
A suite of secure multi-party computation algorithms for solving
distributed constraint satisfaction and optimization problems

Marius C. Silaghi
Florida Institute of Technology

Technical Report CS-2004-04

Abstract

Privacy requirements can be modeled within the distributed constraint satisfaction framework,
where the constraints are secrets of the participants. In [20] we introduced a first technique allowing
agents to solve distributed constraint problems (DisCSPs), without revealing anything and without
trusting each other or some server. The first technique we propose now, MPC-DisCSP2, is a dm
times improvement form variables of domain size d. A second technique we propose, MPC-DisCSP3,
has a similar complexity as MPC-DisCSP2, a little bit slower in the worst case, but guarantees that
the returned solutions are picked according to a uniform distribution over the total set of solutions.
A third technique, MPC-DisCSP0, is based solely on secure arithmetic circuit evaluation and the
distribuition for picking its solutions can be manipulated in a more flexible way. Nevertheless this last
technique has a O(dm!dm) complexity. All techniques of [20] can be extended to solve optimization
for distributed weighted CSPs.

1

1. Introduction

Someone’s private concerns can often be formulated in a general framework such as constraint
satisfaction problems (CSPs), i.e. where everything is modeled by either variables, or constraints on
the possible assignments to those variables. Then, they can be solved with any of the applicable CSP
techniques. Often, one has to also find agreements with others for a solution from the set of possible
valuations for variables modeling shared resources. The general framework modeling this kind of
combinatorial problems is called Distributed Constraint Satisfaction.

In practice one also meets optimization problems. Distributed Weighted CSPs (DisWCSPs) is a
general formalism that can model distributed problems with some optimization requirements. Now
we introduce the Distributed Weighted Constraint Satisfaction Problem and present shortly the solu-
tion proposed in this work.

CSP A constraint satisfaction problem (CSP) is defined by three sets: (X ,D,C). X = {x1, ..., xm}
is a set of variables and D = {D1, ..., Dm} is a set of domains such that xi can take values only from
Di = {vi1, ..., vidi}. C = {φ1, ..., φc} is a set of constraints (predicates) such that φi is a constraint
over an ordered subset Xi = {xi1 , ..., xiki} of the variables in X , Xi ⊆ X . An assignment is a
pair 〈xi, vik〉 meaning that the variable xi is assigned the value vik. φi constrains the legality of each
combination of assignments to the variables in Xi.

A tuple is an ordered set. The projection of a tuple ε of assignments over a tuple of variables Xi is
denoted ε|Xi . A solution of a CSP (X ,D,C) is a tuple of assignments ε with one assignment for each
variable in X such that each φi∈C is satisfied by ε|Xi .

Constraint Satisfaction Problems (CSPs) do not model optimization requirements. An extension
allowing for modeling some optimization concerns is given by Weighted CSPs.

Definition 1 ([13]) A Weighted CSP (WCSP) is defined by a triplet of sets (X,D,C) and a bound
B. X and D are defined as in CSPs. In contrast to CSPs, C={φ1, ..., φc} is a set of functions,
φi : Di1×...×Diki

→ [0..bi] where bi is a maximal value (aka weight) for φi.
Its solution is argmin

ε∈D1×...×Dm

∑c
i=1 φi(ε|Xi), if the corresponding sum is smaller than B.

A Distributed CSP (DisCSP) is defined by four sets (A,X,D,C). A={A1, ..., An} is a set of
agents. X , D, C and the solution are defined like in CSPs. Each constraint φi is known only by one
agent, being the secret of that agent.
Example 1 In a problem P, two persons Alice (A1) and Bob (A2) want to find a common place (x1)
and time (x2) for meeting. x1 is either Shanghai (S) or Halifax (H), i.e. D1 = {S,H}. x2 is either
Monday (M) or Thursday (T), i.e. D2 = {M,T}. Each of them has a secret constraint on the
possible time and place of their meeting. Alice accepts only {(H,M), (H,T)} which defines φ1. Bob
accepts either of {(S,M), (H,M), (H,T)}, defined by φ2.

The problem is to find values for x1 and x2 satisfying both φ1 and φ2 and without revealing
anything else about φ2 to Alice or about φ1 to Bob.

Definition 2 (DisWCSP) A Distributed Weighted CSP is defined by four sets (A,X,D,C) and a
bound B. A,X,D are defined as for DisCSPs. In contrast to DisCSPs, the elements of C are
functions φi : Di1×...×Diki

→ [0..bi], like for WCSPs.
Its solution is argmin

ε∈D1×...×Dn

∑c
i=1 φi(ε|Xi), if the corresponding sum is smaller than B.

We assume that agents know the variables involved in the constraints of each other (variables can be
falsely declared as involved when this is needed to hide the structure of the problem). Instead, agents
want to avoid that others find their secrets, namely details about the exact combinations allowed by
the constraints that they enforce.
Example 2 Consider again the problem in Example 8. The users know attached costs to the arrange-
ments that they accept. The bound on the total cost of an accepted solution, B, is $3000. We can con-
sider the costs in units of $500, such that we takeB=6. Alice accepts only {〈(H,M), $500〉 〈(H,T), $500〉}
which defines φ1, such that φ1(H,M)=φ1(H,T)=1 and φ1(S,M) = φ1(S, T)=6, i.e. B. Bob ac-
cepts either of {〈(S,M), $1000〉, 〈(H,M), $500〉, 〈(H,T), $1000〉}, defining φ2 similarly. φ2(S,M)=φ2(H,T)=2,
φ2(H,M)=1, and φ2(S, T)=6.

The problem is to find values for x1 and x2 minimizing the sum of φ1 and φ2 such that it is lower
than B, and without revealing anything else about φ2 to Alice and anything else about φ1 to Bob.

Definition 3 (Arithmetic Circuit [1]) An arithmetic circuit is a function f , using solely the opera-
tions of some finite field ZZp: f : ZZnp → ZZp

Several multi-party techniques are known to compute general functions with secret inputs. These
are mainly versions of oblivious evaluation of boolean circuits (boolean operations over {0, 1}), or
arithmetic circuit evaluation [1]. But a DisWCSP is not a function. For a given input problem, a
DisWCSP can have several solutions or no solution at all.

In [20] we proposed an algorithm for solving DisCSPs, called SecureRandomSolution. We will
refer it from now on as MPC-DisCSP1. It uses evaluations of some arithmetic circuits as one of its
building blocks. The algorithm described here, MPC-DisCSP2, is based on faster arithmetic circuits
than the ones of MPC-DisCSP1. It also allows the n participating agents to securely find a solution by
interacting directly without any external arbiters and without divulging any secrets. It is a threshold
scheme, namely guaranteeing that no subset of t malicious agents that follow the protocol, t<dn/2e,
can find anything about others’ problems except for what is revealed by the solution.

As it was suggested for MPC-DisCSP1, MPC-DisCSP2 can be extended to perform optimization
in Distributed Weighted CSPs. The extension consists in first redesigning one of the basic arithmetic
circuits involved in MPC-DisCSP2 such that the algorithm is enabled to find a solution with a pre-
defined weight. Then one can simply find the optimal solution of the DisWCSP by scanning for a
solution with weight 0, then weight 1, etc. until the first solution is found. However, this reveals to
everybody the quality of the found solution! We propose a new technique called MPC-DisWCSP2
which reveals the quality of the solution only to a set of agents chosen by the participants, or to
nobody.

Intuition Consider a constraint in its multidimensional matrix representation, where an element of
the matrix restricts the compatibility of some values for distinct variables. Each such element encoded
as 0 or 1 is encrypted with a shared key (it can be decrypted only when the majority of the agents
agree). One can perform additions and multiplications of such values, while they are encrypted.

The agents cooperate to generate a secret permutation of the encrypted constraints, that cannot be
manipulated by any of them.

We give a fix (exponential) set of additions and multiplications that, applied on the constraints
encrypted in the aforementioned way, returns the assignments in a solution picked among the possible
solutions according to the random permutation.

The agents may show now their share of the key for the assignments in the solution. Each agent
learns only the assignments of interest to him.

Problem subtleties The problem is how to formalize the meeting scheduling as an arithmetic cir-
cuit! An arithmetic circuit whose outcome is the set of all solutions was designed in [10]. If one tries
to use that approach when only one solution is needed, the result returned by the function will reveal
to everybody a lot more information than needed. It will tell, for example, that everybody is available
and can reach the corresponding places on the days in the alternative solutions. It also suggest that at
least one person is busy on each alternative that is not a solution. Some of this information can lead
to undesired leaks of privacy. The approach of testing each alternative one by one until a solution is
found has similar potential leaks of privacy.

In consequence, one needs to design arithmetic circuits returning only one solution. There is still
the problem of which solution should be returned. It is possible to return the first solution in the
lexicographical order on the search space [20]. However, knowing that the solution was computed in
this way leaks the fact that the alternatives placed before it in the lexicographical order on the search
space are rejected by some agent.

Therefore, what we need is a probabilistic arithmetic circuit that returns a solution picked ran-
domly among the possible solutions to the problem. The approaches we proposed in [23, 22], MPC-
DisCSP1 and MPC-DisCSP2, generate a secret permutation of domains (and eventually variables)
on an encrypted description of the problem. The permuted problem is then input to an arithmetic
circuit that computes the first solution in lexicographic order. The solution is then translated with
the inverse permutations to the initial problem formulation, before being decrypted. The used per-
mutation guarantees to give each solution a chance to be returned, so that no secret about meeting
acceptance/rejection can be inferred from the returned result. If there is no solution, this will intrinsi-
cally reveal to everybody that each alternative is constrained by some agent, but this leak is inherent
to the problem and not to the algorithm.

The remaining problem is that the permutation we propose in [23] does not guarantee that solutions
are picked with a uniform distribution over the possible solutions. Therefore, when an agent uses
his constraints in several computations using the same algorithm, some statistical information can
be extracted about his secrets, besides his acceptance of the solution. For example, if the returned
solutions often specify a meeting in Quebec on Tuesday and rarely some other alternatives, then it
can be inferred that some agent can go to Quebec only Tuesday, with higher probability than what
statistics ignorant of the used permutation algorithm could infer.

In this paper we analyze this leak and design a scheme, MPC-DisCSP3, where the solutions are
picked with a uniform distribution over the possible solutions. Repeated use of the same constraint
in different problems will still suggest that a certain meeting is the only one possible, if it is always
returned. However, the likelihood of the inference is lower than in the previous techniques and this
time it is inherent to the problem and not to the algorithm.

Moreover, it is easy to extend the technique such that alternatives already known to be accepted by
an agent are verified first, if it is acceptable to save someone’s privacy in the detriment of the others.

Next we present the background techniques and the details of MPC-DisCSP3. We also introduce
the architecture of the web application that will service our technique, together with its implications.

2. Overview of MPC-DisCSP1

MPC-DisCSP1 uses general multi-party computation techniques. General multi-party computa-
tion techniques can solve securely only certain functions, one of the most general classes of solved
problems being the arithmetic circuits over finite fields. A Distributed CSP is not a function. A
DisCSP can have several solutions for an input problem, or can even have no solution. Two of the
three reformulations of DisCSPs as a function (see [23]) are relevant here:

i A function DisCSP1() returning the first solution in lexicographic order, respectively an invalid
valuation τ when there is no solution.

ii A probabilistic function DisCSP() which picks randomly a solution if it exists, respectively
returns τ when there is no solution.1

For privacy purposes only the 2nd alternative is satisfactory. DisCSP() only reveals what we usually
expect to get from a DisCSP, namely some solution. DisCSP1() intrinsically reveals more [23]. MPC-
DisCSP1 implements DisCSP() in three phases:

1. The input DisCSP problem is jointly shuffled by reordering values (and eventually variables)
randomly by composing secret permutations from each participant agent.

2. A version of DisCSP1() where operations performed by agents are independent of the input
secrets, is computed by simulating arithmetic circuit evaluation with the technique in [1].

3. The solution returned by the DisCSP1() at step 2 is translated into the initial problem definition
using a transformation that is inverse of the shuffling at step 1.

It is also possible and very simple to find all solutions [10]. However, when only a solution is
needed this leaks a lot of information. At step 2, MPC-DisCSP1 requires a version of the DisCSP1()
function whose cost is independent of the input since otherwise the users can learn things like: The
returned solution is the only one, being found after unsuccessfully checking all other valuations, all
other valuations being infeasible. However, the DisCSP1() used by MPC-DisCSP1 is very complex
and we propose a much simpler and faster solution.

Computation of DisCSP() Revealing the first solution ε0 in a lexicographic order reveals two dis-
tinct things: ε0 is a solution (or at least that the elements communicated to each participant are part
of a solution ε0), and there exists no solution lexicographically ordered before ε0. MPC-DisCSP1 re-
turns a solution picked randomly from the existing solutions by rephrasing the DisCSP with a hidden
permutation after its secrets were shared.

Theorem 1 For any CSP whose search space has size Θ, and for any j, 0≤j<Θ there exists a
shuffling of the values in its domains such that a solution with any initial lexicographic position i in
this search space is mapped into the position j of the obtained problem.

Proof. This can be proven by constructing the shuffling. First, we find the positions pjk and pik of each
value in the domain of each variable xk for the tuples with lexicographic positions j and i. This is done by
iteratively computing for k from n to 1, pjk := j%dk, j = bj/dkc. Next, the permutation, πk, for the domain
of each variable xk is chosen such that πk[pjk] = pik. The shuffling defined by permutations πk satisfies the
requirements and the theorem is proven.

Corollary 1.1 For any CSP and a given solution, there exists a shuffling of the values in its domains
mapping that solution into the lexicographically first tuple of the obtained problem.

As follows from the previous corollary, one cannot extract any additional non-statistical infor-
mation from the identity of the solution of the problem shuffled with unknown permutations of the
domains.

1Another encounter of randomization with CSPs appears in [5]

function value-to-unary-constraint2(v, M)

1. Jointly, all agents build a vector u, u = 〈u0, u1, ..., uM 〉
with 4M−2 multiplications of secrets, computing:
1. a vector: {xi}0≤i≤M , x0=1, xi+1=xi ∗ (v−i)
2. a vector: {yi}0≤i≤M , yM=1, yi−1=yi ∗ (i−v)

then, uk = 1
k!(M−k)!

(v−k+1)xkyk, where 0!
def
= 1.

2. Return u.

Algorithm 1: Transforming secret value v ∈ {0, 1, 2, ...,M} to a shared secret unary constraint.

3. Overview of Secure Arithmetic Circuit Evaluation

Secure evaluation of functions with secret inputs (where sometimes secret functions can also be
treated as secret inputs and vice-versa) have been often addressed in literature [1, 28]. Several recent
versions are based on (oblivious) boolean circuit evaluation [12, 9]. Others, like MPC-DisCSP1, are
based on arithmetic circuit evaluation.

MPC-DisCSP1 uses (+,×)-homomorphic encryption functions EKE , i.e. respecting:

∀m1,m2, EKE (m1)EKE (m2) = EKE (m1 +m2).

Some encryption functions take a randomizing parameter r. However, we write Ei(m) instead of
Ei(m, r), to simplify the notation. A good example of a (+,×)-homomorphic scheme with random-
izing parameter is the Paillier encryption [16].

To destroy the visibility of the relations between the initial problem formulation and the formula-
tion actually used in computations one can exploit random joint permutations that are not known to
any participant. Here we reformulate the initial problem by reordering its parameters. Such permuta-
tions appeared in Chaum’s mix-nets [3]. The shuffling is obtained by a chain of permutations (each
being the secret of a participant) on the encrypted secrets.

[1]’s secure arithmetic circuit evaluation exploits Shamir’s secret sharing [19]. This sharing is
based on the fact that a polynomial f(x) of degree t−1 with unknown parameters can be recon-
structed given the evaluation of f in at least t distinct values of x. This can be done using Lagrange
interpolation. Instead, absolutely no information is given about the value of f(0) by revealing the
valuation of f in any at most t−1 non-zero values of x. Therefore, in order to share a secret number
s to n participants A1, ..., An, one first selects t−1 random numbers a1, ..., at−1 that will define the
polynomial f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero number ki is assigned to each participant
Ai. The value of the pair (ki, f(ki)) is sent over a secure channel (e.g. encrypted) to each participant
Ai. This is called a (t, n)-threshold scheme.

Once secret numbers are split and shared with a (t, n)-scheme, computations of an arbitrary agreed
function of a certain class can be performed over the shared secrets, in such a way that all results
remain shared secrets with the same security properties (the number of supported colluders, t) [1, 26].
For [19]’s technique, one knows to perform addition and multiplications when t ≤ (n− 1)/2.

4. New Arithmetic Circuits for DisCSP1()

The main building block of DisCSP1() consist of evaluating some arithmetic circuits. It is for this
step that we are proposing a simpler and faster version. An implementation of DisCSP1() can be

easily obtained by checking all tuples until one satisfies all the constraints. Such a solution has a
number of operations dependent on the secret constraints of the problem. This is why it cannot be
used in DisCSP().

Consider the CSP P=(X,D,C). One can interpret the constraints ofC as functions with results in
the set {0, 1} (0 is infeasible and 1 is feasible). The solutions of P are the tuples of assignments ε (of
type 〈(x1, v

1
ε1), ..., (xm, v

m
εm)〉) with

∏
φk∈C φk(ε|Xk)=1. The size of the search space (total number

of tuples) is Θ =
∏m
k=1 dk.

Let us detail now MPC-DisCSP2. If p(ε) =
∏
φk∈C φk(ε|Xk), and εk denotes the kth tuple in the

lexicographic order, then define:

h1(P) = 1

hi(P) = hi−1(P) ∗ (1− p(εi−1))

The index of the lexicographically first solution can be computed by accumulating the terms of the h
series, weighted as follows:

id(P) =
Θ∑

i=1

i ∗ p(εi) ∗ hi(P) (1)

A result of 0 means that there is no solution. The cost of this computation is (c+1)dm multiplications
of secrets, md times less than the technique in MPC-DisCSP1, which is O((cm+m2)dm+1), where
d= maxi(di).

One can then compute the values of the different variables in the found solution. Now we first
transform the index id of the solution computed with Equation 1 into a shared vector S, of size Θ
where only the idth element is 1 and all other elements are 0. This is achieved using Equation 2. The
technique for transforming the solution to a vector, shown in Algorithm 1, has 3M multiplications,
M less than value-to-unary-constraint1 [20].

The value of the uth variable in the tth tuple of the search space is ηu(t), computed with Equation 3.
An arithmetic circuit, fi(P), (see Equation 4), can now be used to compute the value of each variable
xi in the solution.

S=value-to-unary-constraint2(id, 1+Θ) (2)

ηu(t) = b(t− 1)/
u−1∏

k=1

dkc mod du (3)

fi(P) =
Θ∑

t=1

(ηi(t) + 1) ∗ S[t] (4)

It can be noticed that the space required for computing S is O(dm). This can be reduced by not
reusing intermediary results in Algorithm 1 and computing S on demand during the evaluation of f
functions, but with efficiency losses that are unacceptable, O(d2m). We call this circuit, DisCSP21().
Example 3 Let us see a full example of how this arithmetic circuit is applied to Example 8.
p(S,M)=0, p(H,M)=1, p(S, T)=0, p(H,T)=1.
h1(P)=1, h2(P)=1, h3(P)=0, h4(P)=0.

The index of the solution is computed with Equation 1, yielding id(P)=2. This is used according to
Equation 2 to generate the vector S={0,0,1,0,0}.

The vector S is used to compute the values of the variables in the solution, using Equations 3
and 4:
η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1. η2(1)=0, η2(2)=0, η2(3)=1, η2(4)=1. f1(P)=2, f2(P)=1.

This signifies that the solution chosen by this arithmetic circuit is x1=Halifax and x2=Monday.

5. Computation of DisCSP()

Revealing the first solution, ε0, in a lexicographic order reveals two distinct things: ε0 is a solution
(or at least that the elements communicated to each participant are part of a solution ε0), and there
exists no solution lexicographically ordered before ε0. To avoid the second leak, MPC-DisCSP1
returns a solution picked randomly from the existing solutions by rephrasing the input DisCSP with
a hidden permutation after its secrets were shared.

MPC-DisCSP2’s mix-net for reordering shared secret DisCSPs MPC-DisCSP2 shares and shuf-
fles the DisCSP’s domains (and eventually variables) in a similar way as MPC-DisCSP1. Informally
(see formalization in [21]), each agent chooses a random secret permutation πk for each domain Dk:

πi : [1..di]→ [1..di], i ∈ [1..m]

The secret shares, of the {0,1} value associated by the extensional representation of each constraint
φ to a tuple, are serialized according to the current lexicographic order on domains.

The serialized constraints are passed along a mix-net [1], as introduced in Section 3, and shuffled
according to the permutations π1, ..., πm of each agent.

To avoid that agents get a chance to learn the final permutation by matching final shares with
the ones they generated, a randomization step is applied at each shuffling. Each agent applies a
randomization step on the set of shares for each secret constraint value, by adding shares of 0, as in [1].
Because of the encryption, this randomization step is based on (+,×)-homomorphic encryption [21].

Decoding the solution After DisCSP1 is run on the shared problem shuffled as shown by the previ-
ous technique, the shares of the results of functions f (processed with Equation 5) have to be revealed
without revealing the permutation. Randomization steps are performed as for encoding. Therefore,
each agent Ak generates md random sets of shares of zero, zjk[t] being Aj’s share of the tth zero.

The vectors {〈{Ej(f ′i j [t])}t∈[1..di], j〉}i∈[1..m], for each j, are sent backward through the mix-net,
where f ′i

j [t] is Aj’s share for f ′i [t]. When Ak receives {〈{Ej(f ′i j [t])}t∈[1..di], j〉}i∈[1..m], it generates
and sends to Ak−1 the vector {〈π−1

i ({Ej(f ′i j [t])Ej(zjk[(i−1)d+t])}t∈[1..d]),
j〉}i∈[1..m]. A1 broadcasts them.

f ′i = value-to-unary-constraint2(fi−1, di) (5)

Complexity The total number of messages that have to be sent with MPC-DisCSP2 is 3n (for
shuffling), n2(c + 1)dm for Equation 1, n23dm for Equation 2, n2m3d for m Equations 5, and
n2 + 2n for decoding the solution. The total number of messages is n2(dm(c+ 4) + 3md+ 1) + 5n.

Many of these messages can be sent in parallel. Namely, the number of needed rounds for arith-
metic circuit evaluation is given by the depth of the circuit [1]. For our circuits, the depth is log2(c)
for p, log2(Θ) for id(P), log2(Θ) for value-to-unary-constraint2, and 1 for f . The total number of
rounds is therefore O(m log(d) + log(c)). Nevertheless, this parallelism requires O(cdm) concurrent
messages.

Remark 1 (MPC-DisCSP3) A relevant version is obtained if the shuffling is done on the vector of
values p(ε) rather than on constraints. The decoding will then be performed on the vector S with
the inverse permutations. All other operations are performed similarly. This version is called MPC-
DisCSP3.

6. Uniform Distribution for Solution Selection

Like all existing secure techniques for solving a DisCSP, the MPC-DisCSP2 algorithm gives a
chance to each solution to be returned. The solution can be seen as a random variable over the set of
tuples with p(ε) = 1. However, we have proven that none of the existing techniques returns solutions
according to a uniform distribution.

Theorem 2 Shuffling variables and domains for a CSP does not guarantee that the first solution in
the obtained lexicographic order is selected according to a uniform distribution over the set of all
solutions.

Proof. Take as example the CSP (X,D={D1, D2, D3}, C={φ1}), X={x1, x2, x3}, D1={{a1, a2, a3},
D2={b1, b2, b3}, D3={c1, c2, c3}}, φ1 = {(a2, b2, c2), (a1, b2, c2), (a1, b1, c1)}.

Applying random permutation of domains and variables drawn from a uniform distribution over the set of
possible distributions:

• the solution (a2, b2, c2) appears 1/3% of the times.

• the solution (a1, b2, c2) appears 1/4% of the times.

• the solution (a1, b1, c1) appears 5/12% of the times.

It can be noticed that the frequency with which the solution is drawn is inverse proportional to the frequency
of its values among the other solutions.

Therefore, if an agent participates with the same constraints in several computations, statistical
information can be extracted concerning the occurrence of those values in other solutions of the agent.
Namely, an assignment that occurs very often indicates that most solutions use only that assignment
for the corresponding variable.

Let us now present a technique called MPC-DisCSP3 that is more complex than MPC-DisCSP2
and that returns solutions according to a uniform distribution.

To ensure that solutions are returned according to a uniform distribution, we notice the following
Theorem:

Theorem 3 Consider the application of the following process to a CSP:

• Create a (big) vector S ′ containing the values p(ε) for all search space tuples ε, in lexicographic
order.

• Shuffle the vector S ′ according to a permutation π picked with a uniform distribution over the
possible permutations, obtaining a vector S.

• Pick the first value of S ′ with p(ε) = 1. Choose ε as the solution to be returned.

The tuple returned by the three steps above is chosen according to a uniform distribution over all
solutions (tuples having p(ε) = 1).

Proof. For any sufficiently large number of applications of described procedure, the possible permutations π
applied to S′ are drawn a relatively equal number of times, since they have a uniform distribution. Therefore,
all obtained permutations of the values of S ′ will result a relatively equal number of times. By symmetry, each
ε with p(ε) = 1 will be placed an equal number of times before all the other solutions. Therefore, the method
defines its outcome as a random variable with uniform distribution over the set of all solutions.

7. Arithmetic Circuit for computing DisCSP

It is possible to design an arithmetic circuit that has as input a set of coin tosses and selects ran-
domly a solution with a uniform distribution over the set of all solutions. The approach requires
O(Θ!Θ) messages. Due to its cost, it has just a theoretical relevance.

The arithmetic circuit is constructed as follows:
Choose a prime number p larger than Θ. All arithmetic circuits are evaluated in ZZp, if not otherwise

specified.
For each of the k ∈ [1..Θ!] possible permutations πk of all tuples in the search space, evaluate

securely an arithmetic circuit that finds the first solution. For example, one can use the circuit of
MPC-DisCSP1 or the one of MPC-DisCSP2. The result for each variable i is stored in a vector Fi[k].

Then each agent generates and shares a random number in ZZΘ!. The random numbers of all agents
are added securely, mod Θ!. The obtained secret r is transformed to a vector with R=value-to-unary-
constraint2(r+1,dm). Each element R[k] of the vector R is multiplied to each value Fi[k] for eack
i.

Then, the values for each variable of all the Θ! solutions are summed with each other: fi =∑
k Fi[k]. The results of fi are revealed to the agents owning xi.

Remark 2 If uniform distribution is not required, one can create the previous circuit only for all
permutations of domains and eventually of variables. The complexity decreases accordingly.

8. MPC-DisCSP3

Now let us present MPC-DisWCSP3, a multiparty computation simulating securely the method of
the Theorem 3. First we redefine the DisCSP framework.

Definition 4 A Distributed CSP (DisCSP) is defined by four sets (A,X,D,C). A={A1, ..., An} is a
set of agents. X , D, C and the solution are defined like in CSPs. Each constraint φi is known only
by one agent, being the secret of that agent. There may exist a public constraint in C, φ0, known to
everybody. Each variable xi is owned by a set of agents Ai, that are entitled to learn its assignment
in the solution.

The public constraint is new for this DisCSP formalism, but is anchored in known arguments [17].
Example 4 In another view of the problem P, two persons Alice (A1) and Bob (A2) want to find a com-
mon place (x1) and time (x2) for meeting. x1 is either Paris (P) or Quebec (Q), i.e. D1 = {P,Q}.
x2 is either Tuesday (T) or Wednesday (W), i.e. D2 = {T,W}. Each of them has a secret constraint
on the possible time and place of their meeting. Alice accepts only {(P, T), (P,W), (Q,W)} which
defines φ1. Bob accepts either of {(P, T), (Q,T), (Q,W)}, defined by φ2. There is also a publicly
known constraint, φ0, which due to an announced strike forbids a meeting in Paris on Wednesday,
φ0 = {(P, T), (Q,T), (Q,W)}.

The problem is to publish values for x1 and x2 satisfying all constraints and without revealing
anything else about φ2 to Alice or about φ1 to Bob.

MPC-DisCSP3 is shown in Algorithm 2.
Unlike MPC-DisCSP2, this technique does not start by shuffling the shares of the encoded con-

straints. Rather, it starts by simply sharing the encoded constraints with the Shamir secret sharing
scheme. Then, the vector S ′ of size Γ =

∏m
k=1 dk is computed by evaluating the arithmetic circuits

Proc MPC-DisCSP3

1. Each agent shares the encoded secret constraints for each tuple.

2. Compute p(ε) for each ε that is compatible with φ0, and place the results in a shared secret
vector S′, ordered lexicographically.

3. Each agent applies on its shares a permutation π that moves the tuples rejected by φ0 to the
end.

4. Each agentAi encrypts shares in its vector S ′ with his own public key, and submits the resulting
vector, without end tuples incompatible to φ0, to the mix-net.

5. The mix-net shuffles the vectors of shares, S ′, randomizing the shares at each permutation by
adding shares of 0 exploiting homomorphic encryption.

6. The shuffled S ′ is broadcasted by the mix-net to agents.

• Compute the index of the first solution in S, id(P), with Equation 1.

• Compute now a vector S with the Equation 2

7. The mix-net decodes the vectors of shares, S, randomizing the shares at each inverse permuta-
tion by adding shares of 0 exploiting homomorphic encryption.

8. The shuffled S is broadcasted by the mix-net to agents.

9. Apply the inverse of the permutation π.

10. Compute the assignments of the solution with Equation 4.

11. Reveal each assignment to the interested agents.

Algorithm 2: MPC-DisCSP3

p(ε) =
∏
φk∈C φk(ε|Xk) for each ε compatible with φ0. Each agent applies on its shares a permutation

π:
π : [1..Γ]→ [1..Γ].

that moves the tuples rejected by φ0 to the end. The number of tuples that are not rejected by φ0 is
denoted by Θ.

Only now is the problem shuffled and the shares randomized with a mix-net. After computing
id(P) with Equation 1, the vector S is computed with Equation 2. The vector S is now decoded by
the mix-net with the inverse permutations, and randomizing the shares again (with the same share
randomization technique like in MPC-DisCSP1/MPC-DisCSP2).
π−1 is applied to S. Any index after the end of S, is considered by π−1 to contain the value 0.

ηu(t) = b(t− 1)/
u−1∏

k=1

dkc mod du (6)

fi(P) =
Θ∑

t=1

(ηi(t) + 1) ∗ S′[t−1] (7)

In the end, the values in the solution are computed with the arithmetic circuits in Equations 7.
Each assignment in the solution, defined by the results to the functions fi, is then revealed to the
corresponding agents.
Example 5 Let us see an example of how MPC-DisCSP3 is applied to the Example 8.
p(P, T)=1, p(Q,T)=0, p(P,W) not computed, p(Q,W)=1.
S’=(1,0, ,1)
After applying π = (0, 1, 4, 3).
S’=(1,0,1,)
Shuffle (1,0,1), assume it remains unchanged
h1(P)=1, h2(P)=0, h3(P)=0.
The index of the solution is computed with Equation 1, yielding id(P)=1. This is used according to
Equation 2 to generate the vector S={0,1,0,0}.
Unshuffle S[1-3]=(1,0,0)
Apply π−1 = (0, 1, 4, 3)
S=(1,0,0,)
The vector S is used to compute the values of the variables in the solution, using Equations 3 and 4:
η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1. η2(1)=0, η2(2)=0, η2(3)=1, η2(4)=1. f1(P)=1, f2(P)=1.

This signifies that the solution chosen by this arithmetic circuit is x1=Paris and x2=Tuesday.

Analysis When compared to classical agent approaches to solving distributed meeting scheduling
and CSPs [15, 8, 2, 20, 7, 6, 4, 18, 27, 23, 14, 11, 30, 25], the advantages and drawbacks of MPC-
DisCSP3 are the ones defined by t-privacy [1] (i.e. no collusion of less than t participants can learn
anything, but the final solution with its quality, and what can be inferred from it), and highlighted
in [24]. Namely, MPC-DisCSP3 should never be used when an agent does not trust a majority of
the agents, or when it suspects that two thirds of the agents may want to misuse the protocol. It is
potentially slower, but more secure in the other cases.

Compared to the techniques based on trusted servers used in [29], the advantages and drawbacks
of MPC-DisCSP3 depend on the amount of trust in those servers.

The main advantage of MPC-DisCSP3 over its previous alternatives MPC-DisCSP1 and MPC-
DisCSP2, is that it offers the solutions picked according to a uniform distribution over the total set of
solutions, as guaranteed by the Theorem 3.

From the space requirements point of view, it has the same exponential complexity as MPC-
DisCSP2, namely O(cdm), since it uses the same data structures (having to store and manipulate
the whole vector S). The only additional structures, namely the permutations π and πi have the same
size as S, and do not change the complexity. From this point of view MPC-DisCSP3 is clearly inferior
to MPC-DisCSP1 which has polynomial space requirements.

In terms of time complexity, its worst performance (namely when Γ=Θ) is worse than the one
of MPC-DisCSP2. This is due to the fact that the messages for shuffling are much larger and the
shuffling involves more computations, given by the size of S ′. Compared to MPC-DisCSP1, which
is O(dm) times slower than MPC-DisCSP2, MPC-DisCSP3 will be faster. This is because MPC-
DisCSP2 require passing more than just the vector S.

Remark 3 When Γ >> Θ, MPC-DisCSP3 can be much faster then most existing algorithms which
do not exploit public constraints. In our knowledge, typically public constraints are not exploited.

9. MPC-DisWCSP2

The weak extension to distributed weighted CSPs Let q(ε)=
∑

φ∈C φ(ε). A solution of a CSP
(X,D,C) is a valuation ε with q(ε)=|C|. For addressing Distributed WCSPs, the function p has to be
further adapted as follows. Now the maximum value of q(ε) is no longer |C| but b =

∑|C|
i=1 bi. We

still want to isolate solutions ε whose q(ε) is some value, x0 (actually we now need the minimal such
x0 allowing for a solution). We need to redefine p(ε):

p(ε) =

∏x0−1
i=0 (q(ε)−i)∏b

i=x0+1(i−q(ε))
x0!(b− x0)!

. (8)

A solution with the lowest weight of a DisWCSP can be found by iterating MPC-DisCSP2 with
the Definition 8 for p, for x0 increasing from 0 toB. Note that the last technique reveals to everybody
the quality of the solution, i.e. the sum of constraint weights in the solution.

Theorem 4 With a (dn/2e, n) threshold scheme, no coalition of less than dn/2eagents can learn any
secret of another agent

Proof. Each step of the previous technique is based on the evaluation of a set of arithmetic circuits with
threshold schemes where t=dn/2e. It has been proven in [1] that secure arithmetic circuit evaluation is (t−1)-
private (i.e. No collusion of less than t participants can learn anything, but the final solution with its quality,
and what can be inferred from it).

The mix-net is hiding the permutation of domains (the order under which the solution was found). We also
proved in Theorem 1 of [23] that random permutations of domains gives each solution a chance to be returned.
Therefore there is no case where a collusion of less than t agents can prove acceptance or rejection of another
tuple by some agent, by studying the solution.

The information revealed to everybody is the quality of the solution and the allocation of their resources in
that solution. The quality of the solution is revealed by the number of computation rounds.

MPC-DisWCSP2: Solving a DisWCSP while hiding the weight of the solution. DisCSP() hides
the number of rounds needed to find the first solution to a DisCSP. Now we must hide the number of
rounds needed to find the first solution to a DisWCSP. A new set of functions wi is defined to hold
the value of xi in the best solution found so far.

wji
def
=





0 if j=− 1

fi(P) if wj−1
1 =0

wj−1
i if wj−1

1 6= 0

This can be computed with the following arithmetic circuits (for i∈[1..d] and j∈[1..(B−1)]):

w−1
i = 0

wji = wj−1
i (1−

∏d
k=1 (k − wj−1

1)

d!
) + fi(P)

∏
k∈[1..d] (k − wj−1

1)

d!

MPC-DisWCSP2 also consists in three phases:

1. First the DisWCSP is shared and then shuffled through the mix-net in the same way as it was
done with the DisCSP (except that the values assigned by the constraint φk to tuples are in
[0..bk] rather than {0,1}).

2. The vector {wBi }i∈1..m is computed by iteratively building the vectors {wji }i∈1..m for j in-
creasing from 0 to B−1. The computation in each iteration j is performed according to the
arithmetic circuit DisCSP21 but with the new definition of p and with x0=j. It is followed by
a secure evaluation of the arithmetic circuits {wji }i∈1..m.

3. The solution is decoded and distributed as in MPC-DisCSP2, except that the solution vectors
are the ones containing the results of the functions wB−1

i rather than fi.

The complexity of MPC-DisWCSP2 is B times higher than the complexity of MPC-DisCSP2. For
the most parallel version of MPC-DisCSP2, the number of rounds increases with B log d.

In MPC-DisWCSP2 nobody can learn the total weight of the solution. In some problems one may
nevertheless want to let some particular agents learn the total weight of the solution, while the rest of
the agents should not learn it. This can be achieved by computing at the end of the second phase the
first element of the solution vector according to:

w0 =
∑

k∈[1..(B−1)]

k(1−
∏
k1∈[1..d] (k1 − wk1)

d!
)

∏
k2∈[1..d] (k2 − wk−1

1)

d!

The single non-zero term in the summation defining w0 is for the round k where wk1 is for the first
time non-zero. w0 specifies the weight of the solution and after decoding, is revealed only to the
agents that should learn it.
Example 6 Let us see a full example of how this arithmetic circuit is applied to Example 1, (assuming
the secret shuffling does not change any order).
w−1

1 =0, w−1
2 =0, η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1. η2(1)=0, η2(2)=0, η2(3)=1, η2(4)=1.

x0 = 0
p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=0.
h1(P)=1, h2(P)=1, h3(P)=1, h4(P)=1.
S={0,0,0,0,0}, id(P)=0.
f1(P)=0, f2(P)=0. w0

1 = 0, w0
2 = 0.

x0 = 1
p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=0. ...
f1(P)=0, f2(P)=0. w1

1 = 0, w1
2 = 0.

x0 = 2
p(S,M)=0, p(H,M)=1, p(S,T)=0, p(H,T)=0.
h1(P)=1, h2(P)=1, h3(P)=0, h4(P)=0.
S={0,0,1,0,0}, id(P)=2.
f1(P)=2, f2(P)=1. w2

1 = 2, w2
2 = 1.

x0 = 3
p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=1.
S={0,0,0,0,1}, id(P)=4. ...
f1(P)=2, f2(P)=2. w3

1 = 2, w3
2 = 1.

x0 = 4
p(S,M)=0, p(H,M)=0, p(S,T)=0, p(H,T)=0. ...
w4

1 = 2, w4
2 = 1.

...
The iteration ends computing for x0 equal to the maximum admissible cost for P (which according to
Definition 2 is B-1). w5

1 = 2, w5
3 = 1.

w0 = 2
This signifies that the solution chosen by this arithmetic circuit is x1=Halifax and x2=Monday.

10. Conclusions

Distributed CSPs are a very active research area and secrecy within DisCSPs has been stressed of-
ten as an important issue [15, 8, 2, 20, 7, 6, 4, 18, 29, 23, 14, 11, 30, 25]. The technique described here
uses a (dn/2e, n) threshold scheme. It is also possible to develop techniques that may provide robust-
ness to agents not following the protocol, as in other multiparty computations (notably see (dn/3e,n)
threshold schemes) [1]. However, is some agent does not trust a majority of the participants than the
techniques proposed here are not appropriate, and one should use some other existing approach.

We presented a technique where agents that need to cooperate and whose problems can be modeled
as CSPs can find a random solution without leaks of additional information about their constraints.
The technique is exponential in space such that only problems with bounded search space size can
be addressed (e.g. for computers with up to 256MB, the storage is sufficient for solving meeting
scheduling problems with up to 4k alternative places and dates, 100 participants, in approximatively
300 (=2m log2(d) + log2(c) + 2n) rounds of parallel message exchages of less than 1G (cdm) con-
current messages per round).

We also show how the technique can be extended to perform optimization in Distributed Weighted
CSPs. In particular we find a way to avoid the privacy leaks concerning the solution quality, as
exhibited by the obvious approach.

References

[1] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-cryptographic fault-
tolerant distributed computating. In STOC, pages 1–10, 1988.

[2] C. Bessière, A. Maestre, and P. Meseguer. Distributed dynamic backtracking. In Proc. IJCAI DCR
Workshop, pages 9–16, 2001.

[3] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–88, 1981.

[4] S. E. Conry, K. Kuwabara, and V. R. Lesser. Multistage negotiation for distributed constraint satisfaction.
IEEE Trans. on systems, man, and cybernetics, 21(6):1462–1477, 1991.

[5] R. Dechter, K. Kask, E. Bin, and R. Emek. Generating random solutions for constraint satisfaction
problems. In Eighteenth national conference on Artificial Intelligence, pages 15 – 21, Edmonton, Alberta,
Canada, 2002.

[6] J. Denzinger. Tutorial on distributed knowledge based search. IJCAI-01, August 2001.
[7] B. Faltings. Incentive compatible open constraint optimization. In Electronic Commerce, 2003.
[8] E. Freuder, M. Minca, and R. Wallace. Privacy/efficiency tradeoffs in distributed meeting scheduling by

constraint-based agents. In Proc. IJCAI DCR, pages 63–72, 2001.
[9] O. Goldreich. Foundations of Cryptography, volume 2. Cambridge, 2004.

[10] T. Herlea, J. Claessens, G. Neven, F. Piessens, B. Preneel, and B. Decker. On securely scheduling a
meeting. In Proc. of IFIP SEC, pages 183–198, 2001.

[11] X. Jin and J. Liu. Efficiency of emergent constraint satisfaction in small-world and random agent net-
works. In IAT, 2003.

[12] J. Kilian. Founding cryptography on oblivious transfer. In Proc. of ACM Symposium on Theory of
Computing, pages 20–31, 1988.

[13] J. Larrosa. Node and arc consistency in weighted csp. In AAAI-2002, Edmonton, 2002.
[14] J. Liu, H. Jing, and Y. Tang. Multi-agent oriented constraint satisfaction. Artificial Intelligence, 136:101–

144, 2002.
[15] P. Meseguer and M. Jiménez. Distributed forward checking. In DCS, 2000.

[16] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt’99,
volume 1592, pages 223–238, 1999.

[17] T. Sandholm and S. Suri. Side constraints and non-price attributes in markets. In Proc. of IJCAI DCR
Workshop, pages 55–61, Seattle, August 2001.

[18] S. Sen and E. Durfee. A formal study of distributed meeting scheduling. Group Decision and Negotiation,
7:265–289, 1998.

[19] A. Shamir. How to share a secret. Comm. of the ACM, 22:612–613, 1979.
[20] M. Silaghi. Arithmetic circuit for the first solution of distributed CSPs with cryptographic multi-party

computations. In IAT, Halifax, 2003.
[21] M. Silaghi. Solving a distributed CSP with cryptographic multi-party computations, without revealing

constraints and without involving trusted servers. In IJCAI-DCR, 2003.
[22] M. Silaghi. A suite of secure multi-party computation algorithms for solving distributed csps. Technical

Report CS-2004-05, FIT, April 2004.
[23] M. Silaghi and V. Rajeshirke. A cryptographic multiparty-computation for distributed constraint satis-

faction problems ensuring secrecy of constraints by shuffling domains. In AAMAS, 2004.
[24] M. C. Silaghi and B. Faltings. A comparison of DisCSP algorithms with respect to privacy. In AAMAS-

DCR, pages 147–155, 2002.
[25] R. Wallace and M. Silaghi. Using privacy loss to guide decisions in distributed CSP search. In

FLAIRS’04, 2004.
[26] A. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.
[27] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction problem:

Formalization and algorithms. IEEE TKDE, 10(5):673–685, 1998.
[28] M. Yokoo and K. Suzuki. Generalized Vickrey Auctions without Third-Party Servers. In FC04, 2004.
[29] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint satisfaction: Reaching agreement

without revealing private information. In CP, 2002.
[30] H. Zhou and B. Choueiry. Characterizing the bahavior of a multi-agent search by using it to solve a tight,

real-world resource allocation problem. In CP-03W: Immediate Applications of CP, pages 79–99, 2003.

