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Abstract 

Learning States for Detecting Anomalies in Time Series 

by 

Stan Weidner Salvador 

 

Thesis Advisor:  Philip K. Chan, Ph.D. 

 

 

The normal operation of a device can be characterized in different 

operational states.  To identify these states, we introduce a segmentation algorithm 

called Gecko that can determine a reasonable number of segments using our 

proposed L method.  We then use the RIPPER classification algorithm to describe 

these states in logical rules.  Finally, transitional logic between the states is added 

to create a finite state automaton.  Multiple time series may be used for training, by 

merging several time series into a single representative time series using dynamic 

time warping.   

Our empirical results, on data obtained from the NASA shuttle program, 

indicate that the Gecko segmentation algorithm is comparable to a human expert in 

identifying states, and our L method performs better than the existing permutation 

tests method when determining the number of segments to return in segmentation 

algorithms.  Empirical results have also shown that our overall system can track 

normal behavior and detect anomalies.  Additionally, if multiple time series are 

used for training, the model will generalize to cover unseen normal variations and 

time series that are “between” the time series used for training. 



 iv 

Table of Contents 

List of Figures   ....................................................................................................... vii 

List of Tables  ........................................................................................................... ix 

Acknowledgments  .................................................................................................... x 

Chapter 1: Introduction  ........................................................................................... 1 

1.1 Problem Statement  ................................................................................... 1 

1.2 Approach  .................................................................................................. 2 

1.3 Key Contributions  .................................................................................... 2 

1.4 Organization  ............................................................................................. 3 

Chapter 2: Related Work  ......................................................................................... 5 

2.1 Clustering  ................................................................................................ 5 

2.1.1 Partitioning Clustering Algorithms  ...................................................... 5 

2.1.2 Hierarchical Clustering Algorithms  ..................................................... 6 

2.1.3 Density-based Clustering Algorithms  .................................................. 7 

2.1.4 Grid-based Clustering Algorithms  ....................................................... 8 

2.1.5 Applying Clustering Algorithms to Time Series Data  ......................... 8 

2.2 Segmentation  ........................................................................................... 9 

2.3 Determine Number of Clusters or Segments  ......................................... 10 

2.4 Anomaly Detection in Time Series  ........................................................ 13 

Chapter 3: Identifying the States in a Time Series  ................................................ 15 

3.1 Gecko Algorithm  ................................................................................... 17 

3.1.1 Gecko Overview  ................................................................................ 17 

3.1.2 Phase 1:  Create Sub-Clusters  ............................................................ 19 

3.1.3 Phase 2:  Repeatedly Merge Clusters  ................................................ 20 

3.1.4 Phase 3:  Determine Number of Clusters  .......................................... 23 

3.2 Empirical Evaluation  ............................................................................. 23 

3.2.1 Procedures and Criteria  ..................................................................... 24 



 v 

3.2.2 Results and Analysis  ......................................................................... 25 

3.3 Summary  ............................................................................................... 27 

Chapter 4: Determining the Number of Clusters/Segments in  
Clustering/Segmentation Algorithms  .................................................. 29 

4.1 The L Method  ........................................................................................ 30 

4.1.1 Evaluation Graphs  ............................................................................. 30 

4.1.2 Finding the Knee via the L Method  ................................................... 33 

4.1.3 Iterative Refinement  .......................................................................... 36 

4.1.4 Refinements for Segmentation Algorithms  ....................................... 38 

4.2 Empirical Evaluation  ............................................................................. 39 

4.2.1 Identifying the Number of Clusters  ................................................... 39 

4.2.1.1 Procedures and Criteria  .............................................................. 40 

4.2.1.2 Results and Analysis  .................................................................. 42 

4.2.2 Identifying the Number of Segments  ................................................. 46 

4.2.2.1 Procedures and Criteria  ............................................................. 46 

4.2.2.2 Results and Analysis  .................................................................. 49 

4.3 Summary  ............................................................................................... 54 

Chapter 5: Time Series Anomaly Detection Using States  ..................... 55 

5.1 Anomaly Detection System  ................................................................... 55 

5.1.1 Overview  ........................................................................................... 57 

5.1.2 Characterizing States by Generating Rules  ....................................... 58 

5.1.3 State Transition Logic  ....................................................................... 58 

5.2 Empirical Evaluation  ............................................................................. 61 

5.2.1 Procedures and Criteria  ..................................................................... 61 

5.2.2 Self-Tracking Results  ........................................................................ 61 

5.2.3 Normal Operation Results  ................................................................. 62 

5.2.4 Detecting Anomalies Results  ............................................................ 63 

5.3 Summary  ............................................................................................... 64 

Chapter 6: Building a Normal Model by Training on Multiple Time Series  ........ 65 

6.1 Dynamic time Warping  ......................................................................... 67 



 vi 

6.1.1 Problem Formulation  ......................................................................... 68 

6.1.2 Dynamic Time Warping Algorithm  .................................................. 69 

6.1.3 Derivative Time Warping  .................................................................. 73 

6.2 Using DTW to Train on Multiple Time Series  ..................................... 76 

6.3 Empirical Evaluation  ............................................................................. 79 

6.3.1 Procedures and Criteria  ..................................................................... 79 

6.3.2 Results and Analysis  ......................................................................... 82 

6.4 Summary  ............................................................................................... 85 

Chapter 7: Concluding Remarks  ........................................................................... 87 

7.1 Summary of Contributions  .................................................................... 87 

7.2 Limitations and Future Work  ................................................................. 89 

References   ............................................................................................................. 95 

Appendix:  Sample Run of the Anomaly Detection System  ............................... 100 

Input Files for Training  ................................................................................... 101 

Merging Time Series  ....................................................................................... 102 

Identifying States  ............................................................................ 103 

Rule Generation  ............................................................................................... 105 

State-Transition Logic  ..................................................................................... 108 

Anomaly Detection  ......................................................................................... 112 

Usage (command-line interface)  ..................................................................... 113 

 



 vii  

List of Figures 

Figure 3.1. Overview of the Gecko Algorithm. ....................................................... 18 

Figure 3.2. Graphs for ln(slope+1) and arctan(slope). ............................................. 22 

Figure 3.3. A data set after being clustered by Gecko (16 clusters). ....................... 24 

Figure 4.1. A sample evaluation graph. ................................................................... 32 

Figure 4.2. Finding the number of clusters using the L method. ............................. 34 

Figure 4.3. All four possible pairs of best-fit lines for a small evaluation 
graph....................................................................................................... 34 

Figure 4.4. Full and partial evaluation graphs created by CURE.  Only the 
first 100 points are shown on the right side. .......................................... 36 

Figure 4.5. Pseudocode to Iterative Refine the knee with the L Method................. 37 

Figure 4.6. Data sets 1-6 for evaluating the L method in clustering 
algorithms (data set #7 not shown). ....................................................... 41 

Figure 4.7. Actual number of clusters and the correct number predicted by 
the L method (axes:  x= # of clusters, y=evaluation metric – 
lines:  solid lines=correct # of clusters, dashed lines=# of 
clusters determined by L method).......................................................... 45 

Figure 4.8. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in 
segmentation algorithms. ....................................................................... 47 

Figure 4.9. The reasonable range for the number of segments and the 
number returned by the L method. (axes:  x=# of segments, 
y=evaluation metric – short dashed line=# of segments 
determined by the L method, long solid lines=marks the 
boundaries of the reasonable range for the # of segments. .................... 52 

Figure 5.1. Main steps in time series anomaly detection. ........................................ 57 

Figure 5.2. Expanded state-transition logic with transition thresholds.................... 60 

Figure 6.1. Two time series “warped” together using dynamic time 
warping................................................................................................... 67 

Figure 6.2. A cost matrix with the min. dist. warp path traced through it. .............. 70 

Figure 6.3. The order that the cost matrix is filled................................................... 71 

Figure 6.4. Four shaded areas showing how cells that are calculated...................... 72 



 viii  

Figure 6.5. A warping between two time series using original values. ................... 74 

Figure 6.6. A warping between two time series using slope values. ....................... 75 

Figure 6.7. Main steps in time series anomaly detection with multiple 
input time series used during training. ................................................... 77 

Figure 6.8. A valve being turned on and off at different voltages. .......................... 81 



 ix

List of Tables 

Table 3.1. Number of segments found by Gecko and a human expert. ................... 25 

Table 3.2. Quality of segments produced by Gecko and BUS................................. 26 

Table 4.1. Results of using the L method and the Gap statistic with various 
clustering algorithms.............................................................................. 43 

Table 4.2. Results of using the L method with three hierarchical 
segmentation algorithms. ....................................................................... 50 

Table 5.1. Self-tracking of a time series. ................................................................. 62 

Table 6.1. Results of training on a single time series, testing on all. ....................... 83 

Table 6.2. Results of training on multiple time series, testing on all. ...................... 84 



 x

Acknowledgments 

 

I would like to thank my thesis advisor Dr. Philip Chan for his help in 

writing this thesis, and giving me the opportunity to participate in his research.  I 

also would like to thank the other members of my thesis committee, Dr. Marius-

Calin Silaghi and Dr. Georgios Anagnostopoulos. 

This work is partially supported by NASA (NAS10-02044).  Thanks to 

Bobby Ferrell and Steven Santuro at NASA for providing data sets, helpful 

comments, and clustering evaluations.  Others who have contributed to this 

research include Brian Buckley, Steve Creighton, and Walter Schiefele at Interface 

and Control Systems (ICS) who helped integrate our algorithms into their SCL 

expert system.  John Brodie and Matt Mahoney also offered many helpful 

suggestions that helped to guide this research. 



 1 

Chapter 1  

Introduction 

Expert (knowledge-based) systems are often used to help humans monitor 

and control critical systems in real-time.  For example, NASA uses expert systems 

to monitor various devices on the space shuttle.  However, populating an expert 

system’s knowledge database by hand is a time-consuming and expensive process.  

In this paper we investigate machine learning techniques for generating knowledge 

that can monitor the operation of devices or systems.  Specifically, we study 

methods for generating models that can detect anomalies in time series data.  

The normal operation of a device can usually be characterized in different 

operational states.  Segmentation or clustering techniques can help identify the 

various states.  However, most methods directly or indirectly require a parameter to 

specify the number of segments/clusters in the time series data.  The output of these 

algorithms is also not in a logical rule format, which is commonly used in expert 

systems for its ease of comprehension and modification.  Furthermore, the 

relationships between these states need to be determined to allow tracking from one 

state to another and to detect anomalies. 

1.1 Problem Statement 

Given time series data depicting a system’s normal operation, we desire to 

learn a model that can detect anomalies and can be easily read and modified by 

human users.  We investigate a few issues in this paper.  First, we want a 

segmentation algorithm that can dynamically determine a reasonable number of 

segments, and hence the number of states for our purposes.  These states, collected 
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from a device, should be comparable to those identified by human experts.  Second, 

we would like to characterize these states in logical rules so that they can be read 

and modified with relative ease by humans.  Third, given the knowledge of the 

different states, we wish to describe the relationship among them for tracking 

normal behavior and detecting anomalies. 

1.2 Approach 

To identify states, we introduce Gecko, which is able to segment time series 

data and determine a reasonable number of segments (states).  Gecko consists of a 

top-down partitioning phase to find initial sub-clusters and a bottom-up phase 

which merges them back together.  The appropriate number of segments is 

determined by what we call the L method.  To characterize the states as logical 

rules, we use the RIPPER classification rule learning algorithm (Cohen 1995).  

Since different states often overlap in the one-dimensional input space, additional 

attributes are derived to help characterize the states.  To track normal behavior and 

detect anomalies, we construct a finite state automaton (FSA) with the identified 

states. 

1.3 Key Contributions 

Our key contributions are:   

• We demonstrate a method that performs time series anomaly detection via 

generated states and logical rules that can easily be understood and 

modified by humans. 

• We introduce an algorithm named Gecko for segmenting time series data 

into states. 
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• We propose the L method that dynamically determines a reasonable number 

of clusters.  The L method is general enough to be used with any 

hierarchical clustering or segmentation algorithm. 

• We demonstrate how derivative time warping can be used to merge multiple 

time series together into an “average” time series in order to extend our 

anomaly detection so it may train on multiple time series. 

• Empirical evaluations, using 14 spatial and time series data sets and 6 

different clustering and segmentation algorithms, indicate that our L 

Method performs favorably to existing methods that determine the number 

of clusters or segments to return. Our L method is shown to work well for a 

wide range of algorithms, clusters with elaborate shape, and for 

clusters/segments that are overlapping and not well-separated. 

• Our empirical evaluations, with data from NASA, indicate that Gecko 

performs comparably with a NASA expert and the overall system can track 

normal behavior and detect anomalies. 

1.4 Organization 

Chapter 2 gives an overview of related work on topics related to this 

research.  The topics covered are: anomaly detection, segmentation, clustering, 

determining the number of clusters in a dataset. 

Chapter 3 discusses our Gecko segmentation algorithm that is able to 

identify the states in a time series.  The number of states that are returned is 

determined automatically by our L Method.   

A complete description of our L method is contained in Chapter 4.  The L 

method determines the number of clusters or segments to return from any 

hierarchical clustering or segmentation algorithm by locating the knee in the curve 

of an evaluation graph.   
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In Chapter 5, our overall anomaly detection system is described.  The 

system explained in this chapter takes a single time series, identifies its operational 

states, characterizes each state, and creates state transition logic between them to 

implement anomaly detection. 

Chapter 6 describes how to use dynamic time warping to extend the simple 

anomaly detection system in Chapter 5 to incorporate multiple time series for 

building a single normal model.  The dynamic time warping algorithm is also 

explained in detail. 

In Chapter 7, we summarize our work and our key contributions, as well as 

the limitations of our work.  We also state the direction of future work for our 

research. 
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Chapter 2  

Related Work 

 Before the details of our anomaly detection system are explained, we give 

an overview of related work in time series anomaly detection, and also other 

algorithms that are related to components in our anomaly detection system.  Topics 

covered in this chapter are:  clustering, segmentation, determining the number of 

clusters or segments, and anomaly detection in time series. 

2.1 Clustering 

 Clustering algorithms take spatial data (2 or more dimensions) as input and 

return a set of clusters such that all points in a cluster are similar to each other and 

dissimilar to points in other clusters.  There are four main categories of clustering 

algorithms:  partitioning, hierarchical, density-based, and grid-based.   

2.1.1 Partitioning Clustering Algorithms 

Partitioning algorithms are the most classical group of clustering 

algorithms.  The K-means algorithm (Hartigan 1975) is the most commonly used 

clustering  algorithm due to its simplicity.  K-means initially creates k random 

cluster centers and assigns every point to its closest cluster center.  The cluster 

centers are then re-calculated, and every data point is re-assigned to its closest 

cluster center.  The iterative refinement of the k clusters stops when no the cluster 

centers do not change in an iteration.  Despite the popularity of K-means, it has 

significant disadvantages:   
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• The quality of the clusters produced is heavily dependent on the initial 

cluster centers that are chosen, and the set of clusters returned may vary 

significantly between runs of the algorithm on the same data set. 

• The selection of the value k (number of clusters to return) needs to be 

specified by the user. 

• The algorithm is not efficient for large data sets. 

• Outliers can decrease the quality of the clusters that are returned. 

• Only spherical clusters can be found. 

Many partitioning algorithms have also been developed to overcome some of the 

disadvantages of K-means, chiefly the lack of scalability of K-means.  PAM (Ng & 

Hah 1994) is one such algorithm that attempts to speed up the K-means algorithm 

by sampling the data. 

2.1.2 Hierarchical Clustering Algorithms 

Hierarchical algorithms can be agglomerative and/or divisive.  The 

agglomerative (bottom-up) approach initially starts with many clusters and 

repeatedly merges the two most similar clusters together, while the divisive (top-

down) approach initially places all of the data into a single cluster and repeatedly 

splits a cluster into two.  The merging or splitting of clusters continues until the 

stopping criterion (usually the desired number of clusters k) is reached. 

 Hierarchical clustering algorithms are popular for scientific fields where the 

data being clustered contains sub-groups within the larger clusters because 

hierarchical algorithms can create a tree of clusterings called a dendrogram.  This 

dendrogram can be used to view sets of clusters at varying granularities and to 

discover relationships within the data that would be missed at only a single 

clustering level (single set of clusters).  ROCK (Guha, Rastogi & Shim 1999), 

CURE (Guha, Rastogi & Shim 1999) and Chameleon (Karypis, Han & Kumar 
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1999) are hierarchical algorithms that differ mostly in their similarity functions, 

which favor spherical, elliptical, and non-spherical clusters (respectively).  

Advantages of hierarchical clustering algorithms include: 

• The ability to produce a dendrogram containing sets of clusters for many 

values of k. 

• The similarity or distance measure between points or clusters is extremely 

flexible, which is responsible for the large number of existing hierarchical 

clustering algorithms. 

The major disadvantage of hierarchical clustering algorithms is that once a 

merge or split has been performed, it cannot be undone.  If the merge/split was a 

poor choice it may lead to future splits/merges that are also of poor quality. 

2.1.3 Density-based Clustering Algorithms 

Density-based algorithms, e.g., DBSCAN (Ester et al. 1996) and 

DENCLUE (Hinneburg & Keim 1998), are able to efficiently produce clusters of 

arbitrary shape and are also able to handle noise.  If the density of a region is above 

a specified threshold, it is assigned to a cluster; otherwise it is considered to be 

noise.  Connected regions of points that have a density above the threshold are 

considered to be in a single cluster.  Density-based algorithms are efficient and are 

sensitive to the presence of outliers.  However, the main disadvantage of density-

based clustering algorithms is that several unintuitive parameters (cannot simply 

specify the number of clusters desired) need to be set for good results.  The 

neighborhood width and the density threshold are two parameters that usually must 

be set.  Another disadvantage is that density-based methods only work well when 

the density of the data is more or less uniform within the clusters, which is often 

not the case. 
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2.1.4 Grid-based Clustering Algorithms 

Grid-based algorithms, such as WaveCluster (Seikholeslami, Chatterjee & 

Zhang 1998), reduce the clustering space into a grid of cells which enables efficient 

clustering of very large datasets.  Many grid-based methods can automatically 

remove outliers and have a time complexity of O(N) if there is a small number of 

dimensions and the data is concentrated.  Grid-based methods are better suited for 

clustering large amounts of very concentrated data, rather than sparse data. 

2.1.5 Applying Clustering Algorithms to Time Series Data 

All of the clustering algorithms discussed so far were designed to cluster 

spatial data with at least a two dimensional distribution.  However, we are 

interested in finding clusters in time series data with a one dimensional distribution.  

Even multi-dimensional time series have a one-dimensional data distribution 

because a time series is a function.  We also wish to find states in the time series 

that are non-overlapping with other states in the time dimension.   

Partitioning methods iteratively refine a set of clusters by repeatedly 

assigning points to the closest cluster center and recalculating the center of the 

cluster.  If this method is constrained so clusters are non-overlapping in the time 

dimension, local minima are much more likely to occur than in standard usage with 

two or more dimensions.  The local minima are more frequent because the range of 

freedom when adjusting cluster centers has been decreased from two or more 

dimensions, to sliding it left or right in the time axis where it can get stuck between 

two other clusters (overlapping of clusters is not permitted to occur along the time 

axis). 

Density based clustering methods cannot be used to find states in time 

series data because they return a set of clusters that are isolated regions of the data 

where the density is above some threshold.  Significant portions of data between 

the clusters that have a density below the density threshold are considered to be 
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noise.  For time series data, it is preferable that all of the data points are placed into 

some cluster, and any noise in the time series should be dealt with by smoothing or 

filtering the time series rather than simply ignoring it.  In order to prevent data from 

being treated as noise and thrown out, the density threshold must be set to a very 

low value which will cause only a single cluster to be returned, which is 

uninformative. 

Grid based methods can cause a large increase in execution time by placing 

the data into a grid and counting the number of points in each grid cell and 

clustering the cells weighted by the number of points in them, rather than clustering 

individual data points.  However, since time series data is a continuous function 

and has a single dimensional distribution, the data is much too sparse to benefit 

from the use of a grid. 

Hierarchical clustering algorithms on the other hand can be modified to 

cluster time series data.  They may use any similarity or distance function that is 

desired, and all that is needed is a restriction on the merging and splitting steps that 

forces clusters to remain non-overlapping in the time dimension after each step.  

Additionally, since a wide range clusterings are returned as a hierarchical 

dendrogram tree, evaluation may be performed to determine what level of the tree 

produced the best set of clusters.  Our Gecko clustering algorithm that is explained 

in Chapter 3 is a modified hierarchical clustering algorithm. 

2.2 Segmentation 

 Segmentation algorithms take time series data as input and produce a 

Piecewise Linear Approximation (PLA).  A PLA is a set of consecutive line 

segments that fit the original data points as closely as possible.  There are three 

common approaches to segmentation (Keogh et al. 2001).  

1. Sliding Window:  A segment is grown until the error of the segment is 

above a specified threshold, then a new segment is started.   
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2. Top-down:  The entire time series is recursively split until the desired 

number of segments is reached, or an error threshold is reached.   

3. Bottom-up:  Begin with N/2 segments.  Repeatedly merge the two adjacent 

segments that will increase the approximation error of the PLA the by the 

smallest amount if they are joined.  Keep merging segments until either the 

desired number of segments is reached, or the error of the PLA reaches the 

threshold value.   

The sliding window approach creates poorest linear approximations but 

runs the quickest.  Top-down segmentation creates the best PLA but runs much 

slower than the other two methods.  Bottom-up segmentation creates PLAs that are 

nearly as good as those of the top-down method, but runs much quicker than top-

down segmentation. 

Segmentation algorithms are somewhat related to clustering algorithms in 

that each segment can be thought of as a cluster.  However, since segmentation 

algorithms attempt to minimize the vertical error of the line segments, they have a 

bias towards creating more segments in highly sloped regions than lower sloped 

regions.  The vertical error of a segment in a highly sloped region is usually much 

larger than segments with lower slope, and segmentation algorithms will attempt to 

minimize that error by creating more segments in those highly sloped areas.  This 

bias favoring more segments in areas of large magnitude slopes causes existing 

segmentation algorithms to be better suited for producing a fine grain partitioning, 

rather than a small set of segments that represent natural clusters. 

2.3 Determine Number of Clusters or Segments 

 Five common approaches to estimating the dimension of a model (such as 

the number of clusters or segments) are:  cross-validation, penalized likelihood 

estimation, permutation tests, resampling, and finding the knee of an error curve. 
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Cross-validation techniques create models that attempt to fit the data as 

accurately as possible.  Monte Carlo cross-validation (Smyth 1996) has been 

successfully used to prevent over-fitting (too many clusters/segments).  Penalized 

likelihood estimation also attempts to find a model that fits the data as accurately as 

possible, but also attempts to minimize the complexity of the model.  Specific 

methods to penalize models based on their complexity are:  MML (Baxter & Oliver 

1996), MDL (Hansen & Yu 2001), BIC (Fraley & Raftery 1998), AIC, and SIC 

(Sugiyama & Ogawa 2001).  Permutation tests (Vasko & Toivonen 2002) attempt 

to prevent segmentation algorithms from creating a PLA that over-fits the data by 

comparing the relative change in approximation error to the relative change of a 

‘random’ time series.  If the relative change in error begins to be similar between 

the time series and a random time series as more segments are added, it means that 

extra segments are fitting noise and not any underlying structure in the time series.  

Resampling (Roth et al. 2002) and Consensus Clustering (Monti et al. 2003) 

attempt to find the correct number of clusters by repeatedly clustering samples of 

the data set, and determining at what number of clusters the clusterings of the 

various samples are the most “stable.”   

The majority of these methods to automatically determine the best number 

of clusters/segments may not work very well in practice.  Model-based methods, 

such as cross-validation and penalized likelihood estimation, are computationally 

expensive and often require the clustering/segmentation algorithm to be run several 

times.  Their usefulness is limited to only the smallest data sets.  Permutation tests 

and resampling are extremely inefficient, since they require the entire clustering 

algorithm to be re-run hundreds or even thousands of times.  The majority of 

existing methods to find the knee of an error curve require the clustering algorithm 

to be re-run for every potential value of k.  Even worse, many of the evaluation 

functions that are used to evaluate a set of clusters run in O(N2) time.  This means 

that it may take longer just to evaluate a set of clusters than it does to generate 
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them.  Most methods that find the knee of a curve also only work well when the 

clusters are well separated.  

Some existing clustering algorithms have built-in mechanisms for 

automatically determining the number of clusters.  The TURN* (Foss & Zaïane 

2002) algorithm locates the knee of a curve by location the point where the 2nd 

derivative increases above some user specified threshold.  A variant (Chiu et al. 

2001) of the BIRCH (Zhang, Ramakrishnan & Livnv 1996) algorithm uses a 

mixture of the Bayesian Information Criterion (BIC) and the ratio-change between 

inter-cluster distance and the number of clusters. 

Locating the “knee” of an error curve, in order to determine an appropriate 

number of clusters or segments, is well known, but it is not a particularly well-

studied method.  There are methods that statistically evaluate each point in the error 

curve, and use the point that either minimizes or maximizes some function as the 

number of clusters/segments to return.  Such methods include the Gap statistic 

(Tibshirani, Walther & Hastie 2003) and prediction strength (Tibshirani et al. 

2001).  These methods generally (with the exception of hierarchical algorithms) 

require the entire clustering or segmentation algorithm to be run for each potential 

value of k. 

The knee of a curve is loosely defined as the point of maximum curvature.  

The knee in a “# of clusters vs. classification error” graph can be used to determine 

the number of clusters to return.  Various methods to find the knee of a curve are: 

1. The largest magnitude difference between two points. 

2. The largest ratio difference between two points (Chiu et al. 2001). 

3. The first data point with a second derivative above some threshold value 

(Ester et al. 1996) (Foss & Zaïane 2002). 

4. The data point with the largest second derivative (Harris, Hess & Venegas 

2000). 
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5. The point on the curve that is furthest from a line fitted to the entire curve. 

6. Our L-method, which finds the boundary between the pair of straight lines 

that most closely fit the curve. 

This list is ordered from the methods that make a decision about the knee 

locally, to the methods that locate the knee globally by considering more points of 

the curve.  The first two methods use only single pairs of adjacent points to 

determine where the knee is.  The third and fourth methods uses more than one pair 

of points, but still only considers local trends in the graph.  The last two methods 

consider all data points at the same time.  Local methods may work well for 

smooth, monotonically increasing/decreasing curves.  However, they are very 

sensitive to outliers and local trends, which may not be globally significant.  The 

fifth method takes every point into account, but only works well for continuous 

functions, and not curves where the knee is a sharp jump.  Our L method considers 

all points to keep local trends or outliers from preventing the true knee to be 

located, and is able to find knees that exist as sharp jumps in the curve. 

2.4 Anomaly Detection in Time Series 

Anomaly detection is the task of learning what is “normal” and determining 

when an event occurs that differs significantly from expected normal behavior.  

The approach that anomaly detection takes is the opposite of signature detection.  

Signature detection is explicitly given information on what is “bad,” and simply 

attempts to detect it when it happens.  False alarms are rare when using signature 

detection because the algorithm has been programmed to know exactly what to 

look for to detect the known “bad” conditions.  However, signature detection is 

unable to detect new attacks.  Although anomaly detection systems produce more 

false alarms than signature detection systems, they have the significant advantage 

that they are able to detect new, previously unknown “bad” behavior.  Virus 

scanners use signature detection to detect viruses.  Virus scanners are very good at 
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detecting known viruses with very few false alarms, but they cannot detect new 

viruses. 

Nearly all of the work in time series anomaly detection relies on models that 

are not easily readable and therefore cannot be modified by a human for tuning 

purposes.  Examples include creating a set of normal sequences through the 

negative-selection of random sequences (Dasgupta & Forrest 1996), frequency of 

normal sequences (Keogh, Lonardi, & Chiu 2002), adaptive resonance theory 

(Caudell & Newman 1993), and neural networks (Kozama et al. 1994).  However, 

Langley et al. (Langley, Bay & Saito 2003) propose a method that uses process 

models to model a time series and predict future data.  These process models are 

concise and are easily read and modified by humans, but their generation requires 

parameters to be set by a human that must have knowledge of the underlying 

processes that produce the time series. 
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Chapter 3  

Identifying the States in a Time Series  

The normal operation of a device can usually be characterized in different 

operational states.  An operational state is a period in a time series in which the 

monitored device is in consistent state.  If the operational states in a time series can 

be reliably discovered, that information may be used for simple discovery of 

interesting features in a time series, or can aid in anomaly detection by ensuring 

that the states occur in the expected sequence.  A simple example of a device’s 

operational states is the temperature of a light bulb that is turned on and off.  A 

time series containing the temperature of this light bulb contains approximately five 

operational states: (1) the light bulb is off and is at room temperature; (2) the light 

bulb is switched on and quickly rises in temperature until a maximum temperature 

is reached; (3) the maximum temperature is reached and the temperature is 

constant; (4) the light bulb is turned off and the temperature slowly decreases; (5) 

the temperature has cooled and is once again at room temperature. 

A state in a time series is a period of time where the time series is following 

a relatively steady trend, and portions of the time series immediately before and 

after the state do not follow the same trend.  Notice that this is nearly identical to a 

commonly used definition of a cluster:  “objects are clustered or grouped based on 

the principle of maximizing the inter-class similarity and minimizing the intra-class 

similarity” (Han & Kambler 2000).  Thus, the problem of identifying distinct states 

in a time series is essentially a clustering problem since we wish to find states that 

are internally homogeneous, and contain data that are dissimilar to the data 

contained in other (adjacent in our case) states.  
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Segmentation techniques can help identify these various states.  

Segmentation algorithms create a piecewise linear approximation (PLA) of a time 

series.  Since each segment in the PLA spans a period of time and does not overlap 

with other segments, the period of each segment may be considered to be an 

operational state of the time series.  However, existing segmentation algorithms are 

better at creating fine-grain approximations of time series for compression, than 

they are at identifying a small number of distinct states or clusters in the data.  

Current segmentation algorithms attempt to create a set of line segments that 

minimize the overall error of the PLA with respect to a time series.  However, 

because the error of a point from a line segment is measured as the vertical distance 

between them, areas of a time series with large slopes will have an artificially high 

approximation error.  This will cause a bias that favors more segments where the 

slope has a large magnitude, and fewer segments where the slope is low.  The result 

is that segmentation algorithms often create a poor set of segments when the 

number of segments becomes small.  This is not a problem when segmentation 

algorithms are used to create fine-approximations of a time series, but if a small 

number of segments need to be found in the time series, existing segmentation 

algorithms will often fail to provide an acceptable set of segments.  In addition, 

existing segmentation algorithms directly or indirectly require a parameter to 

specify the number of segments in the time series.  It is often impractical to expect 

a human with sufficient domain knowledge to be available to select the number of 

segments to return. 

We desire a segmentation algorithm that can dynamically determine a 

reasonable number of segments, and hence the number of states for our purposes.  

These states, collected from a device, should be comparable to those identified by 

human experts.  To identify states, we introduce Gecko, which is able to segment 

time series data and determine a reasonable number of segments.  Gecko consists 

of a top-down partitioning phase that creates initial sub-clusters and a bottom-up 
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phase that merges them back together.  The appropriate number of segments is 

determined by what we call the L method.  The next section gives and overview of 

the Gecko algorithm and is followed by an empirical evaluation against an existing 

segmentation algorithm in section 3.2; section 3.3 summarizes our findings on the 

Gecko algorithm. 

3.1 Gecko Algorithm 

3.1.1 Gecko Overview 

While segmentation algorithms typically create only a fine linear 

approximation of time series data, Gecko divides a time series into clusters.  This 

number of clusters is determined by the algorithm and requires no user input.  Note 

that segmentation is just a special case of clustering where clusters must not 

overlap along the time dimension.  Gecko uses a 2-pass method (similar to 

Chameleon) that is a combination of both divisive and agglomerative hierarchical 

clustering.  The first is a top-down pass that partitions the data into a large number 

of sub-clusters.  This is followed by a bottom-up pass that merges the sub-clusters 

back together.  The first top-down pass determines all of the potential boundary 

areas between clusters, which then enables the second bottom-up pass to focus only 

on the relative similarity of clusters.  Hierarchical clustering algorithms are very 

similar to top-down/bottom-up segmentation.  The difference is that hierarchical 

clustering is more general and any number of methods can be used to determine 

similarity, while segmentation is typically limited to the error of a segment's best-fit 

line. 
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Figure 3.1. Overview of the Gecko Algorithm. 

The Gecko algorithm consists of three phases: 

1. The first phase creates many small sub-clusters by initially putting all of the 

data points into a single cluster, and repeatedly splitting the largest cluster 

until all of the clusters can no longer be divided without becoming smaller 

than a specified parameter s.   

2. The second phase takes all of the sub-clusters and repeatedly merges the 

two most similar clusters until all of the data is once again in the same 

cluster.   

3. Using information recorded during merging, phase 3 is able to quickly 

determine the 'best' number of clusters that should be extracted from the 

hierarchical clustering.   

The Gecko Algorithm (overview) 
Input:  D  // time series data 
          s  // the minimum cluster size 
Output:   c* clusters   
 
 
Phase 1: 
1. build a k-nearest neighbor graph of  

D (k=2*s) 
2. recursively bisect the graph until no 

bisections can be made without 
creating a cluster smaller than s 

 
Phase 2: 
3. recursively merge the sub-clusters 

together until only one cluster 
remains - a dendrogram is created 

 
Phase 3: 
4. find c*, an appropriate number of 

clusters to return, by using the           
L method 

5. extract c* clusters from the 
dendrogram and return them 
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The following three sections detail each of the phases in the Gecko 

algorithm. 

3.1.2 Phase 1:  Create Sub-Clusters 

In the first phase, many small sub-clusters are created by a method that is 

very similar to the one used in Chameleon (Karypris, Hun & Kumar 1999), with 

the exception that Gecko forces cluster boundaries to be non-overlapping in the 

time dimension.  The sub-clusters are created by initially placing all of the data 

points in a cluster, and repeatedly splitting the largest cluster until all of the clusters 

are too small to be split again without violating the minimum possible cluster size 

s. 

To determine how to split the largest cluster, a k-nearest neighbor graph is 

built in which each node in the graph is a time series data point (measurements 

taken at a time-interval), and each edge is the similarity between two data points.  

Only the slopes of the original values (original sensor readings) are used to 

determine similarity, and not the original values themselves.  Using only the slope 

will tend to produce sub-clusters that have constant slope, which produces sub-

clusters that are as close to straight lines as possible.  The k-nearest neighbor graph 

is constructed by creating an edge from every vertex to each of its k nearest (most 

similar) neighbors.  The parameter k is not an input parameter.  It is derived from s 

(smallest possible cluster size), and is defined to be 2*s.  Due to the importance of 

time, the k nearest points of a data point can be assumed to be the k/2 points on 

each size of the point according to the time axis.  By using this graph, the similarity 

between groups of points (clusters) can be determined by computing the edge-cut 

(sum of the edges) between the two groups.  Similarity between two points is 

defined to be ln(1.0/distance+1), where distance is the Euclidean distance (or any 

other distance method) between the two points.  Justification for using this distance 

function will be explained in the next section.  If the graph is split where the edge-
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cut is the smallest, then the two newly separated clusters will be dissimilar to each 

other and have high internal similarity. 

Since all boundaries between clusters are cut cleanly by the time axis with 

no overlap, the typically NP-hard problem of graph bisection is simplified, and the 

optimal min-cut partitioning of a cluster can be quickly determined in fewer than 

minClusterSize-1 edge-cut checks (where minClusterSize is the number of data 

points contained in the cluster).  There is no need for heuristics, because all 

possible edge-cut possibilities can be quickly computed with efficient data 

structures (Fiduccia & Mattheyses 1982). 

3.1.3 Phase 2:  Repeatedly Merge Clusters 

In the second phase, the most similar pair of adjacent (in time) clusters is 

repeatedly merged until only one cluster remains.  To determine which adjacent 

pair of clusters are the most similar, representative points are generated for each 

cluster and the two adjacent clusters with the closest representative points are 

merged.  A single representative point is able to represent every point in a cluster 

because each cluster is internally homogeneous.   

The representative point of a cluster contains a value for the slope of every 

original attribute in the data other than time.  Clustering by the slope values causes 

the time series to be divided into flat regions.  If a human is asked to pick out 

several distinct phases (or states) of a time series graph, he is likely to divide the 

graph into flat regions.  This eyeball method of clustering is also essentially 

clustering by slope.  Segmentation also relies exclusively on slope:  if a minimum-

error line (segment) is well fitted to a set of points it means that the segment has a 

consistent slope. 

If raw slope values are used in the representative points, then the “distance” 

between clusters with slope values 100 and 101 would be the same as the distance 

between clusters with slope values 0 and 1.  Differences in slopes that are near zero 
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need to be emphasized because the same absolute change in slope can triple a small 

value, and be an insignificant increase for a large value.  Relative differences 

between slopes cannot be measured by the percentage increase because in the 

preceding example, the percentage increase from 0 to 1 is undefined.  Gecko uses 

representative values of slopes to determine the “distance” between two slopes by 

using the equation:  

 

                       Representative Slope = 

 

This equation emphasizes slopes near zero and decreases the effect of 

changes in slope when the slope values are large.  Whenever a slope value is 

squared, its representative slope value (approximately) doubles.  In the preceding 

example of comparing 2 pairs of clusters with slopes {100, 101} and {0, 1} the 

representative values of their slopes are {4.615, 4.625} and {0, 0.693}.  This 

accurately reflects the relative difference between raw slopes and not the absolute 

difference. 

Calculating the representative slope with a natural logarithm is similar to 

using the difference between angles to determine which lines are most similar.  

Consider a line with an angle of zero, if one end of the line is increased, the angle 

of the line will increase.  If another line the same length is already at an eighty-five 

degree angle, and the higher end of the line is increased the same amount as before, 

the change of angle is much smaller than before.  The idea is that a change in slope 

near zero is more significant than when the slope has a large magnitude.  However, 

the problem with using the angle in degrees as the representative slope is that once 

the angle gets near ninety degrees (or π/2 radians), an increase in slope will no 

longer have an effect on the angle.  This prevents lines with large slopes from being 

accurately compared to each other because they will all have nearly identical large 

angles.  The natural logarithm, ln(slope+1), is very similar to converting the slope 
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to degrees (in radians) using arctan(slope).  In Figure 3.2, the similar relationship 

between ln(slope)+1 and arctan(slope) can be easily seen. 

 

Figure 3.2. Graphs for ln(slope+1) and arctan(slope). 

Both curves are nearly identical until the slope increases past approximately 2.25.  

After that, arctan(slope) soon reaches its maximum value of π/2.  However, 

ln(slope+1) continues to increase and has no maximum value.  The value of 

ln(slope+1) always doubles (approximately) when the slope is squared. 

A potential problem with greedily merging the pair of adjacent clusters with 

the most similar representative slope is that local minima can prevent the best 

merging choice to be made.  If two large, flat clusters with a slope of zero are 

separated by a very small cluster with a moderately high slope due to noise, the two 

large flat clusters will not be merged together to create one large flat cluster 

because merging with the very small cluster between them seems like a bad choice.  

Sometimes a “moderately bad” merge needs to be performed in order to set up a 

“very good” merge.  To overcome the local minima, the algorithm should evaluate 

not only merging a pair of clusters, but also evaluate merging the pair clusters and 

then merging it with an adjacent cluster.  Whichever sequence of merges has the 

lowest average difference in representative slope values among merged clusters is 
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picked to be the next merge.  Generally, only looking two merges ahead is enough 

for good results.   

All sets of clusters encountered throughout the merging process can be 

efficiently stored in a dendrogram tree.  A dendrogram is created by placing all of 

the sub-clusters at the leaf nodes of the tree.  As each pair of clusters is merged, a 

new node is created to represent the new cluster and points to the two clusters that 

were merged to create it.  The original data points only need to be stored in the leaf 

nodes, and the only overhead is to store two new pointers after each pair of clusters 

is merged.  The data points contained in a cluster can be determined by finding all 

of the leaf clusters that are reachable by following its pointers.  Recording the order 

that clusters were merged together enables any number of clusters between 1 and 

the number of initial sub-clusters to be quickly returned from the tree.  The number 

that will be returned is determined by the final phase of the Gecko algorithm.   

3.1.4 Phase 3:  Determine Number of Clusters 

The last phase of the Gecko algorithm is to determine the number of 

clusters to return.  Once the correct number of clusters is determined, the set of 

clusters is directly extracted from a dendrogram and returned.  Our L method is 

used to determine the number of clusters.  The L method identifies the number of 

clusters where additional merges between the two most similar clusters begin to 

greatly decrease the clustering quality.  The L method is general enough to be used 

not only for Gecko, but also for all other segmentation and hierarchical clustering 

algorithms.  The L method is described in detail in Chapter 4, and is evaluated on 

both segmentation and clustering algorithms.  

3.2 Empirical Evaluation 

The goal of this evaluation is to demonstrate the ability of the Gecko 

algorithm to identify states (or clusters) in real time series data.  Gecko will be 
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compared to an existing segmentation algorithm to determine its relative 

performances in finding clusters in time series data.  The data used to evaluate 

Gecko is 10 time series data sets obtained from NASA.  The data sets are time 

series of valves on the space shuttle. 

Each data set contains between 1,000 and 20,000 equally spaced 

measurements of current.  These 10 data sets contain time series of valves operating 

under varying conditions. 

3.2.1 Procedures and Criteria 

The quality of the clusters produced by Gecko and an existing algorithm 

will be evaluating by having a domain expert blindly evaluate the output of each 

algorithm.  An example of a set of clusters that is returned by Gecko is shown in 

Figure 3.3 

 
Figure 3.3. A data set after being clustered by Gecko (16 clusters). 

A high quality set of clusters has each cluster corresponding to an important 

state in the time series.  The experimental procedure is as follows:  Gecko and an 

existing algorithm, bottom-up segmentation (BUS), cluster the 10 data sets.  

Without knowing which output is from which algorithm, a NASA valve expert will 

then rate the quality of each set of clusters from 1 to 10.  BUS requires user input to 

determine the number of segments to return, so the number of segments returned by 
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BUS is set to be the same number that Gecko returns.  Thus, this test is more of a 

test between the relative quality of the clusters produced by the two algorithms 

when they create the same number of clusters.  BUS returns a set of line segments, 

but in this evaluation they are considered to be clusters where each segment is a 

cluster containing all of the data points within the time range of that segment.  

Finally, the valve expert is asked to go over each of the Gecko data sets that he 

rated in the second step, and explain his evaluation.  Gecko was run with the 

default parameter for each data set:  minimum cluster size s=10. 

3.2.2 Results and Analysis 

The first part of Gecko’s evaluation was to compare the number of clusters 

it produced to the number produced by an expert human.  A summary of the results 

is shown in Table 3.1. 

Table 3.1. Number of segments found by Gecko and a human expert. 

 Gecko NASA Human Expert 
Data Set # of clusters # of clusters Reasonable Range 

1 16 11 9-20 
2 16 10 9-20 
3 14 10 9-20 
4 12 10 9-20 
5 13 7 (6-15) 
6 10 5 (5-10) 
7 7 6 (6-11) 
8 16 10 (9-19) 
9 16 12 (10-20) 
10 15 11 (9-16) 

Gecko was able to identify a number of clusters that was within the range 

specified by the expert to be a ‘reasonable range’ (for datasets 5-10 the expert did 

not provide a range and we extrapolated from his hand-clustering and his ranges for 

data sets 1-4).  The human expert consistently created clusterings with fewer 

clusters than the Gecko algorithm.  However, the clusterings are actually quite 

similar.  Gecko identifies the same major clusters as the valve expert, but also 
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produces several ‘transition’ clusters between them.  A more detailed evaluation of 

the L Method’s ability to determine the number of clusters for more diverse data 

sets can be found in Chapter 4. 

Table 3.2. Quality of segments produced by Gecko and BUS. 

Data Set 1 2 3 4 5 6 7 8 9 10 Avg 

Gecko 10 10 9 10 10 10 8 9 9 10 9.5 

BUS 2 3 3 3 3 3 8 5 7 6 4.3 

The next task performed by the NASA engineer was to rate the clusterings 

produced by Gecko and BUS.  Table 3.2 contains the clustering quality scores for 

Gecko and BUS.  Gecko’s average score was 9.5, while the bottom-up 

segmentation algorithm’s average score was only 4.3.  Notice that Gecko often 

receives a perfect clustering score (which signifies a clustering as good as the 

human expert’s clustering) even though it returns fewer clusters than the human 

expert.  For example, Gecko produced nearly twice as many clusters as the human 

expert for data set 5, and Gecko still got a perfect rating.  This suggests that there is 

often a range of “very good” numbers of clusters to return, rather than a single 

correct number.  

 The final part of Gecko’s evaluation was a discussion with the NASA 

engineer about why he gave each score.  According to the engineer, BUS divides 

regions of high slope into too many clusters.  BUS merges clusters together by 

keeping the root-mean squared error of the best fit lines to a minimum.  This 

method measures error vertically.  As a consequence, lines that are nearly vertical 

may seem visually to be a nearly perfect fit, but the vertical distances from the 

points to the line can be huge.  Since BUS tends to consider segments with a slope 

of large magnitude to have a large amount of error, it favors having more segments 

at this highly sloped region to reduce the overall approximation error.  This is the 

main cause of BUS’s poor performance when rated by the domain expert. 
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 Another advantage that Gecko had over BUS in this evaluation is that 

Gecko was able to identify every major transition where slopes between states 

changed drastically.  BUS often missed these obvious cluster transitions because it 

initially partitions the data by creating N/2 clusters by initially putting every two 

points into a cluster.  This means that wherever there is a very sharp cluster 

boundary, there is a 50% chance that BUS’s initial segments will straddle the 

boundary.  These small errors often cause more errors during the merging process 

and the overall clustering quality suffers.  In contrast, the initial partitioning 

produced by Gecko in its first phase is careful make sure that all important cluster 

boundaries occur only on the edges of clusters. 

 Our implementation of Gecko is able to cluster a 1,000 point data sets in 7 

seconds.  A 20,000 point data set takes approximately 7.5 minutes to cluster.  

However, sampling can be performed to increase the execution time without very 

little effect on the quality of the output unless the user wishes to discover very 

small clusters that would be smoothed over by over-sampling.  About 90% of the 

execution time is due to phase 1 of the Gecko algorithm where the initial sub-

clusters are created by repeatedly bisecting a k-nearest neighbor graph.  Building a 

k-nearest neighbour graph and recursively bisecting it is much more 

computationally expensive than the merging method used in the second phase. 

3.3 Summary 

The proposed Gecko clustering algorithm is designed to cluster time series 

data, and uses our proposed L method to determine a reasonable number of clusters 

efficiently. 

Our empirical evaluations have shown that Gecko returns a set of clusters 

(or states) comparable to that of a human expert.  Additionally, the L method used 

by the Gecko algorithm returns a number of clusters that is similar to the number 

that is generated by a human expert.  When the human expert was asked to rate 
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Gecko’s clusterings from 1-10, Gecko’s clusterings were given perfect ratings on 6 

of 10 data sets and had an average score of 9.5.  A perfect rating of 10 signifies that 

Gecko’s clustering is equally as good as the human expert’s clustering.  For 

comparison, the bottom-up segmentation algorithm was also tested, and was only 

given an average rating of 4.3.   

Gecko is an improvement over existing segmentation algorithms in two 

ways. First, Gecko uses a relative distance function that creates a more visually 

appealing set of clusters than existing methods when smaller numbers of clusters 

are produced.  Second, Gecko’s initial sub-clusters that are created in during its 

top-down pass in phase 1 are an improvement over existing bottom-up 

segmentation algorithms that initially naively create N/2 segments with pairs of 

points.  This improvement in initial partitioning is not specific to the Gecko 

algorithm and can also be used for other bottom-up segmentation algorithms.  . 

 The L Method, which selects the number of clusters to return in the Gecko 

algorithm, will be explained in the following chapter. 
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Chapter 4  

Determining the Number of 
Clusters/Segments in 

Clustering/Segmentation Algorithms 

 While clustering and segmentation algorithms are unsupervised learning 

processes, users are usually required to set some parameters for these algorithms.  

These parameters vary from one algorithm to another, but most clustering and 

segmentation algorithms require a parameter that either directly or indirectly 

specifies the number of clusters/segments.  This parameter is typically either k, the 

number of clusters/segments to return, or some other parameter that indirectly 

controls the number of clusters to return, such as an error threshold.  Setting these 

parameters requires either detailed pre-existing knowledge of the data, or time-

consuming trial and error.  The latter case still requires that the user has sufficient 

domain knowledge to know what a good clustering “looks” like.  However, if the 

data set is very large or is multi-dimensional, human verification could become 

difficult.  To automatically find a reasonable number of clusters, many existing 

methods must be run repeatedly with different parameters, and are impractical for 

real-world data sets that are often quite large. 

We wish to develop an algorithm that can automatically and efficiently 

determine a reasonable number of clusters/segments to return from any hierarchical 

clustering/segmentation algorithm.  In the previous chapter, the Gecko algorithm 

made use of the L method to automatically select the number of clusters to return.  

This chapter will explain the L method in detail and evaluate it on several 

clustering and segmentation algorithms using multiple data sets. 



 30 

Section 4.1 gives and overview of the L method. Section 4.2 contains an 

empirical evaluation of the L method on diverse data sets for three clustering 

algorithms and three segmentation algorithms.  The performance of the L method is 

also evaluated against two existing methods to determine the number of clusters or 

segments in a data set.  Section 4.3 summarizes our study of the L method. 

4.1 The L Method 

In order to identify the correct number of clusters to return from a 

hierarchical clustering/segmentation algorithm, we introduce the L method.  

Hierarchical algorithms either merge the two most similar clusters together 

(bottom-up), or split the least internally homogeneous cluster into two (top-down).  

The definition of a “cluster” is not well-defined, and measuring cluster quality is 

rather subjective.  Thus, there are many clustering algorithms with unique 

evaluation functions and correspondingly unique notions of what a good cluster 

“looks” like.  The L method makes use of the same evaluation function that is used 

by a hierarchical algorithm during clustering or segmentation to construct an 

evaluation graph where the x-axis is the number of clusters and the y-axis is the 

value of the evaluation function during the merge or split at x clusters.  The knee, 

or the point of maximum curvature of this graph, is used as the number of clusters 

to return.  The knee is determined by finding the area between the two lines that 

most closely fit the curve.  The L method only needs the clustering/segmentation 

algorithm to be run once, and the overhead of determining the number of clusters is 

trivial compared to the runtime of the clustering/segmentation algorithm. 

4.1.1 Evaluation Graphs 

The information required to determine an appropriate number of 

clusters/segments to return is contained in an evaluation graph that is created by the 

clustering/segmentation algorithm.  The evaluation graph is a two-dimensional plot 
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where the x-axis is the number of clusters, and the y-axis is a measure of the quality 

or error of a clustering consisting of x clusters.  Some approaches use similar 

graphs that they are often generated by re-running the entire clustering or 

segmentation algorithm for every value on the x-axis, which is quite inefficient.  

Since hierarchical algorithms either split or merge a pair of clusters at each step, all 

clusterings containing ‘1’ to ‘ the number of clusters in the fine-grain clustering’ 

clusters can be produced by running the clustering algorithm only once. 

The y-axis values in the evaluation graph can be any evaluation metric, such 

as: distance, similarity, error, or quality.  These metrics can be computed globally 

or greedily.  Global measurements compute the evaluation metric based on the 

entire clustered data set.  A common example is the sum of all the pairwise 

distances between points in each cluster.  Most global evaluation metrics are 

computed in O(N2) time, where N is the number of points in the data set.  Thus, in 

many cases, it takes longer to evaluate a single set of clusters than it takes to create 

them.  Since the evaluation function must be run for every potential number of 

clusters, this method is too inefficient.  The alternative is to use greedy 

measurements.  The greedy method works in hierarchical algorithms by evaluating 

only the two clusters that are involved in the current merge or split, rather than the 

entire data set.   

Many “external” evaluation methods attempt to determine a reasonable 

number of clusters by evaluating the output of an arbitrary clustering algorithm.  

Each evaluation method has its own notion of cluster quality.  Most external 

methods use pairwise-distance functions that are heavily biased towards spherical 

clusters.  Such methods would be unsuitable for a clustering algorithm that has a 

different notion of cluster distance/similarity.  For example, Chameleon (Karypris, 

Hun & Kumar 1999) uses a complex similarity function that can produce 

interesting non-spherical clusters, and even clusters within clusters.  Therefore, the 
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L method is integrated into the clustering algorithm and the metric used in the 

evaluation graph is the same metric used in the clustering algorithm. 

 
Figure 4.1. A sample evaluation graph. 

An example of an evaluation graph produced by the Gecko segmentation 

algorithm (discussed in the previous chapter) is shown in Figure 4.1.  The y-axis 

values are the distances between the two clusters that are most similar at x clusters.  

This is a greedy approach, since only the two closest clusters being merged are 

used to generate the value on the y-axis.  The curve in Figure 4.1 has three 

distinctive areas:  a rather flat region to the right, a sharply-sloping region to the 

left, and a curved transition area in the middle.   

In Figure 4.1, starting from the right, where the merging process begins at 

the initial fine grain clustering (for a bottom-up hierarchical algorithm), there are 

many very similar clusters to be merged and the trend continues to the left in a 

rather straight line for some time.  In this region, many clusters are similar to each 

other and should be merged.  Another distinctive area of the graph is on the far left 

side where the merge distances grow very rapidly (moving right to left).  This rapid 

increase in distance indicates that very dissimilar clusters are being merged 

together, and that the quality of the clustering is becoming poor because clusters 

are no longer internally homogeneous.  If the best available remaining merges start 

becoming increasingly poor, it means that too many merges have already been 



 33 

performed.  A reasonable number of clusters is therefore in the curved area, or the 

“knee” of the graph.  This knee region is between the low distance merges that 

form a nearly straight line on the right side of the graph, and the quickly increasing 

region on the left side.  Clusterings in this knee region contain a balance of clusters 

that are both highly homogeneous, and also dissimilar to each other.  Determining 

the number of clusters where this knee region exists will therefore give a 

reasonable number of clusters to return. 

Locating the exact location of the knee, and along with it the number of 

clusters, would seem problematic if the knee is a smooth curve.  In such an 

instance, the knee could be anywhere on this smooth curve, and thus the number of 

clusters to be returned seems imprecise.  Such an evaluation graph would be 

produced by a data set with clusters that are overlapping and not very well 

separated.  Time series data is usually a continuous function that does not contain 

data that is well-separated.  In such instances, there is no single ‘correct’ answer 

and all of the values along the knee region are likely to be reasonable estimates of 

the number of clusters.  Thus, an ambiguous knee indicates that there probably is 

no single ‘correct’ answer, but rather a range of acceptable answers. 

4.1.2 Finding the Knee via the L Method 

In order to determine the location of the transition area or knee of the 

evaluation graph, we take advantage of a property that exists in these evaluation 

graphs.  The regions to both the right and the left of the knee (see Figure 4.2) are 

often approximately linear.  If a line is fitted to the right side and another line is 

fitted to the left side, then the area between the two lines will be in the same region 

as the knee.  The value of the x-axis at the knee can then be used as the number of 

clusters to return.  Figure 4.2 depicts an example. 
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Figure 4.2. Finding the number of clusters using the L method. 

To create these two lines that intersect at the knee, we will find the pair of 

lines that most closely fit the curve.  Figure 4.3 shows all possible pairs of best-fit 

lines for a graph that contains seven data points (eight clusters were repeatedly 

merged into a single cluster).  Each line must contain at least two points, and must 

start at either end of the data.  Both lines together cover all of the data points, so if 

one line is small, the other is large to cover the rest of the remaining data points.  

The lines cover sequential sets of points, so the total number of line pairs is 

numOfInitialClusters-4.  Of the four possible line pairs in Figure 4.3, the pair that 

fits their respective data points with the minimum amount of error is the pair on the 

bottom left.  Our approach to finding these two lines is essentially an optimal 

segmentation algorithm for finding two segments (k=2). 

 
Figure 4.3. All four possible pairs of best-fit lines for a small evaluation graph. 
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Consider a ‘# of clusters vs. evaluation metric' graph with values on the x 

axis up to x=b.  The x-axis varies from 2 to b, hence there are b-1 data points in the 

graph.  Let Lc and Rc be the left and right sequences of data points partitioned at 

x=c; that is, Lc has points with x=2...c, and Rc has points with x=c+1…b, where 

c=3…b-2.  Equation 1 defines the total root mean squared error RMSEc, when the 

partition of Lc and Rc is at x=c: 
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where RMSE(Lc) is the root mean squared error of the best-fit line for the sequence 

of points in Lc (and similarly for Rc).  The weights are proportional to the lengths of 

Lc (c-1) and Rc (b-c).  We seek the value of c, c*, such that RMSEc is minimized, 

that is: 

    cc RMSEc minarg* =                                    [2] 

The location of the knee at x=c* is used as the number of clusters to return. 

In our evaluation, the L method determined the number of clusters in only 

0.00004% to 0.9% of the execution time required by the clustering algorithm.  The 

time it takes for the L method to execute directly corresponds to the number of 

points in the evaluation graph.  Since the number of points in the evaluation graph 

is controlled by the number of clusters at the finest grain clustering, the L method 

runs much faster for clustering algorithms that do not have an overly-fine initial 

clustering. 

The L method is very general and contains no parameters or constants.  The 

number of points along the x-axis of the evaluation graph is not a parameter.  It is a 

result of the clustering algorithm used to generate those points.  The maximum x 

value in the evaluation graph is either the number of clusters at the initial fine grain 

clustering in a bottom-up algorithm, or the number of clusters in the final clustering 

in a top-down algorithm. 
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4.1.3 Iterative Refinement 

Some bottom-up algorithms create an initial fine-grain clustering by 

initially treating every data point as a cluster.  This can cause an evaluation graph to 

be as large as the original data set.  If such an evaluation graph has thousands of 

merge values, the ones representing merges at extremely fine-grain clusterings 

(large values of x) are irrelevant.  Such a large number of irrelevant data points in 

the evaluation graph can prevent an “L” shaped curve, or more specifically a flat 

region to the right of the knee.   

 
Figure 4.4. Full and partial evaluation graphs created by CURE.  Only the 

first 100 points are shown on the right side. 

Figure 4.4 shows a 9,000 point evaluation graph on the left, and the first 

100 data points of the same graph on the right.  The graph on the right is a more 

natural “L” shaped curve, and the L method is able to correctly identify that there 

are 9 clusters in the data set.  However, in the full evaluation graph, there are so 

many data points to the right side of the “correct” knee, that the very few points on 

the left of that knee become statistically irrelevant.  The L method performs best 

when the sizes of the two lines on each side of the knee are reasonably balanced.  

When there are far too many points on the right side of the actual knee, the knee 

that is located by the L method will most likely be larger than the actual knee.  In 

the full evaluation graph, containing 9,000 data points, the knee is incorrectly 
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detected at x=359, rather than x=9.  However, when many of the irrelevant points 

are removed from the evaluation graph, such as all points greater than x=100 (see 

the right side of Figure 4.4), the correct knee is located at x=9.  The following 

algorithm shown in Figure 4.5 iteratively refines the knee by adjusting the focus 

region and reapplying the L method (note that the clustering algorithm is not 

reapplied). 

 
Figure 4.5. Pseudocode to Iterative Refine the knee with the L Method. 

This algorithm initially runs the L method on the entire evaluation graph.  

The value of the knee becomes the middle of the next focus region and the L 

method becomes more accurate because the lines on each side of the true knee are 

becoming more balanced.  Since the refinement stops when the knee does not move 

to the left after an iteration, the focus region decreases in size after every iteration 

(except the final iteration).  The true knee is located when the L method returns the 

same value as the previous iteration (line #10, or if the current pass returns a knee 

that has a roughly balanced number of points on each side of the knee (also line 

#10).  The 9,000 point evaluation graph in Figure 4.4 takes four iterations to 

Iterative Refinement of the Knee 
 

Input:  evalGraph (a full evaluation graph)   
Output:  the x-axis value location of the knee (also the suggested 

number of clusters to return)   
 
 1|  int cutoff =   
 2|     lastKnee =  
 3|     currentKnee = EvalGraph.size() 
 4| 
 5| REPEAT  
 6| { 
 7|   lastKnee = currentKnee 
 8|   currentKnee = LMethod(evalGraph,cutoff) 
 9|   cutoff = currentKnee*2   
10| } UNTIL currentKnee ≥ lastKnee 
11| 
12| RETURN currentKnee 
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correctly determine that there are 9 clusters in the data set (9,000 � 359 � 15 � 9 

� 9).  The cutoff value is not permitted to drop below ~20 in the “LMethod(),” 

because a reasonable number of points are needed for the two fitted-lines to fit 

actual trends, rather than detecting spurious trends indicated by a small number of 

points in the evaluation graph.  The minimum cutoff size of 20 performed well on 

all tests that have been run to date and it will most likely never need to be changed.  

The minimum cutoff size can therefore most likely be treated as a constant rather 

than a parameter (keeping the L method ‘parameterless’). 

Iteratively refining the knee does not significantly increase the execution 

time of the L method.  Iterative refinement converges on the knee in very few 

iterations (usually less than three), and the first iteration is run with an evaluation 

graph that is much larger than those in later iterations.  The L method is an O(N2) 

algorithm with respect to the size of the evaluation graph. This means that the vast 

majority of the execution time is during the first iteration, when the evaluation 

graph is much larger.  Evaluation graphs with fewer than 1,000 points can be 

evaluated in less than a few seconds; however, a 9,000 point evaluation graph takes 

several minutes.  In practice, it is usually permissible to ignore points in an 

evaluation past some large number when it is unlikely (or undesirable) for such a 

large number of clusters to exist in the data set. 

4.1.4 Refinements for Segmentation Algorithms 

Evaluation graphs for segmentation algorithms can often be very jumpy 

when segmenting noisy data.  The exact nature of the curve may be easy to 

determine visually, but there can be a great number of points that do not fit the 

curve.  These stray points on the evaluation graph generally do not occur 

consecutively.  These stray points can prevent the L method from accurately 

locating the knee.  However, because they do not usually occur consecutively, the 
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curve can be smoothed by only using the highest valued point of every consecutive 

pair when computing the best-fit lines of the curve. 

Another potential problem is that sometimes the evaluation graph will reach 

a maximum (moving from right to left) and then start to decrease.  This can be seen 

in Figure 4.2, where the distance between the closest segments reaches a maximum 

at x=4.  This can prevent an “L” shaped curve from existing in the evaluation 

graph.  The data points to the left of the maximum value (the ‘worst’ merge) can be 

ignored.  This occurs in some algorithms that have distance functions that become 

undefined when the remaining clusters are extremely dissimilar to each other. 

4.2 Empirical Evaluation 

The goal of this evaluation is to demonstrate the ability of the L method to 

identify a reasonable number of clusters to return in hierarchical clustering and 

hierarchical segmentation algorithms.  Each algorithm will be run on a number of 

data sets and the number of clusters that the L method identifies is compared to the 

‘correct’ answer.  Existing methods to determine the number of segments or 

clusters in a data set will also be evaluated on the same data sets, and their 

performance will be compared to that of our L method.  Section 4.2.1 evaluates the 

L Method for Clustering algorithms, and section 4.2.1 evaluates the L Method on 

segmentation algorithms. 

4.2.1 Identifying the Number of Clusters 

In this section, the L Method and an existing method will be evaluated with 

hierarchical clustering algorithms on synthetic two dimensional data sets.  The data 

sets are synthetic and have a “correct” number of clusters to compare to the number 

of clusters identified by the L method.   
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4.2.1.1 Procedures and Criteria 

The seven diverse data sets used to evaluate the L method for clustering 

algorithms vary in size, number of clusters, separation of clusters, density, and 

amount of outliers.  There are some data sets that contain only spherical clusters, 

and some which contain very non-spherical clusters, including clusters within 

clusters.  The seven spatial data sets that were used are (see Figure 4.6): 

1. A data set with four well separated spherical clusters (4,000 pts).  

2. Nine square clusters connected at the corners (9,000 pts). 

3. Ten spherical clusters.  Five overlapping clusters similar to data set #7 (not 

shown), as well as five additional well separated clusters and a uniform 

distribution of outliers (5,200 pts).  

4. Ten well separated clusters of varying size and density (5,000 pts). 

5. A 9 cluster data set used in the Chameleon paper, but with the outliers 

removed.  Non-spherical clusters with clusters completely contained within 

other clusters (~9,100 pts). 

6. An 8 cluster data set used in the Chameleon paper, but with the outliers 

removed.  Non-spherical clusters with clusters partially enveloping other 

clusters (~7,600 pts). 

7. Five spherical clusters of equal size and density.  The clusters are all close 

to each other and slightly overlapping (5,000 pts, not in Figure 4.6). 
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Figure 4.6. Data sets 1-6 for evaluating the L method in clustering algorithms 

(data set #7 not shown). 

The clustering algorithms used to test the L method were Chameleon and 

CURE.  Chameleon was implemented locally and was run with the parameters:  

k=10 (k nearest neighbors, not k clusters), minSize=3%, and α=2.  CURE was 

implemented as specified in the CURE paper (Guha, Rastogi & Shim 1998), with 

the shrinking factor set to 1/3 and the number of representative points for each 

cluster set to 10.   

CURE, Chameleon, and a standard implementation of K-means was used to 

evaluate the Gap Statistic’s relative performance against that of the L method.  The 

Gap Statistic was calculated using the Gap/unf variant (Tibshirani, Walther & 

Hastie 2003).  The Gap statistic must be run for each user-specified potential value 
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for the number of clusters.  The potential number of clusters evaluated by the Gap 

statistic were k={2…20}.  Both the L method and the Gap statistic were tested on 

CURE and Chameleon for a direct comparison.  However, the Gap statistic was 

also evaluated on the K-means algorithm, because K-means was used by Tibshirani, 

Walther, and Hastie (2003) to evaluate the Gap statistic.  It is important to note that 

for every different clustering algorithm, the L method’s evaluation graph contains 

values (on the y-axis) created by the particular clustering algorithm’s evaluation 

function, while the Gap statistic uses pairwise distances to evaluate clusters 

regardless of the clustering algorithm that produced them.  Thus, the L method’s 

performance is more likely to be consistent over different clustering algorithms, 

while the Gap statistic will only work well for clustering algorithms that measure 

cluster quality similar to its own fixed method. 

The experimental procedure for evaluating the performance of the L method 

for hierarchical clustering algorithms consists of running the CURE and 

Chameleon clustering algorithms, which have been modified to automatically 

determine the number of clusters to return through use of the L method, on seven 

diverse data sets (shown in Figure 4.6).  The number of clusters automatically 

returned will be compared to the correct number of clusters.  The data sets are 

synthetic, so the correct number of clusters is known.  These results will also be 

compared to the number of clusters suggested by the existing Gap statistic for 

CURE, Chameleon, and also the K-means clustering algorithm. 

4.2.1.2 Results and Analysis 

The correct number of clusters was determined by the L method 6 out of 7 

times for Chameleon and 4 out of 5 times for the CURE algorithm.  The results are 

contained in Table 4.1.  The actual number of clusters suggested for CURE on data 

set #3 was 9.  However, in the presence of outliers, CURE creates a number of very 

small clusters that contain only outliers.  After removing these small clusters, only 
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six clusters remained.  Data sets #5 and #6 contain complex clusters and could only 

be properly clustered by Chameleon; “N/A” is placed in the cells of Table 4.1 

where the number of clusters suggested was not evaluated because the clustering 

algorithm was unable to produce the correct set of clusters. 

Table 4.1. Results of using the L method and the Gap statistic with various 
clustering algorithms. 

Data Set 

Number of 
Clusters 

Predicted by 
L Method 

Num of Clusters 
Predicted by Gap 

Statistic 

data set 

correct 
number 

of 
clusters 

Cham-
eleon 

CURE 
Cham-
eleon 

CURE 
K-

means 

1 4 4 4 4 4 4 
2 9 9 9 2 2 2 
3 10 11 6 (9) 2 2 2 
4 10 10 10 2 2 2 
5 9 9 N/A 2 N/A N/A 
6 8 8 N/A 2 N/A N/A 
7 5 5 5 2 2 2 

Exact Matches 6 of 7 4 of 5 1 of 7 1 of 5 1 of 5 

The Gap statistic was only able to determine the correct number of clusters 

for one of the seven data sets, regardless of the clustering algorithm used.  The Gap 

statistic performs similarly to many existing methods (Tibshirani, Walther & Hastie 

2003), and only works well for well-separated, circular clusters (only data set #1 

satisfies these constraints).  The Gap statistic tended to suggest far too few clusters 

because the cluster separation was not great enough for it to consider the clusters to 

be distinct.  

The correct number of clusters was not determined for either algorithm on 

data set #3, which contained many outliers and a mixture of both well separated 

and overlapping clusters.  In the evaluation graph for CURE, there is a large 

smooth knee that spans approximately 200 data points.  Most of the merges in this 
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region are between outliers, but there are also merges of the five overlapping 

clusters mixed in.  There is no sharp knee until after all of the five overlapping 

clusters have already been merged together.  The clusters returned by CURE were 

not ‘correct’, but they weren’t too bad either.  The six clusters returned by the L 

method were the five well separated clusters, and the group of overlapping clusters 

in the center (see data set #3 in Figure 4.6).  Even though the L method 

recommends four fewer clusters than the ‘correct’ answer, the six recommended 

clusters have a more uniform separation than the ‘correct’ answer.  In this case, the 

best number of clusters is open to interpretation.  The answer given for Chameleon 

on data set #3 was off by one because the knee of the curve was not sharp enough 

for the L method to identify the exact number of clusters.  This is most likely due to 

a weakness in our Chameleon implementation, which does not contain a graph 

bisection algorithm that is as powerful as the one described in the Chameleon 

(Karypris, Hun & Kumar 1999) paper. 

The L method determines the number of clusters to return by examining the 

evaluation graphs produced by each clustering algorithm.  Examples of evaluation 

graphs are shown in Figure 4.7, where the x-axis is the number of clusters, and the 

y-axis is the value of the clustering algorithm’s evaluation function at x clusters.  

Notice that the y-axis values in CURE evaluation graphs generally increase from 

right to left, while the Chameleon evaluation graphs generally decrease from right 

to left.  This is because CURE’s evaluation metric measures distance and 

Chameleon’s evaluation metric measures similarity. 
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Figure 4.7. Actual number of clusters and the correct number predicted by the 

L method (axes:  x= # of clusters, y=evaluation metric – lines:  solid 
lines=correct # of clusters, dashed lines=# of clusters determined by L 

method). 

In Figure 4.7, the solid line indicates where the correct number of clusters 

is, while the dashed line indicates the number of clusters suggested by the L 

method.  The lines are directly next to each other in each case which indicates that 

the correct number of clusters was determined.  The best number of clusters is 

usually just before a large jump in the evaluation graph.  To the left of the jump 

dissimilar clusters have been merged together creating inhomogeneous clusters; 

and to the right of the jump there are too many clusters that are similar to each 

other.  Since a good cluster is loosely defined to be one that is both internally 

homogeneous and dissimilar to other clusters, the location of the jump should be a 

good measure of the best number of clusters.  

The L method runs more quickly for clustering algorithms that do not have 

an overly-fine initial clustering, because these algorithms have smaller evaluation 

graphs.  Chameleon initially produces fine grain clusterings that contain fewer than 

100 clusters and the L method needs less than 0.01 seconds to determine the 
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number of clusters.  CURE produces the finest initial clustering possible, which 

creates evaluation graphs with up to 8,999 points in our evaluation.  With CURE, 

the L method’s run-time is between 40 seconds and 4 minutes.  This execution time 

can be drastically reduced, to a much less than one second, by only evaluating the 

first maxk points in the evaluation graph, where maxk is some large number 

guaranteed to be more than the actual number of clusters.  In our evaluation, the L 

method determined the number of clusters to return in less than 0.9% of the total 

execution time for CURE and less than 0.003% of the total execution time for 

Chameleon.  Runtime for the Gap statistic is significantly slower.  The Gap statistic 

must be run for each potential number of clusters, and since it calculates pairwise 

distances within a cluster, its run-time (to evaluate just a single potential number of 

clusters) approaches O(N2).  In our evaluation, the Gap statistic took up to 28 

minutes to evaluate the clusterings in the range k={2…20}, and took several times 

longer to evaluate each clustering than the clustering algorithm needed to produce 

it. 

4.2.2 Identifying the Number of Segments 

In this section the L Method and an existing method will be evaluated on 

hierarchical segmentation algorithms and one-dimensional time series data.  The L 

Method will be used by three segmentation algorithms on seven data sets.  Three 

data sets are synthetic and have a single “correct” answer, while the other four are 

real data sets and have a range of reasonable numbers of segments to compare to 

the number of segments identified by the L method 

4.2.2.1 Procedures and Criteria 

The experimental procedure for evaluating the L method in segmentation 

algorithms consists of running two different segmentation algorithms on seven 

different data sets and determining if a ‘reasonable’ number of segments is 
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suggested by the L method.  This number of segments suggested will then be 

compared to the ‘correct’ number of segments, and also the number suggested by 

the existing permutation tests method (Vasko & Toivonen 2002). 

 
Figure 4.8. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in 

segmentation algorithms. 

The time series data sets used to evaluate the L method for hierarchical 

segmentation algorithms are a combination of both real and synthetic data.  The 

seven time series data sets used for this evaluation (shown in Figure 4.8) are: 

1. A synthetic data set consisting of 20 straight line segments (2,000 pts). 

2. The same as #1, but with a moderate amount of random noise added (2,000 

pts, not in Figure 4.8). 
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3. The same as #1, but with a substantial amount of random noise added 

(2,000 pts). 

4. An ECG of a pregnant woman from the Time Series Data Mining Archive 

(Keogh & Folias 2004).  It contains a recurring pattern (a heart beat) that is 

repeated 13 times (2,500 pts). 

5. Measurements from a sensor in an industrial dryer (from the Time Series 

Data Mining Archive).  The time series appears similar to random walk data 

(876 pts). 

6. A data set depicting sunspot activity over time (from the Time Series Data 

Mining Archive).  This time series contains 22 roughly evenly spaced 

sunspot cycles, however the intensity of each cycle can vary significantly 

(2,900 pts). 

7. A time series of a space shuttle valve energizing and de-energizing (1,000 

pts). 

A ‘correct’ number of segments for a particular data set and segmentation 

algorithm is obtained by running the algorithm with various values of k (controls 

the number of segments returned), and determining what particular value or range 

of values of k produces a ‘reasonable’ PLA (piecewise linear approximation).  The 

PLAs that are considered ‘reasonable’ are those at a value of k, where no adjacent 

segments are very similar to each other and all segments are internally 

homogeneous (segments have small error).  The synthetic data sets have a single 

correct value for k.  The real sets have no single correct answer, but rather a range 

of reasonable values.  The reasonable and best numbers of segments for the real 

data sets may vary for each algorithm.  A single ‘best’ number of segments cannot 

be used for all of the segmentation algorithms because one number that produces 

the best set of segments for one algorithm may produce a poor set of segments for 

another on the same data set. 
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The segmentation algorithms used in this evaluation were Gecko (discussed 

in Chapter 3) and bottom-up segmentation (BUS).  BUS (bottom-up segmentation) 

is a hierarchical algorithm that initially creates many small segments and repeatedly 

joins adjacent segments together.  More specifically, BUS evaluates every pair of 

adjacent segments and merges the pair that causes the smallest increase in error 

when they are merged together.  BUS was tested with the L method using two 

different values on the y-axis of the evaluation graph.  The two variants are named 

BUS-greedy and BUS-global.  BUS-greedy’s y-axis in the evaluation graph is the 

increase in error of the two most similar segments when they are merged, and BUS-

global’s y-axis is the error of the entire linear approximation when there are x 

segments (absolute error).  The existing ‘permutation tests’ method was also 

evaluated using BUS. 

Both Gecko and BUS made use of an initial top-down pass to create the 

initial fine-grain segments.  The minimum size of each initial segment generated in 

the top down pass was 10.  For the permutation test algorithm, p was set to 0.05, 

and 1,000 permutations were created.  The parameter p controls the percentage of 

permutated time series that must be increasing in quality faster than the original 

time series to stop creating more segments. 

4.2.2.2 Results and Analysis 

A summary of the results of the L method’s and permutation tests’ ability to 

automatically determine the number of segments to return from segmentation 

algorithms is contained in Table 4.2.  For both Gecko and BUS, the ‘reasonable’ 

range of correct answers is listed.  These ranges may vary between the two 

algorithms because BUS and Gecko do not merge segments in exactly the same 

sequence.  However, BUS-greedy, BUS-global, and permutation tests all produce 

identical PLAs for k segments, and therefore have identical ‘reasonable’ answers.  

The first three data sets are synthetic and have a single correct answer, but the other 
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data sets have a range of ‘reasonable’ answers.  Data set #5 is similar to random 

walk data, and any number of segments seemed reasonable because there was no 

underlying structure in the time series.   

Table 4.2. Results of using the L method with three hierarchical segmentation 
algorithms. 

 Gecko Bottom-up Segmentation 

 
Gecko                               

w/ L method  

BUS- 
greedy      
w/ L 

method 

BUS- 
global     
w/ L 

method 

BUS             
w/ 

permutation 
Tests 

Data Set 
Reasonable 

# of 
segments 

Number  
of 

segments 
found 

Reasonable 
# of 

segments 

Number  
of 

segments 
found 

Number 
of 

segments 
found 

Number      
of      

segments 
found 

1 20 20 20 20 20 25 

2 20 20 20 20 20 34 

3 20 N/A 20 20 19 25 

4 42-123 92 42-123 46 106 2 

5 ? 32 ? 14 39 15 

6 44-57 45 45-53 48 39 6 

7 9-20    17 14-21  9 13 65 

Reasonable
-Range 
Matches 

 5 of 5  5 of 6 3 of 6 0 of 6 

The L method worked very well for both BUS-greedy and Gecko.  It 

correctly identified a number of segments for BUS-greedy that was within the 

reasonable range in 5 out of the 6 applicable data sets.  Gecko, which also uses a 

greedy evaluation metric (but uses slope rather than segment error), had the L 

method suggest a number of segments within the reasonable range for all 5 

applicable data sets.  Gecko was unable to correctly segment data set #3 (indicated 

by “N/A” in Table 4.2) because it contained too much noise.  In all but one test 

case (10 of 11), the L method was able to correctly determine that the three 
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synthetic data sets contained exactly twenty segments.  BUS-global did not perform 

quite as well.  The L method was only able to return a reasonable number of 

segments for BUS-global in half of its test cases, but all of its incorrect answers 

were close to being correct. 

Permutation tests did not perform well and never determined a reasonable 

number of segments.  The reason that permutation tests did poorly varied 

depending on the data set.  Data set #1 is synthetic and contains no noise, which 

allows a PLA to approximate it with virtually zero error. However, measuring a 

relative increase in error when the error is near zero causes unexpected results 

because relative increases are either very large or undefined when the error is at or 

near zero.  For data set #4 and #6, the relative change in approximation error is 

rather constant regardless of the number of segments.  On data set #4, the PLA 

between 2 and 3 segments has nearly zero relative change in error, which causes 

permutation tests to incorrectly assume that the data has been over-fitted and stop 

producing segments prematurely.  An example of far too many segments being 

returned occurs on data set #7, where the relative error of the time series never falls 

below the relative error of the permutations until far too many segments are 

produced. 

Some of the evaluation graphs used by the L method for Gecko, BUS-

greedy, and BUS-global are shown in Figure 4.9.  The lower left portion of Figure 

4.9 contains the L method’s evaluation graph for Gecko on data set #1, the noise-

free synthetic data set.  The x-axis is the number of segments, and the y-axis is 

Gecko’s evaluation metric at x segments (distance between two closest adjacent 

segments when there are x segments).  The evaluation graph is created right to left 

as segments are meged together.  In this case, the correct number of segments is 

easily determined by the L method because there is a very large jump at x=20.  In 

the lower right corner of Figure 4.9, the range of correct answers lies between the 

two long lines.  The range is larger than for data set #1 because the segments have 
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less ‘separation’ and there is no sharp knee.  Instead there is a range of good 

answers.  However, the L method suggests a number of segmetns that just misses 

the reasonable range. 

 
Figure 4.9. The reasonable range for the number of segments and the number 
returned by the L method. (axes:  x=# of segments, y=evaluation metric – short 
dashed line=# of segments determined by the L method, long solid lines=marks 

the boundaries of the reasonable range for the # of segments. 

In the evaluation graph in the top left of Figure 4.9 (data set #4 BUS-

greedy),  the L method returned a number of segments that was towards the low 

end of the reasonable range.  Remember, that for segmentation algorithms, all data 

ponits to the left of the data point with the maximum value are ignored (discussed 

in the last section of 3.3).  The best number of segments is 42.  At 42 segments 

each heart beat contains approximately 3 segments.  If there are fewer than 42 

segments, they are no longer homogeneous.  However, PLAs with significantly 

more segments (up to 123) are still reasonable because each new segment still 

significantly reduces the error.  However, if there are more than approximately 123 

segments, adjacent segments start to become too similar to each other. 
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The evaluation graph shown in the upper-right portion of Figure 4.9 also 

has ‘better’ PLAs when the number of segments is near the low end of the 

reasonable range (fewer segmetns).  This is common because the best set of 

segments is often the minimal set of segments that adequately represents the data.  

Even though there is apparently no significant knee in this evaluation graph, a good 

number of segments can still be found by the L method.  This is because the knee 

found by the L method does not necessarily have to be the point of maxium 

curvature.  It may also be the location between the two regions that have relatively 

steady trends.  Thus, the L method is able to determine the location where there is a 

significant change in the evaluation graph and it becomes erratic (x<44).  In this 

case it indicates that too many segments have been merged together and the 

distance function is no longer as well-defined. 

The poorer performance of BUS-global (compared to Gecko and BUS-

greedy) is due to a lack of prominence in the knee of the curve compared to greedy 

methods (see lower-right graph in Figure 4.9).  Greedy evaluation metrics increase 

more sharply at the knee, while global metrics have larger more ambiguous knees 

in their evaluation graph.  A potential problem is if more than one knee exists in the 

evaluation graph.  This is typically not a problem if one knee is significantly more 

prominent than the others.  If there are two equally prominent knees, the L method 

is likely to return a number of segments that falls somewhere between those two 

knees.  This is acceptable if all of the values between the two knees are reasonable.  

If not, a poor number of segments will most likely be returned by the L method. 

The L method took approximately 0.01 seconds to determine the number of 

segments in every test cases and the segmentation algorithms took anywhere from 

9 to 30 seconds to execute.  The L method never required more than 0.1% of the 

total execution time to determine the number of segments.  In stark contrast, 

permutation tests required up to 5 hours because each permutation of the original 

time series had to be segmented. 
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4.3 Summary 

We have detailed our L method, which has been shown to work reasonably 

well in determining the number of clusters or segments for hierarchical 

clustering/segmentation algorithms.  Hierarchical algorithms that have greedy 

evaluation metrics perform especially well.  In our evaluation, the L method was 

able to determine a reasonable number of segments in 10 out of 11 instances for  

greedy hierarchical segmentation algorithms, and a correct number of clusters in 10 

of 12 instances for hierarchical clustering algorithms.  Algorithms with global 

evaluation metrics did not work as well with the L method because the knees in the 

evaluation graphs are not as prominent and easy to detect.  The Gap statistic and 

permuation tests were also evaluated and the L method achieved much better 

results in our evaluation.  The L method is also much more efficient than both the 

Gap statistic and permutation tests, typically requiring only a fraction of a second 

to determine the number of clusters rather than minutes or even many hours in the 

case of permutation tests. 

Iterative refinement of the knee is a very important part of the L method.  

Without it, the L method would only be effective in determining the number of 

clusters/segments if the evaluation graph did not contain a large number of points.  

The iterative refinement algorithm explained in this chapter enables the L method 

to always run under optimal conditions:  balanced lines on each side of the knee no 

matter how large the evaluation graph is or where the knee is located. 

Like most existing methods, the L method is unable to determine if the 

entire data set is an even distribution and consists of only a single cluster (the null 

hypothesis).  However, the L method also has the limitation that it cannot 

determine if only two clusters should be returned.  Future work will explore 

possible modifications to the L method that will enable it to determine when only 

one or two clusters should be returned.  
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Chapter 5  

Time Series Anomaly Detection    
Using States 

 The previous two chapters discussed a method to find the operational states 

in a time series.  This chapter will introduce a method that can use the identified 

operational states in a time series to create a model of the normal time series.  This 

model is in a format that can be easily read and understood by a human user.  Once 

this model is created, it can be used to determine if other time series deviate 

significantly from it.  Any deviation from the normal model is considered to be an 

anomaly. 

5.1 Anomaly Detection System 

Expert (knowledge-based) systems are often used to help humans monitor 

and control critical systems in real-time.  For example, NASA uses expert systems 

to monitor various devices on the space shuttle.  However, populating an expert 

system’s knowledge base by hand is a time-consuming process.  Instead, machine 

learning techniques can be used to generate the knowledge necessary to monitor the 

operation of devices or systems.  This section introduces a method for generating 

models that can detect anomalies in time series data.  Nearly all of the existing 

work in time series anomaly detection relies on models that are not easily readable 

and hence cannot be modified by a human for tuning purposes.  Examples include a 

set of normal sequences (Dasgupta & Forrest 1996) and adaptive resonance theory 

(Caudell & Newman 1993).  However, Langley et al. (2003) propose a method that 

uses process models to model a time series and predict future data.  These process 
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models are concise and are easily read and modified by humans, but their 

generation requires parameters to be set by a human that must have knowledge of 

the underlying processes that produce the time series.  It is important for this model 

to be in an easily readable format that will allow human users to verify the model 

and modify it if necessary.  This allows the user to understand why an anomaly was 

reported, and can help the user to quickly and appropriately respond to it.  A 

transparent anomaly detection system that has a normal model that can be 

understood by a human user will be “trusted” much more by the user than an 

anomaly detection system that is a black box.  A black box anomaly detection 

system simply spits out either “normal” or “anomaly” and can offer little or no 

explanation about why the data is anomalous.  Black box anomaly detection 

systems are not likely to ever be fully trusted for mission critical systems.  If a 

costly response (such as shutting down an assembly line) needs to be performed 

immediately upon detecting an anomaly, a black box system cannot be fully trusted 

since its operation and normal model is a complete mystery to the user.  However, 

if the normal model is easily readable, the user can check the model to gain 

confidence that the anomaly detection system will perform as expected. 

The normal operation of a device can usually be characterized in different 

operational states.  In Chapter 3, we introduced the Gecko algorithm which is able 

to identify these states.  Once these states are identified, the relationship between 

these states needs to be determined to allow tracking from one state to another and 

to detect anomalies.  Given a time series depicting a system’s normal operation, we 

desire to learn a model that can detect anomalies and can be easily read and 

modified by human users.   

 To create an anomaly detection system, we first characterize the states 

found by Gecko into logical rules so they may be read and modified with relative 

ease by humans.  Then, given the knowledge of the different states, we determine 

the relationship among them for tracking normal behavior and detecting anomalies.  
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To characterize the states as logical rules, we use the RIPPER classification rule 

learning algorithm (Cohen 1995).  Since different states often overlap in the one-

dimensional input space, additional attributes (slope and second derivative) are 

derived to help characterize the states.  To track normal behavior and detect 

anomalies, we construct a finite state automaton (FSA) with the identified states. 

5.1.1 Overview 

 The input to our overall anomaly detection system is “normal” time series 

data (like the graph at the top left corner of Figure 5.1).  The output of the overall 

system is a set of rules that implement state transition logic on an expert system, 

and are able to determine if other time series deviate significantly from the learned 

normal model.  Any deviation from the learned “normal” model is considered to be 

an anomaly.  The overall architecture of the anomaly detection system, depicted in 

Figure 5.1, consists of three components:  clustering, rule generation 

(characterization), and state transition logic. 

 
Figure 5.1. Main steps in time series anomaly detection. 
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  The clustering phase is performed by our Gecko algorithm, which is 

designed to identify distinct states (or clusters) in a time series.  Next, rules are 

created for each state by the RIPPER algorithm (Cohen 1995).  Finally, rules are 

added for the transitions between states to create a finite state automaton.  Gecko 

was discussed in Chapter 3, while rule generation and state-transition logic will be 

explained in the next two subsections. 

5.1.2 Characterizing States by Generating Rules 

We have adapted RIPPER (Cohen 1995) to generate human readable rules 

that characterize the states identified by the Gecko algorithm.  The RIPPER 

algorithm is based on the Incremental Reduce Error Pruning (IREP) (Furnkranz & 

Wildmer 1994) over-fit-and-prune strategy.  The IREP algorithm is a 2-class 

approach, where the data set must first be divided into two subsets.  The first subset 

contains examples of the class whose characteristics are desired (the positive 

example set) and the other subset contains all other data samples (the negative 

example set).  Our implementation of RIPPER acts as an outer loop for the IREP 

rule construction.  

 The input to RIPPER is the data produced by Gecko which contains time 

series data classified into c* states.  RIPPER will execute the IREP algorithm c* 

times, once for each state.  At each execution of IREP, a different state is 

considered to be the positive example set and the rest of the states form the 

negative example set.  This creates a set of rules for each state.  To describe the 

relationship among these states, state transition logic is identified as discussed in 

the following section. 

5.1.3 State Transition Logic 

The upper right-hand quadrant of Figure 5.1 depicts a simplified state 

transition diagram for a time series containing just three states.  The state transition 
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logic is described by three rules for each state corresponding to each of the three 

possible state transition conditions on each input data point: 

• IF input matches current state’s characteristics THEN remain in current 

state. 

• IF input matches the next state’s characteristics THEN transition to the next 

state. 

• IF input matches neither the current state’s nor the next state’s 

characteristics THEN transition to an anomaly state. 

The essential element of each of these three rules is the antecedent 

condition, which characterizes the data points belonging to each state.  The 

antecedent condition for each state is obtained from the RIPPER rule generation 

process.  The state transition logic simply needs to glue together the proper 

antecedents to formulate the above three transition rules for each of the c* states 

identified by Gecko.   

Unfortunately, our state transition logic needs to be somewhat more 

complex.  In the domain of devices and systems we are attempting to monitor, 

sensors may sometimes report short-term, transient, anomalous values – false 

alarms.  In order for our approach to be more robust in handling these transients, 

we have added extra counting/threshold logic to the transition from a normal state 

to the error state.  Before an anomaly state is entered, the number of consecutively 

observed anomalous values must exceed a specified threshold.  Thus, an anomalous 

condition is not annunciated unless the observed values have been improper for 

some length of time.  Similar logic is provided for the transition from a normal 

state to its normal successor to prevent premature state transitions.  The expanded 

state-transition logic is shown by the state-transition diagram in Figure 5.2, where 

states prefixed with a “S” indicate operational states of the device, and states 
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prefixed with a “T” are transition states that need a consecutive number of points to 

proceed to the next state..   

 
Figure 5.2. Expanded state-transition logic with transition thresholds. 

When data is seen that indicates the next state should be transitioned to, the 

transition states cycle back to themselves a specified number of times before 

actually transitioning to the next state.  If the state machine is currently in a 

transition state and the current input point is not in the next state, the state machine 

backtracks to the previous state. 

This simple sequential model will get “stuck” in a state if it misses a state 

transition due to an anomaly.  The first anomaly is correctly identified, but the no 

future data can be tracked because the state machine is stuck in an old state.  A 

solution we have found that performs well is to use a non-deterministic state 

machine model rather than a deterministic model.  When an anomaly is detected, 

we create several state machines, each starting in a different state.  All of the state 

machines run in parallel until they converge to a single state.  This method allows 

the system to recover from a short sequence of anomalous data and to determine the 
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current state of the input data.  If a state machine contains many states and running 

individual state machines for each state is impractical, states can be searched 

starting with ones near where the anomaly was detected and increasing the number 

of states to search if the state machines continue to get “stuck”.  In our tests, the 

correct state is determined very quickly. 

5.2 Empirical Evaluation 

This evaluation will test the anomaly detection system described in this 

chapter on both normal an anomalous time series.  When training on a normal time 

series, the same time series and additional normal time series should not cause 

anomalies during testing.  However, when training on abnormal time series, the 

anomaly detection system should find anomalies in the time series. 

5.2.1 Procedures and Criteria 

In order to test whether the anomaly detection system works correctly we 

performed three kinds of tests:  (1) Self-tracking:  Use 90% of the data points to 

create rules, and then use 100% of the data fed into the expert system to see if the 

state transitions occur correctly, without detecting any anomalies. (2) Normal 

operation:  Use all of a normal valve’s data to create a normal model, and then 

monitor another valve that is also operating normally.  This case should also not 

trigger any anomalies. (3) Detecting anomalies:  Use all of a properly functioning 

valve’s data to learn a normal model, and then use time series of valves that are 

damaged slightly and run them through the anomaly detection system.  The 

damaged valves should trigger anomalies. 

5.2.2 Self-Tracking Results 

The baseline test of the anomaly detection system is to train the model with 

90% of the data, and seeing if 100% of the data can be tracked without triggering 
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an anomaly.  The results of this test are shown in Table 5.1.  An error point in 

Table 5.1 is any point that is unexpected in the state transition logic.  This means 

that the point is neither in the current state or the following state.  Time series data 

often contains noise and minor variations.  For this reason, anomalies must not be 

triggered by only a single data point that does not agree with the model contained 

in the FSA.  By using a threshold counter, an anomaly will only be reported after a 

certain number of consecutive error points.  The last column in Table 5.1 shows 

what the minimum consecutive error threshold (errorThreshold) must be set to for 

the anomaly detection system to not report an anomaly.  A value of 1 in the bottom 

row means that the anomaly detection system will correctly not report an anomaly 

as long as errorThreshold≥1.   

Table 5.1. Self-tracking of a time series. 

Data Set 1 2 3 4 5 6 7 8 9 10 Avg 

Error Pts (%) 1.1 0.8 0.7 0.5 0.0 0.4 0.3 0.2 0.4 1.1 0.6 

Min. Error 
Threshold 

2 2 1 1 0 1 1 1 1 21 4.0 

In this experiment, both the “consecutive transition” (transitionThresh) and 

the “consecutive error” (errorThreshold) thresholds were set to zero.  This causes 

every possible state transition to be made and every error point triggers an 

anomaly.  This enabled easy computation of the number of error points.  Data set 

number 10 performs poorly in this test because the FSA transitions prematurely 

near the end of the time series and starts reporting many anomalies, the results for 

this data set can be improved by increasing transitionThresh to prevent it from 

transitioning too early on a single spurious data point. 

5.2.3 Normal Operation Results 

This test is to show that the anomaly detection system’s generated normal 

model is general enough to recognize that an untrained normal time series contains 
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no anomalies.  In this test, the anomaly detection system trained on data set 1, and 

then tested on data set 2.  Both of these data sets are of normally operating valves 

that contain minor (but visible) differences.  The “consecutive transition” threshold 

(transitionThresh) parameter was set to 2, and errorThreshold was set to 10 

(minimum possible cluster size s=10).  This means that more than two consecutive 

points believed to be in the next state are needed to perform a state transition and 

more than ten consecutive points believed to be errors are needed to declare that the 

time series contains anomalies.   

The system was able to successfully transition through the states, without 

detecting any anomalies.  Of 979 data points, 61 (2.6%) were error points; they 

were not believed to belong to the current state, nor to be transition points 

belonging to the following state.  However, since a consecutive number of errors 

greater than errorThreshold was never encountered, an anomaly was never 

triggered. 

5.2.4 Detecting Anomalies Results 

This final test is to show that our system is capable of detecting when a time 

series differs significantly from the learned model.  In this test, two data sets 

containing time series of valves operating normally (data sets 1 and 2) were used to 

develop the normal models.  Each normal model was then run against the 

remaining anomalous data sets (data sets 3…10). 

For each of the 16 tests, the anomaly detection system correctly determined 

that the time series contained anomalies.  Additionally, the system was able to 

inform the user of the state number where the time series differs from the model.  

Thus, the system does not only give a yes/no answer to whether a time series 

contains anomalies, but it is also able to explain to the user where the anomaly 

occurred.  Also, because the rules generated by RIPPER are in a human-readable 
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format, the user can look at the rule for the state where the error occurred and 

understand exactly why the system reported the anomaly. 

5.3 Summary 

This chapter detailed an approach to time series anomaly detection by 

discovering and characterizing the states in a time series, and performing transition 

logic between these states to construct a finite state automaton that can be used to 

track normal behavior and detect anomalies.  The rules generated for each state by 

the RIPPER algorithm are in disjunctive normal form and can be easily understood 

and modified by humans.  (Moreover, the generated rules can be in a format used 

by the SCL expert system shell at ICS, which is a collaborator on this NASA 

project.) 

The overall anomaly detection system was able to detect anomalies in every 

time series that was from a ‘damaged’ valve, and was also able to monitor a 2nd 

normal valve without detecting any anomalies.  However the anomaly detection 

system, as it has been described so far, has a severe limitation.  The method 

described in this chapter can only take a single time series as input to build a 

normal model.  This is problematic because the normal range of values that are 

allowed for each state can only be accurately determined if a range of values are 

seen during training.  Training on only a single time series can create a normal 

model that is too restrictive because it is not possible for it to know the allowed 

variation of the system during each state.  Chapter 6 will describe how to extend 

this anomaly detection method to allow training on multiple time series. 
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Chapter 6  

Building a Normal Model by Training 
on Multiple Time Series 

The anomaly detection system described in Chapter 5 takes a single normal 

time series as input, and builds a normal model that can be used to determine if 

additional data is anomalous.  Any time series that deviates significantly from the 

normal model is considered to be anomalous.  However, the term “deviates 

significantly” is not easily defined when only a single time series is used for 

training.  A “normal” time series may vary due to different operating conditions of 

the device being monitored.  Variable operating conditions such as ambient 

temperature, varying voltage, recent use, and the effects of aging on the device can 

all cause deviations in the times series produced by normally operating devices.  

This allowed variation usually cannot be expressed by a simple parameter that 

permits a fixed amount of deviation from the learned normal model because the 

amount of permitted or normal deviation in the time series may vary between each 

of the device’s operational states.  In order to accurately determine the allowed 

variation in the time series of monitored devices, the anomaly detection system 

must be trained on multiple time series.  Training on multiple time series allows 

generalization to occur.  If the temperature reading during a particular state is 

always 20.0 degrees in one normal time series, and 25.0 degrees in another, then it 

is likely that temperatures between 20 and 25 are also normal. 

 The initial anomaly detection system described in Chapter 5 was not 

designed to train on more than a single time series, therefore the permitted 

deviation of a device could not be observed during training.  We wish to extend the 
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anomaly detection system to allow a single normal model to be created by training 

on multiple time series.  In order to create a single model (state machine between 

states of the time series) from multiple input time series, the rules generated for 

each state must be generalized to cover all data points of that state across all of the 

input time series.  To do so, the portions of each time series that correspond to the 

nth state must be determined.  However, it is difficult to determine which portions 

of each time series belong to the nth state.  Clustering with Gecko can identify a 

reasonable set of states for a single time series.  However, Gecko cannot be run on 

each time series to find corresponding states between the time series because Gecko 

is likely to find slightly different states for each time series, and can also return a 

different number of states for each time series. 

This chapter introduces two improvements to the anomaly detection system 

described in Chapter 5 that will allow training on more than one time series: 

1. Every normal time series is “merged” into a single representative time 

series before it is clustered by Gecko. 

2. The points used to create the rules are now the points from every time series 

that correspond to that rule’s state (states are identified by clustering the 

merged time series). 

Dynamic time warping will be used both to create the merged time series, and also 

to determine the corresponding regions between all of the time series.   

 Section 6.1 describes dynamic time warping; Section 6.2 explains how 

dynamic time warping can be used to extend the anomaly detection system 

described in Chapter 5 to allow multiple time series to be used during training; 

Section 6.3 contains an empirical evaluation of the anomaly detection system after 

it has been extended to allow training on multiple time series; and Section 6.4 

summarizes the work in this chapter. 
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6.1 Dynamic time Warping 

Dynamic time warping (DTW) is a technique that finds the optimal match 

between two time series if one time series may be “warped” non-linearly by 

stretching or shrinking it along its time axis (Kruskall & Liberman 1983).  

Dynamic time warping is most commonly used in speech recognition to determine 

if two waveforms represent the same spoken phrase.  The duration of each spoken 

sound and the interval between sounds are permitted to vary, but the overall speech 

waveforms must be similar.  Dynamic time warping is often used to find the 

distance along the optimal warp path to determine the similarity between the two 

speech waveforms.  Dynamic time warping is commonly used in data mining as a 

distance measure between time series.  An example of how one time series is 

“warped” to another is shown in Figure 6.1. 

Time
1 2 3 4 5 6 7 8 9 10 11 12

 
Figure 6.1. Two time series “warped” together using dynamic time warping. 

 In Figure 6.1, each line connects the point of one time series to its 

correspondingly similar point in the other time series.  The lines actually have 

similar values on the y-axis but have been separated so the vertical lines between 

them can be viewed more easily.  If both of the time series in Figure 6.1 were 
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identical, all of the lines would be straight vertical lines, no warping would be 

necessary to ‘line up’ the two time series.  The warp path distance is a measure of 

the difference between the two time series after they have been warped together, 

which is measured by the sum of the distances between each pair of points 

connected by the vertical lines.  Thus, two time series that are identical except for 

localized stretching and contracting of the time axis will have warp path distances 

of zero. 

 Dynamic time warping is typically used in data mining only to determine 

the similarity between two time series (Keogh & Pazanni 2000).  Calculating the 

distance after warping has the advantage that the two time series do not need to line 

up absolutely perfectly and be in phase with each other to produce an accurate 

distance measurement.  However, for our purposes, we are more interested in using 

the calculated warp path to find areas that are similar between two time series.  

Thus, we are more interested in the warp path rather than the warp path distance. 

6.1.1 Problem Formulation 

The dynamic time warping problem is stated as follows:  Given two time 

series X, and Y, of lengths maxX and maxY: 
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where K is the length of the warp path and the kth element of the warp path is: 

),( jiwk =  

where i is an index from time series X, and j is an index from time series Y.  The 

warp path must start at the beginning of each time series at w1 = (1, 1) and finish at 

the end of both time series at wK = (maxX, maxY).  This ensures that every index of 

both time series is used in the warp path.  There is also a constraint on the warp 
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path that forces i and j to be monotonically increasing in the warp path, which is 

why the lines representing the warp path in Figure 6.1 do not overlap.  Every index 

of each time series must be used.  Stated more formally: 

1,1),(),,( 1 +≤′≤+≤′≤′′== + jjjiiijiwjiw kk             [6.1] 

The warp path found must be the optimal (minimum distance) warp path, where the 

distance of a warp path W is: 
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where Dist(W) is the distance (typically Euclidean distance) of warp path W, and 

Dist(wki, wkj) is the distance between the two data point indexes (one from X and 

one from Y) in the kth element of the warp path. 

6.1.2 Dynamic Time Warping Algorithm  

A dynamic programming approach is used to find this minimum cost warp 

path.  Instead of attempting to solve the entire problem all at once, solutions to sub-

problems (portions of the time series) are found, and used to repeatedly find 

solutions to a slightly larger problem until the solution is found for the entire time 

series.  A two-dimensional maxX by maxY cost matrix D, is constructed where the 

value at D(i, j) is the minimum distance warp path that can be constructed from the 

two time series ixxX ,,1 K=′  and jyyY ,,1 K=′ .  The value at D(maxX, maxY) 

will contain the minimum distance warp path between time series X and Y.  Both 

axes of D represent time.  The x-axis is the time of time series X, and the y-axis is 

the time of time series Y.  Figure 6.2 D shows an example of a cost matrix and a 

minimum distance warp path traced through it from D(1, 1) to D(maxX, maxY). 
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Figure 6.2. A cost matrix with the min. distance warp path traced through it. 

The cost matrix and warp path in Figure 6.2 are for the same two time series shown 

in Figure 6.1.  The warp path is W = {(1,1), (2,2), (2,3), (3,4), (4,4), (5,5), (6,5), 

(7,6,), (,7,7), (8,8), (9,9), (10,9), (11,10), (11,11), (12,12)}.  If the warp path line 

passes through a cell D(i,  j) in the matrix, it means that the ith point in time series X 

is warped to the jth point in time series Y.  Notice that where there are vertical 

sections of the warp path, a single point in time series X is warped to multiple 

points in time series Y, and the opposite is also true where the warp path is a 

horizontal line.  Since a single point may map to multiple points in the other time 
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series, the time series do not need to be of equal length.  If X and Y were identical 

time series, the warp path through the matrix would be a straight diagonal line. 

To find the minimum distance warp path, every cell of the cost matrix must 

be filled.  The rationale behind using a dynamic programming approach to this 

problem is that since the value at D(i,  j) is the minimum warp distance of two time 

series of lengths i and j, if the minimum warp distances are already known for all 

slightly smaller portions of that time series that are a single data point away from 

lengths i and j, then the value at D(i, j) is the minimum distance of all possible warp 

paths for time series that are one data point smaller than i and j, plus the distance 

between the two points xi and yj.  Since the warp past must either be incremented 

by one or stay the same along the i and j axes, the distances of the optimal warp 

paths one data point smaller than lengths i and j are contained in the matrix at 

D(i-1,  j), D(i,  j-1), and D(i-1,  j-1).  So the value of a cell in the cost matrix is: 

),()]1,1(),1,(),,1(min[),( jiDistjiDjiDjiDjiD +−−−−=            [6.3] 

The warp path to D(i, j) must pass through one of those three grid cells, and since 

the minimum possible warp path distance is already known for them, all that is 

needed is to simply add the distance of the current two points to the smallest one.  

Since Equation 6.3 determines the value of a cell in the cost matrix by using the 

values in other cells, the order that they are evaluated in is very important.  The cost 

matrix is filled one column at a time from the bottom up, from left to right as 

depicted in Figure 6.3.   
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Figure 6.3. The order that the cost matrix is filled. 
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Equation 6.3 actually only applies to cells that are not in the first row or column 

because D(i-1,  j) is undefined for the first column, and D(i,  j-1) is undefined for 

the first row.  There are actually four different cases when calculating the values of 

the cells, depending on its location: 

1) ),(),(1,1 jiDistjiDji ===  

2) ),()1,(),(2,1 jiDistjiDjiDaxYmji +−=== K      

3) ),(),1(),(1,2 jiDistjiDjiDjaxXmi +−=== K     

4) 
),()]1,1(

),,1(),1,(min[),(2,2

jiDistjiD

jiDjiDjiDaxYmjaxXmi

+−−
−−=== KK

 

The first case is for the cell at the bottom left corner of the matrix that is filled in 

first.  Case 2 is for the rest of the first column, and case 3 is for the rest of the 

bottom row.  The remaining cells are calculated by the fourth case (Equation 6.3).  

The cells that are calculated by each of these four cases are shaded in Figure 6.4. 

maxX

maxY

1

1 i

j

 
Figure 6.4. Four shaded areas showing how cells that are calculated. 

The group of three arrows in Figure 6.4 indicate the locations of D(i-1,  j), D(i, j-1), 

and D(i-1,  j-1).  The smallest of these three values is added to the distance between 

the two points xi and yj.  A dashed line indicates that the location does not exist 

when calculating the value for the target grid cell. 

 After the entire matrix is filled, a warp path must be found from D(1, 1) to 

D(maxX, maxY).  The warp path is actually calculated in reverse order starting at 

D(maxX, maxY).  A greedy search is performed that evaluates cells to the left, 
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down, and diagonally to the bottom-left (reverse direction of the arrows in Figure 

6.3). Whichever of these three adjacent cells has the smallest value is added to the 

beginning of the warp path found so far, and the search proceeds from that cell.  

The search continues until D(1, 1) is reached.  If there is a tie between the possible 

cells to add to the warp path, any of the tied cells can be used and a correct answer 

will be calculated.  The warp path is guaranteed to be a minimum distance warp 

path, but there could possibly be many.  In the event of ties, it is usually desirable 

to move diagonally if possible.  This helps to avoid singularities where large 

sections of two time series are nearly identical.  A singularity occurs when a single 

point in one time series maps to a large number of points in the other.  For example, 

consider to identical time series of 100 points that are straight lines.  Any warp path 

will be the minimum warp path with a distance of zero.  However, it is desirable to 

have the warp path W1 = {(1,1), (2,2),…,(100,100}} rather than the warp path W2 = 

{(1,1),(2,1),…,(100,1), (100,2), (100,100)}.  The warp path W1 always moves 

diagonally when there is a tie and has a warp path length of 100.  The warp path W2 

moves left when there is a tie and has a warp path length of 199.  Avoiding 

singularities creates a warping that is more natural.  Additionally, for some 

applications it may also be desirable for a warp path to be as close to a linear warp 

as possible, by breaking ties so the warp path moves in the direction of the right 

diagonal line (the line where i=j). 

6.1.3 Derivative Time Warping 

Typically, dynamic time warping is performed using the original values 

when distances between points are determined.  This often gives a desirable 

distance measurement between time series when the amplitude difference between 

two time series is important.  However, using original values in the dynamic time 

warping algorithm often creates warp paths that are unintuitive for certain domains.  

Amplitude variations between the time series can easily cause singularities and 
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produce warp paths that may be undesirable for a given domain.  In our case, 

mappings between points based on the warp path do not correspond well to 

operational states.  Figure 6.5 shows a warping between two time series using 

original values in the dynamic time warping algorithm. 

 
Figure 6.5. A warping between two time series using original values. 

Warp path lines are drawn at the boundaries of the states (found by Gecko) 

simply to aid in the visualization of the overall warp path.  Depicting hundreds or 

thousands of warp path lines would be illegible, and just a few lines at the 

boundaries of the states are sufficient to gain an overall picture of the warp path.  

There are many problems with the warp path in Figure 6.5, and only a few will be 

pointed out.  The small number of points in the fourth state, which starts to fall 

rapidly at y=2.2 in the top time series, are mapped to a large number of points that 

share a common value on the y-axis, but otherwise are very dissimilar.  In the top 

time series the slope is very negative, and in the bottom time series the slope is 

positive.  Another problem is that the warp path contains several singularities are 

x=0.08 in the bottom time series.  The last problem that will be mentioned is that 

the flat state in the top time series is warped to a slightly “U” shaped state in the 
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bottom time series.  This occurs because the plateau in the bottom time series is 

slightly higher than at the top.  If the height difference in the plateaus were to 

increase this “U” would become very pronounced.  Overall the states in the top 

time series are mapped to the bottom time series in an unintuitive manner. 

An alternative is to consider the “shape” of the time series during warping 

rather than the original values in the y-axis.  To do so, the dynamic time warping 

algorithm should use slope values of the two time series rather than the original 

values.  This method is called derivative dynamic time warping (Keogh & Pazzani 

1999).  Figure 6.6 shows the warp path between the same two time series, but the 

warp path minimizes the warp path cost of the differences in slopes rather than 

original y-axis values.   

 
Figure 6.6. A warping between two time series using slope values. 

The result is a mapping of states between time series that is very intuitive.  The 

small states of the top time series at x=0.4 and x=0.42 are correctly warped to the 

same (but much smaller) states in the bottom time series.  Derivative dynamic time 

warping is an effective method to find regions across different time series that are 
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similar, and will be utilized in the next section to merge multiple time series into a 

single representative time series. 

6.2 Using DTW to Train on Multiple Time Series 

To extend the anomaly detection system discussed in Chapter 5 to allow 

multiple time series to be used during training, we will make use of dynamic time 

warping’s ability to find related sections of different time series.  The steps 

discussed in Chapter 5 (Figure 5.1) are still used:  clustering, rule-generation, and 

state-transition logic.  However, two additional steps are introduced: 

• A new step to merge multiple time series into a single representative time 

series 

• A step to determine the state for each point in every time series based on the 

set of states identified for the merged time series 

Merging is performed before immediately before clustering, and the state’s are 

determined for every time series immediately after clustering.  The new overall 

approach to anomaly detection is shown in Figure 6.7. 
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Figure 6.7. Main steps in time series anomaly detection with multiple input 

time series used during training. 

The new Merging step creates a representative time series that is given as 

input to the Gecko algorithm for clustering.  After Gecko finds the states of the 

merged time series, the next step uses the state information in the merged time 

series to determine the state of every point in all of the input time series.  This is 

possible because a warp path from the merged time series to every other time series 

is created during the first merging step.  The rule generation program does not need 

to be modified, but the input to it now contains all of the points from every time 

series used for training.  This allows the rules to be more general and allow 
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variations for each state depending on the amount variation of observed variation 

for each state across all time series used for training.  Once the rules are created 

state transition logic is created as explained in Chapter 5. 

Multiple time series are merged into a single time series using dynamic time 

warping.  One of the time series must be picked to use as a template.  For speech 

recognition, the template is often the time series of average length (Abdulla, Chow 

& Sin 2003).  The best merge will result from using the time series that is the most 

“average” as the template.  The most average time series can be determined by 

performing dynamic time warping on each combination of time series.  The time 

series that has the smallest warp path distance sum over all of the other time series 

is the most average because it is the most similar to all of the other time series.  The 

length of the merged time series will be equal to the length of the time series used 

as the template.  The template must first be warped to every other time series.  For 

the kh point in the template, average all of the points that it warps to in other time 

series (weighted so each time series has equal influence), and use that average as 

the kh point in the merged time series.  Conceptually, this approach “lines up” all of 

the time series and calculates the average of the points vertically. 

Determining the states of every time series, after determining the states of 

the merged time series is, also makes use of the warp paths created by dynamic 

time warping.  However, in this case there are two levels of indirection.  The 

template and merged time series have a liner warp between them so the nth point in 

the template warps to the nth point in the merged time series.  So the states of the 

template time series can be directly determined by the merged time series.  Once 

the states are known for the points in the template, all that is needed is to go 

through the template time series, and assign that merged point’s state membership 

to all of the points that it warps to in other time series. 
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6.3 Empirical Evaluation 

This evaluation will test how well the extended anomaly detection system 

performs when trained on multiple time series.  Training on multiple time series 

enables the normal model to be created that is more general and contains the 

amount of allowed variation for each state.  If two time series are used to build a 

normal model, testing on an additional time series that are “between” the two 

training time series should also not produce any anomalies, even if it differs 

significantly from all of the training data.  As an example, suppose that a normal 

model was constructed by training on data from a car’s engine running at 20 mph 

and 40 mph.  It is desirable that the normal model would cover all normal engine 

activity between 20 and 40 miles an hour, rather than only covering narrow ranges 

of activity near 20 and 40 mph. 

6.3.1 Procedures and Criteria 

To evaluate the ability of our anomaly detection system to generalize 

beyond the training data to cover unseen normal variations and determine if time 

series “between” the training data are covered by the generated normal model, data 

is needed for which  “between” is defined.  The data used for this evaluation is 

taken from a valve in the space shuttle under controlled tests where the same is 

operation is performed each time, but under different controlled conditions.  The 

data was generated by repeatedly turning the valve on and off and increasing the 

voltage applied to the valve in each run.  Ten time series were collected in this 

manner at the following voltages:  14, 16, 18, 20, 22, 24, 26, 28, 30, and 32.  Each 

time series contains measurements of current over time.  The effect of increasing 

the voltage on the valve has different effects on each operational state.  A few of 

the effects of increasing the voltage on different states of the time series are (in 

order from most pronounced to marginal): 
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• The plateau of the steady-state on position increases significantly as the 

voltage is increased. 

• The rate of increase in current after the valve is turned on increases as the 

voltage increases. 

• If the voltage is too low, the valve may fail to open (and later close).  The 

valve opening and closing is indicated in the time series by a “bounce” of 

current. 

• The “bounce” in the time series when the valve opens decreases as the 

voltage increases, but the bounce when a valve closes in unaffected.  The 

bounce also occurs at a slightly higher level of current as the voltage 

increases. 

• The section of the time series after turning off the valve changes very little 

between different voltages. 

• Steady-state off is unaffected by voltage, and is a flat section with a value of 

zero for the current in every test case. 

Figure 6.8 illustrates the effect of changing the voltage on the valve.  The 

time series on the left was collected at 16 Volts, and the time series on the right was 

collected at 30 Volts.  Both time series are from the same valve, only the voltages 

differs. 
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Figure 6.8. A valve being turned on and off at different voltages. 

The effects of change the voltage on the time series produced by the valve 

can be easily seen in Figure 6.8.  The plateau is higher and the rising slope is much 

steeper at higher voltages, but the section of the time series where the valve is 

turned off (at approximately Time=0.75) is nearly identical regardless of the 

voltage. 

These data sets are collected under exactly the same conditions except for a 

single parameter, the voltage.  The assumption made in this evaluation is that if 

multiple time series are provided as training data, the normal model that is 

generated should consider all time series that were trained on to be normal, and also 

consider all time series at intermediate voltages to be normal.  Conversely, all time 

series at lower or higher voltages than seen during training should cause anomalies 

to be triggered. 

The experimental procedure is simple, train on one or more of the ten time 

series, and then test on all ten.  The time series that should not be considered 

anomalous are the time series collected at voltages within the range (inclusive) of 

the training time series voltages.  For example, if time series at 20 and 28 Volts 

were used for training, then the time series with voltages 20, 22, 24, 26, and 28 

should not be considered anomalous, but all other time series collected at voltages 

less than 20 or greater than 24 should cause anomalies.  Tests will be performed 
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training on from one to three time series.  Training on only a single time series 

should create a restrictive normal model that will detect anomalies for all other time 

series. 

This evaluation differs from the one performed in Chapter 5 in two major 

ways.  The first difference is that this evaluation trains on multiple time series.  The 

second difference is that in this evaluation, there are no “normal” and “abnormal” 

valves.  Instead we are measuring the ability of the normal model to generalize to 

unseen training data that is “between” the time series used for training.  The notion 

of normal and abnormal depends more on the domain than actual data.  A time 

series that is abnormal in one domain may be perfectly normal in another.  So, in 

this evaluation, we are not concerned with whether a time series is actually 

considered normal or abnormal.  Instead, we are treating different ranges of time 

series (in the range of voltages seen during training) as “normal” and everything 

else abnormal. 

The parameters used to create the normal model were:  minClusterSize=20 

(Gecko), transitionThreshold=3 (FSA), and errorThreshold=10 (FSA).  Thus, the 

clusters returned by Gecko had to contain at least 20 points.  The two parameters 

for the state-transition logic specify more than three consecutive transition points 

must be seen before the next state is transitioned to, and more than 10 consecutive 

error points must be seen to raise an anomaly. 

6.3.2 Results and Analysis 

The first tests performed were to train on only a single time series.  When 

only a single time series is trained, the model is very specific because the amount 

of normal variation allowed can’t be determined when training on only a single 

time series.  It is expected that if a time series is used for training, the model 

produced will consider all time series other than the one used for training as 

anomalous.  Table 6.1 contains the results of training on only a single time series. 



 83 

Table 6.1. Results of training on a single time series, testing on all. 
TEST  

14V 16V 18V 20V 22V 24V 26V 28V 30V 32V 
14V P F F F F F F F F F 
16V F P F F F F F F F F 
18V F F P F F F F F F F 
20V F F F P F F F F F F 
22V F F F F P F F F F F 
24V F F F F F P P/F F F F 
26V F F F F F F P F P/F P/F 
28V F F F F F F F P F F 
30V F F F F F F F F P F 

T
R

A
IN

 

32V F F F F F F F F F P 

In Table 6.1, a “P” indicates that when training on the time series in that 

row, and testing on the time series at that column, the state transition logic reads 

through the entire test file without any anomalies.  An “F” indicates that at least 

one anomaly is found, and a “P/F” indicates that anomalies are found with an 

errorThreshold of 10, but passes if the threshold is increased to 20.  As expected, in 

Table 6.1 time series were only able to be tracked without anomalies when they 

were trained on. 

The remaining tests are performed by training on either two or three time 

series.  It is expected that the time series used for training will not cause anomalies 

during testing, and all time series generated at voltages between the training 

voltages should also not cause anomalies.  Table 6.2 displays the tests when 

training on multiple time series. 
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Table 6.2. Results of training on multiple time series, testing on all. 
TEST  

14V 16V 18V 20V 22V 24V 26V 28V 30V 32V 
16V,20V F P F P F F F F F F 
20V,24V F F F P P P F F F F 
24V,28V F F F F F P P P P/F F 
28V,32V F F F F F F F P P P 
14V,20V F F F P F F F F F F 
20V,26V F F F P P/F P P F F F 
26V,32V F F F F F F P P/F P/F P 

16V,20V24V F F F P P/F P F F F F 
24V,28V,32V F F F F F P P P P/F P 
14V,20V,26V F F F P P F P F F F 

T
R

A
IN

 

18V,24V,30V F F P P/F P P P F P F 
 
The cells are shaded in Table 6.2 to help make it easier to understand.  A 

bright green cell with a “P” indicates that the test case at that cell was expected to 

pass without an anomaly and it did.  A red cell with an “F” indicates that the test 

case was expected to generate no anomalies, but at least one anomaly was found.  

The olive “P/F” indicates that the test case correctly has no anomalies if the 

errorThreshold is doubled to 20. 

In Table 6.2, the “range” of expected time series that will not cause 

anomalies can be easily determined.  In the first eight rows, two time series were 

trained with a single time series having an intermediate voltage.  The model 

correctly generalized to include the unseen time series with the in-between voltage 

3 out of 4 times, and still correctly produced anomalies when tested on the other 7 

time series. 

The second group of tests in Table 6.2 also trained on two time series, but 

had two time series “in-between” them instead of just one.  This group of tests gave 

correct results for 2 out of 3 of the test cases. 

The final group of tests in Table 6.2 trained on three time series.  This group 

of tests had more mistakes than the previous tests.  The results were good except 

when training and testing on valves with the lowest voltage.  The valve completely 
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fails to open or close at low voltages, and has no pair of “bumps” in the time series.  

Since the states of the “bounce” that are identified in the merged time series are 

mapped back to the original time series that do not have those corresponding 

regions, the missing states end up getting a very small number of points (often one) 

assigned to those missing states.  All other states are mapped correctly, and rules 

are generated to characterize the states.  But if testing occurs on that valve with the 

missing state, it is impossible to transition into the state that is very small because 

transitionThresh number of consecutive points must be seen to perform a 

transition.  The effect is that the small state is passed before enough points are seen 

to transition into it and the state transition logic gets lost and throws an anomaly. 

It is important to realize that when a cell is contains an “F”, it does not 

imply that the anomaly detection system simply spits out either “normal” or 

“abnormal” when testing on a time series.  The state transition logic identifies 

which state the anomalies occurred in.  So, for each “F” in Table 6.1 and Table 6.2, 

it may indicate that a single anomaly was found in a single state, or than dozens of 

anomalies were found in every state.  In other words, not all “F”s are created equal, 

some may be only one anomaly, or one state away from passing without returning 

an anomaly.  Nearly all of the test cases that found anomalies unexpectedly (red 

cells) contained only a very small number of anomalies in one or two states. 

6.4 Summary 

This chapter has discussed how do extend the anomaly detection system 

described in Chapter 5 to allow training on multiple time series.  Two additional 

steps are required to train on multiple time series.  The first is to merge multiple 

time series into a single time series before clustering.  The second is to use the 

states identified for the merged time series to identify the states in all of the original 

time series that were used to create the merged time series.  Both of these additional 

steps are performed using dynamic time warping.  Dynamic time warping is able to 
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“line up” multiple time series so they can be merged together, and it can find 

corresponding sections of different time series to use the merged state information 

to determine the states in the other time series. 

Training on multiple time series is necessary to determine the amount of 

variation that is permitted during the normal operation of a device.  Our empirical 

results indicate that training on multiple data sets does generalize the model to 

correctly cover time series that are “between” the time series trained on.  

Additionally, the model does not generalize to cover time series that are 

anomalous.  Generalization only occurs for time series “between” the observed 

training data.   
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Chapter 7  

Concluding Remarks 

 We have detailed our approach to time series anomaly detection that 

discovers and characterizes the states of a time series, and performs transition logic 

between these states to construct a finite state automaton.  This finite state 

automation can be run on an expert system and used to track normal behavior and 

detect anomalies, in monitored devices.  The proposed Gecko segmentation 

algorithm is designed to cluster time series data (finds a small number of segments 

mapping to unique states rather than a fine approximation of many segments), and 

uses our proposed L method to determine a reasonable number of segments 

efficiently.  The rules generated for each state by the RIPPER algorithm can be 

easily understood and modified by humans.  (Moreover, the generated rules can be 

in a format used by the SCL expert system shell at ICS, which is our collaborator 

on this NASA project.) 

7.1 Summary of Contributions 

The following is a summary of our contributions: 

• We demonstrate a method that performs time series anomaly detection via 

generated states and logical rules that can easily be understood and 

modified by humans.  These logical rules can be easily converted into a 

format that allows the anomaly detection to be performed by an expert 

system.  The knowledge encoded into an expert system must be typically be 

entered manually by a human which is a costly and time-consuming 
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process.  Also, since the rules are human-readable, the reason why an 

anomaly is reported can be understood by a human user so he or she may 

quickly take appropriate action. 

• We introduce an algorithm named Gecko that segments a time series into 

states.   

• We propose the L method that dynamically determines a reasonable number 

of clusters.  The L method is general enough to be used with any 

hierarchical clustering or segmentation algorithm.   

• We demonstrate how derivative time warping can be used to locate 

corresponding sequences across multiple time series, and how to merge 

multiple time series together into an “average” time series in order to extend 

our anomaly detection so it may train on multiple time series.  Additionally 

we propose that the template to use during merging be the time series that is 

the most similar to every other time series based on the sum of the warp 

paths to every other time series.  We also showed how a classification of the 

merged time series can be expanded to all of the input time series that were 

used to make the merged time series. 

• Our empirical evaluations, using data from NASA, indicate that Gecko 

performs comparably with a NASA expert in identifying the operational 

states of a device.  When the human domain expert was asked to rate 

Gecko’s output with a score from 1-10, Gecko was given perfect ratings on 

6 of 10 data sets and had an average score of 9.5.  A perfect rating of 10 

signifies that the set of segments, or clusters, produced by Gecko is equally 

as good as that of the human expert.  For comparison, the bottom-up 

segmentation algorithm was also tested, and was only given an average 

rating of 4.3. 
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• Empirical evaluations, using 14 spatial and time series data sets and 6 

different clustering/segmentation algorithms, indicate that our L Method 

performs favorably to existing methods that determine the number of 

clusters or segments to return. Our L method is shown to work well for a 

wide range of algorithms, clusters with elaborate shape, and for 

clusters/segments that are overlapping and not well-separated.  In our 

evaluation, the L method was able to determine a reasonable number of 

segments in 10 out of 11 instances for hierarchical segmentation algorithms 

with greedy evaluation metrics, and a correct number of clusters in 10 of 12 

instances for hierarchical clustering algorithms.  The L method performed 

much better than the two existing methods that were also tested in our 

evaluation. 

• Empirical evaluation also shows that the overall system can track normal 

behavior and detect anomalies.  The overall anomaly detection system was 

able to detect anomalies in every time series that was from a ‘damaged’ 

valve, and was also able to monitor a 2nd normal valve without detecting 

any anomalies.  Additionally, when training on multiple time series the 

anomaly detection system is able to accurately determine the amount of 

allowed variation in each state.  Experiments have shown that when trained 

on time series of a valve operating at two different voltages, the normal 

model generated is able to generalize to cover all time series operating at 

voltages between those two voltages, and will still detect anomalies for 

valves operating and higher or lower voltages than observed during training. 

7.2 Limitations and Future Work 

Our anomaly detection trains on one or more normal time series and is then 

able to determine whether future time series are anomalous.  However, our anomaly 
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detection system has some limitations, some of which will be the focus of future 

work. 

Data Used for Training: 

• A model of a normal time series consists of a sequential ordering of 

operational states, and obviously requires training data that also contains 

states that occur in the same order.  Our model can handle differing 

amounts of allowed variation among the states, but it will not work 

correctly if the states do not need to occur in the same sequence during 

normal operation.   

• The anomaly detection discussed in this paper has a start state and end state, 

and therefore is not able to monitor long or cyclical processes.  However, if 

the training data contains various individual cycles, and the normal model 

created generalizes the permitted cycles, a simple modification to the state 

machine will allow normal transitions from the last state to the first state.  

Future work will be done to test our system on cyclic data such as the time 

series of a heartbeat. 

• In a operational state identified by Gecko, all of the different dimensions 

(sensor values) of the time series are assumed to be related to each other and 

will have similar values in the same operational state in another normal time 

series.  However, if some of the dimensions are unrelated to each other, 

restrictions in the normal model that require them to have a similar 

relationship in all future instances of that state are unreasonable.  If the 

values of dimensions or sensors are unrelated to each other, they should not 

be used together when building the model.  They should be separated and 

used to create more than one model where each model performs anomaly 

detection on a different subsystem. 
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• If multiple time series are used for training, each time series has to be 

somewhat similar.  A large amount of variation is permitted, but they 

cannot differ too much or they will not be able to be correctly merged into a 

single time series before clustering.  Each time series should be of a device 

performing a similar operation under varying conditions, rather than a 

device performing operations that are entirely different that produce time 

series that seem unrelated to each other. 

Gecko (finding states): 

• The Gecko algorithm explained in this paper cannot be scaled up to very 

large time series because the first phase that finds the initial sub-clusters is 

not scalable.  The graph bisection operations become slow as the size of the 

time series increases.  Future work will look into creating a scalable top-

down segmentation algorithm that will be able to create a large number of 

small clusters that to not span important cluster boundaries. 

• During clustering with Gecko, if there the data is noisy, the parameter 

minClusterSize needs to be increased to prevent the algorithm from 

returning “clusters” that are actually only noise and not true clusters.  

Having the algorithm determine a good value for this parameter 

automatically will always be possible the smallest size of a state that should 

be returned may often depend more on the domain than the data.  However, 

future work should explore ways to set this parameter automatically that 

will at least be an improvement over a single static value or requiring the 

user to set it every time. 

L Method (determining the number of clusters/segments): 

• The major limitation of the L method is that it will never suggest that less 

than three clusters be returned.  Future work will look into way to perform 
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extra analysis if the number of clusters returned is only three to determine if 

two or one clusters would actually be a better choice. 

Dynamic Time Warping: 

• The standard dynamic warping (DTW) algorithm runs quickly if the time 

series contains fewer than three thousand points.  However, it has an O(N2) 

time complexity, and even worse, an O(N2) space complexity to fill the cost 

matrix.  This means that performing DTW on a time series that contains 

20,000 measurements requires that 400 million (20,0002) floating point 

numbers be stored in the cost matrix.  There are approximations to the 

DTW algorithm that only calculate the values of the cost matrix near the 

linear warp line.  However, with time series that contain steady state 

conditions (flat regions) at the beginning or end, the warp path may have to 

stray very far from the linear warp line.  Straying too far from the linear 

warp line would cause the complexity of DTW to approach O(N2) as the 

number of cells that need to be evaluated increases.  Other methods simply 

perform classic DTW on a reduced time series which may produce a pretty 

accurate warp path distance measurement, but the actual path may be poor 

in some regions, which would bad for our algorithm and the relationships 

between time series that we infer using warp paths.  Future work will focus 

on creating a new dynamic time warping algorithm that warps a reduced 

time series, and then iteratively refines the warp path locally after the rough 

path is calculated.  If successful, the algorithm would scale linearly with the 

size of the time series, would be near-optimal, and would have no poor 

warpings between points. 

Rule Generation:  

• Our work so far has only generated a set of Rules using the RIPPER 

algorithm.  This one set of rules is used for both state transitions and 

anomaly detection (anomaly is thrown when state transition logic fails).  
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However, whether to transition between states and whether a data point is 

anomalous are two different problems.  It may be better to generate a more 

general set of rules for state transitions, and a more restrictive set of rules 

for anomaly detection.  Currently the single set of rules is more similar to 

the more specific anomaly detection rules.  It may be beneficial to have a 

second set of rules that are only specific enough to tell if a point is in the 

current or next state, and simultaneously use the more restrictive set of rules 

for anomaly detection.  In this manner, the state machine will not need to 

get “lost” for an anomaly to be reported. 

• Future work will evaluate alternatives to the RIPPER algorithm to generate 

rules.  A possibility is simply to record the minimum and maximum values 

for each dimension in a state to draw a “box” around the area of permitted 

values. 

State-Transition Logic: 

• Our current state transition logic has a consecutive transition threshold that 

prevents premature state transitions on spurious points.  However, requiring 

a consecutive number of transition points to actually perform a transition 

has a side effect that requires a state contain a minimum number of points.  

If one or more states are skipped and it is normal for them to be skipped 

based on it being observed in training, the current state transition logic will 

incorrectly throw an anomaly at the skipped state.  Future work will extend 

state transition logic to identify states in the merged time series, but also 

determine which states in the merged time series do not occur in the original 

time series used for training.  If a particular state is sometimes skipped 

during training (normal behavior), the state transition logic needs to 

accommodate this by allowing the previous state to either transition to the 

next sometimes-skipped state OR two states ahead. 
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• Sometimes a small state may be mapped to an even smaller state in a time 

series used during training, and it will create a state that is so small that it is 

difficult to transition into before it is passed (similar to the previous bullet).  

Our current anomaly detection system runs a non-deterministic state 

machine only when an anomaly is found, and runs until it converges to a 

single state.  However, to avoid the problem of having states that are too 

small to easily transition into, a non-deterministic state machine can always 

be run.  In the always running non-deterministic state machine, the first 

transition point causes the state machine to both transition AND stay in the 

same state in different threads.  If a thread gets stuck, it is terminated, and 

an anomaly is only thrown if all threads are unable to continue tracking 

through the time series. 
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Appendix 

Sample Run of the Anomaly Detection 
System 
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Input Files for Training 
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Merging Time Series 
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Determine State Information 
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Rule Generation 

Rule
Generation

Time
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re
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S3

 S1 -> Current<4 AND
          10<=Slope<=15
 S2 -> 1<=Current<=4 AND
          Slope=0
 S3 -> Current<4 AND
         -13<=Slope<=-10

 
 

 
RULE FOR STATE 0: 
IF (((Current <= 0.01167725) 
   AND (d1_Current >= -2.00887) AND (d1_Current <= 7.41389) 
   AND (d2_Current >= -428.885)) 
OR ((Current >= 0.01104155) AND (Current <= 0.02149 1700000000002) 
   AND (d1_Current >= -0.5117375)  
   AND (d1_Current <= 8.469335000000001) 
   AND (d2_Current >= -437.142)) 
OR ((Current >= 0.01071215) AND (Current <= 0.01084 0550000000001)) 
OR ((Current >= 0.010775650000000001) AND (Current <= 0.01090405))) 
THEN 0 
 
 
RULE FOR STATE 1: 
IF (((Current <= 0.459586) 
   AND (d1_Current >= 8.70961)) 
OR ((Current <= 0.465255) 
   AND (d1_Current >= 9.527095))) THEN 1 
 
 
RULE FOR STATE 2: 
IF (((Current >= 0.1536815) AND (Current <= 0.59979 54999999999) 
   AND (d1_Current >= 2.35799)  
   AND (d1_Current <= 12.481200000000001) 
   AND (d2_Current >= -2122.735) AND (d2_Current <=  588.989)) 
OR ((Current >= 0.552237) AND (Current <= 0.6042005 ) 
   AND (d1_Current >= 0.371603) 
   AND (d2_Current <= -1205.78)) 
OR ((d2_Current >= -1851.675)  
   AND (d2_Current <= -1840.4299999999998))) THEN 2  
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RULE FOR STATE 3: 
IF (((Current >= 0.4248265) AND (Current <= 0.60498 84999999999) 
   AND (d1_Current >= -18.57515) AND (d1_Current <=  -3.96586) 
   AND (d2_Current <= 2278.74)) 
OR ((Current <= 0.6049344999999999) 
   AND (d1_Current <= -0.7938265) 
   AND (d2_Current <= -2355.495)) 
OR ((Current >= 0.4165025) AND (Current <= 0.607525 4999999999) 
   AND (d1_Current >= -12.3338) AND (d1_Current <= -2.1199) 
   AND (d2_Current <= 2568.2250000000004)) 
OR ((d2_Current >= -2088.535)  
   AND (d2_Current <= -2051.0699999999997))) THEN 3  
 
 
RULE FOR STATE 4: 
IF (((Current >= 0.4072015) AND (Current <= 0.54639 79999999999) 
   AND (d1_Current >= 2.9014949999999997)  
   AND (d1_Current <= 8.54674) AND (d2_Current >= - 13.97575)) 
OR ((d1_Current >= -10.99385) 
   AND (d2_Current >= 2568.2250000000004)) 
OR ((d1_Current >= -11.2563) 
   AND (d2_Current >= 2253.8)) 
OR ((d1_Current >= 7.234265) AND (d1_Current <= 7.2 60475))) THEN 4 
 
 
RULE FOR STATE 5: 
IF (((Current >= 0.47907900000000003) 
   AND (d1_Current >= 8.26221))) THEN 5 
 
 
RULE FOR STATE 6: 
IF (((Current >= 0.647008) AND (Current <= 1.07862)  
   AND (d1_Current >= 1.9650699999999999) AND (d1_C urrent <= 
8.073385)) 
OR ((d2_Current >= -699.8389999999999)  
   AND (d2_Current <= -697.466)) 
OR ((Current >= 1.079925) 
   AND (d1_Current >= 2.242155))) THEN 6 
 
 
RULE FOR STATE 7: 
IF (((Current >= 0.7691555) 
   AND (d1_Current >= -16.107) AND (d1_Current <= 2 .4305)) 
OR ((Current >= 0.7684335) AND (Current <= 0.769170 5))) THEN 7 
 
 
RULE FOR STATE 8: 
IF (((Current <= 1.07578) 
   AND (d1_Current <= -7.889145))) THEN 8 
 
 
RULE FOR STATE 9: 
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IF (((Current >= 0.194583) AND (Current <= 0.300475 5) 
   AND (d1_Current >= -7.752935) AND (d1_Current <=  0.532424) 
   AND (d2_Current >= -298.1875) AND (d2_Current <=  1033.72)) 
OR ((d2_Current >= 202.7235)  
   AND (d2_Current <= 202.98649999999998)) 
OR ((d2_Current >= 937.5535) AND (d2_Current <= 944 .7975))) THEN 9 
 
 
RULE FOR STATE 10: 
IF (((Current >= 0.19351849999999998)  
   AND (Current <= 0.24175249999999998) 
   AND (d1_Current >= 0.6799845) AND (d1_Current <=  5.983625) 
   AND (d2_Current <= 1007.0)) 
OR ((Current >= 0.2270345) AND (Current <= 0.241927 ) 
   AND (d1_Current >= 0.39421649999999997) 
   AND (d2_Current <= -429.7875)) 
OR ((d2_Current >= 224.6855) AND (d2_Current <= 225 .2665))) THEN 10 
 
 
RULE FOR STATE 11: 
IF (((Current >= 0.1982835) AND (Current <= 0.24155 9) 
   AND (d1_Current >= -3.95517) AND (d1_Current <= 2.346055)) 
OR ((d2_Current >= 1910.425) AND (d2_Current <= 191 8.715)) 
OR ((d2_Current >= 1780.71)  
   AND (d2_Current <= 1794.8400000000001))) THEN 11  
 
 
RULE FOR STATE 12: 
IF (((Current >= 0.196977) AND (Current <= 0.306535 ) 
   AND (d1_Current >= 3.04138)  
   AND (d1_Current <= 13.565850000000001))) THEN 12  
 
 
RULE FOR STATE 13: 
IF (((Current >= -0.004448185) AND (Current <= 0.19 3331) 
   AND (d1_Current <= 1.56491) 
   AND (d2_Current <= 454.515)) 
OR ((Current >= -0.00628144) AND (Current <= 0.3060 665) 
   AND (d1_Current >= -5.318434999999999)  
   AND (d1_Current <= 1.970375) 
   AND (d2_Current <= 470.1575)) 
OR ((Current <= 0.307395) 
   AND (d1_Current <= 3.1861050000000004) 
   AND (d2_Current <= -9.40672))) THEN 13  
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State-Transition Logic 

 S1 -> Current<4 AND
          10<=Slope<=15
 S2 -> 1<=Current<=4 AND
          Slope=0
 S3 -> Current<4 AND
         -13<=Slope<=-10

State-Transition
Logic

S3S1 S2

anomaly

 
 
 
script transition_to_merged_0 
 
   if merged_enable_trace > 0 then 
      message "script transition_to_merged_0" 
   end if 
 
   merged_active_state = 0 
   merged_consecutive_error_count = 0 
   merged_cumulative_transition_count = 0 
   merged_consecutive_transition_count = 0 
   merged_num_valid_points = 0 
 
   activate monitor_transition_to_merged_1 
   activate monitor_merged_0_curr 
   activate monitor_merged_0_next 
   activate monitor_merged_0_error 
 
   if merged_enable_trace > 0 then 
      execute merged_data_dump 
   end if 
 
end transition_to_merged_0 
 
 
Rule monitor_merged_0_curr 
 
   subsystem owner_of_merged 
   category merged_valve_monitor 
   priority 20 
   activation yes 
   continuous yes 
 
   -- test for merged cluster 0 
   if merged_active_state = 0 and 
      (((merged_Current >= -0.00564919) and  
        (merged_Current <= 0.012188049999999999) 
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      and (merged_d1_Current >= -2.0479950000000002 ))) then 
 
      if merged_enable_trace > 0 then 
         message "monitor_merged_0_curr" 
      end if 
 
      -- this point is in active cluster, zero cons ecutive counts 
      merged_consecutive_error_count = 0 
      merged_consecutive_transition_count = 0 
 
      -- bump number of valid points found 
      increment merged_num_valid_points 
 
   end if 
 
end monitor_merged_0_curr 
 
Rule monitor_merged_0_next 
 
   subsystem owner_of_merged 
   category merged_valve_monitor 
   priority 20 
   activation yes 
   continuous yes 
 
   -- test for merged cluster 1 
   if merged_active_state = 0 and 
      (((merged_Current >= 0.01253285) and  
        (merged_Current <= 0.40316300000000005) 
      and (merged_d1_Current >= 1.84109) and  
          (merged_d1_Current <= 11.075700000000001)  
      and (merged_d2_Current >= -892.1320000000001)  and 
          (merged_d2_Current <= 853.9445000000001))  
   or ((merged_Current >= 0.02014075) and  
       (merged_Current <= 0.28492700000000004) 
      and (merged_d1_Current >= -0.2783255) and  
          (merged_d1_Current <= 7.344745) 
      and (merged_d2_Current <= 900.0745)) 
   or ((merged_Current >= 0.2523655) and  
       (merged_Current <= 0.2545855) 
      and (merged_d1_Current >= -0.4122285) and  
          (merged_d1_Current <= -0.3237645)) 
   or ((merged_d1_Current >= 1.6590099999999999) an d 
       (merged_d1_Current <= 1.67289))) then 
 
      if merged_enable_trace > 0 then 
         message "monitor_merged_0_next" 
      end if 
 
      -- this point is in next cluster, try to tran sition 
      increment merged_cumulative_transition_count 
      increment merged_consecutive_transition_count  
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      merged_consecutive_error_count = 0 
 
   end if 
 
end monitor_merged_0_next 
 
Rule monitor_merged_0_error 
 
   subsystem owner_of_merged 
   category merged_valve_monitor 
   priority 20 
   activation yes 
   continuous yes 
 
   -- test for merged cluster 0 error condition 
   -- that is point NOT in 0 AND NOT in 1 
   if merged_active_state = 0 and 
      (NOT (((merged_Current >= -0.00564919) and  
             (merged_Current <= 0.01218804999999999 9) and  
             (merged_d1_Current >= -2.0479950000000 002)))) and  
      (NOT (((merged_Current >= 0.01253285) and  
             (merged_Current <= 0.40316300000000005 ) and 
             (merged_d1_Current >= 1.84109) and  
             (merged_d1_Current <= 11.0757000000000 01) and 
             (merged_d2_Current >= -892.13200000000 01) and 
             (merged_d2_Current <= 853.944500000000 1)) 
           or ((merged_Current >= 0.02014075) and  
              (merged_Current <= 0.2849270000000000 4) and  
              (merged_d1_Current >= -0.2783255) and  
              (merged_d1_Current <= 7.344745) and  
              (merged_d2_Current <= 900.0745)) 
           or ((merged_Current >= 0.2523655) and  
              (merged_Current <= 0.2545855) and  
              (merged_d1_Current >= -0.4122285) and   
              (merged_d1_Current <= -0.3237645)) 
           or ((merged_d1_Current >= 1.659009999999 9999) and  
              (merged_d1_Current <= 1.67289)))) the n 
 
      if merged_enable_trace > 0 then 
         message "monitor_merged_0_error" 
      end if 
 
      -- this point is in error, bump error counts 
      increment merged_cumulative_error_count 
      increment merged_consecutive_error_count 
      merged_consecutive_transition_count = 0 
 
   end if 
 
end monitor_merged_0_error 
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Rule monitor_transition_to_merged_1 
 
   subsystem owner_of_merged 
   category merged_valve_monitor 
   priority 20 
   activation yes 
   continuous yes 
 
   if(merged_cumulative_transition_count > 
merged_cumulative_transition_threshold) 
   
or(merged_consecutive_transition_count>merged_conse cutive_transitio
n_threshold)then 
 
      if merged_enable_trace > 0 then 
         message "monitor_transition_to_merged_1" 
      end if 
 
      execute transition_to_merged_1 in 1 tick 
   end if 
 
end monitor_transition_to_merged_1 
 

. 

. 

. 
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Anomaly Detection 
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Screen capture courtesy of Interface & Control Systems  (ICS) 

3 plots:  tested time series, state tracking, error level 
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Usage                                              
(command-line interface) 

C:\>createRules v28.csv v24.csv v32.csv 
- - - - - - - - - - - - - - 
Running Pre-Processor to Smooth, Normalize, and Der ive new 
Attributes: 
Pre-Processing v28.csv....done 
Pre-Processing v24.csv....done 
Pre-Processing v32.csv....done 
- - - - - - - - - - - - - - 
- - - - - - - - - - - - - - 
Running Dynamic Time Warper... 
Determining which time series is most normal...done  in 13 
seconds 
The Most 'Average' Input Time Series is:  v24.csv 
Creating a merged time series..............done in 0.21 
seconds. 
- - - - - - - - - - - - - - 
Pre-Processing merged.csv....done 
- - - - - - - - - - - - - - 
Running the Clustering Algorithm Gecko 
LEAVE FIELDS BLANK AND PRESS RETURN TO AUTOMATICALLY USE 
DEFAULT VALUES: 
 
How would you like to set the parameters for Gecko?  
   1) Simple [DEFAULT]  (2 parameters to set) 
   2) Advanced          (5 parameters to set) 
->1 
 
What is the 'Minimum Cluster Size' that you want to  be 
possible? 
DEFAULT = 10 
Increasing this value makes the algorithm more tole rant to 
noise, but if the setting is too large, smaller clu sters will 
not be properly found.  Value must be >=5 but is re commended 
to be >= 10 for smooth data, and much greater than 10 for 
noisy data. 
->20 
 
What is the 'Low Slope Sensitivity' setting? 
DEFAULT = 0.0 
Data sets with a high sample rate or where changes in the 
non-time dimensionss 
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happen much more slowly than time will tend to need  higher 
values.  A setting of '0.0' typically works well, b ut may 
need to be changed for the best results.  Lower set tings are 
more tolerant to noise.  Consult the manual for a f ull 
explaination on setting this parameter. 
->0.0 
 
Loading data from file...loading complete in 0.681 seconds. 
2411 points sampled down to...2411 points in 0 seco nds. 
Normalizing data...finished in 0.06 seconds. 
Weighting data...finished in 0.02 seconds. 
Building k-nearest neighbor graph...done in 12.638 seconds. 
Splitting data into initial sub-clusters...90 sub-c lusters 
created in 24.105 seconds. 
Merging remaining sub-clusters...completed in 1.592  seconds. 
 
Creating output files:  14 clusters recommended. 
Evaluation file:  'merged_Gecko_excel.csv' created.  
- - - - - - - - - - - - - - 
- - - - - - - - - - - - - - 
Running Post-Processor to combine clustering and wa rp path 
information 
- - - - - - - - - - - - - - 
- - - - - - - - - - - - - - 
Running Ripper to create rules...done in 8 min. 
- - - - - - - - - - - - - - 
- - - - - - - - - - - - - - 
Converting Ripper rules to SCL expert system format . 
- - - - - - - - - - - - - - 
Done. 


