scale very well. This swarm intelligence is an interesting opportunity to rethink
scalability of tuple spaces.

The use of such principles as an alternative to data-oriented schemes could
simply consist of a system where templates are modeled as ants that search for
food (the matching tuples). One can understand the “world” of Linda nodes as a
two-dimensional space in which ants search for food, leaving trails to successful
matches.

With an ant-based optimization of the trails, shortest tuple-producer/-consumer
paths can be found and used to optimize system performance: instead of query-
ing sets of replicas, the “template-ant” goes directly to where it expects a match.
Technically, this accounts to a single message interchange between the producing
and consuming sites.

The above is just an illustration. A more realistic SwarmLinda should con-
sider a few principles that can be observed in most swarm systems [14]:

Simplicity: Swarm individuals are simple creatures. They do no deep reasoning
and implement a small set of simple rules. The execution of these rules
leads to the emergence of complex behavior. Active entities in a SwarmLinda
should also obey the principle of simplicity and be small in terms of resource
usage.

Dynamism: Natural swarms adapt to dynamically changing environments. In
open distributed systems, the configuration of running applications and ser-
vices changes over time. If a tuple is found in a given location it does not
necessarily mean that other similar tuples will be found in the same location
in the future.

Locality: Swarm individuals observe their direct neighborhood and take deci-
sions based on their local view. As the key to scalability in SwarmLinda,
active entities have to perform only local searches and communicate only to
direct neighbors.

To fully appreciate these principles, one needs to understand how a Swarm-
Linda should be organized. Linda systems do not have the idea of ants or food.



The description of a SwarmLinda is based on the following abstractions: Indi-
viduals are the active entities that are able to observe their neighborhood, to
move in the environment, and to change the state of the environment in which
they are located; the environment is the context in which the individuals work
and observe; the state is an aspect of the environment that can be observed and
changed by individuals.

SwarmLinda is organized as a network of nodes where each node allows con-
nections from multiple processes. The nodes communicate with each other and
transfer tuples between themselves. The topology of the network assumed is
similar to a peer-to-peer (P2P) network.

In our implementation, we aim at optimizing distribution and retrieval by
dynamically determining storage locations for tuples based on that particular
tuple’s type, and having tuples of the same type stored in clusters. It should be
noted that we do not want to program the clustering but rather have them emerge
from the algorithms implemented through the mechanism self-organization. We
decided that a tuple’s type should be represented by its template, because
searches for tuples are done based on template, thus storing tuples with the
same template together would be beneficial.

SwarmLinda describes several algorithms [19, 11] but in this paper and in the
implementation of our system we concentrated on two of them: tuple distribution
and tuple retrieval.

3.1 Tuple Distribution

Tuple distribution relates primarily to the primitive out as this is Linda’s way
of allowing a process to store information. A reasonable analogy for the way
tuple distribution takes place in SwarmLinda is the way vegetation occurs in
nature. Everyone who has traveled have noticed that different regions seem to
have concentrations of different kinds of vegetation. Seen from the space, the
Earth consists of a set of patches of specific kinds of vegetation.

Analogously, tuple distribution in SwarmLinda attempts to distribute tuples
based on their type. So that similar tuples stay closer to each other – in swarm
terms this is equivalent to brood sorting in termite or ant colonies. To achieve
this abstraction we see the network of SwarmLinda nodes as the terrain in which
tuple-ants roam. These ants carry tuples (generated by out primitives) and de-
cide at each hop in the network if they should drop the tuple or not. The decision
is made stochastically but weighted by the amount of similar tuples around the
ant’s current location – similarity defined in terms of the tuples’ templates.

More specifically, the implementation works as below:

1. Upon the execution of an out request by a process, the node to which the
process made the request increases the scent for that type of tuple in its
own scent table and then determines whether it should store the tuple. The
choice depends on the amount of scent for the tuple type the node is currently
dealing with – the higher the concentration of scent, the higher the chances
the tuple will be stored at the current node.



2. If it decides not to store it, it scans the scents of its neighbors for that type
of tuple and determines which neighbor the tuple should be sent to.

3. It then sends the tuple to the chosen node and the steps above are repeated
in receiving node.

For the above to work, there should be a guarantee that the tuple will even-
tually be stored. This is achieved by having a aging mechanism associated with
the tuple-ant. At each step, the tuple-ant gets more “tired”. The more tired
an ant is, the more likely it is to store the tuple even if the scents around the
location are not similar to the tuple it is carrying.

Tuple Clustering

{
Fig. 1. A P2P network of SwarmLinda nodes storing tuples of five different kinds.
Nodes storing a particular type of tuple form clusters.

Ideally one should be able to have some clustering of tuples at the node as
depicted in Figure 1. This figure depicts a scenario where five types of tuples are
clustered across all nodes. It is worth pointing out that the scenario depicted
is only a realistic assumption if the SwarmLinda is augmented with the other
algorithms described in [19], which relates to tuple movement after they have
been stored. This and other algorithms are not discussed here because they have
not yet been implemented (see Section 5 for future work discussion).

Also, Figure 1 does not convey the idea that SwarmLinda nodes may contain
more than one type of tuple. In fact, this is likely to be the case – clusters do
overlap.



3.2 Tuple Retrieval

Tuple retrieval takes place when processes make requests for tuples – made by
executing the primitives in and rd. In swarm terms, requests are seen as ants
looking for food in a terrain formed by the network of SwarmLinda nodes. A
template-ant carries the request from server to server testing at each step for
tuples that match the template.

Template-ants look for tuples in the current node and also sense the available
scents of the node’s neighbors to make a decision. The decision is very simple. If
the current node has a matching tuple, the tuple is returned to the requesting
process, and if the current node does not have such a tuple, the template-ant
uses the information about the scents to make a stochastic decision as to where
to hop next.

More specifically, the search for tuples is SwarmLinda occurs as described
below:

1. Upon the execution of an in or rd primitive by a process, the node to which
the process is connected (its home node) determines whether a matching
tuple exists locally.

2. If none can be found, the scents for that particular tuple type (defined by the
template the ant is carrying) is scanned from the neighbors. This information
is used to decide the fitness value of each of the neighbors. The neighbor with
best fitness value (plus or minus some random factor) is chosen as the next
destination for the template-ant.

3. The node chosen and now receiving the request handles it in the same way
(starting from step 1).

The life of an template-ant is limited to ensure that it does not seek for tuples
that have not yet been produced. After each unsuccessful step, the template-ant
may decide to stop searching and take one of the following steps:

1. Sleep for some time and then continue. This is a pure limitation of activity.
If the ant has reached an area where no matching tuples have been produced
for a long time, the ant will have a hard time to get out of that location.

2. Die and be reborn after some time at the location the search started.
3. Materialize in some other (random) location in the network and continue to

search for tuples. This will perhaps lead the ant to find a match but will not
lead to an optimal trail from the original location to the tuple’s location.
However, the marked trail may be used by other template-ants that operate
in that region and can help find optimal trails from their origins to tuples.

4. The template-ant simply stops – they become quiescent until a tuple-ant
finds it.

Which action is taken depends on the age of the ant. After an ant has slept
several times, it then tries a rebirth. After some re-births, it decides to remate-
rialize elsewhere. Finally it may decide to become quiescent. The last action (4)
is SwarmLinda’s equivalent to blocking.



4 Implementation

The implementation of SwarmLinda was written in Java. Java is a good choice
for these kind of implementations due to its multi-platform nature. Java is
also network-ready which makes the implementation of communication between
nodes more easily handled. SwarmLinda represents tuples as Extensible Markup
Language (XML) documents. In order to handle well XML parsing we have used
Apache Xerces XML Parser [1]. The XML document representation for tuples
was chosen for it is platform and language independent and because XML is an
open standard.

4.1 Network Topology

The implemented network topology can be represented as an undirected acyclic
graph, meaning that there is only one path between any two nodes. This basic so-
lution will be changed when the other SwarmLinda algorithms are implemented.
The strategy described in the original SwarmLinda paper [11] takes into con-
sideration concepts of self-organization to make neighbor list as dynamic as the
system itself.

The SwarmLinda nodes communicated solely via UDP/IP. Although UDP
does not guarantee delivery, we opted to use it since it allows for unbalanced
neighbor lists. That is, in the end we want the topology to resemble a directed
graph so that a node A being a neighbor of B does not mean that B is a neighbor
of A. Furthermore the abstraction of packets being routed from node to node as
it is done in UDP, closely resembles the ant-based model we are following.

The other form of communication used in the implementation is TCP-based
connections. These are used to connect SwarmLinda processes to nodes. It is
thought that processes need to be given the guarantee that a SwarmLinda node
has at least received its request. More importantly, some important characteris-
tics of good Linda models such as out-ordering [4] requires that the ordering of
execution of primitives in a process should be the same order these primitives
arrive at a node.

One important feature of SwarmLinda is its openness. New nodes can be
added dynamically, in fact this is the only way to connect a node; when a node
starts, it is either stand-alone or it connects to an existing node in an already
formed network.

4.2 Separation of Concerns

The original Linda model [7] assumed the existence of only one tuple space
that was global in nature. Later on, an extension to allow other tuple spaces
to be created has been proposed as an improvement to the original model [8].
This extension has been so well received that today it is not uncommon to read
authors referring to this extension as the standard Linda.



In SwarmLinda we maintain the concept of multiple tuple spaces but only as
an interface to the processes. Internally, multiple tuple spaces are just a differ-
ential in the template. That is, the handle of the tuple space (its unique name)
is part of the representation of the tuple itself.

SwarmLinda does not impose any distribution mechanism and lets the tu-
ples self-organize. The removal of tuple spaces as physical locations guarantees
that processes cannot directly impose a distribution mechanism onto the imple-
mentation. Basically, tuples from the same tuple space in SwarmLinda may be
physically stored in separate nodes.

4.3 Architecture

SwarmLinda is comprised of three main components, a Process API/Manager, a
Node Manager and an Information Manager. These are written as components
and take advantage of the benefits of component-based design such as uncou-
pling.

PROCESS
MANAGER

NODE
MANAGER

EVENT HANDLER

SCENT
INFORMATION

TUPLE
STORE

PROCESS API

SWARMLINDA NODE

TO OTHER NODES

CLIENT PROCESSES

Fig. 2. SwarmLinda Architecture



Figure 2 shows the architecture of the current implementation. The parts are
described below:

Process Manager: The Process API is used by processes that wish to com-
municate via the SwarmLinda System. Each node has a Process Manager
which formats information, and passes it on to the Event Handler. It also
provides an interface by which messages can be sent to the client processes.

Node Manager: The Node Manager is similar to the Process Manager, in that
it deals with other nodes (peers) in the network. It is primarily concerned
with the routing of information between the nodes.

Information Manager: The real interesting part of the program is the Infor-
mation Manager, because this is where all decisions concerning tuple man-
agement are made. It has three sub-components, an Event Handler, a Scent
Information component and a Tuple Storage Space. The Tuple Store is dif-
ferent from a tuple space, in that a tuple space is an abstraction used by
a process to implement separation of concerns and a Tuple Store is a data
structure used to store any tuple on a SwarmLinda node.

Both the Process and Node Managers are fairly trivial and have straightfor-
ward implementations. The reason for doing it this way is that it allows for a
consistent interface for both process and node communications. This makes the
Information Manager less complex because it only has to communicate with one
interface.

All requests are interpreted and handled by the Event Handler which in turn
decides whether the other sub-components in the Information manager need to
be involved.

The Scent Information component is responsible for maintaining the neighbor
list and the scent table for each neighbor as well as the scent table for the node
itself. Neighbors’ scents are maintained locally in each node to optimize decision
making, so that instead of requesting scents from your neighbors before you
decide, you make your choice based on previous scents. After a decision has
been made, a request is sent to all neighboring node to send their updated scent
for that tuple type. Updates are sent only if needed.

The Tuple Store is the data structure used to store tuples on a particular
node. It is also responsible for the pattern matching of tuples to templates when
retrieving tuples.

To better understand the flow of information in a SwarmLinda node, let us
describe the procedure for the execution of an out:

1. Process calls the API’s out function and the Process API formats and trans-
mits request to the node.

2. The Process Manager at the node receives the request and transfers it to the
Event Handler.

3. The Event Handler asks the Scent Information component whether the tuple
should be stored here (its comfort level).



4. If the answer is yes, then it uses the Tuple Store to store the tuple, otherwise,
it asks the Scent Information component which other node the tuple should
be sent to – based on their scent level.

5. The same procedure is executed on the next nodes, with the exception of the
request being received by the Node Manager and not the Process Manager.

4.4 SwarmLinda Process API

The Process API is implemented in Java, but does not use any of the native
serialization provided by the Java API, thus it becomes easier to have nodes
that are not Java-based. There are three main abstractions in the Process API,
namely, a Tuple, a Template and a Handle.

Tuple: A Tuple is implemented as a XML document, containing tags to indicate
Fields and their order encalsulated in a Java object. A Field can be any
well-formed XML string, allowing complex data to be stored without adding
complexity to the SwarmLinda System. Once a tuple is created, fields are
added one at a time it the desired order. There are functions to automatically
handle deletion and addition of native types such as integers and floating-
point numbers in a tuple.

Template: A Template extends the Tuple class, and therefore its representation
in XML is similar. The difference is that Templates have Formals and these
are represented by the tag Formal, and the text contained within is the
string representation of the type. This allows the application developer the
freedom to take advantage of of different object types.

Handle: A Handle is an object that represents a Tuple Space from the process’
perspective. This is used to implement the separation of concerns concept.

Figures 3 and 4 depict two simple examples of processes implemented in
SwarmLinda. The example is trivial but demonstrates some of the syntax of our
system:

SwarmLindaAPI sla=new

SwarmLindaAPI(‘‘cs.fit.edu’’, 5555);

Tuple t=new Tuple();

t.add(‘‘This is a string’’);

t.add(7);

t.addXML(‘‘<NewType>A new type</NewType>’’);

sla.out(t);

sla.close();

Fig. 3. Process stores a tuple in the global tuple space.



Figure 3 is an example of a simple producer of tuples. The process first con-
nects to a node at cs.fit.edu that is listening at port 5555. Once the connection
is established, the process creates a tuple using its native string and integer func-
tions and also demonstrates how you would create your own type. The effects
of executing this code would be to store a tuple with of the form [‘‘this is a
string’’,7,A new type]. Last, the process terminates the connection to the
SwarmLinda node.

SwarmLindaAPI sla=new

SwarmLindaAPI(‘‘cs.fit.edu’’, 5555);

Template t=new Template();

t.add(‘‘This is a string’’);

t.addFormal(‘‘int’’);

t.addFormal(‘‘NewType’’);

Tuple retreived=sla.in(t);

sla.close();

Fig. 4. A process removes a tuple from the global tuple space.

Figure 4 is an example of a simple consumer. It shows how the API allows
Template creation and the various ways in which pattern matching can occur.
This template matches the tuple stored by the process in Figure 3. Note that
the third entry is a user-defined type and that there is no difference between
that and specifying a native type, like int. In fact, the native types are just
additional function overloads that provides a convenience to the developer.

5 Conclusion

SwarmLinda has been well specified but its implementation is still in its infancy.
For the next release we will concentrate on implementing the abstraction of mul-
tiple tuples spaces. Most importantly, in order for SwarmLinda to demonstrate
its capability as a self-organized system we need to deal with the evaporation
of scents. Currently scents can become stronger but not weaker. Swarm-based
algorithms assume both positive (already implemented) and negative feedback
on the scents.

Further improvements would include having the ants get tired and therefore
stop at a location as described in Section 3. On distribution, this would just mean
storing the tuple, but on retrieval, the template would stay at a particular node
for some time. Various other techniques have been proposed in the original paper
and will be considered in future releases. These techniques include the restart
of a template-ant after a period of time in sleep mode, or have the template-ant



warp to a random node on the network and restart there, or even just stay there
and wait for a tuple to find it.

It is the last option that intrigues us the most, because it is possible to have
two scents instead of just one. One scent would represent the location of a tuple,
and the other the location of a template. The appropriate scent would therefore
be updated on the moving of tuples and templates, and the decision on where
tuples or templates would be slightly different: for tuples, the scent of a template
would be considered more heavily that the scent of a tuple and the opposite for
templates.

Another idea is to have tuples reorganize themselves based on how comfort-
able they are in their surroundings. This comfort level would be based on the
number of similar tuples located on that server. If the tuple decided that it was
not comfortable at that server, it would again be transferred to another server
based on the tuple distribution method.

In this paper we have described the project developed for a course on Swarm
Intelligence given at the Florida Institute of Technology. The implementation
of this first system was done primarily by the first author of this paper. The
implementation as well as other articles related to the SwarmLinda project can
be found at the project website [10].
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