Solving
Combinatorial Optimization Problems
Using a New Algorithm
Based on Gravitational Attraction

by

Barry Lynn Webster

A dissertation
submitted to the College of Engineering at
Florida Institute of Technology
in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy
in
Computer Science

Melbourne, Florida
May, 2004

© Copyright 2004 Barry Lynn Webster
All Rights Reserved

The author grants permission to make single copies

Solving Combinatorial Optimization Problems Usinilew Algorithm
Based on Gravitational Attraction
a dissertation by
Barry Lynn Webster

Approved as to style and content

P. J. Bernhard, Ph.D.

Associate Professor
Computer Sciences
Dissertation Advisor

W. P. Bond, Ph.D.

Associate Professor
Computer Sciences
Committee Member

O. Frieder, Ph.D.
Professor
Computer Sciences
Committee Member

J. Hadjilogiou, Ph.D.

Professor

Electrical and Computer Engingeri
Committee Member

W. D. Shoaff, Ph.D.
Associate Professor
Computer Sciences
Department Head

Abstract

Solving Combinatorial Optimization Problems Usinilew Algorithm
Based on Gravitational Attraction
by
Barry Lynn Webster

Dissertation Advisor: P. J. Bernhard, Ph.D.

This dissertation represents the culmination oéa@esh into the development of
a new algorithm for locating optimal solutions tdfidult problems. This new
algorithm is founded upon one of the most basicepts in nature — so basic that
it is in fact one of the four primary forces in @igs: gravity.

It is called the Gravitational Emulation Local S#aalgorithm, or GELS. Four
variants of the algorithm were developed, repreésgrntombinations of two basic
methods of operation and two modes of search spaptoration. Following
development, a series of experiments were conduotedsess the capabilities of
this new algorithm. Three test problems were ufedveling Salesman, Bin
Packing, and File Assignment). Instances of theeblems were generated using

several different problem sizes, then solved ushrge well-known comparison

algorithms (Hill Climbing, Genetic Algorithm, andinulated Annealing) in
addition to the four variants of GELS.

The outcomes of the experiments were rigorouslyyaed using a variety of
statistical techniques. The results of the analy®wed that GELS was able to
perform on a par with, and in many cases bettan, tttee much more mature and
extensively studied comparison algorithms. Onetled GELS combinations
achieved the best performance ratings of any dlgarin solving instances of Bin
Packing, and finished in a virtual tie with Simedt Annealing for solving
instances of File Assignment and for general pwpesrformance. Two of the
four GELS combinations were also shown to outperfétill Climbing and the
Genetic Algorithm.

GELS also performed its task efficiently. Two betfour combinations were
shown to be more efficient in locating their sadat than any of the comparison
algorithms except Hill Climbing (a greedy algorittkmown to produce solutions in
very few steps). The solutions produced by GELSewthus not only of
comparable or better quality than those of the @spn algorithms, but usually

were arrived at more efficiently.

Table of Contents

LiSt Of KEYWOIAS......coeeeeeeietce e e e n e e e e e e e e e e eae s IX
LISt Of EXNIDITSeeiiiieiiiieee e X
LiSt Of ADDIEVIALIONSoeiiiiiiiiiiiii it e e XV
ACKNOWIEAGEMENTS ..ottt XVi
DEAICALION ...ttt ettt e e e e annn e e e Xviii
1 Preliminary Material ... 1
1.1 INEFOAUCTION ...ttt emmn e e e 2
1.2 Background INformationoooeiicemmeeniiieie e 3
1.2.1 Combinatorial Optimization Problemscc.ccovvvviiiiiiiciiiiieeeee. 4
1.2.1.1 The Traveling Salesman Problem ..., 9
1.2.1.2 The Bin Packing Problemomeeeeeeeriiimineeeeeeeeeeeeen 10
1.2.1.3 The File Assignment Problem.........cccceoiiiiiiiiiiiiiiiiieeiiiiiiees 11
1.2.2 Existing Solution MethodsS..........coo v, 12
1.2.2.1 Systematic Methodsoooiiiieieieeiiiii s 13
1.2.2.2 Stochastic (Heuristic) Methods...... .o eeeeeeeeeiiiiieeeiiiiiin 14
1.2.2.3 Advantages/Disadvantages of Method TYpPeS.......coeeeeeeeeeenn. 16
1.2.3 Statistical Validation of Research Hypotheses.............cccccevvvnnens 19
1.2.3.1 Design Of EXPeriMENTS........ccooi ittt e e 19
1.2.3.2 Evaluating Results of EXperiments..........ccccevvvvivvviiiiiiiieeeeeeenn. 25

Vi

1.2.3.2.1 Graphical Analysis TOOIS.........cccoueeeiiiiiiiiiiii, 26

1.2.3.2.2 Analysis of Variance...........ccccccccceveie e 33
1.2.3.2.3 Evaluating Experimental Results UsingSPS.................... 36
1.3 A New Method for Solving Combinatorial Optimiza Problems 42
2 Analysis and Evaluation of the GELS AlIgOrthMu....ccoovvviiiiiiiiiiii, 47
2.1 Preliminary Work Done With GELSceiiiiiiieeeecee e 48
2.2 Current Research Completed Using GELS...........cceiiiiiiiiiiiiiiiiiiieeeeins 58
221 Premises of the Research ... 58
22.2 Design of the Current Research Experiments.................cceeennn. 61
2.2.3 Implementation of the Test Problemsooovviiciiiiiiineeeeee, 66
2.2.3.1 Traveling Salesman Problem Implementation.......................... 67
2.2.3.2 Bin Packing Problem Implementation ...eceee....evceiiiiiinieeeeenen. 70
2.2.3.3 File Assignment Problem Implementation................ccccccevvvnnes 74
224 Implementation of the Test Algorithmsccccovvvvvviiiiicccieeeee. 78
2.2.4.1 Hill Climbing Implementationco.coeeeeeeieeeiiiiiiiiiie e 82

2.2.4.2 Simulated Annealing Implementation.. ...ccceeeeeevvveeneennnn... 84

2.2.4.3 Genetic Algorithm Implementationooevviiiiiiiiiiiinnnn. 87
2.2.4.4 GELS Implementationcccceeeeeeeeeee e 97
225 Validation of the Experimental Environment.................cccceevvinns 113
2.2.6 Performance of the Research EXperimentsS.............ccccceeeeeeenennnn. 117
2.2.7 Results of the Current Research Experiments...........ccccceeeeeenn.. 121
2.2.7.1 Algorithm Performance ReSUILS.......cccmeeeiiieeeeiiiiiiiiiiiiiiiienns 121
2.2.7.1.1 Problem Size Ten Performance ReSUltS......................... 122

Vii

2.2.7.1.2 Problem Size Twenty Performance Resulis................... 160

2.2.7.1.3 Problem Size Thirty Performance Results...................... 166
2.2.7.1.4 Problem Size Forty Performance Results...................... 173
2.2.7.1.5 Problem Size Fifty Performance ReSultS........................ 180
2.2.7.1.6 Random Problem Size Performance Resulis................. 187
2.2.7.2 Algorithm Efficiency ReSUlts...........coeevviiiiiiiiiiiieeeiii, 195
2.2.7.2.1 Problem Size Ten Efficiency Results...........cccceeeeeenennn. 197
2.2.7.2.2 Problem Size Twenty Efficiency ResultS........................ 204
2.2.7.2.3 Problem Size Thirty Efficiency Results.............cccccceennn. 210

2.2.7.2.4 Problem Size Forty Efficiency ResultS...........................216

2.2.7.2.5 Problem Size Fifty Efficiency Results..............cccccceeeee. 221

2.2.7.2.6 Random Problem Size Efficiency Results......................226
3 Research Efforts Summary and Evaluationccccoviviiiiiiiiiinnnnn. 234

3.1 Interpretation of Research Results ... eeeeeeeivvveieiiiiiicciiineeen.. 235

3.2 Overall Evaluation Of GELS ... et @4
3.3 (@d0] 1 (o1 11110] o IR 243
Y (=1 (=] (oS E TR 245

viii

List of Keywords

Algorithm Efficiency
Algorithm Performance
Atrtificial Intelligence

Bin Packing Problem
Combinatorial Optimization Problems
File Assignment Problem
Genetic Algorithm
Heuristic

Hill Climbing

Local Search

Monte Carlo Algorithm
NP-Hard

Objective Function
Optimization Algorithm
Simulated Annealing

Traveling Salesman Problem

Exhibit 1.
Exhibit 2.
Exhibit 3.
Exhibit 4.
Exhibit 5.
Exhibit 6.
Exhibit 7.
Exhibit 8.
Exhibit 9.

Exhibit 10.
Exhibit 11.
Exhibit 12.
Exhibit 13.
Exhibit 14.
Exhibit 15.
Exhibit 16.
Exhibit 17.
Exhibit 18.

Exhibit 19.

List of Exhibits

Example Box Plot Generated by SPSSccocccciiiiiiiiiiiieeeeeeeee 28
Example Line Plot Generated by SPSS.......cccooeiiiiiiiiiiieeee, 30
Example P-P Plot Generated by SPSS ... 32
Example Scatter Plot Generated by SPSS......ccooiiiii, 33
Example ANOVA Results Generated by SPSSc.ccccceeieennn. 36
Example Kolmogorov-Smirnov Test Generated by SPSS............ 38
Example Kruskal-Wallis Test Generated by SPSS....................... 39
Example Homogeneous Subsets List Generated b§ SPS............. 41
Average Difference from Optimal, Early Experiment..................... 55
Average Improvement over Random, Early Experiment............. 56
Average Number of Iterations per Test, Early Expents............... 57
Box Plot, TSP Size 10 Performance.........cccceeeueviiiiiiiieiieeeeneenn. 123
Line Plot, TSP Size Ten Performance.......ccccceeovvveeiiiiiiiineeeennne 124
ANOVA Results, TSP Size Ten Performance............................125
Residual Normal P-P Plot, TSP Size Ten Performanc.............. 126
Kolmogorov-Smirnov Test, TSP Size Ten Performance........... 127
Predicted vs. Residual Plot, TSP Size Ten Pedon@.................. 128
Residual Trend Plot, TSP Size Ten Performance...................... 129
Kruskal-Wallis Test, TSP Size Ten Performance....................... 130

Exhibit 20.
Exhibit 21.
Exhibit 22.
Exhibit 23.
Exhibit 24.
Exhibit 25.
Exhibit 26.
Exhibit 27.
Exhibit 28.
Exhibit 29.
Exhibit 30.
Exhibit 31.
Exhibit 32.
Exhibit 33.
Exhibit 34.
Exhibit 35.
Exhibit 36.
Exhibit 37.
Exhibit 38.
Exhibit 39.
Exhibit 40.
Exhibit 41.

Exhibit 42.

Homogeneous Subsets, TSP Size Ten Performance................131
Box Plot, BPP Size Ten Performancecccceeeeeooveeiiiiiiiivnnnnee, 133
Line Plot, BPP Size Ten Performance.......cccccccceeiiinnnneeeeeeennn. 134
ANOVA Results, BPP Size Ten Performance...........................135
Residual Normal P-P Plot, BPP Size Ten Performanc.............. 136
Kolmogorov-Smirnov Test, BPP Size Ten Performance........... 137
Predicted vs. Residual Plot, BPP Size Ten Pedona.................. 138
Residual Trend Plot, BPP Size Ten Performance...................... 139
Homogeneous Subsets, BPP Size Ten Performance...............140
Box Plot, FAP Size Ten Performance.........ccccceeeeviiiiiiiiiinnnnnne, 143
Line Plot, FAP Size Ten Performancecccveiiiiiiiciinnnneenn. 144
ANOVA Results, FAP Size Ten Performance......ccccccooeeeeiiinnnn. 145
Residual Normal P-P Plot, FAP Size Ten Perforreanc.............. 146
Kolmogorov-Smirnov Test, FAP Size Ten Performance........... 147
Predicted vs. Residual Plot, FAP Size Ten Perdmge.................. 148
Residual Trend Plot, FAP Size Ten Performance...................... 149
Homogeneous Subsets, FAP Size Ten Performance................ 150
Box Plot, Composite Size Ten Performancecc.vvveennnnn... 151
Line Plot, Composite Size Ten Performanceccccv........152
Problem Type Plot, Composite Size Ten Performance............. 153
ANOVA Results, Composite Size Ten Performance..................154
Residual Normal P-P Plot, Composite Size TendPerdnce.......... 155
Kolmogorov-Smirnov Test, Composite Size Ten Renfnce........ 156

Xi

Exhibit 43.
Exhibit 44.
Exhibit 45.
Exhibit 46.
Exhibit 47.
Exhibit 48.
Exhibit 49.
Exhibit 50.
Exhibit 51.
Exhibit 52.
Exhibit 53.
Exhibit 54.
Exhibit 55.
Exhibit 56.
Exhibit 57.
Exhibit 58.
Exhibit 59.
Exhibit 60.
Exhibit 61.
Exhibit 62.
Exhibit 63.
Exhibit 64.

Exhibit 65.

Predicted vs. Residual Plot, Composite Size TesfoRnance........ 157

Residual Trend Plot, Composite Size Ten Perfooman............... 158
Homogeneous Subsets, Composite Size Ten Perfoeman......... 159
Homogeneous Subsets, TSP Size Twenty Performance.......... 161
Homogeneous Subsets, BPP Size Twenty Performance.......... 162
Homogeneous Subsets, FAP Size Twenty Performance.......... 163
Homogeneous Subsets, Composite Size Twenty Paafae......... 165
Problem Type Plot, Composite Size Twenty Perforcea.............. 166
Homogeneous Subsets, TSP Size Thirty Performance............. 167
Homogeneous Subsets, BPP Size Thirty Performance............ 168
Homogeneous Subsets, FAP Size Thirty Performance............. 170
Homogeneous Subsets, Composite Size Thirty Redace............ 171
Problem Type Plot, Composite Size Thirty Perfamoe................. 173
Homogeneous Subsets, TSP Size Forty Performance.............. 174
Homogeneous Subsets, BPP Size Forty Performance............. 175
Homogeneous Subsets, FAP Size Forty Performance.............177
Homogeneous Subsets, Composite Size Forty Peafaren........... 178
Problem Type Plot, Composite Size Forty Perforrean............... 179
Homogeneous Subsets, TSP Size Fifty Performance............... 181
Homogeneous Subsets, BPP Size Fifty Performance............... 182
Homogeneous Subsets, FAP Size Fifty Performance............... 183
Homogeneous Subsets, Composite Size Fifty Pedfoce............. 185
Problem Type Plot, Composite Size Fifty Perforoen................. 186

Xii

Exhibit 66.
Exhibit 67.
Exhibit 68.
Exhibit 69.
Exhibit 70.
Exhibit 71.
Exhibit 72.
Exhibit 73.
Exhibit 74.
Exhibit 75.
Exhibit 76.
Exhibit 77.
Exhibit 78.
Exhibit 79.
Exhibit 80.
Exhibit 81.
Exhibit 82.
Exhibit 83.
Exhibit 84.
Exhibit 85.
Exhibit 86.
Exhibit 87.

Exhibit 88.

Homogeneous Subsets, Random Size TSP Performance........ 188
Homogeneous Subsets, Random Size BPP Performance........189
Homogeneous Subsets, Random Size FAP Performance........ 190

Homogeneous Subsets, Random Size Composite Perfoema...192

Problem Type Plot, Random Size Composite Perfoc@a............ 193
Problem Size Plot, Random Size Composite Perfocma............. 195
Homogeneous Subsets, TSP Size Ten Efficiency...................200
Homogeneous Subsets, BPP Size Ten Efficiency....................201
Homogeneous Subsets, FAP Size Ten Efficiency..................... 202
Homogeneous Subsets, Composite Size Ten Effigienc............ 203
Problem Type Plot, Composite Size Ten Efficiency................... 204
Homogeneous Subsets, TSP Size Twenty Efficiency............... 205
Homogeneous Subsets, BPP Size Twenty Efficiency............... 206
Homogeneous Subsets, FAP Size Twenty Efficiency............... 208
Homogeneous Subsets, Composite Size Twenty &fiigi............. 209
Problem Type Plot, Composite Size Twenty Efficien................ 210
Homogeneous Subsets, TSP Size Thirty Efficiency.................. 211
Homogeneous Subsets, BPP Size Thirty Efficiency.................. 212
Homogeneous Subsets, FAP Size Thirty Efficiency.................. 213
Homogeneous Subsets, Composite Size Thirty Bffey............... 214
Problem Type Plot, Composite Size Thirty Effiagn................... 215
Homogeneous Subsets, TSP Size Forty Efficiency................... 216
Homogeneous Subsets, BPP Size Forty Efficiency................... 217

Xiii

Exhibit 89.
Exhibit 90.
Exhibit 91.
Exhibit 92.
Exhibit 93.
Exhibit 94.
Exhibit 95.
Exhibit 96.
Exhibit 97.
Exhibit 98.
Exhibit 99.
Exhibit 100

Exhibit 101.
Exhibit 102.
Exhibit 103.
Exhibit 104.

Exhibit 105.

Homogeneous Subsets, FAP Size Forty Efficiency................... 218
Homogeneous Subsets, Composite Size Forty Hifigie.............. 219
Problem Type Plot, Composite Size Forty Efficienc.................. 220
Homogeneous Subsets, TSP Size Fifty Efficiency.....................222
Homogeneous Subsets, BPP Size Fifty Efficiency....................223
Homogeneous Subsets, FAP Size Fifty Efficiency.................... 224
Homogeneous Subsets, Composite Size Fifty Effaye................ 225
Problem Type Plot, Composite Size Fifty Efficignc.................... 226
Homogeneous Subsets, TSP Random Size Efficiency............. 227
Homogeneous Subsets, BPP Random Size Efficiency............. 228
Homogeneous Subsets, FAP Random Size Efficiency............. 229
Homogeneous Subsets, Composite Random Sized#itigi........ 230
Problem Type Plot, Composite Random Size Efficyen............ 231
Problem Size Plot, Composite Random Size Effoyen............. 232
Summary of Algorithm Comparison Rankings.........................236
Averages of Algorithm Comparison Rankingscccvvveeenn. 237
Algorithm Selection Suggestionscccceeiieeieeeeiieeeeeeeiiiiiies 238

Xiv

ANOVA:

BPP:

DOE:

FAP:

GA:

GELS:

HC:

MC:

OF:

RCBD:

SA:

SPSS:

SQL:
TALL:
TA12:
TA21:

TA22:

List of Abbreviations

Analysis of Variance

Bin Packing Problem

Design of Experiments

File Assignment Problem
Genetic Algorithm

Gravitational Emulation Local Search
Hill Climbing
Monte Carlo

Objective Function

Randomized Complete Block Design
Simulated Annealing

Statistical Package for the Social Sciences
Structured Query Language

GELS — Method 1, Movement Type 1
GELS — Method 1, Movement Type 2
GELS — Method 2, Movement Type 1

GELS — Method 2, Movement Type 2

XV

Acknowledgements

| would like first to thank my major advisor Dr. Bdnard for taking me on as a
student, for his availability for the many meetin@g@metimes on rather short
notice), for his encouragement, his trust, andassistance, without which this
dissertation could not have become a reality.

| would like to thank next the members of my conte®t both collectively and
individually:

* To Dr. Hadjilogiou, for his willingness to join trmommittee after only the

briefest of introductions

» To Dr. Bond, for his insight at the beginning oistlendeavor into how the

experiments should be conducted

» To Dr. Frieder, for his willingness to serve oncamnittee of mine not once

but twice, for his encouragement throughout thigylprocess, and certainly
not least, for his ever-present wry humor

| would also like to thank Dr. Wade Shaw for hisdgunce in setting up the
experiments and ensuring that the analysis ofébelts was done properly.

A note of thanks is also due to my supervisor Gamjith and my co-workers
Paul Geneczko, Steve Grant, Liz Price, Jeff Steebtott Strmel, and Frank Van

Langen, who put up with me being extremely disgdand frequently incoherent

XVi

during the many months that this work was progregsand who also gave me
many words of encouragement.

Thanks should also be extended to my parents DandyWinifred Webster,
who both being school teachers instilled in mevillele of an education, and to my
late grandfather Dr. Myron Webster, who inspired taego this far with that
education.

Lastly, | would like to offer thanks to my wife Pawe, who endured my
seemingly endless hours of absorption in this effathout complaint, who gave
me her unwavering support, and who took care ofynwdrthose “nuisance” items
usually referred to as “Real Life” when | was off my other world, that of

completing this endeavor.

XVii

Dedication

Normally, one would expect a dedication to go te amdividual, or at most a
small group of persons. However, there were masgple who provided
assistance and/or inspiration to complete this,taskl in many ways. To give a
dedication to any one of them would seem to eletaé¢ one to a position of
greater importance, and thus somewhat diminishroles played by the others.
Furthermore, there was a considerable amount adrady encountered during this
odyssey, and there were many temptations to debatet was just not worth the
trouble. The drive to see it through to completbame from a variety of sources,
but in the end it came down to sheer willpower.efEfiore, this work is dedicated
to every person who had a hand in making it atseaind to everyone who, facing

adversity in pursuit of a lofty goal, will nonetlesk find the will to succeed.

Xviii

1 Preliminary Material

1.1 I ntroduction

When examining the types of problems that compws¥sundertaking to solve,
one cannot help but notice the sheer size and exibplof some of those
problems. From the very beginning, as the compurtat power and capabilities of
computers have increased, so have the size andledtypof the problems that
have been assigned to them. With each passingryeae and more problems that
once were considered too large and/or too involeee solved in a reasonable
manner via computer are becoming viable, if notinau

Yet even so, there remain many instances of prabkbat are very difficult to
solve, even for powerful computers. These problames sufficiently large and
complex that it may not be feasible to produce ltsm within a reasonable
amount of time. Now, it is true that what congégia “reasonable amount of time”
is subjective. For some applications, a solutioat appears within several days
may be acceptable (Harrell et al., 2000). Formo#pplications, such as a real-time
business intelligence provider, a solution appegafter only a few seconds have
elapsed may be considered too slow (Hewlett-Packad®2). In any case,
problems can be found that will tax the abilityteé computer to provide a solution
within a timeframe that meets the situation’s stadd of “reasonable” (Harrell et
al., 2000, Hewlett-Packard, 2002, Kondrak et &95). It is precisely those types

of problems that are of interest herein.

This dissertation is the result of research inte ttevelopment of a new
algorithm to locate solutions to difficult problenmsa reasonable amount of time.
It is organized to outline the course of that resdea In the first part, concepts
necessary for an understanding of the developmedtewaluation of the new
algorithm are presented. In the second part, laithm itself is discussed, from
its beginnings to the present, with a focus onrdseilts of a series of experiments
conducted in order to determine the ability of #igorithm to accomplish its
intended purpose. In the final part, the resukstid together and conclusions are
formulated from the data. The document ends widiiseussion of the direction in

which this research is heading and a few conclud@ngarks.

1.2 Background Information

In discussions regarding this research, it waschthat a sizeable number of
people, both without and within the computer scgancommunity, were at least
somewhat unfamiliar with one or more of the consdaptolved in the research.
Certain of these concepts are critical to an undeding of the research material,
and to an ability to place the disparate portiohshe material into their proper
context. Therefore, it was deemed prudent thaetsbould be included herein a
discussion of those critical concepts.

It is not intended that this discussion should begrehensive. To make such

an attempt is neither necessary nor feasible. éRatbr each concept only the

items that are directly pertinent to the researelenmal will be discussed, and only
to the level they were applied to that material.

First will be a discussion of combinatorial optimtion problems. This is the
class of problems that formed the focus of theawte the class of problems for
which the new algorithm was designed to locate temia. Differing methods
currently in place for solving these problems via# mentioned, along with the
advantages and disadvantages of each.

Next will be a discussion of some statistical meththat can be used to assist
in drawing conclusions from experimental data. idMas techniques for analyzing
data and presenting conclusions, both visual anthenaatical, will be identified.
A brief tutorial will follow showing how each of ¢éhtechniques is implemented by
SPSS, the statistical package that was used tgzanthle research data.

Finally, the new algorithm will be introduced. Itsigins will be outlined,

along with early experimentation leading up to¢herent set of experiments.

1.2.1 Combinatorial Optimization Problems

This research revolved around the development asiyd of a new algorithm.
Yet, algorithms are designed to solve problemsmeéalgorithms are designed to
solve specific problems, as with control mechanifmnsarious types of automated
machinery (Harrell et. al., 2000). Other algorithi@re designed to solve more

general classes of problems, as with linear progreg (Papadimitriou, 1994).

So, there must of necessity be a problem or claggablems for which the new
algorithm was designed.

One of the most basic problems under study withendomputer sciences is the
search problem This is actually a general class of problemshaitsimilar goal.
Simply put, that goal is to find something of irstr within a designated search
area. To state the problem formally,

Given: setS

key value k

SEARCH(S, k) = x, such that x is a pointer to asnent of S with a value
equal to k, or NIL if no such element exists witlii{Corman et al., 1991).

That is, given a set of elements to search throcglted thesearch spaceand a
particular value to search for, SEARCH will attentptlocate an element of that
value within the search space. If such an elensefdgund, SEARCH will return
the location of that element within the search spatf no such element can be
found, SEARCH will return a null value or otherwiselicate that the search failed.

Of interest herein is a special case of the moneige search problem known as
the optimization search problenor combinatorial optimization This too is a class
of problems with a similar goal, and since it isp&cial case of the search problem,
that goal is still to find something of interestthih a given search space.
However, with combinatorial optimization the “soimieg of interest” is more
restrictive than in the general case. Note thatelmay be multiple elements

within the search space that satisfy the searcHitton. In the generalized search

5

problem, locating any one of those elements isigafft. In combinatorial
optimization, though, simply locating any elemematt satisfies the search
condition is not enough.

Combinatorial optimization tacks on the additioreduirement that the search
locate an element that not only matches the seaHition but is in some sense
the “best” element that matches the search comddiact of a possible many that
satisfy said condition. The notion of which elemisri'best” is determined by what
is known as thebjective function

As its name implies, the objective function is adtion that can be applied to
elements within the solution space to determiner thedative ability to attain a
specific objective. For example, suppose that gbarch space consists of all
integersi such that 0 € < 101. Suppose further that the objective fumctimat is
to be applied is F(x) = x. That is, the valuelté bbjective function is simply the
value of the element itself. For the purposeshié example the objective is
defined to be maximizing F(x).

Now, given that the search condition is to locate edemente such that
emod 10 =0 (i.ee is evenly divisible by ten), it is easy to seetttiee search
condition will be satisfied by more than one eletriarthe search space; in fact, it
will be satisfied by ten different elements. If ngealized search is being
performed, then finding any one of those ten wilffise. However, since
optimization search is being performed, it is neaeg to apply the objective

function to each element found matching the seamnidition (such an element

6

being called aolutionto the problem). For this example, it can be gbahdoing
so will result in the element with the value 10@nigedeclared the optimal solution,
since it satisfies the search condition and hashtghest value of the objective
function F(x) of all the solutions.

From this example, it should be fairly obvious thatmbinatorial optimization
is more complex than generalized search. Wheréidfisgeneralized search it is
necessary only to find one solution, with combinalcoptimization it is necessary
to find all possible solutions (either explicitly mplicitly), applying the objective
function to each in order to determine which solutis optimal. The problem is
further complicated by the fact that in many ins&sthe search space is so large
that searching every element to find all possilbleiteons is highly impractical, if
not impossible (Freuder et. al., 1995). Also, skearch space may contain many
solutions that have equal or near-equal valueshi®mobjective function, and these
solutions may be widely dispersed throughout tharcde space. Lastly, the
solutions may consist of several parts, and theay e a complex interplay
between the parts, meaning that the overall vafuihe objective function often
cannot be determined by just looking for pattemsthe solutions (Aarts and
Lenstra, 1987).

It is precisely this type of problem that is ofdrgst in this document: the class
of problems where

* An optimal solution is desired, but where the skeapace is large enough

that performing an exhaustive search is not aroopti

7

* There is no guarantee that the optimal solutiosabations will be located

near another solution or solutions of similar guyali

* The solutions are multi-dimensional (contain mér@tone part)

Such problems constitute an interesting and chgilhgn area of study.
Combinatorial optimization appears in a variety ffuations, from academic
problems used to teach the principles of optimmatio problems of everyday
interest in industry. It is also used extensivelyArtificial Intelligence (Al)
applications. Search in and of itself is fundaraetd the study of Al. It is so
fundamental, in fact, that it has been said thaat all the basic methods used by
Al applications are some variation of search (Néwelal., 1977). Combinatorial
optimization in particular is used by expert sysdetm choose the best course of
action to take (Englemore and Morgan, 1988, Gianatand Riley, 1993, Webster,
1995), by Constraint Satisfaction Problems to fimel best solution that satisfies all
constraints of the problem (Prosser, 1993, Tsarf6)l and by intelligent
scheduling systems to find the best out of a lisfeasible schedules (Bresina,
1996, Bresina et. al.,, 1994). Conducting in-dembearch on all combinatorial
optimization problems is obviously beyond the sphef a single research study,
and so the scope needed to be narrowed to a fesifispexamples. The example

problem types that were included in the reseanatias will now be described.

1.2.1.1 TheTraveling Salesman Problem

The Traveling Salesman Problem (TSP) is a veryotghly studied problem
that is popular in the classroom for introducindimization and the challenges it
presents. The idea of this problem is to imagisalasman who is about to embark
on a sales trip. There are a certain number &scan his proposed itinerary, and
he needs to visit all of them before returning ® ome city. The restriction is
that he is only allowed to visit each city onceidgrhis trip. Thus, TSP is a
variation of aHamiltonian cycleproblem (Aho et. al., 1983).

There is defined to be some sort of cost involvetraveling between any two
given cities on the itinerary. This cost may beuipht of in monetary terms, as in
the cost of an airline ticket to fly between theotaities, or in terms of the time it
will take to travel between the cities, or someeotkind of cost. It really doesn’t
matter; the important thing is that some type ostcwill be incurred to the
salesman as he moves from one city to anotherfl@ndost to go from city A to
city B might not be the same as it is to move fiwiy B to city A.

Faced with a directive from his management to @rmosts of sales trips, the
salesman wants to be as efficient as he can whamiplg his trip. His goal is
therefore to minimize the total cost of completimg itinerary. Thus, a solution for
TSP is a complete tour itinerary for the salesns@owing the order in which each

city will be visited. The objective function valwé the solution is the sum total of

costs to visit all the cities on the complete tawith the objective of minimizing
that value.

The salesman is presented with many choices. Hewsd the cities on his
itinerary in any order, but he has to visit theinaald may only visit each one once.
He may travel between any pair of cities, but trdhvetween some pairs is more
expensive than others. This multitude of optionskes TSP a very complex

problem to tackle (Aho et. al., 1983).

1.2.1.2 TheBin Packing Problem

The Bin Packing Problem (BPP) is another very thghty studied problem
that is popular in the classroom. There are a ruwmbvariations to this problem,
but the one that is of interest hereirli®imensionaBin Packing. The premise of
this problem is that there is a collection of obgeof varying size, with the one
restriction that all objects are less than a spEtsizen. There is also available an
unlimited supply of bins of size in which to store the objects. Each of the olgject
in the collection is to be placed in one of theilade bins. Any number of objects
may be placed in a particular bin, provided the lommd size of the objects does
not exceed the size of the bin.

The goal of the problem is to find the minimum n@nlof bins required to
store all the objects in the collection. Thuspktson for BPP is an assignment of

objects to bins, and the objective function valaethe solution is the number of

10

bins that have been used to store the collectiath the objective being to
minimize that value.

This simple problem, with its simple goal, is adiyaather deceptive in its
simplicity. When placing the objects into binserth is no restriction on how the
objects may be combined, save that of not exceetth@din size. Many options
are available, meaning that the choice of bin inctvho place each object is far

from trivial (Corman et. al., 1991).

1.2.1.3 TheFile Assignment Problem

The File Assignment Problem (FAP) is of everydaterest to the business
community. This problem supposes a computer sysit@tnhas a certain number
of hardware devices available for storage, eachh wvii§ own performance
characteristics. The usage of the system reqthisa certain group of files will
need to be stored, and will be accessed in a yaoktmanners (e.g. differing
orders, read vs. write, etc.). There are a var@tyosts associated with this
process, including the cost of accessing a fileaogiven device, the cost of
(potentially) maintaining copies of a file on diféat devices and keeping them
consistent when the file changes, and the cosbofdinating the operations of the
hardware devices (Dowdy and Foster, 1982).

The idea in this problem is to allocate each offiles that will be accessed to

one or more of the available hardware devices @i suway as to minimize some

11

pre-determined cost (average access time, throigbf). Thus, a solution for
FAP is a mapping of files to devices, and the dbjecfunction value for the
solution is a measurement of some cost associatdstoring the files in that
configuration, with the objective being to minimitteat value.

FAP is of interest in many common settings. Itofsinterest to system
managers, who want to know how best to arrange thestems to maximize
performance for their users. It is also of intetesdatabase administrators, who
want to know how to store their data files to maxinthe performance of their
databases (Bernhard and Fox, 2000). Since thedepnoban be expressed in a
number of variations and employed with a numbeolgéctive functions, its uses
can be quite extensive. Since the problem alsolweg storing a group of files on
a group of devices, and the many ways in which ¢batd be accomplished, FAP

is also a very complex problem (Bernhard and FOR02.

1.2.2 Existing Solution M ethods

There are currently a great many methods that sed to solve combinatorial
optimization. One need only examine the ever-gngwist of literature to see the
collection of methods that have been offered fdvisg TSP alone. Once again, to
attempt a comprehensive discussion of these myrathods would be neither

necessary nor prudent. As such, an overview ofgeeral types of approaches

12

that are in use and some basic explanations witiffezed, in order to compare and

contrast these methods with the new algorithm ustiety.

1.22.1 Systematic Methods

Systematic methods for solving combinatorial optation problems are
searches that follow a specified step-by-step ghaeeto systematically go through
the search space until either the search has thdsteuarry or it becomes clear
that the search cannot succeed. By utilizing ¢esyatic method, the search has a
guarantee that if a solution to the given problesste within the search space, the
method will locate it — a property known e@smpletenesPearl, 1985). Systematic
methods can be further subdivided intinformedandinformedmethods.
Uninformed systematic searches presume no knowletltfee search space or
the data within, and proceed solely on the bastb®froscribed procedure (Pearl,
1985). Examples of uninformed systematic searclude:
* Linear — progresses through the search space entry by &efting it as if
it was one long line of potential solution values

» Backtracking — performs a depth-first or breadth-first seartithe search
space, moving along a given path until a solut®found or a dead end is
reached, then backing up and moving on to the ekt

* Forward Checking — similar to backtracking, except that at eaclp ste

the path a check is performed to see if the nespp & the path would

13

contribute to a viable solution, or whether thathpadoes not contribute and
should be abandoned in favor of another path

Informed systematic search is used in cases wlmenething is known about

the search space and/or the data within (Pearg)198or example, the data might
be sorted alphabetically, or might be arranged rateg to some other known
organization. Informed search can take advantagaah situations to improve the
search performance. Examples of informed systemsatirch include:

* Yes/No (Binary Tree) Search — at each step in the search path a decision is
made to follow one of two paths that will lead ts@ution; works when
data are sorted or otherwise organized to accomtaakl@ binary decisions,
and is very efficient

» Hashed/Indexed Search — uses hash functions or indexes to point the
search to a specific location or region where atsm will be located;
again, works on organized data and is extremelgiefit

« Domain Ordering — uses pre-processing to order or partially orther

search space to enable the use of other informadtséechniques

1.2.2.2 Stochastic (Heuristic) M ethods

On the other side of the table are the stochastibeuristic, techniques. These
approaches apply teeuristic (or “rule-of-thumb”) in an attempt to guide theaseh

towards a solution (Pearl, 1985). The heuristil wiake use of knowledge

14

regarding the objective function (i.e. what typéshings are needed to produce a
solution with good objective function values) to keadecisions as the search
progresses that will (hopefully) locate high-qualkiolutions. Heuristic searches
generally ardocal searches, meaning that they search a very snedl @i the
search space and then apply the heuristic to #relseesults to determine the path
that the search will take (Aarts and Lenstra, 1997)

Heuristic searches can either takgemerate-and-tesapproach or beepair-
based A technique that takes a generate-and-test apprwill build a solution
piece by piece until a complete solution is corterd (Pearl, 1985), while a repair-
based technique will start with a given solutiorhigh may or may not be a valid
solution to the problem at hand) and repetitiveligrait until a valid or better
solution is found (Aarts and Lenstra, 1997). ExEspf heuristic search include:

» Hill Climbing — at each step in the search process, followpdlie that
adds the most value to the objective function; staymen there is no
longer any path that will result in a better obipetfunction value

* Simulated Annealing — technique that simulates the physical process of
annealing metal. If molten metal is allowed to Ictwm quickly, it will
develop imperfections that will weaken the intendstdicture, so the
temperature has to be lowered in a controlled &ashi In simulated
annealing, at each step in the process an attemptde to find a path
with a better objective function value, but everoife exists there is a

non-zero probability that the path will not be &olled and some other

15

path will be taken in an attempt to find an evetidsesolution at another
location. The “temperature” in simulated anneals@ pre-set value that
is gradually lowered after a specified number adrafes are made to the
current solution (or after a specified number efations — there are a
number of variants of the general algorithm). Phecedure stops when
a certain temperature value threshold is reached.

Genetic Algorithms — attempts to model the process of genetics in
nature. Solutions are evaluated according to tée$s rating” that
corresponds to the objective function. At each stethe process, certain
solutions with low fitness ratings are allowed i€’ out”, while others
are “crossbred” (combined) and/or “mutated” (chat)ge an attempt to
make them into better solutions. The proceduresstdter a specified

number of “generations”, or iterations of the pisxe

Advantages/Disadvantages of Method Types

As could be reasonably expected, each of the gehgras of approach to

solving combinatorial optimization problems comathvits own set of advantages

and disadvantages. As mentioned, systematic tgobsihave the advantage that

they are complete; that is, if a solution existshim the search space they are

guaranteed to find it. A disadvantage of uninfadnsgstematic searches is that for

combinatorial optimization problems, completenessiés finding not just avalid

16

solution but_everyalid solution in the search space (either exgpyicr implicitly,

in order to determine which is the “best”), anchas been noted, for many classes
of problems the search space is simply too largeetaler this feasible. A
disadvantage of informed systematic searches tshale they are very efficient
at locating solutions, they pay the price by reggirthat the search space be
organized in some known fashion. Again, for malasses of problems a search
space that comes organized in this way cannot pectad, and pre-processing the
search space to make it sufficiently organized waulce again take far too long.

Heuristic techniques, on the other hand, have dvargtage that they are able to
locate high-quality solutions in a relatively sharhount of time, even for search
spaces of immense size. A disadvantage of thetmitpies is that they are not
complete, which means they are not guaranteedtbtlie best solution. In cases
where a near-optimal solution is sufficient, thésnot a problem. However, in
situations where it is imperative that the absohi¢dest quality solution be found,
this disadvantage becomes an issue.

A major reason why heuristic techniques do not géxfand the best solution is
that their termination conditions often cause therstop inlocal optima (sing.
local optimum). Local optima are solutions that have betterectye function
values than other solutions that occur nearby éensdsarch space; that is, they are
the best solutions to be found within a locg&ighborhoodof the search space
(Aarts and Lenstra, 1997). However, local optinna aot necessarily the best

solutions to be found within the entire search spabevertheless, because of the

17

way the techniques are designed they often stopeénof these local optima instead
of a global optimum.

When designing heuristic search techniques, thereseveral important things
to keep in mind. The first is to develop a solelhstic. Employing a weak or
faulty heuristic renders moot the whole point oé ttechnique and reduces the
chances of the technique performing well and figdagh quality solutions. Also
important is choosing a mechanism for determinhglocal neighborhood. Since
the neighborhood is what will be searched next, ¢heice of neighborhood
function will strongly influence the direction thifie search takes.

Another item that should be considered when desggrieuristic search
techniques is a mechanism to allow the techniquestape local optima and settle
only on a global optimum. Having a technique ikdbo prone to stopping at local
optima reduces the chances of it finding a globatinoum, thus making the
technique less effective. Given the fact that tstiartechniques are by nature
incomplete, and that time constraints and searcacespsizes often render
completeness infeasible anyway, a certain amoumiskfof stopping on a local
optimum is inevitable. In spite of this, attempgtsould be made to mitigate this

risk and reduce it as much as possible.

18

1.2.3 Statistical Validation of Research Hypotheses

Being able to validate conclusions drawn from resgeas of vital importance.
Results from a series of experiments may seemnérooa hypothesis, but if the
data can be somehow bolstered by other evidenee;dhclusions will be placed
on a much stronger footing. Statistical methods ba used for exactly that
purpose. Using appropriate statistical methods pranide a solid mathematical
backing for confirming or rejecting hypotheses ¢onded regarding the results of
research experimentation.

It is for this reason that statistical validatiomsvdesirable for use within this
research. Early experiments seemed to confirm tiratnew algorithm under
development was effective in solving certain corabanial optimization problems
(see section 2.1), but only a rudimentary analgbibe data was conducted (due to
the fact that at the time it was not known if tesearch would continue, and so
only nominal indications were desired). The lagxperiments done for this
research, however, utilized a much more rigorousoketatistical evaluations to
test the results obtained. The techniques thate wesed to conduct these

evaluations will now be described.

1.2.3.1 Design of Experiments

Design of Experiments (DOE) means exactly whatyss it is the process of

designing a set of experiments suitable for accwiplg the purposes of the

19

research. Using a proper DOE is critical to asguthat the experiments will
produce the correct results — not in terms of ggtthe results one wanted but in
terms of getting results that are untainted by amdous or unwanted effects
(Montgomery, 2001). For example, suppose thatiasef experiments are being
conducted to compare two pieces of like equipmesrhfdifferent manufacturers.
One set of tests, with the two pieces of equipmmpgrating in a given test
machine, is run first thing Monday morning by fisdtift personnel. A second set
of tests, with the two pieces of equipment opegatina different test machine, is
run Thursday afternoon by second shift personret #fie two pieces of equipment
have been operating all day. The results of tetstare compiled and the results
announced.

Unwittingly, though, several effects have entenmat the experiments that the
designers did not consider and that may have campeal the results. First, the
fact that one set of tests was run using one testhine and the other using a
second test machine has introduced an effect basetie machines used, since
these machines were not checked to verify that yied equal test results for the
same piece of equipment. Second, the fact that semeof tests was run on
equipment that was just starting up and the otfier the equipment was operating
for awhile has introduced a warm-up effect, sire® eéquipment being tested may
need to operate for awhile before achieving a ststate level of performance.
Third, the fact that one set of tests was run st 8hift personnel and the other by

second shift personnel has introduced an effecbpafrator, since the different

20

personnel may have different levels of training arderience and may not operate
the equipment in the same fashion.

None of these effects represent something that fisinterest to the
experimenters. They are not, for instance, inteces whether there is a differing
level of operator capability between first and setshift personnel, at least not at
this point. However, this and the other effectyinave had a substantial influence
on the final outcome of the tests. Now, it maythe case that the overall results of
the tests would not have changed had these effeets accounted for, but the point
is that this cannot be known for sure without hgvatcounted for them, and the
test results as obtained may be spurious.

When designing experiments, usually the researcha&nts to determine
whether a particular item or items have an effecapn outcome of interest. These
items that may or may not have an effect are knas/hefactorsthat are being
investigated (Walpole and Myers, 1972). Each fadtoturn, will have different
settings to be used for determining whether thtofasoes in fact have an effect on
the outcome of interest. These settings are knasrthelevels for the factor
(Walpole and Myers, 1972). Normally what is dosé¢a decide what factor(s) will
be examined, and then design a set of experimentsst various levels of each
factor and compare the results obtained at eaeh. lev

Along with deciding what factors and levels sholdd included in the
experiments, it should be decided as to exactlyt wWiipothesis will be evaluated.

When comparing the effects of different levels daetor, the normal procedure is

21

to put forth a hypothesis that the choice of lanakes no difference, i.e. the factor
does not have any statistically significant effect the outcome (Walpole and
Myers, 1972). This hypothesis is referred to as nhll hypothesis usually
rendered symbolically as ¢H The counterpart to the null hypothesis is the
alternative hypothesi@usually symbolized as i which states the converse of the
null hypothesis, i.e. that the choice of level fbe factor does have a significant
effect on the outcome. In simple experiments therx@y be only one null
hypothesis under examination, while in more comm@&geriments there may be
several.

The concepts of factors, levels, and hypothesisntgesan be illustrated by
returning to the example of the equipment testkis Example has one factor of
interest, namely the piece of equipment being dest€his factor has two levels,
one for each manufacturer of the piece of equipmditere will be a single null
hypothesis that will be evaluated, which will battthere is no difference between
the performances of the pieces of equipment basedhich manufacturer supplied
them. The experiments should be designed arowtichdethe factor at each level,
or in this case testing the piece of equipment femth manufacturer. But, what of
the extraneous factors? It has already been stioatrthere are other elements in
this example that could have an effect on the ou&o These elements are not of
interest to the experiments, but since they coakthan effect on the outcome they

are factors and must be dealt with as such.

22

One way of dealing with the extraneous factor® iyt to eliminate them from
the experiments. In the example, the test mactaic®r could be eliminated by
ensuring that all experiments are run on the sast rmachine. Likewise, the
warm-up factor could be eliminated by ensuring tlEexperiments are run only
after the equipment has been in operation for awvhHinally, the personnel factor
could be eliminated by ensuring that all experimmesute conducted by the same
operators.

Sometimes, however, eliminating the effect of thevanted factors may not be
feasible. It may not be possible, for instancegdnduct all the experiments on the
same test machine or run the equipment for extepdedds to get them to steady-
state due to time constraints. It may also bectse that the first shift personnel
were needed for other efforts and were unavailfavléhe second round of tests. In
such cases as these, where the unwanted factonstca@ eliminated, there are
techniques available for accounting for them withr@moving them.

Factors that do not have their effects includedhim experimental results but
that have been accounted for are said tdlbeked Blocking factors have had
their effects statistically pooled into kdock that can then be removed from the
overall effects (Montgomery, 2001). In the casdhaf example, it would be wise
to block on the test machine, warm-up, and perdofautors to account for and
statistically remove their effects from the experits.

In order to be able to properly account for theef of factors, it is necessary

that a reasonable number r@petitionsof the experiment be performed. Just as

23

flipping a coin twice_mightiield one head and one tail, attempting to discole
true nature of the probabilities of coin flippingowd be better accomplished by
increasing the number of times the coin is flipp&tbrmally it is not necessary to
conduct thousands of repetitions of an experimdiftere are statistical techniques
available that can produce excellent results witly @ relatively small number of
repetitions (from as few as around ten to a fewdneah, depending on the number
of factors and levels to be considered) (Montgom2991). These techniques will
be discussed in the next section.

It is also wise to include the element of randorsneghen designing
experiments. Randomness helps to ensure thaethidts of one experiment will
not be related to the results from a previous axpEt (a condition known as
correlation) (Montgomery, 2001). In the example, it may be tase that the test
machines lose a little bit of their calibration wgach successive test that is run. If
all the pieces of equipment from manufacturer Atasted before the pieces from
manufacturer B, it stands to reason that the re$oiitthe pieces from manufacturer
A will be more accurate. While this form of coag®bn cannot be eliminated
entirely (assuming it is infeasible to re-calibrédte machines after every test), it
can be mitigated somewhat by randomizing the oirderhich the pieces from the
two manufacturers are tested. Also, while in tlkaneple the simplest way to
reduce correlation might be to alternate the tgstii pieces from the two
manufacturers, in many other problems it might bet so simple, and thus

randomization is the recommended approach. A D@IE includes one or more

24

blocking factors (each containing all levels of thetor to be studied) and that has
been randomized in its setup is called a Random@erhplete Block Design
(RCBD) (Montgomery, 2001). Such a DOE was usetthéncourse of this research
to allow comparison of the results obtained by tiesv algorithm with those

obtained by other algorithms for the same problestainces.

1.2.3.2 Evaluating Results of Experiments

As important as it is to properly design an expenirto ensure that the correct
results are obtained, it is equally important toparly evaluate the results to ensure
that the correct conclusions are drawn. The benefia well-designed experiment
are lost if the results of that experiment are operly interpreted. There are two
general categories of errors that may arise wheargreting the results of
experiments: Type | errors and Type Il errors (pd& and Myers, 1972). Type |
errors occur when, as a result of the interpratatibthe experimental results, the
null hypothesis is rejected when it is actuallyetruType Il errors occur when the
null hypothesis is affirmed when it is actuallysal

Knowing whether the null hypothesis is in fact trsi@ever a matter of absolute
certainty in an experimental setting (if it could known with absolute certainty,
then there would be no need of an experimentahgetid test it). Instead, the idea
is to know whether an asserted hypothesis is tniie avgiven probability. Two

symbols are useda, which represents the probability of a Type | eand is often

25

referred to as thsignificance leveland g, which represents the probability of a
Type Il error. The normal method of evaluating esmental results is to interpret
the results using a specified significance levdliclv is set to a value representing
the acceptable amount of risk of incorrectly rajegia factual research hypothesis
(Montgomery, 2001).

There are many statistical tools available to assith the evaluation process.
The types of tools that should be employed are mi#gr® on the nature of the
experiments and the null hypothesis to be tesken.instance, if only two levels of
a factor are being compared, there are some testsate suitable for that type of
comparison. On the other hand, if multiple fadeels are to be simultaneously
compared, there are different tests that are daitidy that type of comparison.
Also, if a statistical package is being used todemh the analysis, the types of tools
available and how they are employed will be depehda what tools are provided
by the statistical package and how they are impitateby that package. Since the
experiments conducted for this research efforizetil the SPSS statistical package
to conduct the analysis of the results, the toblt twvere used to conduct that

analysis and how they are presented by SPSS wiititteuced.

1.2.3.21 Graphical AnalysisTools

Some of the simplest and most aesthetically plgasools for analyzing

experimental results are the graphical analysidstooBy presenting a visual

26

depiction of the data, graphical tools give theeagsher a concise overall view of
the results of the experiments. Sometimes themehgral views are even enough
to provide the researcher with sufficient inforroatito draw valid conclusions
regarding research hypotheses, although one musgétyecareful when doing so
since what appears to be a significant result graphic may not turn out to be so
when rigorous mathematical tests are applied (acel wersa). Of the variety of
graphical tools available, four general types wesed in this research effort.

The first type of graphical tool used was thex plot A box plot is used to
display summary information regarding ranges ofadatlues for one or more
categories. For each category on the plot, thera box with one line drawn
through it. The box represents the values in #nge that fall between the®&nd
the 7%" percentile, also called theter-quartile range(quartiles being the 35
50", and 7% percentiles of the values), with the line repréisgnthe median value
of the range. On opposite ends of the box are linat extend out to some value in
the range, often referred to as tiwhiskersof the diagram. There are several
variations of exactly what values are representgdthe end of the lines
(Montgomery and Runger, 1999), but the SPSS pacHagetes the ends of the
lines to be the maximum and minimum values of taege, excluding outliers
(outliers are values that are considered to be significaatly and extreme) (SPSS,
2001). The SPSS package also plots the outliedgtair values outside the box

plot range lines.

27

Exhibit 1 shows an example box plot generated BySRSS package. It shows
seven category levels of a particular factor altmg X axis, and the value range
scale along the Y axis. It also shows three exampf how outlier values are

displayed on a box plot by SPSS.

8
7 T
64
Cro2 -
5 |
4 Om
.3
2
O .
o 11 4
S
v 0.0
A B C D E F G
Category

Exhibit 1. Example Box Plot Generated by SPSS

The second type of graphical tool used waditfeeplot A line plot is used to
show comparisons of a variable’s value for two arencategories. The categories

are listed along the X axis, with a scale of valaéng the Y axis. For each

28

category, a value is plotted, and then a referdmeeis drawn connecting the

plotted points to assist in visualizing the comgpani between the values. It is also
possible to show the values for multiple variabiesrder to compare not only the

values of those variables between categories, Ibatthe values of those variables
against the values of the other variables for #mescategory.

Exhibit 2 shows an example line plot generatedneySPSS package. It shows
the comparison between values of three variablesdeen categories. Different
line types and point markers were used to diststybietween the lines and points
for the three variables. A legend appears atigte to identify which variable uses

which line types and point markers.

29

Variable

0.0
A B C D E F G

Scale

Category

Exhibit 2. Example Line Plot Generated by SPSS

The third type of graphical tool used was & plot A P-P plot is used to
show how well the observed data points of a vagiabhtch a particular type of
probability distribution. Both axes of the ploteascaled in terms afumulative
probability, meaning that each point on an axis representprthyortion of values
that occur with less than that probability (SPS3)1J. The X axis represents the
cumulative probability for the data points obserwedhe variable, and the Y axis
the cumulative probability expected for the patacuest distribution type. Points

are plotted showing the relationship between thsenked probabilities and the

30

expected. A straight line is marked on the platveing where the relationship

points should be plotted if the variable exactlytchas the test distribution type.

The closer the points actually are to this lines thoser the variable matches the
test distribution type.

Exhibit 3 shows an example P-P plot generated bySIASS package. In this
example, the test distribution type of intereghisnormal distribution, so the plot
is showing how well the observed data points fa& #ariable match those that
would be expected for a normal distribution. Thetted points are always fairly
close to the line in this example, but there ammesglaces where they do stray
somewhat. This raises an alert that the varialiggantrmot be normally distributed,
and that further testing using other methods idedalfor to make a final

determination.

31

1.00

.75+

a1
o
1

[}
(&)
1

o
o
S

Expected Cumulative Probability

0.00 .25 .50 .75 1.00

Observed Cumulative Probability

Exhibit 3. Example P-P Plot Generated by SPSS

The fourth and final graphical type used wasdbatter plot A simple scatter
plot (there are other types, not used in the rebeaffort and thus not discussed
here) is used to mark one variable’s values agéiose of another variable (SPSS,
2001). Because of this rather general naturetesgalbts can be used for a variety
of purposes. As will be seen in later sectionis, tesearch effort did make use of
scatter plots in a number of different ways to @ndifferent types of information.

Exhibit 4 shows an example scatter plot generayeithdd SPSS package. Points

are shown on the plot identifying the mapping oé¢ talues for the variable

32

represented by the X axis to the values of theabteirepresented by the Y axis.
Reference lines can also be included on these matbow a fit to the pattern of

the plot, or the mean value of the plotted pointh wespect to one axis’ values.

2
1 ° @
o
a o o o
o I:||:|I:| a
o Ooo ap o
ob o o =
% o
o 0 Bg Eﬁajd:' wlo Eho, o o o

oo g & oHgy g om0 oa” e
0.0 . “g}?@ 5 o, & 70 TR B0 o8
a

Dnn"l‘: D'@ o ﬁnﬁ%%%ﬁ% o Egﬁlﬁ
i1} DED o I:I‘:'Eﬁ‘ @‘J-';‘j':“:‘ & o a
o g g og o 0O 4 o
B O o oBopg o o . o
Op o
-.14

o o
S
O
0
> -2

A1 2 .3 A4 5 .6 7 .8

X Scale

Exhibit 4. Example Scatter Plot Generated by SPSS

1.2.3.2.2 Analysisof Variance

Graphical analysis tools provide a very good meafnpresenting an overall
summary view of experimental results. Howevennasitioned earlier it is risky to

develop conclusions regarding the experiments ysadel the basis of the data

33

provided by the graphics. While graphical tool$ gaovide good supporting
evidence in support of conclusions, solid matheraatinethods will render them
much more concrete.

The choice of methods to use is dependent on the &@ployed since, as also
mentioned previously, different statistical methodse apropos for different
situations. For situations requiring a comparisdnmultiple factor levels, the
Analysis of Varianceor ANOVA, serves very well. So well, in fact, ath
Montgomery states that ANOVA “is probably the moseful technique in the field
of statistical inference” (Montgomery, 2001).

The ANOVA procedure contains a fair amount of mathgcal calculations
that are not germane to this discussion (and tieaaecomplished automatically by
statistical packages anyway). The main point it tthe ANOVA procedure
recognizes that in any set of experiments thef®isd to be a certain amount of
variance within the results. This variance cammsfeom a variety of sources.
Some of it is due to pure random error. Some @fit be due to the effects of
particular factor levels. The ANOVA procedure ugssmathematical techniques
to attempt to partition the variance in the expents according to the sources that
caused it. The objective is to determine if thaarece attributable to the effects of
factor levels is sufficiently larger than that winicould be expected from random
error. If so, this is a strong indication that faetor levels are having a significant

effect on the outcome of the experiments.

34

To perform an ANOVA, a model of the experimentsdse® be constructed.
Included in the model should be all factors for evha comparison is desired, plus
any blocking factors. Blocking factors need tar®uded since their effects could
be significant and must be accounted for, evelnasé effects are not of interest. If
it is suspected that there might be effects frotaractions between two or more of
the factors, those interactions also need to Haded in the model.

Once the model has been constructed, the ANOVAukalons can be carried
out. There are variations between statistical agek in how they present their
ANOVA results, but generally there is a table shayva breakout of the total
variance in the experiments, how much of it wasiatted to each source, and
some mechanism for determining which sources dartgd a sufficient amount to
be deemed as having a significant effect on exparirautcomes.

By examining the results of an ANOVA, the researciseable to verify or
reject a hypothesis that different factor levelvéhano effect on experimental
outcome. The results of the ANOVA can be combiwgth the supporting
evidence from the graphical tools to form a basis fborming solid research
conclusions. The next section will show how this de done using the SPSS

statistical package.

35

1.2.3.2.3 Evaluating Experimental Results Using SPSS

When conducting experiments to compare the effectaultiple factor levels
on a variable, as was done for this research effibé evaluation of the
experimental results will center on the ANOVA. Hkbih5 shows an example
ANOVA result generated by the SPSS package. Thecss of variance in the
experiment are listed on the left. The “Error” sm represents the variance
coming from random error. The “Corrected Modelddintercept” sources are
those coming from the model itself. The “Factorahid “Factor 2" sources show

the amount of variance due to the effects of tHastors.

Dependent Variable: Performance Ratio
Type Ill Sum Partial Eta Noncent. Observed

Source of Squares df Mean Square F Sig. Squared Parameter Powef
Corrected Model 6.007 55 .109 28.126 .000 .840 1546.931 1.000
Intercept 71.094 1 71.094 18307.321 .000 .984 18307.321 1.000
Factor A 3.770 49 7.693E-02 19.811 .000 .768 970.750 1.000
Factor B 2.238 6 .373 96.030 .000 .662 576.181 1.000
Error 1.142 294 3.883E-03
Total 78.243 350
Corrected Total 7.149 349

a. Computed using alpha = .05

b. R Squared = .840 (Adjusted R Squared = .810)

Exhibit 5. Example ANOVA Results Generated by SPSS

There are quite a few numbers listed on the diagtamthe primary ones of
interest are those in the column marked “Sig.”.c&feng that statistical packages
have some mechanism for determining which souréesmance are significant,

SPSS uses the values in this column for that petpdfsa value in this column is

36

less than the researcher-specified significanceel lefor the analysis, the
corresponding source of variance is deemed sigmfi¢SPSS, 2001). In this
example, the bottom of the diagram shows that aifsignce level of 0.05 (the
“alpha” value) was used. Looking at the valueshi@ “Sig.” column, all are less
than 0.05. Therefore, the model itself is showiedatain variance that cannot be
attributed to random error alone, and thus somgtkiee must be contributing to
the experimental outcomes. Since both Factor 1Factbr 2 have values less than
0.05 they are shown to be contributors, and tteit thvel settings do matter to the
experimental outcomes.

Though the ANOVA results provide the focus of thealaation, there are
several other items that must be taken into corsiib® when performing the
analysis. First, ANOVA assumes that the errorhia éxperiments is random and
normally distributed (Montgomery, 2001). To chettks assumption, both a
Residual Normal P-P Ploand aKolmogorov-Smirnov Normality TegMassey,
1951) can be generated. Both use rimdualsof the experiments as their test
basis. Residuals are differences between the wdberalue of a variable for a
given factor level and its average value for treitdr level, and are commonly
used to check the adequacy of an ANOVA (Montgom28@1). An example of a
P-P plot has already been shown. Exhibit 6 showasxample of the Kolmogorov-
Smirnov test. The example shows the values usdHeircalculation of the test.
The line marked “Asymp. Sig. (2-tailed)” shows thesult. If this number is

greater than 0.05, the test indicates that theabhaibeing tested is normally

37

distributed (SPSS, 2001). In the example this e/afu0.500, indicating the test

variable is normally distributed.

Residual for
Dep. Var.

N 350
Normal Parametéd Mean .0000000
Std. Deviation .03467621
Most Extreme Absolute .044
Differences Positive .044
Negative -.029
Kolmogorov-Smirnov Z .827
Asymp. Sig. (2-tailed) .500

a. Test distribution is Normal.

b. Calculated from data.

Exhibit 6. Example Kolmogorov-Smirnov Test Generated by SPSS

Another assumption of ANOVA is that the residudiedd be non-structured
(Montgomery, 2001). That is, when examining thaideal values against
predicted observation values or over time, theyukhmot show any obvious
patterns such as consistent widening or narronsoghétimes called megaphone
effec). Scatter plots can be used to plot observedluats versus predicted
observation values or observed residuals versug tsmquence to test this
assumption. An example of a scatter plot has dyrdaeen shown; the only

difference would be what values are being represeby the two axes of the plot.

38

If the assumptions of the ANOVA do not hold, aneaiative technique is
available for testing hypotheses of equality okeffbetween factor levels. This
technique is called thikruskal-Wallistest (Kruskal and Wallis, 1952). Exhibit 7
shows an example of what this test looks like. Tiféerent factor levels are
mathematically assigned a ranking, and the tesirohtes whether the rankings
are significantly different. The value on the limarked “Asymp. Sig.” shows the
conclusion of the test. If this value is less tlta@5, the factor level effects are
determined to be different (SPSS, 2001). In thanmgle, the value is 0.000,

indicating a significant factor level difference.

Ranking Test StatisticsP

Dependent
Variable
Chi-Square 97.397
df 6
Asymp. Sig. .000

a. Kruskal Wallis Test
b. Grouping Variable: Test Variable

Exhibit 7. Example Kruskal-Wallis Test Generated by SPSS

If the results of the Kruskal-Wallis test concurttwihose of the ANOVA, this
indicates that the original ANOVA results are twsithy in spite of the failed
assumptions. If the results do not concur, theskKal+Wallis results should take

precedence.

39

Since for many analyses of experiments (and infieethis research effort) the
goal of the analysis is to determine if there ig difference between factor levels,
and since for the purposes of this research thereést was in finding optimal
solutions to combinatorial optimization problemagce it has been determined by
an ANOVA and/or a Kruskal-Wallis test that a pastar factor does exert a
significant effect on the outcome of the experimiémng important to know which
levels of the factor tend to produce the best tesuThis can be accomplished by
producing a list ohomogeneous subsets of factor levelhis test will divide the
possible factor level settings into subsets basedvbich level settings tend to
produce results that are significantly differemanfr other levels. That is, level
settings that generate results that are statisticadistinguishable from each other
will be grouped together into subsets. Using listsof subsets, it will be easy to
see which level settings produce the best results.

Tukey (Tukey, 1953) and Duncan (Duncan, 1955) emseloped a method for
determining the homogeneous subsets, and SPSSikiae each of these popular
methods to generate a list of subsets. Exhibih@vs an example of a list of
homogeneous subsets generated by SPSS using btitesef techniques. In this
example there are five factor levels for the gifactor. Tukey’s method assigns
the five levels into four homogeneous subsets, fatitor level 1 generating the
highest value and factor levels 4 and 5 generatingowest value (factors 4 and 5
being indistinguishable from each other). Duncané&thod gives slightly different

results, assigning each of the five factor levats its own subset. Still, though,

40

level 1 produces the highest value and level Sldlaeest. So, though the Tukey
and Duncan methods do not agree entirely on theesubesignations, they both
agree that factor level 1 will tend to produce tiighest result value for the

experiment, while factor level 5 will tend to praduthe lowest result value.

Subset
Factor Level N 1 2 3 4 5
Tukey HSB' 5 49 .3203544
4 56 .3346349
3 70 .3675620
2 98 4194931
1 77 4682279
Sig. 231 1.000 1.000 1.000
Dunca#®¢ 5 49 3203544
4 56 .3346349
3 70 .3675620
2 98 4194931
1 77 4682279
Sig. 1.000 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are display
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.554E-03.
a. Uses Harmonic Mean Sample Size = 66.013.
b. The group sizes are unequal. The harmonic meareajroup sizes is used. Type | error levels are
not guaranteed.
C. Alpha = .05.

Exhibit 8. Example Homogeneous Subsets List Generated b$ SPS

By using statistical techniques such as ANOVA andsKal-Wallis, research
hypotheses regarding equality of effect of factrels on an experiment can be
verified mathematically, giving the researcher (&melevaluators of the research) a

high level of confidence in the validity of the easch experiments. By further

41

evaluating the basis of an ANOVA to confirm its clusions and using graphical
tools as supporting evidence, the experimentaltseeate made that much stronger.
These methods were used in this research effojusbrthat purpose: to place the

evaluation of the algorithm test experiments owmceete foundation.

1.3 A New Method for Solving Combinatorial

Optimization Problems

Having discussed the concepts behind combinatopi@nization problems and
statistical analysis of research hypotheses, ttni® to introduce the reason for
which a basic knowledge of those concepts is nacgsand for which this
research was embarked upon. That reason is theafgawithm developed for
solving combinatorial optimization problems.

This new algorithm is called Gravitational Emulatibocal Search, or GELS.
As its name implies, GELS is a heuristic, localrekaechnique. In addition, it is
repair-based, and it belongs to the class of tecias that emulate some natural or
physical process like simulated annealing and geaé&jorithms.

GELS takes as its basis the natural principles m@vitational attraction.
Gravity works in nature to cause objects to begautbwards each other. The more
massive the object, the more gravitational “tugdxerts on other objects. Also, the
closer two objects are to each other, the strotigeigravitational forces between

them. This means that a given object will be m&irengly attracted to a larger,

42

more massive object than to another object of tessss at a given distance, and it
will also be more strongly attracted to an objelcse by than to another, more
distant object having the same mass (Sears e198l7).

GELS makes the attempt to emulate these proce$segure and use them to
formulate a heuristic algorithm. The idea is tagme the search space as being
the universe. Contained within the search spaeehmpefully, one or more valid
solutions to the problem at hand. Each of thedetisns has a “mass” that is
represented by its objective function value. Tledtdy the solution’s objective
function value, the higher its mass. Locationshwitthe search space that do not
contain valid solutions are assigned a zero mass.

A small object represented as a pointer is movimgugh the search space. As
it approaches a solution object, the mass of tHetisn object will cause the
pointer object to be pulled towards it. Newtordw/é of gravitational attraction are
used to define how much gravitational “force” exibetween the pointer object and
the solution object.

As mentioned in a previous section, a heuristibnegue also needs to consider
how it will attempt to avoid stopping at a locatiopum. GELS does this by virtue
of the same principles of gravitation. In natwen one object is being pulled by
gravity towards another, the pulled object willlpigp speed. In many instances,
by the time the object being pulled reaches theeaibpulling it, it will have
sufficient momentum to keep moving past the pulloigect. In some instances,

the pulling object’s gravity will be sufficient toause the pulled object to come

43

back to it, but in other instances the pulled objedl move off towards other
objects.

GELS attempts to avoid getting stuck at local optimy emulating this process.
As the pointer object approaches a solution objbet,'speed” of the pointer object
increases. Once it reaches the solution (or pdsses one side or another), its
speed in the original direction will decrease duéhe fact that the solution object’s
gravity is now pulling it back the way it came. tfe solution object’s gravity is
strong enough, the pointer object will stop altbget terminating the procedure.
But, if the pointer object’'s speed is sufficiertt,will continue moving past the
solution object. The intention is that the “momant of the pointer object as it
moves through the search space will be such thatlibe able to bypass solutions
of lesser quality, stopping only on high-qualityllgmns with better objective
function values (indeed, hopefully at a solutiorthwihe best objective function
value, a global optimum).

At the time the idea for GELS was formulated, itswampletely unknown as
to whether it would perform at all as intended. wiis not even clear that the
algorithm would produce a reasonable solution lat @ravity works very well in
nature, but there are potential issues. For exantpere are gravitational forces
between the Earth and the Sun. However, insteafhllrig into the Sun, the
interplay of the gravitational forces has causedBhrth to settle into a stable orbit
around the Sun, continually moving instead of cartim rest. While this is very

good for the inhabitants of Earth, it would not di@od if the same type of event

44

would occur in GELS. This would mean that a solutwould never be settled on
and GELS would continue running indefinitely.

There were many questions to be answered, evem iait@l level. Would an
implementation of GELS, operating in an actual pgobsolving environment, be
able to produce valid solutions? If it did, whadwd be the quality of the solutions
produced? How long would it take to find a soloffo Would it be able to find a
global optimum? Would it get stuck in an “orbittcand some solution without
ever stopping?

The only way to answer even these most basic qumsstias to implement the
techniqgue and test it against actual problem im&tsn But there was another
guestion that needed answering first: why botbestudy this algorithm at all?
There are already a host of algorithms available dolving combinatorial
optimization problems, some of them with very gdamatk records for producing
high quality solutions. Given this situation, whabuld be the benefit of adding
yet another algorithm to the mix?

The answer to this question was twofold. Firsfuither investigation would
reveal that GELS could perform better than othgoaihms, even occasionally on
only one type of problem, then the question wowdddme: why notise it? To be
faced with solving a problem, having a solution moet available that is likely to
give the best solution, and then not using it, \iadem to be illogical.

On the other hand, if further investigation wouldow that GELS did not

perform well, the investigation would still havetrimeen in vain. The literature is

45

replete with examples of algorithms that in gen@eiform rather poorly, yet are
still useful because they can be used as instrigmiemtinstruction on various
concepts. For example, consider simple backtrgckiithis algorithm typically
performs very poorly as a search method, yet ewelayt it is used to teach
principles of algorithmic procedure and systemagarch. In the same manner,
even if GELS would not be a top performing algaritht could still be used as an
example of methods that emulate processes that ataature to solve problems,
and thus the research would not have been wasted.

This, however, would be a worst-case scenariavall never intended that the
study of GELS would be pursued with the idea indrtimat it would not work well.
Rather, it was hoped that GELS would perform adbtyrain a variety of
situations. But, as stated it would not be posstbl know for sure without fully

developing the algorithm and putting it through samgorous testing.

46

2 Analysis and Evaluation of the

GEL SAlgorithm

47

2.1 Preliminary Work Done With GEL S

To begin a study of the GELS method, a conceptaahéwork was developed,
and a preliminary design was produced. At thiswpthe algorithm was called the
Gravitational Local Search Algorithm, or GLSA. $mame was later changed to
GELS since there are a number of places in theatitee where the initials GLS are
used to refer to Guided Local Search (Voudouris @&sang, 1995), and another
identifier was wanted to avoid confusing the twamqgadures. Two separate
versions of GLSA were implemented, using the C @mogning language. The
two versions operated in essentially the same dashiut with two key differences.
The first version, dubbed GLSAL, used as its h#&aridewton’s equation for
gravitational force between two objects, while seeond, dubbed GLSA2, used as
its heuristic Newton’s method for gravitationall@iecalculation. Additionally, in
GLSA1 the pointer object moved through the seapdtes one position at a time,
while the pointer object in GLSA2 was allowed toveamultiple positions at a
time.

Each of the two procedures had operational param#tat the user could set to
fine tune its performance. These parameters (hanol four-character names as
used in the procedure) were:

* Density (DENS) — represented the relative “densttfythe search space. It

was used as part of a calculation of “resistivatéothat the pointer object

would meet as it moved. This resistive force wdsrnded to help prevent

48

the pointer object from never slowing down and ping. It had a default
value of 1.2 (the relative density of air) (Searsak, 1987).

Drag (DRAG) — represented the “drag coefficient’tloé pointer object. It
was also used as part of the resistive force caiom, and had a default
value of 0.5 (the drag coefficient of a relativetyeamlined body) (Sears et.
al., 1987).

Friction (FRIC) — represented the “motion coeffidieof friction” of the
pointer object. It was also used as part of tkestige force calculation, and
had a default value of 0.003 (the value for ste#ing on steel) (Sears et.
al., 1987).

Gravity (GRAV) — represented the coefficient of\gta acting between two
objects, and was used only in the GLSAL versiothefprocedure. It was
used in the calculation of the gravitational fobs#ween the pointer object
and an adjacent solution object. It had a defeallie of 6.672 (as appears
in Newton’s equation) (Sears et. al., 1987).

Initial Velocity (IVEL) — represented the maximunmermissible initial
“speed” of the pointer object in any possible disien of movement. It
was used to put a bound on the initial speed optheter object as it began
moving through the solution space when the proeedommenced. It had

a default value of 10 (an arbitrary setting).

49

Iteration Limit (ITER) — the maximum number of iions that the
procedure could perform for a given run before gdrcibly terminated.
It was used to ensure that even if the pointeratljed get into an “orbit”
condition as described previously, or the procedmeountered some other
difficulty in finding a solution, the procedure wldustill terminate. If the
procedure completed this number of iterations dred gointer object had
not yet stopped moving, the procedure terminatgartess and returned
the best solution seen to that point.

Mass (MASS) — represented the “mass” of the poioibgect. It was used in
calculations where mass of an object was requitedad a default value of
1 (an arbitrary setting).

Radius (RADI) — represented the distance between dhbjects, and was
used only in the GLSA1 version of the algorithmt wlas used in the
calculation of the gravitational force between thainter object and an
adjacent solution object. It had a default valtig tan arbitrary setting).
Silhouette (SILH) — represented the “silhouetteaam@ the pointer object
as seen from the front. It was another item useagbat of the resistive force
calculation, and had a default value of 0.1 (antray setting).

Threshold (THRE) — represented the threshold athviihe speed of the
pointer object in a given direction would be assdrwedrop to zero. It was

used to prevent the speed of the pointer objecarig direction from

50

asymptotically approaching zero but not ever abtugetting there due to
the rounding off of numbers and the precision knaf the calculations. It
had a default value of 2 (an arbitrary setting).

To test the procedure, a problem had to be idedtifir created. The problem
needed to be simple enough that it could be egsitherated and evaluated, yet still
constitute a test of sufficient complexity thatmbuld not be trivial. The problem
instance that was eventually settled on had abatss a 10x100 matrix. This
matrix was populated with integer values rangirgrrzero to one hundred, and
was to be searched for a ten-variable optimal swlut The optimality of the
solution was to be decided by an objective functivet consisted simply of the
sum of the integer values assigned to each varadlilee solution.

This problem type was chosen because it fit thieboith in terms of ease of
generation and sufficient complexity. Each instaotthe problem could easily be
generated by randomly assigning integer valueséoydocation within the matrix.
The optimal solution could be determined duringbem instance generation by
keeping track of which assignments of matrix rovuea to variables yielded the
highest sum. Yet, even though the problem instam@re easy to generate and an
optimal solution easy to determine, any procedoat would be used to search the
matrix would not have thia priori knowledge and would simply be searching a
large search space for a ten-variable solutionusTtests run using one or more of

these solution procedures would be valid sinceetlvegis a large space to search

51

and the techniques used by the solution would eaddpendent on the “short cut”
to finding the optimal solution.

Having chosen the problem, it was then necessargetect some solution
methods to compare against GLSA. To this end,as$ wecided to utilize two
methods. The first method would be a Monte Cartaiandom solution, whereby
random assignments of elements from the searchxwatuld be made to each of
the ten solution variables. The other method toubed would be basic Hill
Climbing. The Monte Carlo solution was chosen hbeeat was guaranteed to find
a solution in time linear in the number of matrows, and because it would
provide a good “starting point” for determining average-quality solution that the
other solution methods could then attempt to imprapon. Hill Climbing was
chosen as the other method because it is a simpleknown example of a local
search technique that could serve as a basic bewmkhror local search
improvement over the Monte Carlo solution.

Together with the implementations of GLSA1 and GRSAhe Monte Carlo
and Hill Climbing procedures formed the test suhat would be used for the
comparison tests. To complete the scenario, af ®tperiments had to be devised.
When creating an instance of the problem, the dhfyabxisted to specify an
integer parameter that would represent the probalif non-zero entries within
the search matrix. For example, by specifying laevaf twenty for the parameter,
each node of the matrix would have a 20% chandeeofg assigned a non-zero

value when the matrix was generated. By adjustiegparameter value between

52

zero and one hundred, the relative number of oeoggs of quality solutions
within the search matrix could be determined béfansl.

With this capability in hand, the test scenario wasup as follows: a series of
problem instances was generated, at varying leweglssolution availability.
Specifically, ten tests each were conducted atnpater settings ten, twenty, thirty,
forty, fifty, sixty, seventy, eighty, ninety, anech@® hundred, respectively. For each
test, a problem instance was generated and thmalpsolution for that instance
was recorded. Then, the Monte Carlo procedure rgeae a solution, and the
objective function value of that solution was retest. Using the Monte Carlo
solution as a starting point, the Hill Climbing pealure was then run, and the
solution it generated and its associated objechivection value was recorded.
Finally, using the Monte Carlo solution again astating point, each of GLSAl
and GLSA2 was run and their respective solutiond associated objective
function values were recorded. This resulted grand total of one hundred tests
being run comparing the four methods (Monte Catditl, Climbing, GLSAL, and
GLSAZ2) against the same data sets, using the sami|g points.

Approximately one dozen test scenarios were setngprun as described. The
results were then collected and analyzed. Theysisashowed that while none of
the procedures “won” every test by generating tbiut®n with the highest
objective function value, some clearly performettdrethan others. As expected,
the Monte Carlo procedure produced a solution gerigkly (in a single step), but

the solutions were generally of poor quality. TH@l Climbing procedure

53

generated solutions quickly (typically in two tovdi steps), and in almost all
instances was able to improve upon the Monte Ganligtion.

While these results were interesting, of primartenest in running the test
scenarios was seeing how the GLSA procedures wmetibrm. To that end, the
analysis indicated that both GLSAl1 and GLSA2 webde a0 generate valid
solutions, typically in twenty to twenty-five stepsThere were a very few cases
where the particular sequence of gravitational at$feengendered by a problem
instance caused GLSA2 to cycle through the segrabesback to the same point,
where the sequence would repeat. This led to angatly endless harmonic
motion through the search space, and the algoritiach to be terminated by
maximum iteration count.

Like Hill Climbing, the solutions generated by bd#t.SA1 and GLSA2 were
in almost all instances better than the Monte Cadtution. In addition, both
GLSA1 and GLSA2 were in the overwhelming majoritfy instances able to
generate solutions that were better than the solygroduced by Hill Climbing. In
fact, in many instances the solutions produced bySAL/GLSA2 were
substantially better than the Hill Climbing solutioLastly, the solutions produced
by GLSA2 were on average better than those prodogéal SA1, and in a number
of instances GLSA2 was able to locate the optirohlt®n when none of the other
three methods had.

Exhibit 9 is a graph of the results of the expenisepertaining to solution

quality (Webster and Bernhard, 2003). It showsabWerage difference between the
54

objective function value of the optimal solutiondaihe objective function value of
the solution produced by each of the algorithmisic&the objective function value
was the sum of the assignments to each of theaeables in a solution, and since
the maximum value that could be assighed to a bl@rivas one hundred, the
maximum value of the objective function was oneuand. Thus, if the optimal
solution value for a problem instance was nine hetidand the solution value for
one of the algorithm types for that problem inseanas eight hundred, that
algorithm registered a difference of one hundredtifiat problem instance. The
values in Exhibit 9 represent the average suclamiists for each algorithm type

over all problem instances tested.

800

686.55

700
600

500
424.78

Difference400 -

300

200 - 187.22

120.22

Monte Carlo Hill Climb GLSA1l GLSA2
Algorithm

100 -

O,

Exhibit 9. Average Difference from Optimal, Early Experiment

55

Exhibit 10 is another graph of the results of thypeziments pertaining to
solution quality (Webster and Bernhard, 2003). Idegr, instead of showing the
average distance of the algorithms’ solution giesifrom the optimal, it shows the
average improvement in solution quality over thiatamed by the random Monte
Carlo solution. That is, if the objective functigalue of the Monte Carlo solution
for a problem instance was four hundred, and tHeevéor one of the algorithm
types was five hundred, that algorithm posted alamedred point improvement in
solution quality over the Monte Carlo solution. d@nagain, the values shown in
Exhibit 10 represent the average value of such orgments over all problem

instances tested.

600 566.33
499.33
500 -
400 -
Difference300 - 261.77

200
100
O M

Hill Climb GLSA1 GLSA2

Algorithm

Exhibit 10. Average Improvement over Random, Early Experiment

56

Exhibit 11 is a graph of the results of the expents pertaining to algorithm
efficiency (Webster and Bernhard, 2003). It shotwe average number of
iterations each algorithm took to arrive at a golutover all problem instances
tested. Since the number of iterations for the tdoBarlo solution was always

one, it is not shown.

30
26.82
25.58
25
20 A
Iterations15 -
10 -
5 -
2.66

O M

Hill Climb GLSA1 GLSA2

Algorithm

Exhibit 11. Average Number of Iterations per Test, Early Expents

These early experiments with GLSA were very enagimga The algorithm
had shown, over hundreds of problem instances,itltatuld generate noticeably
better objective function values than random sohgiand Hill Climbing solutions.

The improved results were obtained at a cost ofdditional twenty-three or

57

twenty-four iterations of the GLSA algorithm (onemage, with no perceptible

increase in overall execution time), well worth threce.

2.2 Current Research Completed Using GEL S

With the promising results of the early experiméntawith the GELS method
in hand, it was decided that research should begiearnest on a much more
rigorous set of experiments with the algorithm.isTime a completely new set of
experiments was designed from the ground up, oaewibuld add the weight of
statistical analysis to the raw data in additioret@luation on multiple, difficult
optimization problems. It was hoped that resubisid¢ be produced similar to those
obtained by the early experiments, which would therbolstered by that statistical

analysis. The details of this research, and gsltg, will now be described.

2.2.1 Premises of the Resear ch

The first item to be decided for the new experiraemas exactly what was to
be tested. As discussed in the background materiptoper DOE needs at least
one null hypothesis and its corresponding alterhgpmthesis. The whole point of
this follow-on set of experiments was to be how tBELS algorithm would
perform in solving combinatorial optimization prebls compared to other
algorithms. Obviously, then, there should be & Imgbothesis to make a statement

regarding algorithm performance.

58

In keeping with the general format for stating rutpotheses (and the one best
supported by the SPSS package), it was decided tiea&é would be a null
hypothesis (and corresponding alternate hypothasi§)llows:

Ho: There is no difference between the ability oé tBELS algorithm to
improve on the solution qualities (i.e. objectivendtion values) of
random solutions and the ability of other algorighto improve on the
same random solutions for the same combinatori@naation problems

Hy: The GELS algorithm’s ability to improve on thelion qualities of
random solutions is significantly different fromethability of other
algorithms to improve on the same random solutifos the same
combinatorial optimization problems

Additionally, it was of interest to find out not lgnhow well the GELS
algorithm would perform in finding solutions, bulsa how efficiently it would
perform in arriving at those solutions. This led & second null/alternate
hypothesis formulation:

Ho: There is no difference between the rate at whieh GELS algorithm
improves on the solution qualities of random solgi and the rate at
which other algorithms improve on the same randofti®ns for the
same combinatorial optimization problems

Hy: The GELS algorithm improves on the solution died of random

solutions at a significantly different rate thare thate at which other

59

algorithms improve on the same random solutions tioee same
combinatorial optimization problems

For the sake of convenience, the first null hypsihevill hereafter be referred
to as theperformance hypothesifor the experiments, and the second null
hypothesis will hereafter be referred to as #f@iciency hypothesidor the
experiments. On first glance, it may appear thasé¢ hypotheses are somewhat
trivial. Specifically, how could it be reasonalaypected that there is no difference
between algorithms in their ability to improve avugion quality, or that there is
no difference between the rate at which each dlgariachieves its results? It
would seem that these hypotheses are designediltahf@ almost any set of
experiments would be able to cause them to betegjec

This is in fact partially true, but there is moecethe story. It is not a problem
that the hypotheses are likely to be rejectedexperiments such as these, where
multiple items are being compared, the SPSS packagés to take the base view
that there is no difference between the items &ed try to prove that view to be
incorrect (SPSS, 2001). If successful in this, SEB&n then state an ordering to the
items using the homogeneous subsets tests. Inmmer, if an SPSS analysis
succeeds in rejecting the performance and/or effey hypotheses, it can also tell
whether the performance/efficiency of the GELS &thm is not only different,
but better or worse than other algorithms. Sdat sense, the goal is much more

than to simply reject the hypotheses and statetlieat are differences between the

60

algorithms; it is also to be able to state how mdifference exists, and between

which algorithms.

2.2.2 Design of the Current Resear ch Experiments

Having decided upon the hypotheses to be testéldeimesearch experiments,
the next step was to prepare a DOE to test them.colplete experimental
environment was needed, to consist of:

* A set of combinatorial optimization problem typedise as test problems

» A set of algorithm types to use as test algorithms

* A framework within which the tests of each of tlesttalgorithms against

each of the test problems would be conducted

To select problem types to act as test problenesgtial was to choose a small
representative sample that are well known and gafftly complex to present a
genuine challenge to solution algorithms. To tad, three problem types were
ultimately chosen: the Traveling Salesman problernqduced in section 1.2.1.1),
the Bin Packing problem (introduced in section 1L.2). and the File Assignment
problem (introduced in section 1.2.1.3).

Each of these problem types easily met the criteraelection. They are all
very familiar to and extremely well studied by rassers. They are also all very
difficult problems to solve, belonging to the claggroblems known aslP-Hard

(Garey and Johnson, 1979). NP-Hard problems am@ngrnthe most difficult to

61

solve, with most researchers believing that thesblpms arentractable meaning
that there is no known solution algorithm for thémat can be accomplished in
deterministic polynomial time (i.e. in"Nsteps for any input size N and constant
value of K) (Cormen et. al.,, 1991). Some very geggproximation algorithms
exist to aid in the solution of these problems untfe appropriate conditions
(Arora, 1998, Karmarkar and Karp, 1982, Papadimitril994). However, these
algorithms do not guarantee finding optimal solusio (hence the term
“approximation”), and they do not change the f&ett tunless it can be shown that
polynomial solutions exist for NP-Hard problemsclsuproblems will remain
difficult to solve optimally.

Once the set of test problems was defined, a sttsbfalgorithms was needed
to solve them. The goal here was to establish @l sollection of well known
algorithms suitable for comparison with the GELSqgadure. Chosen for inclusion
in this collection were Hill Climbing, Simulated Aealing, and a Genetic
Algorithm, all introduced in section 1.2.2.2. TH#I Climbing algorithm was
selected as a representative of a greedy algordhohalso because of its prior use
in the early experiments. Simulated Annealing #mal Genetic Algorithm were
selected because of their popularity and becausy thre, like GELS,
representatives of algorithms that are based at Iegyart on processes that occur
in nature.

With the sets of test problems and test algoritinmglace, the one remaining

item was to design the framework within which thettalgorithms would be used

62

to solve the test problems. This involved a numitifedecisions that had to be

made regarding how the problems would be set up, the algorithms would be

configured to solve them, and how the comparis@te/éen the algorithms would

be conducted. Of primary importance was rendettieg‘playing field” as level as

possible in an attempt to remove as much bias thamexperiments as possible.

To accomplish this, it was decided to retain th@esgeneral mechanism that

had been successfully used in the early experinfgvebster and Bernhard, 2003).

This mechanism operated in the following manner:

1.

2.

7.

Generate an instance of a problem to be tested

Generate a Monte Carlo (random) solution to thélero instance

Using the Monte Carlo solution as a starting posulve the problem
instance using Hill Climbing

Again using the Monte Carlo solution as a starpogqt, solve the problem
instance using Simulated Annealing

Again using the Monte Carlo solution as a starpo@t, solve the problem
instance using the Genetic Algorithm

Once more using the Monte Carlo solution as aistagioint, solve the
problem instance using GELS

Repeat steps 1 through 6 for each problem instiznice tested

Using this mechanism provided several benefits.neGding a Monte Carlo

solution for each problem instance could be expkeab® average, to deliver an

objective function value neither the worst possitde the best, but somewhere in

63

the middle. By using this solution as the commtantsg point for all the other

algorithms, it ensured that all algorithms had guad opportunity to improve upon
the same solution. Had each algorithm been alloteeldave a different starting

point, each could have begun in a different neighdod of the solution space, and
it could not have been known for certain whethgoriorements in solution quality

obtained by each algorithm were due to its perforceacapability, or because it
began in a more advantageous neighborhood. Bgwolg the mechanism it was
guaranteed that for every problem instance testach algorithm would begin in

the same neighborhood and would be forced to eeay improvement based
solely on its own merits.

In addition, it was decided that each problem tyamild utilize a common
neighborhood selection definition. In doing so,ewHocal search neighborhoods
were needed each algorithm would construct theexactly the same way. Since
the neighborhood plays such a vital role in detemg how a local search
algorithm will navigate through a search spacepwahg each algorithm to
determine its own neighborhood selection methoddchave given one algorithm
an advantage over another by virtue of having rmghoods that produced better
search patterns.

When deciding on configurations to use for eactheftest algorithms, at first it
was thought that it might be a simpler and easiatten to use prepackaged
procedures. There are a number of such packagelalde for use, and several

were tried. Ingber provides a general purpose Bited Annealing package called

64

Adaptive Simulated Annealing (ASA) (Ingber, 1993liewer and Tschoke also
describe a Simulated Annealing library called pa(8Rewer and Tschoke, 1998).
Goodman describes a Genetic Algorithm package caB&ALOPPS (Genetic
ALgorithm Optimized for Portability and Parallelis®ystem), produced by the
Genetic Algorithm Research and Applications GroBARAGe) at Michigan State
University (Goodman, 1996). Wall at the Massactiasastitute of Technology
provides another Genetic Algorithm package callédi (Wall, 1996).

After some examination, though, it was decided twtuse any of the
prepackaged procedures. Though very sophistiGatdccapable of operation with
many different parameter settings, using thesegowes would have introduced
some of the same biases that attempts had beentmadert with the design of the
problem types. Namely, in many cases they coutdmake the guarantee that all
algorithms would use the same starting point aedséime neighborhood selection
method.

Ultimately, it was decided that the best meansnsiueing that as much control
as possible was maintained over the experimentgifogess was to develop a
custom-made framework. Consequently, what emewasl a completely self-
contained environment written in C++. Each of test problems became a C++
class, with member functions to create problemaimsts, calculate objective
function values, generate local search neighborfioedlve the instances using
each of the test algorithms, and output the resultkis ensured that each test

would have the same problem instance being solhsiaguthe same objective

65

function definitions, by the same algorithm configiions, with the same
neighborhood selection methods, and all within shene environment, designed

specifically for these experiments by the same ldpes.

2.2.3 | mplementation of the Test Problems

Creating the classes that would implement eactheftést problems, though
obviously requiring elements unique to each ofghablem types, had a common
theme. Each class would have to be able to genprablem instances. Each class
would require methods for determining local seangighborhoods, calculating
objective function values, and selecting Monte €alutions. Each class would
require some way of keeping track of the solutigmeduced by the various
algorithms for each problem instance, and wouldehavoutput them in a manner
usable by SPSS for later analysis.

The process of keeping track of solutions was hexh@lly variables that stored
the solutions and their associated objective fonctialues as produced by each test
algorithm. Common print routines were then usedutput the results to a flat text
file that could later be loaded into SPSS. Howheafcthe problems implemented

the other necessities will now be discussed.

66

2231 Traveling Salesman Problem Implementation

To implement the TSP class, a specific versionh& problem had to be
chosen. As was the case with the other test prolypes, over time the generic
definition of TSP had evolved into several variaipeach with its own special
conditions. The variant implemented ussanmetriccosts; that is, if going from
city A to city B incurs a given cost, then goin@rr city B to city A incurs the
same cost. This is one of the most straightforwangions of the problem, and
was chosen for that reason.

Generating problem instances for TSP involved argaan NxN symmetric
matrix of integer values representing the cost twenfrom any one city on the tour
to any other, where N was the given size of theblera instance (i.e. the total
number of cities on the tour). The matrix was pafad by first setting all diagonal
values to zero (since there is no cost for moviogfcity A to city A). One half of
the matrix was then initialized by generating ramdealues between one and ten
(ten being an arbitrarily determined maximum castdny one movement). The
other half of the matrix was set to mirror the \eduwf the first half to enforce

symmetry of the matrix and of city movement coSte{vart, 1973).

67

Determination of local search neighborhoods for ™% accomplished by
using a pair-wise rearrangement scheme (Aarts andtta, 1997). The procedure
for this rearrangement was as follows:

1. Start with a given solution (for which a neighbaobdois to be generated)

and an empty neighborhood

2. Swap the first and last elements in the given gmiut

3. Add the resulting solution to the neighborhood

4. Set an index variable to the second element igitren solution

5. Swap the element in the given solution indicatedhgyindex variable with

the preceding element in the given solution

6. Add the resulting solution to the neighborhood

7. Increment the index variable

8. Repeat steps 5 — 7 until the index variable reatiedast element in the

given solution

Note that the given solution itself is never adiuahodified; each member of
the neighborhood is produced by starting with thigimal solution as given and
altering a copy of it to place in the neighborhodgly using this method, the local
search neighborhood would consist of N membersa foroblem instance of size N,
meaning that the size of the neighborhood wouldvdiinearly in the size of the
tour, as opposed to the higher growth rates of satimer methods.

The objective function for TSP was calculated i@ problem instance matrix

previously described. Since the definition of TS8&es that a tour begins and ends

68

at a home city, it was stipulated that problemanse tours would always begin

and end at city 0. To calculate the objective fiamcvalue for any given solution,

the following procedure was accomplished:

1.

2.

Start with an objective function value of 0

Consult the problem instance matrix to find thet@ismoving from city O
to the first city on the tour

Add this cost to the objective function value

Consult the problem instance matrix to find thetaafsmoving from the
current city to the next city on the tour

Add this cost to the objective function value

Repeat steps 4 and 5 for each successive cityectotin

Consult the problem instance matrix one last timerid the cost of moving
from the last city on the tour back to city O

Add this cost to the objective function value telglithe final total

69

The other item required for the TSP class definitiwas a mechanism for

determining Monte Carlo solutions. This was dogecbmpleting the following

procedure:

1.

2.

Start with an empty Monte Carlo Solution

Generate a random integer between 1 and N (N bhbeanguumber of cities
on the tour)

Make this value the first city on the Monte Cadaoit

Generate a random integer between 1 and N

If the city represented by this value is not alsead the Monte Carlo tour,
add it to the end of that tour, otherwise go backtep 4

Repeat steps 4 and 5 until all of the N cities hlasen included, giving a

complete Monte Carlo tour for the problem instance

2.2.3.2 Bin Packing Problem I mplementation

As with TSP, there are a number of variants of BRP have evolved, and one

of them had to be selected for implementation. péicular version selected was

the1-DimensionaBPP which, as described in the problem introductamnsists of

adding objects of one dimension (size) to bins #natalso of one dimension. This

is in contrast to other variants such as the 2-Dsimnsal BPP, where the objects

and bins have length and width dimensions, and sescted for its relative

simplicity.

70

Generating problem instances for BPP was a simpleegs of generating a
series of N random integer values, where N wagyihen size of (i.e. number of
objects in) the problem instance. Each value woalthe between one and fifty
(half the predefined size of a bin). Each valygesented the size of one object to
be put into a bin, and at the outset each objestagaigned to its own bin. Thus,
each problem instance would consist of N objects bins.

Determination of local search neighborhoods for B3 a somewhat more
complex process (Kochetov and Usmanova, 2001).adammplish this task, the
following procedure was used:

1. Start with a given solution (for which a neighbaobois to be generated)

and an empty neighborhood

2. Establish a counting variable with an initial vahfel

3. Make the first bin in the given solution the cutrbm

4. If the current bin contains at least as many dbjes the value of the

counting variable, move a number of objects eqoathe value of the
counting variable to the next bin (if the currem Iz the last bin in the
given solution, move the object(s) to the first)biand add the resulting
solution to the neighborhood

5. Repeat step 4 for each bin in the given solutianuwtil there are N

solutions in the neighborhood

71

6. If all bins in the given solution have been exardin@nd there are still less
than N solutions in the neighborhood, incrementdbenting variable and
go back to step 3

Objects were stored in bins as if in a queue. Tkdgen moving a certain
number of objects from one bin to another, the abjavere taken from the front of
the first bin’s queue in order and added to the @nithe second bin’s queue in the
same order. Again, as with TSP the original giwatution was not actually
modified, but copies of this solution were altesstording to the aforementioned
neighborhood generation procedure in order to lbe@do the neighborhood. Also
as with TSP, this procedure produced a local seamighborhood that grew
linearly in the size of the problem instance. Ntbtat altering the original given
solution as indicated in the procedure could leadheighborhood solutions that
were invalid (e.g. a bin with exceeded capacityhis situation was dealt with by
assigning invalid solutions a particular objectiumction value, as will be seen
momentarily.

Calculating the objective function for solutionssaaasimple matter of counting
the number of non-empty bins — this number woukhtbe the objective function
value. There is normally not as much variationweein high quality and low
guality solutions for BPP as there is for TSP, amethods such as computing the
average percent full over all bins can be usedutthér distinguish between
solutions. While these methods may serve to witienpotentially narrow spread

of solution qualities, it was decided that since tijective of BPP is to minimize

72

the number of bins to store all the objects, thedalve function should be a direct
reflection of this fact. Hence, the procedure sihg the number of non-empty bins
in a solution as its objective function value watamed. Any invalid solutions that
may have appeared as a result of neighborhood a@rerwere assigned an
objective function value of N + 1. Since the waquessible valid solution for BPP
has each object in its own bin (thus giving N nompé/ bins), an objective
function value of N + 1 ensured that invalid saas would always have a worse
value than any valid solution. Since, as stateobhlpm instances began with each
object in its own bin, this guaranteed that attlease solution would be present
with an objective function value less than N + fd dence no invalid solution
could ever be returned by any algorithm as the s@stion seen.
To generate Monte Carlo solutions for BPP, theofeihg procedure was used:
1. Start with the original problem instance solutieag¢h object in its own bin)
2. Select the object in the first bin as the currdnect
3. Randomly reassign the current object to one ofNhins in the original
solution (possibly back where it started)
4. Check the validity of the reassignment (i.e. woassigning that object to
that bin cause the bin’s capacity to be exceeded)
5. If the reassignment is not valid, repeat stepsdB4nntil the reassignment
is valid

6. Repeat steps 3 — 6 for each object in the originablem instance solution

73

2.2.3.3 File Assignment Problem I mplementation

Like TSP and BPP, to implement the FAP class requthe selection of a
specific version of the problem. There were maopstderations: how many
devices to use, how many files to use, what kindexfice accesses to account for
and how to represent them, what kind of costingughbe used to formulate an
objective function, etc. Here again the decisi@mane down to matters of
straightforwardness. It was never intended thatekperiments should represent
solution patterns for some exotic special caseSA®, but rather that they would
show solution patterns for a very generic formha problem (this was in fact the
case when making similar considerations_fotest problem types).

Consequently, it was decided to build the problestances around an actual
benchmark for database access: TPC-H. TPC-Hsfand ransaction Processing
Performance Council — H, and is a standard fomgsjuery processing efficiency
for decision support databases (TPC, 2002). litpascollection of eight database
tables, against which twenty-two separate queridisbe executed. Using this
standard, a table was constructed listing the narobéhits” that would occur
against each table in the database for a singleuéne of each of the queries. Hits
were determined by examining the queries and Igpkon references to the tables
in the “FROM” clause of the Structured Query LangeigdSQL) code used to
formulate the queries. If a particular table wabé selected from in a given query,

it would count as a hit against that table for eaxdcution of that query.

74

Of course, the exact number of times a particahlet will be accessed cannot
be determined simply by examining a query. The memof accesses will be
determined by the amount of data in the tableraateons with other tables, filters,
etc., all data that are unavailable in these erpents due to the fact that hypothetic
tables are to be stored on hypothetic devices. eCagain, the principle of
straightforwardness prevailed, and the rule became table reference, one hit”.
That is, if a particular table was referenced ancthe “FROM” clause of a given
guery, that table would register one hit per exeoudf that query. If the table was
referenced multiple times, as could occur withégbins, the table would register
one hit for each reference in the query.

Once this cross-reference of queries and tablewats constructed, it became
possible to get a relative gauge of how frequetahles were being accessed by
query executions. Armed with this information, Ipleon instances could be
constructed by generating a sequence of executibreny of the twenty-two
gueries, each one in the sequence randomly seledBden a number of total
gueries to process, the total number of hits reggst against each table could be
calculated and noted. Each table was then assignede of the available devices
in a round-robin fashion, beginning with the fiddvice. The number of these
devices was set to four, each with a simulateddizRirty-six gigabytes. This was
done to mimic a recommended minimum setup for a ngernial database

installation, using commonly available disk siz€sgcle, 2002). Each table was

75

set to a simulated size of eight hundred megabytesirder to allow for the
possibility of all tables being stored on a sindgeice with room for overhead.

Defining local search neighborhoods for FAP wasoagdished in much the
same manner as for BPP. The only differences twie neighborhood
generation procedure for BPP and the one for FARwe

1. Instead of moving objects from one bin to the ntattles were moved from

one device to the next

2. Since each device was capable of holding all thdesa there was no

possibility of an invalid solution being generatgdthe procedure

3. The size of the neighborhood was relative to thenlmer of tables and

devices rather than the number of objects and bins

Other than these three differences, the neighbaorlgemeration procedures for
the two problem types were identical. This produé&ed-size neighborhoods,
due to the fact that problem sizes for FAP weremeined not by the number of
tables and/or devices (which were static), but by bhumber of queries to be
executed against them.

In defining the objective function for FAP, agaimete were many options.
Dowdy and Foster, in their seminal paper on FARBcdbed a number of different
cost indicators that could be optimized (Dowdy drfakter, 1982). The final
selection was made based on a factor that woutsf bemmon interest to database
administrators, namely disk contention. Databadeimistrators, this author

among them, are keenly interested in maintainihgyh level of performance from

76

their databases, and one of the methods for dbisgd to monitor storage devices
for unbalanced access rates.

Along these lines, Bernhard and Fox outlined a wektfor using minimum
database device contention as an objective functieasure (Bernhard and Fox,
2000). This measure was the initial one implem#&ntut in test runs it was
discovered that the same objective function valuere being produced by all the
test algorithms on almost all problem instancehis Turned out to be because the
most active tables in the TPC-H queries were ggtitower bound on the possible
minimum device contention value. Consequentlydid not matter on which
device these most active tables were placed or wthat tables were placed with
them; because of their influence the minimum dewocatention values were
always identical for any given problem instanceinc® Bernhard and Fox had
success with this measure in their work, this sibuawould appear to be a function
of the particular TPC-H query structure and devimenfiguration used to
implement the problem.

Because of this issue, the final objective functias defined to be the average
device contention over all queries instead of tih@imum device contention. This
allowed some form of device contention to be redims a measure of FAP
objectives, and test runs showed that by usingntieigsure it did make a difference
on which device and with which other tables the thaudive tables were stored.
Thus, the objective function value for FAP becahe dverage number of hits per

device over the course of a certain number of g@seri

77

As with the local search neighborhood definitioggnerating Monte Carlo
solutions for FAP was done in much the same walpaBPP. Each of the eight
TPC-H tables was randomly assigned to one of tle &vailable devices. The

Monte Carlo solution thus became a particular magpi the tables to the devices.

2.2.4 | mplementation of the Test Algorithms

Having defined classes that implemented each ofetsteproblem types, it was
then necessary to implement each of the test #hgoriypes. Each algorithm was
implemented as a member function for each testl@nolype. This was done due
to the different structures necessary to represantions for the different problem
types. Each problem type required slightly differenethods for accessing and
manipulating solutions and solution parts, andgrening such operations occupied
significant sections of the activities of each aigon. So, rather than implement
the common parts of each algorithm as generic fomgt with subroutines unique
to each problem type for every instance of a smtutiperation (which would have
constituted a goodly portion of the implementatiangway), it was decided to port
the implementation of the algorithms between pnobtgpes and alter the solution
operations as necessary.

Testing the performance and efficiency hypothesmsttie algorithms, the
primary reason for this research, required someativetandard to provide a basis

of comparison for the algorithms’ performance anfliciency. For the

78

performance hypothesis, the leading candidatehisr dtandard would seem to be
the objective function values. After all, thesdues are a direct representation of
the quality of solutions. However, as pointed alrfeady the objective function
values can vary greatly between problem types,e®ngl the usage of objective
function value alone misleading as a basis of corspa between problem types.

The performance measure that was eventually sedtied a ratio of change in
objective function value with respect to the Moarlo solution for a problem
instance. Stated formally, the measure is

MC -OF
MC

whereMC = Monte Carlo solution objective function value
OF = algorithm objective function value

This measure expresses a particular algorithm’sétyalib improve on the
original Monte Carlo solution as a percentage at #olution’s objective function
value, and thus the higher the measure, the libggverformance. As a result, it is
less dependent on the problem type than the obgef@iinction value alone. It is
designed to function with minimization problemsclaaracteristic common to all
three of the test problem types. It also normalizalues to between zero and one,
meaning that the measure will generate the sameimmax range of values
regardless of problem type. It is true that problgpes with larger objective
function values will tend to have larger MC valualpwing for more margin for

improvement and thus larger values for the meashae problem types with

79

smaller objective function values. However, thite& can be tempered during
analysis by making each problem instance partldbeking factor. By doing so,

variances in MC values between problem instancesbeaaccounted for. This
makes the measure suitable for use as a perfornmeasure for any one problem
type by itself, or as a comparative measure betyeanlem types.

Likewise, a standard measure of algorithm efficiehad to be adopted in order
to test the efficiency hypothesis. The measurecsedl to serve in this capacity was
a function of the number of solutions within thdusion space that an algorithm
examined prior to termination. It may not be cledny a count of the number of
solutions examined would be the measure of effeyidor an algorithm, instead of
an iteration count or something similar. Iteratioaunt is not a very good
candidate for an efficiency measure. Differentoathyms follow different
procedures, and a single iteration of one algorittould involve a substantially
different number of operations than a single iieratof another algorithm.
Comparing algorithms on this count would not be parmg “apples to apples”.

One item that doemean the same thing between algorithms is thetcolun
solutions examined. All search algorithms exansokitions to see if they meet
the criteria for solving their respective problenisor local search algorithms, the
normal method is for the algorithm to examine @aaemumber of solutions within
one or more successive neighborhoods and at sometpominate, returning the
best solution it found from all solution examinao The total number of solutions

examined will then represent the total amount drae space that has been

80

examined to reach a conclusion. Some solutionsimaag been examined multiple
times; still, the number of solutions examined wshow the total amount of
“territory” that was covered before the algorithenminated. This is similar to the
method of counting the number of consistency chegekformed to determine the
efficiency of algorithms for solving Constraint B#action Problems (Prosser,
1993, Tsang, 1996), and it seemed to be an egalfit@nd easily implemented
method for use as an efficiency measure.
The actual measure used was a ratio of changejactoe function value to

number of solutions examined for the problem instaichange meaning relative to
the Monte Carlo solution. The formal statementhef measure is:

MC -OF
SE-1

where MC = Monte Carlo solution objective function value
OF = algorithm objective function value
SE= number of solutions examined by algorithm
This measure represents the incremental amounmhmfovement in objective
function value achieved by a particular algorither polution examined within the
solution space, relative to the Monte Carlo sohytiand consequently once again
the higher the measure, the greater the efficiafichie algorithm. The MC value
is obtained by examining a single solution (hermee“L” in the denominator). On
the other hand, the algorithm obtained its solubgrexamining SE solutions. By

relating the amount of improvement over the MC eatat the algorithm was able

81

to achieve to the additional number of solutionkatl to examine to get there, a
picture of how efficiently the algorithm operatesl wmerge.

Like the performance measure, this efficiency meass not immune to
differences in expected MC values between problestances. Once again,
though, this can be mediated by blocking on thdlera instance factor during the
analysis phase. Also like the performance meaghe, efficiency measure is
designed for minimization problems to match therabieristics of the test problem
types, and values are normalized to between zetmae. And, since the measure
has the same meaning regardless of problem typestance, it is suitable for a
single problem type or multiple types.

Having established the performance and efficiencgasares for the
experiments, the implementation of each of the tEgbrithms contained a
mechanism for recording the final objective funotioalue obtained by the
algorithm for the problem instance and the numlbeotutions examined during its
run. This allowed for later calculation of the feemance and efficiency measures
to be loaded into SPSS for analysis. The spepificedures that each of the test

algorithms followed to obtain those values will nbes discussed.

2.2.4.1 Hill Climbing Implementation

As it is a representative of a greedy algorithng #m of the Hill Climbing

(HC) algorithm is quite simple: get more with gvéurn. The “more” in this case

82

meant improvement in objective function value. rEhare two general versions of
basic HC that were considerduist fit andbest fit The first fit version will move
to the first solution it finds within the local seh neighborhood that has a better
objective function value than the current solutiamile the best fit version will
examine all solutions in the neighborhood and tmewe to the one that offers the
best improvement in objective function value over turrent solution. While the
algorithm was implemented to operate in either mdde the purposes of these
experiments the best fit mode would be used adferenl the “purest” form of
greedy pursuit and was likely to generate bettsults.

The base procedure of HC was as follows:

1. Make the Monte Carlo solution the current solution

2. Generate a local search neighborhood for the cusaation

3. Find the solution in the neighborhood with the lgective function value

4. If that value is better than the value for the entrsolution, make that

solution the current solution and go back to step 2
5. Record the current solution, its objective functiealue, and the total
number of solutions examined

In step 3, for each solution in the neighborhoaat thas checked to see if it is
better than the current solution, the count of thohs examined was incremented
by one (having been initialized to zero at the eutd the procedure). There were

no necessary variations in the implementation betweSP, BPP, and FAP, so the

83

base procedure was used virtually unchanged fdr &t problem type, except for

how solutions were constituted.

2.24.2 Smulated Annealing | mplementation

The base procedure used to implement the SimulAtetkaling (SA) test
algorithm was an adaptation of theetropolis algorithm(Metropolis et. al., 1953).
This is a general identifier used to describe gorghm that will always follow a
selected path if that path leads to a higher quadblution, and will also
occasionally follow a selected path if that patade to a lower quality solution.
The Metropolis algorithm is based in turn on taxwell-Boltzmann probability
distribution This is a continuous probability distributiorpresenting energy states
of a system (Sears et. al., 1987). The theonyasthe total energy within a system
in thermal equilibrium at a given temperature TlWwg distributed among various

energy states E according to the equation

-E/KT
e

P(E) =

where A is a normalization constant
kis a constant value known Bsltzmann’s constant
This distribution shows that even in systems wilv loverall energy, there
could be points of relatively high energy, and weesa. The classical form of SA
uses the probability equation of the Maxwell-Bolaam distribution to determine
probabilities of moving along a path to lower gtyalsolutions than the current

84

solution. It begins at a given “temperature” ardraines successive solutions one
at a time. If the examined solution is better thha current solution, it will
become the current solution. If the examined smiuis not better than the current
solution, it will still become the current solutiowith Maxwell-Boltzmann
probability. Gradually the temperature value iwédoed, reducing the probability
of accepting lower quality solutions. When a dert@mperature is reached, the
algorithm terminates.

The rate at which the temperature is lowered ieddheannealing rateand is
usually a parameter setting. Other parametersisuwally available to determine
how many times a new solution must be acceptech¢ov many times a new
solution acceptance must be attempted, or bothyr @ each temperature
reduction, and the terminating temperature thresholhere are theoretically an
infinite number of possible combinations of valudat could be set for these
parameters, so obviously it would be impossibletetst them all. Instead, the
parameters were implemented to be adjustable atimenand defaulted to values
commonly in use, particularly for TSP. Specifigalthe initial temperature
defaulted to two thousand and was set to be redogexh annealing rate of 0.01
for each ten solutions accepted or one hundredtigntu examined, whichever
came first. The termination threshold defaulte@.@il as well.

Thus, the base SA procedure became:

1. Make the Monte Carlo solution the current solution

85

Reset the number of solutions accepted and nunflsolations attempted
to zero

. Generate a local search neighborhood for the cusation

Randomly select a candidate solution from the rizaghood

If the objective function value of the candidatéusion is better than that of
the current solution, make the candidate solutrencurrent solution

If the objective function value of the candidatdusion is not better than
that of the current solution, generate a random bmrnbetween zero and
one, and compare it to the Maxwell-Boltzmann praldgbvalue for the
difference between the objective function valuetlod candidate solution
and that of the current solution for the currembperature (excluding the
normalization constant and Boltzmann’s constafthe probability value
is greater than the random number, make the caedsddution the current
solution

If the candidate solution was accepted in eithep & or step 6, increment
the number of solutions accepted by one

Increment the number of solutions attempted by one

If the number of solutions accepted has reached derthe number of
solutions attempted has reached one hundred, rédedemperature by the

annealing rate and go back to step 3

10.If the current temperature is greater than the itetion threshold, go back

to step 2

86

11.Record the best solution seen during the run, bjsative function value,
and the total number of solutions examined
Each time a solution was selected to be a candidhte constituted an
examination of a solution, and hence in step 4&thet of solutions examined was
incremented by one (again having started at ze©Ohce again there were no
necessary variations in the implementation betweSR, BPP, and FAP, so the
only difference in the procedure between problepe$ywas in how solutions were

constituted.

2243 Genetic Algorithm Implementation

The implementation that was decided upon for a Gerdgorithm (GA) was
to use three components commonly found in manyratheh algorithms. The first
of these components was a method for simulatingvidéan natural selection, or
“survival of the fittest” as it is colloquially (@hsomewhat incorrectly) known.
This method had to evaluate members of a “populatid solutions according to
their relative “fitness”, which in this case wagpmesented by the quality of the
solution — the objective function value. Then, o®ICccessive “generations”
(iterations) of the algorithm, the method would &dw decide which members of
the population would survive to remain membershef population. The decision
of which solutions would survive would have to beedtly related to their fitness;

that is, higher quality solutions had to stand #ebechance of surviving than

87

solutions of lesser quality, though no absolutergnui@e was required. This
component was intended to build up the overalliguaf the population solutions.

Because the population was the venue for perforiaicg search operations, it
supplanted the usual neighborhood as used by ther atigorithm types. The
population_ washe neighborhood, which is typical behavior fonggc algorithms.
This meant that the usual methods for generatingnaanipulating neighborhoods
would not be used, but would be handled by GAfitsklitial populations were the
one exception to this rule. An initial populatias generated at the start of a GA
run, and was generated by taking the Monte Carlatisa and generating a
standard neighborhood for that solution. The ahitpopulation was then
established by taking solutions from that neighboth Tests showed that the
required running time, even for small problem sjzasreased dramatically after
the population size began to go over twenty. Theseased running times were
not accompanied by increases in ability to achi@gber quality solutions, and so
the population size for GA was set to a fixed vadtieventy. Solutions were taken
from the neighborhood in a round-robin fashion lumtenty were accumulated in
the initial population.

The second component chosen for inclusion in GA avasethod for simulating
genetic recombination, often callbceedingor crossover This method would take
pairs of solutions from the population and combimem to produce one or more
“offspring” containing elements of both “parent’lgtions. It would also decide

which pairs of solutions would become parents egateration. This component

88

was intended to create newer, higher quality smhgtito add to the population by
merging two established solutions (solutions thgtyirtue of surviving to remain
in the population to breed, would already be ohbkigquality than other solutions
that did not survive).

The third component chosen was a method for simnglagenetic mutation.
This method would select solutions from the popafaaind perform some random
change to reconstitute them as different solutiolisvould decide what forms of
changes could take place, and at what rate. Tdmsponent was intended to
introduce random changes into the population in hbpe that they would be
beneficial, raising the quality of the solution the same way random genetic
mutations introduced into a population of plantsanimals sometimes produce
beneficial changes that make them better abletoifih in their environment.

The selection component was implemented to useobhapilistic selection
based on the best fitness currently in the popmratiThe current population was
examined to find the solution with the best fitnésigjective function value). The
probability of a particular solution remaining ihet population then became the
ratio of that solution’s fithess to the populatiorest fitness. One by one each
solution in the population would be examined, amdredom number between zero
and one would be generated. If the solution’soratas greater than the random
number, it was moved into a new population. On#esalutions had been
examined, if the new population still did not hatlee maximum number of

members then the process would repeat until thepmgwilation was full.

89

The crossover component was implemented to fisegde a random number
between zero and one. This number was then couhptrethe crossover
probability, a run-time parameter set to 0.25 (&ueacommonly used for this
purpose). If the crossover probability was gredtean the random number,
crossover was triggered to occur. The actual oressprocess involved taking
each successive pair of solutions in the new padjpulgcontaining the solutions
chosen by the selection process from the origingufation as just described) and
redistributing their respective solution elemen@are had to be taken when doing
this, since such redistributions could easily resulsolutions that were invalid.
Also, solutions for each problem type were différeaquiring a different crossover
mechanism for each.

For TSP, the crossover mechanism operated by makmoggh the tour list for
each successive pair of solutions in the new pdipula At each stop in the tour, it
randomly selected either the city at that stopttierfirst solution, or the city at that
stop for the second solution. It then rebuilt tiv solutions by placing the
selected city value at the first stop in the solusi that had not yet been rebuilt. A
list was kept of the cities that had been usedrderto prevent duplicates and
ensure that the solutions would still be valid afieing rebuilt. To show how this
worked, consider the following pair of solutions:

S={31245}

S$,={25413}

90

The mechanism would start at the first stop onttlie and randomly select one
of the values, say in this case 3. Since nondeparts of the solutions had been
built yet, it would assign city 3 to the first stégr both solutions. Moving on,
suppose 1 was the value selected for stop twos Vdue would then be assigned
to the second stop for both solutions, since tret §top had already been rebuilt.
For stop three, suppose the value 4 is selectbdt vialue would be assigned to the
third stop for both solutions. Suppose then tlatdtop four, the value 1 was
selected. Since this value had already been ubésl,selection was skipped.
Finally, at stop five, suppose the value 3 wascsete Once again, this value had
already been used, so the selection was skipped.

All stops in the original pair of solutions had ndween examined, but due to
duplicates being selected and one value being thissdy three of the stops had
been rebuilt. The remaining two values, 2 and buld/ be assigned to the
remaining two stops in order, making the rebuilt8ons look as follows:

S ={31425}

$={31425}

In this way, a single new solution was manufactuiredn the two original
solutions by recombining their elements, and thelig of the new solution was
also ensured. Both of the original solutions witthe new population were
overwritten with this new solution, and both weretained within the new

population to keep the population size constant.

91

For BPP, the crossover mechanism again moved thrgugcessive pairs of
solutions in the new population, taking the elermenteach corresponding pair of
bins (one from the first solution and one from sleeond) for each pair of solutions
and randomly assigning them back to either tharbthe first solution or the bin in
the second solution. This produced new solutibas were rearrangements of the
originals. Lists of the original solution conteitsd original bin contents were kept
to ensure that all elements (and no others) ofligima each solution and in each
bin pairing from those solutions were still in tle@rrangement in order to preserve
the validity of the solutions, and to ensure thatbin would have its capacity

exceeded. As an example of this mechanism, canside following pair of

solutions:
S ={ B1:10, 30
B.: 20, 30
Ba: 40, 50 }

S, ={ By 20, 40
B2: 10, 30, 30
Bs: 50 }

Note that it is not a problem to have duplicaterelets, since they represent a
size, not an identifier. The crossover mechanisould first place all elements
from S into a group, and all elements fromiBto another group. The mechanism
would then examine Bwith B,, putting all their elements (10, 30, 20, and 4@} i

a group. Suppose then that elements 10 and 40 assigned back to;Sand

92

elements 20 and 30 were assigned back,to/Al elements from the group were
accounted for and assigned, and there were suffi@lements in the groups for
each solution to cover the assignments, so theedtwe would move on to the
second pair of bins, putting their elements ingr@eup. Suppose that elements 20
and two of the 30 elements were assigned to teedalution and elements 10 and
the other 30 were assigned to the second solutidgain, all of the original
elements from the bin group were accounted for asslgned, and there were
sufficient remaining elements in the groups of ioidd solution elements, so the
procedure would move on to the final pair of bipsfting their elements into a
group. Suppose that from this group, elementsrltlae first 50 were assigned to
the second solution. Then the next random draveateld that the last 50 element
should also be assigned to the second solutiort, tBig could not happen since
there was only one 50 element originally in theoselcsolution, and it had already
been assigned back to a bin in that solution. rEsqrve validity of the solutions,
the second 50 element would have to be assignéuetfirst solution, which still
had an available 50 element that had not beenraskigAlso, assigning a second
50 element to the second solution would have exkdide capacity (100) of the
bin. The draw also failed the capacity check d&delement was instead assigned

to the first solution.

93

The final arrangement of the solution pair wouldénbeen:
S ={ Bi1: 10, 40

B,: 20, 30, 30

Bs: 50 }
S ={ B1:20, 30

B,: 10, 30

Bs: 40, 50}

In this manner, the original solutions were reagexhto produce new solutions.
The content of each solution remained the sametheucontents of the bins have
been altered, though not so as to violate the agpaicany bin. The validity of the
solutions has been ensured, and now there are émosolutions to work with.
Note that in this example applying crossover ditlimprove the quality of either
solution (each had three occupied bins to begit,wand it remained so after
crossover), and this could be the case the majofithe time. However, in some
instances the quality could improve. In facthié0’s in the example would have
been 10’s instead, a different random draw couldeheut the second solution
down to two bins. Also, though a crossover mayaudtially improve a solution, it
could set the stage for an improvement in a lad@egation.

For FAP, the crossover mechanism operated in a emanrtually identical to
that for BPP. The only difference was that instebiceassigning elements between
bins as in BPP, files were reassigned between dgevi&xactly the same methods

of reassignment and solution validity preservatiogre used, with the exception

94

that checks to verify that devices did not excemglacity were not necessary since
all files were capable of being stored on a sinigieice.

Implementing the mutation component was a mattemjcting a random
change into solutions at a certain rate. This wae set to be 0.01, or one percent
of the time, again a common value used for suchgsas. For each solution in the
new population (now containing the solutions chosem the original population
by the selection mechanism, plus any changes teetlsolutions that may have
occurred if crossover had been triggered), a randomber between zero and one
was generated. If this number was less than thation rate value, mutation was
triggered to occur.

For TSP, mutations were done by randomly selecingpint in the solution
representing a tour stop. The city at this poiaswhen swapped with the city at
the previous tour stop (or the last stop, if thstfstop was the point selected). This
produced a new solution, and since none of thesciti the solution had changed
but only their ordering, the solution was still idal

For BPP and FAP, mutations were done by randontécteg a non-empty bin
(or device, for FAP). The first element in thiswkievice was moved to another
randomly selected bin/device. The first elemeatrfrthis second bin/device was
then moved to the first bin/device. Performingsthmaneuver did carry with it a
slight risk in BPP that one of the bins would exteapacity, rendering the solution
invalid. However, changing elements between baersed to be the only intra-

solution mutation that made sense, as swappingvigd accomplish nothing and

95

simply changing the value of elements within birssried with it the risk of
corrupting the solution and/or converting it intod#ferent problem instance
altogether. If by some chance a bin did exceedagpand the solution became
invalid, its probability of being retained in thext generation dropped to zero and
thus it was guaranteed to be eliminated. If sometinos happened to all solutions
in the population in the same generation (an exhenunlikely event), a
mechanism was in place to generate a completely pepulation (the same
mechanism that was used to generate an initiallpbpn).

The three individual components (selection, crosscand mutation) needed to
be combined into a single GA. This was accomptisiye making each component
a stage in the process of a generation of the ptpal Starting with a current
population (either an initial population or onerfrdhe previous generation), first
selection would occur to determine which solutiomsuld survive in a new
population. Then, crossover would be applied ® mtlew population. Finally,
mutation would be applied to the new populatiorhe Tnember solutions as they
appeared in the new population following the execubf all three stages would
then become the current population and would benjwt generation for the next
round, when all three components would repeat.

Thus, the general form of GA was:

1. Generate an initial population from the Monte Cadéution

2. Apply the probabilistic selection to the currenfpptation to create a new

population

96

3. Probabilistically apply crossover to the new popata
4. Probabilistically apply mutation to the new popidat
5. Remove the old population and make the new popmathe current
population
6. If the number of generations has not reached theifspd limit, go back to
step 2
7. Record the best solution seen during the run, bisabive function value,
and the total number of solutions examined
Each time a current population was establisheti€eithrough initialization or
through transitioning from a new population), easblution in the current
population would be examined to see if any sol#idrad a better objective
function value than seen to that point. If so,ewvrnbest solution” would be
registered. After examining each solution, thentaf solutions examined would
be incremented. The total number of generatiolesvat was arbitrarily set to ten
thousand, a value that allowed a substantial nurobsolutions to be examined

without extending run times tremendously for largeyblem sizes.

2244 GELSImplementation

During early experimentation, the GELS algorithnd ieen known as GLSA
and had consisted of two versions: one that wasedan the gravitational

attraction between two objects and allowed nawgabtnly to adjacent positions

97

within the solution space, and another that wasedbasn gravitational field
attractions and allowed navigation to non-adjagamsitions. Along with a change
in name prior to the current experiments came a bmunof changes to the
algorithm itself. As development of the algoritlpmogressed, it became clear that
with the transition from hypothetical search spamegenuine search spaces for
actual problem types, alterations to the algoritixene necessary.

Definitions of neighborhoods had changed, from ¢eadjacent positions
within the search space to being solutions thaevetight variants of the current
solution. Objective function values of neighborisglutions were no longer
randomly determined but were now functions of theskitions. Some solutions
no longer merely had poor objective function vaJurg were completely unusable
since they did not form valid solutions to the pesb at hand.

Many adjustments were made to the algorithm. Alivegway, the original two
methods of operation were significantly reworkdd. addition, it was discovered
that several of the parameters in the original rhbdd either become so sensitive
to adjustment that finding points of equilibrium svaxtremely difficult or had
become redundant in their effect on the outcoma. the end, two modes of
operation and two methods of navigation remainddeita different from the
originals, and only five parameters.

GELS has several elements in common with the atlgorithms in the test
suite. Like SA, GELS is based on a formula desugita process that occurs in

nature. In SA, this formula is the Maxwell-Boltznmadistribution of energy states.

98

In GELS, the formula is Newton’s law of gravitatalrforce between two objects,
expressed as

Gmm,

F= 2

where G = the gravitational constant, ~ 6.672
my = the mass of the first object
m, = the mass of the second object
r = the radius of the distance between the twedaibj

Like HC, GELS will navigate towards better solusonin HC, this occurs as
direct movement to solutions with better objectiuaction values. In GELS,
movement occurs generally towards solutions witghér “gravity” (meaning
better objective function values). Like GA, thasean expectation of iterative
improvement, and both algorithms can be terminbieiieration count.

Along with the elements that GELS has in commorhlite other algorithms,
there are also some striking differences. Unlike GELS will not always move to
a solution with a better objective function valegen if one is presented to it, and
it will not move to solutions with worse objectifienction values on a probabilistic
basis, but deterministically according to its rubégnotion. Unlike HC, GELS will
not always move directly towards the solution ie tieighborhood with the best
objective function value, and it will not alway®pton a locally optimal solution,
but can move off in an attempt to locate even betbéutions. Unlike GA, GELS

does not proceed by randomly altering solutionst I examining existing

99

solutions, and it has distinct termination congiidhat can cause the algorithm to
complete prior to reaching a specified iterationrgo

So, though it does have some elements of randomvitgs it, GELS does not
proceed strictly probabilistically. Though it usiesal search neighborhoods to
look for solutions, it does not always move throdigem in the same fashion. And,
though it does have some behaviors characteriticedy algorithms, it does not
always seek to follow the best path or grab thetmesources. GELS uses a law
that governs the motion of objects in physical spacguide the motion of a search
through a complex search space.

The two methods of operation for GELS utilize tteamg gravitational force
formula, but in slightly different ways. The firstethod applies the formula to a
single solution within the local search neighboihoo determine the gravitational
force between that solution and the current sabgtiovhile the second method
applies the formula to all solutions within the glgdorhood and tracks the
gravitational force between each of them and thieeati solution individually. The
procession of the search through the search spageverned by the gravitational
forces, either in a single direction or in all ditiens, as determined by the formula.

The two modes of movement through the search spacsteppingmodes,
differ only in how much of the search space thegnsp The first mode (called
single steppingallows movement only to solutions within the @t local search
neighborhood, while the second mode (cattadtiple steppinpallows movement

to solutions well outside of the neighborhood. Heatepping mode can be used

100

with either method of operation. This results auirf total variants of how GELS
can conduct a search. Shorthand monikers have &&sgned to identify each
variant. Each moniker takes the form “TA” (for Stealgorithm”) followed by a 1
or a 2 to identify which method of operation isrgeused, followed by another 1 or
2 to identify whether the algorithm is using singkepping or multiple stepping,
respectively. Thus, to identify an instance of #ilgorithm using the second
method of operation and single stepping, the maruked to identify that instance
would be TA21.

GELS maintains a vector, the size of which is daeteed by the number of
dimensions in a solution. For example, a ten-THP tour would generate a vector
with ten elements, a twenty-city tour would genermtector with twenty elements,
and so on. This vector’s values represent theéivelavelocity” in each dimension.
The velocity is a measure of how much of a tenddheye is to bypass solutions.
The higher the velocity, the more the tendency ypalss solutions (this is the
GELS mechanism for escaping local optima). If theltiple stepping mode is
being used, the velocity is also used to deterrhion far past the local search
neighborhood the search will relocate. There g al pointer to identify which of

the elements in the vector is the current “directd movement”.

101

Both methods of operation and both stepping modes been combined into a
single module. The choice of which method and Wwhatepping mode to use can
be made at run time. Other parameters that attableare:

 Maximum velocity — defines the maximum value thay &lement within

the velocity vector can have; used to prevent vedscthat become too
large to be usable

* Radius — sets the radius value in the gravitatidoale formula; used to

determine how quickly the gravitational force caorease or decrease

» Iterations — defines the number of iterations @& gigorithm that will be

allowed to complete before it is automatically terated; used to ensure
that the algorithm will terminate

The settings of these parameters for the curreperaxents were arrived at
through trial-and-error during the development &LS. Some settings caused the
algorithm to run too long; others caused conditismh&re numbers were becoming
too large, causing the algorithm to behave errfficadfter a number of tests, the
values settled on were 10 for the maximum velocltyor the radius, and 10,000
for the iterations.

The algorithm begins by initializing the currentgoon, velocity vector, and
direction of movement. As with all the other teggorithms, the initial current
solution is set to the Monte Carlo solution. Facke dimension in the velocity
vector, a random integer between one and the mainalocity is chosen, and this

becomes the value of the element at that dimenslominimum value of one is set

102

to ensure that there will be a non-zero velocitsnponent in each dimension at the
outset. After all dimensions of the vector haveereed values, the one having the
largest value is set as the initial direction ofwament (in the event of a tie, the
first element in the vector having the largest gahill be selected).

Next, a series of iterations of the algorithm ateceited. What happens in each
iteration will be dependent on which method of @pen has been selected, and
each will be described separately. The algorithithterminate when one of two
conditions occurs: either all of the elementsha velocity vector have gone to
zero, or the maximum allowable number of iteratibas been completed.

One iteration of the first method of operation dstss of first selecting a
candidate solution. This solution will be the dmo in the local search
neighborhood having the same ordinal identifier the current direction of
movement indicator, i.e. if the indicator is cuthgrset to five, the fifth solution in
the neighborhood will become the candidate soluti@mce selected, the candidate
solution’s objective function value is checked ¢e df it is the best one seen to this
point. If so, the candidate solution is markedeaimg the best solution seen so far.
The count of number of solutions examined is atepamented at this point.

Next, the gravitational force between the curreslutson and the selected
candidate solution is calculated. Newton’s formslased, with the alteration that
the two masses in the numerator of the equatiorregplaced by the value of the

difference between the objective function valughaf candidate solution and that

103

of the current solution. The value of the gravwaal force between the two
solutions then becomes:

G(cu -cA)
RZ

F =
where G =6.672
CU = objective function value of the current smnt
CA = objective function value of the candidateusioin
R = value of the radius parameter

This formula is designed to be a positive valudéf objective function value of
the current solution is larger than that of thedidate solution and negative if the
candidate’s value is larger. This is because theitgtional pull should be towards
solutions with better objective function valuesnc® the problem types used in the
experiments are all minimization problems, a lessgiective function value is
better. Thus, if the candidate solution is bettewill have a lower objective
function value, making CU — CA a positive value.

It would have been possible to replace the two nmassbers in Newton’s
formula by the objective function values of the twolutions and apply the
appropriate sign based on which one was larger.wa$ decided to use the
difference between them instead simply becausegusia multiplication led to

much larger values (and much larger ranges of galaed made the determination

of a radius value suitable for several differerdaljpem sizes more difficult. It was

104

believed that using the difference tended to nameathe values somewhat,
without loss of the spirit of what Newton’s formuwiaas intended to indicate.

Having calculated the relative gravitational foricethe current direction of
movement, the velocity vector can now be updat&te force value, positive or
negative, is added to the component of the veloggtytor at the position of the
current direction of movement. If doing so males value exceed the maximum
velocity parameter setting, it is set to the maxamulf the update would cause the
value to go negative, it is set to zero.

Note that this process is emulating the accelaragidect that a gravitational
force would have, and that in actual physics treekeation would be calculated by
dividing the force by the mass of the object actpdn. However, the object being
acted upon would be the solution pointer object imp¥hrough the search space,
not either of the solution objects themselves (Whio not move). Including a
mass value for the solution pointer would have reely that a constant value
was being included in the calculation. This woblave involved an additional
computation that did not add any value to the pecso it was excluded.

If the value of the velocity vector for the curratitection of movement has
decreased as a result of the update, a check & tdosee if it should remain the
current direction. As at the start of the algaritheach element in the vector is
examined to find the largest, which will become tiesv direction indicator. This

check is not necessary if the vector element vahgeeased as a result of the

105

update, since the element updated was alreadyatbest element, and increasing
its value cannot make it smaller than one of tieist

Performing an iteration of the algorithm using #eeond method is very much
like the first method. Gravitational forces ardcoéated, the velocity vector is
updated, and a new direction of movement is detexchi The only difference is
that instead of calculating the force value andatipg the vector only for the
current direction, the calculation and update adogomed for each element in the
vector, using as a candidate solution the objectivection value of the
neighborhood solution corresponding to the indethefelement within the vector.
Since values are updated for the entire vectorclieek for new direction is always
performed. Each candidate solution will generatheck for best solution seen
and an incrementing of the count of number of smhstexamined.

Once an iteration has completed, be it using tis fnethod or the second, the
solution pointer is relocated within the searchcgpaccording to the stepping
mode. If single stepping is set, the pointer Wwél relocated to the solution in the
local search neighborhood identified by the curminéction of movement. This
solution will be checked to evaluate if it qualffi@s best solution seen, and the
count of number of solutions examined will be imented.

If multiple stepping is set, the pointer will albe relocated to the neighborhood
solution in the current direction. However, if teement value in the velocity
vector at the index of the current direction isagee than one, a new neighborhood

is generated for the solution to which the poiist relocated, and the pointer will

106

move again to the neighborhood solution correspandio the direction of

movement. This process of generating a new neitjoioodl and moving the

solution pointer will repeat a number of times dgwathe value of the velocity

vector at the current direction index. At eachpstd the pointer during this

process, a check will be done to see if the satubeing pointed to is the best
solution seen, and the count of solutions examim#éde incremented.

A variation to this process had to be made for TRBcall that the method used
by TSP to generate solutions for local search m@dioods is to swap successive
pairs of elements in the original solution. If te&andard process for multiple
stepping is followed in this case, the process @fiegating neighborhoods will
trigger an oscillation in movement, and the solugminter will not actually move
multiple steps beyond the original neighborhood.o Jee this, consider the
following TSP solution: {1 4 2 3 5}. Suppose thhae current direction is 3, and
element three of the velocity vector is currently t® a value of 5. When it comes
time to relocate the solution pointer, it will nedmove five times. The first time
it moves, it will move to the third solution in tmeighborhood. In producing that
neighborhood, the third solution would have beeondpced by swapping the
second and third elements in the original solutioeaning the pointer would move
to solution {1 2 4 3 5}. On the second move, thieck solution in the neighborhood
generated for this solution would again be produsgdwapping the second and
third elements, meaning the pointer would movediat®on {1 4 2 3 5}. But, this

is right back where it started. A third move wouklike the pointer back to

107

{1 2 4 3 5}, a fourth back to {1 4 2 3 5}, and tliéth back to {1 2 4 3 5}.
Obviously, the pointer is not really moving fiveeps beyond the original
neighborhood.

To counter this problem, the multiple-stepping dwe was modified for
TSP. Instead of moving at each step to the neidiidoal solution in the current
direction of movement, the pointer would move toramdom neighborhood
solution. This made the chances of a prolongedllatsan process occurring
extremely small. This modified procedure was ordguired for TSP, as the
neighborhood generation procedures for BPP and Féduired completely
different methods from TSP, and the problem didmanifest itself there.

After completing the stepping process, the stoppgdoint for the solution
pointer is made the current solution, and the cofiatvailable iterations remaining
is decremented by one (having been initializechatstart of the algorithm to the
value specified by the iterations parameter). héré are available iterations
remaining, and if there is at least one non-zedoevaemaining in the velocity
vector, the entire procedure consisting of: a)egate a neighborhood for the
current solution, b) follow either method one or thoel two to calculate
gravitational forces and update the velocity vecémd current direction of
movement, and c) perform either single or multgikpping, is repeated.

A pseudo-code outline of the procedures just deedrfor GELS is as follows:
CurrentSolution = BestSolution = MonteCarloSolution

SolutionsExamined = 0

108

IterationsRemaining = MaxlIterationsParameter
VelocitySum =0
for each Index in VelocityVector
VelocityVector[Index] = random integer between HanaxVelocityParameter
VelocitySum = VelocitySum + VelocityVector[Index]
end for
Direction = MaximumValueln (VelocityVector)
while (VelocitySum > 0 and IterationsRemaining > 0)
GenerateNeighborhood (CurrentSolution)
if MethodOneSelected
CandidateSolution = Neighborhood (Direction)
if ObjectiveFunction (CandidateSolution) < Objeeffunction
(BestSolution)
BestSolution = CandidateSolution
end if
SolutionsExamined = SolutionsExamined + 1
Force = Integer (6.672 * (ObjectiveFunction (Cut&uolution) —
ObjectiveFunction (CandidateSolution)) / RadiusRueater ** 2)
VelocityVector[Direction] = VelocityVector[Directin] + Force
if VelocityVector[Direction] < 0
VelocityVector[Direction] = 0

end if

109

if VelocityVector[Direction] > MaxVelocityParameter
VelocityVector[Direction] = MaxVelocityParameter
end if
VelocitySum =0
for each Index in VelocityVector
VelocitySum = VelocitySum + VelocityVector[Index]
end for
Direction = MaximumValueln (VelocityVector)
else if MethodTwoSelected
for each Index in Neighborhood
CandidateSolution = Neighborhood (Index)
if ObjectiveFunction (CandidateSolution) < Objeeffunction
(BestSolution)
BestSolution = CandidateSolution
end if
SolutionsExamined = SolutionsExamined + 1
Force = Integer (6.672 * (ObjectiveFunction (Cut&uoiution) —
ObjectiveFunction (CandidateSolution)) / RadiusRueater ** 2)
VelocityVector[Index] = VelocityVector[Index] + Foe
if VelocityVector[Index] < 0
VelocityVector[Index] = 0

end if

110

if VelocityVector[Index] > MaxVelocityParameter
VelocityVector[Index] = MaxVelocityParameter
end if
end for
VelocitySum =0
for each Index in VelocityVector
VelocitySum = VelocitySum + VelocityVector[Index]
end for

Direction = MaximumValueln (VelocityVector)

end if

if SingleSteppingSelected

if TSPProblemBeingSolved
CurrentSolution = Neighborhood[random]

else
CurrentSolution = Neighborhood[Direction]

end if

if ObjectiveFunction (CurrentSolution) < Objectivetetion (BestSolution)
BestSolution = CurrentSolution

end if

SolutionsExamined = SolutionsExamined + 1

else if MultipleSteppingSelected

for 1 to VelocityVector[Direction]

111

if TSPProblemBeingSolved
CurrentSolution = Neighborhood[random]
else
CurrentSolution = Neighborhood[Direction]
end if
if ObjectiveFunction (CurrentSolution) < Objectivetetion
(BestSolution)
BestSolution = CurrentSolution
end if
SolutionsExamined = SolutionsExamined + 1
GenerateNeighborhood (CurrentSolution)
end for
end if
IterationsRemaining = IterationsRemaining — 1
end while
return BestSolution, ObjectiveFunction (BestSol}j&olutionsExamined
This is the version of the GELS algorithm that wesed in the algorithm
comparison experiments. Each possible configuratib the algorithm (TA11,
TA12, TA21, and TA22) was treated as a separateritthgn for the purposes of
those experiments, complete with its own set of statistics. This was done

because not only was it of interest to discover @@L S would perform against

112

the other algorithm types, but also how each var@dnGELS would perform

against the other variants.

2.2.5 Validation of the Experimental Environment

As alluded to in the discussions regarding impletagon of the problem and
algorithm types, a fair amount of ad hoc testings wlane in the course of the
development effort, prior to the pieces being pogether into a cohesive
experimental environment. When it came time totpase pieces together, a series
of tests were conducted to confirm that the envirent was operating properly.

The first C++ class to be placed into the environmeas TSP. The
infrastructure of the problem was put into place.(iclass definition, necessary
program control variables, etc.), and then the @mantation of the problem
instance generator was initiated. The generatar tested by generating problem
instances and printing out the resulting tour moseircost matrix. Each matrix
was checked to ensure that all costs were betweersgecified minimum and
maximum values of 1 and 10, respectively (excepthe diagonal of the matrix,
which should have been all zeroes). Each matrx aso checked to ensure that it
was in fact symmetric, with all costs of movememind any given city A to any
other city B equal to the cost of movement frony @tto city A.

Once the problem instance generator was shown tpbmting correctly, the

implementations for the Monte Carlo solution getmrand objective function

113

value calculator were added. Solutions to problaestances produced by the
generator were verified to be valid TSP tours, vatrery city in the tour being
accounted for with no duplicates. The quality eé Monte Carlo solutions being
produced was gauged by evaluating them with thesabbp function value
calculator, which was in turn validated by matchthg values calculated against
manual calculations done by using the cost maitixfind the cost for each
individual leg of the tour and then summing all twessts.

Next, the implementation for the Hill Climbing algthm was added. This in
turn required that the procedure for local searelghborhood generation be in
place. The neighborhood generator was tested ing @ symbolic debugger to
step through HC, and at each point that a new beigiilood was required it was
verified that the generated neighborhood was cbrreStepping through HC
continued to ensure that it was finding the bedutgm in the local search
neighborhood and was following the best fit grepdytern by moving to the best
solution found in the neighborhood with a bettejeotive function value than the
current solution. Finally, it was verified that Hg@uld terminate when it could no
longer find any solutions in the neighborhood bretttan the current solution.

The next item to be added was the implementatiothi® Simulated Annealing
algorithm. Since the methods for local search m@ghood generation and
objective function value calculation were alreadggent, the SA procedure was set
up to use these procedures. The symbolic debugaerused to step through the

SA procedure, verifying that it was following itsoscribed steps correctly, and

114

that individual pieces (like the formula for calatihg the Maxwell-Boltzmann
probability values) were working properly. Entmens of SA were followed in the
debugger, using break points and watch pointsaw vis progress and ensure that
things were in order.

Next to be added was the implementation for thee@erAlgorithm. This
followed the same procedure as for SA, hooking GAthe existing objective
function value calculator (the local search neighbod generator not being
required) and using the symbolic debugger to vetligat each of the GA
components (population selection, crossover, andatmoun) was operating
properly. Also, as with SA complete runs of GA welone through the debugger
to verify its progress.

Once its development efforts were finalized, thelamentation for GELS was
added in. Again, GELS was set up to use the egidtical search neighborhood
generator and objective function value calculatds was done with SA and GA,
the symbolic debugger was used to verify that eafckthe designed phases of
operation for GELS was correctly functioning, an@mplete runs were
accomplished to observe and verify operations.

The addition of the GELS implementation roundedtbetset of test algorithms
to be used for TSP. All that remained was to awitthé output method to write the
results of the algorithm comparisons to file foretauploading into SPSS. Once
this was done some complete tests involving all atgorithms and different

problem sizes were conducted, both to verify theembness of the output routine

115

and to verify that the system would still functi@orrectly during multiple
consecutive runs and with different (sometimeseajlaitge) problem sizes.

With the completion of testing for TSP, work beganBPP. Testing of BPP
followed the same format as for TSP. First, tlessldefinitions and infrastructure
were put together. Then, the common-use procedpreblem instance generator,
local search neighborhood generator, and objettivetion calculator) were added
and tested, using the same testing methods asSBr TThe algorithms were then
added in one by one in the order MC, HC, SA, GAl &ELS, including the BPP-
specific modifications necessary for GA already tiwered and the removal of the
special multiple stepping modification needed foELS only on TSP. Each
algorithm was in turn tested in the same mannevassdone for TSP. The output
routine was then added and complete runs were botieof BPP standalone and
in concert with TSP. The output file was examitedrerify the correct writing
and identification of results for BPP and TSP tbget

Once testing was completed on BPP, the final tesdtlem type, FAP, was put
together. The steps and methods used in assendnidgvalidating FAP were
exactly the same as those for TSP and BPP. W!legrvikre completed, complete
runs of all three problem types together were doResults of these runs were
compared with those of previous runs of each ofpttadlem types by itself to see
if they appeared to be consistent. At this poimergthing appeared to be
functioning properly, which meant that the entirackage was now ready to

conduct the official algorithm comparison experiitsen

116

2.2.6 Perfor mance of the Resear ch Experiments

With the completion of the development and teséfigrts for the experimental
environment, the DOE for the algorithm comparisgpeziments could be put into
action. This design was fairly simple; generateeges of problem instances for
each of the test problem types, and for each proltestance produce a solution
from each of Monte Carlo, Hill Climbing, SimulateAnnealing, Genetic
Algorithm, GELS method one with single stepping, LGEmethod one with
multiple stepping, GELS method two with single gieg, and GELS method two
with multiple stepping. Then, the data would belgred by SPSS to either
confirm or reject the performance and efficiencpdiyeses.

When analyzing the data, problem instance was asedblocking factor. The
reason for this was because of the inherent véitiabf the Monte Carlo solutions.
Since they are random, a Monte Carlo solution fog problem instance might be
relatively poor in relation to the optimal solutiofihis would mean that each of the
test algorithms would have ample room to improveiton In another problem
instance, however, the Monte Carlo solution mightvbry close to the optimal. In
this case, improving on it would be very difficuib matter what the solution
algorithm. Since the Monte Carlo solutions sersdlee starting point for all the
other algorithms, their relation to the optimalumn will influence the overall
results of every experiment. This influence mwestbcounted for, even if its cause

is not of particular interest to the experimenihe relative quality of the Monte

117

Carlo solutions in relation to the optimal was kabwn during the experiments,
and indeed could not have been known for certathout exhaustive search of
each problem instance search space, a completelgsible task. Therefore, the
relative quality of the Monte Carlo solutions fach problem instance was not an
item of interest. Yet, it influenced the outcomefsthe experiments, as just
explained, and thus had to be accounted for to rensibe validity of the
interpretation of the results; hence, its inclusiorthe experiments as a blocking
factor.

The number of experiments to be included in theesevas effectively dictated
by SPSS. The version of SPSS that was availabdetinea student edition, which
limits the number of cases in a single analysidifteen hundred (SPSS, 2001),
with each case amounting to a single line in thpuufile. Because of the way

SPSS handles its analyses, each case neededttadtersd as follows:

{Run No.} {Problem Type} {Algorithm Type} {Performance Value} {Eitiency Value}

The “Run No.” field represented the problem instanount, used for blocking
of the problem instance factor. The “Problem Tyfield identified which of the
test problem types the problem instance was gerterar, and the “Algorithm
Type” field identified which of the test algorithtypes was being used to solve the
problem instance. These two fields were used|tawadirouping of the results by

problem and algorithm. The “Performance Value” dBfficiency Value” fields

118

contained the metrics used in the analysis. Asxample, the SA solution for the
tenth TSP problem instance generated would havasa that looked something

like the following:

10 TSP SA 0.75 0.11

Structuring cases in this manner allowed SPSS nolwct all of the necessary
analysis of the data, but it did limit the numbémpeooblem instances experiments
that could be conducted. By generating fifty pesblinstances for each problem
type of a given size, twelve hundred cases werat@te(8 algorithm types x 3
problem types x 50 problem instances = 1,200 ca&aéhg within the limits of
the SPSS student edition. A few more problem ntsta per problem type could
have been generated and still have met the SP®Sigastion, but fifty provided
a convenient round number for use in calculatioms, as it turned out, generated
more than sufficient data for SPSS to produce nmggnli conclusions.

To evaluate the effect of different problem sizedlwe algorithm comparison, it
was decided to conduct separate experiments, edbhavdifferent problem size,
which would allow the effect to be analyzed whileating the case limitation.
Problem sizes of ten, twenty, thirty, forty, anfiyfiwere each to be analyzed. For
TSP, problem size was determined by the numbeitiebdo be included in a tour.
For BPP, size was determined by the number of tbjecbe placed in bins. For

FAP, since the number of devices and files was giegthined, size was

119

determined by the number of queries that would »exc@ted. Each increment of
problem size represented one thousand TPC-H querigsa problem size of ten
meant that ten thousand randomly-ordered queries the TPC-H standard would
be executed for that run.

It was also decided that a single set of experimentompassing all problem
sizes would be run, to further evaluate the eftéggproblem size within a single
analysis. Of course, this meant reducing the nunolbgoroblem instances per
problem size. To accommodate the inclusion of lembsize as a factor, the case

structure for this set of experiments needed talteged to look like the following:

{Run No.} {Prob. Type} {Prob. Size} {Alg. Type} {Performance ValugEfficiency Value}

To avoid any possible unforeseen side effects nhing problem sizes in a
particular order, the size for each problem instanas determined randomly out of
the original sizes of ten, twenty, thirty, fortyncafifty. This meant a possible
inequality in the number of cases of each problers, svhich would place some
limitations on the analysis (some statistical teg&mt equal numbers of cases for
each factor value), but it was in keeping with receended DOE techniques.

Thus, there were a total of six sets of experimentse for each of the five
defined problem sizes, and one consisting of randooblem sizes. Each set was

designed to allow statistical comparison of theoatgm types, and provided the

120

SPSS tool with a grand total of 7,200 cases witlclwvto perform that comparison

— well more than SPSS required to accomplish thle ta

2.2.7 Results of the Current Resear ch Experiments

With the DOE for the algorithm comparison experitsestefined, the six sets of
experiments were run according to the design aedd#ta collected into output
files to be uploaded into SPSS for analysis. Asdaim of the experiments was to
either confirm or reject both the performance amel ¢fficiency hypotheses, the
analysis of each experiment's data was conductedwmm phases. First, the
performance results from each set of experiment® wealyzed to compare the
relative performance of each of the algorithms agfaiandom solutions and against
each other. Then, a second analysis was doneeoeffitiency results from each
set of experiments to compare the relative efficyeaf each of the algorithms in
the same manner. The results of the analysesrasenged here in the same order
in which they were conducted; first the performardaga analysis, then the

efficiency data analysis.

2.2.7.1 Algorithm Performance Results

The analysis of the algorithm performance results wonducted by first
loading the raw data into SPSS. Then, for eacth®fthree test problem types a

box plot and line plot were generated to give aisyal indications of a difference

121

in algorithm performance. Next, an ANOVA was rundee if any statistically

significant difference could be detected betweenm plerformances recorded for
each algorithm type. A fourth box plot and linetplvere also generated, and a
fourth ANOVA run, each consisting of composite dateer all problem types in

order to detect any significant difference betwedgorithm performances across
all three problem types considered together. Titeame of each ANOVA was

evaluated and if necessary corroborated using dsés tdescribed in section
1.2.3.2.3. If a significant difference was detared to exist, an ordering of the
algorithms by relative performance was establishezbrding to the homogeneous
subsets defined by the analysis. This proceduretiven repeated for each of the
five sets of experiments using a fixed problem sizd the one set of experiments

using random problem sizes.

2.2.7.1.1 Problem Size Ten Performance Results

Exhibit 12 shows the box plot that was generateadttie set of experiments
encompassing TSP problem instances of size teims pltt seems to show a very
slight edge in performance capability for SA, but SA box does not completely
fall outside the borders of the boxes for seveta¢oalgorithms. Also, the median
lines for SA, TA21, and TA22 are at about the sdewvel. The box widths are
roughly the same, with those for HC, TA11l, and TAfng slightly larger. The

whiskers are also roughly the same length, wittseéhfor HC and TA12 being a

122

little longer. These two items show that the irgaartile and min/max ranges for
each of the algorithms are comparable, indicatingilar variances between

algorithm types.

Performance Ratio
(@)
(@]

GA HC SA TAIl TAI2 TA21 TA22

Algorithm Type

Exhibit 12. Box Plot, TSP Size 10 Performance

Exhibit 13 shows the line plot of marginal meanattivas generated for the
same data. This plot shows average performaneevdhat are apparently very
similar for SA, TA21, and TA22, and better than test. The ANOVA for this

problem group should be able to confirm if thignidact the case.

123

Estimated Marginal Means

GA HC SA TA11 TA12 TA21 TA22

Algorithm Type

Exhibit 13. Line Plot, TSP Size Ten Performance

Exhibit 14 shows the results of the ANOVA. Thenrsigance values are all
zero, giving a strong indication that variancep@nformance values for the model
in general, and the run number and algorithm tymofs in particular, cannot be
attributed to random error alone. The run numimer algorithm type are almost
certainly affecting the performance values beingdpced. It is good, then, that the
run number (problem instance) was included as ekbig factor. Had it been left
out, its influence on the model would not have baecounted for and could have

distorted the effects seen for the algorithm tyguetdr.

124

Dependent Variable: Performance Ratio
Type Ill Sum Partial Eta Noncent. Observed

Source of Squares df Mean Square F Sig. Squared Parameter Powef
Corrected Model 6.007 55 .109 28.126 .000 .840 1546.931 1.000
Intercept 71.094 1 71.094 18307.321 .000 .984 18307.321 1.000
Factor A 3.770 49 7.693E-02 19.811 .000 .768 970.750 1.000
Factor B 2.238 6 .373 96.030 .000 .662 576.181 1.000
Error 1.142 294 3.883E-03
Total 78.243 350
Corrected Total 7.149 349

a. Computed using alpha = .05

b. R Squared = .840 (Adjusted R Squared = .810)

Exhibit 14. ANOVA Results, TSP Size Ten Performance

The results of the ANOVA needed to be confirmeddsting to verify that the
assumed conditions for a valid ANOVA were in factgent. Exhibit 15 shows the
P-P plot of the ANOVA residuals. There is evideonteleparture from the normal
marker line in two sections of the plot, leadingtspicion that the residuals might
not be normally distributed. A Kolmogorov-Smirnoermality test was used at

this point to provide a more precise indication.

125

1.00

.75+

a1
o
1

[}
(&)
1

0.00 g
0.00 25 50 75 1.00

Expected Cumulative Probability

Observed Cumulative Probability

Exhibit 15. Residual Normal P-P Plot, TSP Size Ten Performanc

Exhibit 16 shows the results of the Kolmogorov-Srawr test. Here there is a
problem. The significance factor shown on the les is 0.037, which is lower
than the threshold of 0.05. This means that thémkgorov-Smirnov test has
rejected the hypothesis of normally distributeddesls. This cast some doubt on
the validity of the ANOVA results, and further eeitte was required to

corroborate those results.

126

Residual for
Performance
Ratio

N 350
Normal Parametér Mean .0000000
Std. Deviation .05719588
Most Extreme Absolute .076
Differences Positive 058
Negative -.076
Kolmogorov-Smirnov Z 1.413
Asymp. Sig. (2-tailed) .037

a. Test distribution is Normal.

b. Calculated from data.

Exhibit 16. Kolmogorov-Smirnov Test, TSP Size Ten Performance

However, before examining that additional evidetms=other condition of non-
structured residuals was tested. The first ofd@hests was the plot of the predicted
values versus observed residuals, shown in ExhibitThis plot shows if there is a
pattern of relationship between the residuals ahd predicted values of
performance based on average outputs for giventsnpuwhile there is an
indication of narrowing in the plotted points towsarthe right of the diagram, there
is no overall “megaphone” shape or similar pattdiscernable. Thus, the plot

gives no reasonable indication of a serious problem

127

g o
C_jd o g oo g O
S o
© 21
> o
% o
[O)
x -3
0.0 1 2 3 4 5 6 7 8

Predicted Value

w/Mean Value Line

Exhibit 17. Predicted vs. Residual Plot, TSP Size Ten Pedom®a

The other test of the assumption of non-structuesiduals was the plot of
residuals over time, shown in Exhibit 18. Thistpdbows if there is a trend for
residuals to become larger or smaller with eachtiadd! experiment run (in this
case, problem instance). The plotted points rekerabtube, with no obvious
narrowing or widening, and thus there is no indaraiof a serious problem with

structured residuals here either.

128

Residual Value
n

0 10 20 30 40 50

Run Number

w/Mean Value Line

Exhibit 18. Residual Trend Plot, TSP Size Ten Performance

The tests for non-structured residuals did not akvany cause for alarm.
However, the normality of the residual distributionas rejected by the
Kolmogorov-Smirnov test. Since the residuals coolst be assumed to be
normally distributed, one of the assumptions of AINOVA had been violated, and
it needed additional evidence to corroborate itschusions. The Kruskal-Wallis
test could be used for this purpose, as it is apayametric test not subject to the
same assumptions as the ANOVA. The test was coeduwsing algorithm type as

the test factor.

129

Exhibit 19 shows the results of this test. Thenigance value shown on the
last line is zero, below the threshold of 0.05, meg that the test accepts the
hypothesis that there is a difference between ldparithm types. This result is in
agreement with the results obtained by the ANOV&ding credence to those
results in spite of the failed test for residuatmality. Since both the ANOVA and
the Kruskal-Wallis Test agree on this count, it danconcluded that there is a
significant difference between the performance eslobtained by the different

algorithms for TSP problem instances of size ten.

Ranking Test StatisticsP

Performance
Ratio
Chi-Square 107.785
df 6
Asymp. Sig. .000

a. Kruskal Wallis Test
b. Grouping Variable: Algorithm Type

Exhibit 19. Kruskal-Wallis Test, TSP Size Ten Performance

To find out exactly what differences were considersignificant, the
homogeneous subsets for algorithm performance generated, using both the
Tukey and Duncan methods. The results are shownhibit 20. In this case both
methods have generated four subsets. Since tisetsudre automatically arranged

by increasing performance ratio, and since bettefopnance of an algorithm is

130

indicated by higher values for this measure, ths performing algorithms will be
in subset 4, and the worst in subset 1. Both theey and Duncan methods also
agree on which algorithms should be placed in whscibsets. The subset
assignments indicate that the performance of SR2IAand TA21 are the best, and
furthermore, that performance between the threstasstically indistinguishable.
The next best performers were TA12 and GA, alsastimfjuishable. Next down

the list was TA11l, and HC came in as the worstqoarér of the group.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' HC 50 .3097601
TA11 50 .3847190
GA 50 4302296
TA12 50 4350807
TA21 50 .5206225
TA22 50 .5352588
SA 50 .5391901
Sig. 1.000 1.000 1.000 751
Dunca® HC 50 .3097601
TA11 50 .3847190
GA 50 4302296
TA12 50 4350807
TA21 50 .5206225
TA22 50 .5352588
SA 50 .5391901
Sig. 1.000 1.000 .697 162
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 3.883E-03.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 20. Homogeneous Subsets, TSP Size Ten Performance

131

The results of the analysis for TSP problem instanof size ten led to the
conclusion that the performance hypothesis coulddfely rejected for this group
of problem instances. There is a statisticallyngigant difference between the
performances of the different algorithm types. Hmalysis also concluded that
Simulated Annealing, GELS method two with singlepgting, and GELS method
two with multiple stepping are the best performing problem instances of this
type, with performances that are statistically stidiguishable from each other.

To continue with the analysis process, BPP probtestances of size ten were
considered. Exhibit 21 shows the box plot for thisup of problem instances.
The boxes for GA and TA21 appear to be a littlehimgher, but otherwise it appears
to be a rather tight grouping. Also, this time thex sizes for GA and TA21 are
notably smaller than the others, and the whiskars>A are considerably shorter.
This indicates a wider variance in performance theme was for the TSP size ten
problem instances, except for GA which apparenrdlg a very tight variance. Still
though, there are no outlier markers on the diagrainich would be an indication

of some extreme values having an undue effect®nahiance.

132

8
6 T
41
o .24
IS
x 1L
[}
(&)
& 0.0
£
L
g -2
GA HC SA TA1l TA12 TA21 TA22
Algorithm Type

Exhibit 21. Box Plot, BPP Size Ten Performance

Exhibit 22 shows the line plot of marginal means tfus group of problems.
Again, GA and TA21 appear higher than the othergngthening the suspicion
that they are the best performers. In any evéetretappears to be a significant
difference between the performance of some of tgerithms, and the ANOVA

should be able to confirm this.

133

.50

Estimated Marginal Means

GA HC SA TA11 TA12 TA21 TA22

Algorithm Type

Exhibit 22. Line Plot, BPP Size Ten Performance

The results of the ANOVA are shown in Exhibit 28ll significance values are
at zero, below the threshold of 0.05, indicatingttthe model contains significant
amounts of variance that cannot be attributed moloen error, and that choice of
algorithm does make a difference to performancehe Tun number again is

significant, making it a good thing that it was sptas a blocking factor.

134

Dependent Variable: Performance Ratio
Type Ill Sum Partial Eta Noncent. ~ Observed

Source of Squares df Mean Square F Sig. Squared Parameter Powef
Corrected Model 5.819 55 .106 9.109 .000 .630 501.014 1.000
Intercept 57.154 1 57.154 4920.861 .000 944 4920.861 1.000
Run Number 4.693 49 9.577E-02 8.246 .000 579 404.037 1.000
Algorithm Type 1.126 6 .188 16.163 .000 .248 96.977 1.000
Error 3.415 294 1.161E-02
Total 66.388 350
Corrected Total 9.234 349

a. Computed using alpha = .05

b. R Squared = .630 (Adjusted R Squared = .561)

Exhibit 23. ANOVA Results, BPP Size Ten Performance

To validate the results of the ANOVA, the assumptareconditions of normal
distribution of and no structure to the residuakyevtested. The P-P plot of the
residuals is shown in Exhibit 24. There appearse@ very good fit for this plot,
with only one small deviation near the middle. sTiould lead to the belief that
the assumption of residual normality can be uphald,in order to confirm this the

Kolmogorov-Smirnov test was run.

135

1.00

.75+

a1
o
1

[}
(&)
1

0.00 [
0.00 25 50 75 1.00

Expected Cumulative Probability

Observed Cumulative Probability

Exhibit 24. Residual Normal P-P Plot, BPP Size Ten Performanc

Exhibit 25 shows the results of the Kolmogorov-Srair test. The significance
value of the test is 0.169, above the threshold.@5, meaning that the test accepts
the normality of the distribution. This confirmdwat was seen in the P-P plot, and

verifies the assumption of normally distributedidesls.

136

Residual for
Performance
Ratio

N 350
Normal Parametér Mean .0000000
Std. Deviation .09891547
Most Extreme Absolute .059
Differences Positive 025
Negative -.059
Kolmogorov-Smirnov Z 1.111
Asymp. Sig. (2-tailed) .169

a. Test distribution is Normal.

b. Calculated from data.

Exhibit 25. Kolmogorov-Smirnov Test, BPP Size Ten Performance

To test the assumption of non-structured residulés predicted values versus
residuals and residual trend plots were examinEghibit 26 shows the first of
these plots. There is a slight “pinching” of thietpat both ends but no overall
pattern of widening or narrowing, and the majodfypoints are clustered within an

equidistant band around the mean value line, sopibt is no cause for alarm.

137

3
[m]
2 o o
obh O
o I:ID Dchh o o o
Oy 'EID o_ U O, o
11 o Mo o i " a
oy % o nDIQ,D o o
o qtgu & "
%Eh: g ot %&h o_ o g o
0.0 Th o Th u] | O =] O
o G " "n Et'% Ug o
o o th oy I%DD%D D% (u] o
o
-14 qhq'%h:' ° 0 DDEh oo g
o 9 oo g o o o
% D‘:‘q?lh o th o o o o
© -2 "o o
> o o
—_— [m]
S
-.31 o [m]
2 e
[}
@ -4
1 2 3 4 5 6 7 8
Predicted Value
w/Mean Value Line

Exhibit 26. Predicted vs. Residual Plot, BPP Size Ten Pedooa

Exhibit 27 shows the residual trend plot. Thistptwoks very good as well,
with no indication at all of any narrowing or wideg over the runs of the
experiment. The predicted values versus resicaradsresidual trend plots provide
good evidence that the residuals are non-structured that this assumption can

therefore be made.

138

Residual Value

0 10 20 30 40 50

Run Number

w/Mean Value Line

Exhibit 27. Residual Trend Plot, BPP Size Ten Performance

Since the assumptions of normal distribution andstmocture to the residuals
can be upheld, the original ANOVA results can baesidered solid. Those results
indicated that there is a difference between thdopwances of the different
algorithms. To see which differences can be camsal significant, the
homogeneous subsets were generated.

These results are shown in Exhibit 28. In thisecdBe Tukey and Duncan
methods have generated a different number of ssibskte Tukey method places

GA and TA21 in the top subset, TA21 and SA in tegtrsubset, SA, HC, TA1l,

139

and TA22 in the next, and HC, TA11, TA22, and TAhZhe next, for a total of
four subsets. The Duncan method, on the other,hdades GA and TA21 in the
top subset, SA and HC in the second, and HC, TARR?2, and TA12 in the last

for a total of three subsets.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA12 50 .3349286
TA22 50 .3635794 .3635794
TAll 50 .3689206 .3689206
HC 50 .3744444 3744444
SA 50 4149444 4149444
TA21 50 4706349 .4706349
GA 50 .5012540
Sig. 527 .209 135 .790
Dunca® TA12 50 .3349286
TA22 50 .3635794
TAll 50 .3689206
HC 50 .3744444 3744444
SA 50 4149444
TA21 50 4706349
GA 50 .5012540
Sig. .095 .061 157
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.161E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 28. Homogeneous Subsets, BPP Size Ten Performance

Notice that in several cases the same algorithmeagpin two subsets

simultaneously. The homogeneous subsets methaasraje groups of factor

140

levels that cannot be distinguished statisticallymay be the case that there is not
enough of a difference between factor levels A Brtd be considered statistically
significant. There may also not be enough of ðce between factor levels B
and C to be considered significant. This would méaat A and B cannot be
distinguished and would be placed in a subsetBaadd C cannot be distinguished
and would be placed in another subset. Howeverdifierence between A and C
may be just enough to be significant. Thus, fatdeels A and C would appear in
different subsets, but factor level B would appeaa subset with A and in a subset
with C at the same time.

Such is the case here. For example, in Tukey'©ioteGA and TA21 appear in
the top subset, but TA21 also appears in the nébdet with SA. This is saying
that there is not enough of a difference in perfomoe between GA and TA21 to be
significant, so they are placed in a subset, amieths also not enough of a
difference between TA21 and SA to be significanttlsey are placed in a subset.
However, there is enough of a difference betweena@é SA to be significant, so
they appear in different subsets. In this way, TAppears in two different subsets
at the same time.

The results of the analysis of BPP problem instanafesize ten showed a
significant difference in performance between thkst talgorithms. Thus, the
performance hypothesis can be rejected for thisumrof problem instances.
Further, though there was a difference in the nunmdiehomogeneous subsets

between the Tukey and Duncan methods, both agteddte top performers in

141

this category of problem were the Genetic Algoritand GELS method two with
single stepping.

Continuing on, the next group of problem instartoelse analyzed was the FAP
instances of size ten. The box plot for this grappears in Exhibit 29. Here there
would appear to be a distinct difference betwegorghm performances, with the
boxes for SA and TA21 falling completely outsidevesal of the others. Since
these boxes are above the others, it also inditht#sSA and TA21 are the best
performers. Box sizes for HC, SA, and TA21 aratreély small compared to the
others, and whisker lengths for SA and TA21 are gamatively shorter than the
others. There are also outlier values for GA, BI@ TA21. Overall, this indicates
lower variability in performance for SA and TA21 particular. Should these two
algorithms be confirmed to have the best perforraafwhich from the diagram
would appear to be the case), they would not oelpétter performing but better

performing with a lower chance of returning a pselution.

142

.8

6 (Os36 L e

4

Os1
et 27 1
= 1
x
8 02
% 0.0 —_— Q122 —_—
£
o
)
GA HC SA TAll TA12 TA21 TA22
Algorithm Type

Exhibit 29. Box Plot, FAP Size Ten Performance

The line plot for these data appears in Exhibit 3@is plot agrees with the box
plot that there is a definite difference betweea performances of the different
algorithms, and that SA and TA21 are the best pedos. It is expected that the

ANOVA will confirm this.

143

Estimated Marginal Means

GA HC SA TA11 TA12 TA21 TA22

Algorithm Type

Exhibit 30. Line Plot, FAP Size Ten Performance

Exhibit 31 shows the ANOVA results. Once agair $ignificance values are
all zero. The model almost certainly contains asace that cannot be explained by
random error, the algorithm type factor is playangignificant role in determining
the outcome, and the run number factor is exesdisggnificant influence and was

rightly blocked.

144

Dependent Variable: Performance Ratio
Type Ill Sum Partial Eta Noncent. Observed

Source of Squares df Mean Square F Sig. Squared Parameter Powef
Corrected Model 6.829 55 124 18.366 .000 775 1010.106 1.000
Intercept 57.586 1 57.586 8518.208 .000 967 8518.208 1.000
Run Number 2.862 49 5.841E-02 8.640 .000 .590 423.336 1.000
Algorithm Type 3.967 6 .661 97.795 .000 .666 586.770 1.000
Error 1.988 294 6.760E-03
Total 66.403 350
Corrected Total 8.816 349

a. Computed using alpha = .05

b. R Squared = .775 (Adjusted R Squared = .732)

Exhibit 31. ANOVA Results, FAP Size Ten Performance

To confirm the results of the ANOVA, the tests bétassumptive conditions
were performed. Exhibit 32 shows the P-P plothaf tesiduals for this group of
problems. Most of the points are right on the liaed those that are not are very

close to it. This would lead to the belief that tlesiduals are normally distributed.

145

1.00

.75+

a1
o
I

N
(&)
?

0.00 [
0.00 25 50 75 1.00

Expected Cumulative Probability

Observed Cumulative Probability

Exhibit 32. Residual Normal P-P Plot, FAP Size Ten Performaanc

The Kolmogorov-Smirnov test for normality of thesi¢uals, shown in Exhibit
33, confirms this belief. The significance valudeddl44 is above the threshold of

0.05, so the test accepts the assumption thaegieuals are normally distributed.

146

Residual for
Performance
Ratio

N 350
Normal Parametér Mean .0000000
Std. Deviation .07546525
Most Extreme Absolute .061
Differences Positive 035
Negative -.061
Kolmogorov-Smirnov Z 1.147
Asymp. Sig. (2-tailed) 144

a. Test distribution is Normal.

b. Calculated from data.

Exhibit 33. Kolmogorov-Smirnov Test, FAP Size Ten Performance

With the assumption of the normality of the residugheld, the tests for non-
structured residuals were conducted. Exhibit 3gwshthe first of these tests, the
plot of predicted values versus residuals. Agdia ends of the plot appear
somewhat pinched, but a close look shows thatetifiest is due to a small number
of individual points. Most of the points are clustd together in a fairly tight
arrangement with no indication of a consistentgraitso this plot should not raise

any warning flags.

147

0.0

Residual Value
e

-4
0.0 2 4 6 8 1.0

Predicted Value

w/Mean Value Line

Exhibit 34. Predicted vs. Residual Plot, FAP Size Ten Perdmca

Exhibit 35 shows the plot of residual trend, theesttest for non-structured
residuals. Again, there are a few outliers, beteéhis no indication of consistent
widening or narrowing, and so there are no warrnilags here either. The

assumption of non-structured residuals appearsmahte.

148

2 o
a o
o o a a o 0 u] o
o o oo
o o o o
Hoog 7 : i SR
Op o0 o DDE oBo obo o B o
g_ogoo - B_ o 8, B, B8 g o al
B o gn EE o o EEE oHBHgBO B EEDDDE EE g™
0.0 o oo B oog E =] DD._. =] "E EED._. o0 DEDE o
. DDDDDEDEEDDUD oo O g E|:| &5 DEU DE'EUm
ogo BPg oo § o o Do o0 |:||:|E DEEE‘D DDDE
oB 00 O g o no@ B o o Op 0B o
o oo og o
. o o Ho g o of B
=11 DD o o oo a o g O
a oo o o o o
0 G a 4
o
g 2]
© o =
> o 0 o
S -3
% o
[O)
x -4
0 10 20 30 40 50
Run Number
w/Mean Value Line

Exhibit 35. Residual Trend Plot, FAP Size Ten Performance

Having validated the results of the ANOVA, with @genclusion that there is a
difference between the performances of the algosihthe homogeneous subsets
of those differences were generated. Exhibit 38vshthose subsets. Tukey and
Duncan are in agreement as to the number and dsntérthe subsets. Both
methods place SA and TA21 in the top subset, TARPBAL1L in the next subset,

HC by itself in the next, and finally TA12 and GAthe lowest subset.

149

Subset

Algorithm Type N 1 2 3 4
Tukey HSB' GA 50 .2676534

TA12 50 .2773018

HC 50 3508193

TAL1 50 4238876

TA22 50 4258730

TA21 50 5381334

SA 50 5557158

Sig. 997 1.000 1.000 937
Duncai® GA 50 .2676534

TA12 50 .2773018

HC 50 3508193

TA11 50 4238876

TA22 50 4258730

TA21 50 5381334

SA 50 5557158

Sig. 558 1.000 .904 286

b. Alpha = .05.

Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 6.760E-03.

a. Uses Harmonic Mean Sample Size = 50.000.

Exhibit 36. Homogeneous Subsets, FAP Size Ten Performance

The result of the analysis for FAP size ten problestances indicates that the
performance hypothesis can be rejected for thisugro There is a significant
difference in the performance of the algorithmsthwsimulated Annealing and
GELS method two with single stepping together clagrthe best performance.

To complete the analysis of the size ten probleéhescomposite analysis of all
size ten problem instances over all three problgmed was conducted. The box

plot for this appears in Exhibit 37. Here the lsmmes and whisker lengths for SA

150

and TA21 appear smaller than for the others, irgigathat they have smaller
variances in performance, even though both of thawe outliers. SA and TA21
also appear slightly higher (and therefore wouldehlaetter performance), but they
also overlap several of the other boxes, so thmaabe considered conclusive.
The variances in the performances of GA, TA1l, aAd2 are extreme, fully
encompassing the entire sizes of the others, pgnto a wide range in

performance for those algorithms on problem instaraf this type.

8
.61 1T
44
o .24 O _C%
g 3 Cpor |
p 1
o . 8B
% 0.01 Q1124 982 X435
£
o
& -2
GA HC SA TA11l TAl2 TA21 TA22
Algorithm Type

Exhibit 37. Box Plot, Composite Size Ten Performance

151

The composite line plot is shown in Exhibit 38. idIplot is even more
suggestive of SA and TA21 being the better-perfagralgorithms for this group
of problems than was the box plot. It also suggtsit the ANOVA will show the

performances of the two to be about the same.

44

Estimated Marginal Means

GA HC SA TA11 TA12 TA21 TA22

Algorithm Type

Exhibit 38. Line Plot, Composite Size Ten Performance

One other line plot for this group of problemsh®wn in Exhibit 39. This plot
gives a side-by-side comparison of the performamdethe algorithms for each

problem type. If there was any interaction betwd®nproblem type factor and the

152

algorithm type factor when solving size ten proldersome of the lines would
cross. If no such interaction was present, theslwould remain virtually parallel,

varying only with the algorithm type.

Estimated Marginal Means

GA HC SA TAll TA12 TA21 TA22

Algorithm Type

Exhibit 39. Problem Type Plot, Composite Size Ten Performance

As can be seen in the plot, there are several pa@nivhich the lines cross.
This indicates that the algorithms’ ability to selsize ten problems is not
independent of the type of problem being solvedr iRstance, looking at GA it

appears that if this algorithm is to be used it Momost likely produce its best

153

solutions on a size ten BPP problem, and consitlevedrse on an FAP problem of
the same size. The fact that algorithms perforrth wiifferent capabilities on
different types of problems should come as no ssepr What is noteworthy,
however, is that because of the nature of the @xpats being conducted, this
difference can here be statistically verified andwed for specific types of
problems.

The composite ANOVA for size ten problems is shawiexhibit 40. All the
significance values are zero, including the onetlier interaction of the problem
type factor with the algorithm type factor. Theo® of algorithm for solving size
ten problems does have a significant effect ongoerdnce, and this effect is not

independent of the type of problem being solved.

Dependent Variable: Performance Ratio

Type Ill Sum Partial Eta Noncent. Observed
Source of Squares df Mean Square F Sig. Squared Parameter Powef
Corrected Model 11.92¢° 69 173 12.295 .000 464 848.386 1.000
Intercept 185.344 1 185.344 13191.343 .000 931 13191.343 1.000
Run Number 4.099 49 8.365E-02 5.954 .000 229 291.735 1.000
Problem Type 491 2 .245 17.455 .000 .034 34.911 1.000
Algorithm Type 4.092 6 .682 48.543 .000 .229 291.260 1.000

Problem Type vs.

Algorithm Type 3.238 12 .270 19.207 .000 .190 230.480 1.000
Error 13.769 980 1.405E-02

Total 211.034 1050

Corrected Total 25.690 1049

a. Computed using alpha = .05
b. R Squared = .464 (Adjusted R Squared = .426)

Exhibit 40. ANOVA Results, Composite Size Ten Performance

154

To verify the results of the ANOVA, the checks te tassumptive conditions
were performed. The P-P plot for checking the raditmof the residuals is shown
in Exhibit 41. The points in this plot look almdite a straight line; there can be
little doubt that the residuals are normally dmtted. However, the Kolmogorov-

Smirnov test was still run to confirm this assertio

1.00

.75+

a1
o
1

[}
()]
1

o
o
S

Expected Cumulative Probability

0.00 .25 .50 .75 1.00

Observed Cumulative Probability

Exhibit 41. Residual Normal P-P Plot, Composite Size TendPerdnce

155

The results of this test are given in Exhibit 4the significance value is 0.382,

above the 0.05 threshold as expected. The caskdarormality of the residuals is

upheld.
Residual for
Performance
Ratio

N 1050
Normal Parametérs Mean .0000000
Std. Deviation 11456977
Most Extreme Absolute .028
Differences Positive 012
Negative -.028
Kolmogorov-Smirnov Z .908
Asymp. Sig. (2-tailed) .382

a. Test distribution is Normal.

b. Calculated from data.

Exhibit 42. Kolmogorov-Smirnov Test, Composite Size Ten Rentnce

Checking the other ANOVA assumptive condition, rsbructured residuals,
the plot of predicted values versus residuals @vshin Exhibit 43. Once again
there is the pinching effect on the ends of the, fdot some of this at least can be
explained by the nature of the performance raticcannot exceed one, nor can it
go less than zero. Consequently, the farther énfopnance ratio from mid-range,
the less room there is for the residuals to flugtuaThus, a narrowing at the

extremes of this plot is somewhat to be expected cartainly no cause for alarm.

156

Residual Value
B

0.0 A 2 3 A4 5 .6 7

Predicted Value

w/Mean Value Line

Exhibit 43. Predicted vs. Residual Plot, Composite Size TesfoRmance

The other check for non-structured residuals, tle pf residual trend, is
shown in Exhibit 44. This plot looks almost likecglinder, with no hint of

narrowing or widening, so there is certainly ngrablem here.

157

Residual Value

0 10 20 30 40 50

Run Number

w/Mean Value Line

Exhibit 44. Residual Trend Plot, Composite Size Ten Perfoo@an

With no problems found for either residual nornyabt residual structures, the
results of the ANOVA appear solid. Given this, titamogeneous subsets for the
experiment set as a whole were generated. Theseslown in Exhibit 45.
Tukey’s and Duncan’s methods are in full agreemanthis case. Both have
generated four subsets, with TA21 and SA occupyirggtop spot. In the next

subset is TA22 by itself, then GA and TA11 in thexinsubset, and finally TA12

and HC in the final subset.

158

Subset

Algorithm Type N 1 2 3 4
Tukey HSBT HC 150 .3450079

TA12 150 .3491037

TAl1 150 .3925091

GA 150 3997123

TA22 150 4415704

SA 150 5032835

TA21 150 5097969

Sig. 1.000 .998 1.000 .999
Duncai® HC 150 .3450079

TA12 150 .3491037

TAl1 150 .3925001

GA 150 3997123

TA22 150 4415704

SA 150 5032835

TA21 150 5097969

Sig. 765 599 1.000 634

Based on Type Il Sum of Squares

b. Alpha = .05.

Means for groups in homogeneous subsets are désplay

The error term is Mean Square(Error) = 1.405E-02.
a. Uses Harmonic Mean Sample Size = 150.000.

Exhibit 45. Homogeneous Subsets, Composite Size Ten Perfoeman

The performance hypothesis has been solidly rejefctethe composite set of
size ten problems. There is a definite differemcethe performances of the
algorithms across problem types of this size, dredet is a measurable difference
between how the algorithms perform on differentoathm types.
instances of size ten across all test problems, SsElethod two with single

stepping was indistinguishable from Simulated Aiingain being the best

performers.

159

For problem

2.2.7.1.2 Problem Size Twenty Performance Results

The next portion of the analysis involved the cdagition of problem
instances of size twenty. All of the methods, desbols, and diagrams used in
performing this part of the analysis were exachlg same as were used in the
analysis of the set of problem instances of sine t8uch was also the case for the
examination of the other remaining experiment gsize thirty, size forty, size
fifty, and the random size problem instances). p@iging the individual results of
all the tests would require many hundreds of pagessequently, the diagrams of
the tests have been omitted, and the summary sesililbe given.

For TSP problem instances of size twenty, the amalghowed that the
performance hypothesis could be rejected for tmsug of problems. With a
significance value of zero in the ANOVA, the aldgbm type factor demonstrated
that it had a significant effect on performancene ANOVA results were verified
through testing of the residuals, and the homogesisabsets were calculated.

The subsets produced are shown in Exhibit 46. Rtosdiagram, it can be
seen that though the count of the subsets genelstetthe two methods was
different, the ordering of the algorithms withireth was not. The only difference
between them was that Tukey's method put GELS ndetfaad with multiple
stepping in the same subset with GELS method twb single stepping, while
Duncan’s method separated them. Both agreed tieabést performer for this

group of problem instances was Simulated Annealifige best performing of the

160

GELS combinations were method two with multipleppieg and method two with
single stepping, which came in second and thirdpeetively, in the Duncan

method, and were tied for second best performant®ei Tukey method.

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' GA 50 .3120485
HC 50 .3148042
TA11 50 .3214439
TA12 50 .3518877
TA21 50 4277217
TA22 50 4560472
SA 50 .5674781
Sig. .966 1.000 .072 1.000
Duncaf® GA 50 .3120485
HC 50 .3148042
TAll 50 .3214439
TA12 50 .3518877
TA21 50 4277217
TA22 50 .4560472
SA 50 5674781
Sig. .380 1.000 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 2.499E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 46. Homogeneous Subsets, TSP Size Twenty Performance

For BPP problem instances of size twenty, the pewoce hypothesis was
easily rejected again. The ANOVA results, verifladchecks on the assumptions,
showed all zeroes for the significance values, caiing significant effect of
algorithm type on performance. When constructhmghiomogeneous subsets, this

time Tukey’s method created three subsets, and &umenethod created five. The

161

results are shown in Exhibit 47. Once again, thotlng overall number of subsets
differed between the two methods, both agreed tthatbest performers for this
group of problem instances were the Genetic Algaritand GELS method two

with single stepping together.

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' TA12 50 .1953327
TA22 50 .2396508
TA11 50 2974454
SA 50 .3332408
HC 50 .3409857
TA21 50 4217291
GA 50 4221470
Sig. 121 135 1.000
Duncai® TA12 50 .1953327
TA22 50 .2396508
TAll 50 2974454
SA 50 .3332408
HC 50 .3409857
TA21 50 14217291
GA 50 4221470
Sig. 1.000 1.000 1.000 .646 .980
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 7.101E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 47. Homogeneous Subsets, BPP Size Twenty Performance

For FAP problem instances of size twenty, the ANO¥&&ults (verified by
checks on the assumptions) showed that the perfmenaypothesis could be
safely rejected for this group of problem instanceBhe homogeneous subsets

generated are given in Exhibit 48. This time ho#thods agreed on the number of

162

subsets, but not on the content for each individuddset.

Nevertheless, both

agreed on the contents of the top subset, namageakt performers for this group

of problems as a three-way tie between SimulatedeAling, GELS method two

with multiple stepping, and GELS method one withtiple stepping.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' GA 50 .3397125
HC 50 .4023753
TA11l 50 .6658073
TA21 50 7057492 .7057492
TA12 50 7790635 .7790635
TA22 50 .7925096
SA 50 .7996660
Sig. 317 .812 151 .992
Dunca®® GA 50 .3397125
HC 50 4023753
TAll 50 .6658073
TA21 50 .7057492
TA12 50 7790635
TA22 50 .7925096
SA 50 .7996660
Sig. 1.000 1.000 .168 .506
Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.092E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 48. Homogeneous Subsets, FAP Size Twenty Performance

In looking at the composite view of all size twergyoblem instances, the

ANOVA once again rejected the performance hypothesneaning that it

163

determined that for any given problem instanceiz# swenty there is a significant
difference in performance between the algorithnesypegardless of which of the
test problem types is being solved. The intergsiiam here is that while the
assumption of normal distribution of the residuadtd for all three problem types
individually, the Kolmogorov-Smirnov test rejectdtiis assumption for the
composite case. This meant that the ANOVA resudtd to be corroborated by
additional evidence. Fortunately, the resultshef Kruskal-Wallis test conducted
on the algorithms’ performances concurred with ¢hosthe ANOVA, providing
that necessary corroboration.

Having affirmed the difference in performance betwehe algorithms, the
homogeneous subsets were generated, and the raselshown in Exhibit 49.
This time the two methods were in complete agre¢noeeating four subsets and
naming the overall best performer for the size tweset of experiments to be
Simulated Annealing. The best performances of @S combinations were
GELS method two with single stepping and GELS mettwo with multiple

stepping, which finished together in the second.spo

164

Subset
Algorithm Type N 1 2 3 4
Tukey HSBT HC 150 .3527217
GA 150 .3579693
TA11l 150 4282322
TA12 150 4420946
TA22 150 4960692
TA21 150 .5184000
SA 150 .5667950
Sig. 1.000 .970 757 1.000
Duncai® HC 150 .3527217
GA 150 .3579693
TAll 150 4282322
TA12 150 4420946
TA22 150 4960692
TA21 150 .5184000
SA 150 .5667950
Sig. .728 .359 .139 1.000
Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.710E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 49. Homogeneous Subsets, Composite Size Twenty Reafare

The results of the ANOVA also asserted a significgffect of problem type on
algorithm performance, indicating the presence ahe interaction between the
problem type and algorithm type factors. A visdabiction of the interaction
detected is shown in Exhibit 50. While there i2 a® much interaction as was
shown for size ten problem instances, some linssong can be seen, as can
notably better performances obtained overall folPH#oblem instances than for

instances of the other problem types.

165

\ Al
/ N // N ~ e -
/ 7
7 AN / N
/ W
/

61 /
o 5 A
= / \

\ o))

o /.
= Problem Type
E) -
s O
= BPP
8 -
= A
o FAP
= -
0
m .1 T T T T T O TSP

GA HC SA TA1l TA12 TA21 TA22

Algorithm Type

Exhibit 50. Problem Type Plot, Composite Size Twenty Perforrea

2.2.7.1.3 Problem Size Thirty Performance Results

The next set of experiments to be analyzed waséhef problem instances of
size thirty. For TSP problem instances of thie sthe ANOVA results, confirmed
by checks of the assumptions, showed that the itigotype factor was having a
significant effect on performance, thus rejectihg performance hypothesis for
this group of problems. In constructing the homagris subsets, the Tukey and
Duncan methods were in complete agreement on taegement. The sets they

generated are shown in Exhibit 51. Both generftedsubsets, and gave the nod

166

to Simulated Annealing as the best performer far ghhoup of problems. The best
result for GELS was for method two with multipleegping, which was placed in

the second best subset.

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' GA 50 .2541734
TA11 50 .2583976
TA12 50 .3055335
HC 50 3218444
TA21 50 .3591655
TA22 50 .3900728
SA 50 .5640582
Sig. .999 .491 1.000 1.000 1.000
Duncaf® GA 50 .2541734
TAll 50 .2583976
TA12 50 .3055335
HC 50 .3218444
TA21 50 .3591655
TA22 50 .3900728
SA 50 .5640582
Sig. .626 .060 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.870E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 51. Homogeneous Subsets, TSP Size Thirty Performance

For the BPP problem instances of size thirty, thHONVA rejected the
performance hypothesis for this group of probleasserting that the choice of
algorithm did have a significant effect on the pemance results. The ANOVA
results were verified by checks on the assumptiand,the homogeneous subsets

were generated. The results of this are shownximb 52. Tukey’s method

167

produced four subsets, while Duncan’s method preddwe. The Tukey method
also named GELS method two with single steppinigetthe best performer for this
group of problems, in a tie with the Genetic Alglom. The Duncan method,
however, differentiated between the two, naming GEhethod two with single
stepping to the top spot by itself and placing @enetic Algorithm in second
place. In either case, though, GELS method twb gingle stepping was indicated

as the top performer for this group of problems.

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' TA12 50 .1341031
TA22 50 .1762473
TA11 50 2510508
SA 50 2731156
HC 50 .3443429
GA 50 3744462 .3744462
TA21 50 .4228052
Sig. .216 .878 622 .098
Dunca® TA12 50 .1341031
TA22 50 1762473
TAll 50 .2510508
SA 50 2731156
HC 50 .3443429
GA 50 .3744462
TA21 50 4228052
Sig. 1.000 1.000 .216 .092 1.000
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 7.921E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 52. Homogeneous Subsets, BPP Size Thirty Performance

168

For the FAP problems of size thirty, the ANOVA agandicated that the
algorithm type factor was having a significant etfen performance for this group
of problems, and therefore the performance hypahswuld be rejected for this
group of problems. These results were confirmed thg checks on the
assumptions, and the homogeneous subsets weratpeheil he results of this are
given in Exhibit 53. Tukey's method generated ¢hsrbsets, while Duncan’s
method generated four, but both methods agreed d¢mre-way tie between
Simulated Annealing, GELS method two with singlepging, and GELS method
two with multiple stepping for the best performiatgorithm for this group of

problems.

169

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' GA 50 .2800623
HC 50 3974322
TA11l 50 4094645
TA12 50 4505783
TA22 50 .5350326
TA21 50 5428214
SA 50 .5700861
Sig. 1.000 297 772
Dunca® GA 50 .2800623
HC 50 .3974322
TAll 50 4094645 .4094645
TA12 50 4505783
TA22 50 .5350326
TA21 50 5428214
SA 50 .5700861
Sig. 1.000 .618 .089 .173
Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.455E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 53. Homogeneous Subsets, FAP Size Thirty Performance

For the composite of all problem instances of #imy, the ANOVA indicated
that in the overall case for this set of experiretite performance hypothesis
should be rejected. It found a significant effeCalgorithm type on performance,
and these results were confirmed through checkhe@rassumptive conditions of
the ANOVA. The homogeneous subsets generatechavensin Exhibit 54. In this
case both the Tukey and the Duncan methods aremplete agreement. Both

created three subsets, and both named Simulategafing and GELS method two

170

with single stepping to be in a tie for the overadist performer in the set of

problem instances of size thirty.

Subset
Algorithm Type N 1 2 3
Tukey HSB' TA12 150 .2967383
GA 150 .3028940
TAll 150 .3063043
HC 150 .3545398
TA22 150 3671176
TA21 150 4415974
SA 150 4690866
Sig. .996 .984 .565
Duncaf® TA12 150 .2967383
GA 150 .3028940
TAll 150 .3063043
HC 150 .3545398
TA22 150 3671176
TA21 150 4415974
SA 150 4690866
Sig. .565 A17 .076
Means for groups in homogeneous subsets are diegplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.798E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 54. Homogeneous Subsets, Composite Size Thirty Resgioce

The ANOVA also found a significant effect of theoplem type on the
performances of the algorithms. A graph of thishewn in Exhibit 55. It shows

several places where the lines cross, indicatiagriteraction between the problem

171

type being solved and the algorithm being usedleesit. The lines for FAP and
TSP problem instances have a similar shape, suggesiat these two problem
types have similar effects on the algorithms. Tihe for BPP problem instances,
on the other hand, has nearly a completely difteskiape, suggesting an entirely
different effect on algorithms attempting to solem. That being the case, it
would suggest further that a different selectionatgorithm for solving BPP
problem instances might be apropos. One countkcation to this is the spike on
BPP for GELS method two with single stepping, shwits high level of
performance for those problem instances, and ispeoable level of performance

on instances of the other problem types.

172

Problem Type

Estimated Marginal Means

GA HC SA TAll TA12 TA21 TA22

Algorithm Type

Exhibit 55. Problem Type Plot, Composite Size Thirty Perfanoe

2.2.7.1.4 Problem Size Forty Performance Results

Next to be analyzed was the set of problem ins&ntsize forty. For the TSP
problem instances in this group, the confirmed ANOMsults led to the rejection
of the performance hypothesis for this group of bjgm instances. The
homogeneous subsets were generated, giving thdtsreshown in Exhibit 56.
Once again Tukey’s method generated one fewer sthese did Duncan’s method,
but both agreed that the top performer for thisugref problem instances was

Simulated Annealing, with GELS method two with npl# stepping being the

173

highest rated of the GELS combinations, in the sdsdot. Of note here is that the
Duncan method found enough difference between egitte algorithms that it was
almost willing to put each one in its own subseithwonly Hill Climbing and

GELS method two with single stepping being placegkther.

Subset
Algorithm Type N 1 2 3 4 5 6
Tukey HSB' GA 50 .2427152
TA11l 50 .2675271
TA12 50 .2884991
TA21 50 .3317160
HC 50 .3370489
TA22 50 3637347
SA 50 .5688824
Sig. 1.000 .067 991 1.000 1.000
Dunca® GA 50 2427152
TA1l1l 50 .2675271
TA12 50 .2884991
TA21 50 .3317160
HC 50 .3370489
TA22 50 3637347
SA 50 .5688824
Sig. 1.000 1.000 1.000 467 1.000 1.000
Means for groups in homogeneous subsets are desplay
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.342E-03.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 56. Homogeneous Subsets, TSP Size Forty Performance

For the size forty BPP problem instance group AN®©VA indicated rejection
of the performance hypothesis. However, it faited test for normality of the
residuals, registering only a 0.022 significandengaon the Kolmogorov-Smirnov
test. Needing additional evidence to corroborate ANOVA results, a Kruskal-

Wallis test was run. This test was able to affina results of the ANOVA with a

174

perfect score, providing reassurance of its commhss Having corroborated the
ANOVA results, the homogeneous subsets were getkrand are shown in
Exhibit 57. Again, the Tukey method produced oewdr subset than the Duncan
method. Both methods placed GELS method two withle stepping as the best
performer for this group of problems, with Duncamisthod having placing it there
by itself and Tukey’s method matching it with H@llimbing (a rather surprising

finish for HC given its performance in the otheolplem instance groups).

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' TA12 50 .1126178
TA22 50 .1605698
SA 50 .2357028
TA11 50 2461047
GA 50 .3333715
HC 50 .3573521 .3573521
TA21 50 .3998529
Sig. .149 .998 .865 272
Dunca® TA12 50 .1126178
TA22 50 .1605698
SA 50 .2357028
TAll 50 .2461047
GA 50 .3333715
HC 50 .3573521
TA21 50 .3998529
Sig. 1.000 1.000 .582 .205 1.000
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 8.911E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 57. Homogeneous Subsets, BPP Size Forty Performance

175

For the FAP problem instances of size forty, theQAM\ again rejected the
performance hypothesis for this group of problekis time, the ANOVA results
were confirmed by check of the assumptive cond#joand the homogeneous
subsets were generated. The results of this anersin Exhibit 58. For the first
time, there were only two subsets generated, icanbetween the Tukey and
Duncan methods. In the subset indicative of bestopmance for this group of
problem instances, Simulated Annealing was groupgdther with all four of the

GELS combinations, all statistically indistinguistea

176

Subset

Algorithm Type N 1 2

Tukey HSB' GA 50 .3056053
HC 50 .3491229
TA12 50 .5738065
TAll 50 .5805035
TA21 50 .6003191
TA22 50 .6180262
SA 50 .6200262
Sig. .638 .569

Duncar® GA 50 .3056053
HC 50 .3491229
TA12 50 .5738065
TAll 50 .5805035
TA21 50 .6003191
TA22 50 .6180262
SA 50 .6200262
Sig. .096 117

Means for groups in homogeneous subsets are digplay

Based on Type Il Sum of Squares

The error term is Mean Square(Error) = 1.703E-02.

a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 58. Homogeneous Subsets, FAP Size Forty Performance

The composite analysis for all problem instancessiae forty was then
performed. The ANOVA indicated a difference in fpemance between the
algorithms across problem types. However, it catgly failed the check of
normality of the residuals, scoring a zero on thelnkogorov-Smirnov test.
Fortunately, a Kruskal-Wallis test comparing thegoaithm types found solid

evidence of its significance as a factor, bolstetime ANOVA results. Since the

177

non-parametric test had agreed with the ANOVA, ¢hgas sufficient evidence of
difference between the performances of the algostho warrant rejection of the
performance hypothesis for the size forty experimset, and the homogeneous
subsets were generated as shown in Exhibit 59s fline there was a two-subset
difference between the Tukey and the Duncan methais the Duncan method
again being more discriminatory in its selection safbsets than was Tukey.
Duncan’s method put Simulated Annealing alone atttp, with GELS method
two with single stepping in the second spot, while Tukey method could not

distinguish between those them as the best perferfoethis set of experiments.

Subset
Algorithm Type N 1 2 3 4 5 6
Tukey HSB' GA 150 .2938973
TA12 150 .3249745 .3249745
HC 150 .3478413 3478413
TA11 150 3647117 .3647117
TA22 150 .3807769
TA21 150 4439627
SA 150 4748705
Sig. .275 .065 211 .282
Duncaf® GA 150 .2938973
TA12 150 .3249745
HC 150 .3478413 .3478413
TA11l 150 3647117 .3647117
TA22 150 .3807769
TA21 150 4439627
SA 150 4748705
Sig. 1.000 .100 .224 247 1.000 1.000
Means for groups in homogeneous subsets are desplay
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.444E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 59. Homogeneous Subsets, Composite Size Forty Peafaren

178

Again, the ANOVA results also found that the penfance of the algorithms
was not independent of the problem type being siphand that there was
interaction between the two factors as shown iniliki®0. There are several
points where the lines cross, highlighting theratéion between problem type and
algorithm performance, and there is that same gésbape between the FAP and
TSP lines, with a markedly different shape to tifePBline, as seen previously,
again indicating a different effect on algorithmrfpemance from BPP problem

instances than from instances of the other prolyg®es.

Problem Type

Estimated Marginal Means

0.0 O rsp

GA HC SA TAIl TAI2 TA21 TA22

Algorithm Type

Exhibit 60. Problem Type Plot, Composite Size Forty Perforrean

179

2.2.7.1.5 Problem Size Fifty Performance Results

The set of experiments consisting of problem instanof size fifty was next
analyzed. For the TSP problem instances of this, she ANOVA indicated
rejection of the performance hypothesis for thisugr of problem instances. These
results were confirmed through the necessary chealdsthe list of homogeneous
subsets was generated. Exhibit 61 shows this Wéhile once before the Duncan
procedure was almost prepared to place each dlgoiit its own subset, this time
it actually did do so. Even the Tukey method ptaoely two of the algorithms in
the same subset. Both methods put Simulated Amgesl the top spot, with the
best performing GELS combination being method twth wnultiple stepping, in

third place in Duncan and tied for second in Tukey.

180

Subset

Algorithm Type N 1 2 3 4 5 6 7
Tukey HSBT GA 50 .1944183

TA11 50 2372775

TA12 50 .2608414

TA21 50 .2882691

TA22 50 3119696

HC 50 .3329833

SA 50 5478063

Sig. 1.000 1.000 1.000 1.000 .057 1.000
Duncaf® GA 50 .1944183

TA11 50 2372775

TA12 50 .2608414

TA21 50 .2882691

TA22 50 3119696

HC 50 .3329833

SA 50 5478063

Sig. 1.000 1.000 1.000 1.000 1.000 1.000 1.000

b. Alpha = .05.

Means for groups in homogeneous subsets are desplay
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.295E-03.

a. Uses Harmonic Mean Sample Size = 50.000.

Exhibit 61. Homogeneous Subsets, TSP Size Fifty Performance

For the BPP problem instances of size fifty, thafcmed ANOVA results
rejected the performance hypothesis. The homogmsnsabsets for this group of
problems are shown in Exhibit 62. Once again tbkey method generated one
less subset than the Duncan method, but both pl@aétds method two with single

stepping in a tie with Hill Climbing (another higinish) as the best performers for

this group of problem instances.

181

Subset

Algorithm Type 1 2 3 4 5
Tukey HSB' TA12 50 .0809039

TA22 50 .1109964

SA 50 .1618859

TA11 50 .1877836

GA 50 .2880904

HC 50 .3420107

TA21 50 .3442204

Sig. 332 521 1.000 1.000
Duncaf® TA12 50 .0809039

TA22 50 .1109964

SA 50 .1618859

TA11 50 .1877836

GA 50 .2880904

HC 50 .3420107

TA21 50 .3442204

Sig. 1.000 1.000 .066 1.000 875

b. Alpha = .05.

Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 4.942E-03.

a.Uses Harmonic Mean Sample Size = 50.000.

Exhibit 62. Homogeneous Subsets, BPP Size Fifty Performance

For the FAP problem instances of size fifty, the @WA found a difference
between the algorithm performances. A check ofrtbemality of the residuals
failed, however, with only a 0.003 significance thhe Kolmogorov-Smirnov test.
To provide additional evidence, a Kruskal-Wallisttevas performed on the
algorithm type factor.
same findings of a difference in algorithm perfono@a Thus, the list of
homogeneous subsets could be generated, and is shdexhibit 63. Only three

subsets, identical in each method, were produddek best performing algorithms

182

This test was able to cbomte the ANOVA, with the

for this group of problem instances was determiioelde a four-way tie, consisting
of Simulated Annealing and all of the GELS combimad with the exception of

method one with multiple stepping, which was plairethe secondary subset.

Subset
Algorithm Type N 1 2 3
Tukey HSB' GA 50 .3408493
HC 50 .4022736
TA12 50 .7182439
TA11 50 .8237925
TA21 50 .8513245
TA22 50 .8646275
SA 50 .8715972
Sig. 516 1.000 .780
Duncarf® GA 50 .3408493
HC 50 .4022736
TA12 50 .7182439
TAll 50 .8237925
TA21 50 .8513245
TA22 50 .8646275
SA 50 .8715972
Sig. .066 1.000 194
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.761E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 63. Homogeneous Subsets, FAP Size Fifty Performance

Looking at the composite of all problem instancésire fifty, the ANOVA

found sufficient cause to reject the performanceoliyesis for this set of

183

experiments. Once more, though, it completelyethithe Kolmogorov-Smirnov

test of normality of the residuals (with a sigrglince of zero), calling the results
into question. A run of a Kruskal-Wallis test agstithe algorithm type factor was
fortunately able to solidly reaffirm the ANOVA rd&s) providing the necessary
additional evidence to declare the rejection of peeformance hypothesis valid.
The list of homogeneous subsets was then genesttiedn in Exhibit 64. Once

again there is a one-set difference between theyrakd Duncan methods. The
Duncan method declared Simulated Annealing to beb#st performing algorithm

for this group of problems, with GELS method twdwsingle stepping in second
place. Tukey’s method, on the other hand, plac#d hlgorithms in the same top

slot for performance.

184

Subset

Algorithm Type N 1 2 3 4 5
Tukey HSB' GA 150 .2744527

TA12 150 .3533297

HC 150 .3590892

TA11 150 4162845

TA22 150 4291978

TA21 150 4946046

SA 150 5270964

Sig. 1.000 1.000 977 .305
Duncaf® GA 150 .2744527

TA12 150 .3533297

HC 150 .3590892

TA11 150 4162845

TA22 150 4291978

TA21 150 4946046

SA 150 5270964

Sig. 1.000 .699 .385 1.000 1.000

b. Alpha = .05.

Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.658E-02.

a. Uses Harmonic Mean Sample Size = 150.000.

Exhibit 64. Homogeneous Subsets, Composite Size Fifty Pediocm

The ANOVA noted an effect of problem type on alfun performance for this
set of experiments also. Exhibit 65 shows a lilee fhat displays this effect. As
with the previous experiment sets, there is a amnghape to the lines for FAP and
TSP, suggesting that these two problem types hawwmilar effect on the
algorithms. BPP, however, seems again to havffexeht effect, as evidenced by
its different shape and the fact that the lineB&P crosses the FAP line in three
places. In particular, BPP seems to have a mucte radverse effect on the

performance of Simulated Annealing than the otheoblems, since the

185

performance on them for SA goes up, but goes dawBPP. As seen previously,
there is also a notably higher overall performabgethe algorithms on FAP
problem instances than on instances of the othablgm types, but also the most
overall variability in the quality of the performees between the different
algorithms. BPP and TSP problem instances, wholehaving as high levels of
performance as for FAP, nevertheless had notab$s leariability in the

performance ratios between algorithm types.

1.0

Problem Type

Estimated Marginal Means

GA HC SA TAIl TAI2 TA21 TA22

Algorithm Type

Exhibit 65. Problem Type Plot, Composite Size Fifty Perforo@an

186

2.2.7.1.6 Random Problem Size Perfor mance Results

The final set of experiments to be analyzed forfggarance was the set
consisting of problem instances with randomly assthproblem sizes. For the
group of random TSP problem sizes, the ANOVA fownghificant differences
between algorithm performances, thus rejectingpgdormance hypothesis. This
finding was verified through the necessary chetdéowed by generation of the
homogeneous subsets, which is shown in Exhibit idére the Tukey and Duncan
methods generated the same subsets, as well asuthe content for each of the
subsets. Simulated Annealing was shown to haveb#is¢ performance for this
group of problems, with the highest rated of theLGEombinations being method

two with multiple stepping, in second place.

187

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' GA 50 .3064558
TA11 50 .3108164
TA12 50 .3500400
HC 50 .3564982
TA21 50 14100139
TA22 50 .4398797
SA 50 .5728985
Sig. .998 .983 1.000 1.000 1.000
Duncaf® GA 50 .3064558
TAll 50 .3108164
TA12 50 .3500400
HC 50 .3564982
TA21 50 4100139
TA22 50 .4398797
SA 50 5728985
Sig. .581 413 1.000 1.000 1.000
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 1.554E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 66. Homogeneous Subsets, Random Size TSP Performance

For the random size BPP problem instances the ANQ@{Ain rejected the
performance hypothesis, finding significant difieces among the algorithm
performances. The necessary checks revealed hteprs, and the homogeneous
subsets were generated. These results are shotxhibit 67. Once again the
Tukey method produced one less subset than thedbumethod, which named
GELS method two with single stepping and the Genatgorithm to the highest
performing subset. The Tukey method also placedehwo algorithms in the top

subset, adding in Hill Climbing for a three-way. tie

188

Subset
Algorithm Type N 1 2 3 4 5
Tukey HSB' TA12 50 .1446418
TA22 50 .1890416 .1890416
TA11 50 2410511 .2410511
SA 50 2551412
HC 50 .3348845
GA 50 .3583587
TA21 50 .3907435
Sig. .236 .096 .990 .057
Duncai® TA12 50 .1446418
TA22 50 .1890416
TAll 50 2410511
SA 50 2551412
HC 50 .3348845
GA 50 .3583587 .3583587
TA21 50 .3907435
Sig. 1.000 1.000 .461 .220 .001
Means for groups in homogeneous subsets are displayed.
Based on Type Ill Sum of Squares
The error term is Mean Square(Error) = 9.116E-03.
a.Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 67. Homogeneous Subsets, Random Size BPP Performance

For the FAP random sized problem instances the AN@¥ce again found a
significant difference between the performanceghef algorithms, leading to a
rejection of the performance hypothesis for thisugr of problem instances. These
results were affirmed by the necessary checks tlamthomogeneous subsets were
generated, as shown in Exhibit 68. Again, the Jukethod produced one fewer
subset than the Duncan method. Duncan’s methodahtash-way tie for the top
performance between Simulated Annealing, while Vikenethod had a four-way

tie between the two algorithms just mentioned ahd test of the GELS

189

combinations, with the exception of method one withtiple stepping (which was

placed in the next lower subset).

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' GA 50 .2973995
HC 50 .3389672
TA12 50 .5825441
TA11l 50 6112350 .6112350
TA22 50 .6245444 6245444
TA21 50 .6526007 .6526007
SA 50 .6761866
Sig. .632 .074 124
Dunca® GA 50 .2973995
HC 50 .3389672
TA12 50 .5825441
TA1l 50 6112350 .6112350
TA22 50 6245444 6245444
TA21 50 .6526007 .6526007
SA 50 .6761866
Sig. .095 111 116 .342
Means for groups in homogeneous subsets are desplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.535E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 68. Homogeneous Subsets, Random Size FAP Performance

The final portion of the performance analysis was the composite of the
random sized problem instances. The ANOVA for #as of experiments found a
significant difference between the performances tloé algorithms, but in

conducting the necessary checks, it was found totli@ test for normally

190

distributed residuals, scoring only a significanedue of 0.01 on the Kolmogorov-
Smirnov test. Additional evidence was required] anKruskal-Wallis test of the
algorithm type factor showed the same significaffeknce, thus agreeing with
and affirming the ANOVA conclusion to reject therfsemance hypothesis for this
set of experiments. Exhibit 69 shows the homogesesubsets that were
generated. Yet again, the Tukey method producedeass subset than the Duncan
method. However, both methods had the same cofdertheir respective top
subsets, naming Simulated Annealing and GELS metlvodwith single stepping

as the co-best performers for the set of randosdstxperiments.

191

Subset

Algorithm Type N 1 2 3 4 5
Tukey HSB' GA 150 .3207380

HC 150 .3434500

TA12 150 .3590753 .3590753

TA11 150 .3877008 .3877008

TA22 150 4178219

TA21 150 4844527

SA 150 5014088

Sig. 135 466 401 916
Duncaf® GA 150 .3207380

HC 150 .3434500 .3434500

TA12 150 .3590753 .3590753

TA11 150 .3877008

TA22 150 4178219

TA21 150 4844527

SA 150 .5014088

Sig. .128 294 .055 1.000 .255

Based on Type Ill Sum of Squares

b. Alpha = .05.

The error term is Mean Square(Error) = 1.663E-02.
a. Uses Harmonic Mean Sample Size = 150.000.

Means for groups in homogeneous subsets are displayed.

Exhibit 69. Homogeneous Subsets, Random Size Composite Perfoema

Once again, the ANOVA for this set of experimentsdound a significant
effect of problem type on the performance of thgoathms.
illustrated in Exhibit 70. Again, there is somewlwd a similarity between the
shape of the lines for FAP and TSP problem instsnloet a notable difference in
the shape of the BPP line. At several points the for BPP is decreasing from
one point to the next while the lines for the oshare increasing, and again BPP
seemed to have a rather severe adverse effect onlgsed Annealing.

Performance ratios are again somewhat higher inergérfor FAP problem

192

This effect is

instances and somewhat lower in general for BPBI@no instances, although
lower ratios for BPP are not altogether surprissimice there is usually less of an
opportunity to improve upon the objective functigalues of random solutions
given the typically smaller range of these valudthiw problem instances of any
size in comparison to instances of the other proliges. Still, though, the BPP
problem instances seem to be having an adverset eifesome of the algorithms
(Simulated Annealing in particular), but not othétise Genetic Algorithm and

GELS method two with single stepping, for instance)

n

c

]

[}

=

©

£ Problem Type

E) -

s O

= BPP

] - —

& A

o FAP

= -

7

m .1 T T T T T O TSP
GA HC SA TAll TAl2 TA21 TA22

Algorithm Type

Exhibit 70. Problem Type Plot, Random Size Composite Perfocma

193

Due to the fact that this set of experiments cowidiboth problem type and
problem size as factors, this enabled the ANOVAntude both of them in its
analysis and look for interactions. Consequeiitlg, ANOVA also found evidence
of a significant effect of problem size on the aitfons’ ability to produce high
quality solutions to them. This effect is displdyi@ Exhibit 71. The interaction
between the two factors can be seen in the cro$isieg However, while in plots
of performance for the different problem types ¢herere notably different shapes
to some of the lines (particularly for BPP), helletlze lines have formed more or
less the same shape. Also, the difference betteehighest point and the lowest
point for any of the algorithms is comparable te thstance for any of the others.
This indicates that the problem size is havingidyf@onsistent effect on each of

the algorithms.

194

1]

*Problem Size

Estimated Marginal Means

2 V 50
GA HC SA TA11 TAl2 TA21 TA22

Algorithm Type

Exhibit 71. Problem Size Plot, Random Size Composite Perfocaa

2.2.7.2 Algorithm Efficiency Results

Recalling that there were two hypotheses in thgimasl DOE, the second phase
of the analysis process was to investigate theieffcy of the algorithms. That is,
now that an analysis has been completed of how go®dolutions produced by
the algorithms were, the second phase was to igeést how quickly the
algorithms arrived at those solutions. This isndérest because in situations such
as in these experiments where suboptimal solutiares being delivered, an

algorithm that can produce solutions better thasehof another algorithm is more

195

valuable. However, if the solutions produced bat thlgorithm are only slightly
better than those of the other, and it took mucigéwo for that algorithm to produce
the solution than it took for the other, the vatdi¢hat algorithm is reduced.

The sets of experiments to investigate algorithifiiciehcy mirrored those
conducted to test algorithm performance. A tofasin sets of experiments were
conducted, consisting of a set each for probletante sizes of ten, twenty, thirty,
forty, and fifty, plus a set of random size problematances, just as was done for
the algorithm performance analysis phase. Exaledysame problem instances that
were used to analyze performance were used to znalficiency, and exactly the
same set of tests, tools, and procedures wereinisied analysis process, so as with
the last five sets of performance data only thermsamny results of the efficiency
investigations will be shown.

The only difference between the algorithm perforasaranalysis and the
algorithm efficiency analysis is the metric undardy. In the performance phase
this metric measured an algorithm’s ability to iy upon random solutions. In
the efficiency phase, the metric measured how nsamytions were examined by
an algorithm before arriving at its ultimate sabati In this way, the qualities of the
solutions being produced by an algorithm were btihg taken into consideration,
but they were being tempered by the portion of gbarch space that was being

covered in producing those solutions.

196

2.2.7.2.1 Problem Size Ten Efficiency Results

Beginning with the set of problem instances of sa® the ANOVA showed
that there was a significant difference in algantperformance, enough to reject
the efficiency hypothesis for this group of probl@mtances. However, it failed
the Kolmogorov-Smirnov test for normal distributiohthe residuals. As will be
seen with the other problem groups and experimetst ghis situation was present
for every problem group of every experiment sehmefficiency analysis.

This situation is due in large part to the naturéhe algorithms. Hill Climbing
is a purely greedy algorithm, and as such it taoderminate very quickly. Thus,
any gains in the quality of solutions produced by algorithm are obtained at a
cost of very few solutions examined, giving it ayhigh efficiency ratio. But, the
Genetic Algorithm is by design iterative, repeatihg same procedure over and
over until a defined iteration count has been redch Any gains in quality of
solution are usually obtained only by examining avdluating large numbers of
solution candidates, meaning its efficiency ratith tgnd to be rather small.

So, the efficiency ratio became a double-edged gw@n the one hand it was
a convenient and uniform way of evaluating thecefficy of algorithms across
problem type and size, and for comparing thoseieficies. On the other hand,
because of the way the algorithms operate thesréioHill Climbing were very

high, and those of the remaining algorithms sulistiyn lower, resulting in

197

experiment case residuals that stood a very lownahaof being normally
distributed.

This problem could have been alleviated somewhadgjuding Hill Climbing
from the analysis, yet this would have meant thaté¢ would have been no means
of comparison between it and the other algorithtemothan by rough estimates.
Instead, the HC data were included in the analysid, Kruskal-Wallis tests were
employed to ensure that the ANOVA results were eateuin spite of non-normal
residuals. With that said, the Kruskal-Wallis tethe algorithms’ efficiency for
the TSP size ten problems was conducted, and nthtbhkeeaesults of the ANOVA,
confirming the decision to reject the efficiencypbyhesis.

The ANOVA also discovered, for the first time, tithe run number did not
play a significant role in the results, as evidehbg its significance value of 0.195
(above the threshold of 0.05). This result wouwlthtout to also be commonplace
during the efficiency analyses, not occurring feery problem group in every
experiment set but in a large percentage of th&his too can be explained by the
nature of the experiments. In the performance @ha®blem instances each began
with a Monte Carlo solution and the algorithms raféed to improve on it. The
guality of the Monte Carlo solution was random tls® opportunity to improve on
it varied from problem instance to problem instancé&his innate variability
affected the outcome, so the individual experimmans had to be accounted for and

blocked.

198

For the efficiency phase, however, this effect wwat as potent. It was still
present in that gains in quality were still partloé metric, but it was dampened by
being only part of the ratio, a part that was usuauch smaller than the number
of solutions examined. This dampening often mehat the effect was reduced
sufficiently that it was no longer considered sigaint by the ANOVA.
Nevertheless, it did not hurt to keep the factockéd in the experiments. In those
situations where it still played a significant effeit was still necessary for it to be
blocked. In the situations where it was not sigaifit, removing it as a blocking
factor would have taken the variability in the espents assigned to that factor
and put it back into the general “pool” to be adlterd elsewhere. Since there was
already more than a sufficient amount of data taltde to give the ANOVA room
to make its determinations, adding this additiomalterial into the mix was not
needed.

Returning to the analysis of the TSP problem instanof size ten, once the
ANOVA results were confirmed by the Kruskal-Wallisst, the homogeneous
subsets for efficiency were generated, as shoviaximbit 72. As expected, and as
will become the norm for these analyses, Hill Clingp finished as the most
efficient of the algorithms by a large margin. @bre interest here is the second
place finisher. Duncan’s method determined thi©eoGELS method one with
single stepping, while Tukey’s method grouped #igbrithm with GELS method

one with multiple stepping.

199

Subset
Algorithm Type N 1 2 3
Tukey HSB' GA 50 .0001206
SA 50 .0005898
TA22 50 .0007808
TA21 50 .0011020
TA12 50 .0152340 .0152340
TAll 50 .0414254
HC 50 4089060
Sig. .887 .348 1.000
Duncar® GA 50 .0001206
SA 50 .0005898
TA22 50 .0007808
TA21 50 .0011020
TA12 50 .0152340
TAll 50 .0414254
HC 50 4089060
Sig. .286 1.000 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 3.846E-03.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 72. Homogeneous Subsets, TSP Size Ten Efficiency

For the BPP problem instances, the ANOVA determitieat there was a
significant difference between the efficiencies (@ always be the case because
of Hill Climbing), and this was backed up by theukkal-Wallis test. The
homogeneous subsets are shown in Exhibit 73. Tsikegthod produced only two
subsets, while Duncan’s produced three. Agair,Eimbing claimed the top spot

in both methods. Since this is uniformly the caiseijll hereafter go unmentioned,

200

concentrating instead on the next algorithm(shanlist. The diagrams can be used
as references for the degree of difference betvieerHill Climbing efficiencies
and the others. In this case, Tukey’'s method platkthe algorithms except Hill
Climbing into the second subset, while Duncan’s hodt managed to detect

enough of a difference to award GELS method twd wihgle stepping the second

spot.
Subset
Algorithm Type N 1 2 3
Tukey HSB' TA22 50 .0000124
GA 50 .0000169
TA12 50 .0000229
TAll 50 .0001250
SA 50 .0001293
TA21 50 .0027439
HC 50 .0707447
Sig. 129 1.000
Duncaf® TA22 50 .0000124
GA 50 .0000169
TA12 50 .0000229
TAll 50 .0001250
SA 50 .0001293
TA21 50 .0027439
HC 50 .0707447
Sig. .923 1.000 1.000
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.755E-05.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 73. Homogeneous Subsets, BPP Size Ten Efficiency

201

For the FAP problem instances, the ANOVA was cotelll@and corroborated,
and the homogeneous subsets were generated as sh&whibit 74. Again the
Tukey method generated one less subset than theaDumethod, and has assigned
the second best efficiency to GELS method one witigle stepping and GELS
method two with single stepping together. Duncané&thod assigned each of the

two to its own subset, with the former in secoratpland the latter in third.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' GA 50 .0000357
TA22 50 .0000806
SA 50 .0002585
TA12 50 .0033077
TA21 50 1162469
TAll 50 .1935029
HC 50 .9620087
Sig. 1.000 .281 1.000
Dunca® GA 50 .0000357
TA22 50 .0000806
SA 50 .0002585
TA12 50 .0033077
TA21 50 1162469
TA1l 50 .1935029
HC 50 .9620087
Sig. .933 1.000 1.000 1.000
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.994E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 74. Homogeneous Subsets, FAP Size Ten Efficiency

202

In considering the problem instances of size tea adole, the ANOVA was
conducted and corroborated. The homogeneous sugsatrated are shown in
Exhibit 75. Both methods put GELS method one vgithgle stepping into the

second place subset.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' GA 150 .0000577
TA22 150 .0002913
SA 150 .0003259
TA12 150 .0061882 .0061882
TA21 150 .0400309
TAll 150 .0783511
HC 150 4805531
Sig. .999 .103 1.000 1.000
Duncai® GA 150 .0000577
TA22 150 .0002913
SA 150 .0003259
TA12 150 .0061882
TA21 150 .0400309
TA1l 150 .0783511
HC 150 4805531
Sig. .664 1.000 1.000 1.000
Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.192E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 75. Homogeneous Subsets, Composite Size Ten Effigienc

In determining the effect of problem type for ttgst of experiments, the

ANOVA found a significant interaction between preml type and algorithm

203

efficiency, as displayed in Exhibit 76. It shovire texpected high values for Hill
Climbing, and it also shows a consistent shapé¢h@tines, indicating that problem
type had a relatively consistent effect on eacthefalgorithms. It is also apparent

that the best efficiencies overall were attaineairegj FAP problem instances.

1.2
1.0
A
I\
I\
.8' / \
0 [\
/ \
8 6 | \
=
= | \
g / \ Problem Type
D 4 1 Q9 _
('U / II \\ \ D
= ' BPP
e I \ _
g [o\
= 2 / I/ \\ \ /& A FAP
|l AR O .
@ oom/ ,O-_T\ e S O
w o . T g e 5 e TSP
GA HC SA TA1l TAl2 TA21 TA22
Algorithm Type

Exhibit 76. Problem Type Plot, Composite Size Ten Efficiency

2.2.7.2.2 Problem Size Twenty Efficiency Results

For the TSP problem instances of size twenty, tNOXA was conducted and

corroborated, and the homogeneous subsets genasagtabwn in Exhibit 77. The

204

Tukey method again produced one less subset tieaDduhcan method, and placed
GELS method one with single stepping and GELS nekthoe with multiple

stepping in the second place subset together. Dmezan method placed GELS
method one with single stepping in its own subsehe second spot, with GELS

method one with multiple stepping also in its owbset in the third spot.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0001691
GA 50 .0001755
TA21 50 .0002921
SA 50 .0011623
TA12 50 .0114639 .0114639
TAll 50 .0234045
HC 50 .2309011
Sig. .185 .136 1.000
Duncaf® TA22 50 .0001691
GA 50 .0001755
TA21 50 .0002921
SA 50 .0011623
TA12 50 .0114639
TA1l 50 .0234045
HC 50 .2309011
Sig. .848 1.000 1.000 1.000
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 5.349E-04.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 77. Homogeneous Subsets, TSP Size Twenty Efficiency

205

For the BPP problem instances, the ANOVA was cotatland corroborated,
and the homogeneous subsets were generated as ishBwmbit 78. Here the two
methods are in complete agreement, placing GELShadetwo with single
stepping alone in the second spot, with all thé asgle from Hill Climbing in the

third subset together.

Subset
Algorithm Type N 1 2 3
Tukey HSB' TA22 50 .0000105
TA12 50 .0000243
GA 50 .0000275
TAll 50 .0001950
SA 50 .0002410
TA21 50 .0050334
HC 50 .0404029
Sig. .993 1.000 1.000
Duncarf® TA22 50 .0000105
TA12 50 .0000243
GA 50 .0000275
TAll 50 .0001950
SA 50 .0002410
TA21 50 .0050334
HC 50 .0404029
Sig. .544 1.000 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.720E-06.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 78. Homogeneous Subsets, BPP Size Twenty Efficiency

206

For the FAP problem instances, the ANOVA was ageimducted and
corroborated, with the homogeneous subsets comih@® shown in Exhibit 79.
The Tukey and Duncan methods agreed on the nunilserbsets to be produced,
but disagreed on their contents. Duncan’s methadGELS method two with
single stepping in the second subset along with &BEhethod one with single
stepping, while Tukey’s method added GELS methauwith multiple stepping to

that grouping.

207

Subset
Algorithm Type N 1 2 3
Tukey HSB' GA 50 .0000443
SA 50 .0003463
TA12 50 .0265885
TA22 50 .1098495 .1098495
TAll 50 .3089587
TA21 50 .3134450
HC 50 1.2401905
Sig. .880 252 1.000
Duncar® GA 50 .0000443
SA 50 .0003463
TA12 50 .0265885
TA22 50 .1098495
TAll 50 .3089587
TA21 50 .3134450
HC 50 1.2401905
Sig. .266 .960 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) =.198.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 79. Homogeneous Subsets, FAP Size Twenty Efficiency

In considering the problem instances of size tweagether as a whole, once
again the ANOVA was conducted and corroboratedjihgato the homogeneous
subsets shown in Exhibit 80. The Tukey and Duntethods again agreed on
number of subsets, but disagreed on their contefisncan’s method declared
GELS method one with single stepping and GELS ntethvo with single stepping

to be in a tie for the second best efficiency fois tset of experiments, while

208

Tukey’s method added GELS method two with multiplepping to this grouping

for a three-way tie.

Subset
Algorithm Type N 1 2 3
Tukey HSB' GA 150 .0000824
SA 150 .0005832
TA12 150 .0126922
TA22 150 .0366764 .0366764
TA21 150 .1062568
TAll 150 .1108527
HC 150 .5038315
Sig. .899 197 1.000
Duncar® GA 150 .0000824
SA 150 .0005832
TA12 150 .0126922
TA22 150 .0366764
TA21 150 .1062568
TAll 150 .1108527
HC 150 .5038315
Sig. .285 .882 1.000
Means for groups in homogeneous subsets are diegplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 7.128E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 80. Homogeneous Subsets, Composite Size Twenty &fitgi

The ANOVA for this experiment set also found a #igant interaction
between problem type and algorithm efficiency. sTisi visualized in Exhibit 81.

Again there is a similar shape to the lines, inihcpa comparable effect of

209

problem type on each of the algorithms. Also, A problem instances again
produced notably higher efficiency ratios from thlgorithms than the other two

problem types.

1.4
1.2 A
I\
[\
1.0 [\
[\
/ \
0 4
§ 8 | \\
/
E 6 / \
g / \ Problem Type
o / \ _
S 44 \
= D Bpp
- / \ A AL _
3 / o | / N\ / N A
S VAN \ Y, N FAP
= , . / Np----
= | .’ N 4 \ / A 5
W ooog—B— "y -g.... % o 4 CTsp
GA HC SA TAll TA12 TA21 TA22
Algorithm Type

Exhibit 81. Problem Type Plot, Composite Size Twenty Efficien

2.2.7.2.3 Problem Size Thirty Efficiency Results

Moving on to the analysis of the problem instancksize thirty, the validated
ANOVA results for the TSP problem instances of gige led to the homogeneous

subsets shown in Exhibit 82. Once again the Tw®y Duncan methods agreed

210

on count of subsets but not quite on content, Wtkey's method twice placing the
same algorithm in two different subsets. Both rodthagreed, though, that the
second best efficiency for this group of problemstamces should go to GELS
method one with single stepping. Duncan’s methotthis algorithm alone in

second place, while Tukey’s method grouped it etibe with GELS method one

with multiple stepping.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0001603
TA21 50 .0001907
GA 50 .0002107
SA 50 .0016618 .0016618
TA12 50 .0087461 .0087461
TA11l 50 .0149772
HC 50 .1603784
Sig. .996 .054 134 1.000
Duncai®® TA22 50 .0001603
TA21 50 .0001907
GA 50 .0002107
SA 50 .0016618
TAl12 50 .0087461
TA1l 50 .0149772
HC 50 .1603784
Sig. .578 1.000 1.000 1.000
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.452E-04.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 82. Homogeneous Subsets, TSP Size Thirty Efficiency

211

For the BPP problem instances, the validated ANO&RAto the homogeneous
subsets shown in Exhibit 83. This time the Tukesthod generated three subsets
as opposed to four by the Duncan method, but bgtked that the second best
efficiency for this group of problem instances lmgjed to GELS method two with

single stepping.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0000086
TA12 50 .0000241
GA 50 .0000368
TA11l 50 .0002490
SA 50 .0003573
TA21 50 .0039249
HC 50 .0288668
Sig. .183 1.000 1.000
Duncai®® TA22 50 .0000086
TA12 50 .0000241
GA 50 .0000368
TAll 50 .0002490 .0002490
SA 50 .0003573
TA21 50 .0039249
HC 50 .0288668
Sig. .126 448 1.000 1.000
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 5.080E-07.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 83. Homogeneous Subsets, BPP Size Thirty Efficiency

212

For the FAP problem instances, the validated ANO¥@&to the homogeneous
subsets shown in Exhibit 84. In this case, boéhTthkey and the Duncan method
could not distinguish between the efficiencies oy af the algorithms other than

Hill Climbing, so all finished in a tie for secoiest.

Subset
Algorithm Type N 1 2
Tukey HSB' GA 50 .0000222
TA12 50 .0000683
SA 50 .0001443
TA22 50 .0072575
TAll 50 .0283337
TA21 50 .0779681
HC 50 6522771
Sig. .592 1.000
Duncar® GA 50 .0000222
TA12 50 .0000683
SA 50 .0001443
TA22 50 .0072575
TAll 50 .0283337
TA21 50 .0779681
HC 50 6522771
Sig. .133 1.000
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 5.038E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 84. Homogeneous Subsets, FAP Size Thirty Efficiency

213

In considering all problem instances of size thitbgether, the validated
ANOVA led to the generation of the homogeneous stgshown in Exhibit 85.
Like the FAP problem instances, neither the Tukeythe Duncan method could
make any distinction between the efficiencies of ahthe algorithms other than
Hill Climbing. Consequently, for the size thirtipmeriment set all algorithms

besides Hill Climbing finished with the second beficiency.

Subset
Algorithm Type N 1 2
Tukey HSB' GA 150 .0000899
SA 150 .0007211
TA22 150 .0024755
TA12 150 .0029462
TAll 150 .0145200
TA21 150 .0273612
HC 150 .2805074
Sig. .554 1.000
Duncar® GA 150 .0000899
SA 150 .0007211
TA22 150 .0024755
TA12 150 .0029462
TAll 150 .0145200
TA21 150 .0273612
HC 150 .2805074
Sig. .120 1.000
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.739E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 85. Homogeneous Subsets, Composite Size Thirty Effy

214

The validated ANOVA for this experiment set oncaiagfound a significant
interaction between problem type and algorithncedficy, as shown in Exhibit 86.
Once again there is a consistent shape to the ilggsative of a similar effect of
problem type on each of the algorithms, and the BA®lem instances in general

garnered the highest efficiencies from the algargh

7
R
6 I\
Iy
[\
.51 / \
I
%) / \
s 1 \
— S
= 3 / \
= / \ Problem Type
% , / \ -
/
= \ D Bpp
3 I/ A -
- / \\ \ A
14, . .
= el |l
— / \ N
§ oof B gl 5 N Orep
GA HC SA TALl TA12 TA21 TA22
Algorithm Type

Exhibit 86. Problem Type Plot, Composite Size Thirty Effiagn

215

2.2.7.24 Problem Size Forty Efficiency Results

Moving along to the examination of the set of expents of size forty, the
validated ANOVA for the TSP problem instances a$ thize led to the generation
of the homogeneous subsets shown in Exhibit 87th Bee Tukey and Duncan

methods were in complete agreement in this cagsenguGELS method one with

single stepping into the slot for the second b#&tiency.

Based on Type Il Sum of Squares

b. Alpha = .05.

Means for groups in homogeneous subsets are desplay

The error term is Mean Square(Error) = 5.531E-05.
a. Uses Harmonic Mean Sample Size = 50.000.

Subset

Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0001660

TA21 50 .0001850

GA 50 .0002784

SA 50 .0022785

TA12 50 .0078855

TAll 50 .0129658

HC 50 1236567

Sig. 791 1.000 1.000 1.000
Duncai®® TA22 50 .0001660

TA21 50 .0001850

GA 50 .0002784

SA 50 .0022785

TA12 50 .0078855

TAll 50 .0129658

HC 50 .1236567

Sig. .200 1.000 1.000 1.000

Exhibit 87. Homogeneous Subsets, TSP Size Forty Efficiency

216

For the BPP problem instances, the validated ANQ&@\to the homogenous
subsets shown in Exhibit 88. The Tukey and Duroathods have agreed on the
number of subsets, but Tukey’s method placed tlofethe algorithms in two
subsets. Both methods, however, agreed that tendebest efficiency for this

group of problems was GELS method two with singégging.

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0000084
TA12 50 .0000274 .0000274
GA 50 .0000440 .0000440
TA11l 50 .0003240 .0003240
SA 50 .0003562
TA21 50 .0032085
HC 50 .0225612
Sig. .075 .054 1.000 1.000
Duncai®® TA22 50 .0000084
TA12 50 .0000274
GA 50 .0000440
TAll 50 .0003240
SA 50 .0003562
TA21 50 .0032085
HC 50 .0225612
Sig. 767 773 1.000 1.000
Means for groups in homogeneous subsets are déplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 3.128E-07.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 88. Homogeneous Subsets, BPP Size Forty Efficiency

217

For the FAP problem instances, the validated ANO¥@to the generation of
the homogeneous subsets shown in Exhibit 89. Astlve FAP problem instances
for the size thirty experiment set, both Tukey’stlmoel and Duncan’s method were
unable to make a distinction between the efficiemadf any of the algorithms
besides Hill Climbing. Therefore, all of them felto the second place position for

this group of problems.

Subset
Algorithm Type N 1 2
Tukey HSB' GA 50 .0000194
TA12 50 .0000690
SA 50 .0001212
TA22 50 .0051760
TAll 50 .0079355
TA21 50 .0469712
HC 50 .5885714
Sig. .928 1.000
Duncar® GA 50 .0000194
TA12 50 .0000690
SA 50 .0001212
TA22 50 .0051760
TAll 50 .0079355
TA21 50 .0469712
HC 50 .5885714
Sig. .347 1.000
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 4.554E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 89. Homogeneous Subsets, FAP Size Forty Efficiency

218

In considering all the size forty problem instanessa whole, the validated
ANOVA led to the generation of the homogeneous stgshown in Exhibit 90.
Like the FAP problem instances of size forty anel thmposite experiment set of
size thirty, neither the Tukey nor the Duncan mdtheas able to distinguish
between the efficiencies of any of the algorithrttseo than Hill Climbing, and all

were placed in the second place subset together.

Subset
Algorithm Type N 1 2
Tukey HSB' GA 150 .0001139
SA 150 .0009187
TA22 150 .0017835
TA12 150 .0026606
TAll 150 .0070751
TA21 150 .0167882
HC 150 .2449298
Sig. .907 1.000
Duncar® GA 150 .0001139
SA 150 .0009187
TA22 150 .0017835
TA12 150 .0026606
TAll 150 .0070751
TA21 150 .0167882
HC 150 .2449298
Sig. .319 1.000
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.536E-02.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 90. Homogeneous Subsets, Composite Size Forty Hifigie

219

The ANOVA for this set of experiments also notedirteraction between the
problem type and algorithm efficiency. Exhibit ®hows the plot of the
efficiencies for the three problem types. Thegrat of similar shape of the lines
and generally better efficiency ratios for FAP c¢oued for this experiment set,
although the ratios seem to be on the decreasearemhpo the smaller problem

size experiments.

7
64
f
;)
5 / \
;o\
;o\
g 41 / \
o \
2 /
= \
— 34
£ / ! Problem T
Is) / | roblem Type
S 2 ‘ o,
=] \ BPP
g |/ p) o
E S TN \\ 2 Fap
= / // \\\ /A - -
§ ool —— Ny g T o~y Orp
GA HC SA TA1l TA12 TA21 TA22
Algorithm Type

Exhibit 91. Problem Type Plot, Composite Size Forty Efficignc

220

2.2.7.2.5 Problem Size Fifty Efficiency Results

Next to be analyzed was the experiment set congisti problem instances of
size fifty. For the TSP problem instances in thet, the validated ANOVA
preceded the generation of the homogeneous subsetshown in Exhibit 92.
Though the Tukey and Duncan methods produced éskethhe same subsets, the
Tukey method did twice place an algorithm in twliedent subsets. The Duncan
method named GELS method one with single stepmirie second place slot by
itself, while the Tukey method grouped it togetmeth GELS method one with

multiple stepping.

221

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0001466
TA21 50 .0001594
GA 50 .0002751
SA 50 .0027098 .0027098
TA12 50 .0063639 .0063639
TA11l 50 .0101841
HC 50 .1042789
Sig. .504 112 .083 1.000
Dunca® TA22 50 .0001466
TA21 50 .0001594
GA 50 .0002751
SA 50 .0027098
TA12 50 .0063639
TA1l 50 .0101841
HC 50 .1042789
Sig. .089 1.000 1.000 1.000
Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 4.715E-05.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 92. Homogeneous Subsets, TSP Size Fifty Efficiency

For the BPP problem instances, the validated ANO&GAto the generation of
the homogeneous subsets, and these are showniimitB31 In this case both the
Tukey and Duncan methods produced the same subsetfiamed GELS method

two with single stepping as the second best effwydor this group of problems.

222

Subset
Algorithm Type N 1 2 3 4
Tukey HSB' TA22 50 .0000060
TA12 50 .0000240
GA 50 .0000470
TA11l 50 .0003040
SA 50 .0003534
TA21 50 .0026562
HC 50 .0183102
Sig. .996 .988 1.000 1.000
Duncai®® TA22 50 .0000060
TA12 50 .0000240
GA 50 .0000470
TAll 50 .0003040
SA 50 .0003534
TA21 50 .0026562
HC 50 .0183102
Sig. .554 446 1.000 1.000
Means for groups in homogeneous subsets are désplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 1.047E-07.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 93. Homogeneous Subsets, BPP Size Fifty Efficiency

For the FAP problem instances, the validated ANO¥@&to the homogeneous
subsets shown in Exhibit 94. Like the FAP problestances of its predecessors,
both Tukey's method and Duncan’s method failed istimjuish between the
efficiencies of any of the algorithms except Hilli@bing, placing them all into the

same second place subset.

223

Subset
Algorithm Type N 1 2
Tukey HSB' GA 50 .0000185
TA12 50 .0000871
SA 50 .0001758
TAll 50 .0057499
TA22 50 .0064368
TA21 50 .0303496
HC 50 5137097
Sig. .956 1.000
Duncar® GA 50 .0000185
TA12 50 .0000871
SA 50 .0001758
TAll 50 .0057499
TA22 50 .0064368
TA21 50 .0303496
HC 50 5137097
Sig. .398 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.351E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 94. Homogeneous Subsets, FAP Size Fifty Efficiency

In examining the composite results for the sizey fiéexperiment set, the
validated ANOVA was followed by the generation bkethomogeneous subsets
shown in Exhibit 95. Once again, as with the FAEB aomposite problem groups
of other sizes, neither Tukey’s nor Duncan’s metbodld distinguish between any
of the algorithms other than Hill Climbing, and s¢hihere was no outright second

place finisher in efficiency for this set of expeants.

224

Subset
Algorithm Type N 1 2
Tukey HSB' GA 150 .0001135
SA 150 .0010797
TA12 150 .0021583
TA22 150 .0021965
TAll 150 .0054127
TA21 150 .0110551
HC 150 .2120996
Sig. .938 1.000
Duncar® GA 150 .0001135
SA 150 .0010797
TA12 150 .0021583
TA22 150 .0021965
TAll 150 .0054127
TA21 150 .0110551
HC 150 .2120996
Sig. .363 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 7.922E-03.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 95. Homogeneous Subsets, Composite Size Fifty Effayie

Along with these results, the ANOVA had once agaetected an interaction
between problem type and algorithm efficiency, epldyed in Exhibit 96. The
now-familiar patterns of similar line shape, gehesaperiority of efficiency by
algorithms for FAP problem instances, and a deargdsvel of efficiency for FAP

problem instances were once more noted in thigamg

225

Estimated Marginal Means

4
> i
[\
I\
44 / \
/ \
/ \
3 / \
/ \
/ \
21 | \
/ \
/ \
14/ (O |
[N

Problem Type

l ,/’ \\\ \
0.0é/a\\é__
GA HC SA

Algorithm Type

BPP
2 Fap
- A_ - o
g o o TSP
TAIl TAl2 TA21 TA22

Exhibit 96. Problem Type Plot, Composite Size Fifty Efficignc

2.2.7.2.6 Random Problem Size Efficiency Results

To round out the analyses of efficiency, the sepmblem instances having
randomly assigned problem sizes was examined. ANOVA for the TSP
problem instance group was validated and followgdtle generation of the
homogeneous subsets, shown in Exhibit 97. Thepikiduced by the two methods
were essentially the same, except that the Dunagthad put GELS method one
with single stepping in second place by itself, lelihe Tukey method coupled it

with GELS method one with multiple stepping (whagbpeared in two subsets).

226

Subset
Algorithm Type N 1 2 3
Tukey HSB' TA22 50 .0001679
GA 50 .0002075
TA21 50 .0002601
SA 50 .0015647
TA12 50 .0105850 .0105850
TAll 50 .0229078
HC 50 .2409103
Sig. .408 .210 1.000
Duncar® TA22 50 .0001679
GA 50 .0002075
TA21 50 .0002601
SA 50 .0015647
TA12 50 .0105850
TAll 50 .0229078
HC 50 .2409103
Sig. .073 1.000 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 6.689E-04.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 97. Homogeneous Subsets, TSP Random Size Efficiency

For the BPP problem instances, the validated ANON&S again followed by
the generation of the homogeneous subsets, whighaapn Exhibit 98. The lists
produced by the two methods are identical, put@tfl.S method two with single

stepping into the number two slot for efficiency this group of problems.

227

Subset
Algorithm Type N 1 2 3
Tukey HSB' TA22 50 .0000084
TA12 50 .0000240
GA 50 .0000362
TAll 50 .0002640
SA 50 .0002916
TA21 50 .0033279
HC 50 .0321323
Sig. .993 1.000 1.000
Duncar® TA22 50 .0000084
TA12 50 .0000240
GA 50 .0000362
TAll 50 .0002640
SA 50 .0002916
TA21 50 .0033279
HC 50 .0321323
Sig. .549 1.000 1.000
Means for groups in homogeneous subsets are digplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 4.217E-06.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 98. Homogeneous Subsets, BPP Random Size Efficiency

For the FAP problem instances, the validated ANON#&s again followed by
the generation of the homogeneous subsets, as simotwxhibit 99. Like other
FAP problem instance groups, the Tukey method waable to distinguish
between the algorithms for efficiency other thati Blimbing. However, in this

case the Duncan method was able to make somewhatditinction, placing

228

GELS method one with single stepping and GELS neethvm with single stepping

into a second place subset apart from the others.

Subset
Algorithm Type N 1 2 3
Tukey HSB' GA 50 .0000226
SA 50 .0001906
TA12 50 .0045733
TA22 50 .0060165
TA21 50 .0592630
TAll 50 .0881797
HC 50 .6348052
Sig. 124 1.000
Duncar® GA 50 .0000226
SA 50 .0001906
TA12 50 .0045733
TA22 50 .0060165
TA21 50 .0592630 .0592630
TAll 50 .0881797
HC 50 .6348052
Sig. 119 .391 1.000
Means for groups in homogeneous subsets are diegplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 2.830E-02.
a. Uses Harmonic Mean Sample Size = 50.000.
b. Alpha = .05.

Exhibit 99. Homogeneous Subsets, FAP Random Size Efficiency

To complete the second phase of analysis, the gmobiistances with randomly
generated problem sizes were examined across protylees. Once more the

ANOVA was conducted and corroborated, and the h@megus subsets were

229

generated as shown in Exhibit 100. Both the Tukeyl Duncan methods
generated three subsets. Duncan’s method awahdedecond spot in a tie to
GELS method one with single stepping and GELS nethwo with single

stepping. Tukey’'s method concurred with this assesnt, but added GELS
method one with multiple stepping to make it a ¢hweay tie for the second best

efficiency for this set of experiments.

Subset
Algorithm Type N 1 2 3
Tukey HSB' GA 150 .0000888
SA 150 .0006823
TA22 150 .0020643
TA12 150 .0050608 .0050608
TA21 150 .0209503 .0209503
TAll 150 .0371172
HC 150 .3026159
Sig. 541 .080 1.000
Duncar® GA 150 .0000888
SA 150 .0006823
TA22 150 .0020643
TA12 150 .0050608
TA21 150 .0209503 .0209503
TAll 150 .0371172
HC 150 .3026159
Sig. .108 161 1.000
Means for groups in homogeneous subsets are degplay
Based on Type Il Sum of Squares
The error term is Mean Square(Error) = 9.959E-03.
a. Uses Harmonic Mean Sample Size = 150.000.
b. Alpha = .05.

Exhibit 100. Homogeneous Subsets, Composite Random Sizedfitigi

230

Once more, the ANOVA found an interaction betweenbfem type and
algorithm efficiency, and this is displayed in Bxihi1l01l. The same patterns
appear as for the other experiment sets, with coahypa line shapes indicating
similar effect of the problem types on each al¢ponitand a generally higher

efficiency obtained by FAP problem instances.

8
6 /\
[\
/[
/ \
0 A \
© / \
s / \
C_G 2' l /Q \
£ [0N Problem Type
= N N _
] ’ R
b [, AN _ A O gpp
kS oo — T—==@codpe T g e
< 2 Fap
=
g -2 | | | | | O 1sp
GA HC SA TAll TA12 TA21 TA22
Algorithm Type

Exhibit 101. Problem Type Plot, Composite Random Size Efficyen

Finally, the ANOVA also found an interaction betwetthe problem size and

the algorithm efficiency, as displayed in Exhib@21 Like the plot showing the

231

effect of problem type on the algorithms’ efficigncthis plot shows a very
consistent shape to the lines, indicating thatpitedlem size, like the type, has a
similar effect on the efficiencies of all algoritsmThere also appears a downward

trend in efficiency for each algorithm (where visibwith increasing problem size.

Problem Size

n

C -

o

s B 10
£)
5

T

= O 39
8 —_

© 8 < 40
£ —

17

m -.l T T T T T v 50

GA HC SA TALl TAL2 TA2L TA22

Algorithm Type

Exhibit 102. Problem Size Plot, Composite Random Size Effiyen

This completed the two phases of analysis compaitimg algorithms’
performance and efficiency. In all cases, bothgedgormance and the efficiency

hypotheses had been rejected, showing solid evidémat there was indeed a

232

significant difference in the ability of the diffamt algorithms to produce high
quality solutions to the generated problem instanand also a significant
difference in how much of the search space was mxanby the different
algorithms in producing their solutions. At evesyep, the results of the
experiments were carefully analyzed, maintainingaéch on any and all necessary
conditions to ensure that they were met and if tlodt alternate sources of
evidence were examined to verify the original ressulAll of this was done in an
effort to ensure the integrity of the analyses @novide a firm grounding for
establishing conclusions. In this way, any conols that would be drawn
regarding the experiments in general or the GElgdrghm in particular would be
based on solid statistical procedures and not memlthe wishful thinking of the

author.

233

3

Research Efforts Summary and

Evaluation

234

3.1 I nter pretation of Research Results

In interpreting the results of the two phases @flgsis, it was evident that there
was no clear “winner” in terms of best performaraed efficiency over all
experiment sets. No one algorithm had managecetthét dominant, even in a
single category (with the exception of Hill Climbirefficiency, for the reasons
already noted). In order to better bring the rissuito focus and provide a clearer
picture of the results for drawing appropriate dosions, the results data needed to
be consolidated and collated.

Exhibit 103 shows a concise view of all the algontcomparison results. For
each problem type (“COM” is used here to identtg tomposite of all problem
instances across problem types) and size, thenguaieach algorithm is given in
terms of which homogeneous subset it was placed ifihus, a value of 1 indicates
the algorithm was in the top ranked subset, higladues indicate lower ranked
subsets. The rankings are identified as “P” fofggenance and “E” for efficiency,
and each entry consists of the Tukey method rankimg the Duncan method

ranking, respectively, separated by a slash.

235

Algorithm Rankings
HC GA SA TA11 TA12 TA21 TA22
Type Size P E P E P E P E P E P E P E
10 4/4 171 2/2 3/3 1/1 3/3 3/3 213 2/p 2 11 3 1/13/3
20 4/5 1/1 | 4/5 3/4 1/1 3/4 4/ 213 3/4 2 23 4 4/23/4
Top 30 4/4 1/1 5/5| 4/4 1/1 3/4 5/5 213 4/4 2 3(3 4 4/24/4
> 40 3/3 1/1 5/6 3/4 1/1 3/4 4/ 2/ 4/4 2 33 4 4/23/4
50 212 | 11| e/7| 4/4) 1/1| 3/4 5/ 2/} 4 2 34 4 2/34/4
R 4/4 171 5/5 3/3 1/1 3/3 5/5 213 a/4 2 3[3 3 4/23/3
10 2 | w1 vi| 2/3) 222 2/3 33 2 48 2 11 2 33213
20 22 (11| v1| 33| 22| 3 2/3 3/ 36 3 11 2 3433
Bpp 30 22 (11| 12| 34| 3/3] 33 33 3 45 3 11 2 4/43/4
40 /2 | 11| 2/2(3/4| 3/3] 33 33 3 4/ 3 11 2 4/44/4
50 1/1 171 2/2 4/4] 3/3 3/3 3/3 3/ 45 4 11 2 4/44/4
R /2 [11| v1| 3/3| 2/3] 313 2/3 3 45 3 11 2 3433
10 B3| V1| 44| 34| 11| 34 2/ 2/ 44 3 11 3 2/23/4
20 4/3 | 1| 44| 3/3| /1| 3/ 3/ 2/ 3 2f2 2 1/12/3
30 2/3 1/1 3/4 2/2 1/1 2/2| 2/2 2/% 2/p 2 141 2 1/12/2
i 40 2/2 1/1 2/2 2/2 1/1 2/2 1/1 2/% 171 2 141 2 1/12/2
50 3/3 1/1 3/3 2/2 1/1 2/2 1/1 213 2/ 2 141 2 1/12/2
R 34 | UL| 34| 2/3| 11| 2/3 13 2/ 2B 2 11 2 1/22/3
10 4/4 1/1 33| 4/4 171 4/4 3/3 2/ 4/4 3 111 3 4/24/4
20 4/4 | 11| 44| 3/3| /1| 3/F 3/ 2/ 3B 3 2f2 2 23223
30 212 | 11| 3/3| 22| 11| 2/ 313 2/ 3B 2 11 2 F22/2
COM
40 2/4 1/1 | 4/6 2/2 1/1 2/2 2/3 213 3/5 2 142 2 /3212
50 34 | UL| 45| 22| 11| 2/ 2/3 2/ I 2 142 2 2322
R 4/4 | 11| 4/5(33| 11| 33 213 2/ 3B 2 11 2 23/23/3

Exhibit 103. Summary of Algorithm Comparison Rankings

236

By taking a simple average of the rankings overeaicthe problem types,

Exhibit 104 is produced. Here the averages foiTileey method are located in the

rows marked with a “T” in the column labeled “M"off “Method”). The Duncan

method averages are located in the “D” rows.

Average Algorithm Rankings
HC GA SA TAl1 TA12 TA21 TA22

Type P E P E P E P E P E P E P E

3.50(1.00f 4.50f 3.33 1.0p 3. 433 20 3|50 .0050 P 3.33| 1.83] 3.3
= 3.67| 1.00| 5.000 3.67 1.0p 3.6 483 2p0 3|83 .0083 2 3.67| 2.00[3.67

1.67| 1.00f 133 3.09 25p 2.8 2.67 283 3|83 .0000 1 2.00 3.50[3.17
o 1.83| 1.00f{ 1500 3.5 26f 3.4 3.00 3p0 4|67 .5000 1 2.00| 3.83[3.5(

2.83| 1.00| 3.171 233% 10p 23 1.67 2p0 2{00 3317 1 2.00(1.17| 2.17
i 3.00| 1.00| 3.500 2.67 10p 2.6 1.67 2p0 217 6717 1 2.17| 1.33] 2.67

3.17(1.00f 3.67] 2.67 1.0p 2.4 250 20 3j17 3317 1 2.17| 2.00] 2.5
COM

3.67(1.00f 433 267 1.0p 2.4 3.00 2{p0 3|67 6750 1 2.17| 2.33] 2.61

Exhibit 104. Averages of Algorithm Comparison Rankings

Using the numbers in Exhibits 103 and 104 as agyuahibit 105 shows some

basic recommendations that can be made regardwmigechf algorithm for solving

the various problem types. These are only suggestbased on the experimental

analyses, and cannot be considered hard-and-fastfor selecting an algorithm to

solve a problem.

For each set of selection catethe top three candidate

algorithms are shown in order, separated by a slash

237

If the primary And the secondary And the problem to The solution algorithm of
interestis... interestis... be solved is... choice should likely be...
Performance N/A TSP SA/TA22 / TA21
Performance Efficiency TSP SA/TA22 /HC
Efficiency N/A TSP HC/TA11/TAl12
Efficiency Performance TSP HC/SA/TA1l
Performance N/A BPP TA21/GA/HC
Performance Efficiency BPP TA21/HC/GA
Efficiency N/A BPP HC /TA21/ (SA, TA11)
Efficiency Performance BPP HC/TA21/GA
Performance N/A FAP SA/TA21/TA22
Performance Efficiency FAP TA21/SATA22
Efficiency N/A FAP HC/TA11/TA21
Efficiency Performance FAP HC /TA21/TA1l
Performance N/A Any SA/TA21/TA22
Performance Efficiency Any SA/TA21/TA22
Efficiency N/A Any HC/TAl11/TA21
Efficiency Performance Any HC/TA21/SA

Exhibit 105. Algorithm Selection Suggestions

238

Based on the data from the experiments and the sum@snin Exhibits 103,
104, and 105, a number of observations can be megdrding the results of the
research:

1. For the TSP problems, Simulated Annealing was tlegadl best. It had the
best performance ratings, and though its efficiem@&s mediocre it had
much better performance numbers than the algorithwiih better
efficiencies.

2. For the BPP problems, GELS method two with sindepging was the
overall best. It had the best performance ratiagsl the best efficiency
ratings aside from Hill Climbing (which didn’'t havihe performance
numbers that GELS had).

3. For the FAP problems, it was a close call. Sinmdadnnealing and GELS
method two with single stepping were virtually tied terms of
performance, with Simulated Annealing rated numirez for all problem
sizes by both the Tukey and Duncan methods, andS3&ted number one
for all problem sizes but one (for which it wasedtumber two), also by
both methods. GELS also had slightly better edficy numbers.

4. For the overall composite cases, it was anothesecball. Again, Simulated
Annealing and GELS method two with single steppirage virtually tied in
terms of performance, with Simulated Annealing datember one for all
problem sizes by both the Tukey and Duncan methadd, GELS rated

number one for all problem sizes but one by theejukethod and three of

239

the problem sizes by the Duncan method (the otimeetbeing number
two). And again, GELS had the better efficiencyniers.

5. The performance of GELS method one with single@tepwas mediocre,
with the exception of a good showing on the FARofms. Its one shining
spot was its efficiency, second only to Hill Climbi (and having better
performance than Hill Climbing most of the time).

6. The performance of GELS method one with multiplepptng was also
mediocre, across the board. It also had very neegliefficiency numbers.

7. The performance of GELS method two with single gteg was very good,
winning one category of problems outright (the Bi#?&blems) and coming
very close to winning two others, including the ale It also had very
good efficiency numbers. It did seem to have sdaiiffeculty with TSP,
posting numbers for both performance and efficiethey were substantially
worse than it received for the other problem types.

8. The performance of GELS method two with multiplepgting showed
some bright spots, but it had some problems witiciefcy, posting quite

mediocre numbers.

3.2 Overall Evaluation of GELS

In the research experimentation, the GELS algoritihm its various

combinations gave a very good showing. The metwad variations had very

240

good performance, finishing near the top of the&kirags. Method two with single

stepping was the clear performance winner for BRBIpm instances, and it came
very close to having the best performance for FAdblem instances, and again for
all problem types in general. The single steppiagations of the algorithm also
finished at the top of the rankings for efficientgsting all algorithms except the
greedy Hill Climbing.

The other algorithms used in the study have beediedt and optimized for
years, and the parameters that were used to ram dlaeing the experiments were
set to values that had been found over the courseuoh study to be suited for
producing good results for the types of problemsise. The GELS algorithm,
however, had only been under study for a relativaprt period of time. The
parameters used to run it had undergone a numbechahges during its
development, and there certainly was not a perfathany years of tweaking and
tuning behind the settings that were used for tdanng the experiments. In spite
of these handicaps, GELS was able to go head-td-véh the much more mature
algorithms on very well studied problems and in ynaases beat them in terms of
both quality of solutions produced and efficienégearch.

This then is the contribution of GELS to the litewr@. It is novel; a search of
the literature at the beginning of this researcleated nothing that referenced the
use of the principles of gravitation to guide tkargh of an optimization algorithm.
Furthermore, it cannot be classified as merelyréatian on the theme of another

algorithm. Though it does always tend to move tolsdetter solutions, it is not

241

purely greedy because it does not always move tisitie best solutions available.
Though it contains some elements of randomnesspotgement through a search
space is not random, but quite deterministic. Ahdugh it contains several
elements in common with other algorithms, such &swistic to guide the search
and a mechanism for escaping local optima, by defm all local search
algorithms will contain those elements, and GEL®leys them in a different way
than the others. Finally, though new it was ableithstand the rigors of statistical
examination on a variety of problem types and h#wa examination report
operation on a par with if not better than the ptigorithms.

Still, there are many opportunities for future @sh. Many of the

opportunities lie in further study of the algorittand its operation, such as:

* Investigating the algorithm heuristic to find out wsing the mass
components instead of just the difference betwdgective function values
can be made cost-effective and beneficial

* Investigating the use of a fixed number of eleméntbe velocity vector

* Reintroducing the concept of resistive force, usethe early experiments
but found to be too cumbersome for use in the rebeaxperiments (but
perhaps could be useful if “streamlined” and maalges to control)

» Experimentation with different mechanisms for upa@the velocity vector

» Experimentation with different mechanisms for npl#istep motion

242

» Testing different combinations of parameter valieend settings inclined
to produce better solutions
* Inserting some additional randomness into the gloee like occasional
random events that cause movement direction to shif
* Attempt to put more “intelligence” into the algdmm, e.g. allowing it to
automatically alter its operation as it acquire$orimation about the
problem and senses the need for adjustment
Of course, there is also the possibility of condwgfurther studies with GELS
using different problem types and comparison atgors. It is the suspicion of this
author, based on tantalizing data received dufiregdarly experiments with the
algorithm, that the multiple step movement optiaruld prove to be quite useful in
problems where the search space is sparse, thatomains very few valid
solutions. Designing some experiments with alpang of that nature to test this
theory would provide useful information, regardledsvhether or not the theory

turned out to be correct.

3.3 Conclusion

To say that the research experimentation revealedELS algorithm to bring
revolutionary new capabilities in solving combingb optimization problems to
the table would be a falsehood. But, to say that useful only as a potential

teaching vehicle would also be incorrect. It outpened Hill Climbing and a

243

Genetic Algorithm, two styles of algorithm that anewidespread use to solve a
variety of combinatorial optimization problems. wWas tested against several
common problem types and sizes which, althoughtedniin number by the
restrictions of the available analysis tool, noeéths provided more than enough
cases for the statistical analysis to produce sxizking for its capabilities.

For GELS to be relegated to an occasional mentigrassing as an example of
optimization algorithms that emulate natural preessto produce solutions would
be to ignore that statistical backing. Certainlgrenstudy is required before the full
capabilities and usefulness of the GELS algorithithbve known, but this research

has demonstrated that such an undertaking woubigwhile.

244

References

Aarts, E. and J. K. Lenstra, edsical Search in Combinatorial OptimizatioNew
York, NY: John Wiley & Sons, Ltd., 1997.

Aho, Alfred V., John E. Hopcroft, and Jeffrey D.ltdann. Data Structures and
Algorithms Reading, MA: Addison-Wesley, 1983.

Arora, Sanjeev. “Polynomial Time Approximation Spies for Euclidean
Traveling Salesman and Other Geometric Probledwutnal of the ACMvol.
45, iss. 5 (September 1998): 753-782.

Bernhard, Philip J. and Kevin L. Fox. “Experimenialaluation of Techniques for
Database File Assignment.” N.P., 2000.

Bresina, John. “Heuristic-Biased Stochastic SangplifProceedings of the i3
National Conference on Artificial Intelligen¢&996).

Bresina, John, Mark Drummond, and Keith Swanson.eatéh Space
Characterization for a Telescope Scheduling Appboa’ Working notes of
the AAAI Fall SymposiumPlanning and Learning: On to Real Applications
1994.

Corman, Thomas H., Charles E. Leiserson, and RdnaRivest.Introduction to

Algorithms MIT Press, 1991.

245

Dowdy, Lawrence W. and Derrell V. Foster. “Compm@atModels of the File
Assignment Problem ACM Computing Surveysol. 14, no. 2 (June 1982).
Duncan, D. B. “Multiple Range and Multiple F Te&tBiometrics vol. 11 (1955):

1-42.

Englemore, Robert S. and Anthony J. Morgan, 8tlsckboard System®&eading,
MA: Addison-Wesley, 1988.

Freuder et al. “Systematic Versus Stochastic CamgtSatisfaction.’Proceedings
of the 14 International Joint Conference on Artificial Inliglence (1995):
2027-2032.

Garey, Michael R. and Johnson, DavidC®mputers and Intractability: a Guide to
the Theory of NP-Completenedtew York, NY: W. H. Freeman, 1979.

Giarratano, Joseph C. and Gary Rilefgxpert Systems: Principles and
Programming 2" ed. Boston, MA: PWS Publishing Company, 1993.

Goodman, Erik D. "An Introduction to GALOPPS -- tli&enetic ALgorithm
Optimized for Portability and Parallelism Systemeléadse 3.2." Technical
Report 96-07-01, Intelligent Systems Laboratory a@dse Center for
Computer-Aided Engineering and Manufacturing, Mielm State University
(July 16, 1996).

Harrell, C., B. Ghosh, and R. Bowde3imulation Using ProModeB® ed. Boston,
MA: McGraw-Hill, 2000.

Hewlett-Packard Corporation. “Zero Latency EntesgrArchitecture.” White paper
(2002).

246

Ingber, Lester. “Adaptive Simulated Annealing (ASAglobal optimization C-
Code, Caltech Alumni Association, Pasadena, CAZL99

Karmarkar, N. and R. M. Karp. “An Efficient Approration Scheme for the One-
Dimensional Bin-Packing ProblemProceedings of the BIEEE Symposium
on the Foundations of Computer Science (1982): R-

Kliewer, Georg and Stefan Tschoke. "A general palradimulated annealing
library (parSA) and its applications in industrPAREQO'98: First meeting of
the PAREO working group on Parallel Processing per@tions Research,
Versallles, France, July 8-10, 1998.

Kochetov, Yuri and Anjelika Usmanova. “ProbabilistiTabu Search with
Exponential Neighborhood for Bin Packing Probleroceedings of the™
Metaheuristics International Conferen(2001): 619-623.

Kondrak, Grzegorz, and Peter van Beek. “A Theoaétievaluation of Selected
Backtracking Algorithms.” Proceedings of the 14 International Joint
Conference on Atrtificial Intelligendd995): 541-547.

Kruskal, W. H. and W. A. Wallis. “Use of Ranks om® Criterion Variance
Analysis.” Journal of the American Statistical Associationl. 47 (1952): 583-
621. Corrections appear in vol. 48: 907-911.

Massey, F. J. Jr. “The Kolmogorov-Smirnov Test afo@ness of Fit."Journal of

the American Statistical Associatiorol. 46 (1951).

247

Metropolis, N., A. Rosenblurb, M. Rosenblurb, All€e and E. Teller. “Equation
of State Calculations by Fast Computing Machindsdirnal of Chem. Physics
vol. 21 (1953):1087-1092.

Montgomery, Douglas (esign and Analysis of Experimenﬁg‘ ed. New York,
NY: John Wiley & Sons, Ltd., 2001.

Montgomery, Douglas C. and G. C. Rung&pplied Statistics and Probability for
Engineers 2" ed. New York, NY: John Wiley & Sons, Ltd., 1999.

Newell, A., J. McDermott, and C. L. Forgprtificial Intelligence: A Self-Paced
Introductory Course Computer Science Department, Carnegie-Mellon
University, 1977.

Oracle CorporationOracle9i Administrator's Reference, Release 2 (©120) for
UNIX Systems: AlX-Based Systems, Compaq Tru64 ,UNPX9000 Series
HP-UX, Linux Intel, and Sun Solari®racle Corporation, 2002.

Papadimitriou, Christos HComputational Complexit\Reading, MA: 1994.

Pearl, JudeaHeuristics: Intelligent Search Strategies for Cartgs Problem
Solving Reading, MA: Addison-Wesley, 1985.

Prosser, Patrick. “Hybrid Algorithms for the Comditit Satisfaction Problem.”
Computational Intelligengevol. 9, no. 3 (1993).

Sears, Francis W., Mark W. Zemansky, and Hugh DungoUniversity Physics
7" ed. Reading, MA: Addison-Wesley, 1987.

SPSS, IncSPSS 11.0 Student Editidw.P., 2001.

248

Stewart, G. Wintroduction to Matrix ComputationdNew York, NY: Academic
Press, 1973.

Transaction Processing Performance Council (TPGPC Benchmark™ H
(Decision Support)Standard Specification, Revision 2.1.0 (2002).

Tsang, EdwardFoundations of Constraint Satisfactiobondon, UK: Academic
Press Limited, 1996.

Tukey, J. W. “The Problem of Multiple Comparisonbl'P., Princeton University,
(1953).

Voudouris, Chris and Edward Tsang, “Guided Locaar€e.” Technical Report
CSM-247, Department of Computer Science, UniversitiEssex, UK (August
1995).

Wall, Matthew. “GALib: A C++ Library of GeneticAlgrithm Components.” User
documentation for GALib, version 2.4, documentati@vision B (August
1996).

Walpole, Ronald E. and Raymond H. MyemRrobability and Statistics for
Engineers and Scientistg™ ed. New York, NY: Macmillan Publishing Co.,
Inc., 1972.

Webster, Barry._An Object-Oriented Blackboard Exp®ystem for Selecting

Professional Baseball Players to Comprise a Tdd@sters thesis, Florida

Institute of Technology, 1995.

249

Webster, Barry and Philip J. Bernhard, “A Local $8aOptimization Algorithm
Based on Natural Principles of Gravitatioi®foceedings of the International
Conference on Information and Knowledge Engineenrg. 1. (2003): 255-

261.

250

