
Learning States for Detecting

Anomalies in Time Series

by

Stan Weidner Salvador

A master’s thesis submitted to the College of Engineering at

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Melbourne, Florida

May, 2004

Technical Report

CS-2004-05

© Copyright 2004 Stan Weidner Salvador

All Rights Reserved

The author grants permission to make single copies _________________________

Learning States for Detecting Anomalies in Time Series

a master’s thesis by

Stan Weidner Salvador

Approved as to style and content

Philip K. Chan, Ph.D.
Associate Professor, Computer Science
Thesis Advisor

Marius-Calin Silaghi, Ph.D.
Assistant Professor, Computer Science

Georgios C. Anagnostopoulos, Ph.D.
Assistant Professor, Electrical and Computer Engineering

 William D. Shoaff, Ph.D.
 Associate Professor, Computer Science
 Department Head

 iii

Abstract

Learning States for Detecting Anomalies in Time Series

by

Stan Weidner Salvador

Thesis Advisor: Philip K. Chan, Ph.D.

The normal operation of a device can be characterized in different

operational states. To identify these states, we introduce a segmentation algorithm

called Gecko that can determine a reasonable number of segments using our

proposed L method. We then use the RIPPER classification algorithm to describe

these states in logical rules. Finally, transitional logic between the states is added

to create a finite state automaton. Multiple time series may be used for training, by

merging several time series into a single representative time series using dynamic

time warping.

Our empirical results, on data obtained from the NASA shuttle program,

indicate that the Gecko segmentation algorithm is comparable to a human expert in

identifying states, and our L method performs better than the existing permutation

tests method when determining the number of segments to return in segmentation

algorithms. Empirical results have also shown that our overall system can track

normal behavior and detect anomalies. Additionally, if multiple time series are

used for training, the model will generalize to cover unseen normal variations and

time series that are “between” the time series used for training.

 iv

Table of Contents

List of Figures ... vii

List of Tables ... ix

Acknowledgments .. x

Chapter 1: Introduction ... 1

1.1 Problem Statement ... 1

1.2 Approach .. 2

1.3 Key Contributions .. 2

1.4 Organization ... 3

Chapter 2: Related Work ... 5

2.1 Clustering .. 5

2.1.1 Partitioning Clustering Algorithms .. 5

2.1.2 Hierarchical Clustering Algorithms ... 6

2.1.3 Density-based Clustering Algorithms .. 7

2.1.4 Grid-based Clustering Algorithms ... 8

2.1.5 Applying Clustering Algorithms to Time Series Data 8

2.2 Segmentation ... 9

2.3 Determine Number of Clusters or Segments ... 10

2.4 Anomaly Detection in Time Series .. 13

Chapter 3: Identifying the States in a Time Series .. 15

3.1 Gecko Algorithm ... 17

3.1.1 Gecko Overview .. 17

3.1.2 Phase 1: Create Sub-Clusters .. 19

3.1.3 Phase 2: Repeatedly Merge Clusters .. 20

3.1.4 Phase 3: Determine Number of Clusters .. 23

3.2 Empirical Evaluation ... 23

3.2.1 Procedures and Criteria ... 24

 v

3.2.2 Results and Analysis ... 25

3.3 Summary ... 27

Chapter 4: Determining the Number of Clusters/Segments in
Clustering/Segmentation Algorithms .. 29

4.1 The L Method .. 30

4.1.1 Evaluation Graphs ... 30

4.1.2 Finding the Knee via the L Method ... 33

4.1.3 Iterative Refinement .. 36

4.1.4 Refinements for Segmentation Algorithms 38

4.2 Empirical Evaluation ... 39

4.2.1 Identifying the Number of Clusters ... 39

4.2.1.1 Procedures and Criteria .. 40

4.2.1.2 Results and Analysis .. 42

4.2.2 Identifying the Number of Segments ... 46

4.2.2.1 Procedures and Criteria ... 46

4.2.2.2 Results and Analysis .. 49

4.3 Summary ... 54

Chapter 5: Time Series Anomaly Detection Using States 55

5.1 Anomaly Detection System ... 55

5.1.1 Overview ... 57

5.1.2 Characterizing States by Generating Rules 58

5.1.3 State Transition Logic ... 58

5.2 Empirical Evaluation ... 61

5.2.1 Procedures and Criteria ... 61

5.2.2 Self-Tracking Results .. 61

5.2.3 Normal Operation Results ... 62

5.2.4 Detecting Anomalies Results .. 63

5.3 Summary ... 64

Chapter 6: Building a Normal Model by Training on Multiple Time Series 65

6.1 Dynamic time Warping ... 67

 vi

6.1.1 Problem Formulation ... 68

6.1.2 Dynamic Time Warping Algorithm .. 69

6.1.3 Derivative Time Warping .. 73

6.2 Using DTW to Train on Multiple Time Series 76

6.3 Empirical Evaluation ... 79

6.3.1 Procedures and Criteria ... 79

6.3.2 Results and Analysis ... 82

6.4 Summary ... 85

Chapter 7: Concluding Remarks ... 87

7.1 Summary of Contributions .. 87

7.2 Limitations and Future Work ... 89

References ... 95

Appendix: Sample Run of the Anomaly Detection System 100

Input Files for Training ... 101

Merging Time Series ... 102

Identifying States .. 103

Rule Generation ... 105

State-Transition Logic ... 108

Anomaly Detection ... 112

Usage (command-line interface) ... 113

 vii

List of Figures

Figure 3.1. Overview of the Gecko Algorithm. ... 18

Figure 3.2. Graphs for ln(slope+1) and arctan(slope). ... 22

Figure 3.3. A data set after being clustered by Gecko (16 clusters). 24

Figure 4.1. A sample evaluation graph. ... 32

Figure 4.2. Finding the number of clusters using the L method. 34

Figure 4.3. All four possible pairs of best-fit lines for a small evaluation
graph... 34

Figure 4.4. Full and partial evaluation graphs created by CURE. Only the
first 100 points are shown on the right side. .. 36

Figure 4.5. Pseudocode to Iterative Refine the knee with the L Method................. 37

Figure 4.6. Data sets 1-6 for evaluating the L method in clustering
algorithms (data set #7 not shown). ... 41

Figure 4.7. Actual number of clusters and the correct number predicted by
the L method (axes: x= # of clusters, y=evaluation metric –
lines: solid lines=correct # of clusters, dashed lines=# of
clusters determined by L method).. 45

Figure 4.8. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in
segmentation algorithms. ... 47

Figure 4.9. The reasonable range for the number of segments and the
number returned by the L method. (axes: x=# of segments,
y=evaluation metric – short dashed line=# of segments
determined by the L method, long solid lines=marks the
boundaries of the reasonable range for the # of segments. 52

Figure 5.1. Main steps in time series anomaly detection. .. 57

Figure 5.2. Expanded state-transition logic with transition thresholds.................... 60

Figure 6.1. Two time series “warped” together using dynamic time
warping... 67

Figure 6.2. A cost matrix with the min. dist. warp path traced through it. 70

Figure 6.3. The order that the cost matrix is filled... 71

Figure 6.4. Four shaded areas showing how cells that are calculated...................... 72

 viii

Figure 6.5. A warping between two time series using original values. 74

Figure 6.6. A warping between two time series using slope values. 75

Figure 6.7. Main steps in time series anomaly detection with multiple
input time series used during training. ... 77

Figure 6.8. A valve being turned on and off at different voltages. 81

 ix

List of Tables

Table 3.1. Number of segments found by Gecko and a human expert. 25

Table 3.2. Quality of segments produced by Gecko and BUS................................. 26

Table 4.1. Results of using the L method and the Gap statistic with various
clustering algorithms.. 43

Table 4.2. Results of using the L method with three hierarchical
segmentation algorithms. ... 50

Table 5.1. Self-tracking of a time series. ... 62

Table 6.1. Results of training on a single time series, testing on all. 83

Table 6.2. Results of training on multiple time series, testing on all. 84

 x

Acknowledgments

I would like to thank my thesis advisor Dr. Philip Chan for his help in

writing this thesis, and giving me the opportunity to participate in his research. I

also would like to thank the other members of my thesis committee, Dr. Marius-

Calin Silaghi and Dr. Georgios Anagnostopoulos.

This work is partially supported by NASA (NAS10-02044). Thanks to

Bobby Ferrell and Steven Santuro at NASA for providing data sets, helpful

comments, and clustering evaluations. Others who have contributed to this

research include Brian Buckley, Steve Creighton, and Walter Schiefele at Interface

and Control Systems (ICS) who helped integrate our algorithms into their SCL

expert system. John Brodie and Matt Mahoney also offered many helpful

suggestions that helped to guide this research.

 1

Chapter 1

Introduction

Expert (knowledge-based) systems are often used to help humans monitor

and control critical systems in real-time. For example, NASA uses expert systems

to monitor various devices on the space shuttle. However, populating an expert

system’s knowledge database by hand is a time-consuming and expensive process.

In this paper we investigate machine learning techniques for generating knowledge

that can monitor the operation of devices or systems. Specifically, we study

methods for generating models that can detect anomalies in time series data.

The normal operation of a device can usually be characterized in different

operational states. Segmentation or clustering techniques can help identify the

various states. However, most methods directly or indirectly require a parameter to

specify the number of segments/clusters in the time series data. The output of these

algorithms is also not in a logical rule format, which is commonly used in expert

systems for its ease of comprehension and modification. Furthermore, the

relationships between these states need to be determined to allow tracking from one

state to another and to detect anomalies.

1.1 Problem Statement

Given time series data depicting a system’s normal operation, we desire to

learn a model that can detect anomalies and can be easily read and modified by

human users. We investigate a few issues in this paper. First, we want a

segmentation algorithm that can dynamically determine a reasonable number of

segments, and hence the number of states for our purposes. These states, collected

 2

from a device, should be comparable to those identified by human experts. Second,

we would like to characterize these states in logical rules so that they can be read

and modified with relative ease by humans. Third, given the knowledge of the

different states, we wish to describe the relationship among them for tracking

normal behavior and detecting anomalies.

1.2 Approach

To identify states, we introduce Gecko, which is able to segment time series

data and determine a reasonable number of segments (states). Gecko consists of a

top-down partitioning phase to find initial sub-clusters and a bottom-up phase

which merges them back together. The appropriate number of segments is

determined by what we call the L method. To characterize the states as logical

rules, we use the RIPPER classification rule learning algorithm (Cohen 1995).

Since different states often overlap in the one-dimensional input space, additional

attributes are derived to help characterize the states. To track normal behavior and

detect anomalies, we construct a finite state automaton (FSA) with the identified

states.

1.3 Key Contributions

Our key contributions are:

• We demonstrate a method that performs time series anomaly detection via

generated states and logical rules that can easily be understood and

modified by humans.

• We introduce an algorithm named Gecko for segmenting time series data

into states.

 3

• We propose the L method that dynamically determines a reasonable number

of clusters. The L method is general enough to be used with any

hierarchical clustering or segmentation algorithm.

• We demonstrate how derivative time warping can be used to merge multiple

time series together into an “average” time series in order to extend our

anomaly detection so it may train on multiple time series.

• Empirical evaluations, using 14 spatial and time series data sets and 6

different clustering and segmentation algorithms, indicate that our L

Method performs favorably to existing methods that determine the number

of clusters or segments to return. Our L method is shown to work well for a

wide range of algorithms, clusters with elaborate shape, and for

clusters/segments that are overlapping and not well-separated.

• Our empirical evaluations, with data from NASA, indicate that Gecko

performs comparably with a NASA expert and the overall system can track

normal behavior and detect anomalies.

1.4 Organization

Chapter 2 gives an overview of related work on topics related to this

research. The topics covered are: anomaly detection, segmentation, clustering,

determining the number of clusters in a dataset.

Chapter 3 discusses our Gecko segmentation algorithm that is able to

identify the states in a time series. The number of states that are returned is

determined automatically by our L Method.

A complete description of our L method is contained in Chapter 4. The L

method determines the number of clusters or segments to return from any

hierarchical clustering or segmentation algorithm by locating the knee in the curve

of an evaluation graph.

 4

In Chapter 5, our overall anomaly detection system is described. The

system explained in this chapter takes a single time series, identifies its operational

states, characterizes each state, and creates state transition logic between them to

implement anomaly detection.

Chapter 6 describes how to use dynamic time warping to extend the simple

anomaly detection system in Chapter 5 to incorporate multiple time series for

building a single normal model. The dynamic time warping algorithm is also

explained in detail.

In Chapter 7, we summarize our work and our key contributions, as well as

the limitations of our work. We also state the direction of future work for our

research.

 5

Chapter 2

Related Work

 Before the details of our anomaly detection system are explained, we give

an overview of related work in time series anomaly detection, and also other

algorithms that are related to components in our anomaly detection system. Topics

covered in this chapter are: clustering, segmentation, determining the number of

clusters or segments, and anomaly detection in time series.

2.1 Clustering

 Clustering algorithms take spatial data (2 or more dimensions) as input and

return a set of clusters such that all points in a cluster are similar to each other and

dissimilar to points in other clusters. There are four main categories of clustering

algorithms: partitioning, hierarchical, density-based, and grid-based.

2.1.1 Partitioning Clustering Algorithms

Partitioning algorithms are the most classical group of clustering

algorithms. The K-means algorithm (Hartigan 1975) is the most commonly used

clustering algorithm due to its simplicity. K-means initially creates k random

cluster centers and assigns every point to its closest cluster center. The cluster

centers are then re-calculated, and every data point is re-assigned to its closest

cluster center. The iterative refinement of the k clusters stops when no the cluster

centers do not change in an iteration. Despite the popularity of K-means, it has

significant disadvantages:

 6

• The quality of the clusters produced is heavily dependent on the initial

cluster centers that are chosen, and the set of clusters returned may vary

significantly between runs of the algorithm on the same data set.

• The selection of the value k (number of clusters to return) needs to be

specified by the user.

• The algorithm is not efficient for large data sets.

• Outliers can decrease the quality of the clusters that are returned.

• Only spherical clusters can be found.

Many partitioning algorithms have also been developed to overcome some of the

disadvantages of K-means, chiefly the lack of scalability of K-means. PAM (Ng &

Hah 1994) is one such algorithm that attempts to speed up the K-means algorithm

by sampling the data.

2.1.2 Hierarchical Clustering Algorithms

Hierarchical algorithms can be agglomerative and/or divisive. The

agglomerative (bottom-up) approach initially starts with many clusters and

repeatedly merges the two most similar clusters together, while the divisive (top-

down) approach initially places all of the data into a single cluster and repeatedly

splits a cluster into two. The merging or splitting of clusters continues until the

stopping criterion (usually the desired number of clusters k) is reached.

 Hierarchical clustering algorithms are popular for scientific fields where the

data being clustered contains sub-groups within the larger clusters because

hierarchical algorithms can create a tree of clusterings called a dendrogram. This

dendrogram can be used to view sets of clusters at varying granularities and to

discover relationships within the data that would be missed at only a single

clustering level (single set of clusters). ROCK (Guha, Rastogi & Shim 1999),

CURE (Guha, Rastogi & Shim 1999) and Chameleon (Karypis, Han & Kumar

 7

1999) are hierarchical algorithms that differ mostly in their similarity functions,

which favor spherical, elliptical, and non-spherical clusters (respectively).

Advantages of hierarchical clustering algorithms include:

• The ability to produce a dendrogram containing sets of clusters for many

values of k.

• The similarity or distance measure between points or clusters is extremely

flexible, which is responsible for the large number of existing hierarchical

clustering algorithms.

The major disadvantage of hierarchical clustering algorithms is that once a

merge or split has been performed, it cannot be undone. If the merge/split was a

poor choice it may lead to future splits/merges that are also of poor quality.

2.1.3 Density-based Clustering Algorithms

Density-based algorithms, e.g., DBSCAN (Ester et al. 1996) and

DENCLUE (Hinneburg & Keim 1998), are able to efficiently produce clusters of

arbitrary shape and are also able to handle noise. If the density of a region is above

a specified threshold, it is assigned to a cluster; otherwise it is considered to be

noise. Connected regions of points that have a density above the threshold are

considered to be in a single cluster. Density-based algorithms are efficient and are

sensitive to the presence of outliers. However, the main disadvantage of density-

based clustering algorithms is that several unintuitive parameters (cannot simply

specify the number of clusters desired) need to be set for good results. The

neighborhood width and the density threshold are two parameters that usually must

be set. Another disadvantage is that density-based methods only work well when

the density of the data is more or less uniform within the clusters, which is often

not the case.

 8

2.1.4 Grid-based Clustering Algorithms

Grid-based algorithms, such as WaveCluster (Seikholeslami, Chatterjee &

Zhang 1998), reduce the clustering space into a grid of cells which enables efficient

clustering of very large datasets. Many grid-based methods can automatically

remove outliers and have a time complexity of O(N) if there is a small number of

dimensions and the data is concentrated. Grid-based methods are better suited for

clustering large amounts of very concentrated data, rather than sparse data.

2.1.5 Applying Clustering Algorithms to Time Series Data

All of the clustering algorithms discussed so far were designed to cluster

spatial data with at least a two dimensional distribution. However, we are

interested in finding clusters in time series data with a one dimensional distribution.

Even multi-dimensional time series have a one-dimensional data distribution

because a time series is a function. We also wish to find states in the time series

that are non-overlapping with other states in the time dimension.

Partitioning methods iteratively refine a set of clusters by repeatedly

assigning points to the closest cluster center and recalculating the center of the

cluster. If this method is constrained so clusters are non-overlapping in the time

dimension, local minima are much more likely to occur than in standard usage with

two or more dimensions. The local minima are more frequent because the range of

freedom when adjusting cluster centers has been decreased from two or more

dimensions, to sliding it left or right in the time axis where it can get stuck between

two other clusters (overlapping of clusters is not permitted to occur along the time

axis).

Density based clustering methods cannot be used to find states in time

series data because they return a set of clusters that are isolated regions of the data

where the density is above some threshold. Significant portions of data between

the clusters that have a density below the density threshold are considered to be

 9

noise. For time series data, it is preferable that all of the data points are placed into

some cluster, and any noise in the time series should be dealt with by smoothing or

filtering the time series rather than simply ignoring it. In order to prevent data from

being treated as noise and thrown out, the density threshold must be set to a very

low value which will cause only a single cluster to be returned, which is

uninformative.

Grid based methods can cause a large increase in execution time by placing

the data into a grid and counting the number of points in each grid cell and

clustering the cells weighted by the number of points in them, rather than clustering

individual data points. However, since time series data is a continuous function

and has a single dimensional distribution, the data is much too sparse to benefit

from the use of a grid.

Hierarchical clustering algorithms on the other hand can be modified to

cluster time series data. They may use any similarity or distance function that is

desired, and all that is needed is a restriction on the merging and splitting steps that

forces clusters to remain non-overlapping in the time dimension after each step.

Additionally, since a wide range clusterings are returned as a hierarchical

dendrogram tree, evaluation may be performed to determine what level of the tree

produced the best set of clusters. Our Gecko clustering algorithm that is explained

in Chapter 3 is a modified hierarchical clustering algorithm.

2.2 Segmentation

 Segmentation algorithms take time series data as input and produce a

Piecewise Linear Approximation (PLA). A PLA is a set of consecutive line

segments that fit the original data points as closely as possible. There are three

common approaches to segmentation (Keogh et al. 2001).

1. Sliding Window: A segment is grown until the error of the segment is

above a specified threshold, then a new segment is started.

 10

2. Top-down: The entire time series is recursively split until the desired

number of segments is reached, or an error threshold is reached.

3. Bottom-up: Begin with N/2 segments. Repeatedly merge the two adjacent

segments that will increase the approximation error of the PLA the by the

smallest amount if they are joined. Keep merging segments until either the

desired number of segments is reached, or the error of the PLA reaches the

threshold value.

The sliding window approach creates poorest linear approximations but

runs the quickest. Top-down segmentation creates the best PLA but runs much

slower than the other two methods. Bottom-up segmentation creates PLAs that are

nearly as good as those of the top-down method, but runs much quicker than top-

down segmentation.

Segmentation algorithms are somewhat related to clustering algorithms in

that each segment can be thought of as a cluster. However, since segmentation

algorithms attempt to minimize the vertical error of the line segments, they have a

bias towards creating more segments in highly sloped regions than lower sloped

regions. The vertical error of a segment in a highly sloped region is usually much

larger than segments with lower slope, and segmentation algorithms will attempt to

minimize that error by creating more segments in those highly sloped areas. This

bias favoring more segments in areas of large magnitude slopes causes existing

segmentation algorithms to be better suited for producing a fine grain partitioning,

rather than a small set of segments that represent natural clusters.

2.3 Determine Number of Clusters or Segments

 Five common approaches to estimating the dimension of a model (such as

the number of clusters or segments) are: cross-validation, penalized likelihood

estimation, permutation tests, resampling, and finding the knee of an error curve.

 11

Cross-validation techniques create models that attempt to fit the data as

accurately as possible. Monte Carlo cross-validation (Smyth 1996) has been

successfully used to prevent over-fitting (too many clusters/segments). Penalized

likelihood estimation also attempts to find a model that fits the data as accurately as

possible, but also attempts to minimize the complexity of the model. Specific

methods to penalize models based on their complexity are: MML (Baxter & Oliver

1996), MDL (Hansen & Yu 2001), BIC (Fraley & Raftery 1998), AIC, and SIC

(Sugiyama & Ogawa 2001). Permutation tests (Vasko & Toivonen 2002) attempt

to prevent segmentation algorithms from creating a PLA that over-fits the data by

comparing the relative change in approximation error to the relative change of a

‘random’ time series. If the relative change in error begins to be similar between

the time series and a random time series as more segments are added, it means that

extra segments are fitting noise and not any underlying structure in the time series.

Resampling (Roth et al. 2002) and Consensus Clustering (Monti et al. 2003)

attempt to find the correct number of clusters by repeatedly clustering samples of

the data set, and determining at what number of clusters the clusterings of the

various samples are the most “stable.”

The majority of these methods to automatically determine the best number

of clusters/segments may not work very well in practice. Model-based methods,

such as cross-validation and penalized likelihood estimation, are computationally

expensive and often require the clustering/segmentation algorithm to be run several

times. Their usefulness is limited to only the smallest data sets. Permutation tests

and resampling are extremely inefficient, since they require the entire clustering

algorithm to be re-run hundreds or even thousands of times. The majority of

existing methods to find the knee of an error curve require the clustering algorithm

to be re-run for every potential value of k. Even worse, many of the evaluation

functions that are used to evaluate a set of clusters run in O(N2) time. This means

that it may take longer just to evaluate a set of clusters than it does to generate

 12

them. Most methods that find the knee of a curve also only work well when the

clusters are well separated.

Some existing clustering algorithms have built-in mechanisms for

automatically determining the number of clusters. The TURN* (Foss & Zaïane

2002) algorithm locates the knee of a curve by location the point where the 2nd

derivative increases above some user specified threshold. A variant (Chiu et al.

2001) of the BIRCH (Zhang, Ramakrishnan & Livnv 1996) algorithm uses a

mixture of the Bayesian Information Criterion (BIC) and the ratio-change between

inter-cluster distance and the number of clusters.

Locating the “knee” of an error curve, in order to determine an appropriate

number of clusters or segments, is well known, but it is not a particularly well-

studied method. There are methods that statistically evaluate each point in the error

curve, and use the point that either minimizes or maximizes some function as the

number of clusters/segments to return. Such methods include the Gap statistic

(Tibshirani, Walther & Hastie 2003) and prediction strength (Tibshirani et al.

2001). These methods generally (with the exception of hierarchical algorithms)

require the entire clustering or segmentation algorithm to be run for each potential

value of k.

The knee of a curve is loosely defined as the point of maximum curvature.

The knee in a “# of clusters vs. classification error” graph can be used to determine

the number of clusters to return. Various methods to find the knee of a curve are:

1. The largest magnitude difference between two points.

2. The largest ratio difference between two points (Chiu et al. 2001).

3. The first data point with a second derivative above some threshold value

(Ester et al. 1996) (Foss & Zaïane 2002).

4. The data point with the largest second derivative (Harris, Hess & Venegas

2000).

 13

5. The point on the curve that is furthest from a line fitted to the entire curve.

6. Our L-method, which finds the boundary between the pair of straight lines

that most closely fit the curve.

This list is ordered from the methods that make a decision about the knee

locally, to the methods that locate the knee globally by considering more points of

the curve. The first two methods use only single pairs of adjacent points to

determine where the knee is. The third and fourth methods uses more than one pair

of points, but still only considers local trends in the graph. The last two methods

consider all data points at the same time. Local methods may work well for

smooth, monotonically increasing/decreasing curves. However, they are very

sensitive to outliers and local trends, which may not be globally significant. The

fifth method takes every point into account, but only works well for continuous

functions, and not curves where the knee is a sharp jump. Our L method considers

all points to keep local trends or outliers from preventing the true knee to be

located, and is able to find knees that exist as sharp jumps in the curve.

2.4 Anomaly Detection in Time Series

Anomaly detection is the task of learning what is “normal” and determining

when an event occurs that differs significantly from expected normal behavior.

The approach that anomaly detection takes is the opposite of signature detection.

Signature detection is explicitly given information on what is “bad,” and simply

attempts to detect it when it happens. False alarms are rare when using signature

detection because the algorithm has been programmed to know exactly what to

look for to detect the known “bad” conditions. However, signature detection is

unable to detect new attacks. Although anomaly detection systems produce more

false alarms than signature detection systems, they have the significant advantage

that they are able to detect new, previously unknown “bad” behavior. Virus

scanners use signature detection to detect viruses. Virus scanners are very good at

 14

detecting known viruses with very few false alarms, but they cannot detect new

viruses.

Nearly all of the work in time series anomaly detection relies on models that

are not easily readable and therefore cannot be modified by a human for tuning

purposes. Examples include creating a set of normal sequences through the

negative-selection of random sequences (Dasgupta & Forrest 1996), frequency of

normal sequences (Keogh, Lonardi, & Chiu 2002), adaptive resonance theory

(Caudell & Newman 1993), and neural networks (Kozama et al. 1994). However,

Langley et al. (Langley, Bay & Saito 2003) propose a method that uses process

models to model a time series and predict future data. These process models are

concise and are easily read and modified by humans, but their generation requires

parameters to be set by a human that must have knowledge of the underlying

processes that produce the time series.

 15

Chapter 3

Identifying the States in a Time Series

The normal operation of a device can usually be characterized in different

operational states. An operational state is a period in a time series in which the

monitored device is in consistent state. If the operational states in a time series can

be reliably discovered, that information may be used for simple discovery of

interesting features in a time series, or can aid in anomaly detection by ensuring

that the states occur in the expected sequence. A simple example of a device’s

operational states is the temperature of a light bulb that is turned on and off. A

time series containing the temperature of this light bulb contains approximately five

operational states: (1) the light bulb is off and is at room temperature; (2) the light

bulb is switched on and quickly rises in temperature until a maximum temperature

is reached; (3) the maximum temperature is reached and the temperature is

constant; (4) the light bulb is turned off and the temperature slowly decreases; (5)

the temperature has cooled and is once again at room temperature.

A state in a time series is a period of time where the time series is following

a relatively steady trend, and portions of the time series immediately before and

after the state do not follow the same trend. Notice that this is nearly identical to a

commonly used definition of a cluster: “objects are clustered or grouped based on

the principle of maximizing the inter-class similarity and minimizing the intra-class

similarity” (Han & Kambler 2000). Thus, the problem of identifying distinct states

in a time series is essentially a clustering problem since we wish to find states that

are internally homogeneous, and contain data that are dissimilar to the data

contained in other (adjacent in our case) states.

 16

Segmentation techniques can help identify these various states.

Segmentation algorithms create a piecewise linear approximation (PLA) of a time

series. Since each segment in the PLA spans a period of time and does not overlap

with other segments, the period of each segment may be considered to be an

operational state of the time series. However, existing segmentation algorithms are

better at creating fine-grain approximations of time series for compression, than

they are at identifying a small number of distinct states or clusters in the data.

Current segmentation algorithms attempt to create a set of line segments that

minimize the overall error of the PLA with respect to a time series. However,

because the error of a point from a line segment is measured as the vertical distance

between them, areas of a time series with large slopes will have an artificially high

approximation error. This will cause a bias that favors more segments where the

slope has a large magnitude, and fewer segments where the slope is low. The result

is that segmentation algorithms often create a poor set of segments when the

number of segments becomes small. This is not a problem when segmentation

algorithms are used to create fine-approximations of a time series, but if a small

number of segments need to be found in the time series, existing segmentation

algorithms will often fail to provide an acceptable set of segments. In addition,

existing segmentation algorithms directly or indirectly require a parameter to

specify the number of segments in the time series. It is often impractical to expect

a human with sufficient domain knowledge to be available to select the number of

segments to return.

We desire a segmentation algorithm that can dynamically determine a

reasonable number of segments, and hence the number of states for our purposes.

These states, collected from a device, should be comparable to those identified by

human experts. To identify states, we introduce Gecko, which is able to segment

time series data and determine a reasonable number of segments. Gecko consists

of a top-down partitioning phase that creates initial sub-clusters and a bottom-up

 17

phase that merges them back together. The appropriate number of segments is

determined by what we call the L method. The next section gives and overview of

the Gecko algorithm and is followed by an empirical evaluation against an existing

segmentation algorithm in section 3.2; section 3.3 summarizes our findings on the

Gecko algorithm.

3.1 Gecko Algorithm

3.1.1 Gecko Overview

While segmentation algorithms typically create only a fine linear

approximation of time series data, Gecko divides a time series into clusters. This

number of clusters is determined by the algorithm and requires no user input. Note

that segmentation is just a special case of clustering where clusters must not

overlap along the time dimension. Gecko uses a 2-pass method (similar to

Chameleon) that is a combination of both divisive and agglomerative hierarchical

clustering. The first is a top-down pass that partitions the data into a large number

of sub-clusters. This is followed by a bottom-up pass that merges the sub-clusters

back together. The first top-down pass determines all of the potential boundary

areas between clusters, which then enables the second bottom-up pass to focus only

on the relative similarity of clusters. Hierarchical clustering algorithms are very

similar to top-down/bottom-up segmentation. The difference is that hierarchical

clustering is more general and any number of methods can be used to determine

similarity, while segmentation is typically limited to the error of a segment's best-fit

line.

 18

DataData 1 Large
Cluster

c1 c2 c3 c4

Phase 1:
 Obtain Subclusters

c1 c2 c3 c4

c6

c5

c7

Phase 2:
Merge Subclusters

Subclusters

Phase 3:
Determine the Best

Clustering Level

c1 c2 c3 c4

c6

c5

c7

c1 c2 c5

Final Clustering

Figure 3.1. Overview of the Gecko Algorithm.

The Gecko algorithm consists of three phases:

1. The first phase creates many small sub-clusters by initially putting all of the

data points into a single cluster, and repeatedly splitting the largest cluster

until all of the clusters can no longer be divided without becoming smaller

than a specified parameter s.

2. The second phase takes all of the sub-clusters and repeatedly merges the

two most similar clusters until all of the data is once again in the same

cluster.

3. Using information recorded during merging, phase 3 is able to quickly

determine the 'best' number of clusters that should be extracted from the

hierarchical clustering.

The Gecko Algorithm (overview)
Input: D // time series data
 s // the minimum cluster size
Output: c* clusters

Phase 1:
1. build a k-nearest neighbor graph of

D (k=2*s)
2. recursively bisect the graph until no

bisections can be made without
creating a cluster smaller than s

Phase 2:
3. recursively merge the sub-clusters

together until only one cluster
remains - a dendrogram is created

Phase 3:
4. find c*, an appropriate number of

clusters to return, by using the
L method

5. extract c* clusters from the
dendrogram and return them

 19

The following three sections detail each of the phases in the Gecko

algorithm.

3.1.2 Phase 1: Create Sub-Clusters

In the first phase, many small sub-clusters are created by a method that is

very similar to the one used in Chameleon (Karypris, Hun & Kumar 1999), with

the exception that Gecko forces cluster boundaries to be non-overlapping in the

time dimension. The sub-clusters are created by initially placing all of the data

points in a cluster, and repeatedly splitting the largest cluster until all of the clusters

are too small to be split again without violating the minimum possible cluster size

s.

To determine how to split the largest cluster, a k-nearest neighbor graph is

built in which each node in the graph is a time series data point (measurements

taken at a time-interval), and each edge is the similarity between two data points.

Only the slopes of the original values (original sensor readings) are used to

determine similarity, and not the original values themselves. Using only the slope

will tend to produce sub-clusters that have constant slope, which produces sub-

clusters that are as close to straight lines as possible. The k-nearest neighbor graph

is constructed by creating an edge from every vertex to each of its k nearest (most

similar) neighbors. The parameter k is not an input parameter. It is derived from s

(smallest possible cluster size), and is defined to be 2*s. Due to the importance of

time, the k nearest points of a data point can be assumed to be the k/2 points on

each size of the point according to the time axis. By using this graph, the similarity

between groups of points (clusters) can be determined by computing the edge-cut

(sum of the edges) between the two groups. Similarity between two points is

defined to be ln(1.0/distance+1), where distance is the Euclidean distance (or any

other distance method) between the two points. Justification for using this distance

function will be explained in the next section. If the graph is split where the edge-

 20

cut is the smallest, then the two newly separated clusters will be dissimilar to each

other and have high internal similarity.

Since all boundaries between clusters are cut cleanly by the time axis with

no overlap, the typically NP-hard problem of graph bisection is simplified, and the

optimal min-cut partitioning of a cluster can be quickly determined in fewer than

minClusterSize-1 edge-cut checks (where minClusterSize is the number of data

points contained in the cluster). There is no need for heuristics, because all

possible edge-cut possibilities can be quickly computed with efficient data

structures (Fiduccia & Mattheyses 1982).

3.1.3 Phase 2: Repeatedly Merge Clusters

In the second phase, the most similar pair of adjacent (in time) clusters is

repeatedly merged until only one cluster remains. To determine which adjacent

pair of clusters are the most similar, representative points are generated for each

cluster and the two adjacent clusters with the closest representative points are

merged. A single representative point is able to represent every point in a cluster

because each cluster is internally homogeneous.

The representative point of a cluster contains a value for the slope of every

original attribute in the data other than time. Clustering by the slope values causes

the time series to be divided into flat regions. If a human is asked to pick out

several distinct phases (or states) of a time series graph, he is likely to divide the

graph into flat regions. This eyeball method of clustering is also essentially

clustering by slope. Segmentation also relies exclusively on slope: if a minimum-

error line (segment) is well fitted to a set of points it means that the segment has a

consistent slope.

If raw slope values are used in the representative points, then the “distance”

between clusters with slope values 100 and 101 would be the same as the distance

between clusters with slope values 0 and 1. Differences in slopes that are near zero

 21

need to be emphasized because the same absolute change in slope can triple a small

value, and be an insignificant increase for a large value. Relative differences

between slopes cannot be measured by the percentage increase because in the

preceding example, the percentage increase from 0 to 1 is undefined. Gecko uses

representative values of slopes to determine the “distance” between two slopes by

using the equation:

 Representative Slope =

This equation emphasizes slopes near zero and decreases the effect of

changes in slope when the slope values are large. Whenever a slope value is

squared, its representative slope value (approximately) doubles. In the preceding

example of comparing 2 pairs of clusters with slopes {100, 101} and {0, 1} the

representative values of their slopes are {4.615, 4.625} and {0, 0.693}. This

accurately reflects the relative difference between raw slopes and not the absolute

difference.

Calculating the representative slope with a natural logarithm is similar to

using the difference between angles to determine which lines are most similar.

Consider a line with an angle of zero, if one end of the line is increased, the angle

of the line will increase. If another line the same length is already at an eighty-five

degree angle, and the higher end of the line is increased the same amount as before,

the change of angle is much smaller than before. The idea is that a change in slope

near zero is more significant than when the slope has a large magnitude. However,

the problem with using the angle in degrees as the representative slope is that once

the angle gets near ninety degrees (or π/2 radians), an increase in slope will no

longer have an effect on the angle. This prevents lines with large slopes from being

accurately compared to each other because they will all have nearly identical large

angles. The natural logarithm, ln(slope+1), is very similar to converting the slope

 <+−−
≥+

0)1ln(

0)1ln(

slopeifslope

slopeifslope

 22

to degrees (in radians) using arctan(slope). In Figure 3.2, the similar relationship

between ln(slope)+1 and arctan(slope) can be easily seen.

Figure 3.2. Graphs for ln(slope+1) and arctan(slope).

Both curves are nearly identical until the slope increases past approximately 2.25.

After that, arctan(slope) soon reaches its maximum value of π/2. However,

ln(slope+1) continues to increase and has no maximum value. The value of

ln(slope+1) always doubles (approximately) when the slope is squared.

A potential problem with greedily merging the pair of adjacent clusters with

the most similar representative slope is that local minima can prevent the best

merging choice to be made. If two large, flat clusters with a slope of zero are

separated by a very small cluster with a moderately high slope due to noise, the two

large flat clusters will not be merged together to create one large flat cluster

because merging with the very small cluster between them seems like a bad choice.

Sometimes a “moderately bad” merge needs to be performed in order to set up a

“very good” merge. To overcome the local minima, the algorithm should evaluate

not only merging a pair of clusters, but also evaluate merging the pair clusters and

then merging it with an adjacent cluster. Whichever sequence of merges has the

lowest average difference in representative slope values among merged clusters is

 23

picked to be the next merge. Generally, only looking two merges ahead is enough

for good results.

All sets of clusters encountered throughout the merging process can be

efficiently stored in a dendrogram tree. A dendrogram is created by placing all of

the sub-clusters at the leaf nodes of the tree. As each pair of clusters is merged, a

new node is created to represent the new cluster and points to the two clusters that

were merged to create it. The original data points only need to be stored in the leaf

nodes, and the only overhead is to store two new pointers after each pair of clusters

is merged. The data points contained in a cluster can be determined by finding all

of the leaf clusters that are reachable by following its pointers. Recording the order

that clusters were merged together enables any number of clusters between 1 and

the number of initial sub-clusters to be quickly returned from the tree. The number

that will be returned is determined by the final phase of the Gecko algorithm.

3.1.4 Phase 3: Determine Number of Clusters

The last phase of the Gecko algorithm is to determine the number of

clusters to return. Once the correct number of clusters is determined, the set of

clusters is directly extracted from a dendrogram and returned. Our L method is

used to determine the number of clusters. The L method identifies the number of

clusters where additional merges between the two most similar clusters begin to

greatly decrease the clustering quality. The L method is general enough to be used

not only for Gecko, but also for all other segmentation and hierarchical clustering

algorithms. The L method is described in detail in Chapter 4, and is evaluated on

both segmentation and clustering algorithms.

3.2 Empirical Evaluation

The goal of this evaluation is to demonstrate the ability of the Gecko

algorithm to identify states (or clusters) in real time series data. Gecko will be

 24

compared to an existing segmentation algorithm to determine its relative

performances in finding clusters in time series data. The data used to evaluate

Gecko is 10 time series data sets obtained from NASA. The data sets are time

series of valves on the space shuttle.

Each data set contains between 1,000 and 20,000 equally spaced

measurements of current. These 10 data sets contain time series of valves operating

under varying conditions.

3.2.1 Procedures and Criteria

The quality of the clusters produced by Gecko and an existing algorithm

will be evaluating by having a domain expert blindly evaluate the output of each

algorithm. An example of a set of clusters that is returned by Gecko is shown in

Figure 3.3

Figure 3.3. A data set after being clustered by Gecko (16 clusters).

A high quality set of clusters has each cluster corresponding to an important

state in the time series. The experimental procedure is as follows: Gecko and an

existing algorithm, bottom-up segmentation (BUS), cluster the 10 data sets.

Without knowing which output is from which algorithm, a NASA valve expert will

then rate the quality of each set of clusters from 1 to 10. BUS requires user input to

determine the number of segments to return, so the number of segments returned by

 25

BUS is set to be the same number that Gecko returns. Thus, this test is more of a

test between the relative quality of the clusters produced by the two algorithms

when they create the same number of clusters. BUS returns a set of line segments,

but in this evaluation they are considered to be clusters where each segment is a

cluster containing all of the data points within the time range of that segment.

Finally, the valve expert is asked to go over each of the Gecko data sets that he

rated in the second step, and explain his evaluation. Gecko was run with the

default parameter for each data set: minimum cluster size s=10.

3.2.2 Results and Analysis

The first part of Gecko’s evaluation was to compare the number of clusters

it produced to the number produced by an expert human. A summary of the results

is shown in Table 3.1.

Table 3.1. Number of segments found by Gecko and a human expert.

 Gecko NASA Human Expert
Data Set # of clusters # of clusters Reasonable Range

1 16 11 9-20
2 16 10 9-20
3 14 10 9-20
4 12 10 9-20
5 13 7 (6-15)
6 10 5 (5-10)
7 7 6 (6-11)
8 16 10 (9-19)
9 16 12 (10-20)
10 15 11 (9-16)

Gecko was able to identify a number of clusters that was within the range

specified by the expert to be a ‘reasonable range’ (for datasets 5-10 the expert did

not provide a range and we extrapolated from his hand-clustering and his ranges for

data sets 1-4). The human expert consistently created clusterings with fewer

clusters than the Gecko algorithm. However, the clusterings are actually quite

similar. Gecko identifies the same major clusters as the valve expert, but also

 26

produces several ‘transition’ clusters between them. A more detailed evaluation of

the L Method’s ability to determine the number of clusters for more diverse data

sets can be found in Chapter 4.

Table 3.2. Quality of segments produced by Gecko and BUS.

Data Set 1 2 3 4 5 6 7 8 9 10 Avg

Gecko 10 10 9 10 10 10 8 9 9 10 9.5

BUS 2 3 3 3 3 3 8 5 7 6 4.3

The next task performed by the NASA engineer was to rate the clusterings

produced by Gecko and BUS. Table 3.2 contains the clustering quality scores for

Gecko and BUS. Gecko’s average score was 9.5, while the bottom-up

segmentation algorithm’s average score was only 4.3. Notice that Gecko often

receives a perfect clustering score (which signifies a clustering as good as the

human expert’s clustering) even though it returns fewer clusters than the human

expert. For example, Gecko produced nearly twice as many clusters as the human

expert for data set 5, and Gecko still got a perfect rating. This suggests that there is

often a range of “very good” numbers of clusters to return, rather than a single

correct number.

 The final part of Gecko’s evaluation was a discussion with the NASA

engineer about why he gave each score. According to the engineer, BUS divides

regions of high slope into too many clusters. BUS merges clusters together by

keeping the root-mean squared error of the best fit lines to a minimum. This

method measures error vertically. As a consequence, lines that are nearly vertical

may seem visually to be a nearly perfect fit, but the vertical distances from the

points to the line can be huge. Since BUS tends to consider segments with a slope

of large magnitude to have a large amount of error, it favors having more segments

at this highly sloped region to reduce the overall approximation error. This is the

main cause of BUS’s poor performance when rated by the domain expert.

 27

 Another advantage that Gecko had over BUS in this evaluation is that

Gecko was able to identify every major transition where slopes between states

changed drastically. BUS often missed these obvious cluster transitions because it

initially partitions the data by creating N/2 clusters by initially putting every two

points into a cluster. This means that wherever there is a very sharp cluster

boundary, there is a 50% chance that BUS’s initial segments will straddle the

boundary. These small errors often cause more errors during the merging process

and the overall clustering quality suffers. In contrast, the initial partitioning

produced by Gecko in its first phase is careful make sure that all important cluster

boundaries occur only on the edges of clusters.

 Our implementation of Gecko is able to cluster a 1,000 point data sets in 7

seconds. A 20,000 point data set takes approximately 7.5 minutes to cluster.

However, sampling can be performed to increase the execution time without very

little effect on the quality of the output unless the user wishes to discover very

small clusters that would be smoothed over by over-sampling. About 90% of the

execution time is due to phase 1 of the Gecko algorithm where the initial sub-

clusters are created by repeatedly bisecting a k-nearest neighbor graph. Building a

k-nearest neighbour graph and recursively bisecting it is much more

computationally expensive than the merging method used in the second phase.

3.3 Summary

The proposed Gecko clustering algorithm is designed to cluster time series

data, and uses our proposed L method to determine a reasonable number of clusters

efficiently.

Our empirical evaluations have shown that Gecko returns a set of clusters

(or states) comparable to that of a human expert. Additionally, the L method used

by the Gecko algorithm returns a number of clusters that is similar to the number

that is generated by a human expert. When the human expert was asked to rate

 28

Gecko’s clusterings from 1-10, Gecko’s clusterings were given perfect ratings on 6

of 10 data sets and had an average score of 9.5. A perfect rating of 10 signifies that

Gecko’s clustering is equally as good as the human expert’s clustering. For

comparison, the bottom-up segmentation algorithm was also tested, and was only

given an average rating of 4.3.

Gecko is an improvement over existing segmentation algorithms in two

ways. First, Gecko uses a relative distance function that creates a more visually

appealing set of clusters than existing methods when smaller numbers of clusters

are produced. Second, Gecko’s initial sub-clusters that are created in during its

top-down pass in phase 1 are an improvement over existing bottom-up

segmentation algorithms that initially naively create N/2 segments with pairs of

points. This improvement in initial partitioning is not specific to the Gecko

algorithm and can also be used for other bottom-up segmentation algorithms. .

 The L Method, which selects the number of clusters to return in the Gecko

algorithm, will be explained in the following chapter.

 29

Chapter 4

Determining the Number of
Clusters/Segments in

Clustering/Segmentation Algorithms

 While clustering and segmentation algorithms are unsupervised learning

processes, users are usually required to set some parameters for these algorithms.

These parameters vary from one algorithm to another, but most clustering and

segmentation algorithms require a parameter that either directly or indirectly

specifies the number of clusters/segments. This parameter is typically either k, the

number of clusters/segments to return, or some other parameter that indirectly

controls the number of clusters to return, such as an error threshold. Setting these

parameters requires either detailed pre-existing knowledge of the data, or time-

consuming trial and error. The latter case still requires that the user has sufficient

domain knowledge to know what a good clustering “looks” like. However, if the

data set is very large or is multi-dimensional, human verification could become

difficult. To automatically find a reasonable number of clusters, many existing

methods must be run repeatedly with different parameters, and are impractical for

real-world data sets that are often quite large.

We wish to develop an algorithm that can automatically and efficiently

determine a reasonable number of clusters/segments to return from any hierarchical

clustering/segmentation algorithm. In the previous chapter, the Gecko algorithm

made use of the L method to automatically select the number of clusters to return.

This chapter will explain the L method in detail and evaluate it on several

clustering and segmentation algorithms using multiple data sets.

 30

Section 4.1 gives and overview of the L method. Section 4.2 contains an

empirical evaluation of the L method on diverse data sets for three clustering

algorithms and three segmentation algorithms. The performance of the L method is

also evaluated against two existing methods to determine the number of clusters or

segments in a data set. Section 4.3 summarizes our study of the L method.

4.1 The L Method

In order to identify the correct number of clusters to return from a

hierarchical clustering/segmentation algorithm, we introduce the L method.

Hierarchical algorithms either merge the two most similar clusters together

(bottom-up), or split the least internally homogeneous cluster into two (top-down).

The definition of a “cluster” is not well-defined, and measuring cluster quality is

rather subjective. Thus, there are many clustering algorithms with unique

evaluation functions and correspondingly unique notions of what a good cluster

“looks” like. The L method makes use of the same evaluation function that is used

by a hierarchical algorithm during clustering or segmentation to construct an

evaluation graph where the x-axis is the number of clusters and the y-axis is the

value of the evaluation function during the merge or split at x clusters. The knee,

or the point of maximum curvature of this graph, is used as the number of clusters

to return. The knee is determined by finding the area between the two lines that

most closely fit the curve. The L method only needs the clustering/segmentation

algorithm to be run once, and the overhead of determining the number of clusters is

trivial compared to the runtime of the clustering/segmentation algorithm.

4.1.1 Evaluation Graphs

The information required to determine an appropriate number of

clusters/segments to return is contained in an evaluation graph that is created by the

clustering/segmentation algorithm. The evaluation graph is a two-dimensional plot

 31

where the x-axis is the number of clusters, and the y-axis is a measure of the quality

or error of a clustering consisting of x clusters. Some approaches use similar

graphs that they are often generated by re-running the entire clustering or

segmentation algorithm for every value on the x-axis, which is quite inefficient.

Since hierarchical algorithms either split or merge a pair of clusters at each step, all

clusterings containing ‘1’ to ‘ the number of clusters in the fine-grain clustering’

clusters can be produced by running the clustering algorithm only once.

The y-axis values in the evaluation graph can be any evaluation metric, such

as: distance, similarity, error, or quality. These metrics can be computed globally

or greedily. Global measurements compute the evaluation metric based on the

entire clustered data set. A common example is the sum of all the pairwise

distances between points in each cluster. Most global evaluation metrics are

computed in O(N2) time, where N is the number of points in the data set. Thus, in

many cases, it takes longer to evaluate a single set of clusters than it takes to create

them. Since the evaluation function must be run for every potential number of

clusters, this method is too inefficient. The alternative is to use greedy

measurements. The greedy method works in hierarchical algorithms by evaluating

only the two clusters that are involved in the current merge or split, rather than the

entire data set.

Many “external” evaluation methods attempt to determine a reasonable

number of clusters by evaluating the output of an arbitrary clustering algorithm.

Each evaluation method has its own notion of cluster quality. Most external

methods use pairwise-distance functions that are heavily biased towards spherical

clusters. Such methods would be unsuitable for a clustering algorithm that has a

different notion of cluster distance/similarity. For example, Chameleon (Karypris,

Hun & Kumar 1999) uses a complex similarity function that can produce

interesting non-spherical clusters, and even clusters within clusters. Therefore, the

 32

L method is integrated into the clustering algorithm and the metric used in the

evaluation graph is the same metric used in the clustering algorithm.

Figure 4.1. A sample evaluation graph.

An example of an evaluation graph produced by the Gecko segmentation

algorithm (discussed in the previous chapter) is shown in Figure 4.1. The y-axis

values are the distances between the two clusters that are most similar at x clusters.

This is a greedy approach, since only the two closest clusters being merged are

used to generate the value on the y-axis. The curve in Figure 4.1 has three

distinctive areas: a rather flat region to the right, a sharply-sloping region to the

left, and a curved transition area in the middle.

In Figure 4.1, starting from the right, where the merging process begins at

the initial fine grain clustering (for a bottom-up hierarchical algorithm), there are

many very similar clusters to be merged and the trend continues to the left in a

rather straight line for some time. In this region, many clusters are similar to each

other and should be merged. Another distinctive area of the graph is on the far left

side where the merge distances grow very rapidly (moving right to left). This rapid

increase in distance indicates that very dissimilar clusters are being merged

together, and that the quality of the clustering is becoming poor because clusters

are no longer internally homogeneous. If the best available remaining merges start

becoming increasingly poor, it means that too many merges have already been

 33

performed. A reasonable number of clusters is therefore in the curved area, or the

“knee” of the graph. This knee region is between the low distance merges that

form a nearly straight line on the right side of the graph, and the quickly increasing

region on the left side. Clusterings in this knee region contain a balance of clusters

that are both highly homogeneous, and also dissimilar to each other. Determining

the number of clusters where this knee region exists will therefore give a

reasonable number of clusters to return.

Locating the exact location of the knee, and along with it the number of

clusters, would seem problematic if the knee is a smooth curve. In such an

instance, the knee could be anywhere on this smooth curve, and thus the number of

clusters to be returned seems imprecise. Such an evaluation graph would be

produced by a data set with clusters that are overlapping and not very well

separated. Time series data is usually a continuous function that does not contain

data that is well-separated. In such instances, there is no single ‘correct’ answer

and all of the values along the knee region are likely to be reasonable estimates of

the number of clusters. Thus, an ambiguous knee indicates that there probably is

no single ‘correct’ answer, but rather a range of acceptable answers.

4.1.2 Finding the Knee via the L Method

In order to determine the location of the transition area or knee of the

evaluation graph, we take advantage of a property that exists in these evaluation

graphs. The regions to both the right and the left of the knee (see Figure 4.2) are

often approximately linear. If a line is fitted to the right side and another line is

fitted to the left side, then the area between the two lines will be in the same region

as the knee. The value of the x-axis at the knee can then be used as the number of

clusters to return. Figure 4.2 depicts an example.

 34

Figure 4.2. Finding the number of clusters using the L method.

To create these two lines that intersect at the knee, we will find the pair of

lines that most closely fit the curve. Figure 4.3 shows all possible pairs of best-fit

lines for a graph that contains seven data points (eight clusters were repeatedly

merged into a single cluster). Each line must contain at least two points, and must

start at either end of the data. Both lines together cover all of the data points, so if

one line is small, the other is large to cover the rest of the remaining data points.

The lines cover sequential sets of points, so the total number of line pairs is

numOfInitialClusters-4. Of the four possible line pairs in Figure 4.3, the pair that

fits their respective data points with the minimum amount of error is the pair on the

bottom left. Our approach to finding these two lines is essentially an optimal

segmentation algorithm for finding two segments (k=2).

Figure 4.3. All four possible pairs of best-fit lines for a small evaluation graph.

 35

Consider a ‘# of clusters vs. evaluation metric' graph with values on the x

axis up to x=b. The x-axis varies from 2 to b, hence there are b-1 data points in the

graph. Let Lc and Rc be the left and right sequences of data points partitioned at

x=c; that is, Lc has points with x=2...c, and Rc has points with x=c+1…b, where

c=3…b-2. Equation 1 defines the total root mean squared error RMSEc, when the

partition of Lc and Rc is at x=c:

)(
1

)(
1

1
ccc RRMSE

b

cb
LRMSE

b

c
RMSE ×

−
−+×

−
−= [1]

where RMSE(Lc) is the root mean squared error of the best-fit line for the sequence

of points in Lc (and similarly for Rc). The weights are proportional to the lengths of

Lc (c-1) and Rc (b-c). We seek the value of c, c*, such that RMSEc is minimized,

that is:

 cc RMSEc minarg* = [2]

The location of the knee at x=c* is used as the number of clusters to return.

In our evaluation, the L method determined the number of clusters in only

0.00004% to 0.9% of the execution time required by the clustering algorithm. The

time it takes for the L method to execute directly corresponds to the number of

points in the evaluation graph. Since the number of points in the evaluation graph

is controlled by the number of clusters at the finest grain clustering, the L method

runs much faster for clustering algorithms that do not have an overly-fine initial

clustering.

The L method is very general and contains no parameters or constants. The

number of points along the x-axis of the evaluation graph is not a parameter. It is a

result of the clustering algorithm used to generate those points. The maximum x

value in the evaluation graph is either the number of clusters at the initial fine grain

clustering in a bottom-up algorithm, or the number of clusters in the final clustering

in a top-down algorithm.

 36

4.1.3 Iterative Refinement

Some bottom-up algorithms create an initial fine-grain clustering by

initially treating every data point as a cluster. This can cause an evaluation graph to

be as large as the original data set. If such an evaluation graph has thousands of

merge values, the ones representing merges at extremely fine-grain clusterings

(large values of x) are irrelevant. Such a large number of irrelevant data points in

the evaluation graph can prevent an “L” shaped curve, or more specifically a flat

region to the right of the knee.

Figure 4.4. Full and partial evaluation graphs created by CURE. Only the

first 100 points are shown on the right side.

Figure 4.4 shows a 9,000 point evaluation graph on the left, and the first

100 data points of the same graph on the right. The graph on the right is a more

natural “L” shaped curve, and the L method is able to correctly identify that there

are 9 clusters in the data set. However, in the full evaluation graph, there are so

many data points to the right side of the “correct” knee, that the very few points on

the left of that knee become statistically irrelevant. The L method performs best

when the sizes of the two lines on each side of the knee are reasonably balanced.

When there are far too many points on the right side of the actual knee, the knee

that is located by the L method will most likely be larger than the actual knee. In

the full evaluation graph, containing 9,000 data points, the knee is incorrectly

 37

detected at x=359, rather than x=9. However, when many of the irrelevant points

are removed from the evaluation graph, such as all points greater than x=100 (see

the right side of Figure 4.4), the correct knee is located at x=9. The following

algorithm shown in Figure 4.5 iteratively refines the knee by adjusting the focus

region and reapplying the L method (note that the clustering algorithm is not

reapplied).

Figure 4.5. Pseudocode to Iterative Refine the knee with the L Method.

This algorithm initially runs the L method on the entire evaluation graph.

The value of the knee becomes the middle of the next focus region and the L

method becomes more accurate because the lines on each side of the true knee are

becoming more balanced. Since the refinement stops when the knee does not move

to the left after an iteration, the focus region decreases in size after every iteration

(except the final iteration). The true knee is located when the L method returns the

same value as the previous iteration (line #10, or if the current pass returns a knee

that has a roughly balanced number of points on each side of the knee (also line

#10). The 9,000 point evaluation graph in Figure 4.4 takes four iterations to

Iterative Refinement of the Knee

Input: evalGraph (a full evaluation graph)
Output: the x-axis value location of the knee (also the suggested

number of clusters to return)

 1| int cutoff =
 2| lastKnee =
 3| currentKnee = EvalGraph.size()
 4|
 5| REPEAT
 6| {
 7| lastKnee = currentKnee
 8| currentKnee = LMethod(evalGraph,cutoff)
 9| cutoff = currentKnee*2
10| } UNTIL currentKnee ≥ lastKnee
11|
12| RETURN currentKnee

 38

correctly determine that there are 9 clusters in the data set (9,000 � 359 � 15 � 9

� 9). The cutoff value is not permitted to drop below ~20 in the “LMethod(),”

because a reasonable number of points are needed for the two fitted-lines to fit

actual trends, rather than detecting spurious trends indicated by a small number of

points in the evaluation graph. The minimum cutoff size of 20 performed well on

all tests that have been run to date and it will most likely never need to be changed.

The minimum cutoff size can therefore most likely be treated as a constant rather

than a parameter (keeping the L method ‘parameterless’).

Iteratively refining the knee does not significantly increase the execution

time of the L method. Iterative refinement converges on the knee in very few

iterations (usually less than three), and the first iteration is run with an evaluation

graph that is much larger than those in later iterations. The L method is an O(N2)

algorithm with respect to the size of the evaluation graph. This means that the vast

majority of the execution time is during the first iteration, when the evaluation

graph is much larger. Evaluation graphs with fewer than 1,000 points can be

evaluated in less than a few seconds; however, a 9,000 point evaluation graph takes

several minutes. In practice, it is usually permissible to ignore points in an

evaluation past some large number when it is unlikely (or undesirable) for such a

large number of clusters to exist in the data set.

4.1.4 Refinements for Segmentation Algorithms

Evaluation graphs for segmentation algorithms can often be very jumpy

when segmenting noisy data. The exact nature of the curve may be easy to

determine visually, but there can be a great number of points that do not fit the

curve. These stray points on the evaluation graph generally do not occur

consecutively. These stray points can prevent the L method from accurately

locating the knee. However, because they do not usually occur consecutively, the

 39

curve can be smoothed by only using the highest valued point of every consecutive

pair when computing the best-fit lines of the curve.

Another potential problem is that sometimes the evaluation graph will reach

a maximum (moving from right to left) and then start to decrease. This can be seen

in Figure 4.2, where the distance between the closest segments reaches a maximum

at x=4. This can prevent an “L” shaped curve from existing in the evaluation

graph. The data points to the left of the maximum value (the ‘worst’ merge) can be

ignored. This occurs in some algorithms that have distance functions that become

undefined when the remaining clusters are extremely dissimilar to each other.

4.2 Empirical Evaluation

The goal of this evaluation is to demonstrate the ability of the L method to

identify a reasonable number of clusters to return in hierarchical clustering and

hierarchical segmentation algorithms. Each algorithm will be run on a number of

data sets and the number of clusters that the L method identifies is compared to the

‘correct’ answer. Existing methods to determine the number of segments or

clusters in a data set will also be evaluated on the same data sets, and their

performance will be compared to that of our L method. Section 4.2.1 evaluates the

L Method for Clustering algorithms, and section 4.2.1 evaluates the L Method on

segmentation algorithms.

4.2.1 Identifying the Number of Clusters

In this section, the L Method and an existing method will be evaluated with

hierarchical clustering algorithms on synthetic two dimensional data sets. The data

sets are synthetic and have a “correct” number of clusters to compare to the number

of clusters identified by the L method.

 40

4.2.1.1 Procedures and Criteria

The seven diverse data sets used to evaluate the L method for clustering

algorithms vary in size, number of clusters, separation of clusters, density, and

amount of outliers. There are some data sets that contain only spherical clusters,

and some which contain very non-spherical clusters, including clusters within

clusters. The seven spatial data sets that were used are (see Figure 4.6):

1. A data set with four well separated spherical clusters (4,000 pts).

2. Nine square clusters connected at the corners (9,000 pts).

3. Ten spherical clusters. Five overlapping clusters similar to data set #7 (not

shown), as well as five additional well separated clusters and a uniform

distribution of outliers (5,200 pts).

4. Ten well separated clusters of varying size and density (5,000 pts).

5. A 9 cluster data set used in the Chameleon paper, but with the outliers

removed. Non-spherical clusters with clusters completely contained within

other clusters (~9,100 pts).

6. An 8 cluster data set used in the Chameleon paper, but with the outliers

removed. Non-spherical clusters with clusters partially enveloping other

clusters (~7,600 pts).

7. Five spherical clusters of equal size and density. The clusters are all close

to each other and slightly overlapping (5,000 pts, not in Figure 4.6).

 41

Figure 4.6. Data sets 1-6 for evaluating the L method in clustering algorithms

(data set #7 not shown).

The clustering algorithms used to test the L method were Chameleon and

CURE. Chameleon was implemented locally and was run with the parameters:

k=10 (k nearest neighbors, not k clusters), minSize=3%, and α=2. CURE was

implemented as specified in the CURE paper (Guha, Rastogi & Shim 1998), with

the shrinking factor set to 1/3 and the number of representative points for each

cluster set to 10.

CURE, Chameleon, and a standard implementation of K-means was used to

evaluate the Gap Statistic’s relative performance against that of the L method. The

Gap Statistic was calculated using the Gap/unf variant (Tibshirani, Walther &

Hastie 2003). The Gap statistic must be run for each user-specified potential value

 42

for the number of clusters. The potential number of clusters evaluated by the Gap

statistic were k={2…20}. Both the L method and the Gap statistic were tested on

CURE and Chameleon for a direct comparison. However, the Gap statistic was

also evaluated on the K-means algorithm, because K-means was used by Tibshirani,

Walther, and Hastie (2003) to evaluate the Gap statistic. It is important to note that

for every different clustering algorithm, the L method’s evaluation graph contains

values (on the y-axis) created by the particular clustering algorithm’s evaluation

function, while the Gap statistic uses pairwise distances to evaluate clusters

regardless of the clustering algorithm that produced them. Thus, the L method’s

performance is more likely to be consistent over different clustering algorithms,

while the Gap statistic will only work well for clustering algorithms that measure

cluster quality similar to its own fixed method.

The experimental procedure for evaluating the performance of the L method

for hierarchical clustering algorithms consists of running the CURE and

Chameleon clustering algorithms, which have been modified to automatically

determine the number of clusters to return through use of the L method, on seven

diverse data sets (shown in Figure 4.6). The number of clusters automatically

returned will be compared to the correct number of clusters. The data sets are

synthetic, so the correct number of clusters is known. These results will also be

compared to the number of clusters suggested by the existing Gap statistic for

CURE, Chameleon, and also the K-means clustering algorithm.

4.2.1.2 Results and Analysis

The correct number of clusters was determined by the L method 6 out of 7

times for Chameleon and 4 out of 5 times for the CURE algorithm. The results are

contained in Table 4.1. The actual number of clusters suggested for CURE on data

set #3 was 9. However, in the presence of outliers, CURE creates a number of very

small clusters that contain only outliers. After removing these small clusters, only

 43

six clusters remained. Data sets #5 and #6 contain complex clusters and could only

be properly clustered by Chameleon; “N/A” is placed in the cells of Table 4.1

where the number of clusters suggested was not evaluated because the clustering

algorithm was unable to produce the correct set of clusters.

Table 4.1. Results of using the L method and the Gap statistic with various
clustering algorithms.

Data Set

Number of
Clusters

Predicted by
L Method

Num of Clusters
Predicted by Gap

Statistic

data set

correct
number

of
clusters

Cham-
eleon

CURE
Cham-
eleon

CURE
K-

means

1 4 4 4 4 4 4
2 9 9 9 2 2 2
3 10 11 6 (9) 2 2 2
4 10 10 10 2 2 2
5 9 9 N/A 2 N/A N/A
6 8 8 N/A 2 N/A N/A
7 5 5 5 2 2 2

Exact Matches 6 of 7 4 of 5 1 of 7 1 of 5 1 of 5

The Gap statistic was only able to determine the correct number of clusters

for one of the seven data sets, regardless of the clustering algorithm used. The Gap

statistic performs similarly to many existing methods (Tibshirani, Walther & Hastie

2003), and only works well for well-separated, circular clusters (only data set #1

satisfies these constraints). The Gap statistic tended to suggest far too few clusters

because the cluster separation was not great enough for it to consider the clusters to

be distinct.

The correct number of clusters was not determined for either algorithm on

data set #3, which contained many outliers and a mixture of both well separated

and overlapping clusters. In the evaluation graph for CURE, there is a large

smooth knee that spans approximately 200 data points. Most of the merges in this

 44

region are between outliers, but there are also merges of the five overlapping

clusters mixed in. There is no sharp knee until after all of the five overlapping

clusters have already been merged together. The clusters returned by CURE were

not ‘correct’, but they weren’t too bad either. The six clusters returned by the L

method were the five well separated clusters, and the group of overlapping clusters

in the center (see data set #3 in Figure 4.6). Even though the L method

recommends four fewer clusters than the ‘correct’ answer, the six recommended

clusters have a more uniform separation than the ‘correct’ answer. In this case, the

best number of clusters is open to interpretation. The answer given for Chameleon

on data set #3 was off by one because the knee of the curve was not sharp enough

for the L method to identify the exact number of clusters. This is most likely due to

a weakness in our Chameleon implementation, which does not contain a graph

bisection algorithm that is as powerful as the one described in the Chameleon

(Karypris, Hun & Kumar 1999) paper.

The L method determines the number of clusters to return by examining the

evaluation graphs produced by each clustering algorithm. Examples of evaluation

graphs are shown in Figure 4.7, where the x-axis is the number of clusters, and the

y-axis is the value of the clustering algorithm’s evaluation function at x clusters.

Notice that the y-axis values in CURE evaluation graphs generally increase from

right to left, while the Chameleon evaluation graphs generally decrease from right

to left. This is because CURE’s evaluation metric measures distance and

Chameleon’s evaluation metric measures similarity.

 45

Figure 4.7. Actual number of clusters and the correct number predicted by the

L method (axes: x= # of clusters, y=evaluation metric – lines: solid
lines=correct # of clusters, dashed lines=# of clusters determined by L

method).

In Figure 4.7, the solid line indicates where the correct number of clusters

is, while the dashed line indicates the number of clusters suggested by the L

method. The lines are directly next to each other in each case which indicates that

the correct number of clusters was determined. The best number of clusters is

usually just before a large jump in the evaluation graph. To the left of the jump

dissimilar clusters have been merged together creating inhomogeneous clusters;

and to the right of the jump there are too many clusters that are similar to each

other. Since a good cluster is loosely defined to be one that is both internally

homogeneous and dissimilar to other clusters, the location of the jump should be a

good measure of the best number of clusters.

The L method runs more quickly for clustering algorithms that do not have

an overly-fine initial clustering, because these algorithms have smaller evaluation

graphs. Chameleon initially produces fine grain clusterings that contain fewer than

100 clusters and the L method needs less than 0.01 seconds to determine the

 46

number of clusters. CURE produces the finest initial clustering possible, which

creates evaluation graphs with up to 8,999 points in our evaluation. With CURE,

the L method’s run-time is between 40 seconds and 4 minutes. This execution time

can be drastically reduced, to a much less than one second, by only evaluating the

first maxk points in the evaluation graph, where maxk is some large number

guaranteed to be more than the actual number of clusters. In our evaluation, the L

method determined the number of clusters to return in less than 0.9% of the total

execution time for CURE and less than 0.003% of the total execution time for

Chameleon. Runtime for the Gap statistic is significantly slower. The Gap statistic

must be run for each potential number of clusters, and since it calculates pairwise

distances within a cluster, its run-time (to evaluate just a single potential number of

clusters) approaches O(N2). In our evaluation, the Gap statistic took up to 28

minutes to evaluate the clusterings in the range k={2…20}, and took several times

longer to evaluate each clustering than the clustering algorithm needed to produce

it.

4.2.2 Identifying the Number of Segments

In this section the L Method and an existing method will be evaluated on

hierarchical segmentation algorithms and one-dimensional time series data. The L

Method will be used by three segmentation algorithms on seven data sets. Three

data sets are synthetic and have a single “correct” answer, while the other four are

real data sets and have a range of reasonable numbers of segments to compare to

the number of segments identified by the L method

4.2.2.1 Procedures and Criteria

The experimental procedure for evaluating the L method in segmentation

algorithms consists of running two different segmentation algorithms on seven

different data sets and determining if a ‘reasonable’ number of segments is

 47

suggested by the L method. This number of segments suggested will then be

compared to the ‘correct’ number of segments, and also the number suggested by

the existing permutation tests method (Vasko & Toivonen 2002).

Figure 4.8. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in

segmentation algorithms.

The time series data sets used to evaluate the L method for hierarchical

segmentation algorithms are a combination of both real and synthetic data. The

seven time series data sets used for this evaluation (shown in Figure 4.8) are:

1. A synthetic data set consisting of 20 straight line segments (2,000 pts).

2. The same as #1, but with a moderate amount of random noise added (2,000

pts, not in Figure 4.8).

 48

3. The same as #1, but with a substantial amount of random noise added

(2,000 pts).

4. An ECG of a pregnant woman from the Time Series Data Mining Archive

(Keogh & Folias 2004). It contains a recurring pattern (a heart beat) that is

repeated 13 times (2,500 pts).

5. Measurements from a sensor in an industrial dryer (from the Time Series

Data Mining Archive). The time series appears similar to random walk data

(876 pts).

6. A data set depicting sunspot activity over time (from the Time Series Data

Mining Archive). This time series contains 22 roughly evenly spaced

sunspot cycles, however the intensity of each cycle can vary significantly

(2,900 pts).

7. A time series of a space shuttle valve energizing and de-energizing (1,000

pts).

A ‘correct’ number of segments for a particular data set and segmentation

algorithm is obtained by running the algorithm with various values of k (controls

the number of segments returned), and determining what particular value or range

of values of k produces a ‘reasonable’ PLA (piecewise linear approximation). The

PLAs that are considered ‘reasonable’ are those at a value of k, where no adjacent

segments are very similar to each other and all segments are internally

homogeneous (segments have small error). The synthetic data sets have a single

correct value for k. The real sets have no single correct answer, but rather a range

of reasonable values. The reasonable and best numbers of segments for the real

data sets may vary for each algorithm. A single ‘best’ number of segments cannot

be used for all of the segmentation algorithms because one number that produces

the best set of segments for one algorithm may produce a poor set of segments for

another on the same data set.

 49

The segmentation algorithms used in this evaluation were Gecko (discussed

in Chapter 3) and bottom-up segmentation (BUS). BUS (bottom-up segmentation)

is a hierarchical algorithm that initially creates many small segments and repeatedly

joins adjacent segments together. More specifically, BUS evaluates every pair of

adjacent segments and merges the pair that causes the smallest increase in error

when they are merged together. BUS was tested with the L method using two

different values on the y-axis of the evaluation graph. The two variants are named

BUS-greedy and BUS-global. BUS-greedy’s y-axis in the evaluation graph is the

increase in error of the two most similar segments when they are merged, and BUS-

global’s y-axis is the error of the entire linear approximation when there are x

segments (absolute error). The existing ‘permutation tests’ method was also

evaluated using BUS.

Both Gecko and BUS made use of an initial top-down pass to create the

initial fine-grain segments. The minimum size of each initial segment generated in

the top down pass was 10. For the permutation test algorithm, p was set to 0.05,

and 1,000 permutations were created. The parameter p controls the percentage of

permutated time series that must be increasing in quality faster than the original

time series to stop creating more segments.

4.2.2.2 Results and Analysis

A summary of the results of the L method’s and permutation tests’ ability to

automatically determine the number of segments to return from segmentation

algorithms is contained in Table 4.2. For both Gecko and BUS, the ‘reasonable’

range of correct answers is listed. These ranges may vary between the two

algorithms because BUS and Gecko do not merge segments in exactly the same

sequence. However, BUS-greedy, BUS-global, and permutation tests all produce

identical PLAs for k segments, and therefore have identical ‘reasonable’ answers.

The first three data sets are synthetic and have a single correct answer, but the other

 50

data sets have a range of ‘reasonable’ answers. Data set #5 is similar to random

walk data, and any number of segments seemed reasonable because there was no

underlying structure in the time series.

Table 4.2. Results of using the L method with three hierarchical segmentation
algorithms.

 Gecko Bottom-up Segmentation

Gecko

w/ L method

BUS-
greedy
w/ L

method

BUS-
global
w/ L

method

BUS
w/

permutation
Tests

Data Set
Reasonable

of
segments

Number
of

segments
found

Reasonable
of

segments

Number
of

segments
found

Number
of

segments
found

Number
of

segments
found

1 20 20 20 20 20 25

2 20 20 20 20 20 34

3 20 N/A 20 20 19 25

4 42-123 92 42-123 46 106 2

5 ? 32 ? 14 39 15

6 44-57 45 45-53 48 39 6

7 9-20 17 14-21 9 13 65

Reasonable
-Range
Matches

 5 of 5 5 of 6 3 of 6 0 of 6

The L method worked very well for both BUS-greedy and Gecko. It

correctly identified a number of segments for BUS-greedy that was within the

reasonable range in 5 out of the 6 applicable data sets. Gecko, which also uses a

greedy evaluation metric (but uses slope rather than segment error), had the L

method suggest a number of segments within the reasonable range for all 5

applicable data sets. Gecko was unable to correctly segment data set #3 (indicated

by “N/A” in Table 4.2) because it contained too much noise. In all but one test

case (10 of 11), the L method was able to correctly determine that the three

 51

synthetic data sets contained exactly twenty segments. BUS-global did not perform

quite as well. The L method was only able to return a reasonable number of

segments for BUS-global in half of its test cases, but all of its incorrect answers

were close to being correct.

Permutation tests did not perform well and never determined a reasonable

number of segments. The reason that permutation tests did poorly varied

depending on the data set. Data set #1 is synthetic and contains no noise, which

allows a PLA to approximate it with virtually zero error. However, measuring a

relative increase in error when the error is near zero causes unexpected results

because relative increases are either very large or undefined when the error is at or

near zero. For data set #4 and #6, the relative change in approximation error is

rather constant regardless of the number of segments. On data set #4, the PLA

between 2 and 3 segments has nearly zero relative change in error, which causes

permutation tests to incorrectly assume that the data has been over-fitted and stop

producing segments prematurely. An example of far too many segments being

returned occurs on data set #7, where the relative error of the time series never falls

below the relative error of the permutations until far too many segments are

produced.

Some of the evaluation graphs used by the L method for Gecko, BUS-

greedy, and BUS-global are shown in Figure 4.9. The lower left portion of Figure

4.9 contains the L method’s evaluation graph for Gecko on data set #1, the noise-

free synthetic data set. The x-axis is the number of segments, and the y-axis is

Gecko’s evaluation metric at x segments (distance between two closest adjacent

segments when there are x segments). The evaluation graph is created right to left

as segments are meged together. In this case, the correct number of segments is

easily determined by the L method because there is a very large jump at x=20. In

the lower right corner of Figure 4.9, the range of correct answers lies between the

two long lines. The range is larger than for data set #1 because the segments have

 52

less ‘separation’ and there is no sharp knee. Instead there is a range of good

answers. However, the L method suggests a number of segmetns that just misses

the reasonable range.

Figure 4.9. The reasonable range for the number of segments and the number
returned by the L method. (axes: x=# of segments, y=evaluation metric – short
dashed line=# of segments determined by the L method, long solid lines=marks

the boundaries of the reasonable range for the # of segments.

In the evaluation graph in the top left of Figure 4.9 (data set #4 BUS-

greedy), the L method returned a number of segments that was towards the low

end of the reasonable range. Remember, that for segmentation algorithms, all data

ponits to the left of the data point with the maximum value are ignored (discussed

in the last section of 3.3). The best number of segments is 42. At 42 segments

each heart beat contains approximately 3 segments. If there are fewer than 42

segments, they are no longer homogeneous. However, PLAs with significantly

more segments (up to 123) are still reasonable because each new segment still

significantly reduces the error. However, if there are more than approximately 123

segments, adjacent segments start to become too similar to each other.

 53

The evaluation graph shown in the upper-right portion of Figure 4.9 also

has ‘better’ PLAs when the number of segments is near the low end of the

reasonable range (fewer segmetns). This is common because the best set of

segments is often the minimal set of segments that adequately represents the data.

Even though there is apparently no significant knee in this evaluation graph, a good

number of segments can still be found by the L method. This is because the knee

found by the L method does not necessarily have to be the point of maxium

curvature. It may also be the location between the two regions that have relatively

steady trends. Thus, the L method is able to determine the location where there is a

significant change in the evaluation graph and it becomes erratic (x<44). In this

case it indicates that too many segments have been merged together and the

distance function is no longer as well-defined.

The poorer performance of BUS-global (compared to Gecko and BUS-

greedy) is due to a lack of prominence in the knee of the curve compared to greedy

methods (see lower-right graph in Figure 4.9). Greedy evaluation metrics increase

more sharply at the knee, while global metrics have larger more ambiguous knees

in their evaluation graph. A potential problem is if more than one knee exists in the

evaluation graph. This is typically not a problem if one knee is significantly more

prominent than the others. If there are two equally prominent knees, the L method

is likely to return a number of segments that falls somewhere between those two

knees. This is acceptable if all of the values between the two knees are reasonable.

If not, a poor number of segments will most likely be returned by the L method.

The L method took approximately 0.01 seconds to determine the number of

segments in every test cases and the segmentation algorithms took anywhere from

9 to 30 seconds to execute. The L method never required more than 0.1% of the

total execution time to determine the number of segments. In stark contrast,

permutation tests required up to 5 hours because each permutation of the original

time series had to be segmented.

 54

4.3 Summary

We have detailed our L method, which has been shown to work reasonably

well in determining the number of clusters or segments for hierarchical

clustering/segmentation algorithms. Hierarchical algorithms that have greedy

evaluation metrics perform especially well. In our evaluation, the L method was

able to determine a reasonable number of segments in 10 out of 11 instances for

greedy hierarchical segmentation algorithms, and a correct number of clusters in 10

of 12 instances for hierarchical clustering algorithms. Algorithms with global

evaluation metrics did not work as well with the L method because the knees in the

evaluation graphs are not as prominent and easy to detect. The Gap statistic and

permuation tests were also evaluated and the L method achieved much better

results in our evaluation. The L method is also much more efficient than both the

Gap statistic and permutation tests, typically requiring only a fraction of a second

to determine the number of clusters rather than minutes or even many hours in the

case of permutation tests.

Iterative refinement of the knee is a very important part of the L method.

Without it, the L method would only be effective in determining the number of

clusters/segments if the evaluation graph did not contain a large number of points.

The iterative refinement algorithm explained in this chapter enables the L method

to always run under optimal conditions: balanced lines on each side of the knee no

matter how large the evaluation graph is or where the knee is located.

Like most existing methods, the L method is unable to determine if the

entire data set is an even distribution and consists of only a single cluster (the null

hypothesis). However, the L method also has the limitation that it cannot

determine if only two clusters should be returned. Future work will explore

possible modifications to the L method that will enable it to determine when only

one or two clusters should be returned.

 55

Chapter 5

Time Series Anomaly Detection
Using States

 The previous two chapters discussed a method to find the operational states

in a time series. This chapter will introduce a method that can use the identified

operational states in a time series to create a model of the normal time series. This

model is in a format that can be easily read and understood by a human user. Once

this model is created, it can be used to determine if other time series deviate

significantly from it. Any deviation from the normal model is considered to be an

anomaly.

5.1 Anomaly Detection System

Expert (knowledge-based) systems are often used to help humans monitor

and control critical systems in real-time. For example, NASA uses expert systems

to monitor various devices on the space shuttle. However, populating an expert

system’s knowledge base by hand is a time-consuming process. Instead, machine

learning techniques can be used to generate the knowledge necessary to monitor the

operation of devices or systems. This section introduces a method for generating

models that can detect anomalies in time series data. Nearly all of the existing

work in time series anomaly detection relies on models that are not easily readable

and hence cannot be modified by a human for tuning purposes. Examples include a

set of normal sequences (Dasgupta & Forrest 1996) and adaptive resonance theory

(Caudell & Newman 1993). However, Langley et al. (2003) propose a method that

uses process models to model a time series and predict future data. These process

 56

models are concise and are easily read and modified by humans, but their

generation requires parameters to be set by a human that must have knowledge of

the underlying processes that produce the time series. It is important for this model

to be in an easily readable format that will allow human users to verify the model

and modify it if necessary. This allows the user to understand why an anomaly was

reported, and can help the user to quickly and appropriately respond to it. A

transparent anomaly detection system that has a normal model that can be

understood by a human user will be “trusted” much more by the user than an

anomaly detection system that is a black box. A black box anomaly detection

system simply spits out either “normal” or “anomaly” and can offer little or no

explanation about why the data is anomalous. Black box anomaly detection

systems are not likely to ever be fully trusted for mission critical systems. If a

costly response (such as shutting down an assembly line) needs to be performed

immediately upon detecting an anomaly, a black box system cannot be fully trusted

since its operation and normal model is a complete mystery to the user. However,

if the normal model is easily readable, the user can check the model to gain

confidence that the anomaly detection system will perform as expected.

The normal operation of a device can usually be characterized in different

operational states. In Chapter 3, we introduced the Gecko algorithm which is able

to identify these states. Once these states are identified, the relationship between

these states needs to be determined to allow tracking from one state to another and

to detect anomalies. Given a time series depicting a system’s normal operation, we

desire to learn a model that can detect anomalies and can be easily read and

modified by human users.

 To create an anomaly detection system, we first characterize the states

found by Gecko into logical rules so they may be read and modified with relative

ease by humans. Then, given the knowledge of the different states, we determine

the relationship among them for tracking normal behavior and detecting anomalies.

 57

To characterize the states as logical rules, we use the RIPPER classification rule

learning algorithm (Cohen 1995). Since different states often overlap in the one-

dimensional input space, additional attributes (slope and second derivative) are

derived to help characterize the states. To track normal behavior and detect

anomalies, we construct a finite state automaton (FSA) with the identified states.

5.1.1 Overview

 The input to our overall anomaly detection system is “normal” time series

data (like the graph at the top left corner of Figure 5.1). The output of the overall

system is a set of rules that implement state transition logic on an expert system,

and are able to determine if other time series deviate significantly from the learned

normal model. Any deviation from the learned “normal” model is considered to be

an anomaly. The overall architecture of the anomaly detection system, depicted in

Figure 5.1, consists of three components: clustering, rule generation

(characterization), and state transition logic.

Figure 5.1. Main steps in time series anomaly detection.

 58

 The clustering phase is performed by our Gecko algorithm, which is

designed to identify distinct states (or clusters) in a time series. Next, rules are

created for each state by the RIPPER algorithm (Cohen 1995). Finally, rules are

added for the transitions between states to create a finite state automaton. Gecko

was discussed in Chapter 3, while rule generation and state-transition logic will be

explained in the next two subsections.

5.1.2 Characterizing States by Generating Rules

We have adapted RIPPER (Cohen 1995) to generate human readable rules

that characterize the states identified by the Gecko algorithm. The RIPPER

algorithm is based on the Incremental Reduce Error Pruning (IREP) (Furnkranz &

Wildmer 1994) over-fit-and-prune strategy. The IREP algorithm is a 2-class

approach, where the data set must first be divided into two subsets. The first subset

contains examples of the class whose characteristics are desired (the positive

example set) and the other subset contains all other data samples (the negative

example set). Our implementation of RIPPER acts as an outer loop for the IREP

rule construction.

 The input to RIPPER is the data produced by Gecko which contains time

series data classified into c* states. RIPPER will execute the IREP algorithm c*

times, once for each state. At each execution of IREP, a different state is

considered to be the positive example set and the rest of the states form the

negative example set. This creates a set of rules for each state. To describe the

relationship among these states, state transition logic is identified as discussed in

the following section.

5.1.3 State Transition Logic

The upper right-hand quadrant of Figure 5.1 depicts a simplified state

transition diagram for a time series containing just three states. The state transition

 59

logic is described by three rules for each state corresponding to each of the three

possible state transition conditions on each input data point:

• IF input matches current state’s characteristics THEN remain in current

state.

• IF input matches the next state’s characteristics THEN transition to the next

state.

• IF input matches neither the current state’s nor the next state’s

characteristics THEN transition to an anomaly state.

The essential element of each of these three rules is the antecedent

condition, which characterizes the data points belonging to each state. The

antecedent condition for each state is obtained from the RIPPER rule generation

process. The state transition logic simply needs to glue together the proper

antecedents to formulate the above three transition rules for each of the c* states

identified by Gecko.

Unfortunately, our state transition logic needs to be somewhat more

complex. In the domain of devices and systems we are attempting to monitor,

sensors may sometimes report short-term, transient, anomalous values – false

alarms. In order for our approach to be more robust in handling these transients,

we have added extra counting/threshold logic to the transition from a normal state

to the error state. Before an anomaly state is entered, the number of consecutively

observed anomalous values must exceed a specified threshold. Thus, an anomalous

condition is not annunciated unless the observed values have been improper for

some length of time. Similar logic is provided for the transition from a normal

state to its normal successor to prevent premature state transitions. The expanded

state-transition logic is shown by the state-transition diagram in Figure 5.2, where

states prefixed with a “S” indicate operational states of the device, and states

 60

prefixed with a “T” are transition states that need a consecutive number of points to

proceed to the next state..

Figure 5.2. Expanded state-transition logic with transition thresholds.

When data is seen that indicates the next state should be transitioned to, the

transition states cycle back to themselves a specified number of times before

actually transitioning to the next state. If the state machine is currently in a

transition state and the current input point is not in the next state, the state machine

backtracks to the previous state.

This simple sequential model will get “stuck” in a state if it misses a state

transition due to an anomaly. The first anomaly is correctly identified, but the no

future data can be tracked because the state machine is stuck in an old state. A

solution we have found that performs well is to use a non-deterministic state

machine model rather than a deterministic model. When an anomaly is detected,

we create several state machines, each starting in a different state. All of the state

machines run in parallel until they converge to a single state. This method allows

the system to recover from a short sequence of anomalous data and to determine the

 61

current state of the input data. If a state machine contains many states and running

individual state machines for each state is impractical, states can be searched

starting with ones near where the anomaly was detected and increasing the number

of states to search if the state machines continue to get “stuck”. In our tests, the

correct state is determined very quickly.

5.2 Empirical Evaluation

This evaluation will test the anomaly detection system described in this

chapter on both normal an anomalous time series. When training on a normal time

series, the same time series and additional normal time series should not cause

anomalies during testing. However, when training on abnormal time series, the

anomaly detection system should find anomalies in the time series.

5.2.1 Procedures and Criteria

In order to test whether the anomaly detection system works correctly we

performed three kinds of tests: (1) Self-tracking: Use 90% of the data points to

create rules, and then use 100% of the data fed into the expert system to see if the

state transitions occur correctly, without detecting any anomalies. (2) Normal

operation: Use all of a normal valve’s data to create a normal model, and then

monitor another valve that is also operating normally. This case should also not

trigger any anomalies. (3) Detecting anomalies: Use all of a properly functioning

valve’s data to learn a normal model, and then use time series of valves that are

damaged slightly and run them through the anomaly detection system. The

damaged valves should trigger anomalies.

5.2.2 Self-Tracking Results

The baseline test of the anomaly detection system is to train the model with

90% of the data, and seeing if 100% of the data can be tracked without triggering

 62

an anomaly. The results of this test are shown in Table 5.1. An error point in

Table 5.1 is any point that is unexpected in the state transition logic. This means

that the point is neither in the current state or the following state. Time series data

often contains noise and minor variations. For this reason, anomalies must not be

triggered by only a single data point that does not agree with the model contained

in the FSA. By using a threshold counter, an anomaly will only be reported after a

certain number of consecutive error points. The last column in Table 5.1 shows

what the minimum consecutive error threshold (errorThreshold) must be set to for

the anomaly detection system to not report an anomaly. A value of 1 in the bottom

row means that the anomaly detection system will correctly not report an anomaly

as long as errorThreshold≥1.

Table 5.1. Self-tracking of a time series.

Data Set 1 2 3 4 5 6 7 8 9 10 Avg

Error Pts (%) 1.1 0.8 0.7 0.5 0.0 0.4 0.3 0.2 0.4 1.1 0.6

Min. Error
Threshold

2 2 1 1 0 1 1 1 1 21 4.0

In this experiment, both the “consecutive transition” (transitionThresh) and

the “consecutive error” (errorThreshold) thresholds were set to zero. This causes

every possible state transition to be made and every error point triggers an

anomaly. This enabled easy computation of the number of error points. Data set

number 10 performs poorly in this test because the FSA transitions prematurely

near the end of the time series and starts reporting many anomalies, the results for

this data set can be improved by increasing transitionThresh to prevent it from

transitioning too early on a single spurious data point.

5.2.3 Normal Operation Results

This test is to show that the anomaly detection system’s generated normal

model is general enough to recognize that an untrained normal time series contains

 63

no anomalies. In this test, the anomaly detection system trained on data set 1, and

then tested on data set 2. Both of these data sets are of normally operating valves

that contain minor (but visible) differences. The “consecutive transition” threshold

(transitionThresh) parameter was set to 2, and errorThreshold was set to 10

(minimum possible cluster size s=10). This means that more than two consecutive

points believed to be in the next state are needed to perform a state transition and

more than ten consecutive points believed to be errors are needed to declare that the

time series contains anomalies.

The system was able to successfully transition through the states, without

detecting any anomalies. Of 979 data points, 61 (2.6%) were error points; they

were not believed to belong to the current state, nor to be transition points

belonging to the following state. However, since a consecutive number of errors

greater than errorThreshold was never encountered, an anomaly was never

triggered.

5.2.4 Detecting Anomalies Results

This final test is to show that our system is capable of detecting when a time

series differs significantly from the learned model. In this test, two data sets

containing time series of valves operating normally (data sets 1 and 2) were used to

develop the normal models. Each normal model was then run against the

remaining anomalous data sets (data sets 3…10).

For each of the 16 tests, the anomaly detection system correctly determined

that the time series contained anomalies. Additionally, the system was able to

inform the user of the state number where the time series differs from the model.

Thus, the system does not only give a yes/no answer to whether a time series

contains anomalies, but it is also able to explain to the user where the anomaly

occurred. Also, because the rules generated by RIPPER are in a human-readable

 64

format, the user can look at the rule for the state where the error occurred and

understand exactly why the system reported the anomaly.

5.3 Summary

This chapter detailed an approach to time series anomaly detection by

discovering and characterizing the states in a time series, and performing transition

logic between these states to construct a finite state automaton that can be used to

track normal behavior and detect anomalies. The rules generated for each state by

the RIPPER algorithm are in disjunctive normal form and can be easily understood

and modified by humans. (Moreover, the generated rules can be in a format used

by the SCL expert system shell at ICS, which is a collaborator on this NASA

project.)

The overall anomaly detection system was able to detect anomalies in every

time series that was from a ‘damaged’ valve, and was also able to monitor a 2nd

normal valve without detecting any anomalies. However the anomaly detection

system, as it has been described so far, has a severe limitation. The method

described in this chapter can only take a single time series as input to build a

normal model. This is problematic because the normal range of values that are

allowed for each state can only be accurately determined if a range of values are

seen during training. Training on only a single time series can create a normal

model that is too restrictive because it is not possible for it to know the allowed

variation of the system during each state. Chapter 6 will describe how to extend

this anomaly detection method to allow training on multiple time series.

 65

Chapter 6

Building a Normal Model by Training
on Multiple Time Series

The anomaly detection system described in Chapter 5 takes a single normal

time series as input, and builds a normal model that can be used to determine if

additional data is anomalous. Any time series that deviates significantly from the

normal model is considered to be anomalous. However, the term “deviates

significantly” is not easily defined when only a single time series is used for

training. A “normal” time series may vary due to different operating conditions of

the device being monitored. Variable operating conditions such as ambient

temperature, varying voltage, recent use, and the effects of aging on the device can

all cause deviations in the times series produced by normally operating devices.

This allowed variation usually cannot be expressed by a simple parameter that

permits a fixed amount of deviation from the learned normal model because the

amount of permitted or normal deviation in the time series may vary between each

of the device’s operational states. In order to accurately determine the allowed

variation in the time series of monitored devices, the anomaly detection system

must be trained on multiple time series. Training on multiple time series allows

generalization to occur. If the temperature reading during a particular state is

always 20.0 degrees in one normal time series, and 25.0 degrees in another, then it

is likely that temperatures between 20 and 25 are also normal.

 The initial anomaly detection system described in Chapter 5 was not

designed to train on more than a single time series, therefore the permitted

deviation of a device could not be observed during training. We wish to extend the

 66

anomaly detection system to allow a single normal model to be created by training

on multiple time series. In order to create a single model (state machine between

states of the time series) from multiple input time series, the rules generated for

each state must be generalized to cover all data points of that state across all of the

input time series. To do so, the portions of each time series that correspond to the

nth state must be determined. However, it is difficult to determine which portions

of each time series belong to the nth state. Clustering with Gecko can identify a

reasonable set of states for a single time series. However, Gecko cannot be run on

each time series to find corresponding states between the time series because Gecko

is likely to find slightly different states for each time series, and can also return a

different number of states for each time series.

This chapter introduces two improvements to the anomaly detection system

described in Chapter 5 that will allow training on more than one time series:

1. Every normal time series is “merged” into a single representative time

series before it is clustered by Gecko.

2. The points used to create the rules are now the points from every time series

that correspond to that rule’s state (states are identified by clustering the

merged time series).

Dynamic time warping will be used both to create the merged time series, and also

to determine the corresponding regions between all of the time series.

 Section 6.1 describes dynamic time warping; Section 6.2 explains how

dynamic time warping can be used to extend the anomaly detection system

described in Chapter 5 to allow multiple time series to be used during training;

Section 6.3 contains an empirical evaluation of the anomaly detection system after

it has been extended to allow training on multiple time series; and Section 6.4

summarizes the work in this chapter.

 67

6.1 Dynamic time Warping

Dynamic time warping (DTW) is a technique that finds the optimal match

between two time series if one time series may be “warped” non-linearly by

stretching or shrinking it along its time axis (Kruskall & Liberman 1983).

Dynamic time warping is most commonly used in speech recognition to determine

if two waveforms represent the same spoken phrase. The duration of each spoken

sound and the interval between sounds are permitted to vary, but the overall speech

waveforms must be similar. Dynamic time warping is often used to find the

distance along the optimal warp path to determine the similarity between the two

speech waveforms. Dynamic time warping is commonly used in data mining as a

distance measure between time series. An example of how one time series is

“warped” to another is shown in Figure 6.1.

Time
1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.1. Two time series “warped” together using dynamic time warping.

 In Figure 6.1, each line connects the point of one time series to its

correspondingly similar point in the other time series. The lines actually have

similar values on the y-axis but have been separated so the vertical lines between

them can be viewed more easily. If both of the time series in Figure 6.1 were

 68

identical, all of the lines would be straight vertical lines, no warping would be

necessary to ‘line up’ the two time series. The warp path distance is a measure of

the difference between the two time series after they have been warped together,

which is measured by the sum of the distances between each pair of points

connected by the vertical lines. Thus, two time series that are identical except for

localized stretching and contracting of the time axis will have warp path distances

of zero.

 Dynamic time warping is typically used in data mining only to determine

the similarity between two time series (Keogh & Pazanni 2000). Calculating the

distance after warping has the advantage that the two time series do not need to line

up absolutely perfectly and be in phase with each other to produce an accurate

distance measurement. However, for our purposes, we are more interested in using

the calculated warp path to find areas that are similar between two time series.

Thus, we are more interested in the warp path rather than the warp path distance.

6.1.1 Problem Formulation

The dynamic time warping problem is stated as follows: Given two time

series X, and Y, of lengths maxX and maxY:

xYmaj

xXmai

yyyyY

xxxxX

,,,,,

,,,,,

21

21

KK

KK

=

=

construct a warp path W:

YxmaxXmaKxYmaxXmawwwW K +<≤=),max(,,, 21 K

where K is the length of the warp path and the kth element of the warp path is:

),(jiwk =

where i is an index from time series X, and j is an index from time series Y. The

warp path must start at the beginning of each time series at w1 = (1, 1) and finish at

the end of both time series at wK = (maxX, maxY). This ensures that every index of

both time series is used in the warp path. There is also a constraint on the warp

 69

path that forces i and j to be monotonically increasing in the warp path, which is

why the lines representing the warp path in Figure 6.1 do not overlap. Every index

of each time series must be used. Stated more formally:

1,1),(),,(1 +≤′≤+≤′≤′′== + jjjiiijiwjiw kk [6.1]

The warp path found must be the optimal (minimum distance) warp path, where the

distance of a warp path W is:

∑=
=

=
Kk

k
kjki wwDistWDist

1

),()([6.2]

where Dist(W) is the distance (typically Euclidean distance) of warp path W, and

Dist(wki, wkj) is the distance between the two data point indexes (one from X and

one from Y) in the kth element of the warp path.

6.1.2 Dynamic Time Warping Algorithm

A dynamic programming approach is used to find this minimum cost warp

path. Instead of attempting to solve the entire problem all at once, solutions to sub-

problems (portions of the time series) are found, and used to repeatedly find

solutions to a slightly larger problem until the solution is found for the entire time

series. A two-dimensional maxX by maxY cost matrix D, is constructed where the

value at D(i, j) is the minimum distance warp path that can be constructed from the

two time series ixxX ,,1 K=′ and jyyY ,,1 K=′ . The value at D(maxX, maxY)

will contain the minimum distance warp path between time series X and Y. Both

axes of D represent time. The x-axis is the time of time series X, and the y-axis is

the time of time series Y. Figure 6.2 D shows an example of a cost matrix and a

minimum distance warp path traced through it from D(1, 1) to D(maxX, maxY).

 70

1

1

maxX

maxY

i

j

Time
1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
1

2
3

4
5

6
7

8
9

10
11

12

Time Series X

T
im

e
S

er
ie

s
Y

Figure 6.2. A cost matrix with the min. distance warp path traced through it.

The cost matrix and warp path in Figure 6.2 are for the same two time series shown

in Figure 6.1. The warp path is W = {(1,1), (2,2), (2,3), (3,4), (4,4), (5,5), (6,5),

(7,6,), (,7,7), (8,8), (9,9), (10,9), (11,10), (11,11), (12,12)}. If the warp path line

passes through a cell D(i, j) in the matrix, it means that the ith point in time series X

is warped to the jth point in time series Y. Notice that where there are vertical

sections of the warp path, a single point in time series X is warped to multiple

points in time series Y, and the opposite is also true where the warp path is a

horizontal line. Since a single point may map to multiple points in the other time

 71

series, the time series do not need to be of equal length. If X and Y were identical

time series, the warp path through the matrix would be a straight diagonal line.

To find the minimum distance warp path, every cell of the cost matrix must

be filled. The rationale behind using a dynamic programming approach to this

problem is that since the value at D(i, j) is the minimum warp distance of two time

series of lengths i and j, if the minimum warp distances are already known for all

slightly smaller portions of that time series that are a single data point away from

lengths i and j, then the value at D(i, j) is the minimum distance of all possible warp

paths for time series that are one data point smaller than i and j, plus the distance

between the two points xi and yj. Since the warp past must either be incremented

by one or stay the same along the i and j axes, the distances of the optimal warp

paths one data point smaller than lengths i and j are contained in the matrix at

D(i-1, j), D(i, j-1), and D(i-1, j-1). So the value of a cell in the cost matrix is:

),()]1,1(),1,(),,1(min[),(jiDistjiDjiDjiDjiD +−−−−= [6.3]

The warp path to D(i, j) must pass through one of those three grid cells, and since

the minimum possible warp path distance is already known for them, all that is

needed is to simply add the distance of the current two points to the smallest one.

Since Equation 6.3 determines the value of a cell in the cost matrix by using the

values in other cells, the order that they are evaluated in is very important. The cost

matrix is filled one column at a time from the bottom up, from left to right as

depicted in Figure 6.3.

1

1

1

1

1

1

maxX maxX maxX maxX

maxY maxY maxY maxY

1

1 i iii

j j j j

Figure 6.3. The order that the cost matrix is filled.

 72

Equation 6.3 actually only applies to cells that are not in the first row or column

because D(i-1, j) is undefined for the first column, and D(i, j-1) is undefined for

the first row. There are actually four different cases when calculating the values of

the cells, depending on its location:

1)),(),(1,1 jiDistjiDji ===

2)),()1,(),(2,1 jiDistjiDjiDaxYmji +−=== K

3)),(),1(),(1,2 jiDistjiDjiDjaxXmi +−=== K

4)
),()]1,1(

),,1(),1,(min[),(2,2

jiDistjiD

jiDjiDjiDaxYmjaxXmi

+−−
−−=== KK

The first case is for the cell at the bottom left corner of the matrix that is filled in

first. Case 2 is for the rest of the first column, and case 3 is for the rest of the

bottom row. The remaining cells are calculated by the fourth case (Equation 6.3).

The cells that are calculated by each of these four cases are shaded in Figure 6.4.

maxX

maxY

1

1 i

j

Figure 6.4. Four shaded areas showing how cells that are calculated.

The group of three arrows in Figure 6.4 indicate the locations of D(i-1, j), D(i, j-1),

and D(i-1, j-1). The smallest of these three values is added to the distance between

the two points xi and yj. A dashed line indicates that the location does not exist

when calculating the value for the target grid cell.

 After the entire matrix is filled, a warp path must be found from D(1, 1) to

D(maxX, maxY). The warp path is actually calculated in reverse order starting at

D(maxX, maxY). A greedy search is performed that evaluates cells to the left,

 73

down, and diagonally to the bottom-left (reverse direction of the arrows in Figure

6.3). Whichever of these three adjacent cells has the smallest value is added to the

beginning of the warp path found so far, and the search proceeds from that cell.

The search continues until D(1, 1) is reached. If there is a tie between the possible

cells to add to the warp path, any of the tied cells can be used and a correct answer

will be calculated. The warp path is guaranteed to be a minimum distance warp

path, but there could possibly be many. In the event of ties, it is usually desirable

to move diagonally if possible. This helps to avoid singularities where large

sections of two time series are nearly identical. A singularity occurs when a single

point in one time series maps to a large number of points in the other. For example,

consider to identical time series of 100 points that are straight lines. Any warp path

will be the minimum warp path with a distance of zero. However, it is desirable to

have the warp path W1 = {(1,1), (2,2),…,(100,100}} rather than the warp path W2 =

{(1,1),(2,1),…,(100,1), (100,2), (100,100)}. The warp path W1 always moves

diagonally when there is a tie and has a warp path length of 100. The warp path W2

moves left when there is a tie and has a warp path length of 199. Avoiding

singularities creates a warping that is more natural. Additionally, for some

applications it may also be desirable for a warp path to be as close to a linear warp

as possible, by breaking ties so the warp path moves in the direction of the right

diagonal line (the line where i=j).

6.1.3 Derivative Time Warping

Typically, dynamic time warping is performed using the original values

when distances between points are determined. This often gives a desirable

distance measurement between time series when the amplitude difference between

two time series is important. However, using original values in the dynamic time

warping algorithm often creates warp paths that are unintuitive for certain domains.

Amplitude variations between the time series can easily cause singularities and

 74

produce warp paths that may be undesirable for a given domain. In our case,

mappings between points based on the warp path do not correspond well to

operational states. Figure 6.5 shows a warping between two time series using

original values in the dynamic time warping algorithm.

Figure 6.5. A warping between two time series using original values.

Warp path lines are drawn at the boundaries of the states (found by Gecko)

simply to aid in the visualization of the overall warp path. Depicting hundreds or

thousands of warp path lines would be illegible, and just a few lines at the

boundaries of the states are sufficient to gain an overall picture of the warp path.

There are many problems with the warp path in Figure 6.5, and only a few will be

pointed out. The small number of points in the fourth state, which starts to fall

rapidly at y=2.2 in the top time series, are mapped to a large number of points that

share a common value on the y-axis, but otherwise are very dissimilar. In the top

time series the slope is very negative, and in the bottom time series the slope is

positive. Another problem is that the warp path contains several singularities are

x=0.08 in the bottom time series. The last problem that will be mentioned is that

the flat state in the top time series is warped to a slightly “U” shaped state in the

 75

bottom time series. This occurs because the plateau in the bottom time series is

slightly higher than at the top. If the height difference in the plateaus were to

increase this “U” would become very pronounced. Overall the states in the top

time series are mapped to the bottom time series in an unintuitive manner.

An alternative is to consider the “shape” of the time series during warping

rather than the original values in the y-axis. To do so, the dynamic time warping

algorithm should use slope values of the two time series rather than the original

values. This method is called derivative dynamic time warping (Keogh & Pazzani

1999). Figure 6.6 shows the warp path between the same two time series, but the

warp path minimizes the warp path cost of the differences in slopes rather than

original y-axis values.

Figure 6.6. A warping between two time series using slope values.

The result is a mapping of states between time series that is very intuitive. The

small states of the top time series at x=0.4 and x=0.42 are correctly warped to the

same (but much smaller) states in the bottom time series. Derivative dynamic time

warping is an effective method to find regions across different time series that are

 76

similar, and will be utilized in the next section to merge multiple time series into a

single representative time series.

6.2 Using DTW to Train on Multiple Time Series

To extend the anomaly detection system discussed in Chapter 5 to allow

multiple time series to be used during training, we will make use of dynamic time

warping’s ability to find related sections of different time series. The steps

discussed in Chapter 5 (Figure 5.1) are still used: clustering, rule-generation, and

state-transition logic. However, two additional steps are introduced:

• A new step to merge multiple time series into a single representative time

series

• A step to determine the state for each point in every time series based on the

set of states identified for the merged time series

Merging is performed before immediately before clustering, and the state’s are

determined for every time series immediately after clustering. The new overall

approach to anomaly detection is shown in Figure 6.7.

 77

Merging

Time

C
ur

re
nt

Time

C
ur

re
nt

Clustering

Time

C
ur

re
nt

S1
S2

S3

Determine
State Info

Time

C
ur

re
nt

S1

S2

S3

Rule Generation

 S1 -> Current<4 AND
 10<=Slope<=15
 S2 -> 1<=Current<=4 AND
 Slope=0
 S3 -> Current<4 AND
 -13<=Slope<=-10

State-Transition Logic

S3S1 S2

anomaly

Figure 6.7. Main steps in time series anomaly detection with multiple input

time series used during training.

The new Merging step creates a representative time series that is given as

input to the Gecko algorithm for clustering. After Gecko finds the states of the

merged time series, the next step uses the state information in the merged time

series to determine the state of every point in all of the input time series. This is

possible because a warp path from the merged time series to every other time series

is created during the first merging step. The rule generation program does not need

to be modified, but the input to it now contains all of the points from every time

series used for training. This allows the rules to be more general and allow

 78

variations for each state depending on the amount variation of observed variation

for each state across all time series used for training. Once the rules are created

state transition logic is created as explained in Chapter 5.

Multiple time series are merged into a single time series using dynamic time

warping. One of the time series must be picked to use as a template. For speech

recognition, the template is often the time series of average length (Abdulla, Chow

& Sin 2003). The best merge will result from using the time series that is the most

“average” as the template. The most average time series can be determined by

performing dynamic time warping on each combination of time series. The time

series that has the smallest warp path distance sum over all of the other time series

is the most average because it is the most similar to all of the other time series. The

length of the merged time series will be equal to the length of the time series used

as the template. The template must first be warped to every other time series. For

the kh point in the template, average all of the points that it warps to in other time

series (weighted so each time series has equal influence), and use that average as

the kh point in the merged time series. Conceptually, this approach “lines up” all of

the time series and calculates the average of the points vertically.

Determining the states of every time series, after determining the states of

the merged time series is, also makes use of the warp paths created by dynamic

time warping. However, in this case there are two levels of indirection. The

template and merged time series have a liner warp between them so the nth point in

the template warps to the nth point in the merged time series. So the states of the

template time series can be directly determined by the merged time series. Once

the states are known for the points in the template, all that is needed is to go

through the template time series, and assign that merged point’s state membership

to all of the points that it warps to in other time series.

 79

6.3 Empirical Evaluation

This evaluation will test how well the extended anomaly detection system

performs when trained on multiple time series. Training on multiple time series

enables the normal model to be created that is more general and contains the

amount of allowed variation for each state. If two time series are used to build a

normal model, testing on an additional time series that are “between” the two

training time series should also not produce any anomalies, even if it differs

significantly from all of the training data. As an example, suppose that a normal

model was constructed by training on data from a car’s engine running at 20 mph

and 40 mph. It is desirable that the normal model would cover all normal engine

activity between 20 and 40 miles an hour, rather than only covering narrow ranges

of activity near 20 and 40 mph.

6.3.1 Procedures and Criteria

To evaluate the ability of our anomaly detection system to generalize

beyond the training data to cover unseen normal variations and determine if time

series “between” the training data are covered by the generated normal model, data

is needed for which “between” is defined. The data used for this evaluation is

taken from a valve in the space shuttle under controlled tests where the same is

operation is performed each time, but under different controlled conditions. The

data was generated by repeatedly turning the valve on and off and increasing the

voltage applied to the valve in each run. Ten time series were collected in this

manner at the following voltages: 14, 16, 18, 20, 22, 24, 26, 28, 30, and 32. Each

time series contains measurements of current over time. The effect of increasing

the voltage on the valve has different effects on each operational state. A few of

the effects of increasing the voltage on different states of the time series are (in

order from most pronounced to marginal):

 80

• The plateau of the steady-state on position increases significantly as the

voltage is increased.

• The rate of increase in current after the valve is turned on increases as the

voltage increases.

• If the voltage is too low, the valve may fail to open (and later close). The

valve opening and closing is indicated in the time series by a “bounce” of

current.

• The “bounce” in the time series when the valve opens decreases as the

voltage increases, but the bounce when a valve closes in unaffected. The

bounce also occurs at a slightly higher level of current as the voltage

increases.

• The section of the time series after turning off the valve changes very little

between different voltages.

• Steady-state off is unaffected by voltage, and is a flat section with a value of

zero for the current in every test case.

Figure 6.8 illustrates the effect of changing the voltage on the valve. The

time series on the left was collected at 16 Volts, and the time series on the right was

collected at 30 Volts. Both time series are from the same valve, only the voltages

differs.

 81

Figure 6.8. A valve being turned on and off at different voltages.

The effects of change the voltage on the time series produced by the valve

can be easily seen in Figure 6.8. The plateau is higher and the rising slope is much

steeper at higher voltages, but the section of the time series where the valve is

turned off (at approximately Time=0.75) is nearly identical regardless of the

voltage.

These data sets are collected under exactly the same conditions except for a

single parameter, the voltage. The assumption made in this evaluation is that if

multiple time series are provided as training data, the normal model that is

generated should consider all time series that were trained on to be normal, and also

consider all time series at intermediate voltages to be normal. Conversely, all time

series at lower or higher voltages than seen during training should cause anomalies

to be triggered.

The experimental procedure is simple, train on one or more of the ten time

series, and then test on all ten. The time series that should not be considered

anomalous are the time series collected at voltages within the range (inclusive) of

the training time series voltages. For example, if time series at 20 and 28 Volts

were used for training, then the time series with voltages 20, 22, 24, 26, and 28

should not be considered anomalous, but all other time series collected at voltages

less than 20 or greater than 24 should cause anomalies. Tests will be performed

 82

training on from one to three time series. Training on only a single time series

should create a restrictive normal model that will detect anomalies for all other time

series.

This evaluation differs from the one performed in Chapter 5 in two major

ways. The first difference is that this evaluation trains on multiple time series. The

second difference is that in this evaluation, there are no “normal” and “abnormal”

valves. Instead we are measuring the ability of the normal model to generalize to

unseen training data that is “between” the time series used for training. The notion

of normal and abnormal depends more on the domain than actual data. A time

series that is abnormal in one domain may be perfectly normal in another. So, in

this evaluation, we are not concerned with whether a time series is actually

considered normal or abnormal. Instead, we are treating different ranges of time

series (in the range of voltages seen during training) as “normal” and everything

else abnormal.

The parameters used to create the normal model were: minClusterSize=20

(Gecko), transitionThreshold=3 (FSA), and errorThreshold=10 (FSA). Thus, the

clusters returned by Gecko had to contain at least 20 points. The two parameters

for the state-transition logic specify more than three consecutive transition points

must be seen before the next state is transitioned to, and more than 10 consecutive

error points must be seen to raise an anomaly.

6.3.2 Results and Analysis

The first tests performed were to train on only a single time series. When

only a single time series is trained, the model is very specific because the amount

of normal variation allowed can’t be determined when training on only a single

time series. It is expected that if a time series is used for training, the model

produced will consider all time series other than the one used for training as

anomalous. Table 6.1 contains the results of training on only a single time series.

 83

Table 6.1. Results of training on a single time series, testing on all.
TEST

14V 16V 18V 20V 22V 24V 26V 28V 30V 32V
14V P F F F F F F F F F
16V F P F F F F F F F F
18V F F P F F F F F F F
20V F F F P F F F F F F
22V F F F F P F F F F F
24V F F F F F P P/F F F F
26V F F F F F F P F P/F P/F
28V F F F F F F F P F F
30V F F F F F F F F P F

T
R

A
IN

32V F F F F F F F F F P

In Table 6.1, a “P” indicates that when training on the time series in that

row, and testing on the time series at that column, the state transition logic reads

through the entire test file without any anomalies. An “F” indicates that at least

one anomaly is found, and a “P/F” indicates that anomalies are found with an

errorThreshold of 10, but passes if the threshold is increased to 20. As expected, in

Table 6.1 time series were only able to be tracked without anomalies when they

were trained on.

The remaining tests are performed by training on either two or three time

series. It is expected that the time series used for training will not cause anomalies

during testing, and all time series generated at voltages between the training

voltages should also not cause anomalies. Table 6.2 displays the tests when

training on multiple time series.

 84

Table 6.2. Results of training on multiple time series, testing on all.
TEST

14V 16V 18V 20V 22V 24V 26V 28V 30V 32V
16V,20V F P F P F F F F F F
20V,24V F F F P P P F F F F
24V,28V F F F F F P P P P/F F
28V,32V F F F F F F F P P P
14V,20V F F F P F F F F F F
20V,26V F F F P P/F P P F F F
26V,32V F F F F F F P P/F P/F P

16V,20V24V F F F P P/F P F F F F
24V,28V,32V F F F F F P P P P/F P
14V,20V,26V F F F P P F P F F F

T
R

A
IN

18V,24V,30V F F P P/F P P P F P F

The cells are shaded in Table 6.2 to help make it easier to understand. A

bright green cell with a “P” indicates that the test case at that cell was expected to

pass without an anomaly and it did. A red cell with an “F” indicates that the test

case was expected to generate no anomalies, but at least one anomaly was found.

The olive “P/F” indicates that the test case correctly has no anomalies if the

errorThreshold is doubled to 20.

In Table 6.2, the “range” of expected time series that will not cause

anomalies can be easily determined. In the first eight rows, two time series were

trained with a single time series having an intermediate voltage. The model

correctly generalized to include the unseen time series with the in-between voltage

3 out of 4 times, and still correctly produced anomalies when tested on the other 7

time series.

The second group of tests in Table 6.2 also trained on two time series, but

had two time series “in-between” them instead of just one. This group of tests gave

correct results for 2 out of 3 of the test cases.

The final group of tests in Table 6.2 trained on three time series. This group

of tests had more mistakes than the previous tests. The results were good except

when training and testing on valves with the lowest voltage. The valve completely

 85

fails to open or close at low voltages, and has no pair of “bumps” in the time series.

Since the states of the “bounce” that are identified in the merged time series are

mapped back to the original time series that do not have those corresponding

regions, the missing states end up getting a very small number of points (often one)

assigned to those missing states. All other states are mapped correctly, and rules

are generated to characterize the states. But if testing occurs on that valve with the

missing state, it is impossible to transition into the state that is very small because

transitionThresh number of consecutive points must be seen to perform a

transition. The effect is that the small state is passed before enough points are seen

to transition into it and the state transition logic gets lost and throws an anomaly.

It is important to realize that when a cell is contains an “F”, it does not

imply that the anomaly detection system simply spits out either “normal” or

“abnormal” when testing on a time series. The state transition logic identifies

which state the anomalies occurred in. So, for each “F” in Table 6.1 and Table 6.2,

it may indicate that a single anomaly was found in a single state, or than dozens of

anomalies were found in every state. In other words, not all “F”s are created equal,

some may be only one anomaly, or one state away from passing without returning

an anomaly. Nearly all of the test cases that found anomalies unexpectedly (red

cells) contained only a very small number of anomalies in one or two states.

6.4 Summary

This chapter has discussed how do extend the anomaly detection system

described in Chapter 5 to allow training on multiple time series. Two additional

steps are required to train on multiple time series. The first is to merge multiple

time series into a single time series before clustering. The second is to use the

states identified for the merged time series to identify the states in all of the original

time series that were used to create the merged time series. Both of these additional

steps are performed using dynamic time warping. Dynamic time warping is able to

 86

“line up” multiple time series so they can be merged together, and it can find

corresponding sections of different time series to use the merged state information

to determine the states in the other time series.

Training on multiple time series is necessary to determine the amount of

variation that is permitted during the normal operation of a device. Our empirical

results indicate that training on multiple data sets does generalize the model to

correctly cover time series that are “between” the time series trained on.

Additionally, the model does not generalize to cover time series that are

anomalous. Generalization only occurs for time series “between” the observed

training data.

 87

Chapter 7

Concluding Remarks

 We have detailed our approach to time series anomaly detection that

discovers and characterizes the states of a time series, and performs transition logic

between these states to construct a finite state automaton. This finite state

automation can be run on an expert system and used to track normal behavior and

detect anomalies, in monitored devices. The proposed Gecko segmentation

algorithm is designed to cluster time series data (finds a small number of segments

mapping to unique states rather than a fine approximation of many segments), and

uses our proposed L method to determine a reasonable number of segments

efficiently. The rules generated for each state by the RIPPER algorithm can be

easily understood and modified by humans. (Moreover, the generated rules can be

in a format used by the SCL expert system shell at ICS, which is our collaborator

on this NASA project.)

7.1 Summary of Contributions

The following is a summary of our contributions:

• We demonstrate a method that performs time series anomaly detection via

generated states and logical rules that can easily be understood and

modified by humans. These logical rules can be easily converted into a

format that allows the anomaly detection to be performed by an expert

system. The knowledge encoded into an expert system must be typically be

entered manually by a human which is a costly and time-consuming

 88

process. Also, since the rules are human-readable, the reason why an

anomaly is reported can be understood by a human user so he or she may

quickly take appropriate action.

• We introduce an algorithm named Gecko that segments a time series into

states.

• We propose the L method that dynamically determines a reasonable number

of clusters. The L method is general enough to be used with any

hierarchical clustering or segmentation algorithm.

• We demonstrate how derivative time warping can be used to locate

corresponding sequences across multiple time series, and how to merge

multiple time series together into an “average” time series in order to extend

our anomaly detection so it may train on multiple time series. Additionally

we propose that the template to use during merging be the time series that is

the most similar to every other time series based on the sum of the warp

paths to every other time series. We also showed how a classification of the

merged time series can be expanded to all of the input time series that were

used to make the merged time series.

• Our empirical evaluations, using data from NASA, indicate that Gecko

performs comparably with a NASA expert in identifying the operational

states of a device. When the human domain expert was asked to rate

Gecko’s output with a score from 1-10, Gecko was given perfect ratings on

6 of 10 data sets and had an average score of 9.5. A perfect rating of 10

signifies that the set of segments, or clusters, produced by Gecko is equally

as good as that of the human expert. For comparison, the bottom-up

segmentation algorithm was also tested, and was only given an average

rating of 4.3.

 89

• Empirical evaluations, using 14 spatial and time series data sets and 6

different clustering/segmentation algorithms, indicate that our L Method

performs favorably to existing methods that determine the number of

clusters or segments to return. Our L method is shown to work well for a

wide range of algorithms, clusters with elaborate shape, and for

clusters/segments that are overlapping and not well-separated. In our

evaluation, the L method was able to determine a reasonable number of

segments in 10 out of 11 instances for hierarchical segmentation algorithms

with greedy evaluation metrics, and a correct number of clusters in 10 of 12

instances for hierarchical clustering algorithms. The L method performed

much better than the two existing methods that were also tested in our

evaluation.

• Empirical evaluation also shows that the overall system can track normal

behavior and detect anomalies. The overall anomaly detection system was

able to detect anomalies in every time series that was from a ‘damaged’

valve, and was also able to monitor a 2nd normal valve without detecting

any anomalies. Additionally, when training on multiple time series the

anomaly detection system is able to accurately determine the amount of

allowed variation in each state. Experiments have shown that when trained

on time series of a valve operating at two different voltages, the normal

model generated is able to generalize to cover all time series operating at

voltages between those two voltages, and will still detect anomalies for

valves operating and higher or lower voltages than observed during training.

7.2 Limitations and Future Work

Our anomaly detection trains on one or more normal time series and is then

able to determine whether future time series are anomalous. However, our anomaly

 90

detection system has some limitations, some of which will be the focus of future

work.

Data Used for Training:

• A model of a normal time series consists of a sequential ordering of

operational states, and obviously requires training data that also contains

states that occur in the same order. Our model can handle differing

amounts of allowed variation among the states, but it will not work

correctly if the states do not need to occur in the same sequence during

normal operation.

• The anomaly detection discussed in this paper has a start state and end state,

and therefore is not able to monitor long or cyclical processes. However, if

the training data contains various individual cycles, and the normal model

created generalizes the permitted cycles, a simple modification to the state

machine will allow normal transitions from the last state to the first state.

Future work will be done to test our system on cyclic data such as the time

series of a heartbeat.

• In a operational state identified by Gecko, all of the different dimensions

(sensor values) of the time series are assumed to be related to each other and

will have similar values in the same operational state in another normal time

series. However, if some of the dimensions are unrelated to each other,

restrictions in the normal model that require them to have a similar

relationship in all future instances of that state are unreasonable. If the

values of dimensions or sensors are unrelated to each other, they should not

be used together when building the model. They should be separated and

used to create more than one model where each model performs anomaly

detection on a different subsystem.

 91

• If multiple time series are used for training, each time series has to be

somewhat similar. A large amount of variation is permitted, but they

cannot differ too much or they will not be able to be correctly merged into a

single time series before clustering. Each time series should be of a device

performing a similar operation under varying conditions, rather than a

device performing operations that are entirely different that produce time

series that seem unrelated to each other.

Gecko (finding states):

• The Gecko algorithm explained in this paper cannot be scaled up to very

large time series because the first phase that finds the initial sub-clusters is

not scalable. The graph bisection operations become slow as the size of the

time series increases. Future work will look into creating a scalable top-

down segmentation algorithm that will be able to create a large number of

small clusters that to not span important cluster boundaries.

• During clustering with Gecko, if there the data is noisy, the parameter

minClusterSize needs to be increased to prevent the algorithm from

returning “clusters” that are actually only noise and not true clusters.

Having the algorithm determine a good value for this parameter

automatically will always be possible the smallest size of a state that should

be returned may often depend more on the domain than the data. However,

future work should explore ways to set this parameter automatically that

will at least be an improvement over a single static value or requiring the

user to set it every time.

L Method (determining the number of clusters/segments):

• The major limitation of the L method is that it will never suggest that less

than three clusters be returned. Future work will look into way to perform

 92

extra analysis if the number of clusters returned is only three to determine if

two or one clusters would actually be a better choice.

Dynamic Time Warping:

• The standard dynamic warping (DTW) algorithm runs quickly if the time

series contains fewer than three thousand points. However, it has an O(N2)

time complexity, and even worse, an O(N2) space complexity to fill the cost

matrix. This means that performing DTW on a time series that contains

20,000 measurements requires that 400 million (20,0002) floating point

numbers be stored in the cost matrix. There are approximations to the

DTW algorithm that only calculate the values of the cost matrix near the

linear warp line. However, with time series that contain steady state

conditions (flat regions) at the beginning or end, the warp path may have to

stray very far from the linear warp line. Straying too far from the linear

warp line would cause the complexity of DTW to approach O(N2) as the

number of cells that need to be evaluated increases. Other methods simply

perform classic DTW on a reduced time series which may produce a pretty

accurate warp path distance measurement, but the actual path may be poor

in some regions, which would bad for our algorithm and the relationships

between time series that we infer using warp paths. Future work will focus

on creating a new dynamic time warping algorithm that warps a reduced

time series, and then iteratively refines the warp path locally after the rough

path is calculated. If successful, the algorithm would scale linearly with the

size of the time series, would be near-optimal, and would have no poor

warpings between points.

Rule Generation:

• Our work so far has only generated a set of Rules using the RIPPER

algorithm. This one set of rules is used for both state transitions and

anomaly detection (anomaly is thrown when state transition logic fails).

 93

However, whether to transition between states and whether a data point is

anomalous are two different problems. It may be better to generate a more

general set of rules for state transitions, and a more restrictive set of rules

for anomaly detection. Currently the single set of rules is more similar to

the more specific anomaly detection rules. It may be beneficial to have a

second set of rules that are only specific enough to tell if a point is in the

current or next state, and simultaneously use the more restrictive set of rules

for anomaly detection. In this manner, the state machine will not need to

get “lost” for an anomaly to be reported.

• Future work will evaluate alternatives to the RIPPER algorithm to generate

rules. A possibility is simply to record the minimum and maximum values

for each dimension in a state to draw a “box” around the area of permitted

values.

State-Transition Logic:

• Our current state transition logic has a consecutive transition threshold that

prevents premature state transitions on spurious points. However, requiring

a consecutive number of transition points to actually perform a transition

has a side effect that requires a state contain a minimum number of points.

If one or more states are skipped and it is normal for them to be skipped

based on it being observed in training, the current state transition logic will

incorrectly throw an anomaly at the skipped state. Future work will extend

state transition logic to identify states in the merged time series, but also

determine which states in the merged time series do not occur in the original

time series used for training. If a particular state is sometimes skipped

during training (normal behavior), the state transition logic needs to

accommodate this by allowing the previous state to either transition to the

next sometimes-skipped state OR two states ahead.

 94

• Sometimes a small state may be mapped to an even smaller state in a time

series used during training, and it will create a state that is so small that it is

difficult to transition into before it is passed (similar to the previous bullet).

Our current anomaly detection system runs a non-deterministic state

machine only when an anomaly is found, and runs until it converges to a

single state. However, to avoid the problem of having states that are too

small to easily transition into, a non-deterministic state machine can always

be run. In the always running non-deterministic state machine, the first

transition point causes the state machine to both transition AND stay in the

same state in different threads. If a thread gets stuck, it is terminated, and

an anomaly is only thrown if all threads are unable to continue tracking

through the time series.

 95

References

Abdulla, W., D. Chow, and G. Sin, Cross-words reference template for DTW-based
speech recognition systems, in Proc. IEEE TENCON, Bangalore, India,
2003.

Baxter, R. A. and J. J. Oliver, The Kindest Cut: Minimum Message Length
Segmentation, In Algorithmic Learning Theory, 7th Intl. Workshop, pp.83-
90, Sydney, Australia, 1996.

Caudell, T. and D. Newman, An Adaptive Resonance Architecture to Define
Normality and Detect Novelties in Time Series and Databases, In Proc.
IEEE World Congress on Neural Networks, pp. IV166-176, Portland, OR,
1993

Chiu, T., D. Fang, J. Chen, Y. Wang and C. Jeris, A Robust and Scalable
Clustering Algorithm for Mixed Type Attributes in Large Database
Environment, In Proc. Of the 7th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, pp. 263-268, San Francisco, CA, 2001.

Cohen, W., Fast Effective Rule Induction, In Proc. of the 12th Intl. Conf. on
Machine Learning, pp. 115-123, Tahoe City, CA, 1995.

Dasgupta, D. and S. Forrest, Novelty Detection in Time Series Data using Ideas
from Immunology, In Proc. Fifth Intl. Conf. on Intelligent Systems, pp. 82-
87, Reno, NV, 1996.

Ester, M., H. Kriegel, J. Sander, and X. Xu, A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise, In Proc. 3rd
Intl. Conf. on Knowledge Discovery and Data Mining, pp. 226-231,
Portland OR, 1996.

Fiduccia, C. and R. Mattheyses, A linear-time heuristics for improving network
partitions, In Proc. of the 19th Design Automation Conference, pp. 175-181,
Las Vegas, NV, 1982.

 96

Foss, A. and A. Zaïane, A Parameterless Method for Efficiently Discovering
Clusters of Arbitrary Shape in Large Datasets, In IEEE Intl. Conf. on Data
Mining, pp. 179-186, Maebashi City, Japan, 2002.

Fraley, C. and E. Raftery, How many clusters? Which clustering method? Answers
via model-based Cluster Analysis, In Computer Journal, vol. 41, pp. 578-
588, 1998.

Furnkranz, J. and G. Wildmer, Incremental Reduced Error Pruning, In Proc. of the
11th Intl. Conf. on Machine Learning, pp. 70-77, New Brunswick, NJ, 1994.

Guha, S., R. Rastogi and K. Shim, CURE: An Efficient Clustering Algorithm for
Large Databases, In Proc. Of ACM SIGMOD Intl. Conf. on Management of
Data, pp. 73-84, New York, NY, 1998.

Guha, S., R. Rastogi, and K. Shim, ROCK: A Robust Clustering Algorithm for
Categorical Attributes, In The 15th Intl. Conf. on Data Engineering, pp.
512-523, Sydney, Australia, 1999.

Han, J. and M. Kambler, Data Mining: Concepts and Techniques, Morgan
Kaufmann Publishers, San Mateo, CA, 2000.

Hansen, M. and B. Yu, Model Selection and the Principle of Minimum Description
Length, In JASA, vol. 96, pp.746-774, 2001.

Harris, S., D. Hess and J. Venegas, An Objective Analysis of the Pressure-Volume
Curve in the Acute Respiratory Distress Syndrome, In American Journal of
Respiratory and Critical Care Medicine, vol. 161, no. 2, pp. 432-439, 2000.

Hartigan, J., Clustering Algorithms, John Wiley & Songs, New York, NY, 1975.

Hinneburg, A and D. Keim, An Efficient Approach to Clustering in Large
Multimedia Databases with Noise, In Proc 4th Intl. Conf. on Knowledge
Discovery and Data Mining, New York City, NY, 1998, pp. 58-65.

 97

Karypis, G., E. Han, and V. Kumar, Chameleon: A hierarchical clustering
algorithm using dynamic modeling, IEEE Computer, 32(8), pp. 68-75,
1999.

Keogh, E., S. Chu, D. Hart, and M. Pazanni, An Online Algorithm for Segmenting
Time Series, In Proc. IEEE Intl. Conf. on Data Mining, San Jose, CA, pp.
289-296, 2001.

Keogh, E. and T. Folias. The UCR Time Series Data Mining Archive
[http://www.cs.ucr.edu/~eamonn/TSDMA/ index.html], Riverside, CA,
University of California – Computer Science and Engineering Department,
2003

Keogh, E., S. Lonardi, and B. Chiu, Finding Surprising Patterns in Time Series
Database in Linear Time and Space, In Proc. ACM Knowledge Discovery
and Data Mining, pp. 550-556, Edmonton, Canada, 2002.

Keogh, E. and M. Pazzani, Derivative Dynamic Time Warping, In Proc. of the 3rd
European Conf. on Principles and Practice of Knowledge Discovery in
Database, pp. 1-11, Prague, Czech Republic, 1999.

Keogh, E. and M. Pazzani, Scaling up Dynamic Time Warping for Datamining
Applications, In Proc. of the 6th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, pp. 285-289, Boston, MA, 2000.

Kozama, R., M. Kitamura, M. Sakuma, and Y. Yokoyama, Anomaly Detection by
neural network models and statistical time series analysis, In Proceedings of
IEEE Int. Conf. on Neural Networks, pp. 613-618, Orlando, FL, 1994.

Kruscall, J. and M. Liberman. The symmetric time warping algorithm: From
continuous to discrete, In Time Warps, String Edits, and Macromolocules:
The theory and Practice of String Comparison, Addison-Wesley, 1983.

Langley, P., G. Bay, and K. Saito, Robust Induction of Process Models from Time-
Series Data, In Proc. of the 20th Intl. Conf. on Machine Learning, pp. 432-
439, Washington, DC, 2003.

 98

Monti, S., T. Pablo, J. Mesirov and T. Golub, Consensus Clustering: A
Resampling-Based Method for Class Discovery and Visualization of Gene
Expression Microarray Data, In Machine Learning, vol. 52, pp. 91-118,
2003.

Ng, R. and J. Hah, Efficient and Effective Clustering Methods for Spatial Data
Mining, In The 20th Intl. Conf. On Very Large Data Bases, Santiago, Chile,
pp. 12-15, 1994.

Roth, V., T. Lange, M. Braun and J. Buhmann, A Resampling Approach to Cluster
Validation, In Proc. in Computational Statistics: 15th Symposium
(COMPSTAT2002), Berlin, Germany, pp. 123-128, 2002.

Seikholeslami G., S. Chatterjee, and A. Zhang, WaveCluster: A Multi-Resolution
Clustering Approach for Very Large Spatial Databases, In Proc. of the 24th
VLDB, pp. 428-439, New York City, New York, 1998.

Smyth, P., Clustering Using Monte-Carlo Cross-Validation, In Proc. 2nd KDD,
Portland, OR, pp.126-133, 1996.

Sugiyama, M. and H. Ogawa, Subspace Information Criterion for Model Selection,
In Neural Computation, vol. 13, no.8, pp. 1863-1889, 2001.

Tibshirani, R., G. Walther, D. Botstein, and P. Brown, Cluster Validation by
Prediction Strength, Technical Report, 2001-21, Dept. of Biostatistics,
Stanford Univ, 2001.

Tibshirani, R., G. Walther, and T. Hastie, Estimating the number of clusters in a
dataset via the Gap statistic, In JRSSB, 2003.

Vasko, K. and T. Toivonen, Estimating the number of segments in time series data
using permutation tests, In Proc. IEEE Intl. Conf. on Data Mining, pp. 466-
473, Maebashi City, Japan, 2002.

 99

Zhang, T., R. Ramakrishnan, and M. Livny, BIRCH: An Efficient Data Clustering
Method for Very Large Databases, In ACM SIGMOD Intl. Conf. on
Management of Data and Symposiium on Principles of Database Systems,
pp. 103-114, Montreal, Canada, 1996

 100

Appendix

Sample Run of the Anomaly Detection
System

Merging

Time

C
ur

re
nt

Time

C
ur

re
nt

Clustering

Time

C
ur

re
nt

S1
S2

S3

Determine
State Info

Time

C
ur

re
nt S1

S2

S3

Rule Generation

 S1 -> Current<4 AND
 10<=Slope<=15
 S2 -> 1<=Current<=4 AND
 Slope=0
 S3 -> Current<4 AND
 -13<=Slope<=-10

State-Transition Logic

S3S1 S2

anomaly

 101

Input Files for Training

Time

C
ur

re
nt

 102

Merging Time Series

Merging

Time

C
ur

re
nt

Time

C
ur

re
nt

 103

Identifying States

Clustering

Time

C
ur

re
nt

Time

C
ur

re
nt

S1
S2

S3

 104

Determine State Information

Time

C
ur

re
nt

S1
S2

S3

Determine
State Info

Time

C
ur

re
nt

S1

S2

S3

 105

Rule Generation

Rule
Generation

Time

C
ur

re
nt S1

S2

S3

 S1 -> Current<4 AND
 10<=Slope<=15
 S2 -> 1<=Current<=4 AND
 Slope=0
 S3 -> Current<4 AND
 -13<=Slope<=-10

RULE FOR STATE 0:
IF (((Current <= 0.01167725)
 AND (d1_Current >= -2.00887) AND (d1_Current <= 7.41389)
 AND (d2_Current >= -428.885))
OR ((Current >= 0.01104155) AND (Current <= 0.02149 1700000000002)
 AND (d1_Current >= -0.5117375)
 AND (d1_Current <= 8.469335000000001)
 AND (d2_Current >= -437.142))
OR ((Current >= 0.01071215) AND (Current <= 0.01084 0550000000001))
OR ((Current >= 0.010775650000000001) AND (Current <= 0.01090405)))
THEN 0

RULE FOR STATE 1:
IF (((Current <= 0.459586)
 AND (d1_Current >= 8.70961))
OR ((Current <= 0.465255)
 AND (d1_Current >= 9.527095))) THEN 1

RULE FOR STATE 2:
IF (((Current >= 0.1536815) AND (Current <= 0.59979 54999999999)
 AND (d1_Current >= 2.35799)
 AND (d1_Current <= 12.481200000000001)
 AND (d2_Current >= -2122.735) AND (d2_Current <= 588.989))
OR ((Current >= 0.552237) AND (Current <= 0.6042005)
 AND (d1_Current >= 0.371603)
 AND (d2_Current <= -1205.78))
OR ((d2_Current >= -1851.675)
 AND (d2_Current <= -1840.4299999999998))) THEN 2

 106

RULE FOR STATE 3:
IF (((Current >= 0.4248265) AND (Current <= 0.60498 84999999999)
 AND (d1_Current >= -18.57515) AND (d1_Current <= -3.96586)
 AND (d2_Current <= 2278.74))
OR ((Current <= 0.6049344999999999)
 AND (d1_Current <= -0.7938265)
 AND (d2_Current <= -2355.495))
OR ((Current >= 0.4165025) AND (Current <= 0.607525 4999999999)
 AND (d1_Current >= -12.3338) AND (d1_Current <= -2.1199)
 AND (d2_Current <= 2568.2250000000004))
OR ((d2_Current >= -2088.535)
 AND (d2_Current <= -2051.0699999999997))) THEN 3

RULE FOR STATE 4:
IF (((Current >= 0.4072015) AND (Current <= 0.54639 79999999999)
 AND (d1_Current >= 2.9014949999999997)
 AND (d1_Current <= 8.54674) AND (d2_Current >= - 13.97575))
OR ((d1_Current >= -10.99385)
 AND (d2_Current >= 2568.2250000000004))
OR ((d1_Current >= -11.2563)
 AND (d2_Current >= 2253.8))
OR ((d1_Current >= 7.234265) AND (d1_Current <= 7.2 60475))) THEN 4

RULE FOR STATE 5:
IF (((Current >= 0.47907900000000003)
 AND (d1_Current >= 8.26221))) THEN 5

RULE FOR STATE 6:
IF (((Current >= 0.647008) AND (Current <= 1.07862)
 AND (d1_Current >= 1.9650699999999999) AND (d1_C urrent <=
8.073385))
OR ((d2_Current >= -699.8389999999999)
 AND (d2_Current <= -697.466))
OR ((Current >= 1.079925)
 AND (d1_Current >= 2.242155))) THEN 6

RULE FOR STATE 7:
IF (((Current >= 0.7691555)
 AND (d1_Current >= -16.107) AND (d1_Current <= 2 .4305))
OR ((Current >= 0.7684335) AND (Current <= 0.769170 5))) THEN 7

RULE FOR STATE 8:
IF (((Current <= 1.07578)
 AND (d1_Current <= -7.889145))) THEN 8

RULE FOR STATE 9:

 107

IF (((Current >= 0.194583) AND (Current <= 0.300475 5)
 AND (d1_Current >= -7.752935) AND (d1_Current <= 0.532424)
 AND (d2_Current >= -298.1875) AND (d2_Current <= 1033.72))
OR ((d2_Current >= 202.7235)
 AND (d2_Current <= 202.98649999999998))
OR ((d2_Current >= 937.5535) AND (d2_Current <= 944 .7975))) THEN 9

RULE FOR STATE 10:
IF (((Current >= 0.19351849999999998)
 AND (Current <= 0.24175249999999998)
 AND (d1_Current >= 0.6799845) AND (d1_Current <= 5.983625)
 AND (d2_Current <= 1007.0))
OR ((Current >= 0.2270345) AND (Current <= 0.241927)
 AND (d1_Current >= 0.39421649999999997)
 AND (d2_Current <= -429.7875))
OR ((d2_Current >= 224.6855) AND (d2_Current <= 225 .2665))) THEN 10

RULE FOR STATE 11:
IF (((Current >= 0.1982835) AND (Current <= 0.24155 9)
 AND (d1_Current >= -3.95517) AND (d1_Current <= 2.346055))
OR ((d2_Current >= 1910.425) AND (d2_Current <= 191 8.715))
OR ((d2_Current >= 1780.71)
 AND (d2_Current <= 1794.8400000000001))) THEN 11

RULE FOR STATE 12:
IF (((Current >= 0.196977) AND (Current <= 0.306535)
 AND (d1_Current >= 3.04138)
 AND (d1_Current <= 13.565850000000001))) THEN 12

RULE FOR STATE 13:
IF (((Current >= -0.004448185) AND (Current <= 0.19 3331)
 AND (d1_Current <= 1.56491)
 AND (d2_Current <= 454.515))
OR ((Current >= -0.00628144) AND (Current <= 0.3060 665)
 AND (d1_Current >= -5.318434999999999)
 AND (d1_Current <= 1.970375)
 AND (d2_Current <= 470.1575))
OR ((Current <= 0.307395)
 AND (d1_Current <= 3.1861050000000004)
 AND (d2_Current <= -9.40672))) THEN 13

 108

State-Transition Logic

 S1 -> Current<4 AND
 10<=Slope<=15
 S2 -> 1<=Current<=4 AND
 Slope=0
 S3 -> Current<4 AND
 -13<=Slope<=-10

State-Transition
Logic

S3S1 S2

anomaly

script transition_to_merged_0

 if merged_enable_trace > 0 then
 message "script transition_to_merged_0"
 end if

 merged_active_state = 0
 merged_consecutive_error_count = 0
 merged_cumulative_transition_count = 0
 merged_consecutive_transition_count = 0
 merged_num_valid_points = 0

 activate monitor_transition_to_merged_1
 activate monitor_merged_0_curr
 activate monitor_merged_0_next
 activate monitor_merged_0_error

 if merged_enable_trace > 0 then
 execute merged_data_dump
 end if

end transition_to_merged_0

Rule monitor_merged_0_curr

 subsystem owner_of_merged
 category merged_valve_monitor
 priority 20
 activation yes
 continuous yes

 -- test for merged cluster 0
 if merged_active_state = 0 and
 (((merged_Current >= -0.00564919) and
 (merged_Current <= 0.012188049999999999)

 109

 and (merged_d1_Current >= -2.0479950000000002))) then

 if merged_enable_trace > 0 then
 message "monitor_merged_0_curr"
 end if

 -- this point is in active cluster, zero cons ecutive counts
 merged_consecutive_error_count = 0
 merged_consecutive_transition_count = 0

 -- bump number of valid points found
 increment merged_num_valid_points

 end if

end monitor_merged_0_curr

Rule monitor_merged_0_next

 subsystem owner_of_merged
 category merged_valve_monitor
 priority 20
 activation yes
 continuous yes

 -- test for merged cluster 1
 if merged_active_state = 0 and
 (((merged_Current >= 0.01253285) and
 (merged_Current <= 0.40316300000000005)
 and (merged_d1_Current >= 1.84109) and
 (merged_d1_Current <= 11.075700000000001)
 and (merged_d2_Current >= -892.1320000000001) and
 (merged_d2_Current <= 853.9445000000001))
 or ((merged_Current >= 0.02014075) and
 (merged_Current <= 0.28492700000000004)
 and (merged_d1_Current >= -0.2783255) and
 (merged_d1_Current <= 7.344745)
 and (merged_d2_Current <= 900.0745))
 or ((merged_Current >= 0.2523655) and
 (merged_Current <= 0.2545855)
 and (merged_d1_Current >= -0.4122285) and
 (merged_d1_Current <= -0.3237645))
 or ((merged_d1_Current >= 1.6590099999999999) an d
 (merged_d1_Current <= 1.67289))) then

 if merged_enable_trace > 0 then
 message "monitor_merged_0_next"
 end if

 -- this point is in next cluster, try to tran sition
 increment merged_cumulative_transition_count
 increment merged_consecutive_transition_count

 110

 merged_consecutive_error_count = 0

 end if

end monitor_merged_0_next

Rule monitor_merged_0_error

 subsystem owner_of_merged
 category merged_valve_monitor
 priority 20
 activation yes
 continuous yes

 -- test for merged cluster 0 error condition
 -- that is point NOT in 0 AND NOT in 1
 if merged_active_state = 0 and
 (NOT (((merged_Current >= -0.00564919) and
 (merged_Current <= 0.01218804999999999 9) and
 (merged_d1_Current >= -2.0479950000000 002)))) and
 (NOT (((merged_Current >= 0.01253285) and
 (merged_Current <= 0.40316300000000005) and
 (merged_d1_Current >= 1.84109) and
 (merged_d1_Current <= 11.0757000000000 01) and
 (merged_d2_Current >= -892.13200000000 01) and
 (merged_d2_Current <= 853.944500000000 1))
 or ((merged_Current >= 0.02014075) and
 (merged_Current <= 0.2849270000000000 4) and
 (merged_d1_Current >= -0.2783255) and
 (merged_d1_Current <= 7.344745) and
 (merged_d2_Current <= 900.0745))
 or ((merged_Current >= 0.2523655) and
 (merged_Current <= 0.2545855) and
 (merged_d1_Current >= -0.4122285) and
 (merged_d1_Current <= -0.3237645))
 or ((merged_d1_Current >= 1.659009999999 9999) and
 (merged_d1_Current <= 1.67289)))) the n

 if merged_enable_trace > 0 then
 message "monitor_merged_0_error"
 end if

 -- this point is in error, bump error counts
 increment merged_cumulative_error_count
 increment merged_consecutive_error_count
 merged_consecutive_transition_count = 0

 end if

end monitor_merged_0_error

 111

Rule monitor_transition_to_merged_1

 subsystem owner_of_merged
 category merged_valve_monitor
 priority 20
 activation yes
 continuous yes

 if(merged_cumulative_transition_count >
merged_cumulative_transition_threshold)

or(merged_consecutive_transition_count>merged_conse cutive_transitio
n_threshold)then

 if merged_enable_trace > 0 then
 message "monitor_transition_to_merged_1"
 end if

 execute transition_to_merged_1 in 1 tick
 end if

end monitor_transition_to_merged_1

.

.

.

 112

Anomaly Detection

S3S1 S2

anomaly

Screen capture courtesy of Interface & Control Systems (ICS)

3 plots: tested time series, state tracking, error level

 113

Usage
(command-line interface)

C:\>createRules v28.csv v24.csv v32.csv
- - - - - - - - - - - - - -
Running Pre-Processor to Smooth, Normalize, and Der ive new
Attributes:
Pre-Processing v28.csv....done
Pre-Processing v24.csv....done
Pre-Processing v32.csv....done
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -
Running Dynamic Time Warper...
Determining which time series is most normal...done in 13
seconds
The Most 'Average' Input Time Series is: v24.csv
Creating a merged time series..............done in 0.21
seconds.
- - - - - - - - - - - - - -
Pre-Processing merged.csv....done
- - - - - - - - - - - - - -
Running the Clustering Algorithm Gecko
LEAVE FIELDS BLANK AND PRESS RETURN TO AUTOMATICALLY USE
DEFAULT VALUES:

How would you like to set the parameters for Gecko?
 1) Simple [DEFAULT] (2 parameters to set)
 2) Advanced (5 parameters to set)
->1

What is the 'Minimum Cluster Size' that you want to be
possible?
DEFAULT = 10
Increasing this value makes the algorithm more tole rant to
noise, but if the setting is too large, smaller clu sters will
not be properly found. Value must be >=5 but is re commended
to be >= 10 for smooth data, and much greater than 10 for
noisy data.
->20

What is the 'Low Slope Sensitivity' setting?
DEFAULT = 0.0
Data sets with a high sample rate or where changes in the
non-time dimensionss

 114

happen much more slowly than time will tend to need higher
values. A setting of '0.0' typically works well, b ut may
need to be changed for the best results. Lower set tings are
more tolerant to noise. Consult the manual for a f ull
explaination on setting this parameter.
->0.0

Loading data from file...loading complete in 0.681 seconds.
2411 points sampled down to...2411 points in 0 seco nds.
Normalizing data...finished in 0.06 seconds.
Weighting data...finished in 0.02 seconds.
Building k-nearest neighbor graph...done in 12.638 seconds.
Splitting data into initial sub-clusters...90 sub-c lusters
created in 24.105 seconds.
Merging remaining sub-clusters...completed in 1.592 seconds.

Creating output files: 14 clusters recommended.
Evaluation file: 'merged_Gecko_excel.csv' created.
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -
Running Post-Processor to combine clustering and wa rp path
information
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -
Running Ripper to create rules...done in 8 min.
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -
Converting Ripper rules to SCL expert system format .
- - - - - - - - - - - - - -
Done.

