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Abstract

Learning States for Detecting Anomalies in Time Series

by
Stan Weidner Salvador

Thesis Advisor: Philip K. Chan, Ph.D.

The normal operation of a device can be characterized in different
operational states. To identify these states, we introduce a segmentairdahralg
called Gecko that can determine a reasonable number of segments using our
proposed L method. We then use the RIPPER classification algorithm to describe
these states in logical rules. Finally, transitional logic betweenadtesss added
to create a finite state automaton. Multiple time series may be usedifandy by
merging several time series into a single representative tims ssigy dynamic
time warping.

Our empirical results, on data obtained from the NASA shuttle program,
indicate that the Gecko segmentation algorithm is comparable to a humanmexpert i
identifying states, and our L method performs better than the existing pgomuta
tests method when determining the number of segments to return in segmentation
algorithms. Empirical results have also shown that our overall system can track
normal behavior and detect anomalies. Additionally, if multiple time series are
used for training, the model will generalize to cover unseen normal variatidns

time series that are “between” the time series used for training.
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Chapter 1

Introduction

Expert (knowledge-based) systems are often used to help humans monitor
and control critical systems in real-time. For example, NASA uses esysteims
to monitor various devices on the space shuttle. However, populating an expert
system’s knowledge database by hand is a time-consuming and expensive process.
In this paper we investigate machine learning techniques for generatintgigew
that can monitor the operation of devices or systems. Specifically, we study
methods for generating models that can detect anomalies in time s&ies da

The normal operation of a device can usually be characterized in different
operational states. Segmentation or clustering techniques can help identify the
various states. However, most methods directly or indirectly require ragtarato
specify the number of segments/clusters in the time series data. The oulyseof
algorithms is also not in a logical rule format, which is commonly used in expert
systems for its ease of comprehension and modification. Furthermore, the
relationships between these states need to be determined to allow trackiogérom

state to another and to detect anomalies.

1.1 Problem Statement

Given time series data depicting a system’s normal operation, we desire to
learn a model that can detect anomalies and caadig read and modified by
human users. We investigate a few issues in this paper. First, we want a
segmentation algorithm that can dynamically determine a reasonablermafmbe

segments, and hence the number of states for our purposes. These states, collecte



from a device, should be comparable to those identified by human experts. Second,
we would like to characterize these states in logical rules so that theg caacdb

and modified with relative ease by humans. Third, given the knowledge of the
different states, we wish to describe the relationship among them fontyacki

normal behavior and detecting anomalies.

1.2 Approach

To identify states, we introduce Gecko, which is able to segment time series
data and determine a reasonable number of segments (states). Gecko consists of a
top-down partitioning phase to find initial sub-clusters and a bottom-up phase
which merges them back together. The appropriate number of segments is
determined by what we call the L method. To characterize the statescas logi
rules, we use the RIPPER classification rule learning algorithm (Cohen 1995).
Since different states often overlap in the one-dimensional input space, additional
attributes are derived to help characterize the states. To track normabbahd
detect anomalies, we construct a finite state automaton (FSA) with thdiedknti

states.

1.3 Key Contributions

Our key contributions are:
* We demonstrate a method that performs time series anomaly detection via
generated states and logical rules that can easily be understood and

modified by humans.

* We introduce an algorithm named Gecko for segmenting time series data

into states.



* We propose the L method that dynamically determines a reasonable number
of clusters. The L method is general enough to be used with any
hierarchical clustering or segmentation algorithm.

* We demonstrate how derivative time warping can be used to merge multiple
time series together into an “average” time series in order to extend our

anomaly detection so it may train on multiple time series.

» Empirical evaluations, using 14 spatial and time series data sets and 6
different clustering and segmentation algorithms, indicate that our L
Method performs favorably to existing methods that determine the number
of clusters or segments to return. Our L method is shown to work well for a
wide range of algorithms, clusters with elaborate shape, and for

clusters/segments that are overlapping and not well-separated.

* Our empirical evaluations, with data from NASA, indicate that Gecko
performs comparably with a NASA expert and the overall system can track

normal behavior and detect anomalies.

1.4 Organization

Chapter 2 gives an overview of related work on topics related to this
research. The topics covered are: anomaly detection, segmentation,ngusteri
determining the number of clusters in a dataset.

Chapter 3 discusses our Gecko segmentation algorithm that is able to
identify the states in a time series. The number of states that aredetirn
determined automatically by our L Method.

A complete description of our L method is contained in Chapter 4. The L
method determines the number of clusters or segments to return from any
hierarchical clustering or segmentation algorithm by locating the ke curve

of an evaluation graph.



In Chapter 5, our overall anomaly detection system is described. The
system explained in this chapter takes a single time series, ideitsifogerational
states, characterizes each state, and creates state transitidoetoagien them to
implement anomaly detection.

Chapter 6 describes how to use dynamic time warping to extend the simple
anomaly detection system in Chapter 5 to incorporate multiple time series for
building a single normal model. The dynamic time warping algorithm is also
explained in detail.

In Chapter 7, we summarize our work and our key contributions, as well as
the limitations of our work. We also state the direction of future work for our

research.



Chapter 2

Related Work

Before the details of our anomaly detection system are explainedyeve gi
an overview of related work in time series anomaly detection, and also other
algorithms that are related to components in our anomaly detection system. Topics
covered in this chapter are: clustering, segmentation, determining the number of

clusters or segments, and anomaly detection in time series.

2.1 Clustering

Clustering algorithms take spatial data (2 or more dimensions) as input and
return a set of clusters such that all points in a cluster are similarthto#sr and
dissimilar to points in other clusters. There are four main categafridustering

algorithms: patrtitioning, hierarchical, density-based, and grid-based.

2.1.1Partitioning Clustering Algorithms

Partitioning algorithms are the most classical group of clustering
algorithms. Thé&-means algorithm (Hartigan 1975) is the most commonly used
clustering algorithm due to its simplicitik-means initially createsrandom
cluster centers and assigns every point to its closest cluster centelusiée c
centers are then re-calculated, and every data point is re-assignedoses c
cluster center. The iterative refinement of kiedusters stops when no the cluster
centers do not change in an iteration. Despite the populaktyméans, it has
significant disadvantages:



» The quality of the clusters produced is heavily dependent on the initial
cluster centers that are chosen, and the set of clusters returned may vary
significantly between runs of the algorithm on the same data set.

* The selection of the value(number of clusters to return) needs to be

specified by the user.
» The algorithm is not efficient for large data sets.

» Qutliers can decrease the quality of the clusters that are returned.

Only spherical clusters can be found.

Many partitioning algorithms have also been developed to overcome some of the
disadvantages ¢f-means, chiefly the lack of scalability iifmeans. PAM (Ng &
Hah 1994) is one such algorithm that attempts to speed Wprtieans algorithm

by sampling the data.

2.1.2Hierarchical Clustering Algorithms

Hierarchical algorithms can be agglomerative and/or divisive. The
agglomerative (bottom-up) approach initially starts with many cluskets a
repeatedly merges the two most similar clusters together, while theveliftsp-
down) approach initially places all of the data into a single cluster anateeibe
splits a cluster into two. The merging or splitting of clusters continues latil t
stopping criterion (usually the desired number of clu¥eisreached.

Hierarchical clustering algorithms are popular for scientificlfiethere the
data being clustered contains sub-groups within the larger clusters because
hierarchical algorithms can create a tree of clusterings called sodesch. This
dendrogram can be used to view sets of clusters at varying granularties an
discover relationships within the data that would be missed at only a single
clustering level (single set of clusters). ROCK (Guha, Rastogi & Shim 1999),
CURE (Guha, Rastogi & Shim 1999) and Chameleon (Karypis, Han & Kumar
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1999) are hierarchical algorithms that differ mostly in their similattctions,
which favor spherical, elliptical, and non-spherical clusters (respedqtively
Advantages of hierarchical clustering algorithms include:

* The ability to produce a dendrogram containing sets of clusters for many

values otk

» The similarity or distance measure between points or clusters is extremel
flexible, which is responsible for the large number of existing hierarchical

clustering algorithms.

The major disadvantage of hierarchical clustering algorithms is that once a
merge or split has been performed, it cannot be undone. If the merge/split was a

poor choice it may lead to future splits/merges that are also of poor quality.

2.1.3Density-based Clustering Algorithms

Density-based algorithms, e.g., DBSCAN (Ester et al. 1996) and
DENCLUE (Hinneburg & Keim 1998), are able to efficiently produce clusters
arbitrary shape and are also able to handle noise. If the density of a refjovels a
a specified threshold, it is assigned to a cluster; otherwise it is considdred t
noise. Connected regions of points that have a density above the threshold are
considered to be in a single cluster. Density-based algorithms aren¢ficcbare
sensitive to the presence of outliers. However, the main disadvantage of density-
based clustering algorithms is that several unintuitive parameters (campbt
specify the number of clusters desired) need to be set for good results. The
neighborhood width and the density threshold are two parameters that usually must
be set. Another disadvantage is that density-based methods only work well when
the density of the data is more or less uniform within the clusters, whichns ofte
not the case.



2.1.4Grid-based Clustering Algorithms

Grid-based algorithms, such as WaveCluster (Seikholeslami, Chatterjee &
Zhang 1998), reduce the clustering space into a grid of cells which enaldieneff
clustering of very large datasets. Many grid-based methods can do&diyat
remove outliers and have a time complexity oN{if there is a small number of
dimensions and the data is concentrated. Grid-based methods are better suited for

clustering large amounts of very concentrated data, rather than sparse data

2.1.5Applying Clustering Algorithms to Time Series Data

All of the clustering algorithms discussed so far were designed to cluster
spatial data with at least a two dimensional distribution. However, we are
interested in finding clusters in time series data with a one dimensiomadudist.

Even multi-dimensional time series have a one-dimensional data distribution
because a time series is a function. We also wish to find states in the tese ser
that are non-overlapping with other states in the time dimension.

Partitioning methods iteratively refine a set of clusters by regiyate
assigning points to the closest cluster center and recalculating theafehte
cluster. If this method is constrained so clusters are non-overlapping in the time
dimension, local minima are much more likely to occur than in standard usage with
two or more dimensions. The local minima are more frequent because the range of
freedom when adjusting cluster centers has been decreased from two or more
dimensions, to sliding it left or right in the time axis where it can get stualebat
two other clusters (overlapping of clusters is not permitted to occur alongie ti
axis).

Density based clustering methods cannot be used to find states in time
series data because they return a set of clusters that are isolated céghe data
where the density is above some threshold. Significant portions of data between

the clusters that have a density below the density threshold are considered to be

8



noise. For time series data, it is preferable that all of the data points @ ipitac

some cluster, and any noise in the time series should be dealt with by smoothing or
filtering the time series rather than simply ignoring it. In order to prtedata from

being treated as noise and thrown out, the density threshold must be set to a very
low value which will cause only a single cluster to be returned, which is
uninformative.

Grid based methods can cause a large increase in execution time by placing
the data into a grid and counting the number of points in each grid cell and
clustering the cells weighted by the number of points in them, rather thamiolyiste
individual data points. However, since time series data is a continuous function
and has a single dimensional distribution, the data is much too sparse to benefit
from the use of a grid.

Hierarchical clustering algorithms on the other hand can be modified to
cluster time series data. They may use any similarity or distand#futitat is
desired, and all that is needed is a restriction on the merging and splittinthateps
forces clusters to remain non-overlapping in the time dimension after epch st
Additionally, since a wide range clusterings are returned as a hiealrchi
dendrogram tree, evaluation may be performed to determine what level @ethe t
produced the best set of clusters. Our Gecko clustering algorithm that is ekplaine

in Chapter 3 is a modified hierarchical clustering algorithm.

2.2 Segmentation

Segmentation algorithms take time series data as input and produce a
Piecewise Linear Approximation (PLA). A PLA is a set of consecutive line
segments that fit the original data points as closely as possible. Thérecare
common approaches to segmentation (Keogh et al. 2001).

1. Sliding Window: A segment is grown until the error of the segment is

above a specified threshold, then a new segment is started.



2. Top-down: The entire time series is recursively split until the desired
number of segments is reached, or an error threshold is reached.

3. Bottom-up: Begin withN/2 segments. Repeatedly merge the two adjacent
segments that will increase the approximation error of the PLA the by the
smallest amount if they are joined. Keep merging segments until either the
desired number of segments is reached, or the error of the PLA reaches the

threshold value.

The sliding window approach creates poorest linear approximations but
runs the quickest. Top-down segmentation creates the best PLA but runs much
slower than the other two methods. Bottom-up segmentation creates PLASs that are
nearly as good as those of the top-down method, but runs much quicker than top-
down segmentation.

Segmentation algorithms are somewhat related to clustering algoithms
that each segment can be thought of as a cluster. However, since segmentation
algorithms attempt to minimize the vertical error of the line segmenishthwe a
bias towards creating more segments in highly sloped regions than lower sloped
regions. The vertical error of a segment in a highly sloped region is usually much
larger than segments with lower slope, and segmentation algorithms wilpattem
minimize that error by creating more segments in those highly sloped aiaas.
bias favoring more segments in areas of large magnitude slopes causeg exis
segmentation algorithms to be better suited for producing a fine graitopant],

rather than a small set of segments that represent natural clusters.

2.3 Determine Number of Clusters or Segments

Five common approaches to estimating the dimension of a model (such as
the number of clusters or segments) are: cross-validation, penalized likelihood

estimation, permutation tests, resampling, and finding the knee of an errar curve
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Cross-validation techniques create models that attempt to fit the data as
accurately as possible. Monte Carlo cross-validation (Smyth 1996) has been
successfully used to prevent over-fitting (too many clusters/segmétdasplized
likelihood estimation also attempts to find a model that fits the data as atgasat
possible, but also attempts to minimize the complexity of the model. Specific
methods to penalize models based on their complexity are: MML (Baxter & Oliver
1996), MDL (Hansen & Yu 2001), BIC (Fraley & Raftery 1998), AIC, and SIC
(Sugiyama & Ogawa 2001). Permutation tests (Vasko & Toivonen 2002) attempt
to prevent segmentation algorithms from creating a PLA that ovehditdata by
comparing the relative change in approximation error to the relative change of a
‘random’ time series. If the relative change in error begins to beasibetween
the time series and a random time series as more segments are addaus thate
extra segments are fitting noise and not any underlying structure in theetieg s
Resampling (Roth et al. 2002) and Consensus Clustering (Monti et al. 2003)
attempt to find the correct number of clusters by repeatedly clusterinmesaot
the data set, and determining at what number of clusters the clusterihgs of t
various samples are the most “stable.”

The majority of these methods to automatically determine the best number
of clusters/segments may not work very well in practice. Model-based methods,
such as cross-validation and penalized likelihood estimation, are computationally
expensive and often require the clustering/segmentation algorithm to beveual se
times. Their usefulness is limited to only the smallest data sets. Peomteats
and resampling are extremely inefficient, since they require the ehistering
algorithm to be re-run hundreds or even thousands of times. The majority of
existing methods to find the knee of an error curve require the clusteringtatgorit
to be re-run for every potential valuekof Even worse, many of the evaluation
functions that are used to evaluate a set of clusters rur\if) e. This means

that it may take longer just to evaluate a set of clusters than it does tatgener
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them. Most methods that find the knee of a curve also only work well when the
clusters are well separated.

Some existing clustering algorithms have built-in mechanisms for
automatically determining the number of clusters. The TURN* (Foss & Zaiane
2002) algorithm locates the knee of a curve by location the point wher&'the 2
derivative increases above some user specified threshold. A variant (Chiu et al
2001) of the BIRCH (Zhang, Ramakrishnan & Livnv 1996) algorithm uses a
mixture of the Bayesian Information Criterion (BIC) and the ratio-changeckeet
inter-cluster distance and the number of clusters.

Locating the “knee” of an error curve, in order to determine an appropriate
number of clusters or segments, is well known, but it is not a particularly well-
studied method. There are methods that statistically evaluate each point morthe er
curve, and use the point that either minimizes or maximizes some function as the
number of clusters/segments to return. Such methods include the Gap statistic
(Tibshirani, Walther & Hastie 2003) and prediction strength (Tibshirani et al.
2001). These methods generally (with the exception of hierarchical algorithms)
require the entire clustering or segmentation algorithm to be run for each gotenti
value ofk.

The knee of a curve is loosely defined as the point of maximum curvature.
The knee in a “# of clusters vs. classification error” graph can be usecktoohet
the number of clusters to return. Various methods to find the knee of a curve are:

1. The largest magnitude difference between two points.

2. The largest ratio difference between two points (Chiu et al. 2001).

3. The first data point with a second derivative above some threshold value
(Ester et al. 1996) (Foss & Zaiane 2002).

4. The data point with the largest second derivative (Harris, Hess & Venegas
2000).

12



5. The point on the curve that is furthest from a line fitted to the entire curve.

6. Our L-method, which finds the boundary between the pair of straight lines

that most closely fit the curve.

This list is ordered from the methods that make a decision about the knee
locally, to the methods that locate the knee globally by considering mors pbint
the curve. The first two methods use only single pairs of adjacent points to
determine where the knee is. The third and fourth methods uses more than one pair
of points, but still only considers local trends in the graph. The last two methods
consider all data points at the same time. Local methods may work well for
smooth, monotonically increasing/decreasing curves. However, they are very
sensitive to outliers and local trends, which may not be globally significant. The
fifth method takes every point into account, but only works well for continuous
functions, and not curves where the knee is a sharp jump. Our L method considers
all points to keep local trends or outliers from preventing the true knee to be

located, and is able to find knees that exist as sharp jumps in the curve.

2.4 Anomaly Detection in Time Series

Anomaly detection is the task of learning what is “normal” and determining
when an event occurs that differs significantly from expected normal behavior.
The approach that anomaly detection takes is the opposite of signature detection.
Signature detection is explicitly given information on what is “bad,” anglgim
attempts to detect it when it happens. False alarms are rare when usifgeigna
detection because the algorithm has been programmed to know exactly what to
look for to detect the known “bad” conditions. However, signature detection is
unable to detect new attacks. Although anomaly detection systems produce more
false alarms than signature detection systems, they have the sigrafivantage
that they are able to detect new, previously unknown “bad” behavior. Virus

scanners use signature detection to detect viruses. Virus scanners gaodeay
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detecting known viruses with very few false alarms, but they cannot detect
viruses.

Nearly all of the work in time series anomaly detection relies on models that
are not easily readable and therefore cannot be modified by a human for tuning
purposes. Examples include creating a set of normal sequences through the
negative-selection of random sequences (Dasgupta & Forrest 1996), frequency of
normal sequences (Keogh, Lonardi, & Chiu 2002), adaptive resonance theory
(Caudell & Newman 1993), and neural networks (Kozama et al. 1994). However,
Langley et al. (Langley, Bay & Saito 2003) propose a method that uses process
models to model a time series and predict future data. These process models are
concise and are easily read and modified by humans, but their generation requires
parameters to be set by a human that must have knowledge of the underlying

processes that produce the time series.
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Chapter 3

ldentifying the States in a Time Series

The normal operation of a device can usually be characterized in different
operational states. An operational state is a period in a time series imtiadic
monitored device is in consistent state. If the operational states in atiegecn
be reliably discovered, that information may be used for simple discovery of
interesting features in a time series, or can aid in anomaly detection byngnsur
that the states occur in the expected sequence. A simple example of a device’s
operational states is the temperature of a light bulb that is turned on and off. A
time series containing the temperature of this light bulb contains apprekrfiae
operational states: (1) the light bulb is off and is at room temperature; (R)hhe
bulb is switched on and quickly rises in temperature until a maximum temperature
is reached; (3) the maximum temperature is reached and the temperature is
constant; (4) the light bulb is turned off and the temperature slowly decreases; (5)
the temperature has cooled and is once again at room temperature.

A state in a time series is a period of time where the time serieowwifajl
a relatively steady trend, and portions of the time series immediatel zefd
after the state do not follow the same trend. Notice that this is nearly al¢oti
commonly used definition of a cluster: “objects are clustered or grouped based on
the principle of maximizing the inter-class similarity and minimizingitiea-class
similarity” (Han & Kambler 2000). Thus, the problem of identifying distincesta
in a time series is essentially a clustering problem since we wistdtetates that
are internally homogeneous, and contain data that are dissimilar to the data

contained in other (adjacent in our case) states.
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Segmentation techniques can help identify these various states.
Segmentation algorithms create a piecewise linear approximation (PlaX)mé
series. Since each segment in the PLA spans a period of time and does not overlap
with other segments, the period of each segment may be considered to be an
operational state of the time series. However, existing segmentatooithaits are
better at creating fine-grain approximations of time series for cosipreshan
they are at identifying a small number of distinct states or clusténg idata.

Current segmentation algorithms attempt to create a set of line segnagnts t
minimize the overall error of the PLA with respect to a time series. Hawev
because the error of a point from a line segment is measured as the tisticae
between them, areas of a time series with large slopes will havefenadiytihigh
approximation error. This will cause a bias that favors more segments where the
slope has a large magnitude, and fewer segments where the slope is low. The result
is that segmentation algorithms often create a poor set of segments when the
number of segments becomes small. This is not a problem when segmentation
algorithms are used to create fine-approximations of a time series, butafla sm
number of segments need to be found in the time series, existing segmentation
algorithms will often fail to provide an acceptable set of segments. In addition
existing segmentation algorithms directly or indirectly require a padeartce

specify the number of segments in the time series. It is often imptactegect

a human with sufficient domain knowledge to be available to select the number of
segments to return.

We desire a segmentation algorithm that can dynamically determine a
reasonable number of segments, and hence the number of states for our purposes.
These states, collected from a device, should be comparable to those identified by
human experts. To identify states, we introduce Gecko, which is able to segment
time series data and determine a reasonable number of segments. Geck® consist

of a top-down partitioning phase that creates initial sub-clusters and a bottom-up
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phase that merges them back together. The appropriate number of segments is
determined by what we call the L method. The next section gives and overview of
the Gecko algorithm and is followed by an empirical evaluation against stmgxi
segmentation algorithm in section 3.2; section 3.3 summarizes our findings on the

Gecko algorithm.

3.1 Gecko Algorithm

3.1.1Gecko Overview

While segmentation algorithms typically create only a fine linear
approximation of time series data, Gecko divides a time series into clushess. T
number of clusters is determined by the algorithm and requires no user input. Note
that segmentation is just a special case of clustering whererslogist not
overlap along the time dimension. Gecko uses a 2-pass method (similar to
Chameleon) that is a combination of both divisive and agglomerative hierarchical
clustering. The first is a top-down pass that partitions the data into a largernumbe
of sub-clusters. This is followed by a bottom-up pass that merges the sub-clusters
back together. The first top-down pass determines all of the potential boundary
areas between clusters, which then enables the second bottom-up pass to focus only
on the relative similarity of clusters. Hierarchical clusteriggpathms are very
similar to top-down/bottom-up segmentation. The difference is that hierdrchica
clustering is more general and any number of methods can be used to determine
similarity, while segmentation is typically limited to the error oégreent's best-fit

line.
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Figure 3.1. Overview of the Gecko Algorithm.

The Gecko algorithm consists of three phases:

1. The first phase creates many small sub-clusters by initially puatiiod the
data points into a single cluster, and repeatedly splitting the largest cluste
until all of the clusters can no longer be divided without becoming smaller

than a specified parameter

2. The second phase takes all of the sub-clusters and repeatedly merges the
two most similar clusters until all of the data is once again in the same

cluster.

3. Using information recorded during merging, phase 3 is able to quickly
determine the 'best' number of clusters that should be extracted from the

hierarchical clustering.
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The following three sections detail each of the phases in the Gecko
algorithm.

3.1.2Phase 1: Create Sub-Clusters

In the first phase, many small sub-clusters are created by a method that is
very similar to the one used in Chameleon (Karypris, Hun & Kumar 1999), with
the exception that Gecko forces cluster boundaries to be non-overlapping in the
time dimension. The sub-clusters are created by initially placing all ofatiae
points in a cluster, and repeatedly splitting the largest cluster until all diidters
are too small to be split again without violating the minimum possible clusger siz
S.

To determine how to split the largest clustdg;reearest neighbor graph is
built in which each node in the graph is a time series data point (measurements
taken at a time-interval), and each edge is the similarity between tavpalats.

Only the slopes of the original values (original sensor readings) areoused t
determine similarity, and not the original values themselves. Using angldpe

will tend to produce sub-clusters that have constant slope, which produces sub-
clusters that are as close to straight lines as possiblek-fidmrest neighbor graph

is constructed by creating an edge from every vertex to eachkafetarest (most
similar) neighbors. The parameteis not an input parameter. It is derived frem
(smallest possible cluster size), and is defined to be Rtie to the importance of
time, thek nearest points of a data point can be assumed to BRtpeints on

each size of the point according to the time axis. By using this graph, the gymilari
between groups of points (clusters) can be determined by computing theuedge-c
(sum of the edges) between the two groups. Similarity between two points is
defined to be In(1.@istancet+1), wheredistance is the Euclidean distance (or any
other distance method) between the two points. Justification for using this distance

function will be explained in the next section. If the graph is split where the edge-
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cut is the smallest, then the two newly separated clusters will be désdioneach
other and have high internal similarity.

Since all boundaries between clusters are cut cleanly by the time axis with
no overlap, the typically NP-hard problem of graph bisection is simplified, and the
optimal min-cut partitioning of a cluster can be quickly determined in fewar tha
minCluster Sze-1 edge-cut checks (wheme@nCluster Sze is the number of data
points contained in the cluster). There is no need for heuristics, because all
possible edge-cut possibilities can be quickly computed with efficient data

structures (Fiduccia & Mattheyses 1982).

3.1.3Phase 2: Repeatedly Merge Clusters

In the second phase, the most similar pair of adjacent (in time) clusters is
repeatedly merged until only one cluster remains. To determine which adjacent
pair of clusters are the most similar, representative points areatghéor each
cluster and the two adjacent clusters with the closest representative pmints a
merged. A single representative point is able to represent every point irea clust
because each cluster is internally homogeneous.

The representative point of a cluster contains a value for the slope of every
original attribute in the data other than time. Clustering by the slope valisssca
the time series to be divided into flat regions. If a human is asked to pick out
several distinct phases (or states) of a time series graph, he isdikidlyde the
graph into flat regions. This eyeball method of clustering is also essentiall
clustering by slope. Segmentation also relies exclusively on slope: if a minimum
error line (segment) is well fitted to a set of points it means that theesé¢dpas a
consistent slope.

If raw slope values are used in the representative points, then the “distance”
between clusters with slope values 100 and 101 would be the same as the distance

between clusters with slope values 0 and 1. Differences in slopes that areroear z
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need to be emphasized because the same absolute change in slope can triple a smal
value, and be an insignificant increase for a large value. Relative difésren
between slopes cannot be measured by the percentage increase because in the
preceding example, the percentage increase from 0 to 1 is undefined. Gecko uses
representative values of slopes to determine the “distance” between twolsjope
using the equation:
Representative Slope{: In(slope-+1) if siope=0

—In(-dlope+1) if dope<0

This equation emphasizes slopes near zero and decreases the effect of
changes in slope when the slope values are large. Whenever a slope value is
squared, its representative slope value (approximately) doubles. In the preceding
example of comparing 2 pairs of clusters with slopes {100, 101} and {0, 1} the
representative values of their slopes are {4.615, 4.625} and {0, 0.693}. This
accurately reflects the relative difference between raw slopes arteradigolute
difference.

Calculating the representative slope with a natural logarithm is sitmilar
using the difference between angles to determine which lines are mibet.sim
Consider a line with an angle of zero, if one end of the line is increased, the angle
of the line will increase. If another line the same length is alreadyeaghty-five
degree angle, and the higher end of the line is increased the same amount as before,
the change of angle is much smaller than before. The idea is that a chalogei
near zero is more significant than when the slope has a large magnitude. However,
the problem with using the angle in degrees as the representative slope isg¢hat onc
the angle gets near ninety degreest(@mradians), an increase in slope will no
longer have an effect on the angle. This prevents lines with large slopes ingm be
accurately compared to each other because they will all have nearly idiemgeal

angles. The natural logarithm, #idpe+1), is very similar to converting the slope
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to degrees (in radians) using arcthmge). In Figure 3.2, the similar relationship

between Indope)+1 and arctarg{ope) can be easily seen.

In(slope) and atan(slope) | - atan(slope) In(slope+1)|

3.5

2.5

1.5
1 -
0.5 —_/

0 5 10 15 20 25 30 35 40
Slope

Figure 3.2. Graphs for Inlope+1) and arctan@ope).

Both curves are nearly identical until the slope increases past apprdyighate
After that, arctargope) soon reaches its maximum valued#f. However,
In(slopet+1) continues to increase and has no maximum value. The value of
In(slopet1) always doubles (approximately) when the slope is squared.

A potential problem with greedily merging the pair of adjacent clustebs wit
the most similar representative slope is that local minima can prevensthe be
merging choice to be made. If two large, flat clusters with a slope of zero a
separated by a very small cluster with a moderately high slope due to noig& the t
large flat clusters will not be merged together to create one latgeibter
because merging with the very small cluster between them seems li&elachze.
Sometimes a “moderately bad” merge needs to be performed in order to set up a
“very good” merge. To overcome the local minima, the algorithm should evaluate
not only merging a pair of clusters, but also evaluate merging the paerslasd
then merging it with an adjacent cluster. Whichever sequence of mergés has t

lowest average difference in representative slope values among mergeis ctus
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picked to be the next merge. Generally, only looking two merges ahead is enough
for good results.

All sets of clusters encountered throughout the merging process can be
efficiently stored in a dendrogram tree. A dendrogram is created by p&kcofg
the sub-clusters at the leaf nodes of the tree. As each pair of clusterges naer
new node is created to represent the new cluster and points to the two clusters that
were merged to create it. The original data points only need to be stored in the leaf
nodes, and the only overhead is to store two new pointers after each pair of clusters
is merged. The data points contained in a cluster can be determined by finding all
of the leaf clusters that are reachable by following its pointers. Ragdtd order
that clusters were merged together enables any number of clusters be@ekn
the number of initial sub-clusters to be quickly returned from the tree. The number

that will be returned is determined by the final phase of the Gecko algorithm.

3.1.4Phase 3: Determine Number of Clusters

The last phase of the Gecko algorithm is to determine the number of
clusters to return. Once the correct number of clusters is determined, the set of
clusters is directly extracted from a dendrogram and returned. Ourhloanist
used to determine the number of clusters. The L method identifies the number of
clusters where additional merges between the two most similar clusterddegi
greatly decrease the clustering quality. The L method is general emobglused
not only for Gecko, but also for all other segmentation and hierarchical clustering
algorithms. The L method is described in detail in Chapter 4, and is evaluated on

both segmentation and clustering algorithms.

3.2 Empirical Evaluation

The goal of this evaluation is to demonstrate the ability of the Gecko

algorithm to identify states (or clusters) in real time series datakoGell be
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compared to an existing segmentation algorithm to determine its relative
performances in finding clusters in time series data. The data used tdeevalua
Gecko is 10 time series data sets obtained from NASA. The data sets are time
series of valves on the space shuttle.

Each data set contains between 1,000 and 20,000 equally spaced

measurements of current. These 10 data sets contain time series of valsgper
under varying conditions.

3.2.1Procedures and Criteria

The quality of the clusters produced by Gecko and an existing algorithm
will be evaluating by having a domain expert blindly evaluate the output of each

algorithm. An example of a set of clusters that is returned by Gecko is shown in
Figure 3.3
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Figure 3.3. A data set after being clustered by Gecko (16 clusters).

A high quality set of clusters has each cluster corresponding to an important
state in the time series. The experimental procedure is as follows: &etkn
existing algorithm, bottom-up segmentation (BUS), cluster the 10 data sets.
Without knowing which output is from which algorithm, a NASA valve expert will
then rate the quality of each set of clusters from 1 to 10. BUS requires useoinput t

determine the number of segments to return, so the number of segments returned by
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BUS is set to be the same number that Gecko returns. Thus, this test is more of a
test between the relative quality of the clusters produced by the twalahgeri

when they create the same number of clusters. BUS returns a set of linatsegme
but in this evaluation they are considered to be clusters where each segment is a
cluster containing all of the data points within the time range of that segment.
Finally, the valve expert is asked to go over each of the Gecko data sets that he
rated in the second step, and explain his evaluation. Gecko was run with the

default parameter for each data set: minimum clustessidg

3.2.2Results and Analysis

The first part of Gecko’s evaluation was to compare the number of clusters
it produced to the number produced by an expert human. A summary of the results
is shown in Table 3.1.

Table 3.1. Number of segments found by Gecko and a human expert.

Gecko NASA Human Expert
Data Set | #of clusters | # of clusters Reasonable Range

1 16 11 9-20
2 16 10 9-20
3 14 10 9-20
4 12 10 9-20
5 13 7 (6-15)
6 10 5 (5-10)
7 7 6 (6-11)
8 16 10 (9-19)
9 16 12 (10-20)
10 15 11 (9-16)

Gecko was able to identify a number of clusters that was within the range
specified by the expert to be a ‘reasonable range’ (for datasets 5-10 thedekpert
not provide a range and we extrapolated from his hand-clustering and his ranges for
data sets 1-4). The human expert consistently created clusterings with fewe
clusters than the Gecko algorithm. However, the clusterings are acjuidly
similar. Gecko identifies the same major clusters as the valve expert,dut als
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produces several ‘transition’ clusters between them. A more detailed evalofat
the L Method’s ability to determine the number of clusters for more diverse data
sets can be found in Chapter 4.

Table 3.2. Quality of segments produced by Gecko and BUS.
DataSet | 1 | 2 | 3| 4 | 5|6 |7 | 8] 9]|10|Avg

Gecko 10| 10y 9| 10, 10 10 8§ 9 9 1p95
BUS 23| 3| 3| 3| 3| 8| 5 7 6 43

The next task performed by the NASA engineer was to rate the clusterings
produced by Gecko and BUS. Table 3.2 contains the clustering quality scores for
Gecko and BUS. Gecko’s average score was 9.5, while the bottom-up
segmentation algorithm’s average score was only 4.3. Notice that Gecko often
receives a perfect clustering score (which signifies a clustesiggad as the
human expert’s clustering) even though it returns fewer clusters than tla@ hum
expert. For example, Gecko produced nearly twice as many clusters as time huma
expert for data set 5, and Gecko still got a perfect rating. This suggedteetieds
often a range of “very good” numbers of clusters to return, rather than @ singl
correct number.

The final part of Gecko’s evaluation was a discussion with the NASA
engineer about why he gave each score. According to the engineer, BUS divides
regions of high slope into too many clusters. BUS merges clusters together by
keeping the root-mean squared error of the best fit lines to a minimum. This
method measures error vertically. As a consequence, lines that are needy ve
may seem visually to be a nearly perfect fit, but the vertical distararedlie
points to the line can be huge. Since BUS tends to consider segments with a slope
of large magnitude to have a large amount of error, it favors having more segments
at this highly sloped region to reduce the overall approximation error. This is the

main cause of BUS’s poor performance when rated by the domain expert.
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Another advantage that Gecko had over BUS in this evaluation is that
Gecko was able to identify every major transition where slopes betwees stat
changed drastically. BUS often missed these obvious cluster transitions bhecause
initially partitions the data by creatimg/2 clusters by initially putting every two
points into a cluster. This means that wherever there is a very sharp cluster
boundary, there is a 50% chance that BUS’s initial segments will straddle the
boundary. These small errors often cause more errors during the mergirgs proce
and the overall clustering quality suffers. In contrast, the initial partigoni
produced by Gecko in its first phase is careful make sure that all important cluste
boundaries occur only on the edges of clusters.

Our implementation of Gecko is able to cluster a 1,000 point data sets in 7
seconds. A 20,000 point data set takes approximately 7.5 minutes to cluster.
However, sampling can be performed to increase the execution time without very
little effect on the quality of the output unless the user wishes to discover very
small clusters that would be smoothed over by over-sampling. About 90% of the
execution time is due to phase 1 of the Gecko algorithm where the initial sub-
clusters are created by repeatedly bisectikg@arest neighbor graph. Building a
k-nearest neighbour graph and recursively bisecting it is much more

computationally expensive than the merging method used in the second phase.

3.3 Summary

The proposed Gecko clustering algorithm is designed to cluster time series
data, and uses our proposed L method to determine a reasonable number of clusters
efficiently.

Our empirical evaluations have shown that Gecko returns a set of clusters
(or states) comparable to that of a human expert. Additionally, the L method used
by the Gecko algorithm returns a number of clusters that is similar to the numbe

that is generated by a human expert. When the human expert was asked to rate
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Gecko'’s clusterings from 1-10, Gecko’s clusterings were given pesfogs on 6

of 10 data sets and had an average score of 9.5. A perfect rating of 10 signifies that
Gecko’s clustering is equally as good as the human expert’s clustedng. F
comparison, the bottom-up segmentation algorithm was also tested, and was only
given an average rating of 4.3.

Gecko is an improvement over existing segmentation algorithms in two
ways. First, Gecko uses a relative distance function that creates a suaiéyvi
appealing set of clusters than existing methods when smaller numbers arfsclust
are produced. Second, Gecko’s initial sub-clusters that are created in during its
top-down pass in phase 1 are an improvement over existing bottom-up
segmentation algorithms that initially naively creldt2 segments with pairs of
points. This improvement in initial partitioning is not specific to the Gecko
algorithm and can also be used for other bottom-up segmentation algorithms. .

The L Method, which selects the number of clusters to return in the Gecko

algorithm, will be explained in the following chapter.
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Chapter 4

Determining the Number of
Clusters/Segments Iin
Clustering/Segmentation Algorithms

While clustering and segmentation algorithms are unsupervised learning
processes, users are usually required to set some parameters for theékenalgor
These parameters vary from one algorithm to another, but most clustering and
segmentation algorithms require a parameter that either directigliceatly
specifies the number of clusters/segments. This parameter is typitiadgk, the
number of clusters/segments to return, or some other parameter that indirectly
controls the number of clusters to return, such as an error threshold. Setting these
parameters requires either detailed pre-existing knowledge of the datagor ti
consuming trial and error. The latter case still requires that the ssuffigient
domain knowledge to know what a good clustering “looks” like. However, if the
data set is very large or is multi-dimensional, human verification could become
difficult. To automatically find a reasonable number of clusters, manyrexist
methods must be run repeatedly with different parameters, and are impfactica
real-world data sets that are often quite large.

We wish to develop an algorithm that can automatically and efficiently
determine a reasonable number of clusters/segments to return from anghinced
clustering/segmentation algorithm. In the previous chapter, the Geckdlatyori
made use of the L method to automatically select the number of clusters to return.
This chapter will explain the L method in detail and evaluate it on several
clustering and segmentation algorithms using multiple data sets.
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Section 4.1 gives and overview of the L method. Section 4.2 contains an
empirical evaluation of the L method on diverse data sets for three clustering
algorithms and three segmentation algorithms. The performance of the L method is
also evaluated against two existing methods to determine the number osauster

segments in a data set. Section 4.3 summarizes our study of the L method.

4.1 The L Method

In order to identify the correct number of clusters to return from a
hierarchical clustering/segmentation algorithm, we introduce the L method.
Hierarchical algorithms either merge the two most similar clsistgether
(bottom-up), or split the least internally homogeneous cluster into two (top-down).
The definition of a “cluster” is not well-defined, and measuring cluster quslity
rather subjective. Thus, there are many clustering algorithms with unique
evaluation functions and correspondingly unique notions of what a good cluster
“looks” like. The L method makes use of the same evaluation function that is used
by a hierarchical algorithm during clustering or segmentation to cohatiuc
evaluation graph where thxeaxis is the number of clusters and yhaxis is the
value of the evaluation function during the merge or spktcsters. The knee,
or the point of maximum curvature of this graph, is used as the number of clusters
to return. The knee is determined by finding the area between the two lines that
most closely fit the curve. The L method only needs the clustering/segmentati
algorithm to be run once, and the overhead of determining the number of clusters is

trivial compared to the runtime of the clustering/segmentation algorithm.

4.1.1Evaluation Graphs

The information required to determine an appropriate number of
clusters/segments to return is contained in an evaluation graph that is cyeidwted b

clustering/segmentation algorithm. The evaluation graph is a two-dimengiohal
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where thex-axis is the number of clusters, and yhaxis is a measure of the quality
or error of a clustering consistingxtlusters. Some approaches use similar
graphs that they are often generated by re-running the entire clustering
segmentation algorithm for every value on xkexis, which is quite inefficient.
Since hierarchical algorithms either split or merge a pair of cludteesch step, all
clusterings containingl’ to ‘the number of clustersin the fine-grain clustering’
clusters can be produced by running the clustering algorithm only once.
They-axis values in the evaluation graph can be any evaluation metric, such
as: distance, similarity, error, or quality. These metrics can be compabedly
or greedily. Global measurements compute the evaluation metric based on the
entire clustered data set. A common example is the sum of all the pairwise
distances between points in each cluster. Most global evaluation metrics are
computed in Of?) time, whereN is the number of points in the data set. Thus, in
many cases, it takes longer to evaluate a single set of clusters tlkas totareate
them. Since the evaluation function must be run for every potential number of
clusters, this method is too inefficient. The alternative is to use greedy
measurements. The greedy method works in hierarchical algorithmslatavy
only the two clusters that are involved in the current merge or split, rather than the
entire data set.
Many “external” evaluation methods attempt to determine a reasonable
number of clusters by evaluating the output of an arbitrary clusteringthly.
Each evaluation method has its own notion of cluster quality. Most external
methods use pairwise-distance functions that are heavily biased towardsatpheri
clusters. Such methods would be unsuitable for a clustering algorithm that has a
different notion of cluster distance/similarity. For example, Chamelearyfis,
Hun & Kumar 1999) uses a complex similarity function that can produce

interesting non-spherical clusters, and even clusters within clusters.fofagtiee
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L method is integrated into the clustering algorithm and the metric used in the

evaluation graph is the same metric used in the clustering algorithm.
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Figure 4.1. A sample evaluation graph.

An example of an evaluation graph produced by the Gecko segmentation
algorithm (discussed in the previous chapter) is shown in Figure 4.1y-&he
values are the distances between the two clusters that are most simdarstéers.
This is a greedy approach, since only the two closest clusters being nrerged a
used to generate the value onykexis. The curve in Figure 4.1 has three
distinctive areas: a rather flat region to the right, a sharply-slopgngréo the
left, and a curved transition area in the middle.

In Figure 4.1, starting from the right, where the merging process begins at
the initial fine grain clustering (for a bottom-up hierarchical alpaonit, there are
many very similar clusters to be merged and the trend continues to the left in a
rather straight line for some time. In this region, many clustersiraikar to each
other and should be merged. Another distinctive area of the graph is on the far left
side where the merge distances grow very rapidly (moving right to lgfts rapid
increase in distance indicates that very dissimilar clusters are benggan
together, and that the quality of the clustering is becoming poor becausescluste
are no longer internally homogeneous. If the best available remaining netges

becoming increasingly poor, it means that too many merges have already been
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performed. A reasonable number of clusters is therefore in the curved area, or the
“knee” of the graph. This knee region is between the low distance merges that
form a nearly straight line on the right side of the graph, and the quickly ingeasin
region on the left side. Clusterings in this knee region contain a balance ofscluster
that are both highly homogeneous, and also dissimilar to each other. Determining
the number of clusters where this knee region exists will therefore give a
reasonable number of clusters to return.

Locating the exact location of the knee, and along with it the number of
clusters, would seem problematic if the knee is a smooth curve. In such an
instance, the knee could be anywhere on this smooth curve, and thus the number of
clusters to be returned seems imprecise. Such an evaluation graph would be
produced by a data set with clusters that are overlapping and not very well
separated. Time series data is usually a continuous function that does not contain
data that is well-separated. In such instances, there is no single ‘can®e€r
and all of the values along the knee region are likely to be reasonable estimates
the number of clusters. Thus, an ambiguous knee indicates that there probably is

no single ‘correct’ answer, but rather a range of acceptable answers.

4.1.2Finding the Knee via the L Method

In order to determine the location of the transition area or knee of the
evaluation graph, we take advantage of a property that exists in these emaluati
graphs. The regions to both the right and the left of the knee (see Figure 4.2) are
often approximately linear. If a line is fitted to the right side and anotiesrdi
fitted to the left side, then the area between the two lines will be in the saore reg
as the knee. The value of tk@xis at the knee can then be used as the number of
clusters to return. Figure 4.2 depicts an example.
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4.0 1 Determining the # of Clusters to Return
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Figure 4.2. Finding the number of clusters using the L method.

To create these two lines that intersect at the knee, we will find the pair of
lines that most closely fit the curve. Figure 4.3 shows all possible pairs it best
lines for a graph that contains seven data points (eight clusters weredgpeat
merged into a single cluster). Each line must contain at least two points, and must
start at either end of the data. Both lines together cover all of the data pwifts, s
one line is small, the other is large to cover the rest of the remaining data points.
The lines cover sequential sets of points, so the total number of line pairs is
numOflnitialClusters-4. Of the four possible line pairs in Figure 4.3, the pair that
fits their respective data points with the minimum amount of error is thempdne
bottom left. Our approach to finding these two lines is essentially an optimal
segmentation algorithm for finding two segmekts2)).

N [N

Figure 4.3. All four possible pairs of best-fit lines for a small evaluatiograph.
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Consider a ‘# of clusters vs. evaluation metric' graph with values on the
axis up tox=b. Thex-axis varies from 2 tb, hence there ate1 data points in the
graph. Lel . andR: be the left and right sequences of data points partitioned at
x=c; that is,L¢ has points withx=2..c, andR; has points witlx=c+1...b, where
c=3...b-2. Equation 1 defines the total root mean squared RM&E., when the
partition ofL; andR; is atx=c:

RMSE, :;_1><RMSE(LC) " E_

® xRMSE(R.) [1]

whereRMSE(L,) is the root mean squared error of the bestrié for the sequence
of points inL; (and similarly forR.). The weights are proportional to the lengths of
Lc (c-1) andR; (b-c). We seek the value of ¢*, such thaRMSE; is minimized,
that is:

c* =argmin, RMSE, [2]
The location of the knee #&tc* is used as the number of clusters to return.

In our evaluation, the L method determined the nemal clusters in only
0.00004% to 0.9% of the execution time requiredhyclustering algorithm. The
time it takes for the L method to execute directlyresponds to the number of
points in the evaluation graph. Since the numb@omts in the evaluation graph
is controlled by the number of clusters at thedirgrain clustering, the L method
runs much faster for clustering algorithms thahdohave an overly-fine initial
clustering.

The L method is very general and contains no paexnsier constants. The
number of points along theaxis of the evaluation graph is not a parameltes a
result of the clustering algorithm used to geneitabse points. The maximumn
value in the evaluation graph is either the nunabetusters at the initial fine grain
clustering in a bottom-up algorithm, or the numbieclusters in the final clustering

in a top-down algorithm.
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4.1.3lterative Refinement

Some bottom-up algorithms create an initial fine-grain clustering by
initially treating every data point as a cluster. This can cause an evalgedph to
be as large as the original data set. If such an evaluation graph has thousands of
merge values, the ones representing merges at extremely finelgsh@mings
(large values ox) are irrelevant. Such a large number of irrelevant data points in
the evaluation graph can prevent an “L” shaped curve, or more specififally a

region to the right of the knee.
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Figure 4.4. Full and partial evaluation graphs created by CURE. Only the
first 100 points are shown on the right side.

Figure 4.4 shows a 9,000 point evaluation graph on the left, and the first
100 data points of the same graph on the right. The graph on the right is a more
natural “L” shaped curve, and the L method is able to correctly identify that there
are 9 clusters in the data set. However, in the full evaluation graph, there are so
many data points to the right side of the “correct” knee, that the very few paints
the left of that knee become statistically irrelevant. The L method perfogsts
when the sizes of the two lines on each side of the knee are reasonably balanced.
When there are far too many points on the right side of the actual knee, the knee
that is located by the L method will most likely be larger than the actual Kne

the full evaluation graph, containing 9,000 data points, the knee is incorrectly

36



detected ax=359, rather thar=9. However, when many of the irrelevant points
are removed from the evaluation graph, such as all points greater=t@h (see

the right side of Figure 4.4), the correct knee is located%t The following
algorithm shown in Figure 4.5 iteratively refines the knee by adjusting the focus
region and reapplying the L method (note that the clustering algorithob is
reapplied).

lterative Refinement of the Knet

Input: evalGraph (a full evaluation graph)
Output: thex-axis value location of the knee (also the suggeste
number of clusters to return)

o

1| int cutoff =

2| | ast Knee =
3| current Knee = Eval G aph. si ze()
4|
5| REPEAT
6] {
7| | ast Knee = current Knee
8| current Knee = LMet hod(eval G aph, cutof f)
9| cutof f = current Knee*2
10| } UNTIL current Knee 2 | ast Knee
11|

12| RETURN current Knee

Figure 4.5. Pseudocode to Iterative Refine the knee with the L Method.

This algorithm initially runs the L method on the entire evaluation graph.
The value of the knee becomes the middle of the next focus region and the L
method becomes more accurate because the lines on each side of the true knee are
becoming more balanced. Since the refinement stops when the knee does not move
to the left after an iteration, the focus region decreases in size\adtgriteration
(except the final iteration). The true knee is located when the L method réirns t
same value as the previous iteration (line #10, or if the current pass returns a knee
that has a roughly balanced number of points on each side of the knee (also line

#10). The 9,000 point evaluation graph in Figure 4.4 takes four iterations to
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correctly determine that there are 9 clusters in the data set (2,839—> 15> 9
- 9). The cutoff value is not permitted to drop below ~20 in the “LMethod(),”
because a reasonable number of points are needed for the two fitted-lines to fit
actual trends, rather than detecting spurious trends indicated by a small ofimbe
points in the evaluation graph. The minimum cutoff size of 20 performed well on
all tests that have been run to date and it will most likely never need to be changed.
The minimum cutoff size can therefore most likely be treated as a consitent ra
than a parameter (keeping the L method ‘parameterless’).

lteratively refining the knee does not significantly increase the éracu
time of the L method. Iterative refinement converges on the knee in very few
iterations (usually less than three), and the first iteration is run with an gealua
graph that is much larger than those in later iterations. The L method i&ign O(
algorithm with respect to the size of the evaluation graph. This means thasthe
majority of the execution time is during the first iteration, when the evatuati
graph is much larger. Evaluation graphs with fewer than 1,000 points can be
evaluated in less than a few seconds; however, a 9,000 point evaluation graph takes
several minutes. In practice, it is usually permissible to ignore points in an
evaluation past some large number when it is unlikely (or undesirable) for such a

large number of clusters to exist in the data set.

4.1.4Refinements for Segmentation Algorithms

Evaluation graphs for segmentation algorithms can often be very jumpy
when segmenting noisy data. The exact nature of the curve may be easy to
determine visually, but there can be a great number of points that do not fit the
curve. These stray points on the evaluation graph generally do not occur
consecutively. These stray points can prevent the L method from accurately

locating the knee. However, because they do not usually occur consecutively, the
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curve can be smoothed by only using the highest valued point of every consecutive
pair when computing the best-fit lines of the curve.

Another potential problem is that sometimes the evaluation graph will reach
a maximum (moving from right to left) and then start to decrease. This cambe see
in Figure 4.2, where the distance between the closest segments reachesammax
atx=4. This can prevent an “L” shaped curve from existing in the evaluation
graph. The data points to the left of the maximum value (the ‘worst’ merge) can be
ignored. This occurs in some algorithms that have distance functions that become

undefined when the remaining clusters are extremely dissimilar to each othe

4.2 Empirical Evaluation

The goal of this evaluation is to demonstrate the ability of the L method to
identify a reasonable number of clusters to return in hierarchical chgstard
hierarchical segmentation algorithms. Each algorithm will be run on a number of
data sets and the number of clusters that the L method identifies is compared to the
‘correct’ answer. Existing methods to determine the number of segments or
clusters in a data set will also be evaluated on the same data sets, and their
performance will be compared to that of our L method. Section 4.2.1 evaluates the
L Method for Clustering algorithms, and section 4.2.1 evaluates the L Method on

segmentation algorithms.

4.2.1ldentifying the Number of Clusters

In this section, the L Method and an existing method will be evaluated with
hierarchical clustering algorithms on synthetic two dimensional data Eeésdata
sets are synthetic and have a “correct” number of clusters to compare to the numbe

of clusters identified by the L method.
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4.2.1.1Procedures and Criteria

The seven diverse data sets used to evaluate the L method for clustering
algorithms vary in size, number of clusters, separation of clusters, density, and
amount of outliers. There are some data sets that contain only sphericas cluster
and some which contain very non-spherical clusters, including clusters within
clusters. The seven spatial data sets that were used are (see Figure 4.6):

1. A data set with four well separated spherical clusters (4,000 pts).
2. Nine square clusters connected at the corners (9,000 pts).

3. Ten spherical clusters. Five overlapping clusters similar to data set #7 (not
shown), as well as five additional well separated clusters and a uniform
distribution of outliers (5,200 pts).

4. Ten well separated clusters of varying size and density (5,000 pts).

5. A9 cluster data set used in the Chameleon paper, but with the outliers
removed. Non-spherical clusters with clusters completely contained within
other clusters (~9,100 pts).

6. An 8 cluster data set used in the Chameleon paper, but with the outliers
removed. Non-spherical clusters with clusters partially enveloping other
clusters (~7,600 pts).

7. Five spherical clusters of equal size and density. The clusters areall clos

to each other and slightly overlapping (5,000 pts, not in Figure 4.6).
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Figure 4.6. Data sets 1-6 for evaluating the L method in clustering algorithms
(data set #7 not shown).

The clustering algorithms used to test the L method were Chameleon and
CURE. Chameleon was implemented locally and was run with the parameters:
k=10 k nearest neighbors, nbtlusters)minSze=3%, andz=2. CURE was
implemented as specified in the CURE paper (Guha, Rastogi & Shim 1998), with
the shrinking factor set to 1/3 and the number of representative points for each
cluster set to 10.

CURE, Chameleon, and a standard implementati¢dtroeans was used to
evaluate the Gap Statistic’s relative performance against that binie¢hod. The
Gap Statistic was calculated using the Gap/unf variant (Tibshirani, Walther &
Hastie 2003). The Gap statistic must be run for each user-specified potengal val
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for the number of clusters. The potential number of clusters evaluated by the Gap
statistic weré&k={2...20}. Both the L method and the Gap statistic were tested on
CURE and Chameleon for a direct comparison. However, the Gap statistic was
also evaluated on the-means algorithm, becaukemeans was used by Tibshirani,
Walther, and Hastie (2003) to evaluate the Gap statistic. It is important tinabte
for every different clustering algorithm, the L method’s evaluation graplaicent
values (on thg-axis) created by the particular clustering algorithm’s evalnati
function, while the Gap statistic uses pairwise distances to evaluatesluste
regardless of the clustering algorithm that produced them. Thus, the L method’s
performance is more likely to be consistent over different clusterigitims,

while the Gap statistic will only work well for clustering algorithrhattmeasure
cluster quality similar to its own fixed method.

The experimental procedure for evaluating the performance of the L method
for hierarchical clustering algorithms consists of running the CURE and
Chameleon clustering algorithms, which have been modified to automatically
determine the number of clusters to return through use of the L method, on seven
diverse data sets (shown in Figure 4.6). The number of clusters automatically
returned will be compared to the correct number of clusters. The data sets are
synthetic, so the correct number of clusters is known. These results will also be
compared to the number of clusters suggested by the existing Gap statistic for

CURE, Chameleon, and also tkemeans clustering algorithm.

4.2.1.2Results and Analysis

The correct number of clusters was determined by the L method 6 out of 7
times for Chameleon and 4 out of 5 times for the CURE algorithm. The results are
contained in Table 4.1. The actual number of clusters suggested for CURE on data
set #3 was 9. However, in the presence of outliers, CURE creates a number of very
small clusters that contain only outliers. After removing these small dustdy
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six clusters remained. Data sets #5 and #6 contain complex clusters and could only
be properly clustered by Chameleon; “N/A” is placed in the cells of Table 4.1

where the number of clusters suggested was not evaluated because thaglusteri
algorithm was unable to produce the correct set of clusters.

Table 4.1. Results of using the L method and the Gap statistic with various
clustering algorithms.

Number of
Clusters Num of Clusters
Data Set : Predicted by Gap
Predicted by Statistic
L Method
correct
dataset | NUMREr | Cham- | o o | Chame | oy yop | K-
of gleon eleon means
clusters
1 4 4 4 4 4 4
2 9 9 9 2 2 2
3 10 11 6 (9) 2 2 2
4 10 10 10 2 2 2
5 9 9 N/A 2 N/A N/A
6 8 8 N/A 2 N/A N/A
7 5 5 5 2 2 2
Exact Matches 60f7| 40of5| 1of7 1of3 1of5

The Gap statistic was only able to determine the correct number of clusters
for one of the seven data sets, regardless of the clustering algorithm bse@ag
statistic performs similarly to many existing methods (Tibshirarltheér & Hastie
2003), and only works well for well-separated, circular clusters (only datd set
satisfies these constraints). The Gap statistic tended to suggest far thastens
because the cluster separation was not great enough for it to consider the wuste
be distinct.

The correct number of clusters was not determined for either algorithm on
data set #3, which contained many outliers and a mixture of both well separated
and overlapping clusters. In the evaluation graph for CURE, there is a large

smooth knee that spans approximately 200 data points. Most of the merges in this
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region are between outliers, but there are also merges of the five overlapping
clusters mixed in. There is no sharp knee until after all of the five overlapping
clusters have already been merged together. The clusters returned Byw@tuR

not ‘correct’, but they weren’t too bad either. The six clusters returned by the L
method were the five well separated clusters, and the group of overlappingscluster
in the center (see data set #3 in Figure 4.6). Even though the L method
recommends four fewer clusters than the ‘correct’ answer, the six recatache
clusters have a more uniform separation than the ‘correct’ answer. In #isheas

best number of clusters is open to interpretation. The answer given for Chameleon
on data set #3 was off by one because the knee of the curve was not sharp enough
for the L method to identify the exact number of clusters. This is most likely due to
a weakness in our Chameleon implementation, which does not contain a graph
bisection algorithm that is as powerful as the one described in the Chameleon
(Karypris, Hun & Kumar 1999) paper.

The L method determines the number of clusters to return by examining the
evaluation graphs produced by each clustering algorithm. Examples of evaluation
graphs are shown in Figure 4.7, wherexais is the number of clusters, and the
y-axis is the value of the clustering algorithm’s evaluation functicrchitsters.

Notice that the-axis values in CURE evaluation graphs generally increase from
right to left, while the Chameleon evaluation graphs generally decreaseifht
to left. This is because CURE’s evaluation metric measures distance and

Chameleon’s evaluation metric measures similarity.
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Figure 4.7. Actual number of clusters and the correct number predici by the
L method (axes: x= # of clusters,y=evaluation metric — lines: solid
lines=correct # of clusters, dashed lines=# of clusters determineg b
method).

In Figure 4.7, the solid line indicates where the correct number of clusters
is, while the dashed line indicates the number of clusters suggested by the L
method. The lines are directly next to each other in each case which indicates that
the correct number of clusters was determined. The best number of clusters is
usually just before a large jump in the evaluation graph. To the left of the jump
dissimilar clusters have been merged together creating inhomogeneous clusters;
and to the right of the jump there are too many clusters that are similahto ea
other. Since a good cluster is loosely defined to be one that is both internally
homogeneous and dissimilar to other clusters, the location of the jump should be a
good measure of the best number of clusters.

The L method runs more quickly for clustering algorithms that do not have
an overly-fine initial clustering, because these algorithms have sreadikration
graphs. Chameleon initially produces fine grain clusterings that contain tfeame

100 clusters and the L method needs less than 0.01 seconds to determine the
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number of clusters. CURE produces the finest initial clustering possible, which
creates evaluation graphs with up to 8,999 points in our evaluation. With CURE,
the L method’s run-time is between 40 seconds and 4 minutes. This execution time
can be drastically reduced, to a much less than one second, by only evaluating the
first maxk points in the evaluation graph, whenaxk is some large number
guaranteed to be more than the actual number of clusters. In our evaluation, the L
method determined the number of clusters to return in less than 0.9% of the total
execution time for CURE and less than 0.003% of the total execution time for
Chameleon. Runtime for the Gap statistic is significantly slower. The &ligdist

must be run for each potential number of clusters, and since it calculates pairwise
distances within a cluster, its run-time (to evaluate just a single poterrakenwf
clusters) approaches K. In our evaluation, the Gap statistic took up to 28
minutes to evaluate the clusterings in the raag@...20}, and took several times
longer to evaluate each clustering than the clustering algorithm needed toeproduc
it.

4.2.2ldentifying the Number of Segments

In this section the L Method and an existing method will be evaluated on
hierarchical segmentation algorithms and one-dimensional time seriesTthatd
Method will be used by three segmentation algorithms on seven data sets. Three
data sets are synthetic and have a single “correct” answer, while théoothare
real data sets and have a range of reasonable numbers of segments totcompare

the number of segments identified by the L method

4.2.2.1Procedures and Criteria

The experimental procedure for evaluating the L method in segmentation
algorithms consists of running two different segmentation algorithms on seven

different data sets and determining if a ‘reasonable’ number of segments is

46



suggested by the L method. This number of segments suggested will then be
compared to the ‘correct’ number of segments, and also the number suggested by

the existing permutation tests method (Vasko & Toivonen 2002).

1 3

o | w|+ 4
£ | -

b I BT

+|w [+ Het 4

bl 4+

-

+ ¥

RIARTTALY ;imi

Figure 4.8. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in
segmentation algorithms.

The time series data sets used to evaluate the L method for hierarchical
segmentation algorithms are a combination of both real and synthetic data. The
seven time series data sets used for this evaluation (shown in Figure 4.8) are:

1. A synthetic data set consisting of 20 straight line segments (2,000 pts).

2. The same as #1, but with a moderate amount of random noise added (2,000
pts, not in Figure 4.8).
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3. The same as #1, but with a substantial amount of random noise added
(2,000 pts).

4. An ECG of a pregnant woman from the Time Series Data Mining Archive
(Keogh & Folias 2004). It contains a recurring pattern (a heart beat} that i
repeated 13 times (2,500 pts).

5. Measurements from a sensor in an industrial dryer (from the Time Series
Data Mining Archive). The time series appears similar to random walk data
(876 pts).

6. A data set depicting sunspot activity over time (from the Time Series Data
Mining Archive). This time series contains 22 roughly evenly spaced
sunspot cycles, however the intensity of each cycle can vary significantly
(2,900 pts).

7. Atime series of a space shuttle valve energizing and de-energizing (1,000

pts).

A ‘correct’ number of segments for a particular data set and segmentation
algorithm is obtained by running the algorithm with various valuéscdntrols
the number of segments returned), and determining what particular valueer rang
of values ok produces a ‘reasonable’ PLA (piecewise linear approximation). The
PLAs that are considered ‘reasonable’ are those at a vakevbére no adjacent
segments are very similar to each other and all segments are Igternal
homogeneous (segments have small error). The synthetic data setsimale a
correct value fok. The real sets have no single correct answer, but rather a range
of reasonable values. The reasonable and best numbers of segments for the real
data sets may vary for each algorithm. A single ‘best’ number of segmants ca
be used for all of the segmentation algorithms because one number that produces
the best set of segments for one algorithm may produce a poor set of segments for

another on the same data set.
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The segmentation algorithms used in this evaluation were Gecko (discussed
in Chapter 3) and bottom-up segmentation (BUS). BUS (bottom-up segmentation)
is a hierarchical algorithm that initially creates many smaklnggs and repeatedly
joins adjacent segments together. More specifically, BUS evaluatgspaneof
adjacent segments and merges the pair that causes the smallest in@gase
when they are merged together. BUS was tested with the L method using two
different values on thg-axis of the evaluation graph. The two variants are named
BUS-greedy and BUS-global. BUS-greedyaxis in the evaluation graph is the
increase in error of the two most similar segments when they are merged, &nd BU
global’'sy-axis is the error of the entire linear approximation when there are
segments (absolute error). The existing ‘permutation tests’ method was als
evaluated using BUS.

Both Gecko and BUS made use of an initial top-down pass to create the
initial fine-grain segments. The minimum size of each initial segmem=rgeed in
the top down pass was 10. For the permutation test algoptivas set to 0.05,
and 1,000 permutations were created. The parametantrols the percentage of
permutated time series that must be increasing in quality faster thandinel

time series to stop creating more segments.

4.2.2.2Results and Analysis

A summary of the results of the L method’s and permutation tests’ ability to
automatically determine the number of segments to return from segmentation
algorithms is contained in Table 4.2. For both Gecko and BUS, the ‘reasonable’
range of correct answers is listed. These ranges may vary betwéen the
algorithms because BUS and Gecko do not merge segments in exactly the same
sequence. However, BUS-greedy, BUS-global, and permutation tests all produce
identical PLAs folk segments, and therefore have identical ‘reasonable’ answers.
The first three data sets are synthetic and have a single correct,dnsviiee other
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data sets have a range of ‘reasonable’ answers. Data set #5 istsimsiladom
walk data, and any number of segments seemed reasonable because there was no

underlying structure in the time series.

Table 4.2. Results of using the L method with three hierarchical segmeation

algorithms.
Gecko Bottom-up Segmentation
BUS- BUS- BUS
Gecko greedy global w/
w/ L method w/ L w/ L permutation
method | method Tests
Reasonable Number Reasonable Number Number Number
of of of of
Data Set # of # of
ments segments segments segments | segments |  segments
=9 found found found found
1 20 20 20 20 20 25
2 20 20 20 20 20 34
3 20 N/A 20 20 19 25
4 42-123 92 42-123 46 106 2
5 ? 32 ? 14 39 15
6 44-57 45 45-53 48 39 6
7 9-20 17 14-21 9 13 65
Reasonable
-Range 50f5 50f6 30f6 Oof6
Matches

The L method worked very well for both BUS-greedy and Gecko. It

correctly identified a number of segments for BUS-greedy that waswtite

reasonable range in 5 out of the 6 applicable data sets. Gecko, which also uses a
greedy evaluation metric (but uses slope rather than segment error), had the
method suggest a number of segments within the reasonable range for all 5
applicable data sets. Gecko was unable to correctly segment data setcaBe@ndi

by “N/A” in Table 4.2) because it contained too much noise. In all but one test

case (10 of 11), the L method was able to correctly determine that the three
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synthetic data sets contained exactly twenty segments. BUS-global did wotperf
quite as well. The L method was only able to return a reasonable number of
segments for BUS-global in half of its test cases, but all of its inc@nsevers

were close to being correct.

Permutation tests did not perform well and never determined a reasonable
number of segments. The reason that permutation tests did poorly varied
depending on the data set. Data set #1 is synthetic and contains no noise, which
allows a PLA to approximate it with virtually zero error. However, meagua
relative increase in error when the error is near zero causes unexpsated re
because relative increases are either very large or undefined wherothe at or
near zero. For data set #4 and #6, the relative change in approximation error is
rather constant regardless of the number of segments. On data set #4, the PLA
between 2 and 3 segments has nearly zero relative change in error, which causes
permutation tests to incorrectly assume that the data has been over-titstd@an
producing segments prematurely. An example of far too many segments being
returned occurs on data set #7, where the relative error of the time segesatls
below the relative error of the permutations until far too many segments are
produced.

Some of the evaluation graphs used by the L method for Gecko, BUS-
greedy, and BUS-global are shown in Figure 4.9. The lower left portion ofeFigur
4.9 contains the L method’s evaluation graph for Gecko on data set #1, the noise-
free synthetic data set. Theaxis is the number of segments, andytais is
Gecko’s evaluation metric atsegments (distance between two closest adjacent
segments when there atgsegments). The evaluation graph is created right to left
as segments are meged together. In this case, the correct number ofsegmen
easily determined by the L method because there is a very large jurgDatin
the lower right corner of Figure 4.9, the range of correct answershesdén the

two long lines. The range is larger than for data set #1 because the segments have
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less ‘separation’ and there is no sharp knee. Instead there is a range of good
answers. However, the L method suggests a number of segmetns that just misses

the reasonable range.
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Figure 4.9. The reasonable range for the number of segments and the number

returned by the L method. (axes:x=# of segmentsy=evaluation metric — short

dashed line=# of segments determined by the L method, long solid lines=rkar
the boundaries of the reasonable range for the # of segments.

In the evaluation graph in the top left of Figure @l8ta set #4 BUS-
greedy), the L method returned a number of segments that was towards the low
end of the reasonable range. Remember, that for segmentation algorithnia, all da
ponits to the left of the data point with the maximum value are ignored (discussed
in the last section of 3.3). The best number of segments is 42. At 42 segments
each heart beat contains approximately 3 segments. If there ardtfawdl
segments, they are no longer homogeneous. However, PLAs with significantly
more segments (up to 123) are still reasonable because each new segment still
significantly reduces the error. However, if there are more than ap@m@yni23

segments, adjacent segments start to become too similar to each other.
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The evaluation graph shown in the upper-right portion of Figure 4.9 also
has ‘better’ PLAs when the number of segments is near the low end of the
reasonable range (fewer segmetns). This is common because the best set of
segments is often the minimal set of segments that adequately repieselasat
Even though there is apparently no significant knee in this evaluation graph, a good
number of segments can still be found by the L method. This is because the knee
found by the L method does not necessarily have to be the point of maxium
curvature. It may also be the location between the two regions that have relatively
steady trends. Thus, the L method is able to determine the location where there is a
significant change in the evaluation graph and it becomes erstadid)( In this
case it indicates that too many segments have been merged together and the
distance function is no longer as well-defined.

The poorer performance of BUS-global (compared to Gecko and BUS-
greedy) is due to a lack of prominence in the knee of the curve compared to greedy
methods (see lower-right graph in Figure 4.9). Greedy evaluation metricasiacre
more sharply at the knee, while global metrics have larger more ambiguoss knee
in their evaluation graph. A potential problem is if more than one knee exists in the
evaluation graph. This is typically not a problem if one knee is significantly more
prominent than the others. If there are two equally prominent knees, the L method
is likely to return a number of segments that falls somewhere betweenwioose t
knees. This is acceptable if all of the values between the two knees are reasonabl
If not, a poor number of segments will most likely be returned by the L method.

The L method took approximately 0.01 seconds to determine the number of
segments in every test cases and the segmentation algorithms took anfyarer
9 to 30 seconds to execute. The L method never required more than 0.1% of the
total execution time to determine the number of segments. In stark contrast,
permutation tests required up to 5 hours because each permutation of the original

time series had to be segmented.
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4.3 Summary

We have detailed our L method, which has been shown to work reasonably
well in determining the number of clusters or segments for hierarchical
clustering/segmentation algorithms. Hierarchical algorithms tha geeedy
evaluation metrics perform especially well. In our evaluation, the L method was
able to determine a reasonable number of segments in 10 out of 11 instances for
greedy hierarchical segmentation algorithms, and a correct number ef<insiO
of 12 instances for hierarchical clustering algorithms. Algorithms viathad)
evaluation metrics did not work as well with the L method because the knees in the
evaluation graphs are not as prominent and easy to detect. The Gap statistic and
permuation tests were also evaluated and the L method achieved much better
results in our evaluation. The L method is also much more efficient than both the
Gap statistic and permutation tests, typically requiring only a fractiose¢@nd
to determine the number of clusters rather than minutes or even many hours in the
case of permutation tests.

Iterative refinement of the knee is a very important part of the L method.
Without it, the L method would only be effective in determining the number of
clusters/segments if the evaluation graph did not contain a large number of points.
The iterative refinement algorithm explained in this chapter enablesrtietHod
to always run under optimal conditions: balanced lines on each side of the knee no
matter how large the evaluation graph is or where the knee is located.

Like most existing methods, the L method is unable to determine if the
entire data set is an even distribution and consists of only a single closteul(t
hypothesis). However, the L method also has the limitation that it cannot
determine if only two clusters should be returned. Future work will explore
possible modifications to the L method that will enable it to determine when only

one or two clusters should be returned.
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Chapter 5

Time Series Anomaly Detection
Using States

The previous two chapters discussed a method to find the operational states
in atime series. This chapter will introduce a method that can use the identified
operational states in a time series to create a model of the normaltiiese Jdis
model is in a format that can be easily read and understood by a human user. Once
this model is created, it can be used to determine if other time series deviate
significantly from it. Any deviation from the normal model is considered to be an

anomaly.

5.1 Anomaly Detection System

Expert (knowledge-based) systems are often used to help humans monitor
and control critical systems in real-time. For example, NASA uses esysteims
to monitor various devices on the space shuttle. However, populating an expert
system’s knowledge base by hand is a time-consuming process. Instead, machine
learning technigues can be used to generate the knowledge necessary to heonitor t
operation of devices or systems. This section introduces a method for generating
models that can detect anomalies in time series data. Nearly all ofgtiegex
work in time series anomaly detection relies on models that are not eadifjple
and hence cannot be modified by a human for tuning purposes. Examples include a
set of normal sequences (Dasgupta & Forrest 1996) and adaptive resonance theory
(Caudell & Newman 1993). However, Langley et al. (2003) propose a method that
uses process models to model a time series and predict future data. These proces
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models are concise and are easily read and modified by humans, but their
generation requires parameters to be set by a human that must have knowledge of
the underlying processes that produce the time series. It is importdmsforadel

to be in an easily readable format that will allow human users to verify the model
and modify it if necessary. This allows the user to understagén anomaly was
reported, and can help the user to quickly and appropriately respond to it. A
transparent anomaly detection system that has a normal model that can be
understood by a human user will be “trusted” much more by the user than an
anomaly detection system that is a black box. A black box anomaly detection
system simply spits out either “normal” or “anomaly” and can offer little or no
explanation about why the data is anomalous. Black box anomaly detection
systems are not likely to ever be fully trusted for mission criticaésys If a

costly response (such as shutting down an assembly line) needs to be performed
immediately upon detecting an anomaly, a black box system cannot be fully trusted
since its operation and normal model is a complete mystery to the user. However,
if the normal model is easily readable, the user can check the model to gain
confidence that the anomaly detection system will perform as expected.

The normal operation of a device can usually be characterized in different
operational states. In Chapter 3, we introduced the Gecko algorithm which is abl
to identify these states. Once these states are identified, the relgtioasieen
these states needs to be determined to allow tracking from one state to another and
to detect anomalies. Given a time series depicting a system’s normalmpevat
desire to learn a model that can detect anomalies and @as lygead and
modified by human users.

To create an anomaly detection system, we first characterize ¢ stat
found by Gecko into logical rules so they may be read and modified with relative
ease by humans. Then, given the knowledge of the different states, we determine

the relationship among them for tracking normal behavior and detecting aeomali
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To characterize the states as logical rules, we use the RIPPERaatssifrule
learning algorithm (Cohen 1995). Since different states often overlap in the one-
dimensional input space, additional attributes (slope and second derivative) are
derived to help characterize the states. To track normal behavior and detect

anomalies, we construct a finite state automaton (FSA) with the iderstifitzs.

5.1.10verview

The input to our overall anomaly detection system is “normal” time series
data (like the graph at the top left corner of Figure 5.1). The output of the overall
system is a set of rules that implement state transition logic on an sygieirn,
and are able to determine if other time series deviate significantly fi@medrned
normal model. Any deviation from the learned “normal” model is considered to be
an anomaly. The overall architecture of the anomaly detection systentedepic
Figure 5.1, consists of three components: clustering, rule generation

(characterization), and state transition logic.

- —» —»
9
5 \
O
Time
clustlering state-transition logic
S1 — slope=3 AND current=0
- S2 RUIe. AND current<1
g1 53 Generation
= S2 — slope=0 AND current=1
- S3 — slope=-3 AND current=0
Time AND current<1

Figure 5.1. Main steps in time series anomaly detection.
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The clustering phase is performed by our Gecko algorithm, which is
designed to identify distinct states (or clusters) in a time series., iN&4d are
created for each state by the RIPPER algorithm (Cohen 1995). Finallyarailes
added for the transitions between states to create a finite state autoGeatto.
was discussed in Chapter 3, while rule generation and state-transitiowilbe

explained in the next two subsections.

5.1.2Characterizing States by Generating Rules

We have adapted RIPPER (Cohen 1995) to generate human readable rules
that characterize the states identified by the Gecko algorithm. Th&RIPP
algorithm is based on the Incremental Reduce Error Pruning (IREP) (Fuzr&ra
Wildmer 1994) over-fit-and-prune strategy. The IREP algorithm is a 2-class
approach, where the data set must first be divided into two subsets. The first subset
contains examples of the class whose characteristics are desirpdgjthes
example set) and the other subset contains all other data samples (the negative
example set). Our implementation of RIPPER acts as an outer loop for the IREP
rule construction.

The input to RIPPER is the data produced by Gecko which contains time
series data classified inth states. RIPPER will execute the IREP algorittim
times, once for each state. At each execution of IREP, a different state is
considered to be the positive example set and the rest of the states form the
negative example set. This creates a set of rules for each state. Tcedéscrib
relationship among these states, state transition logic is identifiedcassid in

the following section.

5.1.3State Transition Logic

The upper right-hand quadrant of Figure 5.1 depicts a simplified state

transition diagram for a time series containing just three states.tafbdransition
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logic is described by three rules for each state corresponding to eachloéthe t
possible state transition conditions on each input data point:
* IF input matches current state’s characteristics THEN remain imturre

state.

* IF input matches the next state’s characteristics THEN transition teeiie

state.

* IF input matches neither the current state’s nor the next state’s

characteristics THEN transition to an anomaly state.

The essential element of each of these three rules is the antecedent
condition, which characterizes the data points belonging to each state. The
antecedent condition for each state is obtained from the RIPPER rule ganerati
process. The state transition logic simply needs to glue together the proper
antecedents to formulate the above three transition rules for eachcbtages
identified by Gecko.

Unfortunately, our state transition logic needs to be somewhat more
complex. In the domain of devices and systems we are attempting to monitor,
sensors may sometimes report short-term, transient, anomalous values — false
alarms. In order for our approach to be more robust in handling these transients,
we have added extra counting/threshold logic to the transition from a normal state
to the error state. Before an anomaly state is entered, the number of consecutively
observed anomalous values must exceed a specified threshold. Thus, an anomalous
condition is not annunciated unless the observed values have been improper for
some length of time. Similar logic is provided for the transition from a normal
state to its normal successor to prevent premature state transitions. Tideexpa
state-transition logic is shown by the state-transition diagram in Pxg2revhere

states prefixed with a “S” indicate operational states of the device, arsl state
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prefixed with a “T” are transition states that need a consecutive number oftpoints

proceed to the next state..

80858

\ A /
N,

Figure 5.2. Expanded state-transition logic with transition thresholds.

When data is seen that indicates the next state should be transitioned to, the
transition states cycle back to themselves a specified number of times before
actually transitioning to the next state. If the state machine is dyrireiat
transition state and the current input point is not in the next state, the stateemachi
backtracks to the previous state.

This simple sequential model will get “stuck” in a state if it missedata s
transition due to an anomaly. The first anomaly is correctly identified, but the no
future data can be tracked because the state machine is stuck in an old state. A
solution we have found that performs well is to use a non-deterministic state
machine model rather than a deterministic model. When an anomaly is detected,
we create several state machines, each starting in a differentAtatéthe state
machines run in parallel until they converge to a single state. This method allows

the system to recover from a short sequence of anomalous data and to determine the
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current state of the input data. If a state machine contains manyestdtasining
individual state machines for each state is impractical, states can tieeskear
starting with ones near where the anomaly was detected and increasingthey
of states to search if the state machines continue to get “stuck”. In @uthest

correct state is determined very quickly.

5.2 Empirical Evaluation

This evaluation will test the anomaly detection system described in this
chapter on both normal an anomalous time series. When training on a normal time
series, the same time series and additional normal time series should not cause
anomalies during testing. However, when training on abnormal time series, the

anomaly detection system should find anomalies in the time series.

5.2.1Procedures and Criteria

In order to test whether the anomaly detection system works correctly we
performed three kinds of tests: (1) Self-tracking: Use 90% of the data pwint
create rules, and then use 100% of the data fed into the expert system to see if the
state transitions occur correctly, without detecting any anomalies. (&)d\or
operation: Use all of a normal valve’s data to create a normal model, and then
monitor another valve that is also operating normally. This case should also not
trigger any anomalies. (3) Detecting anomalies: Use all of a propedydaomg
valve’s data to learn a normal model, and then use time series of valves that are
damaged slightly and run them through the anomaly detection system. The

damaged valves should trigger anomalies.

5.2.2Self-Tracking Results

The baseline test of the anomaly detection system is to train the model with

90% of the data, and seeing if 100% of the data can be tracked without triggering
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an anomaly. The results of this test are shown in Table 5.1. An error point in
Table 5.1 is any point that is unexpected in the state transition logic. This means
that the point is neither in the current state or the following state. Time datae

often contains noise and minor variations. For this reason, anomalies must not be
triggered by only a single data point that does not agree with the model contained
in the FSA. By using a threshold counter, an anomaly will only be reported after a
certain number of consecutive error points. The last column in Table 5.1 shows
what the minimum consecutive error thresh@udr Threshold) must be set to for

the anomaly detection system to not report an anomaly. A value of 1 in the bottom
row means that the anomaly detection system will correctly not reporbamagn

as long agrror Threshold>1.

Table 5.1. Self-tracking of a time series.
Data Set 1,2(3|4/5|6|7|8|9]|10|Avg

Error Pts (%) |1.1/0.8/0.7/0.5/0.0[0.4/0.3]0.2[0.4[ 1.1] 0.6

Min. Error 22| 1| 1| 0] 1] 1] 1 1 2p4.0
Threshold

In this experiment, both the “consecutive transitidndr{sitionThresh) and
the “consecutive errorefror Threshold) thresholds were set to zero. This causes
every possible state transition to be made and every error point triggers an
anomaly. This enabled easy computation of the number of error points. Data set
number 10 performs poorly in this test because the FSA transitions prematurely
near the end of the time series and starts reporting many anomaliespttsefoe
this data set can be improved by increasiagsitionThresh to prevent it from

transitioning too early on a single spurious data point.

5.2.3Normal Operation Results

This test is to show that the anomaly detection system’s generated normal

model is general enough to recognize that an untrained normal time seriesscontai
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no anomalies. In this test, the anomaly detection system trained on data set 1, and
then tested on data set 2. Both of these data sets are of normally operating valves
that contain minor (but visible) differences. The “consecutive transition” theeshol
(transitionThresh) parameter was set to 2, aaxdor Threshold was set to 10

(minimum possible cluster size10). This means that more than two consecutive
points believed to be in the next state are needed to perform a state transition and
more than ten consecutive points believed to be errors are needed to declare that the
time series contains anomalies.

The system was able to successfully transition through the states, without
detecting any anomalies. Of 979 data points, 61 (2.6%) were error points; they
were not believed to belong to the current state, nor to be transition points
belonging to the following state. However, since a consecutive number & error
greater thamrrorThreshold was never encountered, an anomaly was never

triggered.

5.2.4Detecting Anomalies Results

This final test is to show that our system is capable of detecting when a time
series differs significantly from the learned model. In this test, twa skt
containing time series of valves operating normally (data sets 1 and 2)seeréo
develop the normal models. Each normal model was then run against the
remaining anomalous data sets (data sets 3...10).

For each of the 16 tests, the anomaly detection system correctly determined
that the time series contained anomalies. Additionally, the system wase able t
inform the user of the state number where the time series differs from the model.
Thus, the system does not only give a yes/no answer to whether a time series
contains anomalies, but it is also able to explain to the user where the anomaly

occurred. Also, because the rules generated by RIPPER are in a human-readable
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format, the user can look at the rule for the state where the error ocandred
understand exactly why the system reported the anomaly.

5.3 Summary

This chapter detailed an approach to time series anomaly detection by
discovering and characterizing the states in a time series, and perforamsigon
logic between these states to construct a finite state automaton that cad be us
track normal behavior and detect anomalies. The rules generated for eably stat
the RIPPER algorithm are in disjunctive normal form and cagafby understood
and modified by humans. (Moreover, the generated rules can be in a format used
by the SCL expert system shell at ICS, which is a collaborator on this NASA
project.)

The overall anomaly detection system was able to detect anomalies in every
time series that was from a ‘damaged’ valve, and was also able to moriifor a 2
normal valve without detecting any anomalies. However the anomaly detection
system, as it has been described so far, has a severe limitation. The method
described in this chapter can only take a single time series as input to build a
normal model. This is problematic because the normal range of values that are
allowed for each state can only be accurately determined if a range of aedue
seen during training. Training on only a single time series can creatmal nor
model that is too restrictive because it is not possible for it to know the allowed
variation of the system during each state. Chapter 6 will describe how to extend

this anomaly detection method to allow training on multiple time series.
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Chapter 6

Building a Normal Model by Training
on Multiple Time Series

The anomaly detection system described in Chapter 5 takes a single normal
time series as input, and builds a normal model that can be used to determine if
additional data is anomalous. Any time series that deviates significatlytfiie
normal model is considered to be anomalous. However, the term “deviates
significantly” is not easily defined when only a single time series id ise
training. A “normal” time series may vary due to different operating ¢tiomdi of
the device being monitored. Variable operating conditions such as ambient
temperature, varying voltage, recent use, and the effects of aging on thecdevice
all cause deviations in the times series produced by normally operatingsdevice
This allowed variation usually cannot be expressed by a simple parameter that
permits a fixed amount of deviation from the learned normal model because the
amount of permitted or normal deviation in the time series may vary between each
of the device’s operational states. In order to accurately determine thedallowe
variation in the time series of monitored devices, the anomaly detection system
must be trained on multiple time series. Training on multiple time selosgsal
generalization to occur. If the temperature reading during a partgtataris
always 20.0 degrees in one normal time series, and 25.0 degrees in another, then it
is likely that temperatures between 20 and 25 are also normal.

The initial anomaly detection system described in Chapter 5 was not
designed to train on more than a single time series, therefore the permitted

deviation of a device could not be observed during training. We wish to extend the
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anomaly detection system to allow a single normal model to be created hygtraini
on multiple time series. In order to create a single model (state mactmeen
states of the time series) from multiple input time series, the rutesajed for
each state must be generalized to cover all data points of that state dafoweal
input time series. To do so, the portions of each time series that correspond to the
n" state must be determined. However, it is difficult to determine which portions
of each time series belong to thiestate. Clustering with Gecko can identify a
reasonable set of states for a single time series. However, Gecko cannot be run on
each time series to find corresponding states between the time serigseh®eako
is likely to find slightly different states for each time series, amda¢so return a
different number of states for each time series.
This chapter introduces two improvements to the anomaly detection system

described in Chapter 5 that will allow training on more than one time series:

1. Every normal time series is “merged” into a single representative time

series before it is clustered by Gecko.

2. The points used to create the rules are now the points from every time series
that correspond to that rule’s state (states are identified by ahgsteéa

merged time series).

Dynamic time warping will be used both to create the merged time sertkals®
to determine the corresponding regions between all of the time series.

Section 6.1 describes dynamic time warping; Section 6.2 explains how
dynamic time warping can be used to extend the anomaly detection system
described in Chapter 5 to allow multiple time series to be used during training;
Section 6.3 contains an empirical evaluation of the anomaly detection system after
it has been extended to allow training on multiple time series; and Section 6.4

summarizes the work in this chapter.
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6.1 Dynamic time Warping

Dynamic time warping (DTW) is a technique that finds the optimal match
between two time series if one time series may be “warped” non-lingarly
stretching or shrinking it along its time axis (Kruskall & Liberman 1983).
Dynamic time warping is most commonly used in speech recognition to determine
if two waveforms represent the same spoken phrase. The duration of each spoken
sound and the interval between sounds are permitted to vary, but the overall speech
waveforms must be similar. Dynamic time warping is often used to find the
distance along the optimal warp path to determine the similarity betweenahe tw
speech waveforms. Dynamic time warping is commonly used in data mining as a
distance measure between time series. An example of how one time series is

“warped” to another is shown in Figure 6.1.

Time
Figure 6.1. Two time series “warped” together using dynamic time warping.
In Figure 6.1, each line connects the point of one time series to its
correspondingly similar point in the other time series. The lines actuay ha

similar values on thg-axis but have been separated so the vertical lines between

them can be viewed more easily. If both of the time series in Figure 6.1 were
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identical, all of the lines would be straight vertical lines, no warping would be
necessary to ‘line up’ the two time series. The warp path distance is a measure of
the difference between the two time series after they have been wagptteto
which is measured by the sum of the distances between each pair of points
connected by the vertical lines. Thus, two time series that are identepit éar
localized stretching and contracting of the time axis will have warp pa#ndes
of zero.

Dynamic time warping is typically used in data mining only to determine
the similarity between two time series (Keogh & Pazanni 2000). Calcutaeng
distance after warping has the advantage that the two time series do not nezd to li
up absolutely perfectly and be in phase with each other to produce an accurate
distance measurement. However, for our purposes, we are more interested in using
the calculated warp path to find areas that are similar between twedinas.
Thus, we are more interested in the warp path rather than the warp path distance.

6.1.1Problem Formulation

The dynamic time warping problem is stated as follows: Given two time

seriesX, andy, of lengthamaxX andmaxy:

X =X, Ko ye ooy Xiyeey Xiaex

Y= YirYoreoos Yioeeos Yoaxy
construct a warp pat:

W =W, W,,..., W maxmaxX,maxY) < K <maxX + maxyY
whereK is the length of the warp path and feelement of the warp path is:
w, =(,])

wherei is an index from time serie§ andj is an index from time serié§ The
warp path must start at the beginning of each serees atv; = (1, 1) and finish at
the end of both time serieswat = (maxX, maxY). This ensures that every index of
both time series is used in the warp path. Theedsio a constraint on the warp

68



path that forcesandj to be monotonically increasing in the warp path, which is
why the lines representing the warp path in Figure 6.1 do not overlap. Every index

of each time series must be used. Stated more formally:
W =@, )W, =@ ])  isifsi+l jsj'sj+1 [6.1]
The warp path found must be the optimal (minimum distance) warp path, where the

distance of a warp pawVis:

k=K
Dist(W) = > Dist(w, W) [6.2]
k=1
whereDist(W) is the distance (typically Euclidean distance) of warp @datand
Dist(wii, W) is the distance between the two data point indexes (oneXramd

one fromY) in thek™ element of the warp path.

6.1.2Dynamic Time Warping Algorithm

A dynamic programming approach is used to find this minimum cost warp
path. Instead of attempting to solve the entire problem all at once, solutions to sub-
problems (portions of the time series) are found, and used to repeatedly find
solutions to a slightly larger problem until the solution is found for the entire time
series. A two-dimensionataxX by maxY cost matrixD, is constructed where the
value atD(i, j) is the minimum distance warp path that can be constructed from the
two time seriesX’ = x;,...,x andY' =y;,...,y;. The value aD(maxX, maxy)
will contain the minimum distance warp path between time skraslY. Both
axes ofD represent time. Theaxis is the time of time serié§ and they-axis is
the time of time serie¥. Figure 6.2D shows an example of a cost matrix and a
minimum distance warp path traced through it fio(d, 1) toD(maxX, maxy).
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Figure 6.2. A cost matrix with the min. distance warp path traced through it

The cost matrix and warp path in Figure 6.2 are for the same two time serigs show
in Figure 6.1. The warp path\g={(1,1), (2,2), (2,3), (3,4), (4,4), (5,5), (6,5),

(7,6,), (,7,7), (8,8), (9,9), (10,9), (11,10), (11,11), (12,12)}. If the warp path line
passes through a c&li, j) in the matrix, it means that thf@ point in time serieX

is warped to thg’a‘h point in time serie¥. Notice that where there are vertical

sections of the warp path, a single point in time sefisswarped to multiple

points in time serie¥, and the opposite is also true where the warp path is a
horizontal line. Since a single point may map to multiple points in the other time
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series, the time series do not need to be of equal lengthanidlY were identical
time series, the warp path through the matrix would be a straight diagonal line.

To find the minimum distance warp path, every cell of the cost matrix must
be filled. The rationale behind using a dynamic programming approach to this
problem is that since the valuelXi, j) is the minimum warp distance of two time
series of lengthsandj, if the minimum warp distances are already known for all
slightly smaller portions of that time series that are a single data pagtfeom
lengthsi andj, then the value d(i, j) is the minimum distance of all possible warp
paths for time series that are one data point smaller @uadlj, plus the distance
between the two points andy;. Since the warp past must either be incremented
by one or stay the same along tlandj axes, the distances of the optimal warp
paths one data point smaller than lengtasd] are contained in the matrix at
D(i-1, j), D(i, j-1), andD(i-1, j-1). So the value of a cell in the cost matrix is:

D@, j) =min[D(i -1 j),D(, j -1,D(i -1 j -~1)] + Dist(i, j) [6.3]

The warp path t®(i, j) must pass through one of those three grid cells, and since
the minimum possible warp path distance is already known for them, all that is
needed is to simply add the distance of the current two points to the smallest one.
Since Equation 6.3 determines the value of a cell in the cost matrix by using the
values in other cells, the order that they are evaluated in is very importantosthe ¢
matrix is filled one column at a time from the bottom up, from left to right as

depicted in Figure 6.3.

maxyY| o maxy]| S maxy)| S maxy)| S
J J J J
1 1 1 1
1 i max X 1 i max X 1 i maxX 1 i maxX

Figure 6.3. The order that the cost matrix is filled.
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Equation 6.3 actually only applies to cells that are not in the first row or column
becaus®(i-1, j) is undefined for the first column, adqi, j-1) is undefined for
the first row. There are actually four different cases when calcul&tngaiues of

the cells, depending on its location:

1)i=1j=1 D(i, j) = Dist(i, j)
2)i=1j=2...maxy D(, j) =D(, j -1+ Dist(, j)
3)i=2..maxX,j=1 D@, j)=D(i -1 j) + Dist(i, j)

i =2...maxX, j =2...maxY D(i, j) =min[D(, j -1,D(i -1 )),
D(i -1 j -]+ Dist(, j)
The first case is for the cell at the bottom left corner of the matrixgtidied in
first. Case 2 is for the rest of the first column, and case 3 is for the rest of the
bottom row. The remaining cells are calculated by the fourth case (Equation 6.3)

The cells that are calculated by each of these four cases are shadpolar6H.

naﬂ(':?q
/, | __>
- 3
J |
-1 >
N
7 i " max X

Figure 6.4. Four shaded areas showing how cells that are calculated.

The group of three arrows in Figure 6.4 indicate the locatiobgief, j), D(i, j-1),
andD(i-1, j-1). The smallest of these three values is added to the distance between
the two pointsg andy;. A dashed line indicates that the location does not exist
when calculating the value for the target grid cell.

After the entire matrix is filled, a warp path must be found fixh, 1) to
D(maxX, maxY). The warp path is actually calculated in reverse order starting at

D(maxX, maxY). A greedy search is performed that evaluates cells to the left,
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down, and diagonally to the bottom-left (reverse direction of the arrows in Figure
6.3). Whichever of these three adjacent cells has the smallest value is added to the
beginning of the warp path found so far, and the search proceeds from that cell.
The search continues unil(1, 1) is reached. If there is a tie between the possible
cells to add to the warp path, any of the tied cells can be used and a correct answer
will be calculated. The warp path is guaranteed to be a minimum distance warp
path, but there could possibly be many. In the event of ties, it is usually desirable
to move diagonally if possible. This helps to avoid singularities where large
sections of two time series are nearly identical. A singularity occuns akigle

point in one time series maps to a large number of points in the other. For example,
consider to identical time series of 100 points that are straight lines. Any wlarp pa
will be the minimum warp path with a distance of zero. However, it is desirable to
have the warp pat; = {(1,1), (2,2),...,(100,100}} rather than the warp path =
{(2,1),(2,1),...,(100,1), (100,2), (100,100)}. The warp p@athalways moves

diagonally when there is a tie and has a warp path length of 100. The wa¥j path
moves left when there is a tie and has a warp path length of 199. Avoiding
singularities creates a warping that is more natural. Additionally, for some
applications it may also be desirable for a warp path to be as close to avianear

as possible, by breaking ties so the warp path moves in the direction of the right

diagonal line (the line whelej).

6.1.3Derivative Time Warping

Typically, dynamic time warping is performed using the original values
when distances between points are determined. This often gives a desirable
distance measurement between time series when the amplitude differeveenbe
two time series is important. However, using original values in the dynan@c tim
warping algorithm often creates warp paths that are unintuitive forrceiiaiains.

Amplitude variations between the time series can easily cause sitigsiland
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produce warp paths that may be undesirable for a given domain. In our case,
mappings between points based on the warp path do not correspond well to
operational states. Figure 6.5 shows a warping between two time series using

original values in the dynamic time warping algorithm.
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Figure 6.5. A warping between two time series using original values.
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Warp path lines are drawn at the boundaries of the states (found by Gecko)
simply to aid in the visualization of the overall warp path. Depicting hundreds or
thousands of warp path lines would be illegible, and just a few lines at the
boundaries of the states are sufficient to gain an overall picture of the warp path.
There are many problems with the warp path in Figure 6.5, and only a few will be
pointed out. The small number of points in the fourth state, which starts to fall
rapidly aty=2.2 in the top time series, are mapped to a large number of points that
share a common value on taxis, but otherwise are very dissimilar. In the top
time series the slope is very negative, and in the bottom time series thesslope i
positive. Another problem is that the warp path contains several singularities are
x=0.08 in the bottom time series. The last problem that will be mentioned is that

the flat state in the top time series is warped to a slightly “U” shapiedistde
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bottom time series. This occurs because the plateau in the bottom time series is
slightly higher than at the top. If the height difference in the plateaus avere t
increase this “U” would become very pronounced. Overall the states in the top
time series are mapped to the bottom time series in an unintuitive manner.

An alternative is to consider the “shape” of the time series during warping
rather than the original values in t@xis. To do so, the dynamic time warping
algorithm should use slope values of the two time series rather than the original
values. This method is called derivative dynamic time warping (Keoghz&di
1999). Figure 6.6 shows the warp path between the same two time series, but the
warp path minimizes the warp path cost of the differences in slopes rather than

original y-axis values.
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Figure 6.6. A warping between two time series using slope values.

The result is a mapping of states between time series that is veryatuitie
small states of the top time series=a.4 andx=0.42 are correctly warped to the
same (but much smaller) states in the bottom time series. Derivativaidyimae

warping is an effective method to find regions across different time Seaiesre
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similar, and will be utilized in the next section to merge multiple time serties

single representative time series.

6.2 Using DTW to Train on Multiple Time Series

To extend the anomaly detection system discussed in Chapter 5 to allow
multiple time series to be used during training, we will make use of dynanec ti
warping’s ability to find related sections of different time series. TdyEss
discussed in Chapter 5 (Figure 5.1) are still used: clustering, rule-genenation, a
state-transition logic. However, two additional steps are introduced:

* A new step to merge multiple time series into a single representative time

series

» A step to determine the state for each point in every time series based on the

set of states identified for the merged time series

Merging is performed before immediately before clustering, and thésstate
determined for every time series immediately after clustering. @Wweonerall

approach to anomaly detection is shown in Figure 6.7.
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Figure 6.7. Main steps in time series anomaly detection with multipleput
time series used during training.

The new Merging step creates a representative time series thatrnsag
input to the Gecko algorithm for clustering. After Gecko finds the states of the
merged time series, the next step uses the state information in the maged ti
series to determine the state of every point in all of the input time seriesis Thi
possible because a warp path from the merged time series to every otherigsie s
is created during the first merging step. The rule generation progranmadoeeed
to be modified, but the input to it now contains all of the points from every time

series used for training. This allows the rules to be more general and all
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variations for each state depending on the amount variation of observed variation
for each state across all time series used for training. Once thereutzsated
state transition logic is created as explained in Chapter 5.

Multiple time series are merged into a single time series using dytame
warping. One of the time series must be picked to use as a template. Fbr speec
recognition, the template is often the time series of average length (Alkciudey
& Sin 2003). The best merge will result from using the time series that is the mos
“average” as the template. The most average time series can be detdiynine
performing dynamic time warping on each combination of time series. The tim
series that has the smallest warp path distance sum over all of the otheri@se s
is the most average because it is the most similar to all of the other tiexe Séhe
length of the merged time series will be equal to the length of the time ased
as the template. The template must first be warped to every other tingse $enie
thek” point in the template, average all of the points that it warps to in other time
series (weighted so each time series has equal influence), and usertig age
thek” point in the merged time series. Conceptually, this approach “lines up” all of
the time series and calculates the average of the points vertically.

Determining the states of every time series, after determiningattes tf
the merged time series is, also makes use of the warp paths created by dynami
time warping. However, in this case there are two levels of indirectioa. Th
template and merged time series have a liner warp between therm&gptsiat in
the template warps to tm&' point in the merged time series. So the states of the
template time series can be directly determined by the merged tile® s@nce
the states are known for the points in the template, all that is needed is to go
through the template time series, and assign that merged point’s state rhgmbers

to all of the points that it warps to in other time series.
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6.3 Empirical Evaluation

This evaluation will test how well the extended anomaly detection system
performs when trained on multiple time series. Training on multiple timesseri
enables the normal model to be created that is more general and contains the
amount of allowed variation for each state. If two time series are used to build a
normal model, testing on an additional time series that are “between” the two
training time series should also not produce any anomalies, even if it differs
significantly from all of the training data. As an example, suppose that a normal
model was constructed by training on data from a car’s engine running at 20 mph
and 40 mph. It is desirable that the normal model would cover all normal engine
activity between 20 and 40 miles an hour, rather than only covering narrow ranges

of activity near 20 and 40 mph.

6.3.1Procedures and Criteria

To evaluate the ability of our anomaly detection system to generalize
beyond the training data to cover unseen normal variations and determine if time
series “between” the training data are covered by the generated norded) data
is needed for which “between” is defined. The data used for this evaluation is
taken from a valve in the space shuttle under controlled tests where the same is
operation is performed each time, but under different controlled conditions. The
data was generated by repeatedly turning the valve on and off and increasing the
voltage applied to the valve in each run. Ten time series were collected in this
manner at the following voltages: 14, 16, 18, 20, 22, 24, 26, 28, 30, and 32. Each
time series contains measurements of current over time. The effecteafsingy
the voltage on the valve has different effects on each operational state. A few of
the effects of increasing the voltage on different states of the time aexi@én

order from most pronounced to marginal):
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* The plateau of the steady-state on position increases significantly as the

voltage is increased.

* The rate of increase in current after the valve is turned on increases as the

voltage increases.

» If the voltage is too low, the valve may fail to open (and later close). The
valve opening and closing is indicated in the time series by a “bounce” of

current.

* The “bounce” in the time series when the valve opens decreases as the
voltage increases, but the bounce when a valve closes in unaffected. The
bounce also occurs at a slightly higher level of current as the voltage

increases.

* The section of the time series after turning off the valve changes vexy littl

between different voltages.

» Steady-state off is unaffected by voltage, and is a flat section with aofalue

zero for the current in every test case.

Figure 6.8 illustrates the effect of changing the voltage on the valve. The
time series on the left was collected at 16 Volts, and the time series orhtheasy
collected at 30 Volts. Both time series are from the same valve, only tageslt
differs.
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Valve Turned On/Off at 16 Volts _ Valve Turned On/Off at 30 Volts
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Figure 6.8. A valve being turned on and off at different voltages.

The effects of change the voltage on the time series produced by the valve
can be easily seen in Figure 6.8. The plateau is higher and the rising slope is much
steeper at higher voltages, but the section of the time series where thesvalv
turned off (at approximately Time=0.75) is nearly identical regardles®of th
voltage.

These data sets are collected under exactly the same conditions except for a
single parameter, the voltage. The assumption made in this evaluation is that if
multiple time series are provided as training data, the normal model that is
generated should consider all time series that were trained on to be normalpand als
consider all time series at intermediate voltages to be normal. Conyeikgiye
series at lower or higher voltages than seen during training should cause amomalie
to be triggered.

The experimental procedure is simple, train on one or more of the ten time
series, and then test on all ten. The time series that should not be considered
anomalous are the time series collected at voltages within the range {ecafsi
the training time series voltages. For example, if time series at 20 Afalt28
were used for training, then the time series with voltages 20, 22, 24, 26, and 28
should not be considered anomalous, but all other time series collected at voltages

less than 20 or greater than 24 should cause anomalies. Tests will be performed
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training on from one to three time series. Training on only a single time series
should create a restrictive normal model that will detect anomalies fathall time
series.

This evaluation differs from the one performed in Chapter 5 in two major
ways. The first difference is that this evaluation trains on multiple tinessefhe
second difference is that in this evaluation, there are no “normal” and “abnormal”
valves. Instead we are measuring the ability of the normal model to geadoali
unseen training data that is “between” the time series used for trainiegaolin
of normal and abnormal depends more on the domain than actual data. A time
series that is abnormal in one domain may be perfectly normal in another. So, in
this evaluation, we are not concerned with whether a time series is actually
considered normal or abnormal. Instead, we are treating different ranges of ti
series (in the range of voltages seen during training) as “normal” andhemgryt
else abnormal.

The parameters used to create the normal model wen€luster Sze=20
(Gecko) transitionThreshold=3 (FSA), anderrorThreshold=10 (FSA). Thus, the
clusters returned by Gecko had to contain at least 20 points. The two parameters
for the state-transition logic specify more than three consecutive toansdints
must be seen before the next state is transitioned to, and more than 10 consecutive

error points must be seen to raise an anomaly.

6.3.2Results and Analysis

The first tests performed were to train on only a single time series. When
only a single time series is trained, the model is very specific bedaiaenbunt
of normal variation allowed can’t be determined when training on only a single
time series. It is expected that if a time series is used for trathimgnodel
produced will consider all time series other than the one used for training as

anomalous. Table 6.1 contains the results of training on only a single time series.
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Table 6.1. Results of training on a single time series, testing on all.

TEST
20V | 22V

14V 26V | 28V | 30V | 32V
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In Table 6.1, a “P” indicates that when training on the time series in that
row, and testing on the time series at that column, the state transition &gc re
through the entire test file without any anomalies. An “F” indicates tHeasit
one anomaly is found, and a “P/F” indicates that anomalies are found with an
error Threshold of 10, but passes if the threshold is increased to 20. As expected, in
Table 6.1 time series were only able to be tracked without anomalies when they
were trained on.

The remaining tests are performed by training on either two or three time
series. It is expected that the time series used for training will nat eaosnalies
during testing, and all time series generated at voltages betveetnaitting
voltages should also not cause anomalies. Table 6.2 displays the tests when

training on multiple time series.
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Table 6.2. Results of training on multiple time series, testing on all.

16V,20V
20V, 24V
24V,28V
28V,32V
14V,20V
20,26V
26V,32V
16V,20V24V
24V,28V,32V
14V, 20V, 26V
18V,24V,30V

TRAIN

The cells are shaded in Table 6.2 to help make it easier to understand. A
bright green cell with a “P” indicates that the test case at that aslexpected to
pass without an anomaly and it did. A red cell with an “F” indicates that the test
case was expected to generate no anomalies, but at least one anomaly was found.
The olive “P/F” indicates that the test case correctly has no anonfdhes i
error Threshold is doubled to 20.

In Table 6.2, the “range” of expected time series that will not cause
anomalies can be easily determined. In the first eight rows, two tines sere
trained with a single time series having an intermediate voltage. The model
correctly generalized to include the unseen time series with the in-betwésgevol
3 out of 4 times, and still correctly produced anomalies when tested on the other 7
time series.

The second group of tests in Table 6.2 also trained on two time series, but
had two time series “in-between” them instead of just one. This group of tests ga
correct results for 2 out of 3 of the test cases.

The final group of tests in Table 6.2 trained on three time series. This group
of tests had more mistakes than the previous tests. The results were good except
when training and testing on valves with the lowest voltage. The valve completely
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fails to open or close at low voltages, and has no pair of “bumps” in the time series.
Since the states of the “bounce” that are identified in the merged time sexie
mapped back to the original time series that do not have those corresponding
regions, the missing states end up getting a very small number of points (often one)
assigned to those missing states. All other states are mapped correatlyesnd
are generated to characterize the states. But if testing occurs on\batihalthe
missing state, it is impossible to transition into the state that is verylsecalse
transitionThresh number of consecutive points must be seen to perform a
transition. The effect is that the small state is passed before enough posgsrar
to transition into it and the state transition logic gets lost and throws an anomaly

It is important to realize that when a cell is contains an “F”, it does not
imply that the anomaly detection system simply spits out either “normal” or
“abnormal” when testing on a time series. The state transition logic idsntifi
which state the anomalies occurred in. So, for each “F” in Table 6.1 and Table 6.2,
it may indicate that a single anomaly was found in a single state, or than dozens of
anomalies were found in every state. In other words, not all “F’s are creatéd equa
some may be only one anomaly, or one state away from passing without returning
an anomaly. Nearly all of the test cases that found anomalies unexpeddly (

cells) contained only a very small number of anomalies in one or two states.

6.4 Summary

This chapter has discussed how do extend the anomaly detection system
described in Chapter 5 to allow training on multiple time series. Two additional
steps are required to train on multiple time series. The first is to mergplenult
time series into a single time series before clustering. The second ishe use
states identified for the merged time series to identify the statesohta# original
time series that were used to create the merged time series. Botreadtemnal

steps are performed using dynamic time warping. Dynamic time waspaie to
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“line up” multiple time series so they can be merged together, and it can find
corresponding sections of different time series to use the merged stateatnjo
to determine the states in the other time series.

Training on multiple time series is necessary to determine the amount of
variation that is permitted during the normal operation of a device. Our empirical
results indicate that training on multiple data sets does generalize the mmodel t
correctly cover time series that are “between” the time seriegdran.

Additionally, the model does not generalize to cover time series that are
anomalous. Generalization only occurs for time series “between” the observed

training data.
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Chapter 7

Concluding Remarks

We have detailed our approach to time series anomaly detection that
discovers and characterizes the states of a time series, and perfosmistréogic
between these states to construct a finite state automaton. This finite state
automation can be run on an expert system and used to track normal behavior and
detect anomalies, in monitored devices. The proposed Gecko segmentation
algorithm is designed to cluster time series data (finds a small numbgnoérsis
mapping to unique states rather than a fine approximation of many segments), and
uses our proposed L method to determine a reasonable number of segments
efficiently. The rules generated for each state by the RIPPERthigaan be
easily understood and modified by humans. (Moreover, the generated rules can be
in a format used by the SCL expert system shell at ICS, which is our coltaborat
on this NASA project.)

7.1 Summary of Contributions

The following is a summary of our contributions:

» We demonstrate a method that performs time series anomaly detection via
generated states and logical rules that can easily be understood and
modified by humans. These logical rules can be easily converted into a
format that allows the anomaly detection to be performed by an expert
system. The knowledge encoded into an expert system must be typically be

entered manually by a human which is a costly and time-consuming
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process. Also, since the rules are human-readable, the weasan
anomaly is reported can be understood by a human user so he or she may

quickly take appropriate action.

We introduce an algorithm named Gecko that segments a time series into

states.

We propose the L method that dynamically determines a reasonable number
of clusters. The L method is general enough to be used with any

hierarchical clustering or segmentation algorithm.

We demonstrate how derivative time warping can be used to locate
corresponding sequences across multiple time series, and how to merge
multiple time series together into an “average” time series in ordetdnc:

our anomaly detection so it may train on multiple time series. Additionally
we propose that the template to use during merging be the time series that is
the most similar to every other time series based on the sum of the warp
paths to every other time series. We also showed how a classification of the
merged time series can be expanded to all of the input time series that were

used to make the merged time series.

Our empirical evaluations, using data from NASA, indicate that Gecko
performs comparably with a NASA expert in identifying the operational
states of a device. When the human domain expert was asked to rate
Gecko’s output with a score from 1-10, Gecko was given perfect ratings on
6 of 10 data sets and had an average score of 9.5. A perfect rating of 10
signifies that the set of segments, or clusters, produced by Gecko is equally
as good as that of the human expert. For comparison, the bottom-up
segmentation algorithm was also tested, and was only given an average

rating of 4.3.
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» Empirical evaluations, using 14 spatial and time series data sets and 6
different clustering/segmentation algorithms, indicate that our Ihtet
performs favorably to existing methods that determine the number of
clusters or segments to return. Our L method is shown to work well for a
wide range of algorithms, clusters with elaborate shape, and for
clusters/segments that are overlapping and not well-separated. In our
evaluation, the L method was able to determine a reasonable number of
segments in 10 out of 11 instances for hierarchical segmentation algorithms
with greedy evaluation metrics, and a correct number of clusters in 10 of 12
instances for hierarchical clustering algorithms. The L method performed
much better than the two existing methods that were also tested in our

evaluation.

» Empirical evaluation also shows that the overall system can track normal
behavior and detect anomalies. The overall anomaly detection system was
able to detect anomalies in every time series that was from a ‘damaged’
valve, and was also able to monitor"ar®rmal valve without detecting
any anomalies. Additionally, when training on multiple time series the
anomaly detection system is able to accurately determine the amount of
allowed variation in each state. Experiments have shown that when trained
on time series of a valve operating at two different voltages, the normal
model generated is able to generalize to cover all time series opeatating
voltages between those two voltages, and will still detect anomalies for

valves operating and higher or lower voltages than observed during training.

7.2 Limitations and Future Work

Our anomaly detection trains on one or more normal time series and is then

able to determine whether future time series are anomalous. However, oulyanoma
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detection system has some limitations, some of which will be the focus of future

work.

Data Used for Training:

A model of a normal time series consists of a sequential ordering of
operational states, and obviously requires training data that also contains
states that occur in the same order. Our model can handle differing
amounts of allowed variation among the states, but it will not work
correctly if the states do not need to occur in the same sequence during

normal operation.

The anomaly detection discussed in this paper has a start state and end state,
and therefore is not able to monitor long or cyclical processes. However, if
the training data contains various individual cycles, and the normal model
created generalizes the permitted cycles, a simple modification $tetiee
machine will allow normal transitions from the last state to the firg.stat

Future work will be done to test our system on cyclic data such as the time

series of a heartbeat.

In a operational state identified by Gecko, all of the different dimensions
(sensor values) of the time series are assumed to be related to eachdther an
will have similar values in the same operational state in another normal time
series. However, if some of the dimensions are unrelated to each other,
restrictions in the normal model that require them to have a similar
relationship in all future instances of that state are unreasonable. If the
values of dimensions or sensors are unrelated to each other, they should not
be used together when building the model. They should be separated and
used to create more than one model where each model performs anomaly

detection on a different subsystem.
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If multiple time series are used for training, each time series has to be
somewhat similar. A large amount of variation is permitted, but they
cannot differ too much or they will not be able to be correctly merged into a
single time series before clustering. Each time series should be of a device
performing a similar operation under varying conditions, rather than a
device performing operations that are entirely different that produce time
series that seem unrelated to each other.

Gecko (finding states):

The Gecko algorithm explained in this paper cannot be scaled up to very
large time series because the first phase that finds the initial subrslisst

not scalable. The graph bisection operations become slow as the size of the
time series increases. Future work will look into creating a scalable top
down segmentation algorithm that will be able to create a large number of

small clusters that to not span important cluster boundaries.

During clustering with Gecko, if there the data is noisy, the parameter
minCluster Sze needs to be increased to prevent the algorithm from

returning “clusters” that are actually only noise and not true clusters.

Having the algorithm determine a good value for this parameter
automatically will always be possible the smallest size of a statstbald

be returned may often depend more on the domain than the data. However,
future work should explore ways to set this parameter automatically that

will at least be an improvement over a single static value or requiring the

user to set it every time.

L Method (determining the number of clusters/segments):

The major limitation of the L method is that it will never suggest that less

than three clusters be returned. Future work will look into way to perform
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extra analysis if the number of clusters returned is only three to determine if
two or one clusters would actually be a better choice.

Dynamic Time Warping:

The standard dynamic warping (DTW) algorithm runs quickly if the time
series contains fewer than three thousand points. However, it hadl3n O(
time complexity, and even worse, arN?)(space complexity to fill the cost
matrix. This means that performing DTW on a time series that contains
20,000 measurements requires that flion (20,000) floating point

numbers be stored in the cost matrix. There are approximations to the
DTW algorithm that only calculate the values of the cost matrix near the
linear warp line. However, with time series that contain steady state
conditions (flat regions) at the beginning or end, the warp path may have to
stray very far from the linear warp line. Straying too far from the linear
warp line would cause the complexity of DTW to approadi?Dds the

number of cells that need to be evaluated increases. Other methods simply
perform classic DTW on a reduced time series which may produce a pretty
accurate warp path distance measurement, but the actual path may be poor
in some regions, which would bad for our algorithm and the relationships
between time series that we infer using warp paths. Future work will focus
on creating a new dynamic time warping algorithm that warps a reduced
time series, and then iteratively refines the warp path locally aeotigh

path is calculated. If successful, the algorithm would scale linearly éth t
size of the time series, would be near-optimal, and would have no poor

warpings between points.

Rule Generation:

Our work so far has only generated a set of Rules using the RIPPER
algorithm. This one set of rules is used for both state transitions and

anomaly detection (anomaly is thrown when state transition logic fails).
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However, whether to transition between states and whether a data point is
anomalous are two different problems. It may be better to generate a more
general set of rules for state transitions, and a more restrictive sétof r

for anomaly detection. Currently the single set of rules is more similar to

the more specific anomaly detection rules. It may be beneficial to have a
second set of rules that are only specific enough to tell if a point is in the
current or next state, and simultaneously use the more restrictive set of rules
for anomaly detection. In this manner, the state machine will not need to

get “lost” for an anomaly to be reported.

Future work will evaluate alternatives to the RIPPER algorithm to generate
rules. A possibility is simply to record the minimum and maximum values
for each dimension in a state to draw a “box” around the area of permitted

values.

Sate-Transition Logic:

Our current state transition logic has a consecutive transition threshold that
prevents premature state transitions on spurious points. However, requiring
a consecutive number of transition points to actually perform a transition
has a side effect that requires a state contain a minimum number of points.
If one or more states are skipped and it is normal for them to be skipped
based on it being observed in training, the current state transition logic will
incorrectly throw an anomaly at the skipped state. Future work will extend
state transition logic to identify states in the merged time series,sout al
determine which states in the merged time series do not occur in the original
time series used for training. If a particular state is sometimes skipped
during training (normal behavior), the state transition logic needs to
accommodate this by allowing the previous state to either transition to the

next sometimes-skipped state OR two states ahead.
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Sometimes a small state may be mapped to an even smaller state in a time
series used during training, and it will create a state that is so smadilisha
difficult to transition into before it is passed (similar to the previous bullet)
Our current anomaly detection system runs a non-deterministic state
machine only when an anomaly is found, and runs until it converges to a
single state. However, to avoid the problem of having states that are too
small to easily transition into, a non-deterministic state machine cansalway
be run. In the always running non-deterministic state machine, the first
transition point causes the state machine to both transition AND stay in the
same state in different threads. If a thread gets stuck, it is terthinate

an anomaly is only thrown if all threads are unable to continue tracking

through the time series.
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Appendix

Sample Run of the Anomaly Detection
System
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Input Files for Training
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Merging Time Series
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ldentifying States
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Determine State Information

Current
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Clustering of Merged Time Series
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Rule Generation

S2

s1 S3 R Rule
Generation

Current

Time —

RULE FOR STATE O:
IF (((Current <= 0.01167725)
AND (d1_Current >= -2.00887) AND (d1_Current <=
AND (d2_Current >= -428.885))
OR ((Current >= 0.01104155) AND (Current <= 0.02149
AND (d1_Current >=-0.5117375)
AND (d1_Current <= 8.469335000000001)
AND (d2_Current >= -437.142))
OR ((Current >=0.01071215) AND (Current <= 0.01084
OR ((Current >= 0.010775650000000001) AND (Current
THEN O

RULE FOR STATE 1:
IF (((Current <= 0.459586)
AND (d1_Current >= 8.70961))
OR ((Current <= 0.465255)
AND (d1_Current >= 9.527095))) THEN 1

RULE FOR STATE 2:
IF (((Current >= 0.1536815) AND (Current <= 0.59979
AND (d1_Current >= 2.35799)
AND (d1_Current <= 12.481200000000001)
AND (d2_Current >=-2122.735) AND (d2_Current <=
OR ((Current >= 0.552237) AND (Current <= 0.6042005
AND (d1_Current >=0.371603)
AND (d2_Current <= -1205.78))
OR ((d2_Current >=-1851.675)
AND (d2_Current <= -1840.4299999999998))) THEN 2
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S1 -> Current<4 AND
10<=Slope<=15

S2 -> 1<=Current<=4 AND
Slope=0

S3 -> Current<4 AND
-13<=Slope<=-10

7.41389)

1700000000002)

0550000000001))
<= 0.01090405)))

54999999999)

588.989))
)




RULE FOR STATE 3:

IF (((Current >= 0.4248265) AND (Current <= 0.60498
AND (d1_Current >= -18.57515) AND (d1_Current <=
AND (d2_Current <= 2278.74))

OR ((Current <= 0.6049344999999999)

AND (d1_Current <= -0.7938265)
AND (d2_Current <= -2355.495))

OR ((Current >= 0.4165025) AND (Current <= 0.607525
AND (d1_Current >=-12.3338) AND (d1_Current <=
AND (d2_Current <= 2568.2250000000004))

OR ((d2_Current >=-2088.535)

AND (d2_Current <= -2051.0699999999997))) THEN 3

RULE FOR STATE 4:
IF (((Current >= 0.4072015) AND (Current <= 0.54639
AND (d1_Current >= 2.9014949999999997)
AND (d1_Current <= 8.54674) AND (d2_Current >= -
OR ((d1_Current >=-10.99385)
AND (d2_Current >= 2568.2250000000004))
OR ((d1_Current >=-11.2563)
AND (d2_Current >= 2253.8))
OR ((d1_Current >= 7.234265) AND (d1_Current <= 7.2

RULE FOR STATE 5:
IF (((Current >= 0.47907900000000003)
AND (d1_Current >= 8.26221))) THEN 5

RULE FOR STATE 6:
IF (((Current >= 0.647008) AND (Current <= 1.07862)

AND (d1_Current >= 1.9650699999999999) AND (d1_C

8.073385))

OR ((d2_Current >= -699.8389999999999)
AND (d2_Current <= -697.466))

OR ((Current >=1.079925)
AND (d1_Current >= 2.242155))) THEN 6

RULE FOR STATE 7:
IF (((Current >= 0.7691555)

AND (d1_Current >=-16.107) AND (d1_Current <=2
OR ((Current >= 0.7684335) AND (Current <= 0.769170

RULE FOR STATE 8:
IF (((Current <= 1.07578)

AND (d1_Current <= -7.889145))) THEN 8
RULE FOR STATE 9:
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IF (((Current >=0.194583) AND (Current <= 0.300475
AND (d1_Current >= -7.752935) AND (d1_Current <=
AND (d2_Current >=-298.1875) AND (d2_Current <=

OR ((d2_Current >= 202.7235)

AND (d2_Current <= 202.98649999999998))
OR ((d2_Current >= 937.5535) AND (d2_Current <= 944

RULE FOR STATE 10:

IF (((Current >= 0.19351849999999998)
AND (Current <= 0.24175249999999998)
AND (d1_Current >= 0.6799845) AND (d1_Current <=
AND (d2_Current <= 1007.0))

OR ((Current >= 0.2270345) AND (Current <= 0.241927
AND (d1_Current >= 0.39421649999999997)
AND (d2_Current <= -429.7875))

OR ((d2_Current >= 224.6855) AND (d2_Current <= 225

RULE FOR STATE 11:
IF (((Current >=0.1982835) AND (Current <= 0.24155
AND (d1_Current >=-3.95517) AND (d1_Current <=
OR ((d2_Current >= 1910.425) AND (d2_Current <= 191
OR ((d2_Current >= 1780.71)
AND (d2_Current <= 1794.8400000000001))) THEN 11

RULE FOR STATE 12:

IF (((Current >= 0.196977) AND (Current <= 0.306535
AND (d1_Current >= 3.04138)
AND (d1_Current <= 13.565850000000001))) THEN 12

RULE FOR STATE 13:
IF (((Current >=-0.004448185) AND (Current <= 0.19
AND (d1_Current <= 1.56491)
AND (d2_Current <= 454.515))
OR ((Current >=-0.00628144) AND (Current <= 0.3060
AND (d1_Current >= -5.318434999999999)
AND (d1_Current <= 1.970375)
AND (d2_Current <= 470.1575))
OR ((Current <= 0.307395)
AND (d1_Current <= 3.1861050000000004)
AND (d2_Current <= -9.40672))) THEN 13
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State-Transition Logic

S1 -> Current<4 AND
10<=Slope<=15

S2 -> 1<=Current<=4 AND
Slope=0

S3 -> Current<4 AND
-13<=Slope<=-10

script transition_to_merged_0

—

if merged_enable_trace > 0 then
message "script transition_to_merged_0"

end if

merged_active_state =0

State-Transition
Logic

merged_consecutive_error_count =0
merged_cumulative_transition_count = 0
merged_consecutive_transition_count = 0
merged_num_valid_points =0

activate monitor_transition_to_merged_1
activate monitor_merged_0_curr
activate monitor_merged_0_next

activate monitor_merged_0_error

if merged_enable_trace > 0 then
execute merged_data_dump

end if

end transition_to_merged 0

Rule monitor_merged_0_curr

subsystem owner_of _merged
category merged_valve_monitor

priority 20
activation yes
continuous yes

-- test for merged cluster O

if merged_active_state = 0 and
(((merged_Current >= -0.00564919) and
(merged_Current <= 0.012188049999999999)
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and (merged_d1_Current >= -2.0479950000000002 ))) then

if merged_enable_trace > 0 then
message "monitor_merged_0_curr"
end if

-- this point is in active cluster, zero cons ecutive counts
merged_consecutive_error_count =0
merged_consecutive_transition_count =0

-- bump number of valid points found
increment merged_num_valid_points

end if
end monitor_merged_0_curr
Rule monitor_merged_0_next

subsystem owner_of _merged
category merged_valve_monitor
priority 20

activation yes

continuous yes

-- test for merged cluster 1
if merged_active_state = 0 and
(((merged_Current >= 0.01253285) and
(merged_Current <= 0.40316300000000005)
and (merged_d1_Current >= 1.84109) and
(merged_d1_Current <= 11.075700000000001)
and (merged_d2_Current >= -892.1320000000001) and
(merged_d2_Current <= 853.9445000000001))
or ((merged_Current >= 0.02014075) and
(merged_Current <= 0.28492700000000004)
and (merged_d1_Current >=-0.2783255) and
(merged_d1_ Current <= 7.344745)
and (merged_d2_Current <= 900.0745))
or ((merged_Current >= 0.2523655) and
(merged_Current <= 0.2545855)
and (merged_d1_Current >= -0.4122285) and
(merged_d1_Current <= -0.3237645))
or ((merged_d1_Current >= 1.6590099999999999) an d
(merged_d1_Current <= 1.67289))) then

if merged_enable_trace > 0 then
message "monitor_merged_0_next"
end if

-- this point is in next cluster, try to tran sition
increment merged_cumulative_transition_count
increment merged_consecutive_transition_count
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merged_consecutive_error_count =0
end if
end monitor_merged_0_next
Rule monitor_merged_0_error

subsystem owner_of _merged
category merged_valve_monitor
priority 20

activation yes

continuous yes

-- test for merged cluster 0 error condition
-- that is point NOT in 0 AND NOT in 1
if merged_active_state = 0 and
(NOT (((merged_Current >=-0.00564919) and
(merged_Current <= 0.01218804999999999
(merged_d1_Current >= -2.0479950000000
(NOT (((merged_Current >= 0.01253285) and
(merged_Current <= 0.40316300000000005
(merged_d1_ Current >= 1.84109) and
(merged_d1_ Current <= 11.0757000000000
(merged_d2_Current >=-892.13200000000
(merged_d2_Current <= 853.944500000000
or ((merged_Current >= 0.02014075) and
(merged_Current <= 0.2849270000000000
(merged_d1_Current >=-0.2783255) and
(merged_d1_Current <= 7.344745) and
(merged_d2_Current <= 900.0745))
or ((merged_Current >= 0.2523655) and
(merged_Current <= 0.2545855) and
(merged_d1_Current >=-0.4122285) and
(merged_d1_Current <= -0.3237645))
or ((merged_d1_Current >= 1.659009999999
(merged_d1 Current <= 1.67289)))) the

if merged_enable_trace > 0 then
message "monitor_merged_0_error"

end if

-- this point is in error, bump error counts

increment merged_cumulative_error_count

increment merged_consecutive_error_count

merged_consecutive_transition_count = 0
end if

end monitor_merged_0_error

110

9) and
002)))) and

) and

01) and
01) and

1)
4) and

9999) and
n



Rule monitor_transition_to_merged_1

subsystem owner_of _merged
category merged_valve _monitor
priority 20

activation yes

continuous yes

if(merged_cumulative_transition_count >
merged_cumulative_transition_threshold)

or(merged_consecutive_transition_count>merged_conse cutive_transitio
n_threshold)then

if merged_enable_trace > 0 then
message "monitor_transition_to_merged_1"
end if

execute transition_to_merged_1 in 1 tick
end if

end monitor_transition_to_merged_1
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Anomaly Detection

Screen capture courtesy of Interface & Control Systems (ICS)

3 plots: tested time series, state tracking, error level
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Usage
(command-line interface)

C:\>createRules v28.csv v24.csv v32.csv

Running Pre-Processor to Smooth, Normalize, and Der ive new
Attributes:

Pre-Processing v28.csv....done

Pre-Processing v24.csv....done

Pre-Processing v32.csv....done

Running Dynamic Time Warper...

Determining which time series is most normal...done in 13
seconds

The Most 'Average' Input Time Series is: v24.csv

Creating a merged time series.............. done in 0.21
seconds.

Running the Clustering Algorithm Gecko
LEAVE FIELDS BLANK AND PRESS RETURN TO AUTOMATICALLY USE
DEFAULT VALUES:

How would you like to set the parameters for Gecko?
1) Simple [DEFAULT] (2 parameters to set)

2) Advanced (5 parameters to set)
->1
What is the 'Minimum Cluster Size' that you want to be
possible?
DEFAULT =10
Increasing this value makes the algorithm more tole rant to
noise, but if the setting is too large, smaller clu sters will
not be properly found. Value must be >=5 but is re commended
to be >= 10 for smooth data, and much greater than 10 for
noisy data.
->20
What is the 'Low Slope Sensitivity' setting?
DEFAULT =0.0
Data sets with a high sample rate or where changes in the

non-time dimensionss
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happen much more slowly than time will tend to need
values. A setting of '0.0" typically works well, b

need to be changed for the best results. Lower set
more tolerant to noise. Consult the manual for a f
explaination on setting this parameter.

->0.0

Loading data from file...loading complete in 0.681
2411 points sampled down to...2411 points in 0 seco
Normalizing data...finished in 0.06 seconds.
Weighting data...finished in 0.02 seconds.

Building k-nearest neighbor graph...done in 12.638
Splitting data into initial sub-clusters...90 sub-c
created in 24.105 seconds.

Merging remaining sub-clusters...completed in 1.592

Creating output files: 14 clusters recommended.
Evaluation file: 'merged_Gecko_excel.csv' created.

Running Post-Processor to combine clustering and wa

information
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