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Abstract 

Solving Combinatorial Optimization Problems Using a New Algorithm 
 

Based on Gravitational Attraction 
 

by 
 

Barry Lynn Webster 
 

Dissertation Advisor:  P. J. Bernhard, Ph.D. 
 
 
 

This dissertation represents the culmination of research into the development of 

a new algorithm for locating optimal solutions to difficult problems.  This new 

algorithm is founded upon one of the most basic concepts in nature – so basic that 

it is in fact one of the four primary forces in physics:  gravity. 

It is called the Gravitational Emulation Local Search algorithm, or GELS.  Four 

variants of the algorithm were developed, representing combinations of two basic 

methods of operation and two modes of search space exploration.  Following 

development, a series of experiments were conducted to assess the capabilities of 

this new algorithm.  Three test problems were used (Traveling Salesman, Bin 

Packing, and File Assignment).  Instances of these problems were generated using 

several different problem sizes, then solved using three well-known comparison 



 v 

algorithms (Hill Climbing, Genetic Algorithm, and Simulated Annealing) in 

addition to the four variants of GELS. 

The outcomes of the experiments were rigorously analyzed using a variety of 

statistical techniques.  The results of the analyses showed that GELS was able to 

perform on a par with, and in many cases better than, the much more mature and 

extensively studied comparison algorithms.  One of the GELS combinations 

achieved the best performance ratings of any algorithm in solving instances of Bin 

Packing, and finished in a virtual tie with Simulated Annealing for solving 

instances of File Assignment and for general purpose performance.  Two of the 

four GELS combinations were also shown to outperform Hill Climbing and the 

Genetic Algorithm. 

GELS also performed its task efficiently.  Two of the four combinations were 

shown to be more efficient in locating their solutions than any of the comparison 

algorithms except Hill Climbing (a greedy algorithm known to produce solutions in 

very few steps).  The solutions produced by GELS were thus not only of 

comparable or better quality than those of the comparison algorithms, but usually 

were arrived at more efficiently. 
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1 Preliminary Material 
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1.1 Introduction 

When examining the types of problems that computers are undertaking to solve, 

one cannot help but notice the sheer size and complexity of some of those 

problems.  From the very beginning, as the computational power and capabilities of 

computers have increased, so have the size and complexity of the problems that 

have been assigned to them.  With each passing year, more and more problems that 

once were considered too large and/or too involved to be solved in a reasonable 

manner via computer are becoming viable, if not routine. 

Yet even so, there remain many instances of problems that are very difficult to 

solve, even for powerful computers.  These problems are sufficiently large and 

complex that it may not be feasible to produce a solution within a reasonable 

amount of time.  Now, it is true that what constitutes a “reasonable amount of time” 

is subjective.  For some applications, a solution that appears within several days 

may be acceptable (Harrell et al., 2000).  For other applications, such as a real-time 

business intelligence provider, a solution appearing after only a few seconds have 

elapsed may be considered too slow (Hewlett-Packard, 2002).  In any case, 

problems can be found that will tax the ability of the computer to provide a solution 

within a timeframe that meets the situation’s standards of “reasonable” (Harrell et 

al., 2000, Hewlett-Packard, 2002, Kondrak et al., 1995).  It is precisely those types 

of problems that are of interest herein. 
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This dissertation is the result of research into the development of a new 

algorithm to locate solutions to difficult problems in a reasonable amount of time.  

It is organized to outline the course of that research.  In the first part, concepts 

necessary for an understanding of the development and evaluation of the new 

algorithm are presented.  In the second part, the algorithm itself is discussed, from 

its beginnings to the present, with a focus on the results of a series of experiments 

conducted in order to determine the ability of the algorithm to accomplish its 

intended purpose.  In the final part, the results are tied together and conclusions are 

formulated from the data.  The document ends with a discussion of the direction in 

which this research is heading and a few concluding remarks. 

1.2 Background Information 

In discussions regarding this research, it was noted that a sizeable number of 

people, both without and within the computer sciences community, were at least 

somewhat unfamiliar with one or more of the concepts involved in the research.  

Certain of these concepts are critical to an understanding of the research material, 

and to an ability to place the disparate portions of the material into their proper 

context.  Therefore, it was deemed prudent that there should be included herein a 

discussion of those critical concepts. 

It is not intended that this discussion should be comprehensive.  To make such 

an attempt is neither necessary nor feasible.  Rather, for each concept only the 
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items that are directly pertinent to the research material will be discussed, and only 

to the level they were applied to that material. 

First will be a discussion of combinatorial optimization problems.  This is the 

class of problems that formed the focus of the research, the class of problems for 

which the new algorithm was designed to locate solutions.  Differing methods 

currently in place for solving these problems will be mentioned, along with the 

advantages and disadvantages of each. 

Next will be a discussion of some statistical methods that can be used to assist 

in drawing conclusions from experimental data.  Various techniques for analyzing 

data and presenting conclusions, both visual and mathematical, will be identified.  

A brief tutorial will follow showing how each of the techniques is implemented by 

SPSS, the statistical package that was used to analyze the research data. 

Finally, the new algorithm will be introduced.  Its origins will be outlined, 

along with early experimentation leading up to the current set of experiments. 

1.2.1 Combinatorial Optimization Problems 

This research revolved around the development and design of a new algorithm.  

Yet, algorithms are designed to solve problems.  Some algorithms are designed to 

solve specific problems, as with control mechanisms for various types of automated 

machinery (Harrell et. al., 2000).  Other algorithms are designed to solve more 

general classes of problems, as with linear programming (Papadimitriou, 1994).  
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So, there must of necessity be a problem or class of problems for which the new 

algorithm was designed. 

One of the most basic problems under study within the computer sciences is the 

search problem.  This is actually a general class of problems with a similar goal.  

Simply put, that goal is to find something of interest within a designated search 

area.  To state the problem formally,  

Given: set S 

 key value k 

SEARCH(S, k) = x, such that x is a pointer to an element of S with a value 

equal to k, or NIL if no such element exists within S (Corman et al., 1991). 

That is, given a set of elements to search through, called the search space, and a 

particular value to search for, SEARCH will attempt to locate an element of that 

value within the search space.  If such an element is found, SEARCH will return 

the location of that element within the search space.  If no such element can be 

found, SEARCH will return a null value or otherwise indicate that the search failed. 

Of interest herein is a special case of the more general search problem known as 

the optimization search problem, or combinatorial optimization.  This too is a class 

of problems with a similar goal, and since it is a special case of the search problem, 

that goal is still to find something of interest within a given search space.  

However, with combinatorial optimization the “something of interest” is more 

restrictive than in the general case.  Note that there may be multiple elements 

within the search space that satisfy the search condition.  In the generalized search 
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problem, locating any one of those elements is sufficient.  In combinatorial 

optimization, though, simply locating any element that satisfies the search 

condition is not enough. 

Combinatorial optimization tacks on the additional requirement that the search 

locate an element that not only matches the search condition but is in some sense 

the “best” element that matches the search condition out of a possible many that 

satisfy said condition.  The notion of which element is “best” is determined by what 

is known as the objective function. 

As its name implies, the objective function is a function that can be applied to 

elements within the solution space to determine their relative ability to attain a 

specific objective.  For example, suppose that the search space consists of all 

integers i such that 0 < i < 101.  Suppose further that the objective function that is 

to be applied is F(x) = x.  That is, the value of the objective function is simply the 

value of the element itself.  For the purposes of this example the objective is 

defined to be maximizing F(x). 

Now, given that the search condition is to locate an element e such that 

e mod 10 = 0 (i.e. e is evenly divisible by ten), it is easy to see that the search 

condition will be satisfied by more than one element in the search space; in fact, it 

will be satisfied by ten different elements.  If generalized search is being 

performed, then finding any one of those ten will suffice.  However, since 

optimization search is being performed, it is necessary to apply the objective 

function to each element found matching the search condition (such an element 
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being called a solution to the problem).  For this example, it can be seen that doing 

so will result in the element with the value 100 being declared the optimal solution, 

since it satisfies the search condition and has the highest value of the objective 

function F(x) of all the solutions. 

From this example, it should be fairly obvious that combinatorial optimization 

is more complex than generalized search.  Whereas with generalized search it is 

necessary only to find one solution, with combinatorial optimization it is necessary 

to find all possible solutions (either explicitly or implicitly), applying the objective 

function to each in order to determine which solution is optimal.  The problem is 

further complicated by the fact that in many instances the search space is so large 

that searching every element to find all possible solutions is highly impractical, if 

not impossible (Freuder et. al., 1995).  Also, the search space may contain many 

solutions that have equal or near-equal values for the objective function, and these 

solutions may be widely dispersed throughout the search space.  Lastly, the 

solutions may consist of several parts, and there may be a complex interplay 

between the parts, meaning that the overall value of the objective function often 

cannot be determined by just looking for patterns in the solutions (Aarts and 

Lenstra, 1987). 

It is precisely this type of problem that is of interest in this document:  the class 

of problems where 

• An optimal solution is desired, but where the search space is large enough 

that performing an exhaustive search is not an option. 
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• There is no guarantee that the optimal solution or solutions will be located 

near another solution or solutions of similar quality 

• The solutions are multi-dimensional (contain more than one part) 

Such problems constitute an interesting and challenging area of study.  

Combinatorial optimization appears in a variety of situations, from academic 

problems used to teach the principles of optimization to problems of everyday 

interest in industry.  It is also used extensively in Artificial Intelligence (AI) 

applications.  Search in and of itself is fundamental to the study of AI.  It is so 

fundamental, in fact, that it has been said that almost all the basic methods used by 

AI applications are some variation of search (Newell et. al., 1977).  Combinatorial 

optimization in particular is used by expert systems to choose the best course of 

action to take (Englemore and Morgan, 1988, Giarratano and Riley, 1993, Webster, 

1995), by Constraint Satisfaction Problems to find the best solution that satisfies all 

constraints of the problem (Prosser, 1993, Tsang, 1996), and by intelligent 

scheduling systems to find the best out of a list of feasible schedules (Bresina, 

1996, Bresina et. al., 1994).  Conducting in-depth research on all combinatorial 

optimization problems is obviously beyond the sphere of a single research study, 

and so the scope needed to be narrowed to a few specific examples.  The example 

problem types that were included in the research studies will now be described. 
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1.2.1.1 The Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is a very thoroughly studied problem 

that is popular in the classroom for introducing optimization and the challenges it 

presents.  The idea of this problem is to imagine a salesman who is about to embark 

on a sales trip.  There are a certain number of cities on his proposed itinerary, and 

he needs to visit all of them before returning to his home city.  The restriction is 

that he is only allowed to visit each city once during his trip.  Thus, TSP is a 

variation of a Hamiltonian cycle problem (Aho et. al., 1983). 

There is defined to be some sort of cost involved in traveling between any two 

given cities on the itinerary.  This cost may be thought of in monetary terms, as in 

the cost of an airline ticket to fly between the two cities, or in terms of the time it 

will take to travel between the cities, or some other kind of cost.  It really doesn’t 

matter; the important thing is that some type of cost will be incurred to the 

salesman as he moves from one city to another, and the cost to go from city A to 

city B might not be the same as it is to move from city B to city A. 

Faced with a directive from his management to control costs of sales trips, the 

salesman wants to be as efficient as he can when planning his trip.  His goal is 

therefore to minimize the total cost of completing his itinerary.  Thus, a solution for 

TSP is a complete tour itinerary for the salesman, showing the order in which each 

city will be visited.  The objective function value of the solution is the sum total of 
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costs to visit all the cities on the complete tour, with the objective of minimizing 

that value. 

The salesman is presented with many choices.  He may visit the cities on his 

itinerary in any order, but he has to visit them all and may only visit each one once.  

He may travel between any pair of cities, but travel between some pairs is more 

expensive than others.  This multitude of options makes TSP a very complex 

problem to tackle (Aho et. al., 1983). 

1.2.1.2 The Bin Packing Problem 

The Bin Packing Problem (BPP) is another very thoroughly studied problem 

that is popular in the classroom.  There are a number of variations to this problem, 

but the one that is of interest herein is 1-Dimensional Bin Packing.  The premise of 

this problem is that there is a collection of objects of varying size, with the one 

restriction that all objects are less than a specified size n.  There is also available an 

unlimited supply of bins of size n in which to store the objects.  Each of the objects 

in the collection is to be placed in one of the available bins.  Any number of objects 

may be placed in a particular bin, provided the combined size of the objects does 

not exceed the size of the bin. 

The goal of the problem is to find the minimum number of bins required to 

store all the objects in the collection.  Thus, a solution for BPP is an assignment of 

objects to bins, and the objective function value for the solution is the number of 
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bins that have been used to store the collection, with the objective being to 

minimize that value. 

This simple problem, with its simple goal, is actually rather deceptive in its 

simplicity.  When placing the objects into bins, there is no restriction on how the 

objects may be combined, save that of not exceeding the bin size.  Many options 

are available, meaning that the choice of bin in which to place each object is far 

from trivial (Corman et. al., 1991). 

1.2.1.3 The File Assignment Problem 

The File Assignment Problem (FAP) is of everyday interest to the business 

community.  This problem supposes a computer system that has a certain number 

of hardware devices available for storage, each with its own performance 

characteristics.  The usage of the system requires that a certain group of files will 

need to be stored, and will be accessed in a variety of manners (e.g. differing 

orders, read vs. write, etc.).  There are a variety of costs associated with this 

process, including the cost of accessing a file on a given device, the cost of 

(potentially) maintaining copies of a file on different devices and keeping them 

consistent when the file changes, and the cost of coordinating the operations of the 

hardware devices (Dowdy and Foster, 1982). 

The idea in this problem is to allocate each of the files that will be accessed to 

one or more of the available hardware devices in such a way as to minimize some 
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pre-determined cost (average access time, throughput, etc.).  Thus, a solution for 

FAP is a mapping of files to devices, and the objective function value for the 

solution is a measurement of some cost associated with storing the files in that 

configuration, with the objective being to minimize that value. 

FAP is of interest in many common settings.  It is of interest to system 

managers, who want to know how best to arrange their systems to maximize 

performance for their users.  It is also of interest to database administrators, who 

want to know how to store their data files to maximize the performance of their 

databases (Bernhard and Fox, 2000).  Since the problem can be expressed in a 

number of variations and employed with a number of objective functions, its uses 

can be quite extensive.  Since the problem also involves storing a group of files on 

a group of devices, and the many ways in which that could be accomplished, FAP 

is also a very complex problem (Bernhard and Fox, 2000). 

1.2.2 Existing Solution Methods 

There are currently a great many methods that are used to solve combinatorial 

optimization.  One need only examine the ever-growing list of literature to see the 

collection of methods that have been offered for solving TSP alone.  Once again, to 

attempt a comprehensive discussion of these myriad methods would be neither 

necessary nor prudent.  As such, an overview of the general types of approaches 
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that are in use and some basic explanations will be offered, in order to compare and 

contrast these methods with the new algorithm under study. 

1.2.2.1 Systematic Methods 

Systematic methods for solving combinatorial optimization problems are 

searches that follow a specified step-by-step procedure to systematically go through 

the search space until either the search has located its quarry or it becomes clear 

that the search cannot succeed.  By utilizing a systematic method, the search has a 

guarantee that if a solution to the given problem exists within the search space, the 

method will locate it – a property known as completeness (Pearl, 1985).  Systematic 

methods can be further subdivided into uninformed and informed methods. 

Uninformed systematic searches presume no knowledge of the search space or 

the data within, and proceed solely on the basis of the proscribed procedure (Pearl, 

1985).  Examples of uninformed systematic search include: 

• Linear – progresses through the search space entry by entry, treating it as if 

it was one long line of potential solution values 

• Backtracking – performs a depth-first or breadth-first search of the search 

space, moving along a given path until a solution is found or a dead end is 

reached, then backing up and moving on to the next path 

• Forward Checking – similar to backtracking, except that at each step of 

the path a check is performed to see if the next step in the path would 
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contribute to a viable solution, or whether that path does not contribute and 

should be abandoned in favor of another path 

Informed systematic search is used in cases where something is known about 

the search space and/or the data within (Pearl, 1985).  For example, the data might 

be sorted alphabetically, or might be arranged according to some other known 

organization.  Informed search can take advantage of such situations to improve the 

search performance.  Examples of informed systematic search include: 

• Yes/No (Binary Tree) Search – at each step in the search path a decision is 

made to follow one of two paths that will lead to a solution; works when 

data are sorted or otherwise organized to accommodate the binary decisions, 

and is very efficient 

• Hashed/Indexed Search – uses hash functions or indexes to point the 

search to a specific location or region where a solution will be located; 

again, works on organized data and is extremely efficient 

• Domain Ordering – uses pre-processing to order or partially order the 

search space to enable the use of other informed search techniques 

1.2.2.2 Stochastic (Heuristic) Methods 

On the other side of the table are the stochastic, or heuristic, techniques.  These 

approaches apply a heuristic (or “rule-of-thumb”) in an attempt to guide the search 

towards a solution (Pearl, 1985).  The heuristic will make use of knowledge 
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regarding the objective function (i.e. what types of things are needed to produce a 

solution with good objective function values) to make decisions as the search 

progresses that will (hopefully) locate high-quality solutions.  Heuristic searches 

generally are local searches, meaning that they search a very small area of the 

search space and then apply the heuristic to the search results to determine the path 

that the search will take (Aarts and Lenstra, 1997). 

Heuristic searches can either take a generate-and-test approach or be repair-

based.  A technique that takes a generate-and-test approach will build a solution 

piece by piece until a complete solution is constructed (Pearl, 1985), while a repair-

based technique will start with a given solution (which may or may not be a valid 

solution to the problem at hand) and repetitively alter it until a valid or better 

solution is found (Aarts and Lenstra, 1997).  Examples of heuristic search include: 

• Hill Climbing – at each step in the search process, follows the path that 

adds the most value to the objective function; stops when there is no 

longer any path that will result in a better objective function value 

• Simulated Annealing – technique that simulates the physical process of 

annealing metal.  If molten metal is allowed to cool too quickly, it will 

develop imperfections that will weaken the intended structure, so the 

temperature has to be lowered in a controlled fashion.  In simulated 

annealing, at each step in the process an attempt is made to find a path 

with a better objective function value, but even if one exists there is a 

non-zero probability that the path will not be followed and some other 
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path will be taken in an attempt to find an even better solution at another 

location.  The “temperature” in simulated annealing is a pre-set value that 

is gradually lowered after a specified number of changes are made to the 

current solution (or after a specified number of iterations – there are a 

number of variants of the general algorithm).  The procedure stops when 

a certain temperature value threshold is reached. 

• Genetic Algorithms – attempts to model the process of genetics in 

nature.  Solutions are evaluated according to a “fitness rating” that 

corresponds to the objective function.  At each step in the process, certain 

solutions with low fitness ratings are allowed to “die out”, while others 

are “crossbred” (combined) and/or “mutated” (changed) in an attempt to 

make them into better solutions.  The procedure stops after a specified 

number of “generations”, or iterations of the process. 

1.2.2.3 Advantages/Disadvantages of Method Types 

As could be reasonably expected, each of the general types of approach to 

solving combinatorial optimization problems comes with its own set of advantages 

and disadvantages.  As mentioned, systematic techniques have the advantage that 

they are complete; that is, if a solution exists within the search space they are 

guaranteed to find it.  A disadvantage of uninformed systematic searches is that for 

combinatorial optimization problems, completeness entails finding not just a valid 
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solution but every valid solution in the search space (either explicitly or implicitly, 

in order to determine which is the “best”), and as has been noted, for many classes 

of problems the search space is simply too large to render this feasible.  A 

disadvantage of informed systematic searches is that, while they are very efficient 

at locating solutions, they pay the price by requiring that the search space be 

organized in some known fashion.  Again, for many classes of problems a search 

space that comes organized in this way cannot be expected, and pre-processing the 

search space to make it sufficiently organized would once again take far too long. 

Heuristic techniques, on the other hand, have the advantage that they are able to 

locate high-quality solutions in a relatively short amount of time, even for search 

spaces of immense size.  A disadvantage of these techniques is that they are not 

complete, which means they are not guaranteed to find the best solution.  In cases 

where a near-optimal solution is sufficient, this is not a problem.  However, in 

situations where it is imperative that the absolute highest quality solution be found, 

this disadvantage becomes an issue. 

A major reason why heuristic techniques do not always find the best solution is 

that their termination conditions often cause them to stop in local optima (sing. 

local optimum).  Local optima are solutions that have better objective function 

values than other solutions that occur nearby in the search space; that is, they are 

the best solutions to be found within a local neighborhood of the search space 

(Aarts and Lenstra, 1997).  However, local optima are not necessarily the best 

solutions to be found within the entire search space.  Nevertheless, because of the 
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way the techniques are designed they often stop in one of these local optima instead 

of a global optimum. 

When designing heuristic search techniques, there are several important things 

to keep in mind.  The first is to develop a solid heuristic.  Employing a weak or 

faulty heuristic renders moot the whole point of the technique and reduces the 

chances of the technique performing well and finding high quality solutions.  Also 

important is choosing a mechanism for determining the local neighborhood.  Since 

the neighborhood is what will be searched next, the choice of neighborhood 

function will strongly influence the direction that the search takes. 

Another item that should be considered when designing heuristic search 

techniques is a mechanism to allow the technique to escape local optima and settle 

only on a global optimum.  Having a technique that is too prone to stopping at local 

optima reduces the chances of it finding a global optimum, thus making the 

technique less effective.  Given the fact that heuristic techniques are by nature 

incomplete, and that time constraints and search space sizes often render 

completeness infeasible anyway, a certain amount of risk of stopping on a local 

optimum is inevitable.  In spite of this, attempts should be made to mitigate this 

risk and reduce it as much as possible. 
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1.2.3 Statistical Validation of Research Hypotheses 

Being able to validate conclusions drawn from research is of vital importance.  

Results from a series of experiments may seem to confirm a hypothesis, but if the 

data can be somehow bolstered by other evidence, the conclusions will be placed 

on a much stronger footing.  Statistical methods can be used for exactly that 

purpose.  Using appropriate statistical methods can provide a solid mathematical 

backing for confirming or rejecting hypotheses constructed regarding the results of 

research experimentation. 

It is for this reason that statistical validation was desirable for use within this 

research.  Early experiments seemed to confirm that the new algorithm under 

development was effective in solving certain combinatorial optimization problems 

(see section 2.1), but only a rudimentary analysis of the data was conducted (due to 

the fact that at the time it was not known if the research would continue, and so 

only nominal indications were desired).  The later experiments done for this 

research, however, utilized a much more rigorous set of statistical evaluations to 

test the results obtained.  The techniques that were used to conduct these 

evaluations will now be described. 

1.2.3.1 Design of Experiments 

Design of Experiments (DOE) means exactly what it says; it is the process of 

designing a set of experiments suitable for accomplishing the purposes of the 
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research.  Using a proper DOE is critical to assuring that the experiments will 

produce the correct results – not in terms of getting the results one wanted but in 

terms of getting results that are untainted by extraneous or unwanted effects 

(Montgomery, 2001).  For example, suppose that a series of experiments are being 

conducted to compare two pieces of like equipment from different manufacturers.  

One set of tests, with the two pieces of equipment operating in a given test 

machine, is run first thing Monday morning by first shift personnel.  A second set 

of tests, with the two pieces of equipment operating in a different test machine, is 

run Thursday afternoon by second shift personnel after the two pieces of equipment 

have been operating all day.  The results of the tests are compiled and the results 

announced. 

Unwittingly, though, several effects have entered into the experiments that the 

designers did not consider and that may have compromised the results.  First, the 

fact that one set of tests was run using one test machine and the other using a 

second test machine has introduced an effect based on the machines used, since 

these machines were not checked to verify that they yield equal test results for the 

same piece of equipment.  Second, the fact that one set of tests was run on 

equipment that was just starting up and the other after the equipment was operating 

for awhile has introduced a warm-up effect, since the equipment being tested may 

need to operate for awhile before achieving a steady-state level of performance.  

Third, the fact that one set of tests was run by first shift personnel and the other by 

second shift personnel has introduced an effect of operator, since the different 
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personnel may have different levels of training and experience and may not operate 

the equipment in the same fashion. 

None of these effects represent something that is of interest to the 

experimenters.  They are not, for instance, interested in whether there is a differing 

level of operator capability between first and second shift personnel, at least not at 

this point.  However, this and the other effects may have had a substantial influence 

on the final outcome of the tests.  Now, it may be the case that the overall results of 

the tests would not have changed had these effects been accounted for, but the point 

is that this cannot be known for sure without having accounted for them, and the 

test results as obtained may be spurious. 

When designing experiments, usually the researcher wants to determine 

whether a particular item or items have an effect on an outcome of interest.  These 

items that may or may not have an effect are known as the factors that are being 

investigated (Walpole and Myers, 1972).  Each factor, in turn, will have different 

settings to be used for determining whether the factor does in fact have an effect on 

the outcome of interest.  These settings are known as the levels for the factor 

(Walpole and Myers, 1972).  Normally what is done is to decide what factor(s) will 

be examined, and then design a set of experiments to test various levels of each 

factor and compare the results obtained at each level. 

Along with deciding what factors and levels should be included in the 

experiments, it should be decided as to exactly what hypothesis will be evaluated.  

When comparing the effects of different levels of a factor, the normal procedure is 
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to put forth a hypothesis that the choice of level makes no difference, i.e. the factor 

does not have any statistically significant effect on the outcome (Walpole and 

Myers, 1972).  This hypothesis is referred to as the null hypothesis, usually 

rendered symbolically as H0.  The counterpart to the null hypothesis is the 

alternative hypothesis (usually symbolized as H1), which states the converse of the 

null hypothesis, i.e. that the choice of level for the factor does have a significant 

effect on the outcome.  In simple experiments there may be only one null 

hypothesis under examination, while in more complex experiments there may be 

several. 

The concepts of factors, levels, and hypothesis testing can be illustrated by 

returning to the example of the equipment tests.  This example has one factor of 

interest, namely the piece of equipment being tested.  This factor has two levels, 

one for each manufacturer of the piece of equipment.  There will be a single null 

hypothesis that will be evaluated, which will be that there is no difference between 

the performances of the pieces of equipment based on which manufacturer supplied 

them.  The experiments should be designed around testing the factor at each level, 

or in this case testing the piece of equipment from each manufacturer.  But, what of 

the extraneous factors?  It has already been shown that there are other elements in 

this example that could have an effect on the outcome.  These elements are not of 

interest to the experiments, but since they could have an effect on the outcome they 

are factors and must be dealt with as such. 
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One way of dealing with the extraneous factors is to try to eliminate them from 

the experiments.  In the example, the test machine factor could be eliminated by 

ensuring that all experiments are run on the same test machine.  Likewise, the 

warm-up factor could be eliminated by ensuring that all experiments are run only 

after the equipment has been in operation for awhile.  Finally, the personnel factor 

could be eliminated by ensuring that all experiments are conducted by the same 

operators. 

Sometimes, however, eliminating the effect of the unwanted factors may not be 

feasible.  It may not be possible, for instance, to conduct all the experiments on the 

same test machine or run the equipment for extended periods to get them to steady-

state due to time constraints.  It may also be the case that the first shift personnel 

were needed for other efforts and were unavailable for the second round of tests.  In 

such cases as these, where the unwanted factors cannot be eliminated, there are 

techniques available for accounting for them without removing them. 

Factors that do not have their effects included in the experimental results but 

that have been accounted for are said to be blocked.  Blocking factors have had 

their effects statistically pooled into a block that can then be removed from the 

overall effects (Montgomery, 2001).  In the case of the example, it would be wise 

to block on the test machine, warm-up, and personnel factors to account for and 

statistically remove their effects from the experiments. 

In order to be able to properly account for the effects of factors, it is necessary 

that a reasonable number of repetitions of the experiment be performed.  Just as 
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flipping a coin twice might yield one head and one tail, attempting to discover the 

true nature of the probabilities of coin flipping would be better accomplished by 

increasing the number of times the coin is flipped.  Normally it is not necessary to 

conduct thousands of repetitions of an experiment.  There are statistical techniques 

available that can produce excellent results with only a relatively small number of 

repetitions (from as few as around ten to a few hundred, depending on the number 

of factors and levels to be considered) (Montgomery, 2001).  These techniques will 

be discussed in the next section. 

It is also wise to include the element of randomness when designing 

experiments.  Randomness helps to ensure that the results of one experiment will 

not be related to the results from a previous experiment (a condition known as 

correlation) (Montgomery, 2001).  In the example, it may be the case that the test 

machines lose a little bit of their calibration with each successive test that is run.  If 

all the pieces of equipment from manufacturer A are tested before the pieces from 

manufacturer B, it stands to reason that the results for the pieces from manufacturer 

A will be more accurate.  While this form of correlation cannot be eliminated 

entirely (assuming it is infeasible to re-calibrate the machines after every test), it 

can be mitigated somewhat by randomizing the order in which the pieces from the 

two manufacturers are tested.  Also, while in the example the simplest way to 

reduce correlation might be to alternate the testing of pieces from the two 

manufacturers, in many other problems it might not be so simple, and thus 

randomization is the recommended approach.  A DOE that includes one or more 
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blocking factors (each containing all levels of the factor to be studied) and that has 

been randomized in its setup is called a Randomized Complete Block Design 

(RCBD) (Montgomery, 2001).  Such a DOE was used in the course of this research 

to allow comparison of the results obtained by the new algorithm with those 

obtained by other algorithms for the same problem instances. 

1.2.3.2 Evaluating Results of Experiments 

As important as it is to properly design an experiment to ensure that the correct 

results are obtained, it is equally important to properly evaluate the results to ensure 

that the correct conclusions are drawn.  The benefits of a well-designed experiment 

are lost if the results of that experiment are improperly interpreted.  There are two 

general categories of errors that may arise when interpreting the results of 

experiments:  Type I errors and Type II errors (Walpole and Myers, 1972).  Type I 

errors occur when, as a result of the interpretation of the experimental results, the 

null hypothesis is rejected when it is actually true.  Type II errors occur when the 

null hypothesis is affirmed when it is actually false. 

Knowing whether the null hypothesis is in fact true is never a matter of absolute 

certainty in an experimental setting (if it could be known with absolute certainty, 

then there would be no need of an experimental setting to test it).  Instead, the idea 

is to know whether an asserted hypothesis is true with a given probability.  Two 

symbols are used:  α, which represents the probability of a Type I error and is often 
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referred to as the significance level, and β, which represents the probability of a 

Type II error.  The normal method of evaluating experimental results is to interpret 

the results using a specified significance level, which is set to a value representing 

the acceptable amount of risk of incorrectly rejecting a factual research hypothesis 

(Montgomery, 2001). 

There are many statistical tools available to assist with the evaluation process.  

The types of tools that should be employed are dependent on the nature of the 

experiments and the null hypothesis to be tested.  For instance, if only two levels of 

a factor are being compared, there are some tests that are suitable for that type of 

comparison.  On the other hand, if multiple factor levels are to be simultaneously 

compared, there are different tests that are suitable for that type of comparison.  

Also, if a statistical package is being used to conduct the analysis, the types of tools 

available and how they are employed will be dependent on what tools are provided 

by the statistical package and how they are implemented by that package.  Since the 

experiments conducted for this research effort utilized the SPSS statistical package 

to conduct the analysis of the results, the tools that were used to conduct that 

analysis and how they are presented by SPSS will be introduced. 

1.2.3.2.1 Graphical Analysis Tools 

Some of the simplest and most aesthetically pleasing tools for analyzing 

experimental results are the graphical analysis tools.  By presenting a visual 
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depiction of the data, graphical tools give the researcher a concise overall view of 

the results of the experiments.  Sometimes these graphical views are even enough 

to provide the researcher with sufficient information to draw valid conclusions 

regarding research hypotheses, although one must be very careful when doing so 

since what appears to be a significant result on a graphic may not turn out to be so 

when rigorous mathematical tests are applied (and vice versa).  Of the variety of 

graphical tools available, four general types were used in this research effort. 

The first type of graphical tool used was the box plot.  A box plot is used to 

display summary information regarding ranges of data values for one or more 

categories.  For each category on the plot, there is a box with one line drawn 

through it.  The box represents the values in the range that fall between the 25th and 

the 75th percentile, also called the inter-quartile range (quartiles being the 25th, 

50th, and 75th percentiles of the values), with the line representing the median value 

of the range.  On opposite ends of the box are lines that extend out to some value in 

the range, often referred to as the whiskers of the diagram.  There are several 

variations of exactly what values are represented by the end of the lines 

(Montgomery and Runger, 1999), but the SPSS package denotes the ends of the 

lines to be the maximum and minimum values of the range, excluding outliers 

(outliers are values that are considered to be significantly rare and extreme) (SPSS, 

2001).  The SPSS package also plots the outliers and their values outside the box 

plot range lines. 
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Exhibit 1 shows an example box plot generated by the SPSS package.  It shows 

seven category levels of a particular factor along the X axis, and the value range 

scale along the Y axis.  It also shows three examples of how outlier values are 

displayed on a box plot by SPSS. 
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Exhibit 1.  Example Box Plot Generated by SPSS 

The second type of graphical tool used was the line plot.  A line plot is used to 

show comparisons of a variable’s value for two or more categories.  The categories 

are listed along the X axis, with a scale of values along the Y axis.  For each 
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category, a value is plotted, and then a reference line is drawn connecting the 

plotted points to assist in visualizing the comparison between the values.  It is also 

possible to show the values for multiple variables in order to compare not only the 

values of those variables between categories, but also the values of those variables 

against the values of the other variables for the same category. 

Exhibit 2 shows an example line plot generated by the SPSS package.  It shows 

the comparison between values of three variables for seven categories.  Different 

line types and point markers were used to distinguish between the lines and points 

for the three variables.  A legend appears at the right to identify which variable uses 

which line types and point markers. 
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Exhibit 2.  Example Line Plot Generated by SPSS 

The third type of graphical tool used was the P-P plot.  A P-P plot is used to 

show how well the observed data points of a variable match a particular type of 

probability distribution.  Both axes of the plot are scaled in terms of cumulative 

probability, meaning that each point on an axis represents the proportion of values 

that occur with less than that probability (SPSS, 2001).  The X axis represents the 

cumulative probability for the data points observed in the variable, and the Y axis 

the cumulative probability expected for the particular test distribution type.  Points 

are plotted showing the relationship between the observed probabilities and the 
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expected.  A straight line is marked on the plot showing where the relationship 

points should be plotted if the variable exactly matches the test distribution type.  

The closer the points actually are to this line, the closer the variable matches the 

test distribution type. 

Exhibit 3 shows an example P-P plot generated by the SPSS package.  In this 

example, the test distribution type of interest is the normal distribution, so the plot 

is showing how well the observed data points for the variable match those that 

would be expected for a normal distribution.  The plotted points are always fairly 

close to the line in this example, but there are some places where they do stray 

somewhat.  This raises an alert that the variable might not be normally distributed, 

and that further testing using other methods is called for to make a final 

determination. 
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Exhibit 3.  Example P-P Plot Generated by SPSS 

The fourth and final graphical type used was the scatter plot.  A simple scatter 

plot (there are other types, not used in the research effort and thus not discussed 

here) is used to mark one variable’s values against those of another variable (SPSS, 

2001).  Because of this rather general nature, scatter plots can be used for a variety 

of purposes.  As will be seen in later sections, this research effort did make use of 

scatter plots in a number of different ways to convey different types of information. 

Exhibit 4 shows an example scatter plot generated by the SPSS package.  Points 

are shown on the plot identifying the mapping of the values for the variable 
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represented by the X axis to the values of the variable represented by the Y axis.  

Reference lines can also be included on these plots to show a fit to the pattern of 

the plot, or the mean value of the plotted points with respect to one axis’ values. 
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Exhibit 4.  Example Scatter Plot Generated by SPSS 

1.2.3.2.2 Analysis of Variance 

Graphical analysis tools provide a very good means of presenting an overall 

summary view of experimental results.  However, as mentioned earlier it is risky to 

develop conclusions regarding the experiments solely on the basis of the data 
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provided by the graphics.  While graphical tools can provide good supporting 

evidence in support of conclusions, solid mathematical methods will render them 

much more concrete. 

The choice of methods to use is dependent on the DOE employed since, as also 

mentioned previously, different statistical methods are apropos for different 

situations.  For situations requiring a comparison of multiple factor levels, the 

Analysis of Variance, or ANOVA, serves very well.  So well, in fact, that 

Montgomery states that ANOVA “is probably the most useful technique in the field 

of statistical inference” (Montgomery, 2001). 

The ANOVA procedure contains a fair amount of mathematical calculations 

that are not germane to this discussion (and that are accomplished automatically by 

statistical packages anyway).  The main point is that the ANOVA procedure 

recognizes that in any set of experiments there is bound to be a certain amount of 

variance within the results.  This variance can stem from a variety of sources.  

Some of it is due to pure random error.  Some of it can be due to the effects of 

particular factor levels.  The ANOVA procedure uses its mathematical techniques 

to attempt to partition the variance in the experiments according to the sources that 

caused it.  The objective is to determine if the variance attributable to the effects of 

factor levels is sufficiently larger than that which could be expected from random 

error.  If so, this is a strong indication that the factor levels are having a significant 

effect on the outcome of the experiments. 



 35 

To perform an ANOVA, a model of the experiments needs to be constructed.  

Included in the model should be all factors for which a comparison is desired, plus 

any blocking factors.  Blocking factors need to be included since their effects could 

be significant and must be accounted for, even if those effects are not of interest.  If 

it is suspected that there might be effects from interactions between two or more of 

the factors, those interactions also need to be included in the model. 

Once the model has been constructed, the ANOVA calculations can be carried 

out.  There are variations between statistical packages in how they present their 

ANOVA results, but generally there is a table showing a breakout of the total 

variance in the experiments, how much of it was attributed to each source, and 

some mechanism for determining which sources contributed a sufficient amount to 

be deemed as having a significant effect on experiment outcomes. 

By examining the results of an ANOVA, the researcher is able to verify or 

reject a hypothesis that different factor levels have no effect on experimental 

outcome.  The results of the ANOVA can be combined with the supporting 

evidence from the graphical tools to form a basis for forming solid research 

conclusions.  The next section will show how this can be done using the SPSS 

statistical package. 
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1.2.3.2.3 Evaluating Experimental Results Using SPSS 

When conducting experiments to compare the effects of multiple factor levels 

on a variable, as was done for this research effort, the evaluation of the 

experimental results will center on the ANOVA.  Exhibit 5 shows an example 

ANOVA result generated by the SPSS package.  The sources of variance in the 

experiment are listed on the left.  The “Error” source represents the variance 

coming from random error.  The “Corrected Model” and “Intercept” sources are 

those coming from the model itself.  The “Factor 1” and “Factor 2” sources show 

the amount of variance due to the effects of those factors. 

Dependent Variable: Performance Ratio

6.007b 55 .109 28.126 .000 .840 1546.931 1.000

71.094 1 71.094 18307.321 .000 .984 18307.321 1.000

3.770 49 7.693E-02 19.811 .000 .768 970.750 1.000

2.238 6 .373 96.030 .000 .662 576.181 1.000

1.142 294 3.883E-03

78.243 350

7.149 349

Source

Corrected Model

Intercept

Factor A

Factor B

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

R Squared = .840 (Adjusted R Squared = .810)b. 

 

Exhibit 5.  Example ANOVA Results Generated by SPSS 

There are quite a few numbers listed on the diagram, but the primary ones of 

interest are those in the column marked “Sig.”.  Recalling that statistical packages 

have some mechanism for determining which sources of variance are significant, 

SPSS uses the values in this column for that purpose.  If a value in this column is 
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less than the researcher-specified significance level for the analysis, the 

corresponding source of variance is deemed significant (SPSS, 2001).  In this 

example, the bottom of the diagram shows that a significance level of 0.05 (the 

“alpha” value) was used.  Looking at the values in the “Sig.” column, all are less 

than 0.05.  Therefore, the model itself is shown to contain variance that cannot be 

attributed to random error alone, and thus something else must be contributing to 

the experimental outcomes.  Since both Factor 1 and Factor 2 have values less than 

0.05 they are shown to be contributors, and that their level settings do matter to the 

experimental outcomes. 

Though the ANOVA results provide the focus of the evaluation, there are 

several other items that must be taken into consideration when performing the 

analysis.  First, ANOVA assumes that the error in the experiments is random and 

normally distributed (Montgomery, 2001).  To check this assumption, both a 

Residual Normal P-P Plot and a Kolmogorov-Smirnov Normality Test (Massey, 

1951) can be generated.  Both use the residuals of the experiments as their test 

basis.  Residuals are differences between the observed value of a variable for a 

given factor level and its average value for that factor level, and are commonly 

used to check the adequacy of an ANOVA (Montgomery, 2001).  An example of a 

P-P plot has already been shown.  Exhibit 6 shows an example of the Kolmogorov-

Smirnov test.  The example shows the values used in the calculation of the test.  

The line marked “Asymp. Sig. (2-tailed)” shows the result.  If this number is 

greater than 0.05, the test indicates that the variable being tested is normally 
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distributed (SPSS, 2001).  In the example this value is 0.500, indicating the test 

variable is normally distributed. 

 

350

.0000000

.03467621

.044

.044

-.029

.827

.500

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Dep. Var.

Test distribution is Normal.a. 

Calculated from data.b. 

 

Exhibit 6.  Example Kolmogorov-Smirnov Test Generated by SPSS 

Another assumption of ANOVA is that the residuals should be non-structured 

(Montgomery, 2001).  That is, when examining the residual values against 

predicted observation values or over time, they should not show any obvious 

patterns such as consistent widening or narrowing (sometimes called a megaphone 

effect).  Scatter plots can be used to plot observed residuals versus predicted 

observation values or observed residuals versus time sequence to test this 

assumption.  An example of a scatter plot has already been shown; the only 

difference would be what values are being represented by the two axes of the plot. 
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If the assumptions of the ANOVA do not hold, an alternative technique is 

available for testing hypotheses of equality of effect between factor levels.  This 

technique is called the Kruskal-Wallis test (Kruskal and Wallis, 1952).  Exhibit 7 

shows an example of what this test looks like.  The different factor levels are 

mathematically assigned a ranking, and the test determines whether the rankings 

are significantly different.  The value on the line marked “Asymp. Sig.” shows the 

conclusion of the test.  If this value is less than 0.05, the factor level effects are 

determined to be different (SPSS, 2001).  In the example, the value is 0.000, 

indicating a significant factor level difference. 

Ranking Test Statisticsa,b

97.397

6

.000

Chi-Square

df

Asymp. Sig.

Dependent
Variable

Kruskal Wallis Testa. 

Grouping Variable: Test Variableb. 

 

Exhibit 7.  Example Kruskal-Wallis Test Generated by SPSS 

If the results of the Kruskal-Wallis test concur with those of the ANOVA, this 

indicates that the original ANOVA results are trustworthy in spite of the failed 

assumptions.  If the results do not concur, the Kruskal-Wallis results should take 

precedence. 
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Since for many analyses of experiments (and indeed for this research effort) the 

goal of the analysis is to determine if there is any difference between factor levels, 

and since for the purposes of this research the interest was in finding optimal 

solutions to combinatorial optimization problems, once it has been determined by 

an ANOVA and/or a Kruskal-Wallis test that a particular factor does exert a 

significant effect on the outcome of the experiment it is important to know which 

levels of the factor tend to produce the best results.  This can be accomplished by 

producing a list of homogeneous subsets of factor levels.  This test will divide the 

possible factor level settings into subsets based on which level settings tend to 

produce results that are significantly different from other levels.  That is, level 

settings that generate results that are statistically indistinguishable from each other 

will be grouped together into subsets.  Using this list of subsets, it will be easy to 

see which level settings produce the best results. 

Tukey (Tukey, 1953) and Duncan (Duncan, 1955) each developed a method for 

determining the homogeneous subsets, and SPSS can utilize each of these popular 

methods to generate a list of subsets.  Exhibit 8 shows an example of a list of 

homogeneous subsets generated by SPSS using both of these techniques.  In this 

example there are five factor levels for the given factor.  Tukey’s method assigns 

the five levels into four homogeneous subsets, with factor level 1 generating the 

highest value and factor levels 4 and 5 generating the lowest value (factors 4 and 5 

being indistinguishable from each other).  Duncan’s method gives slightly different 

results, assigning each of the five factor levels into its own subset.  Still, though, 
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level 1 produces the highest value and level 5 the lowest.  So, though the Tukey 

and Duncan methods do not agree entirely on the subset designations, they both 

agree that factor level 1 will tend to produce the highest result value for the 

experiment, while factor level 5 will tend to produce the lowest result value. 

49 .3203544

56 .3346349

70 .3675620

98 .4194931

77 .4682279

.231 1.000 1.000 1.000

49 .3203544

56 .3346349

70 .3675620

98 .4194931

77 .4682279

1.000 1.000 1.000 1.000 1.000

Factor Level

5

4

3

2

1

Sig.

5

4

3

2

1

Sig.

Tukey HSDa,b,c

Duncana,b,c

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.554E-03.

Uses Harmonic Mean Sample Size = 66.013.a. 

The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are
not guaranteed.

b. 

Alpha = .05.c. 

 

Exhibit 8.  Example Homogeneous Subsets List Generated by SPSS 

By using statistical techniques such as ANOVA and Kruskal-Wallis, research 

hypotheses regarding equality of effect of factor levels on an experiment can be 

verified mathematically, giving the researcher (and the evaluators of the research) a 

high level of confidence in the validity of the research experiments.  By further 
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evaluating the basis of an ANOVA to confirm its conclusions and using graphical 

tools as supporting evidence, the experimental results are made that much stronger.  

These methods were used in this research effort for just that purpose:  to place the 

evaluation of the algorithm test experiments on a concrete foundation. 

1.3 A New Method for Solving Combinatorial 

Optimization Problems 

Having discussed the concepts behind combinatorial optimization problems and 

statistical analysis of research hypotheses, it is time to introduce the reason for 

which a basic knowledge of those concepts is necessary, and for which this 

research was embarked upon.  That reason is the new algorithm developed for 

solving combinatorial optimization problems. 

This new algorithm is called Gravitational Emulation Local Search, or GELS.  

As its name implies, GELS is a heuristic, local search technique.  In addition, it is 

repair-based, and it belongs to the class of techniques that emulate some natural or 

physical process like simulated annealing and genetic algorithms. 

GELS takes as its basis the natural principles of gravitational attraction.  

Gravity works in nature to cause objects to be pulled towards each other.  The more 

massive the object, the more gravitational “tug” it exerts on other objects.  Also, the 

closer two objects are to each other, the stronger the gravitational forces between 

them.  This means that a given object will be more strongly attracted to a larger, 
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more massive object than to another object of lesser mass at a given distance, and it 

will also be more strongly attracted to an object close by than to another, more 

distant object having the same mass (Sears et. al., 1987). 

GELS makes the attempt to emulate these processes of nature and use them to 

formulate a heuristic algorithm.  The idea is to imagine the search space as being 

the universe.  Contained within the search space are, hopefully, one or more valid 

solutions to the problem at hand.  Each of these solutions has a “mass” that is 

represented by its objective function value.  The better the solution’s objective 

function value, the higher its mass.  Locations within the search space that do not 

contain valid solutions are assigned a zero mass. 

A small object represented as a pointer is moving through the search space.  As 

it approaches a solution object, the mass of the solution object will cause the 

pointer object to be pulled towards it.  Newton’s laws of gravitational attraction are 

used to define how much gravitational “force” exists between the pointer object and 

the solution object. 

As mentioned in a previous section, a heuristic technique also needs to consider 

how it will attempt to avoid stopping at a local optimum.  GELS does this by virtue 

of the same principles of gravitation.  In nature, when one object is being pulled by 

gravity towards another, the pulled object will pick up speed.  In many instances, 

by the time the object being pulled reaches the object pulling it, it will have 

sufficient momentum to keep moving past the pulling object.  In some instances, 

the pulling object’s gravity will be sufficient to cause the pulled object to come 
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back to it, but in other instances the pulled object will move off towards other 

objects. 

GELS attempts to avoid getting stuck at local optima by emulating this process.  

As the pointer object approaches a solution object, the “speed” of the pointer object 

increases.  Once it reaches the solution (or passes by on one side or another), its 

speed in the original direction will decrease due to the fact that the solution object’s 

gravity is now pulling it back the way it came.  If the solution object’s gravity is 

strong enough, the pointer object will stop altogether, terminating the procedure.  

But, if the pointer object’s speed is sufficient, it will continue moving past the 

solution object.  The intention is that the “momentum” of the pointer object as it 

moves through the search space will be such that it will be able to bypass solutions 

of lesser quality, stopping only on high-quality solutions with better objective 

function values (indeed, hopefully at a solution with the best objective function 

value, a global optimum). 

At the time the idea for GELS was formulated, it was completely unknown as 

to whether it would perform at all as intended.  It was not even clear that the 

algorithm would produce a reasonable solution at all.  Gravity works very well in 

nature, but there are potential issues.  For example, there are gravitational forces 

between the Earth and the Sun.  However, instead of falling into the Sun, the 

interplay of the gravitational forces has caused the Earth to settle into a stable orbit 

around the Sun, continually moving instead of coming to rest.  While this is very 

good for the inhabitants of Earth, it would not be good if the same type of event 
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would occur in GELS.  This would mean that a solution would never be settled on 

and GELS would continue running indefinitely. 

There were many questions to be answered, even at an initial level.  Would an 

implementation of GELS, operating in an actual problem-solving environment, be 

able to produce valid solutions?  If it did, what would be the quality of the solutions 

produced?  How long would it take to find a solution?  Would it be able to find a 

global optimum?  Would it get stuck in an “orbit” around some solution without 

ever stopping? 

The only way to answer even these most basic questions was to implement the 

technique and test it against actual problem instances.  But there was another 

question that needed answering first:  why bother to study this algorithm at all?  

There are already a host of algorithms available for solving combinatorial 

optimization problems, some of them with very good track records for producing 

high quality solutions.  Given this situation, what would be the benefit of adding 

yet another algorithm to the mix? 

The answer to this question was twofold.  First, if further investigation would 

reveal that GELS could perform better than other algorithms, even occasionally on 

only one type of problem, then the question would become:  why not use it?  To be 

faced with solving a problem, having a solution method available that is likely to 

give the best solution, and then not using it, would seem to be illogical. 

On the other hand, if further investigation would show that GELS did not 

perform well, the investigation would still have not been in vain.  The literature is 
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replete with examples of algorithms that in general perform rather poorly, yet are 

still useful because they can be used as instruments for instruction on various 

concepts.  For example, consider simple backtracking.  This algorithm typically 

performs very poorly as a search method, yet even today it is used to teach 

principles of algorithmic procedure and systematic search.  In the same manner, 

even if GELS would not be a top performing algorithm, it could still be used as an 

example of methods that emulate processes that occur in nature to solve problems, 

and thus the research would not have been wasted. 

This, however, would be a worst-case scenario.  It was never intended that the 

study of GELS would be pursued with the idea in mind that it would not work well.  

Rather, it was hoped that GELS would perform admirably, in a variety of 

situations.  But, as stated it would not be possible to know for sure without fully 

developing the algorithm and putting it through some rigorous testing. 
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2 Analysis and Evaluation of the 

GELS Algorithm 
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2.1 Preliminary Work Done With GELS 

To begin a study of the GELS method, a conceptual framework was developed, 

and a preliminary design was produced.  At this point the algorithm was called the 

Gravitational Local Search Algorithm, or GLSA.  This name was later changed to 

GELS since there are a number of places in the literature where the initials GLS are 

used to refer to Guided Local Search (Voudouris and Tsang, 1995), and another 

identifier was wanted to avoid confusing the two procedures.  Two separate 

versions of GLSA were implemented, using the C programming language.  The 

two versions operated in essentially the same fashion, but with two key differences.  

The first version, dubbed GLSA1, used as its heuristic Newton’s equation for 

gravitational force between two objects, while the second, dubbed GLSA2, used as 

its heuristic Newton’s method for gravitational field calculation.  Additionally, in 

GLSA1 the pointer object moved through the search space one position at a time, 

while the pointer object in GLSA2 was allowed to move multiple positions at a 

time. 

Each of the two procedures had operational parameters that the user could set to 

fine tune its performance.  These parameters (and their four-character names as 

used in the procedure) were: 

• Density (DENS) – represented the relative “density” of the search space.  It 

was used as part of a calculation of “resistive” force that the pointer object 

would meet as it moved.  This resistive force was intended to help prevent 
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the pointer object from never slowing down and stopping.  It had a default 

value of 1.2 (the relative density of air) (Sears et. al., 1987). 

• Drag (DRAG) – represented the “drag coefficient” of the pointer object.  It 

was also used as part of the resistive force calculation, and had a default 

value of 0.5 (the drag coefficient of a relatively streamlined body) (Sears et. 

al., 1987). 

• Friction (FRIC) – represented the “motion coefficient of friction” of the 

pointer object.  It was also used as part of the resistive force calculation, and 

had a default value of 0.003 (the value for steel rolling on steel) (Sears et. 

al., 1987). 

• Gravity (GRAV) – represented the coefficient of gravity acting between two 

objects, and was used only in the GLSA1 version of the procedure.  It was 

used in the calculation of the gravitational force between the pointer object 

and an adjacent solution object.  It had a default value of 6.672 (as appears 

in Newton’s equation) (Sears et. al., 1987). 

• Initial Velocity (IVEL) – represented the maximum permissible initial 

“speed” of the pointer object in any possible dimension of movement.  It 

was used to put a bound on the initial speed of the pointer object as it began 

moving through the solution space when the procedure commenced.  It had 

a default value of 10 (an arbitrary setting). 
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• Iteration Limit (ITER) – the maximum number of iterations that the 

procedure could perform for a given run before being forcibly terminated.  

It was used to ensure that even if the pointer object did get into an “orbit” 

condition as described previously, or the procedure encountered some other 

difficulty in finding a solution, the procedure would still terminate.  If the 

procedure completed this number of iterations and the pointer object had 

not yet stopped moving, the procedure terminated regardless and returned 

the best solution seen to that point. 

• Mass (MASS) – represented the “mass” of the pointer object.  It was used in 

calculations where mass of an object was required.  It had a default value of 

1 (an arbitrary setting). 

• Radius (RADI) – represented the distance between two objects, and was 

used only in the GLSA1 version of the algorithm.  It was used in the 

calculation of the gravitational force between the pointer object and an 

adjacent solution object.  It had a default value of 2 (an arbitrary setting). 

• Silhouette (SILH) – represented the “silhouette area” of the pointer object 

as seen from the front.  It was another item used as part of the resistive force 

calculation, and had a default value of 0.1 (an arbitrary setting). 

• Threshold (THRE) – represented the threshold at which the speed of the 

pointer object in a given direction would be assumed to drop to zero.  It was 

used to prevent the speed of the pointer object in any direction from 
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asymptotically approaching zero but not ever actually getting there due to 

the rounding off of numbers and the precision limits of the calculations.  It 

had a default value of 2 (an arbitrary setting). 

To test the procedure, a problem had to be identified or created.  The problem 

needed to be simple enough that it could be easily generated and evaluated, yet still 

constitute a test of sufficient complexity that it would not be trivial.  The problem 

instance that was eventually settled on had as its basis a 10x100 matrix.  This 

matrix was populated with integer values ranging from zero to one hundred, and 

was to be searched for a ten-variable optimal solution.  The optimality of the 

solution was to be decided by an objective function that consisted simply of the 

sum of the integer values assigned to each variable of the solution. 

This problem type was chosen because it fit the bill both in terms of ease of 

generation and sufficient complexity.  Each instance of the problem could easily be 

generated by randomly assigning integer values to every location within the matrix.  

The optimal solution could be determined during problem instance generation by 

keeping track of which assignments of matrix row values to variables yielded the 

highest sum.  Yet, even though the problem instances were easy to generate and an 

optimal solution easy to determine, any procedure that would be used to search the 

matrix would not have this a priori knowledge and would simply be searching a 

large search space for a ten-variable solution.  Thus, tests run using one or more of 

these solution procedures would be valid since there was a large space to search 
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and the techniques used by the solution would not be dependent on the “short cut” 

to finding the optimal solution. 

Having chosen the problem, it was then necessary to select some solution 

methods to compare against GLSA.  To this end, it was decided to utilize two 

methods.  The first method would be a Monte Carlo, or random solution, whereby 

random assignments of elements from the search matrix would be made to each of 

the ten solution variables.  The other method to be used would be basic Hill 

Climbing.  The Monte Carlo solution was chosen because it was guaranteed to find 

a solution in time linear in the number of matrix rows, and because it would 

provide a good “starting point” for determining an average-quality solution that the 

other solution methods could then attempt to improve upon.  Hill Climbing was 

chosen as the other method because it is a simple, well-known example of a local 

search technique that could serve as a basic benchmark for local search 

improvement over the Monte Carlo solution. 

Together with the implementations of GLSA1 and GLSA2, the Monte Carlo 

and Hill Climbing procedures formed the test suite that would be used for the 

comparison tests.  To complete the scenario, a set of experiments had to be devised.  

When creating an instance of the problem, the capability existed to specify an 

integer parameter that would represent the probability of non-zero entries within 

the search matrix.  For example, by specifying a value of twenty for the parameter, 

each node of the matrix would have a 20% chance of being assigned a non-zero 

value when the matrix was generated.  By adjusting the parameter value between 
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zero and one hundred, the relative number of occurrences of quality solutions 

within the search matrix could be determined beforehand. 

With this capability in hand, the test scenario was set up as follows:  a series of 

problem instances was generated, at varying levels of solution availability.  

Specifically, ten tests each were conducted at parameter settings ten, twenty, thirty, 

forty, fifty, sixty, seventy, eighty, ninety, and one hundred, respectively.  For each 

test, a problem instance was generated and the optimal solution for that instance 

was recorded.  Then, the Monte Carlo procedure generated a solution, and the 

objective function value of that solution was recorded.  Using the Monte Carlo 

solution as a starting point, the Hill Climbing procedure was then run, and the 

solution it generated and its associated objective function value was recorded.  

Finally, using the Monte Carlo solution again as a starting point, each of GLSA1 

and GLSA2 was run and their respective solutions and associated objective 

function values were recorded.  This resulted in a grand total of one hundred tests 

being run comparing the four methods (Monte Carlo, Hill Climbing, GLSA1, and 

GLSA2) against the same data sets, using the same starting points. 

Approximately one dozen test scenarios were set up and run as described.  The 

results were then collected and analyzed.  The analysis showed that while none of 

the procedures “won” every test by generating the solution with the highest 

objective function value, some clearly performed better than others.  As expected, 

the Monte Carlo procedure produced a solution very quickly (in a single step), but 

the solutions were generally of poor quality.  The Hill Climbing procedure 
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generated solutions quickly (typically in two to five steps), and in almost all 

instances was able to improve upon the Monte Carlo solution. 

While these results were interesting, of primary interest in running the test 

scenarios was seeing how the GLSA procedures would perform.  To that end, the 

analysis indicated that both GLSA1 and GLSA2 were able to generate valid 

solutions, typically in twenty to twenty-five steps.  There were a very few cases 

where the particular sequence of gravitational effects engendered by a problem 

instance caused GLSA2 to cycle through the search space back to the same point, 

where the sequence would repeat.  This led to a potentially endless harmonic 

motion through the search space, and the algorithm had to be terminated by 

maximum iteration count. 

Like Hill Climbing, the solutions generated by both GLSA1 and GLSA2 were 

in almost all instances better than the Monte Carlo solution.  In addition, both 

GLSA1 and GLSA2 were in the overwhelming majority of instances able to 

generate solutions that were better than the solution produced by Hill Climbing.  In 

fact, in many instances the solutions produced by GLSA1/GLSA2 were 

substantially better than the Hill Climbing solution.  Lastly, the solutions produced 

by GLSA2 were on average better than those produced by GLSA1, and in a number 

of instances GLSA2 was able to locate the optimal solution when none of the other 

three methods had. 

Exhibit 9 is a graph of the results of the experiments pertaining to solution 

quality (Webster and Bernhard, 2003).  It shows the average difference between the 
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objective function value of the optimal solution and the objective function value of 

the solution produced by each of the algorithms.  Since the objective function value 

was the sum of the assignments to each of the ten variables in a solution, and since 

the maximum value that could be assigned to a variable was one hundred, the 

maximum value of the objective function was one thousand.  Thus, if the optimal 

solution value for a problem instance was nine hundred, and the solution value for 

one of the algorithm types for that problem instance was eight hundred, that 

algorithm registered a difference of one hundred for that problem instance.  The 

values in Exhibit 9 represent the average such distances for each algorithm type 

over all problem instances tested. 
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Exhibit 9.  Average Difference from Optimal, Early Experiments 
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Exhibit 10 is another graph of the results of the experiments pertaining to 

solution quality (Webster and Bernhard, 2003).  However, instead of showing the 

average distance of the algorithms’ solution qualities from the optimal, it shows the 

average improvement in solution quality over that obtained by the random Monte 

Carlo solution.  That is, if the objective function value of the Monte Carlo solution 

for a problem instance was four hundred, and the value for one of the algorithm 

types was five hundred, that algorithm posted a one hundred point improvement in 

solution quality over the Monte Carlo solution.  Once again, the values shown in 

Exhibit 10 represent the average value of such improvements over all problem 

instances tested. 
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Exhibit 10.  Average Improvement over Random, Early Experiments 
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Exhibit 11 is a graph of the results of the experiments pertaining to algorithm 

efficiency (Webster and Bernhard, 2003).  It shows the average number of 

iterations each algorithm took to arrive at a solution over all problem instances 

tested.  Since the number of iterations for the Monte Carlo solution was always 

one, it is not shown. 
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Exhibit 11.  Average Number of Iterations per Test, Early Experiments 

These early experiments with GLSA were very encouraging.  The algorithm 

had shown, over hundreds of problem instances, that it could generate noticeably 

better objective function values than random solutions and Hill Climbing solutions.  

The improved results were obtained at a cost of an additional twenty-three or 
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twenty-four iterations of the GLSA algorithm (on average, with no perceptible 

increase in overall execution time), well worth the price. 

2.2 Current Research Completed Using GELS 

With the promising results of the early experimentation with the GELS method 

in hand, it was decided that research should begin in earnest on a much more 

rigorous set of experiments with the algorithm.  This time a completely new set of 

experiments was designed from the ground up, one that would add the weight of 

statistical analysis to the raw data in addition to evaluation on multiple, difficult 

optimization problems.  It was hoped that results could be produced similar to those 

obtained by the early experiments, which would then be bolstered by that statistical 

analysis.  The details of this research, and its results, will now be described. 

2.2.1 Premises of the Research 

The first item to be decided for the new experiments was exactly what was to 

be tested.  As discussed in the background material, a proper DOE needs at least 

one null hypothesis and its corresponding alternate hypothesis.  The whole point of 

this follow-on set of experiments was to be how the GELS algorithm would 

perform in solving combinatorial optimization problems compared to other 

algorithms.  Obviously, then, there should be a null hypothesis to make a statement 

regarding algorithm performance. 
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In keeping with the general format for stating null hypotheses (and the one best 

supported by the SPSS package), it was decided that there would be a null 

hypothesis (and corresponding alternate hypothesis) as follows: 

H0 :  There is no difference between the ability of the GELS algorithm to 

improve on the solution qualities (i.e. objective function values) of 

random solutions and the ability of other algorithms to improve on the 

same random solutions for the same combinatorial optimization problems 

H1 : The GELS algorithm’s ability to improve on the solution qualities of 

random solutions is significantly different from the ability of other 

algorithms to improve on the same random solutions for the same 

combinatorial optimization problems 

Additionally, it was of interest to find out not only how well the GELS 

algorithm would perform in finding solutions, but also how efficiently it would 

perform in arriving at those solutions.  This led to a second null/alternate 

hypothesis formulation: 

H0 : There is no difference between the rate at which the GELS algorithm 

improves on the solution qualities of random solutions and the rate at 

which other algorithms improve on the same random solutions for the 

same combinatorial optimization problems 

H1 : The GELS algorithm improves on the solution qualities of random 

solutions at a significantly different rate than the rate at which other 
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algorithms improve on the same random solutions for the same 

combinatorial optimization problems 

For the sake of convenience, the first null hypothesis will hereafter be referred 

to as the performance hypothesis for the experiments, and the second null 

hypothesis will hereafter be referred to as the efficiency hypothesis for the 

experiments.  On first glance, it may appear that these hypotheses are somewhat 

trivial.  Specifically, how could it be reasonably expected that there is no difference 

between algorithms in their ability to improve on solution quality, or that there is 

no difference between the rate at which each algorithm achieves its results?  It 

would seem that these hypotheses are designed to fail, that almost any set of 

experiments would be able to cause them to be rejected. 

This is in fact partially true, but there is more to the story.  It is not a problem 

that the hypotheses are likely to be rejected.  In experiments such as these, where 

multiple items are being compared, the SPSS package wants to take the base view 

that there is no difference between the items and then try to prove that view to be 

incorrect (SPSS, 2001).  If successful in this, SPSS can then state an ordering to the 

items using the homogeneous subsets tests.  In this manner, if an SPSS analysis 

succeeds in rejecting the performance and/or efficiency hypotheses, it can also tell 

whether the performance/efficiency of the GELS algorithm is not only different, 

but better or worse than other algorithms.  So in that sense, the goal is much more 

than to simply reject the hypotheses and state that there are differences between the 
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algorithms; it is also to be able to state how much difference exists, and between 

which algorithms. 

2.2.2 Design of the Current Research Experiments 

Having decided upon the hypotheses to be tested in the research experiments, 

the next step was to prepare a DOE to test them.  A complete experimental 

environment was needed, to consist of: 

• A set of combinatorial optimization problem types to use as test problems 

• A set of algorithm types to use as test algorithms 

• A framework within which the tests of each of the test algorithms against 

each of the test problems would be conducted 

To select problem types to act as test problems, the goal was to choose a small 

representative sample that are well known and sufficiently complex to present a 

genuine challenge to solution algorithms.  To that end, three problem types were 

ultimately chosen: the Traveling Salesman problem (introduced in section 1.2.1.1), 

the Bin Packing problem (introduced in section 1.2.1.2) and the File Assignment 

problem (introduced in section 1.2.1.3). 

Each of these problem types easily met the criteria for selection.  They are all 

very familiar to and extremely well studied by researchers.  They are also all very 

difficult problems to solve, belonging to the class of problems known as NP-Hard 

(Garey and Johnson, 1979).  NP-Hard problems are among the most difficult to 
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solve, with most researchers believing that these problems are intractable, meaning 

that there is no known solution algorithm for them that can be accomplished in 

deterministic polynomial time (i.e. in NK steps for any input size N and constant 

value of K) (Cormen et. al., 1991).  Some very good approximation algorithms 

exist to aid in the solution of these problems under the appropriate conditions 

(Arora, 1998, Karmarkar and Karp, 1982, Papadimitriou, 1994).  However, these 

algorithms do not guarantee finding optimal solutions (hence the term 

“approximation”), and they do not change the fact that unless it can be shown that 

polynomial solutions exist for NP-Hard problems, such problems will remain 

difficult to solve optimally. 

Once the set of test problems was defined, a set of test algorithms was needed 

to solve them.  The goal here was to establish a small collection of well known 

algorithms suitable for comparison with the GELS procedure.  Chosen for inclusion 

in this collection were Hill Climbing, Simulated Annealing, and a Genetic 

Algorithm, all introduced in section 1.2.2.2.  The Hill Climbing algorithm was 

selected as a representative of a greedy algorithm, and also because of its prior use 

in the early experiments.  Simulated Annealing and the Genetic Algorithm were 

selected because of their popularity and because they are, like GELS, 

representatives of algorithms that are based at least in part on processes that occur 

in nature. 

With the sets of test problems and test algorithms in place, the one remaining 

item was to design the framework within which the test algorithms would be used 
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to solve the test problems.  This involved a number of decisions that had to be 

made regarding how the problems would be set up, how the algorithms would be 

configured to solve them, and how the comparisons between the algorithms would 

be conducted.  Of primary importance was rendering the “playing field” as level as 

possible in an attempt to remove as much bias from the experiments as possible. 

To accomplish this, it was decided to retain the same general mechanism that 

had been successfully used in the early experiments (Webster and Bernhard, 2003).  

This mechanism operated in the following manner: 

1. Generate an instance of a problem to be tested 

2. Generate a Monte Carlo (random) solution to the problem instance 

3. Using the Monte Carlo solution as a starting point, solve the problem 

instance using Hill Climbing 

4. Again using the Monte Carlo solution as a starting point, solve the problem 

instance using Simulated Annealing 

5. Again using the Monte Carlo solution as a starting point, solve the problem 

instance using the Genetic Algorithm 

6. Once more using the Monte Carlo solution as a starting point, solve the 

problem instance using GELS 

7. Repeat steps 1 through 6 for each problem instance to be tested 

Using this mechanism provided several benefits.  Generating a Monte Carlo 

solution for each problem instance could be expected, on average, to deliver an 

objective function value neither the worst possible nor the best, but somewhere in 
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the middle.  By using this solution as the common starting point for all the other 

algorithms, it ensured that all algorithms had an equal opportunity to improve upon 

the same solution.  Had each algorithm been allowed to have a different starting 

point, each could have begun in a different neighborhood of the solution space, and 

it could not have been known for certain whether improvements in solution quality 

obtained by each algorithm were due to its performance capability, or because it 

began in a more advantageous neighborhood.  By following the mechanism it was 

guaranteed that for every problem instance tested, each algorithm would begin in 

the same neighborhood and would be forced to realize any improvement based 

solely on its own merits. 

In addition, it was decided that each problem type would utilize a common 

neighborhood selection definition.  In doing so, when local search neighborhoods 

were needed each algorithm would construct them in exactly the same way.  Since 

the neighborhood plays such a vital role in determining how a local search 

algorithm will navigate through a search space, allowing each algorithm to 

determine its own neighborhood selection method could have given one algorithm 

an advantage over another by virtue of having neighborhoods that produced better 

search patterns. 

When deciding on configurations to use for each of the test algorithms, at first it 

was thought that it might be a simpler and easier matter to use prepackaged 

procedures.  There are a number of such packages available for use, and several 

were tried.  Ingber provides a general purpose Simulated Annealing package called 
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Adaptive Simulated Annealing (ASA) (Ingber, 1993).  Kliewer and Tschöke also 

describe a Simulated Annealing library called parSA (Kliewer and Tschöke, 1998).  

Goodman describes a Genetic Algorithm package called GALOPPS (Genetic 

ALgorithm Optimized for Portability and Parallelism System), produced by the 

Genetic Algorithm Research and Applications Group (GARAGe) at Michigan State 

University (Goodman, 1996).  Wall at the Massachusetts Institute of Technology 

provides another Genetic Algorithm package called GALib (Wall, 1996). 

After some examination, though, it was decided not to use any of the 

prepackaged procedures.  Though very sophisticated and capable of operation with 

many different parameter settings, using these procedures would have introduced 

some of the same biases that attempts had been made to avert with the design of the 

problem types.  Namely, in many cases they could not make the guarantee that all 

algorithms would use the same starting point and the same neighborhood selection 

method. 

Ultimately, it was decided that the best means of ensuring that as much control 

as possible was maintained over the experimentation process was to develop a 

custom-made framework.  Consequently, what emerged was a completely self-

contained environment written in C++.  Each of the test problems became a C++ 

class, with member functions to create problem instances, calculate objective 

function values, generate local search neighborhoods, solve the instances using 

each of the test algorithms, and output the results.  This ensured that each test 

would have the same problem instance being solved using the same objective 
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function definitions, by the same algorithm configurations, with the same 

neighborhood selection methods, and all within the same environment, designed 

specifically for these experiments by the same developer. 

2.2.3 Implementation of the Test Problems 

Creating the classes that would implement each of the test problems, though 

obviously requiring elements unique to each of the problem types, had a common 

theme.  Each class would have to be able to generate problem instances.  Each class 

would require methods for determining local search neighborhoods, calculating 

objective function values, and selecting Monte Carlo solutions.  Each class would 

require some way of keeping track of the solutions produced by the various 

algorithms for each problem instance, and would have to output them in a manner 

usable by SPSS for later analysis. 

The process of keeping track of solutions was handled by variables that stored 

the solutions and their associated objective function values as produced by each test 

algorithm.  Common print routines were then used to output the results to a flat text 

file that could later be loaded into SPSS.  How each of the problems implemented 

the other necessities will now be discussed. 
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2.2.3.1 Traveling Salesman Problem Implementation 

To implement the TSP class, a specific version of the problem had to be 

chosen.  As was the case with the other test problem types, over time the generic 

definition of TSP had evolved into several variations, each with its own special 

conditions.  The variant implemented used symmetric costs; that is, if going from 

city A to city B incurs a given cost, then going from city B to city A incurs the 

same cost.  This is one of the most straightforward versions of the problem, and 

was chosen for that reason. 

Generating problem instances for TSP involved creating an NxN symmetric 

matrix of integer values representing the cost to move from any one city on the tour 

to any other, where N was the given size of the problem instance (i.e. the total 

number of cities on the tour).  The matrix was populated by first setting all diagonal 

values to zero (since there is no cost for moving from city A to city A).  One half of 

the matrix was then initialized by generating random values between one and ten 

(ten being an arbitrarily determined maximum cost for any one movement).  The 

other half of the matrix was set to mirror the values of the first half to enforce 

symmetry of the matrix and of city movement costs (Stewart, 1973). 
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Determination of local search neighborhoods for TSP was accomplished by 

using a pair-wise rearrangement scheme (Aarts and Lenstra, 1997).  The procedure 

for this rearrangement was as follows: 

1. Start with a given solution (for which a neighborhood is to be generated) 

and an empty neighborhood 

2. Swap the first and last elements in the given solution 

3. Add the resulting solution to the neighborhood 

4. Set an index variable to the second element in the given solution 

5. Swap the element in the given solution indicated by the index variable with 

the preceding element in the given solution 

6. Add the resulting solution to the neighborhood 

7. Increment the index variable 

8. Repeat steps 5 – 7 until the index variable reaches the last element in the 

given solution 

Note that the given solution itself is never actually modified; each member of 

the neighborhood is produced by starting with the original solution as given and 

altering a copy of it to place in the neighborhood.  By using this method, the local 

search neighborhood would consist of N members for a problem instance of size N, 

meaning that the size of the neighborhood would grow linearly in the size of the 

tour, as opposed to the higher growth rates of some other methods. 

The objective function for TSP was calculated via the problem instance matrix 

previously described.  Since the definition of TSP states that a tour begins and ends 
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at a home city, it was stipulated that problem instance tours would always begin 

and end at city 0.  To calculate the objective function value for any given solution, 

the following procedure was accomplished: 

1. Start with an objective function value of 0 

2. Consult the problem instance matrix to find the cost of moving from city 0 

to the first city on the tour 

3. Add this cost to the objective function value 

4. Consult the problem instance matrix to find the cost of moving from the 

current city to the next city on the tour 

5. Add this cost to the objective function value 

6. Repeat steps 4 and 5 for each successive city on the tour 

7. Consult the problem instance matrix one last time to find the cost of moving 

from the last city on the tour back to city 0 

8. Add this cost to the objective function value to yield the final total 
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The other item required for the TSP class definition was a mechanism for 

determining Monte Carlo solutions.  This was done by completing the following 

procedure: 

1. Start with an empty Monte Carlo Solution 

2. Generate a random integer between 1 and N (N being the number of cities 

on the tour) 

3. Make this value the first city on the Monte Carlo tour 

4. Generate a random integer between 1 and N 

5. If the city represented by this value is not already on the Monte Carlo tour, 

add it to the end of that tour, otherwise go back to step 4 

6. Repeat steps 4 and 5 until all of the N cities have been included, giving a 

complete Monte Carlo tour for the problem instance 

2.2.3.2 Bin Packing Problem Implementation 

As with TSP, there are a number of variants of BPP that have evolved, and one 

of them had to be selected for implementation.  The particular version selected was 

the 1-Dimensional BPP which, as described in the problem introduction, consists of 

adding objects of one dimension (size) to bins that are also of one dimension.  This 

is in contrast to other variants such as the 2-Dimensionsal BPP, where the objects 

and bins have length and width dimensions, and was selected for its relative 

simplicity. 
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Generating problem instances for BPP was a simple process of generating a 

series of N random integer values, where N was the given size of (i.e. number of 

objects in) the problem instance.  Each value would range between one and fifty 

(half the predefined size of a bin).  Each value represented the size of one object to 

be put into a bin, and at the outset each object was assigned to its own bin.  Thus, 

each problem instance would consist of N objects in N bins. 

Determination of local search neighborhoods for BPP was a somewhat more 

complex process (Kochetov and Usmanova, 2001).  To accomplish this task, the 

following procedure was used: 

1. Start with a given solution (for which a neighborhood is to be generated) 

and an empty neighborhood 

2. Establish a counting variable with an initial value of 1 

3. Make the first bin in the given solution the current bin 

4. If  the current bin contains at least as many objects as the value of the 

counting variable, move a number of objects equal to the value of the 

counting variable to the next bin (if the current bin is the last bin in the 

given solution, move the object(s) to the first bin), and add the resulting 

solution to the neighborhood 

5. Repeat step 4 for each bin in the given solution, or until there are N 

solutions in the neighborhood 
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6. If all bins in the given solution have been examined, and there are still less 

than N solutions in the neighborhood, increment the counting variable and 

go back to step 3 

Objects were stored in bins as if in a queue.  Thus, when moving a certain 

number of objects from one bin to another, the objects were taken from the front of 

the first bin’s queue in order and added to the end of the second bin’s queue in the 

same order.  Again, as with TSP the original given solution was not actually 

modified, but copies of this solution were altered according to the aforementioned 

neighborhood generation procedure in order to be added to the neighborhood.  Also 

as with TSP, this procedure produced a local search neighborhood that grew 

linearly in the size of the problem instance.  Note that altering the original given 

solution as indicated in the procedure could lead to neighborhood solutions that 

were invalid (e.g. a bin with exceeded capacity).  This situation was dealt with by 

assigning invalid solutions a particular objective function value, as will be seen 

momentarily. 

Calculating the objective function for solutions was a simple matter of counting 

the number of non-empty bins – this number would then be the objective function 

value.  There is normally not as much variation between high quality and low 

quality solutions for BPP as there is for TSP, and methods such as computing the 

average percent full over all bins can be used to further distinguish between 

solutions.  While these methods may serve to widen the potentially narrow spread 

of solution qualities, it was decided that since the objective of BPP is to minimize 
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the number of bins to store all the objects, the objective function should be a direct 

reflection of this fact.  Hence, the procedure of using the number of non-empty bins 

in a solution as its objective function value was retained.  Any invalid solutions that 

may have appeared as a result of neighborhood generation were assigned an 

objective function value of N + 1.  Since the worst possible valid solution for BPP 

has each object in its own bin (thus giving N non-empty bins), an objective 

function value of N + 1 ensured that invalid solutions would always have a worse 

value than any valid solution.  Since, as stated, problem instances began with each 

object in its own bin, this guaranteed that at least one solution would be present 

with an objective function value less than N + 1, and hence no invalid solution 

could ever be returned by any algorithm as the best solution seen. 

To generate Monte Carlo solutions for BPP, the following procedure was used: 

1. Start with the original problem instance solution (each object in its own bin) 

2. Select the object in the first bin as the current object 

3. Randomly reassign the current object to one of the N bins in the original 

solution (possibly back where it started) 

4. Check the validity of the reassignment (i.e. would assigning that object to 

that bin cause the bin’s capacity to be exceeded) 

5. If the reassignment is not valid, repeat steps 3 and 4 until the reassignment 

is valid 

6. Repeat steps 3 – 6 for each object in the original problem instance solution 
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2.2.3.3 File Assignment Problem Implementation 

Like TSP and BPP, to implement the FAP class required the selection of a 

specific version of the problem.  There were many considerations:  how many 

devices to use, how many files to use, what kind of device accesses to account for 

and how to represent them, what kind of costing should be used to formulate an 

objective function, etc.  Here again the decisions came down to matters of 

straightforwardness.  It was never intended that the experiments should represent 

solution patterns for some exotic special cases of FAP, but rather that they would 

show solution patterns for a very generic form of the problem (this was in fact the 

case when making similar considerations for all test problem types). 

Consequently, it was decided to build the problem instances around an actual 

benchmark for database access:  TPC-H.  TPC-H stands for Transaction Processing 

Performance Council – H, and is a standard for testing query processing efficiency 

for decision support databases (TPC, 2002).  It posits a collection of eight database 

tables, against which twenty-two separate queries will be executed.  Using this 

standard, a table was constructed listing the number of “hits” that would occur 

against each table in the database for a single execution of each of the queries.  Hits 

were determined by examining the queries and looking for references to the tables 

in the “FROM” clause of the Structured Query Language (SQL) code used to 

formulate the queries.  If a particular table was to be selected from in a given query, 

it would count as a hit against that table for each execution of that query. 
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Of course, the exact number of times a particular table will be accessed cannot 

be determined simply by examining a query.  The number of accesses will be 

determined by the amount of data in the table, interactions with other tables, filters, 

etc., all data that are unavailable in these experiments due to the fact that hypothetic 

tables are to be stored on hypothetic devices.  Once again, the principle of 

straightforwardness prevailed, and the rule became “one table reference, one hit”.  

That is, if a particular table was referenced once in the “FROM” clause of a given 

query, that table would register one hit per execution of that query.  If the table was 

referenced multiple times, as could occur with table joins, the table would register 

one hit for each reference in the query. 

Once this cross-reference of queries and table hits was constructed, it became 

possible to get a relative gauge of how frequently tables were being accessed by 

query executions.  Armed with this information, problem instances could be 

constructed by generating a sequence of executions of any of the twenty-two 

queries, each one in the sequence randomly selected.  Given a number of total 

queries to process, the total number of hits registered against each table could be 

calculated and noted.  Each table was then assigned to one of the available devices 

in a round-robin fashion, beginning with the first device.  The number of these 

devices was set to four, each with a simulated size of thirty-six gigabytes.  This was 

done to mimic a recommended minimum setup for a commercial database 

installation, using commonly available disk sizes (Oracle, 2002).  Each table was 
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set to a simulated size of eight hundred megabytes, in order to allow for the 

possibility of all tables being stored on a single device with room for overhead. 

Defining local search neighborhoods for FAP was accomplished in much the 

same manner as for BPP.  The only differences between the neighborhood 

generation procedure for BPP and the one for FAP were: 

1. Instead of moving objects from one bin to the next, tables were moved from 

one device to the next 

2. Since each device was capable of holding all the tables, there was no 

possibility of an invalid solution being generated by the procedure 

3. The size of the neighborhood was relative to the number of tables and 

devices rather than the number of objects and bins 

Other than these three differences, the neighborhood generation procedures for 

the two problem types were identical.  This produced fixed-size neighborhoods, 

due to the fact that problem sizes for FAP were determined not by the number of 

tables and/or devices (which were static), but by the number of queries to be 

executed against them. 

In defining the objective function for FAP, again there were many options.  

Dowdy and Foster, in their seminal paper on FAP, described a number of different 

cost indicators that could be optimized (Dowdy and Foster, 1982).  The final 

selection was made based on a factor that would be of common interest to database 

administrators, namely disk contention.  Database administrators, this author 

among them, are keenly interested in maintaining a high level of performance from 
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their databases, and one of the methods for doing this is to monitor storage devices 

for unbalanced access rates. 

Along these lines, Bernhard and Fox outlined a method for using minimum 

database device contention as an objective function measure (Bernhard and Fox, 

2000).  This measure was the initial one implemented, but in test runs it was 

discovered that the same objective function values were being produced by all the 

test algorithms on almost all problem instances.  This turned out to be because the 

most active tables in the TPC-H queries were setting a lower bound on the possible 

minimum device contention value.  Consequently, it did not matter on which 

device these most active tables were placed or what other tables were placed with 

them; because of their influence the minimum device contention values were 

always identical for any given problem instance.  Since Bernhard and Fox had 

success with this measure in their work, this situation would appear to be a function 

of the particular TPC-H query structure and device configuration used to 

implement the problem. 

Because of this issue, the final objective function was defined to be the average 

device contention over all queries instead of the minimum device contention.  This 

allowed some form of device contention to be retained as a measure of FAP 

objectives, and test runs showed that by using this measure it did make a difference 

on which device and with which other tables the most active tables were stored.  

Thus, the objective function value for FAP became the average number of hits per 

device over the course of a certain number of queries. 
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As with the local search neighborhood definitions, generating Monte Carlo 

solutions for FAP was done in much the same way as for BPP.  Each of the eight 

TPC-H tables was randomly assigned to one of the four available devices.  The 

Monte Carlo solution thus became a particular mapping of the tables to the devices. 

2.2.4 Implementation of the Test Algorithms 

Having defined classes that implemented each of the test problem types, it was 

then necessary to implement each of the test algorithm types.  Each algorithm was 

implemented as a member function for each test problem type.  This was done due 

to the different structures necessary to represent solutions for the different problem 

types.  Each problem type required slightly different methods for accessing and 

manipulating solutions and solution parts, and performing such operations occupied 

significant sections of the activities of each algorithm.  So, rather than implement 

the common parts of each algorithm as generic functions, with subroutines unique 

to each problem type for every instance of a solution operation (which would have 

constituted a goodly portion of the implementations anyway), it was decided to port 

the implementation of the algorithms between problem types and alter the solution 

operations as necessary. 

Testing the performance and efficiency hypotheses for the algorithms, the 

primary reason for this research, required some overall standard to provide a basis 

of comparison for the algorithms’ performance and efficiency.  For the 
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performance hypothesis, the leading candidate for this standard would seem to be 

the objective function values.  After all, these values are a direct representation of 

the quality of solutions.  However, as pointed out already the objective function 

values can vary greatly between problem types, rendering the usage of objective 

function value alone misleading as a basis of comparison between problem types. 

The performance measure that was eventually settled on is a ratio of change in 

objective function value with respect to the Monte Carlo solution for a problem 

instance.  Stated formally, the measure is 

MC

OFMC −
 

where MC = Monte Carlo solution objective function value 

 OF = algorithm objective function value 

This measure expresses a particular algorithm’s ability to improve on the 

original Monte Carlo solution as a percentage of that solution’s objective function 

value, and thus the higher the measure, the better the performance.  As a result, it is 

less dependent on the problem type than the objective function value alone.  It is 

designed to function with minimization problems, a characteristic common to all 

three of the test problem types.  It also normalizes values to between zero and one, 

meaning that the measure will generate the same maximum range of values 

regardless of problem type.  It is true that problem types with larger objective 

function values will tend to have larger MC values, allowing for more margin for 

improvement and thus larger values for the measure than problem types with 
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smaller objective function values.  However, this effect can be tempered during 

analysis by making each problem instance part of a blocking factor.  By doing so, 

variances in MC values between problem instances can be accounted for.  This 

makes the measure suitable for use as a performance measure for any one problem 

type by itself, or as a comparative measure between problem types. 

Likewise, a standard measure of algorithm efficiency had to be adopted in order 

to test the efficiency hypothesis.  The measure selected to serve in this capacity was 

a function of the number of solutions within the solution space that an algorithm 

examined prior to termination.  It may not be clear why a count of the number of 

solutions examined would be the measure of efficiency for an algorithm, instead of 

an iteration count or something similar.  Iteration count is not a very good 

candidate for an efficiency measure.  Different algorithms follow different 

procedures, and a single iteration of one algorithm could involve a substantially 

different number of operations than a single iteration of another algorithm.  

Comparing algorithms on this count would not be comparing “apples to apples”. 

One item that does mean the same thing between algorithms is the count of 

solutions examined.  All search algorithms examine solutions to see if they meet 

the criteria for solving their respective problems.  For local search algorithms, the 

normal method is for the algorithm to examine a certain number of solutions within 

one or more successive neighborhoods and at some point terminate, returning the 

best solution it found from all solution examinations.  The total number of solutions 

examined will then represent the total amount of search space that has been 
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examined to reach a conclusion.  Some solutions may have been examined multiple 

times; still, the number of solutions examined will show the total amount of 

“territory” that was covered before the algorithm terminated.  This is similar to the 

method of counting the number of consistency checks performed to determine the 

efficiency of algorithms for solving Constraint Satisfaction Problems (Prosser, 

1993, Tsang, 1996), and it seemed to be an egalitarian and easily implemented 

method for use as an efficiency measure. 

The actual measure used was a ratio of change in objective function value to 

number of solutions examined for the problem instance, change meaning relative to 

the Monte Carlo solution.  The formal statement of this measure is: 

1−
−

SE

OFMC
 

where MC = Monte Carlo solution objective function value 

 OF = algorithm objective function value 

 SE = number of solutions examined by algorithm 

This measure represents the incremental amount of improvement in objective 

function value achieved by a particular algorithm per solution examined within the 

solution space, relative to the Monte Carlo solution, and consequently once again 

the higher the measure, the greater the efficiency of the algorithm.  The MC value 

is obtained by examining a single solution (hence the “1” in the denominator).  On 

the other hand, the algorithm obtained its solution by examining SE solutions.  By 

relating the amount of improvement over the MC value that the algorithm was able 
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to achieve to the additional number of solutions it had to examine to get there, a 

picture of how efficiently the algorithm operates will emerge. 

Like the performance measure, this efficiency measure is not immune to 

differences in expected MC values between problem instances.  Once again, 

though, this can be mediated by blocking on the problem instance factor during the 

analysis phase.  Also like the performance measure, the efficiency measure is 

designed for minimization problems to match the characteristics of the test problem 

types, and values are normalized to between zero and one.  And, since the measure 

has the same meaning regardless of problem type or instance, it is suitable for a 

single problem type or multiple types. 

Having established the performance and efficiency measures for the 

experiments, the implementation of each of the test algorithms contained a 

mechanism for recording the final objective function value obtained by the 

algorithm for the problem instance and the number of solutions examined during its 

run.  This allowed for later calculation of the performance and efficiency measures 

to be loaded into SPSS for analysis.  The specific procedures that each of the test 

algorithms followed to obtain those values will now be discussed. 

2.2.4.1 Hill Climbing Implementation 

As it is a representative of a greedy algorithm, the aim of the Hill Climbing 

(HC) algorithm is quite simple:  get more with every turn.  The “more” in this case 



 83 

meant improvement in objective function value.  There are two general versions of 

basic HC that were considered, first fit and best fit.  The first fit version will move 

to the first solution it finds within the local search neighborhood that has a better 

objective function value than the current solution, while the best fit version will 

examine all solutions in the neighborhood and then move to the one that offers the 

best improvement in objective function value over the current solution.  While the 

algorithm was implemented to operate in either mode, for the purposes of these 

experiments the best fit mode would be used as it offered the “purest” form of 

greedy pursuit and was likely to generate better results. 

The base procedure of HC was as follows: 

1. Make the Monte Carlo solution the current solution 

2. Generate a local search neighborhood for the current solution 

3. Find the solution in the neighborhood with the best objective function value 

4. If that value is better than the value for the current solution, make that 

solution the current solution and go back to step 2 

5. Record the current solution, its objective function value, and the total 

number of solutions examined 

In step 3, for each solution in the neighborhood that was checked to see if it is 

better than the current solution, the count of solutions examined was incremented 

by one (having been initialized to zero at the outset of the procedure).  There were 

no necessary variations in the implementation between TSP, BPP, and FAP, so the 
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base procedure was used virtually unchanged for each test problem type, except for 

how solutions were constituted. 

2.2.4.2 Simulated Annealing Implementation 

The base procedure used to implement the Simulated Annealing (SA) test 

algorithm was an adaptation of the Metropolis algorithm (Metropolis et. al., 1953).  

This is a general identifier used to describe an algorithm that will always follow a 

selected path if that path leads to a higher quality solution, and will also 

occasionally follow a selected path if that path leads to a lower quality solution.  

The Metropolis algorithm is based in turn on the Maxwell-Boltzmann probability 

distribution.  This is a continuous probability distribution representing energy states 

of a system (Sears et. al., 1987).  The theory is that the total energy within a system 

in thermal equilibrium at a given temperature T will be distributed among various 

energy states E according to the equation 
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where A is a normalization constant 

 k is a constant value known as Boltzmann’s constant 

This distribution shows that even in systems with low overall energy, there 

could be points of relatively high energy, and vice versa.  The classical form of SA 

uses the probability equation of the Maxwell-Boltzmann distribution to determine 

probabilities of moving along a path to lower quality solutions than the current 
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solution.  It begins at a given “temperature” and examines successive solutions one 

at a time.  If the examined solution is better than the current solution, it will 

become the current solution.  If the examined solution is not better than the current 

solution, it will still become the current solution with Maxwell-Boltzmann 

probability.  Gradually the temperature value is lowered, reducing the probability 

of accepting lower quality solutions.  When a certain temperature is reached, the 

algorithm terminates. 

The rate at which the temperature is lowered is called the annealing rate, and is 

usually a parameter setting.  Other parameters are usually available to determine 

how many times a new solution must be accepted (or how many times a new 

solution acceptance must be attempted, or both) prior to each temperature 

reduction, and the terminating temperature threshold.  There are theoretically an 

infinite number of possible combinations of values that could be set for these 

parameters, so obviously it would be impossible to test them all.  Instead, the 

parameters were implemented to be adjustable at run time and defaulted to values 

commonly in use, particularly for TSP.  Specifically, the initial temperature 

defaulted to two thousand and was set to be reduced by an annealing rate of 0.01 

for each ten solutions accepted or one hundred solutions examined, whichever 

came first.  The termination threshold defaulted to 0.01 as well. 

Thus, the base SA procedure became: 

1. Make the Monte Carlo solution the current solution 
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2. Reset the number of solutions accepted and number of solutions attempted 

to zero 

3. Generate a local search neighborhood for the current solution 

4. Randomly select a candidate solution from the neighborhood 

5. If the objective function value of the candidate solution is better than that of 

the current solution, make the candidate solution the current solution 

6. If the objective function value of the candidate solution is not better than 

that of the current solution, generate a random number between zero and 

one, and compare it to the Maxwell-Boltzmann probability value for the 

difference between the objective function value of the candidate solution 

and that of the current solution for the current temperature (excluding the 

normalization constant and Boltzmann’s constant); if the probability value 

is greater than the random number, make the candidate solution the current 

solution 

7. If the candidate solution was accepted in either step 5 or step 6, increment 

the number of solutions accepted by one 

8. Increment the number of solutions attempted by one 

9. If the number of solutions accepted has reached ten, or the number of 

solutions attempted has reached one hundred, reduce the temperature by the 

annealing rate and go back to step 3 

10. If the current temperature is greater than the termination threshold, go back 

to step 2 
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11. Record the best solution seen during the run, its objective function value, 

and the total number of solutions examined 

Each time a solution was selected to be a candidate, this constituted an 

examination of a solution, and hence in step 4 the count of solutions examined was 

incremented by one (again having started at zero).  Once again there were no 

necessary variations in the implementation between TSP, BPP, and FAP, so the 

only difference in the procedure between problem types was in how solutions were 

constituted. 

2.2.4.3 Genetic Algorithm Implementation 

The implementation that was decided upon for a Genetic Algorithm (GA) was 

to use three components commonly found in many other such algorithms.  The first 

of these components was a method for simulating Darwinian natural selection, or 

“survival of the fittest” as it is colloquially (and somewhat incorrectly) known.  

This method had to evaluate members of a “population” of solutions according to 

their relative “fitness”, which in this case was represented by the quality of the 

solution – the objective function value.  Then, over successive “generations” 

(iterations) of the algorithm, the method would have to decide which members of 

the population would survive to remain members of the population.  The decision 

of which solutions would survive would have to be directly related to their fitness; 

that is, higher quality solutions had to stand a better chance of surviving than 
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solutions of lesser quality, though no absolute guarantee was required.  This 

component was intended to build up the overall quality of the population solutions. 

Because the population was the venue for performing local search operations, it 

supplanted the usual neighborhood as used by the other algorithm types.  The 

population was the neighborhood, which is typical behavior for genetic algorithms.  

This meant that the usual methods for generating and manipulating neighborhoods 

would not be used, but would be handled by GA itself.  Initial populations were the 

one exception to this rule.  An initial population was generated at the start of a GA 

run, and was generated by taking the Monte Carlo solution and generating a 

standard neighborhood for that solution.  The initial population was then 

established by taking solutions from that neighborhood.  Tests showed that the 

required running time, even for small problem sizes, increased dramatically after 

the population size began to go over twenty.  These increased running times were 

not accompanied by increases in ability to achieve higher quality solutions, and so 

the population size for GA was set to a fixed value of twenty.  Solutions were taken 

from the neighborhood in a round-robin fashion until twenty were accumulated in 

the initial population. 

The second component chosen for inclusion in GA was a method for simulating 

genetic recombination, often called breeding or crossover.  This method would take 

pairs of solutions from the population and combine them to produce one or more 

“offspring” containing elements of both “parent” solutions.  It would also decide 

which pairs of solutions would become parents each generation.  This component 
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was intended to create newer, higher quality solutions to add to the population by 

merging two established solutions (solutions that, by virtue of surviving to remain 

in the population to breed, would already be of higher quality than other solutions 

that did not survive). 

The third component chosen was a method for simulating genetic mutation.  

This method would select solutions from the population and perform some random 

change to reconstitute them as different solutions.  It would decide what forms of 

changes could take place, and at what rate.  This component was intended to 

introduce random changes into the population in the hope that they would be 

beneficial, raising the quality of the solution in the same way random genetic 

mutations introduced into a population of plants or animals sometimes produce 

beneficial changes that make them better able to flourish in their environment. 

The selection component was implemented to use a probabilistic selection 

based on the best fitness currently in the population.  The current population was 

examined to find the solution with the best fitness (objective function value).  The 

probability of a particular solution remaining in the population then became the 

ratio of that solution’s fitness to the population’s best fitness.  One by one each 

solution in the population would be examined, and a random number between zero 

and one would be generated.  If the solution’s ratio was greater than the random 

number, it was moved into a new population.  Once all solutions had been 

examined, if the new population still did not have the maximum number of 

members then the process would repeat until the new population was full. 
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The crossover component was implemented to first generate a random number 

between zero and one.  This number was then compared to the crossover 

probability, a run-time parameter set to 0.25 (a value commonly used for this 

purpose).  If the crossover probability was greater than the random number, 

crossover was triggered to occur.  The actual crossover process involved taking 

each successive pair of solutions in the new population (containing the solutions 

chosen by the selection process from the original population as just described) and 

redistributing their respective solution elements.  Care had to be taken when doing 

this, since such redistributions could easily result in solutions that were invalid.  

Also, solutions for each problem type were different, requiring a different crossover 

mechanism for each. 

For TSP, the crossover mechanism operated by moving through the tour list for 

each successive pair of solutions in the new population.  At each stop in the tour, it 

randomly selected either the city at that stop for the first solution, or the city at that 

stop for the second solution.  It then rebuilt the two solutions by placing the 

selected city value at the first stop in the solutions that had not yet been rebuilt.  A 

list was kept of the cities that had been used in order to prevent duplicates and 

ensure that the solutions would still be valid after being rebuilt.  To show how this 

worked, consider the following pair of solutions: 

S1 = {3 1 2 4 5} 

S2 = {2 5 4 1 3} 
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The mechanism would start at the first stop on the tour and randomly select one 

of the values, say in this case 3.  Since none of the parts of the solutions had been 

built yet, it would assign city 3 to the first stop for both solutions.  Moving on, 

suppose 1 was the value selected for stop two.  This value would then be assigned 

to the second stop for both solutions, since the first stop had already been rebuilt.  

For stop three, suppose the value 4 is selected.  That value would be assigned to the 

third stop for both solutions.  Suppose then that for stop four, the value 1 was 

selected.  Since this value had already been used, this selection was skipped.  

Finally, at stop five, suppose the value 3 was selected.  Once again, this value had 

already been used, so the selection was skipped. 

All stops in the original pair of solutions had now been examined, but due to 

duplicates being selected and one value being missed, only three of the stops had 

been rebuilt.  The remaining two values, 2 and 5, would be assigned to the 

remaining two stops in order, making the rebuilt solutions look as follows: 

S1 = {3 1 4 2 5} 

S2 = {3 1 4 2 5} 

In this way, a single new solution was manufactured from the two original 

solutions by recombining their elements, and the validity of the new solution was 

also ensured.  Both of the original solutions within the new population were 

overwritten with this new solution, and both were retained within the new 

population to keep the population size constant. 
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For BPP, the crossover mechanism again moved through successive pairs of 

solutions in the new population, taking the elements in each corresponding pair of 

bins (one from the first solution and one from the second) for each pair of solutions 

and randomly assigning them back to either the bin in the first solution or the bin in 

the second solution.  This produced new solutions that were rearrangements of the 

originals.  Lists of the original solution contents and original bin contents were kept 

to ensure that all elements (and no others) originally in each solution and in each 

bin pairing from those solutions were still in the rearrangement in order to preserve 

the validity of the solutions, and to ensure that no bin would have its capacity 

exceeded.  As an example of this mechanism, consider the following pair of 

solutions: 

S1 = { B1: 10, 30 

 B2: 20, 30 

 B3: 40, 50 } 

S2 = { B1: 20, 40 

 B2: 10, 30, 30 

 B3: 50 } 

Note that it is not a problem to have duplicate elements, since they represent a 

size, not an identifier.  The crossover mechanism would first place all elements 

from S1 into a group, and all elements from S2 into another group.  The mechanism 

would then examine B1 with B1, putting all their elements (10, 30, 20, and 40) into 

a group.  Suppose then that elements 10 and 40 were assigned back to S1, and 
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elements 20 and 30 were assigned back to S2.  All elements from the group were 

accounted for and assigned, and there were sufficient elements in the groups for 

each solution to cover the assignments, so the procedure would move on to the 

second pair of bins, putting their elements into a group.  Suppose that elements 20 

and two of the 30 elements were assigned to the first solution and elements 10 and 

the other 30 were assigned to the second solution.  Again, all of the original 

elements from the bin group were accounted for and assigned, and there were 

sufficient remaining elements in the groups of original solution elements, so the 

procedure would move on to the final pair of bins, putting their elements into a 

group.  Suppose that from this group, elements 40 and the first 50 were assigned to 

the second solution.  Then the next random draw indicated that the last 50 element 

should also be assigned to the second solution.  But, this could not happen since 

there was only one 50 element originally in the second solution, and it had already 

been assigned back to a bin in that solution.  To preserve validity of the solutions, 

the second 50 element would have to be assigned to the first solution, which still 

had an available 50 element that had not been assigned.  Also, assigning a second 

50 element to the second solution would have exceeded the capacity (100) of the 

bin.  The draw also failed the capacity check and the element was instead assigned 

to the first solution. 
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The final arrangement of the solution pair would have been: 

S1 = { B1: 10, 40 

 B2: 20, 30, 30 

 B3: 50 } 

S2 = { B1: 20, 30 

 B2: 10, 30 

 B3: 40, 50} 

In this manner, the original solutions were rearranged to produce new solutions.  

The content of each solution remained the same, but the contents of the bins have 

been altered, though not so as to violate the capacity of any bin.  The validity of the 

solutions has been ensured, and now there are two new solutions to work with.  

Note that in this example applying crossover did not improve the quality of either 

solution (each had three occupied bins to begin with, and it remained so after 

crossover), and this could be the case the majority of the time.  However, in some 

instances the quality could improve.  In fact, if the 50’s in the example would have 

been 10’s instead, a different random draw could have cut the second solution 

down to two bins.  Also, though a crossover may not actually improve a solution, it 

could set the stage for an improvement in a later generation. 

For FAP, the crossover mechanism operated in a manner virtually identical to 

that for BPP.  The only difference was that instead of reassigning elements between 

bins as in BPP, files were reassigned between devices.  Exactly the same methods 

of reassignment and solution validity preservation were used, with the exception 
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that checks to verify that devices did not exceed capacity were not necessary since 

all files were capable of being stored on a single device. 

Implementing the mutation component was a matter of injecting a random 

change into solutions at a certain rate.  This rate was set to be 0.01, or one percent 

of the time, again a common value used for such purposes.  For each solution in the 

new population (now containing the solutions chosen from the original population 

by the selection mechanism, plus any changes to those solutions that may have 

occurred if crossover had been triggered), a random number between zero and one 

was generated.  If this number was less than the mutation rate value, mutation was 

triggered to occur. 

For TSP, mutations were done by randomly selecting a point in the solution 

representing a tour stop.  The city at this point was then swapped with the city at 

the previous tour stop (or the last stop, if the first stop was the point selected).  This 

produced a new solution, and since none of the cities in the solution had changed 

but only their ordering, the solution was still valid. 

For BPP and FAP, mutations were done by randomly selecting a non-empty bin 

(or device, for FAP).  The first element in this bin/device was moved to another 

randomly selected bin/device.  The first element from this second bin/device was 

then moved to the first bin/device.  Performing this maneuver did carry with it a 

slight risk in BPP that one of the bins would exceed capacity, rendering the solution 

invalid.  However, changing elements between bins seemed to be the only intra-

solution mutation that made sense, as swapping bins would accomplish nothing and 
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simply changing the value of elements within bins carried with it the risk of 

corrupting the solution and/or converting it into a different problem instance 

altogether.  If by some chance a bin did exceed capacity and the solution became 

invalid, its probability of being retained in the next generation dropped to zero and 

thus it was guaranteed to be eliminated.  If somehow this happened to all solutions 

in the population in the same generation (an extremely unlikely event), a 

mechanism was in place to generate a completely new population (the same 

mechanism that was used to generate an initial population). 

The three individual components (selection, crossover, and mutation) needed to 

be combined into a single GA.  This was accomplished by making each component 

a stage in the process of a generation of the population.  Starting with a current 

population (either an initial population or one from the previous generation), first 

selection would occur to determine which solutions would survive in a new 

population.  Then, crossover would be applied to the new population.  Finally, 

mutation would be applied to the new population.  The member solutions as they 

appeared in the new population following the execution of all three stages would 

then become the current population and would be the input generation for the next 

round, when all three components would repeat. 

Thus, the general form of GA was: 

1. Generate an initial population from the Monte Carlo solution 

2. Apply the probabilistic selection to the current population to create a new 

population 
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3. Probabilistically apply crossover to the new population 

4. Probabilistically apply mutation to the new population 

5. Remove the old population and make the new population the current 

population 

6. If the number of generations has not reached the specified limit, go back to 

step 2 

7. Record the best solution seen during the run, its objective function value, 

and the total number of solutions examined 

Each time a current population was established (either through initialization or 

through transitioning from a new population), each solution in the current 

population would be examined to see if any solutions had a better objective 

function value than seen to that point.  If so, a new “best solution” would be 

registered.  After examining each solution, the count of solutions examined would 

be incremented.  The total number of generations allowed was arbitrarily set to ten 

thousand, a value that allowed a substantial number of solutions to be examined 

without extending run times tremendously for larger problem sizes. 

2.2.4.4 GELS Implementation 

During early experimentation, the GELS algorithm had been known as GLSA 

and had consisted of two versions:  one that was based on the gravitational 

attraction between two objects and allowed navigation only to adjacent positions 



 98 

within the solution space, and another that was based on gravitational field 

attractions and allowed navigation to non-adjacent positions.  Along with a change 

in name prior to the current experiments came a number of changes to the 

algorithm itself.  As development of the algorithm progressed, it became clear that 

with the transition from hypothetical search spaces to genuine search spaces for 

actual problem types, alterations to the algorithm were necessary. 

Definitions of neighborhoods had changed, from being adjacent positions 

within the search space to being solutions that were slight variants of the current 

solution.  Objective function values of neighboring solutions were no longer 

randomly determined but were now functions of those solutions.  Some solutions 

no longer merely had poor objective function values, but were completely unusable 

since they did not form valid solutions to the problem at hand. 

Many adjustments were made to the algorithm.  Along the way, the original two 

methods of operation were significantly reworked.  In addition, it was discovered 

that several of the parameters in the original model had either become so sensitive 

to adjustment that finding points of equilibrium was extremely difficult or had 

become redundant in their effect on the outcome.  In the end, two modes of 

operation and two methods of navigation remained, albeit different from the 

originals, and only five parameters. 

GELS has several elements in common with the other algorithms in the test 

suite.  Like SA, GELS is based on a formula describing a process that occurs in 

nature.  In SA, this formula is the Maxwell-Boltzmann distribution of energy states.  
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In GELS, the formula is Newton’s law of gravitational force between two objects, 

expressed as 

2
21

r

mGm
F =  

where G = the gravitational constant, ~ 6.672 

 m1 = the mass of the first object 

 m2 = the mass of the second object 

 r = the radius of the distance between the two objects 

Like HC, GELS will navigate towards better solutions.  In HC, this occurs as 

direct movement to solutions with better objective function values.  In GELS, 

movement occurs generally towards solutions with higher “gravity” (meaning 

better objective function values).  Like GA, there is an expectation of iterative 

improvement, and both algorithms can be terminated by iteration count. 

Along with the elements that GELS has in common with the other algorithms, 

there are also some striking differences.  Unlike SA, GELS will not always move to 

a solution with a better objective function value, even if one is presented to it, and 

it will not move to solutions with worse objective function values on a probabilistic 

basis, but deterministically according to its rules of motion.  Unlike HC, GELS will 

not always move directly towards the solution in the neighborhood with the best 

objective function value, and it will not always stop on a locally optimal solution, 

but can move off in an attempt to locate even better solutions.  Unlike GA, GELS 

does not proceed by randomly altering solutions, but by examining existing 
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solutions, and it has distinct termination conditions that can cause the algorithm to 

complete prior to reaching a specified iteration count. 

So, though it does have some elements of randomness within it, GELS does not 

proceed strictly probabilistically.  Though it uses local search neighborhoods to 

look for solutions, it does not always move through them in the same fashion.  And, 

though it does have some behaviors characteristic of greedy algorithms, it does not 

always seek to follow the best path or grab the most resources.  GELS uses a law 

that governs the motion of objects in physical space to guide the motion of a search 

through a complex search space. 

The two methods of operation for GELS utilize the same gravitational force 

formula, but in slightly different ways.  The first method applies the formula to a 

single solution within the local search neighborhood to determine the gravitational 

force between that solution and the current solutions, while the second method 

applies the formula to all solutions within the neighborhood and tracks the 

gravitational force between each of them and the current solution individually.  The 

procession of the search through the search space is governed by the gravitational 

forces, either in a single direction or in all directions, as determined by the formula. 

The two modes of movement through the search space, or stepping modes, 

differ only in how much of the search space they span.  The first mode (called 

single stepping) allows movement only to solutions within the current local search 

neighborhood, while the second mode (called multiple stepping) allows movement 

to solutions well outside of the neighborhood.  Each stepping mode can be used 
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with either method of operation.  This results in four total variants of how GELS 

can conduct a search.  Shorthand monikers have been assigned to identify each 

variant.  Each moniker takes the form “TA” (for “test algorithm”) followed by a 1 

or a 2 to identify which method of operation is being used, followed by another 1 or 

2 to identify whether the algorithm is using single stepping or multiple stepping, 

respectively.  Thus, to identify an instance of the algorithm using the second 

method of operation and single stepping, the moniker used to identify that instance 

would be TA21. 

GELS maintains a vector, the size of which is determined by the number of 

dimensions in a solution.  For example, a ten-city TSP tour would generate a vector 

with ten elements, a twenty-city tour would generate a vector with twenty elements, 

and so on.  This vector’s values represent the relative “velocity” in each dimension.  

The velocity is a measure of how much of a tendency there is to bypass solutions.  

The higher the velocity, the more the tendency to bypass solutions (this is the 

GELS mechanism for escaping local optima).  If the multiple stepping mode is 

being used, the velocity is also used to determine how far past the local search 

neighborhood the search will relocate.  There is also a pointer to identify which of 

the elements in the vector is the current “direction of movement”. 
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Both methods of operation and both stepping modes have been combined into a 

single module.  The choice of which method and which stepping mode to use can 

be made at run time.  Other parameters that are available are: 

• Maximum velocity – defines the maximum value that any element within 

the velocity vector can have; used to prevent velocities that become too 

large to be usable 

• Radius – sets the radius value in the gravitational force formula; used to 

determine how quickly the gravitational force can increase or decrease 

• Iterations – defines the number of iterations of the algorithm that will be 

allowed to complete before it is automatically terminated; used to ensure 

that the algorithm will terminate 

The settings of these parameters for the current experiments were arrived at 

through trial-and-error during the development of GELS.  Some settings caused the 

algorithm to run too long; others caused conditions where numbers were becoming 

too large, causing the algorithm to behave erratically.  After a number of tests, the 

values settled on were 10 for the maximum velocity, 4 for the radius, and 10,000 

for the iterations. 

The algorithm begins by initializing the current solution, velocity vector, and 

direction of movement.  As with all the other test algorithms, the initial current 

solution is set to the Monte Carlo solution.  For each dimension in the velocity 

vector, a random integer between one and the maximum velocity is chosen, and this 

becomes the value of the element at that dimension.  A minimum value of one is set 
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to ensure that there will be a non-zero velocity component in each dimension at the 

outset.  After all dimensions of the vector have received values, the one having the 

largest value is set as the initial direction of movement (in the event of a tie, the 

first element in the vector having the largest value will be selected). 

Next, a series of iterations of the algorithm are executed.  What happens in each 

iteration will be dependent on which method of operation has been selected, and 

each will be described separately.  The algorithm will terminate when one of two 

conditions occurs:  either all of the elements in the velocity vector have gone to 

zero, or the maximum allowable number of iterations has been completed. 

One iteration of the first method of operation consists of first selecting a 

candidate solution.  This solution will be the solution in the local search 

neighborhood having the same ordinal identifier as the current direction of 

movement indicator, i.e. if the indicator is currently set to five, the fifth solution in 

the neighborhood will become the candidate solution.  Once selected, the candidate 

solution’s objective function value is checked to see if it is the best one seen to this 

point.  If so, the candidate solution is marked as being the best solution seen so far.  

The count of number of solutions examined is also incremented at this point. 

Next, the gravitational force between the current solution and the selected 

candidate solution is calculated.  Newton’s formula is used, with the alteration that 

the two masses in the numerator of the equation are replaced by the value of the 

difference between the objective function value of the candidate solution and that 
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of the current solution.  The value of the gravitational force between the two 

solutions then becomes: 

( )
2R

CACUG
F

−=  

where G = 6.672 

 CU = objective function value of the current solution 

 CA = objective function value of the candidate solution 

 R = value of the radius parameter 

This formula is designed to be a positive value if the objective function value of 

the current solution is larger than that of the candidate solution and negative if the 

candidate’s value is larger.  This is because the gravitational pull should be towards 

solutions with better objective function values.  Since the problem types used in the 

experiments are all minimization problems, a lesser objective function value is 

better.  Thus, if the candidate solution is better it will have a lower objective 

function value, making CU – CA a positive value. 

It would have been possible to replace the two mass numbers in Newton’s 

formula by the objective function values of the two solutions and apply the 

appropriate sign based on which one was larger.  It was decided to use the 

difference between them instead simply because using the multiplication led to 

much larger values (and much larger ranges of values) and made the determination 

of a radius value suitable for several different problem sizes more difficult.  It was 
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believed that using the difference tended to normalize the values somewhat, 

without loss of the spirit of what Newton’s formula was intended to indicate. 

Having calculated the relative gravitational force in the current direction of 

movement, the velocity vector can now be updated.  The force value, positive or 

negative, is added to the component of the velocity vector at the position of the 

current direction of movement.  If doing so makes the value exceed the maximum 

velocity parameter setting, it is set to the maximum.  If the update would cause the 

value to go negative, it is set to zero. 

Note that this process is emulating the acceleration effect that a gravitational 

force would have, and that in actual physics the acceleration would be calculated by 

dividing the force by the mass of the object acted upon.  However, the object being 

acted upon would be the solution pointer object moving through the search space, 

not either of the solution objects themselves (which do not move).  Including a 

mass value for the solution pointer would have meant only that a constant value 

was being included in the calculation.  This would have involved an additional 

computation that did not add any value to the process, so it was excluded. 

If the value of the velocity vector for the current direction of movement has 

decreased as a result of the update, a check is done to see if it should remain the 

current direction.  As at the start of the algorithm, each element in the vector is 

examined to find the largest, which will become the new direction indicator.  This 

check is not necessary if the vector element value increased as a result of the 
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update, since the element updated was already the largest element, and increasing 

its value cannot make it smaller than one of the others. 

Performing an iteration of the algorithm using the second method is very much 

like the first method.  Gravitational forces are calculated, the velocity vector is 

updated, and a new direction of movement is determined.  The only difference is 

that instead of calculating the force value and updating the vector only for the 

current direction, the calculation and update are performed for each element in the 

vector, using as a candidate solution the objective function value of the 

neighborhood solution corresponding to the index of the element within the vector.  

Since values are updated for the entire vector, the check for new direction is always 

performed.  Each candidate solution will generate a check for best solution seen 

and an incrementing of the count of number of solutions examined. 

Once an iteration has completed, be it using the first method or the second, the 

solution pointer is relocated within the search space according to the stepping 

mode.  If single stepping is set, the pointer will be relocated to the solution in the 

local search neighborhood identified by the current direction of movement.  This 

solution will be checked to evaluate if it qualifies as best solution seen, and the 

count of number of solutions examined will be incremented. 

If multiple stepping is set, the pointer will also be relocated to the neighborhood 

solution in the current direction.  However, if the element value in the velocity 

vector at the index of the current direction is greater than one, a new neighborhood 

is generated for the solution to which the pointer just relocated, and the pointer will 
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move again to the neighborhood solution corresponding to the direction of 

movement.  This process of generating a new neighborhood and moving the 

solution pointer will repeat a number of times equal to the value of the velocity 

vector at the current direction index.  At each stop of the pointer during this 

process, a check will be done to see if the solution being pointed to is the best 

solution seen, and the count of solutions examined will be incremented. 

A variation to this process had to be made for TSP.  Recall that the method used 

by TSP to generate solutions for local search neighborhoods is to swap successive 

pairs of elements in the original solution.  If the standard process for multiple 

stepping is followed in this case, the process of generating neighborhoods will 

trigger an oscillation in movement, and the solution pointer will not actually move 

multiple steps beyond the original neighborhood.  To see this, consider the 

following TSP solution:  {1 4 2 3 5}.  Suppose that the current direction is 3, and 

element three of the velocity vector is currently set to a value of 5.  When it comes 

time to relocate the solution pointer, it will need to move five times.  The first time 

it moves, it will move to the third solution in the neighborhood.  In producing that 

neighborhood, the third solution would have been produced by swapping the 

second and third elements in the original solution, meaning the pointer would move 

to solution {1 2 4 3 5}.  On the second move, the third solution in the neighborhood 

generated for this solution would again be produced by swapping the second and 

third elements, meaning the pointer would move to solution {1 4 2 3 5}.  But, this 

is right back where it started.  A third move would take the pointer back to            
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{1 2 4 3 5}, a fourth back to {1 4 2 3 5}, and the fifth back to {1 2 4 3 5}.  

Obviously, the pointer is not really moving five steps beyond the original 

neighborhood. 

To counter this problem, the multiple-stepping procedure was modified for 

TSP.  Instead of moving at each step to the neighborhood solution in the current 

direction of movement, the pointer would move to a random neighborhood 

solution.  This made the chances of a prolonged oscillation process occurring 

extremely small.  This modified procedure was only required for TSP, as the 

neighborhood generation procedures for BPP and FAP required completely 

different methods from TSP, and the problem did not manifest itself there. 

After completing the stepping process, the stopping point for the solution 

pointer is made the current solution, and the count of available iterations remaining 

is decremented by one (having been initialized at the start of the algorithm to the 

value specified by the iterations parameter).  If there are available iterations 

remaining, and if there is at least one non-zero value remaining in the velocity 

vector, the entire procedure consisting of:  a) generate a neighborhood for the 

current solution, b) follow either method one or method two to calculate 

gravitational forces and update the velocity vector and current direction of 

movement, and c) perform either single or multiple stepping, is repeated. 

A pseudo-code outline of the procedures just described for GELS is as follows: 

CurrentSolution = BestSolution = MonteCarloSolution 

SolutionsExamined = 0 
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IterationsRemaining = MaxIterationsParameter 

VelocitySum = 0 

for each Index in VelocityVector 

VelocityVector[Index] = random integer between 1 and MaxVelocityParameter 

VelocitySum = VelocitySum + VelocityVector[Index] 

end for 

Direction = MaximumValueIn (VelocityVector) 

while (VelocitySum > 0 and IterationsRemaining > 0) 

GenerateNeighborhood (CurrentSolution) 

if MethodOneSelected 

CandidateSolution = Neighborhood (Direction) 

if ObjectiveFunction (CandidateSolution) < ObjectiveFunction 

(BestSolution) 

BestSolution = CandidateSolution 

end if 

SolutionsExamined = SolutionsExamined + 1 

Force = Integer (6.672 * (ObjectiveFunction (CurrentSolution) – 

ObjectiveFunction (CandidateSolution)) / RadiusParameter ** 2) 

VelocityVector[Direction] = VelocityVector[Direction] + Force 

if VelocityVector[Direction] < 0 

VelocityVector[Direction] = 0 

end if 
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if VelocityVector[Direction] > MaxVelocityParameter 

VelocityVector[Direction] = MaxVelocityParameter 

end if 

VelocitySum = 0 

for each Index in VelocityVector 

VelocitySum = VelocitySum + VelocityVector[Index] 

end for 

Direction = MaximumValueIn (VelocityVector) 

else if MethodTwoSelected 

for each Index in Neighborhood 

CandidateSolution = Neighborhood (Index) 

if ObjectiveFunction (CandidateSolution) < ObjectiveFunction 

(BestSolution) 

BestSolution = CandidateSolution 

end if 

SolutionsExamined = SolutionsExamined + 1 

Force = Integer (6.672 * (ObjectiveFunction (CurrentSolution) – 

ObjectiveFunction (CandidateSolution)) / RadiusParameter ** 2) 

VelocityVector[Index] = VelocityVector[Index] + Force 

if VelocityVector[Index] < 0 

VelocityVector[Index] = 0 

end if 
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if VelocityVector[Index] > MaxVelocityParameter 

VelocityVector[Index] = MaxVelocityParameter 

end if 

end for 

VelocitySum = 0 

for each Index in VelocityVector 

VelocitySum = VelocitySum + VelocityVector[Index] 

end for 

Direction = MaximumValueIn (VelocityVector) 

end if 

if SingleSteppingSelected 

if TSPProblemBeingSolved 

CurrentSolution = Neighborhood[random] 

else 

CurrentSolution = Neighborhood[Direction] 

end if 

if ObjectiveFunction (CurrentSolution) < ObjectiveFunction (BestSolution) 

BestSolution = CurrentSolution 

end if 

SolutionsExamined = SolutionsExamined + 1 

else if MultipleSteppingSelected 

for 1 to VelocityVector[Direction] 
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if TSPProblemBeingSolved 

CurrentSolution = Neighborhood[random] 

else 

CurrentSolution = Neighborhood[Direction] 

end if 

if ObjectiveFunction (CurrentSolution) < ObjectiveFunction 

(BestSolution) 

BestSolution = CurrentSolution 

end if 

SolutionsExamined = SolutionsExamined + 1 

GenerateNeighborhood (CurrentSolution) 

end for 

end if 

IterationsRemaining = IterationsRemaining – 1 

end while 

return BestSolution, ObjectiveFunction (BestSolution), SolutionsExamined 

This is the version of the GELS algorithm that was used in the algorithm 

comparison experiments.  Each possible configuration of the algorithm (TA11, 

TA12, TA21, and TA22) was treated as a separate algorithm for the purposes of 

those experiments, complete with its own set of run statistics.  This was done 

because not only was it of interest to discover how GELS would perform against 



 113 

the other algorithm types, but also how each variant of GELS would perform 

against the other variants. 

2.2.5 Validation of the Experimental Environment 

As alluded to in the discussions regarding implementation of the problem and 

algorithm types, a fair amount of ad hoc testing was done in the course of the 

development effort, prior to the pieces being put together into a cohesive 

experimental environment.  When it came time to put those pieces together, a series 

of tests were conducted to confirm that the environment was operating properly. 

The first C++ class to be placed into the environment was TSP.  The 

infrastructure of the problem was put into place (i.e. class definition, necessary 

program control variables, etc.), and then the implementation of the problem 

instance generator was initiated.  The generator was tested by generating problem 

instances and printing out the resulting tour movement cost matrix.  Each matrix 

was checked to ensure that all costs were between the specified minimum and 

maximum values of 1 and 10, respectively (except for the diagonal of the matrix, 

which should have been all zeroes).  Each matrix was also checked to ensure that it 

was in fact symmetric, with all costs of movement from any given city A to any 

other city B equal to the cost of movement from city B to city A. 

Once the problem instance generator was shown to be operating correctly, the 

implementations for the Monte Carlo solution generator and objective function 
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value calculator were added.  Solutions to problem instances produced by the 

generator were verified to be valid TSP tours, with every city in the tour being 

accounted for with no duplicates.  The quality of the Monte Carlo solutions being 

produced was gauged by evaluating them with the objective function value 

calculator, which was in turn validated by matching the values calculated against 

manual calculations done by using the cost matrix to find the cost for each 

individual leg of the tour and then summing all the costs. 

 Next, the implementation for the Hill Climbing algorithm was added.  This in 

turn required that the procedure for local search neighborhood generation be in 

place.  The neighborhood generator was tested by using a symbolic debugger to 

step through HC, and at each point that a new neighborhood was required it was 

verified that the generated neighborhood was correct.  Stepping through HC 

continued to ensure that it was finding the best solution in the local search 

neighborhood and was following the best fit greedy pattern by moving to the best 

solution found in the neighborhood with a better objective function value than the 

current solution.  Finally, it was verified that HC would terminate when it could no 

longer find any solutions in the neighborhood better than the current solution. 

The next item to be added was the implementation for the Simulated Annealing 

algorithm.  Since the methods for local search neighborhood generation and 

objective function value calculation were already present, the SA procedure was set 

up to use these procedures.  The symbolic debugger was used to step through the 

SA procedure, verifying that it was following its proscribed steps correctly, and 
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that individual pieces (like the formula for calculating the Maxwell-Boltzmann 

probability values) were working properly.  Entire runs of SA were followed in the 

debugger, using break points and watch points to view its progress and ensure that 

things were in order. 

Next to be added was the implementation for the Genetic Algorithm.  This 

followed the same procedure as for SA, hooking GA to the existing objective 

function value calculator (the local search neighborhood generator not being 

required) and using the symbolic debugger to verify that each of the GA 

components (population selection, crossover, and mutation) was operating 

properly.  Also, as with SA complete runs of GA were done through the debugger 

to verify its progress. 

Once its development efforts were finalized, the implementation for GELS was 

added in.  Again, GELS was set up to use the existing local search neighborhood 

generator and objective function value calculator.  As was done with SA and GA, 

the symbolic debugger was used to verify that each of the designed phases of 

operation for GELS was correctly functioning, and complete runs were 

accomplished to observe and verify operations. 

The addition of the GELS implementation rounded out the set of test algorithms 

to be used for TSP.  All that remained was to add in the output method to write the 

results of the algorithm comparisons to file for later uploading into SPSS.  Once 

this was done some complete tests involving all the algorithms and different 

problem sizes were conducted, both to verify the correctness of the output routine 
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and to verify that the system would still function correctly during multiple 

consecutive runs and with different (sometimes quite large) problem sizes. 

With the completion of testing for TSP, work began on BPP.  Testing of BPP 

followed the same format as for TSP.  First, the class definitions and infrastructure 

were put together.  Then, the common-use procedures (problem instance generator, 

local search neighborhood generator, and objective function calculator) were added 

and tested, using the same testing methods as for TSP.  The algorithms were then 

added in one by one in the order MC, HC, SA, GA, and GELS, including the BPP-

specific modifications necessary for GA already mentioned and the removal of the 

special multiple stepping modification needed for GELS only on TSP.  Each 

algorithm was in turn tested in the same manner as was done for TSP.  The output 

routine was then added and complete runs were done both of BPP standalone and 

in concert with TSP.  The output file was examined to verify the correct writing 

and identification of results for BPP and TSP together. 

Once testing was completed on BPP, the final test problem type, FAP, was put 

together.  The steps and methods used in assembling and validating FAP were 

exactly the same as those for TSP and BPP.  When they were completed, complete 

runs of all three problem types together were done.  Results of these runs were 

compared with those of previous runs of each of the problem types by itself to see 

if they appeared to be consistent.  At this point everything appeared to be 

functioning properly, which meant that the entire package was now ready to 

conduct the official algorithm comparison experiments. 
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2.2.6 Performance of the Research Experiments 

With the completion of the development and testing efforts for the experimental 

environment, the DOE for the algorithm comparison experiments could be put into 

action.  This design was fairly simple; generate a series of problem instances for 

each of the test problem types, and for each problem instance produce a solution 

from each of Monte Carlo, Hill Climbing, Simulated Annealing, Genetic 

Algorithm, GELS method one with single stepping, GELS method one with 

multiple stepping, GELS method two with single stepping, and GELS method two 

with multiple stepping.  Then, the data would be analyzed by SPSS to either 

confirm or reject the performance and efficiency hypotheses. 

When analyzing the data, problem instance was used as a blocking factor.  The 

reason for this was because of the inherent variability of the Monte Carlo solutions.  

Since they are random, a Monte Carlo solution for one problem instance might be 

relatively poor in relation to the optimal solution.  This would mean that each of the 

test algorithms would have ample room to improve on it.  In another problem 

instance, however, the Monte Carlo solution might be very close to the optimal.  In 

this case, improving on it would be very difficult no matter what the solution 

algorithm.  Since the Monte Carlo solutions serve as the starting point for all the 

other algorithms, their relation to the optimal solution will influence the overall 

results of every experiment.  This influence must be accounted for, even if its cause 

is not of particular interest to the experiments.  The relative quality of the Monte 
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Carlo solutions in relation to the optimal was not known during the experiments, 

and indeed could not have been known for certain without exhaustive search of 

each problem instance search space, a completely infeasible task.  Therefore, the 

relative quality of the Monte Carlo solutions for each problem instance was not an 

item of interest.  Yet, it influenced the outcomes of the experiments, as just 

explained, and thus had to be accounted for to ensure the validity of the 

interpretation of the results; hence, its inclusion in the experiments as a blocking 

factor. 

The number of experiments to be included in the series was effectively dictated 

by SPSS.  The version of SPSS that was available was the student edition, which 

limits the number of cases in a single analysis to fifteen hundred (SPSS, 2001), 

with each case amounting to a single line in the output file.  Because of the way 

SPSS handles its analyses, each case needed to be structured as follows: 

 

{Run No.} {Problem Type} {Algorithm Type} {Performance Value} {Efficiency Value} 

 

The “Run No.” field represented the problem instance count, used for blocking 

of the problem instance factor.  The “Problem Type” field identified which of the 

test problem types the problem instance was generated for, and the “Algorithm 

Type” field identified which of the test algorithm types was being used to solve the 

problem instance.  These two fields were used to allow grouping of the results by 

problem and algorithm.  The “Performance Value” and “Efficiency Value” fields 
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contained the metrics used in the analysis.  As an example, the SA solution for the 

tenth TSP problem instance generated would have a case that looked something 

like the following: 

 

10   TSP   SA   0.75   0.11 

 

Structuring cases in this manner allowed SPSS to conduct all of the necessary 

analysis of the data, but it did limit the number of problem instances experiments 

that could be conducted.  By generating fifty problem instances for each problem 

type of a given size, twelve hundred cases were created (8 algorithm types x 3 

problem types x 50 problem instances = 1,200 cases), falling within the limits of 

the SPSS student edition.  A few more problem instances per problem type could 

have been generated and still have met the SPSS case limitation, but fifty provided 

a convenient round number for use in calculations and, as it turned out, generated 

more than sufficient data for SPSS to produce meaningful conclusions. 

To evaluate the effect of different problem sizes on the algorithm comparison, it 

was decided to conduct separate experiments, each with a different problem size, 

which would allow the effect to be analyzed while meeting the case limitation.  

Problem sizes of ten, twenty, thirty, forty, and fifty were each to be analyzed.  For 

TSP, problem size was determined by the number of cities to be included in a tour.  

For BPP, size was determined by the number of objects to be placed in bins.  For 

FAP, since the number of devices and files was predetermined, size was 
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determined by the number of queries that would be executed.  Each increment of 

problem size represented one thousand TPC-H queries, e.g. a problem size of ten 

meant that ten thousand randomly-ordered queries from the TPC-H standard would 

be executed for that run. 

It was also decided that a single set of experiments encompassing all problem 

sizes would be run, to further evaluate the effect of problem size within a single 

analysis.  Of course, this meant reducing the number of problem instances per 

problem size.  To accommodate the inclusion of problem size as a factor, the case 

structure for this set of experiments needed to be altered to look like the following: 

 

{Run No.} {Prob. Type} {Prob. Size} {Alg. Type} {Performance Value} {Efficiency Value} 

 

To avoid any possible unforeseen side effects of running problem sizes in a 

particular order, the size for each problem instance was determined randomly out of 

the original sizes of ten, twenty, thirty, forty, and fifty.  This meant a possible 

inequality in the number of cases of each problem size, which would place some 

limitations on the analysis (some statistical tests want equal numbers of cases for 

each factor value), but it was in keeping with recommended DOE techniques.   

Thus, there were a total of six sets of experiments – one for each of the five 

defined problem sizes, and one consisting of random problem sizes.  Each set was 

designed to allow statistical comparison of the algorithm types, and provided the 



 121 

SPSS tool with a grand total of 7,200 cases with which to perform that comparison 

– well more than SPSS required to accomplish the task. 

2.2.7 Results of the Current Research Experiments 

With the DOE for the algorithm comparison experiments defined, the six sets of 

experiments were run according to the design and the data collected into output 

files to be uploaded into SPSS for analysis.  As the aim of the experiments was to 

either confirm or reject both the performance and the efficiency hypotheses, the 

analysis of each experiment’s data was conducted in two phases.  First, the 

performance results from each set of experiments were analyzed to compare the 

relative performance of each of the algorithms against random solutions and against 

each other.  Then, a second analysis was done on the efficiency results from each 

set of experiments to compare the relative efficiency of each of the algorithms in 

the same manner.  The results of the analyses are presented here in the same order 

in which they were conducted; first the performance data analysis, then the 

efficiency data analysis. 

2.2.7.1 Algorithm Performance Results 

The analysis of the algorithm performance results was conducted by first 

loading the raw data into SPSS.  Then, for each of the three test problem types a 

box plot and line plot were generated to give any visual indications of a difference 
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in algorithm performance.  Next, an ANOVA was run to see if any statistically 

significant difference could be detected between the performances recorded for 

each algorithm type.  A fourth box plot and line plot were also generated, and a 

fourth ANOVA run, each consisting of composite data over all problem types in 

order to detect any significant difference between algorithm performances across 

all three problem types considered together.  The outcome of each ANOVA was 

evaluated and if necessary corroborated using the tests described in section 

1.2.3.2.3.  If a significant difference was determined to exist, an ordering of the 

algorithms by relative performance was established according to the homogeneous 

subsets defined by the analysis.  This procedure was then repeated for each of the 

five sets of experiments using a fixed problem size and the one set of experiments 

using random problem sizes. 

2.2.7.1.1 Problem Size Ten Performance Results 

Exhibit 12 shows the box plot that was generated for the set of experiments 

encompassing TSP problem instances of size ten.  This plot seems to show a very 

slight edge in performance capability for SA, but the SA box does not completely 

fall outside the borders of the boxes for several other algorithms.  Also, the median 

lines for SA, TA21, and TA22 are at about the same level.  The box widths are 

roughly the same, with those for HC, TA11, and TA12 being slightly larger.  The 

whiskers are also roughly the same length, with those for HC and TA12 being a 
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little longer.  These two items show that the inter-quartile and min/max ranges for 

each of the algorithms are comparable, indicating similar variances between 

algorithm types. 
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Exhibit 12.  Box Plot, TSP Size 10 Performance 

Exhibit 13 shows the line plot of marginal means that was generated for the 

same data.  This plot shows average performance values that are apparently very 

similar for SA, TA21, and TA22, and better than the rest.  The ANOVA for this 

problem group should be able to confirm if this is in fact the case. 
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Exhibit 13.  Line Plot, TSP Size Ten Performance 

Exhibit 14 shows the results of the ANOVA.  The significance values are all 

zero, giving a strong indication that variances in performance values for the model 

in general, and the run number and algorithm type factors in particular, cannot be 

attributed to random error alone.  The run number and algorithm type are almost 

certainly affecting the performance values being produced.  It is good, then, that the 

run number (problem instance) was included as a blocking factor.  Had it been left 

out, its influence on the model would not have been accounted for and could have 

distorted the effects seen for the algorithm type factor. 
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Dependent Variable: Performance Ratio

6.007b 55 .109 28.126 .000 .840 1546.931 1.000

71.094 1 71.094 18307.321 .000 .984 18307.321 1.000

3.770 49 7.693E-02 19.811 .000 .768 970.750 1.000

2.238 6 .373 96.030 .000 .662 576.181 1.000

1.142 294 3.883E-03

78.243 350

7.149 349

Source

Corrected Model

Intercept

Factor A

Factor B

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

R Squared = .840 (Adjusted R Squared = .810)b. 

 

Exhibit 14.  ANOVA Results, TSP Size Ten Performance 

The results of the ANOVA needed to be confirmed by testing to verify that the 

assumed conditions for a valid ANOVA were in fact present.  Exhibit 15 shows the 

P-P plot of the ANOVA residuals.  There is evidence of departure from the normal 

marker line in two sections of the plot, leading to suspicion that the residuals might 

not be normally distributed.  A Kolmogorov-Smirnov normality test was used at 

this point to provide a more precise indication. 
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Exhibit 15.  Residual Normal P-P Plot, TSP Size Ten Performance 

Exhibit 16 shows the results of the Kolmogorov-Smirnov test.  Here there is a 

problem.  The significance factor shown on the last line is 0.037, which is lower 

than the threshold of 0.05.  This means that the Kolmogorov-Smirnov test has 

rejected the hypothesis of normally distributed residuals.  This cast some doubt on 

the validity of the ANOVA results, and further evidence was required to 

corroborate those results. 
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Exhibit 16.  Kolmogorov-Smirnov Test, TSP Size Ten Performance 

However, before examining that additional evidence the other condition of non-

structured residuals was tested.  The first of these tests was the plot of the predicted 

values versus observed residuals, shown in Exhibit 17.  This plot shows if there is a 

pattern of relationship between the residuals and the predicted values of 

performance based on average outputs for given inputs.  While there is an 

indication of narrowing in the plotted points towards the right of the diagram, there 

is no overall “megaphone” shape or similar pattern discernable.  Thus, the plot 

gives no reasonable indication of a serious problem. 
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Exhibit 17.  Predicted vs. Residual Plot, TSP Size Ten Performance 

The other test of the assumption of non-structured residuals was the plot of 

residuals over time, shown in Exhibit 18.  This plot shows if there is a trend for 

residuals to become larger or smaller with each additional experiment run (in this 

case, problem instance).  The plotted points resemble a tube, with no obvious 

narrowing or widening, and thus there is no indication of a serious problem with 

structured residuals here either. 
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Exhibit 18.  Residual Trend Plot, TSP Size Ten Performance 

The tests for non-structured residuals did not reveal any cause for alarm.  

However, the normality of the residual distribution was rejected by the 

Kolmogorov-Smirnov test.  Since the residuals could not be assumed to be 

normally distributed, one of the assumptions of the ANOVA had been violated, and 

it needed additional evidence to corroborate its conclusions.  The Kruskal-Wallis 

test could be used for this purpose, as it is a non-parametric test not subject to the 

same assumptions as the ANOVA.  The test was conducted using algorithm type as 

the test factor. 
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Exhibit 19 shows the results of this test.  The significance value shown on the 

last line is zero, below the threshold of 0.05, meaning that the test accepts the 

hypothesis that there is a difference between the algorithm types.  This result is in 

agreement with the results obtained by the ANOVA, lending credence to those 

results in spite of the failed test for residual normality.  Since both the ANOVA and 

the Kruskal-Wallis Test agree on this count, it can be concluded that there is a 

significant difference between the performance values obtained by the different 

algorithms for TSP problem instances of size ten. 

Ranking Test Statisticsa,b

107.785

6

.000

Chi-Square

df

Asymp. Sig.

Performance
Ratio

Kruskal Wallis Testa. 

Grouping Variable: Algorithm Typeb. 

 

Exhibit 19.  Kruskal-Wallis Test, TSP Size Ten Performance 

To find out exactly what differences were considered significant, the 

homogeneous subsets for algorithm performance were generated, using both the 

Tukey and Duncan methods.  The results are shown in Exhibit 20.  In this case both 

methods have generated four subsets.  Since the subsets are automatically arranged 

by increasing performance ratio, and since better performance of an algorithm is 
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indicated by higher values for this measure, the best performing algorithms will be 

in subset 4, and the worst in subset 1.  Both the Tukey and Duncan methods also 

agree on which algorithms should be placed in which subsets.  The subset 

assignments indicate that the performance of SA, TA22, and TA21 are the best, and 

furthermore, that performance between the three is statistically indistinguishable.  

The next best performers were TA12 and GA, also indistinguishable.  Next down 

the list was TA11, and HC came in as the worst performer of the group. 
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Exhibit 20.  Homogeneous Subsets, TSP Size Ten Performance 
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The results of the analysis for TSP problem instances of size ten led to the 

conclusion that the performance hypothesis could be safely rejected for this group 

of problem instances.  There is a statistically significant difference between the 

performances of the different algorithm types.  The analysis also concluded that 

Simulated Annealing, GELS method two with single stepping, and GELS method 

two with multiple stepping are the best performing for problem instances of this 

type, with performances that are statistically indistinguishable from each other. 

To continue with the analysis process, BPP problem instances of size ten were 

considered.  Exhibit 21 shows the box plot for this group of problem instances.  

The boxes for GA and TA21 appear to be a little bit higher, but otherwise it appears 

to be a rather tight grouping.  Also, this time the box sizes for GA and TA21 are 

notably smaller than the others, and the whiskers for GA are considerably shorter.  

This indicates a wider variance in performance than there was for the TSP size ten 

problem instances, except for GA which apparently had a very tight variance.  Still 

though, there are no outlier markers on the diagram, which would be an indication 

of some extreme values having an undue effect on the variance. 
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Exhibit 21.  Box Plot, BPP Size Ten Performance 

Exhibit 22 shows the line plot of marginal means for this group of problems.  

Again, GA and TA21 appear higher than the others, strengthening the suspicion 

that they are the best performers.  In any event, there appears to be a significant 

difference between the performance of some of the algorithms, and the ANOVA 

should be able to confirm this. 
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Exhibit 22.  Line Plot, BPP Size Ten Performance 

The results of the ANOVA are shown in Exhibit 23.  All significance values are 

at zero, below the threshold of 0.05, indicating that the model contains significant 

amounts of variance that cannot be attributed to random error, and that choice of 

algorithm does make a difference to performance.  The run number again is 

significant, making it a good thing that it was set up as a blocking factor. 
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Dependent Variable: Performance Ratio

5.819b 55 .106 9.109 .000 .630 501.014 1.000

57.154 1 57.154 4920.861 .000 .944 4920.861 1.000

4.693 49 9.577E-02 8.246 .000 .579 404.037 1.000

1.126 6 .188 16.163 .000 .248 96.977 1.000

3.415 294 1.161E-02

66.388 350

9.234 349

Source

Corrected Model

Intercept

Run Number

Algorithm Type

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

R Squared = .630 (Adjusted R Squared = .561)b. 

 

Exhibit 23.  ANOVA Results, BPP Size Ten Performance 

To validate the results of the ANOVA, the assumptive preconditions of normal 

distribution of and no structure to the residuals were tested.  The P-P plot of the 

residuals is shown in Exhibit 24.  There appears to be a very good fit for this plot, 

with only one small deviation near the middle.  This would lead to the belief that 

the assumption of residual normality can be upheld, but in order to confirm this the 

Kolmogorov-Smirnov test was run. 
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Exhibit 24.  Residual Normal P-P Plot, BPP Size Ten Performance 

Exhibit 25 shows the results of the Kolmogorov-Smirnov test.  The significance 

value of the test is 0.169, above the threshold of 0.05, meaning that the test accepts 

the normality of the distribution.  This confirms what was seen in the P-P plot, and 

verifies the assumption of normally distributed residuals. 
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Exhibit 25.  Kolmogorov-Smirnov Test, BPP Size Ten Performance 

To test the assumption of non-structured residuals, the predicted values versus 

residuals and residual trend plots were examined.  Exhibit 26 shows the first of 

these plots.  There is a slight “pinching” of the plot at both ends but no overall 

pattern of widening or narrowing, and the majority of points are clustered within an 

equidistant band around the mean value line, so this plot is no cause for alarm. 
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Exhibit 26.  Predicted vs. Residual Plot, BPP Size Ten Performance 

Exhibit 27 shows the residual trend plot.  This plot looks very good as well, 

with no indication at all of any narrowing or widening over the runs of the 

experiment.  The predicted values versus residuals and residual trend plots provide 

good evidence that the residuals are non-structured, and that this assumption can 

therefore be made. 
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Exhibit 27.  Residual Trend Plot, BPP Size Ten Performance 

Since the assumptions of normal distribution and no structure to the residuals 

can be upheld, the original ANOVA results can be considered solid.  Those results 

indicated that there is a difference between the performances of the different 

algorithms.  To see which differences can be considered significant, the 

homogeneous subsets were generated. 

These results are shown in Exhibit 28.  In this case, the Tukey and Duncan 

methods have generated a different number of subsets.  The Tukey method places 

GA and TA21 in the top subset, TA21 and SA in the next subset, SA, HC, TA11, 
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and TA22 in the next, and HC, TA11, TA22, and TA12 in the next, for a total of 

four subsets.  The Duncan method, on the other hand, places GA and TA21 in the 

top subset, SA and HC in the second, and HC, TA11, TA22, and TA12 in the last 

for a total of three subsets. 
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Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.161E-02.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 28.  Homogeneous Subsets, BPP Size Ten Performance 

Notice that in several cases the same algorithm appears in two subsets 

simultaneously.  The homogeneous subsets methods generate groups of factor 
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levels that cannot be distinguished statistically.  It may be the case that there is not 

enough of a difference between factor levels A and B to be considered statistically 

significant.  There may also not be enough of a difference between factor levels B 

and C to be considered significant.  This would mean that A and B cannot be 

distinguished and would be placed in a subset, and B and C cannot be distinguished 

and would be placed in another subset.  However, the difference between A and C 

may be just enough to be significant.  Thus, factor levels A and C would appear in 

different subsets, but factor level B would appear in a subset with A and in a subset 

with C at the same time. 

Such is the case here.  For example, in Tukey’s method GA and TA21 appear in 

the top subset, but TA21 also appears in the next subset with SA.  This is saying 

that there is not enough of a difference in performance between GA and TA21 to be 

significant, so they are placed in a subset, and there is also not enough of a 

difference between TA21 and SA to be significant, so they are placed in a subset.  

However, there is enough of a difference between GA and SA to be significant, so 

they appear in different subsets.  In this way, TA21 appears in two different subsets 

at the same time. 

The results of the analysis of BPP problem instances of size ten showed a 

significant difference in performance between the test algorithms.  Thus, the 

performance hypothesis can be rejected for this group of problem instances.  

Further, though there was a difference in the number of homogeneous subsets 

between the Tukey and Duncan methods, both agreed that the top performers in 



 142 

this category of problem were the Genetic Algorithm and GELS method two with 

single stepping. 

Continuing on, the next group of problem instances to be analyzed was the FAP 

instances of size ten.  The box plot for this group appears in Exhibit 29.  Here there 

would appear to be a distinct difference between algorithm performances, with the 

boxes for SA and TA21 falling completely outside several of the others.  Since 

these boxes are above the others, it also indicates that SA and TA21 are the best 

performers.  Box sizes for HC, SA, and TA21 are relatively small compared to the 

others, and whisker lengths for SA and TA21 are comparatively shorter than the 

others.  There are also outlier values for GA, HC, and TA21.  Overall, this indicates 

lower variability in performance for SA and TA21 in particular.  Should these two 

algorithms be confirmed to have the best performance (which from the diagram 

would appear to be the case), they would not only be better performing but better 

performing with a lower chance of returning a poor solution. 
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Exhibit 29.  Box Plot, FAP Size Ten Performance 

The line plot for these data appears in Exhibit 30.  This plot agrees with the box 

plot that there is a definite difference between the performances of the different 

algorithms, and that SA and TA21 are the best performers.  It is expected that the 

ANOVA will confirm this. 
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Exhibit 30.  Line Plot, FAP Size Ten Performance 

Exhibit 31 shows the ANOVA results.  Once again, the significance values are 

all zero.  The model almost certainly contains variance that cannot be explained by 

random error, the algorithm type factor is playing a significant role in determining 

the outcome, and the run number factor is exerting a significant influence and was 

rightly blocked. 
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Dependent Variable: Performance Ratio

6.829b 55 .124 18.366 .000 .775 1010.106 1.000

57.586 1 57.586 8518.208 .000 .967 8518.208 1.000

2.862 49 5.841E-02 8.640 .000 .590 423.336 1.000

3.967 6 .661 97.795 .000 .666 586.770 1.000

1.988 294 6.760E-03

66.403 350

8.816 349

Source

Corrected Model

Intercept

Run Number

Algorithm Type

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

R Squared = .775 (Adjusted R Squared = .732)b. 

 

Exhibit 31.  ANOVA Results, FAP Size Ten Performance 

To confirm the results of the ANOVA, the tests of the assumptive conditions 

were performed.  Exhibit 32 shows the P-P plot of the residuals for this group of 

problems.  Most of the points are right on the line, and those that are not are very 

close to it.  This would lead to the belief that the residuals are normally distributed. 
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Exhibit 32.  Residual Normal P-P Plot, FAP Size Ten Performance 

The Kolmogorov-Smirnov test for normality of the residuals, shown in Exhibit 

33, confirms this belief.  The significance value of 0.144 is above the threshold of 

0.05, so the test accepts the assumption that the residuals are normally distributed. 
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Exhibit 33.  Kolmogorov-Smirnov Test, FAP Size Ten Performance 

With the assumption of the normality of the residuals upheld, the tests for non-

structured residuals were conducted.  Exhibit 34 shows the first of these tests, the 

plot of predicted values versus residuals.  Again the ends of the plot appear 

somewhat pinched, but a close look shows that this effect is due to a small number 

of individual points.  Most of the points are clustered together in a fairly tight 

arrangement with no indication of a consistent pattern, so this plot should not raise 

any warning flags. 
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Exhibit 34.  Predicted vs. Residual Plot, FAP Size Ten Performance 

Exhibit 35 shows the plot of residual trend, the other test for non-structured 

residuals.  Again, there are a few outliers, but there is no indication of consistent 

widening or narrowing, and so there are no warning flags here either.  The 

assumption of non-structured residuals appears reasonable. 
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Exhibit 35.  Residual Trend Plot, FAP Size Ten Performance 

Having validated the results of the ANOVA, with its conclusion that there is a 

difference between the performances of the algorithms, the homogeneous subsets 

of those differences were generated.  Exhibit 36 shows those subsets.  Tukey and 

Duncan are in agreement as to the number and contents of the subsets.  Both 

methods place SA and TA21 in the top subset, TA22 and TA11 in the next subset, 

HC by itself in the next, and finally TA12 and GA in the lowest subset. 
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Exhibit 36.  Homogeneous Subsets, FAP Size Ten Performance 

The result of the analysis for FAP size ten problem instances indicates that the 

performance hypothesis can be rejected for this group.  There is a significant 

difference in the performance of the algorithms, with Simulated Annealing and 

GELS method two with single stepping together claiming the best performance. 

To complete the analysis of the size ten problems, the composite analysis of all 

size ten problem instances over all three problem types was conducted.  The box 

plot for this appears in Exhibit 37.  Here the box sizes and whisker lengths for SA 
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and TA21 appear smaller than for the others, indicating that they have smaller 

variances in performance, even though both of them have outliers.  SA and TA21 

also appear slightly higher (and therefore would have better performance), but they 

also overlap several of the other boxes, so this cannot be considered conclusive.  

The variances in the performances of GA, TA11, and TA12 are extreme, fully 

encompassing the entire sizes of the others, pointing to a wide range in 

performance for those algorithms on problem instances of this type. 
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Exhibit 37.  Box Plot, Composite Size Ten Performance 
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The composite line plot is shown in Exhibit 38.  This plot is even more 

suggestive of SA and TA21 being the better-performing algorithms for this group 

of problems than was the box plot.  It also suggests that the ANOVA will show the 

performances of the two to be about the same. 

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

 

Exhibit 38.  Line Plot, Composite Size Ten Performance 

One other line plot for this group of problems is shown in Exhibit 39.  This plot 

gives a side-by-side comparison of the performances of the algorithms for each 

problem type.  If there was any interaction between the problem type factor and the 
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algorithm type factor when solving size ten problems, some of the lines would 

cross.  If no such interaction was present, the lines would remain virtually parallel, 

varying only with the algorithm type. 
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Exhibit 39.  Problem Type Plot, Composite Size Ten Performance 

As can be seen in the plot, there are several points at which the lines cross.  

This indicates that the algorithms’ ability to solve size ten problems is not 

independent of the type of problem being solved.  For instance, looking at GA it 

appears that if this algorithm is to be used it would most likely produce its best 
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solutions on a size ten BPP problem, and considerably worse on an FAP problem of 

the same size.  The fact that algorithms perform with different capabilities on 

different types of problems should come as no surprise.  What is noteworthy, 

however, is that because of the nature of the experiments being conducted, this 

difference can here be statistically verified and viewed for specific types of 

problems. 

The composite ANOVA for size ten problems is shown in Exhibit 40.  All the 

significance values are zero, including the one for the interaction of the problem 

type factor with the algorithm type factor.  The choice of algorithm for solving size 

ten problems does have a significant effect on performance, and this effect is not 

independent of the type of problem being solved. 

Dependent Variable: Performance Ratio

11.920b 69 .173 12.295 .000 .464 848.386 1.000

185.344 1 185.344 13191.343 .000 .931 13191.343 1.000

4.099 49 8.365E-02 5.954 .000 .229 291.735 1.000

.491 2 .245 17.455 .000 .034 34.911 1.000
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Corrected Model
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Algorithm Type

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a. 

R Squared = .464 (Adjusted R Squared = .426)b. 

 

Exhibit 40.  ANOVA Results, Composite Size Ten Performance 
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To verify the results of the ANOVA, the checks on the assumptive conditions 

were performed.  The P-P plot for checking the normality of the residuals is shown 

in Exhibit 41.  The points in this plot look almost like a straight line; there can be 

little doubt that the residuals are normally distributed.  However, the Kolmogorov-

Smirnov test was still run to confirm this assertion. 
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Exhibit 41.  Residual Normal P-P Plot, Composite Size Ten Performance 
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The results of this test are given in Exhibit 42.  The significance value is 0.382, 

above the 0.05 threshold as expected.  The case for the normality of the residuals is 

upheld. 

1050

.0000000

.11456977

.028

.012

-.028

.908

.382

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Performance

Ratio

Test distribution is Normal.a. 

Calculated from data.b. 

 

Exhibit 42.  Kolmogorov-Smirnov Test, Composite Size Ten Performance 

Checking the other ANOVA assumptive condition, non-structured residuals, 

the plot of predicted values versus residuals is shown in Exhibit 43.  Once again 

there is the pinching effect on the ends of the plot, but some of this at least can be 

explained by the nature of the performance ratio.  It cannot exceed one, nor can it 

go less than zero.  Consequently, the farther the performance ratio from mid-range, 

the less room there is for the residuals to fluctuate.  Thus, a narrowing at the 

extremes of this plot is somewhat to be expected, and certainly no cause for alarm. 
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Exhibit 43.  Predicted vs. Residual Plot, Composite Size Ten Performance 

The other check for non-structured residuals, the plot of residual trend, is 

shown in Exhibit 44.  This plot looks almost like a cylinder, with no hint of 

narrowing or widening, so there is certainly not a problem here. 
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Exhibit 44.  Residual Trend Plot, Composite Size Ten Performance 

With no problems found for either residual normality or residual structures, the 

results of the ANOVA appear solid.  Given this, the homogeneous subsets for the 

experiment set as a whole were generated.  These are shown in Exhibit 45.  

Tukey’s and Duncan’s methods are in full agreement in this case.  Both have 

generated four subsets, with TA21 and SA occupying the top spot.  In the next 

subset is TA22 by itself, then GA and TA11 in the next subset, and finally TA12 

and HC in the final subset. 
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Exhibit 45.  Homogeneous Subsets, Composite Size Ten Performance 

The performance hypothesis has been solidly rejected for the composite set of 

size ten problems.  There is a definite difference in the performances of the 

algorithms across problem types of this size, and there is a measurable difference 

between how the algorithms perform on different algorithm types.  For problem 

instances of size ten across all test problems, GELS method two with single 

stepping was indistinguishable from Simulated Annealing in being the best 

performers. 
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2.2.7.1.2 Problem Size Twenty Performance Results 

The next portion of the analysis involved the consideration of problem 

instances of size twenty.  All of the methods, tests, tools, and diagrams used in 

performing this part of the analysis were exactly the same as were used in the 

analysis of the set of problem instances of size ten.  Such was also the case for the 

examination of the other remaining experiment sets (size thirty, size forty, size 

fifty, and the random size problem instances).  Displaying the individual results of 

all the tests would require many hundreds of pages; consequently, the diagrams of 

the tests have been omitted, and the summary results will be given. 

For TSP problem instances of size twenty, the analysis showed that the 

performance hypothesis could be rejected for this group of problems.  With a 

significance value of zero in the ANOVA, the algorithm type factor demonstrated 

that it had a significant effect on performance.  The ANOVA results were verified 

through testing of the residuals, and the homogeneous subsets were calculated. 

The subsets produced are shown in Exhibit 46.  From this diagram, it can be 

seen that though the count of the subsets generated by the two methods was 

different, the ordering of the algorithms within them was not.  The only difference 

between them was that Tukey’s method put GELS method two with multiple 

stepping in the same subset with GELS method two with single stepping, while 

Duncan’s method separated them.  Both agreed that the best performer for this 

group of problem instances was Simulated Annealing.  The best performing of the 
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GELS combinations were method two with multiple stepping and method two with 

single stepping, which came in second and third, respectively, in the Duncan 

method, and were tied for second best performance in the Tukey method. 
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Exhibit 46.  Homogeneous Subsets, TSP Size Twenty Performance 

For BPP problem instances of size twenty, the performance hypothesis was 

easily rejected again.  The ANOVA results, verified by checks on the assumptions, 

showed all zeroes for the significance values, indicating significant effect of 

algorithm type on performance.  When constructing the homogeneous subsets, this 

time Tukey’s method created three subsets, and Duncan’s method created five.  The 
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results are shown in Exhibit 47.  Once again, though the overall number of subsets 

differed between the two methods, both agreed that the best performers for this 

group of problem instances were the Genetic Algorithm and GELS method two 

with single stepping together. 
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Exhibit 47.  Homogeneous Subsets, BPP Size Twenty Performance 

For FAP problem instances of size twenty, the ANOVA results (verified by 

checks on the assumptions) showed that the performance hypothesis could be 

safely rejected for this group of problem instances.  The homogeneous subsets 

generated are given in Exhibit 48.  This time both methods agreed on the number of 
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subsets, but not on the content for each individual subset.  Nevertheless, both 

agreed on the contents of the top subset, naming the best performers for this group 

of problems as a three-way tie between Simulated Annealing, GELS method two 

with multiple stepping, and GELS method one with multiple stepping. 
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Exhibit 48.  Homogeneous Subsets, FAP Size Twenty Performance 

In looking at the composite view of all size twenty problem instances, the 

ANOVA once again rejected the performance hypothesis, meaning that it 
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determined that for any given problem instance of size twenty there is a significant 

difference in performance between the algorithm types, regardless of which of the 

test problem types is being solved.  The interesting item here is that while the 

assumption of normal distribution of the residuals held for all three problem types 

individually, the Kolmogorov-Smirnov test rejected this assumption for the 

composite case.  This meant that the ANOVA results had to be corroborated by 

additional evidence.  Fortunately, the results of the Kruskal-Wallis test conducted 

on the algorithms’ performances concurred with those of the ANOVA, providing 

that necessary corroboration. 

Having affirmed the difference in performance between the algorithms, the 

homogeneous subsets were generated, and the results are shown in Exhibit 49.  

This time the two methods were in complete agreement, creating four subsets and 

naming the overall best performer for the size twenty set of experiments to be 

Simulated Annealing.  The best performances of the GELS combinations were 

GELS method two with single stepping and GELS method two with multiple 

stepping, which finished together in the second spot. 
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Exhibit 49.  Homogeneous Subsets, Composite Size Twenty Performance 

The results of the ANOVA also asserted a significant effect of problem type on 

algorithm performance, indicating the presence of some interaction between the 

problem type and algorithm type factors.  A visual depiction of the interaction 

detected is shown in Exhibit 50.  While there is not as much interaction as was 

shown for size ten problem instances, some line crossing can be seen, as can 

notably better performances obtained overall for FAP problem instances than for 

instances of the other problem types. 
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Exhibit 50.  Problem Type Plot, Composite Size Twenty Performance 

2.2.7.1.3 Problem Size Thirty Performance Results 

The next set of experiments to be analyzed was the set of problem instances of 

size thirty.  For TSP problem instances of this size, the ANOVA results, confirmed 

by checks of the assumptions, showed that the algorithm type factor was having a 

significant effect on performance, thus rejecting the performance hypothesis for 

this group of problems.  In constructing the homogeneous subsets, the Tukey and 

Duncan methods were in complete agreement on the arrangement.  The sets they 

generated are shown in Exhibit 51.  Both generated five subsets, and gave the nod 
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to Simulated Annealing as the best performer for this group of problems.  The best 

result for GELS was for method two with multiple stepping, which was placed in 

the second best subset. 

50 .2541734

50 .2583976

50 .3055335

50 .3218444

50 .3591655

50 .3900728

50 .5640582

.999 .491 1.000 1.000 1.000

50 .2541734

50 .2583976

50 .3055335

50 .3218444

50 .3591655

50 .3900728

50 .5640582

.626 .060 1.000 1.000 1.000

Algorithm Type

GA

TA11

TA12

HC

TA21

TA22

SA

Sig.

GA

TA11

TA12

HC

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.870E-03.

Uses Harmonic Mean Sample Size = 50.000.a. 
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Exhibit 51.  Homogeneous Subsets, TSP Size Thirty Performance 

For the BPP problem instances of size thirty, the ANOVA rejected the 

performance hypothesis for this group of problems, asserting that the choice of 

algorithm did have a significant effect on the performance results.  The ANOVA 

results were verified by checks on the assumptions, and the homogeneous subsets 

were generated.  The results of this are shown in Exhibit 52.  Tukey’s method 
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produced four subsets, while Duncan’s method produced five.  The Tukey method 

also named GELS method two with single stepping to be the best performer for this 

group of problems, in a tie with the Genetic Algorithm.  The Duncan method, 

however, differentiated between the two, naming GELS method two with single 

stepping to the top spot by itself and placing the Genetic Algorithm in second 

place.  In either case, though, GELS method two with single stepping was indicated 

as the top performer for this group of problems. 
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Exhibit 52.  Homogeneous Subsets, BPP Size Thirty Performance 
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For the FAP problems of size thirty, the ANOVA again indicated that the 

algorithm type factor was having a significant effect on performance for this group 

of problems, and therefore the performance hypothesis should be rejected for this 

group of problems.  These results were confirmed by the checks on the 

assumptions, and the homogeneous subsets were generated.  The results of this are 

given in Exhibit 53.  Tukey’s method generated three subsets, while Duncan’s 

method generated four, but both methods agreed on a three-way tie between 

Simulated Annealing, GELS method two with single stepping, and GELS method 

two with multiple stepping for the best performing algorithm for this group of 

problems. 
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Alpha = .05.b. 

 

Exhibit 53.  Homogeneous Subsets, FAP Size Thirty Performance 

For the composite of all problem instances of size thirty, the ANOVA indicated 

that in the overall case for this set of experiments the performance hypothesis 

should be rejected.  It found a significant effect of algorithm type on performance, 

and these results were confirmed through checks on the assumptive conditions of 

the ANOVA.  The homogeneous subsets generated are shown in Exhibit 54.  In this 

case both the Tukey and the Duncan methods are in complete agreement.  Both 

created three subsets, and both named Simulated Annealing and GELS method two 
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with single stepping to be in a tie for the overall best performer in the set of 

problem instances of size thirty. 
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Exhibit 54.  Homogeneous Subsets, Composite Size Thirty Performance 

The ANOVA also found a significant effect of the problem type on the 

performances of the algorithms.  A graph of this is shown in Exhibit 55.  It shows 

several places where the lines cross, indicating the interaction between the problem 
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type being solved and the algorithm being used to solve it.  The lines for FAP and 

TSP problem instances have a similar shape, suggesting that these two problem 

types have similar effects on the algorithms.  The line for BPP problem instances, 

on the other hand, has nearly a completely different shape, suggesting an entirely 

different effect on algorithms attempting to solve them.  That being the case, it 

would suggest further that a different selection of algorithm for solving BPP 

problem instances might be apropos.  One counter-indication to this is the spike on 

BPP for GELS method two with single stepping, showing its high level of 

performance for those problem instances, and its comparable level of performance 

on instances of the other problem types. 
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Exhibit 55.  Problem Type Plot, Composite Size Thirty Performance 

2.2.7.1.4 Problem Size Forty Performance Results 

Next to be analyzed was the set of problem instances of size forty.  For the TSP 

problem instances in this group, the confirmed ANOVA results led to the rejection 

of the performance hypothesis for this group of problem instances.  The 

homogeneous subsets were generated, giving the results shown in Exhibit 56.  

Once again Tukey’s method generated one fewer subset than did Duncan’s method, 

but both agreed that the top performer for this group of problem instances was 

Simulated Annealing, with GELS method two with multiple stepping being the 
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highest rated of the GELS combinations, in the second slot.  Of note here is that the 

Duncan method found enough difference between each of the algorithms that it was 

almost willing to put each one in its own subset, with only Hill Climbing and 

GELS method two with single stepping being placed together. 
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Exhibit 56.  Homogeneous Subsets, TSP Size Forty Performance 

For the size forty BPP problem instance group, the ANOVA indicated rejection 

of the performance hypothesis.  However, it failed the test for normality of the 

residuals, registering only a 0.022 significance rating on the Kolmogorov-Smirnov 

test.  Needing additional evidence to corroborate the ANOVA results, a Kruskal-

Wallis test was run.  This test was able to affirm the results of the ANOVA with a 
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perfect score, providing reassurance of its conclusions.  Having corroborated the 

ANOVA results, the homogeneous subsets were generated, and are shown in 

Exhibit 57.  Again, the Tukey method produced one fewer subset than the Duncan 

method.  Both methods placed GELS method two with single stepping as the best 

performer for this group of problems, with Duncan’s method having placing it there 

by itself and Tukey’s method matching it with Hill Climbing (a rather surprising 

finish for HC given its performance in the other problem instance groups). 
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Exhibit 57.  Homogeneous Subsets, BPP Size Forty Performance 
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For the FAP problem instances of size forty, the ANOVA again rejected the 

performance hypothesis for this group of problems.  This time, the ANOVA results 

were confirmed by check of the assumptive conditions, and the homogeneous 

subsets were generated.  The results of this are shown in Exhibit 58.  For the first 

time, there were only two subsets generated, identical between the Tukey and 

Duncan methods.  In the subset indicative of best performance for this group of 

problem instances, Simulated Annealing was grouped together with all four of the 

GELS combinations, all statistically indistinguishable. 
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Exhibit 58.  Homogeneous Subsets, FAP Size Forty Performance 

The composite analysis for all problem instances of size forty was then 

performed.  The ANOVA indicated a difference in performance between the 

algorithms across problem types.  However, it completely failed the check of 

normality of the residuals, scoring a zero on the Kolmogorov-Smirnov test.  

Fortunately, a Kruskal-Wallis test comparing the algorithm types found solid 

evidence of its significance as a factor, bolstering the ANOVA results.  Since the 
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non-parametric test had agreed with the ANOVA, there was sufficient evidence of 

difference between the performances of the algorithms to warrant rejection of the 

performance hypothesis for the size forty experiment set, and the homogeneous 

subsets were generated as shown in Exhibit 59.  This time there was a two-subset 

difference between the Tukey and the Duncan methods, with the Duncan method 

again being more discriminatory in its selection of subsets than was Tukey.  

Duncan’s method put Simulated Annealing alone at the top, with GELS method 

two with single stepping in the second spot, while the Tukey method could not 

distinguish between those them as the best performers for this set of experiments. 
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Exhibit 59.  Homogeneous Subsets, Composite Size Forty Performance 
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Again, the ANOVA results also found that the performance of the algorithms 

was not independent of the problem type being solved, and that there was 

interaction between the two factors as shown in Exhibit 60.  There are several 

points where the lines cross, highlighting the interaction between problem type and 

algorithm performance, and there is that same general shape between the FAP and 

TSP lines, with a markedly different shape to the BPP line, as seen previously, 

again indicating a different effect on algorithm performance from BPP problem 

instances than from instances of the other problem types. 
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Exhibit 60.  Problem Type Plot, Composite Size Forty Performance 
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2.2.7.1.5 Problem Size Fifty Performance Results 

The set of experiments consisting of problem instances of size fifty was next 

analyzed.  For the TSP problem instances of this size, the ANOVA indicated 

rejection of the performance hypothesis for this group of problem instances.  These 

results were confirmed through the necessary checks, and the list of homogeneous 

subsets was generated.  Exhibit 61 shows this list.  While once before the Duncan 

procedure was almost prepared to place each algorithm in its own subset, this time 

it actually did do so.  Even the Tukey method placed only two of the algorithms in 

the same subset.  Both methods put Simulated Annealing in the top spot, with the 

best performing GELS combination being method two with multiple stepping, in 

third place in Duncan and tied for second in Tukey. 
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Exhibit 61.  Homogeneous Subsets, TSP Size Fifty Performance 

For the BPP problem instances of size fifty, the confirmed ANOVA results 

rejected the performance hypothesis.  The homogeneous subsets for this group of 

problems are shown in Exhibit 62.  Once again the Tukey method generated one 

less subset than the Duncan method, but both placed GELS method two with single 

stepping in a tie with Hill Climbing (another high finish) as the best performers for 

this group of problem instances. 
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Exhibit 62.  Homogeneous Subsets, BPP Size Fifty Performance 

For the FAP problem instances of size fifty, the ANOVA found a difference 

between the algorithm performances.  A check of the normality of the residuals 

failed, however, with only a 0.003 significance on the Kolmogorov-Smirnov test.  

To provide additional evidence, a Kruskal-Wallis test was performed on the 

algorithm type factor.  This test was able to corroborate the ANOVA, with the 

same findings of a difference in algorithm performance.  Thus, the list of 

homogeneous subsets could be generated, and is shown in Exhibit 63.  Only three 

subsets, identical in each method, were produced.  The best performing algorithms 
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for this group of problem instances was determined to be a four-way tie, consisting 

of Simulated Annealing and all of the GELS combinations with the exception of 

method one with multiple stepping, which was placed in the secondary subset. 

50 .3408493

50 .4022736

50 .7182439

50 .8237925

50 .8513245

50 .8646275

50 .8715972

.516 1.000 .780

50 .3408493

50 .4022736

50 .7182439

50 .8237925

50 .8513245

50 .8646275

50 .8715972

.066 1.000 .194

Algorithm Type

GA

HC

TA12

TA11

TA21

TA22

SA

Sig.

GA

HC

TA12

TA11

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.761E-02.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 63.  Homogeneous Subsets, FAP Size Fifty Performance 

Looking at the composite of all problem instances of size fifty, the ANOVA 

found sufficient cause to reject the performance hypothesis for this set of 
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experiments.  Once more, though, it completely failed the Kolmogorov-Smirnov 

test of normality of the residuals (with a significance of zero), calling the results 

into question.  A run of a Kruskal-Wallis test against the algorithm type factor was 

fortunately able to solidly reaffirm the ANOVA results, providing the necessary 

additional evidence to declare the rejection of the performance hypothesis valid.  

The list of homogeneous subsets was then generated, shown in Exhibit 64.  Once 

again there is a one-set difference between the Tukey and Duncan methods.  The 

Duncan method declared Simulated Annealing to be the best performing algorithm 

for this group of problems, with GELS method two with single stepping in second 

place.  Tukey’s method, on the other hand, placed both algorithms in the same top 

slot for performance. 
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Exhibit 64.  Homogeneous Subsets, Composite Size Fifty Performance 

The ANOVA noted an effect of problem type on algorithm performance for this 

set of experiments also.  Exhibit 65 shows a line plot that displays this effect.  As 

with the previous experiment sets, there is a similar shape to the lines for FAP and 

TSP, suggesting that these two problem types have a similar effect on the 

algorithms.  BPP, however, seems again to have a different effect, as evidenced by 

its different shape and the fact that the line for BPP crosses the FAP line in three 

places.  In particular, BPP seems to have a much more adverse effect on the 

performance of Simulated Annealing than the other problems, since the 
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performance on them for SA goes up, but goes down for BPP.  As seen previously, 

there is also a notably higher overall performance by the algorithms on FAP 

problem instances than on instances of the other problem types, but also the most 

overall variability in the quality of the performances between the different 

algorithms.  BPP and TSP problem instances, while not having as high levels of 

performance as for FAP, nevertheless had notably less variability in the 

performance ratios between algorithm types. 
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Exhibit 65.  Problem Type Plot, Composite Size Fifty Performance 
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2.2.7.1.6 Random Problem Size Performance Results 

The final set of experiments to be analyzed for performance was the set 

consisting of problem instances with randomly assigned problem sizes.  For the 

group of random TSP problem sizes, the ANOVA found significant differences 

between algorithm performances, thus rejecting the performance hypothesis.  This 

finding was verified through the necessary checks, followed by generation of the 

homogeneous subsets, which is shown in Exhibit 66.  Here the Tukey and Duncan 

methods generated the same subsets, as well as the same content for each of the 

subsets.  Simulated Annealing was shown to have the best performance for this 

group of problems, with the highest rated of the GELS combinations being method 

two with multiple stepping, in second place. 
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Exhibit 66.  Homogeneous Subsets, Random Size TSP Performance 

For the random size BPP problem instances the ANOVA again rejected the 

performance hypothesis, finding significant differences among the algorithm 

performances.  The necessary checks revealed no problems, and the homogeneous 

subsets were generated.  These results are shown in Exhibit 67.  Once again the 

Tukey method produced one less subset than the Duncan method, which named 

GELS method two with single stepping and the Genetic Algorithm to the highest 

performing subset.  The Tukey method also placed those two algorithms in the top 

subset, adding in Hill Climbing for a three-way tie. 
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Exhibit 67.  Homogeneous Subsets, Random Size BPP Performance 

For the FAP random sized problem instances the ANOVA once again found a 

significant difference between the performances of the algorithms, leading to a 

rejection of the performance hypothesis for this group of problem instances.  These 

results were affirmed by the necessary checks, and the homogeneous subsets were 

generated, as shown in Exhibit 68.  Again, the Tukey method produced one fewer 

subset than the Duncan method.  Duncan’s method had a two-way tie for the top 

performance between Simulated Annealing, while Tukey’s method had a four-way 

tie between the two algorithms just mentioned and the rest of the GELS 
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combinations, with the exception of method one with multiple stepping (which was 

placed in the next lower subset). 
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Exhibit 68.  Homogeneous Subsets, Random Size FAP Performance 

The final portion of the performance analysis was for the composite of the 

random sized problem instances.  The ANOVA for this set of experiments found a 

significant difference between the performances of the algorithms, but in 

conducting the necessary checks, it was found to fail the test for normally 
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distributed residuals, scoring only a significance value of 0.01 on the Kolmogorov-

Smirnov test.  Additional evidence was required, and a Kruskal-Wallis test of the 

algorithm type factor showed the same significant difference, thus agreeing with 

and affirming the ANOVA conclusion to reject the performance hypothesis for this 

set of experiments.  Exhibit 69 shows the homogeneous subsets that were 

generated.  Yet again, the Tukey method produced one less subset than the Duncan 

method.  However, both methods had the same content for their respective top 

subsets, naming Simulated Annealing and GELS method two with single stepping 

as the co-best performers for the set of random sized experiments. 
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Exhibit 69.  Homogeneous Subsets, Random Size Composite Performance 

Once again, the ANOVA for this set of experiments also found a significant 

effect of problem type on the performance of the algorithms.  This effect is 

illustrated in Exhibit 70.  Again, there is somewhat of a similarity between the 

shape of the lines for FAP and TSP problem instances, but a notable difference in 

the shape of the BPP line.  At several points the line for BPP is decreasing from 

one point to the next while the lines for the others are increasing, and again BPP 

seemed to have a rather severe adverse effect on Simulated Annealing.  

Performance ratios are again somewhat higher in general for FAP problem 
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instances and somewhat lower in general for BPP problem instances, although 

lower ratios for BPP are not altogether surprising since there is usually less of an 

opportunity to improve upon the objective function values of random solutions 

given the typically smaller range of these values within problem instances of any 

size in comparison to instances of the other problem types.  Still, though, the BPP 

problem instances seem to be having an adverse effect on some of the algorithms 

(Simulated Annealing in particular), but not others (the Genetic Algorithm and 

GELS method two with single stepping, for instance). 
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Exhibit 70.  Problem Type Plot, Random Size Composite Performance 
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Due to the fact that this set of experiments contained both problem type and 

problem size as factors, this enabled the ANOVA to include both of them in its 

analysis and look for interactions.  Consequently, the ANOVA also found evidence 

of a significant effect of problem size on the algorithms’ ability to produce high 

quality solutions to them.  This effect is displayed in Exhibit 71.  The interaction 

between the two factors can be seen in the crossing lines.  However, while in plots 

of performance for the different problem types there were notably different shapes 

to some of the lines (particularly for BPP), here all the lines have formed more or 

less the same shape.  Also, the difference between the highest point and the lowest 

point for any of the algorithms is comparable to the distance for any of the others.  

This indicates that the problem size is having a fairly consistent effect on each of 

the algorithms. 
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Exhibit 71.  Problem Size Plot, Random Size Composite Performance 

2.2.7.2 Algorithm Efficiency Results 

Recalling that there were two hypotheses in the original DOE, the second phase 

of the analysis process was to investigate the efficiency of the algorithms.  That is, 

now that an analysis has been completed of how good the solutions produced by 

the algorithms were, the second phase was to investigate how quickly the 

algorithms arrived at those solutions.  This is of interest because in situations such 

as in these experiments where suboptimal solutions are being delivered, an 

algorithm that can produce solutions better than those of another algorithm is more 
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valuable.  However, if the solutions produced by that algorithm are only slightly 

better than those of the other, and it took much longer for that algorithm to produce 

the solution than it took for the other, the value of that algorithm is reduced. 

The sets of experiments to investigate algorithm efficiency mirrored those 

conducted to test algorithm performance.  A total of six sets of experiments were 

conducted, consisting of a set each for problem instance sizes of ten, twenty, thirty, 

forty, and fifty, plus a set of random size problem instances, just as was done for 

the algorithm performance analysis phase.  Exactly the same problem instances that 

were used to analyze performance were used to analyze efficiency, and exactly the 

same set of tests, tools, and procedures were used in the analysis process, so as with 

the last five sets of performance data only the summary results of the efficiency 

investigations will be shown. 

The only difference between the algorithm performance analysis and the 

algorithm efficiency analysis is the metric under study.  In the performance phase 

this metric measured an algorithm’s ability to improve upon random solutions.  In 

the efficiency phase, the metric measured how many solutions were examined by 

an algorithm before arriving at its ultimate solution.  In this way, the qualities of the 

solutions being produced by an algorithm were still being taken into consideration, 

but they were being tempered by the portion of the search space that was being 

covered in producing those solutions. 
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2.2.7.2.1 Problem Size Ten Efficiency Results 

Beginning with the set of problem instances of size ten, the ANOVA showed 

that there was a significant difference in algorithm performance, enough to reject 

the efficiency hypothesis for this group of problem instances.  However, it failed 

the Kolmogorov-Smirnov test for normal distribution of the residuals.  As will be 

seen with the other problem groups and experiment sets, this situation was present 

for every problem group of every experiment set in the efficiency analysis. 

This situation is due in large part to the nature of the algorithms.  Hill Climbing 

is a purely greedy algorithm, and as such it tends to terminate very quickly.  Thus, 

any gains in the quality of solutions produced by the algorithm are obtained at a 

cost of very few solutions examined, giving it a very high efficiency ratio.  But, the 

Genetic Algorithm is by design iterative, repeating the same procedure over and 

over until a defined iteration count has been reached.  Any gains in quality of 

solution are usually obtained only by examining and evaluating large numbers of 

solution candidates, meaning its efficiency ratio will tend to be rather small. 

So, the efficiency ratio became a double-edged sword.  On the one hand it was 

a convenient and uniform way of evaluating the efficiency of algorithms across 

problem type and size, and for comparing those efficiencies.  On the other hand, 

because of the way the algorithms operate the ratios for Hill Climbing were very 

high, and those of the remaining algorithms substantially lower, resulting in 



 198 

experiment case residuals that stood a very low chance of being normally 

distributed. 

This problem could have been alleviated somewhat by excluding Hill Climbing 

from the analysis, yet this would have meant that there would have been no means 

of comparison between it and the other algorithms other than by rough estimates.  

Instead, the HC data were included in the analysis, and Kruskal-Wallis tests were 

employed to ensure that the ANOVA results were accurate in spite of non-normal 

residuals.  With that said, the Kruskal-Wallis test of the algorithms’ efficiency for 

the TSP size ten problems was conducted, and matched the results of the ANOVA, 

confirming the decision to reject the efficiency hypothesis. 

The ANOVA also discovered, for the first time, that the run number did not 

play a significant role in the results, as evidenced by its significance value of 0.195 

(above the threshold of 0.05).  This result would turn out to also be commonplace 

during the efficiency analyses, not occurring for every problem group in every 

experiment set but in a large percentage of them.  This too can be explained by the 

nature of the experiments.  In the performance phase, problem instances each began 

with a Monte Carlo solution and the algorithms attempted to improve on it.  The 

quality of the Monte Carlo solution was random, so the opportunity to improve on 

it varied from problem instance to problem instance.  This innate variability 

affected the outcome, so the individual experiment runs had to be accounted for and 

blocked. 
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For the efficiency phase, however, this effect was not as potent.  It was still 

present in that gains in quality were still part of the metric, but it was dampened by 

being only part of the ratio, a part that was usually much smaller than the number 

of solutions examined.  This dampening often meant that the effect was reduced 

sufficiently that it was no longer considered significant by the ANOVA.  

Nevertheless, it did not hurt to keep the factor blocked in the experiments.  In those 

situations where it still played a significant effect, it was still necessary for it to be 

blocked.  In the situations where it was not significant, removing it as a blocking 

factor would have taken the variability in the experiments assigned to that factor 

and put it back into the general “pool” to be allocated elsewhere.  Since there was 

already more than a sufficient amount of data to be able to give the ANOVA room 

to make its determinations, adding this additional material into the mix was not 

needed. 

Returning to the analysis of the TSP problem instances of size ten, once the 

ANOVA results were confirmed by the Kruskal-Wallis test, the homogeneous 

subsets for efficiency were generated, as shown in Exhibit 72.  As expected, and as 

will become the norm for these analyses, Hill Climbing finished as the most 

efficient of the algorithms by a large margin.  Of more interest here is the second 

place finisher.  Duncan’s method determined this to be GELS method one with 

single stepping, while Tukey’s method grouped that algorithm with GELS method 

one with multiple stepping. 
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Exhibit 72.  Homogeneous Subsets, TSP Size Ten Efficiency 

For the BPP problem instances, the ANOVA determined that there was a 

significant difference between the efficiencies (as will always be the case because 

of Hill Climbing), and this was backed up by the Kruskal-Wallis test.  The 

homogeneous subsets are shown in Exhibit 73.  Tukey’s method produced only two 

subsets, while Duncan’s produced three.  Again, Hill Climbing claimed the top spot 

in both methods.  Since this is uniformly the case, it will hereafter go unmentioned, 
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concentrating instead on the next algorithm(s) in the list.  The diagrams can be used 

as references for the degree of difference between the Hill Climbing efficiencies 

and the others.  In this case, Tukey’s method placed all the algorithms except Hill 

Climbing into the second subset, while Duncan’s method managed to detect 

enough of a difference to award GELS method two with single stepping the second 

spot. 
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Exhibit 73.  Homogeneous Subsets, BPP Size Ten Efficiency 
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For the FAP problem instances, the ANOVA was conducted and corroborated, 

and the homogeneous subsets were generated as shown in Exhibit 74.  Again the 

Tukey method generated one less subset than the Duncan method, and has assigned 

the second best efficiency to GELS method one with single stepping and GELS 

method two with single stepping together.  Duncan’s method assigned each of the 

two to its own subset, with the former in second place and the latter in third. 
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Exhibit 74.  Homogeneous Subsets, FAP Size Ten Efficiency 
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In considering the problem instances of size ten as a whole, the ANOVA was 

conducted and corroborated.  The homogeneous subsets generated are shown in 

Exhibit 75.  Both methods put GELS method one with single stepping into the 

second place subset. 
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Exhibit 75.  Homogeneous Subsets, Composite Size Ten Efficiency 

In determining the effect of problem type for this set of experiments, the 

ANOVA found a significant interaction between problem type and algorithm 
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efficiency, as displayed in Exhibit 76.  It shows the expected high values for Hill 

Climbing, and it also shows a consistent shape for the lines, indicating that problem 

type had a relatively consistent effect on each of the algorithms.  It is also apparent 

that the best efficiencies overall were attained against FAP problem instances. 
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Exhibit 76.  Problem Type Plot, Composite Size Ten Efficiency 

2.2.7.2.2 Problem Size Twenty Efficiency Results 

For the TSP problem instances of size twenty, the ANOVA was conducted and 

corroborated, and the homogeneous subsets generated as shown in Exhibit 77.  The 
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Tukey method again produced one less subset than the Duncan method, and placed 

GELS method one with single stepping and GELS method one with multiple 

stepping in the second place subset together.  The Duncan method placed GELS 

method one with single stepping in its own subset in the second spot, with GELS 

method one with multiple stepping also in its own subset in the third spot. 
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Exhibit 77.  Homogeneous Subsets, TSP Size Twenty Efficiency 
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For the BPP problem instances, the ANOVA was conducted and corroborated, 

and the homogeneous subsets were generated as shown in Exhibit 78.  Here the two 

methods are in complete agreement, placing GELS method two with single 

stepping alone in the second spot, with all the rest aside from Hill Climbing in the 

third subset together. 
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Exhibit 78.  Homogeneous Subsets, BPP Size Twenty Efficiency 
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For the FAP problem instances, the ANOVA was again conducted and 

corroborated, with the homogeneous subsets coming out as shown in Exhibit 79.  

The Tukey and Duncan methods agreed on the number of subsets to be produced, 

but disagreed on their contents.  Duncan’s method put GELS method two with 

single stepping in the second subset along with GELS method one with single 

stepping, while Tukey’s method added GELS method two with multiple stepping to 

that grouping. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .198.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 79.  Homogeneous Subsets, FAP Size Twenty Efficiency 

In considering the problem instances of size twenty together as a whole, once 

again the ANOVA was conducted and corroborated, leading to the homogeneous 

subsets shown in Exhibit 80.  The Tukey and Duncan methods again agreed on 

number of subsets, but disagreed on their contents.  Duncan’s method declared 

GELS method one with single stepping and GELS method two with single stepping 

to be in a tie for the second best efficiency for this set of experiments, while 
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Tukey’s method added GELS method two with multiple stepping to this grouping 

for a three-way tie. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.128E-02.

Uses Harmonic Mean Sample Size = 150.000.a. 

Alpha = .05.b. 

 

Exhibit 80.  Homogeneous Subsets, Composite Size Twenty Efficiency 

The ANOVA for this experiment set also found a significant interaction 

between problem type and algorithm efficiency.  This is visualized in Exhibit 81.  

Again there is a similar shape to the lines, indicating a comparable effect of 
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problem type on each of the algorithms.  Also, the FAP problem instances again 

produced notably higher efficiency ratios from the algorithms than the other two 

problem types. 
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Exhibit 81.  Problem Type Plot, Composite Size Twenty Efficiency 

2.2.7.2.3 Problem Size Thirty Efficiency Results 

Moving on to the analysis of the problem instances of size thirty, the validated 

ANOVA results for the TSP problem instances of this size led to the homogeneous 

subsets shown in Exhibit 82.  Once again the Tukey and Duncan methods agreed 
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on count of subsets but not quite on content, with Tukey’s method twice placing the 

same algorithm in two different subsets.  Both methods agreed, though, that the 

second best efficiency for this group of problem instances should go to GELS 

method one with single stepping.  Duncan’s method put this algorithm alone in 

second place, while Tukey’s method grouped it into a tie with GELS method one 

with multiple stepping. 
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Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.452E-04.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 82.  Homogeneous Subsets, TSP Size Thirty Efficiency 
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For the BPP problem instances, the validated ANOVA led to the homogeneous 

subsets shown in Exhibit 83.  This time the Tukey method generated three subsets 

as opposed to four by the Duncan method, but both agreed that the second best 

efficiency for this group of problem instances belonged to GELS method two with 

single stepping. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 5.080E-07.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 83.  Homogeneous Subsets, BPP Size Thirty Efficiency 
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For the FAP problem instances, the validated ANOVA led to the homogeneous 

subsets shown in Exhibit 84.  In this case, both the Tukey and the Duncan method 

could not distinguish between the efficiencies of any of the algorithms other than 

Hill Climbing, so all finished in a tie for second best. 
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Based on Type III Sum of Squares
The error term is Mean Square(Error) = 5.038E-02.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 84.  Homogeneous Subsets, FAP Size Thirty Efficiency 
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In considering all problem instances of size thirty together, the validated 

ANOVA led to the generation of the homogeneous subsets shown in Exhibit 85.  

Like the FAP problem instances, neither the Tukey nor the Duncan method could 

make any distinction between the efficiencies of any of the algorithms other than 

Hill Climbing.  Consequently, for the size thirty experiment set all algorithms 

besides Hill Climbing finished with the second best efficiency. 

150 .0000899

150 .0007211

150 .0024755

150 .0029462

150 .0145200

150 .0273612

150 .2805074

.554 1.000

150 .0000899

150 .0007211

150 .0024755

150 .0029462

150 .0145200

150 .0273612

150 .2805074

.120 1.000

Algorithm Type

GA

SA

TA22

TA12

TA11

TA21

HC

Sig.

GA

SA

TA22

TA12

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.739E-02.

Uses Harmonic Mean Sample Size = 150.000.a. 

Alpha = .05.b. 

 

Exhibit 85.  Homogeneous Subsets, Composite Size Thirty Efficiency 
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The validated ANOVA for this experiment set once again found a significant 

interaction between problem type and algorithm efficiency, as shown in Exhibit 86.  

Once again there is a consistent shape to the lines indicative of a similar effect of 

problem type on each of the algorithms, and the FAP problem instances in general 

garnered the highest efficiencies from the algorithms. 
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Exhibit 86.  Problem Type Plot, Composite Size Thirty Efficiency 
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2.2.7.2.4 Problem Size Forty Efficiency Results 

Moving along to the examination of the set of experiments of size forty, the 

validated ANOVA for the TSP problem instances of this size led to the generation 

of the homogeneous subsets shown in Exhibit 87.  Both the Tukey and Duncan 

methods were in complete agreement in this case, putting GELS method one with 

single stepping into the slot for the second best efficiency. 
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Means for groups in homogeneous subsets are displayed.
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The error term is Mean Square(Error) = 5.531E-05.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 87.  Homogeneous Subsets, TSP Size Forty Efficiency 
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For the BPP problem instances, the validated ANOVA led to the homogenous 

subsets shown in Exhibit 88.  The Tukey and Duncan methods have agreed on the 

number of subsets, but Tukey’s method placed three of the algorithms in two 

subsets.  Both methods, however, agreed that the second best efficiency for this 

group of problems was GELS method two with single stepping. 
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The error term is Mean Square(Error) = 3.128E-07.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 88.  Homogeneous Subsets, BPP Size Forty Efficiency 
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For the FAP problem instances, the validated ANOVA led to the generation of 

the homogeneous subsets shown in Exhibit 89.  As with the FAP problem instances 

for the size thirty experiment set, both Tukey’s method and Duncan’s method were 

unable to make a distinction between the efficiencies of any of the algorithms 

besides Hill Climbing.  Therefore, all of them fell into the second place position for 

this group of problems. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 4.554E-02.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 89.  Homogeneous Subsets, FAP Size Forty Efficiency 
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In considering all the size forty problem instances as a whole, the validated 

ANOVA led to the generation of the homogeneous subsets shown in Exhibit 90.  

Like the FAP problem instances of size forty and the composite experiment set of 

size thirty, neither the Tukey nor the Duncan method was able to distinguish 

between the efficiencies of any of the algorithms other than Hill Climbing, and all 

were placed in the second place subset together. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.536E-02.

Uses Harmonic Mean Sample Size = 150.000.a. 

Alpha = .05.b. 

 

Exhibit 90.  Homogeneous Subsets, Composite Size Forty Efficiency 
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The ANOVA for this set of experiments also noted an interaction between the 

problem type and algorithm efficiency.  Exhibit 91 shows the plot of the 

efficiencies for the three problem types.  The patterns of similar shape of the lines 

and generally better efficiency ratios for FAP continued for this experiment set, 

although the ratios seem to be on the decrease compared to the smaller problem 

size experiments. 

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.7

.6

.5

.4

.3

.2

.1

0.0

Problem Type

BPP

FAP

TSP

 

Exhibit 91.  Problem Type Plot, Composite Size Forty Efficiency 



 221 

2.2.7.2.5 Problem Size Fifty Efficiency Results 

Next to be analyzed was the experiment set consisting of problem instances of 

size fifty.  For the TSP problem instances in this set, the validated ANOVA 

preceded the generation of the homogeneous subsets as shown in Exhibit 92.  

Though the Tukey and Duncan methods produced essentially the same subsets, the 

Tukey method did twice place an algorithm in two different subsets.  The Duncan 

method named GELS method one with single stepping to the second place slot by 

itself, while the Tukey method grouped it together with GELS method one with 

multiple stepping. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 4.715E-05.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 92.  Homogeneous Subsets, TSP Size Fifty Efficiency 

For the BPP problem instances, the validated ANOVA led to the generation of 

the homogeneous subsets, and these are shown in Exhibit 93.  In this case both the 

Tukey and Duncan methods produced the same subsets, and named GELS method 

two with single stepping as the second best efficiency for this group of problems. 
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The error term is Mean Square(Error) = 1.047E-07.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 93.  Homogeneous Subsets, BPP Size Fifty Efficiency 

For the FAP problem instances, the validated ANOVA led to the homogeneous 

subsets shown in Exhibit 94.  Like the FAP problem instances of its predecessors, 

both Tukey’s method and Duncan’s method failed to distinguish between the 

efficiencies of any of the algorithms except Hill Climbing, placing them all into the 

same second place subset. 



 224 

50 .0000185

50 .0000871

50 .0001758

50 .0057499

50 .0064368

50 .0303496

50 .5137097

.956 1.000

50 .0000185

50 .0000871

50 .0001758

50 .0057499

50 .0064368

50 .0303496

50 .5137097

.398 1.000

Algorithm Type

GA

TA12

SA

TA11

TA22

TA21

HC

Sig.

GA

TA12

SA

TA11

TA22

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.351E-02.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 94.  Homogeneous Subsets, FAP Size Fifty Efficiency 

In examining the composite results for the size fifty experiment set, the 

validated ANOVA was followed by the generation of the homogeneous subsets 

shown in Exhibit 95.  Once again, as with the FAP and composite problem groups 

of other sizes, neither Tukey’s nor Duncan’s method could distinguish between any 

of the algorithms other than Hill Climbing, and thus there was no outright second 

place finisher in efficiency for this set of experiments. 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.922E-03.

Uses Harmonic Mean Sample Size = 150.000.a. 

Alpha = .05.b. 

 

Exhibit 95.  Homogeneous Subsets, Composite Size Fifty Efficiency 

Along with these results, the ANOVA had once again detected an interaction 

between problem type and algorithm efficiency, as displayed in Exhibit 96.  The 

now-familiar patterns of similar line shape, general superiority of efficiency by 

algorithms for FAP problem instances, and a decreasing level of efficiency for FAP 

problem instances were once more noted in this diagram. 
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Exhibit 96.  Problem Type Plot, Composite Size Fifty Efficiency 

2.2.7.2.6 Random Problem Size Efficiency Results 

To round out the analyses of efficiency, the set of problem instances having 

randomly assigned problem sizes was examined.  The ANOVA for the TSP 

problem instance group was validated and followed by the generation of the 

homogeneous subsets, shown in Exhibit 97.  The lists produced by the two methods 

were essentially the same, except that the Duncan method put GELS method one 

with single stepping in second place by itself, while the Tukey method coupled it 

with GELS method one with multiple stepping (which appeared in two subsets). 
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Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 6.689E-04.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 97.  Homogeneous Subsets, TSP Random Size Efficiency 

For the BPP problem instances, the validated ANOVA was again followed by 

the generation of the homogeneous subsets, which appear in Exhibit 98.  The lists 

produced by the two methods are identical, putting GELS method two with single 

stepping into the number two slot for efficiency for this group of problems. 
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The error term is Mean Square(Error) = 4.217E-06.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 98.  Homogeneous Subsets, BPP Random Size Efficiency 

For the FAP problem instances, the validated ANOVA was again followed by 

the generation of the homogeneous subsets, as shown in Exhibit 99.  Like other 

FAP problem instance groups, the Tukey method was unable to distinguish 

between the algorithms for efficiency other than Hill Climbing.  However, in this 

case the Duncan method was able to make somewhat of a distinction, placing 
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GELS method one with single stepping and GELS method two with single stepping 

into a second place subset apart from the others. 
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The error term is Mean Square(Error) = 2.830E-02.

Uses Harmonic Mean Sample Size = 50.000.a. 

Alpha = .05.b. 

 

Exhibit 99.  Homogeneous Subsets, FAP Random Size Efficiency 

To complete the second phase of analysis, the problem instances with randomly 

generated problem sizes were examined across problem types.  Once more the 

ANOVA was conducted and corroborated, and the homogeneous subsets were 
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generated as shown in Exhibit 100.  Both the Tukey and Duncan methods 

generated three subsets.  Duncan’s method awarded the second spot in a tie to 

GELS method one with single stepping and GELS method two with single 

stepping.  Tukey’s method concurred with this assessment, but added GELS 

method one with multiple stepping to make it a three-way tie for the second best 

efficiency for this set of experiments. 

150 .0000888

150 .0006823

150 .0020643

150 .0050608 .0050608

150 .0209503 .0209503

150 .0371172

150 .3026159

.541 .080 1.000

150 .0000888

150 .0006823

150 .0020643

150 .0050608

150 .0209503 .0209503

150 .0371172

150 .3026159

.108 .161 1.000

Algorithm Type

GA

SA

TA22

TA12

TA21

TA11

HC

Sig.

GA

SA

TA22

TA12

TA21

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset
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Based on Type III Sum of Squares
The error term is Mean Square(Error) = 9.959E-03.

Uses Harmonic Mean Sample Size = 150.000.a. 

Alpha = .05.b. 

 

Exhibit 100.  Homogeneous Subsets, Composite Random Size Efficiency 
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Once more, the ANOVA found an interaction between problem type and 

algorithm efficiency, and this is displayed in Exhibit 101.  The same patterns 

appear as for the other experiment sets, with comparable line shapes indicating 

similar effect of the problem types on each algorithm and a generally higher 

efficiency obtained by FAP problem instances. 
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Exhibit 101.  Problem Type Plot, Composite Random Size Efficiency 

Finally, the ANOVA also found an interaction between the problem size and 

the algorithm efficiency, as displayed in Exhibit 102.  Like the plot showing the 
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effect of problem type on the algorithms’ efficiency, this plot shows a very 

consistent shape to the lines, indicating that the problem size, like the type, has a 

similar effect on the efficiencies of all algorithms.  There also appears a downward 

trend in efficiency for each algorithm (where visible) with increasing problem size. 
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Exhibit 102.  Problem Size Plot, Composite Random Size Efficiency 

This completed the two phases of analysis comparing the algorithms’ 

performance and efficiency.  In all cases, both the performance and the efficiency 

hypotheses had been rejected, showing solid evidence that there was indeed a 
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significant difference in the ability of the different algorithms to produce high 

quality solutions to the generated problem instances, and also a significant 

difference in how much of the search space was examined by the different 

algorithms in producing their solutions.  At every step, the results of the 

experiments were carefully analyzed, maintaining a watch on any and all necessary 

conditions to ensure that they were met and if not, that alternate sources of 

evidence were examined to verify the original results.  All of this was done in an 

effort to ensure the integrity of the analyses and provide a firm grounding for 

establishing conclusions.  In this way, any conclusions that would be drawn 

regarding the experiments in general or the GELS algorithm in particular would be 

based on solid statistical procedures and not merely on the wishful thinking of the 

author. 
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3 Research Efforts Summary and 

Evaluation 
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3.1 Interpretation of Research Results 

In interpreting the results of the two phases of analysis, it was evident that there 

was no clear “winner” in terms of best performance and efficiency over all 

experiment sets.  No one algorithm had managed to be that dominant, even in a 

single category (with the exception of Hill Climbing efficiency, for the reasons 

already noted).  In order to better bring the results into focus and provide a clearer 

picture of the results for drawing appropriate conclusions, the results data needed to 

be consolidated and collated. 

Exhibit 103 shows a concise view of all the algorithm comparison results.  For 

each problem type (“COM” is used here to identify the composite of all problem 

instances across problem types) and size, the ranking of each algorithm is given in 

terms of which homogeneous subset it was placed into.  Thus, a value of 1 indicates 

the algorithm was in the top ranked subset, higher values indicate lower ranked 

subsets.  The rankings are identified as “P” for performance and “E” for efficiency, 

and each entry consists of the Tukey method ranking and the Duncan method 

ranking, respectively, separated by a slash. 
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Algorithm Rankings 
 

HC GA SA TA11 TA12 TA21 TA22 

Type Size P E P E P E P E P E P E P E 

10 4/4 1/1 2/2 3/3 1/1 3/3 3/3 2/2 2/2 2/3 1/1 3/3 1/1 3/3 

20 4/5 1/1 4/5 3/4 1/1 3/4 4/5 2/2 3/4 2/3 2/3 3/4 2/2 3/4 

30 4/4 1/1 5/5 4/4 1/1 3/4 5/5 2/2 4/4 2/3 3/3 4/4 2/2 4/4 

40 3/3 1/1 5/6 3/4 1/1 3/4 4/5 2/2 4/4 2/3 3/3 3/4 2/2 3/4 

50 2/2 1/1 6/7 4/4 1/1 3/4 5/6 2/2 4/5 2/3 3/4 4/4 2/3 4/4 

TSP 

R 4/4 1/1 5/5 3/3 1/1 3/3 5/5 2/2 4/4 2/3 3/3 3/3 2/2 3/3 

10 3/2 1/1 1/1 2/3 2/2 2/3 3/3 2/3 4/3 2/3 1/1 2/2 3/3 2/3 

20 2/2 1/1 1/1 3/3 2/2 3/3 2/3 3/3 3/5 3/3 1/1 2/2 3/4 3/3 

30 2/2 1/1 1/2 3/4 3/3 3/3 3/3 3/3 4/5 3/4 1/1 2/2 4/4 3/4 

40 1/2 1/1 2/2 3/4 3/3 3/3 3/3 3/3 4/5 3/4 1/1 2/2 4/4 4/4 

50 1/1 1/1 2/2 4/4 3/3 3/3 3/3 3/3 4/5 4/4 1/1 2/2 4/4 4/4 

BPP 

R 1/2 1/1 1/1 3/3 2/3 3/3 2/3 3/3 4/5 3/3 1/1 2/2 3/4 3/3 

10 3/3 1/1 4/4 3/4 1/1 3/4 2/2 2/2 4/4 3/4 1/1 2/3 2/2 3/4 

20 4/3 1/1 4/4 3/3 1/1 3/3 3/2 2/2 1/1 3/3 2/2 2/2 1/1 2/3 

30 2/3 1/1 3/4 2/2 1/1 2/2 2/2 2/2 2/2 2/2 1/1 2/2 1/1 2/2 

40 2/2 1/1 2/2 2/2 1/1 2/2 1/1 2/2 1/1 2/2 1/1 2/2 1/1 2/2 

50 3/3 1/1 3/3 2/2 1/1 2/2 1/1 2/2 2/2 2/2 1/1 2/2 1/1 2/2 

FAP 

R 3/4 1/1 3/4 2/3 1/1 2/3 1/2 2/2 2/3 2/3 1/1 2/2 1/2 2/3 

10 4/4 1/1 3/3 4/4 1/1 4/4 3/3 2/2 4/4 3/4 1/1 3/3 2/2 4/4 

20 4/4 1/1 4/4 3/3 1/1 3/3 3/3 2/2 3/3 3/3 2/2 2/2 2/2 2/3 

30 2/2 1/1 3/3 2/2 1/1 2/2 3/3 2/2 3/3 2/2 1/1 2/2 2/2 2/2 

40 2/4 1/1 4/6 2/2 1/1 2/2 2/3 2/2 3/5 2/2 1/2 2/2 2/3 2/2 

50 3/4 1/1 4/5 2/2 1/1 2/2 2/3 2/2 3/4 2/2 1/2 2/2 2/3 2/2 

COM 

R 4/4 1/1 4/5 3/3 1/1 3/3 2/3 2/2 3/3 2/3 1/1 2/2 2/2 3/3 

Exhibit 103.  Summary of Algorithm Comparison Rankings 
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By taking a simple average of the rankings over each of the problem types, 

Exhibit 104 is produced.  Here the averages for the Tukey method are located in the 

rows marked with a “T” in the column labeled “M” (for “Method”).  The Duncan 

method averages are located in the “D” rows. 

 

Average Algorithm Rankings 
 

HC GA SA TA11 TA12 TA21 TA22 

Type M P E P E P E P E P E P E P E 

T 3.50 1.00 4.50 3.33 1.00 3.00 4.33 2.00 3.50 2.00 2.50 3.33 1.83 3.33 
TSP 

D 3.67 1.00 5.00 3.67 1.00 3.67 4.83 2.00 3.83 3.00 2.83 3.67 2.00 3.67 

T 1.67 1.00 1.33 3.00 2.50 2.83 2.67 2.83 3.83 3.00 1.00 2.00 3.50 3.17 
BPP 

D 1.83 1.00 1.50 3.50 2.67 3.00 3.00 3.00 4.67 3.50 1.00 2.00 3.83 3.50 

T 2.83 1.00 3.17 2.33 1.00 2.33 1.67 2.00 2.00 2.33 1.17 2.00 1.17 2.17 
FAP 

D 3.00 1.00 3.50 2.67 1.00 2.67 1.67 2.00 2.17 2.67 1.17 2.17 1.33 2.67 

T 3.17 1.00 3.67 2.67 1.00 2.67 2.50 2.00 3.17 2.33 1.17 2.17 2.00 2.50 
COM 

D 3.67 1.00 4.33 2.67 1.00 2.67 3.00 2.00 3.67 2.67 1.50 2.17 2.33 2.67 

Exhibit 104.  Averages of Algorithm Comparison Rankings 

Using the numbers in Exhibits 103 and 104 as a guide, Exhibit 105 shows some 

basic recommendations that can be made regarding choice of algorithm for solving 

the various problem types.  These are only suggestions based on the experimental 

analyses, and cannot be considered hard-and-fast rules for selecting an algorithm to 

solve a problem.  For each set of selection criteria, the top three candidate 

algorithms are shown in order, separated by a slash. 
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If the primary 

interest is… 

And the secondary 

interest is… 

And the problem to 

be solved is… 

The solution algorithm of 

choice should likely be… 

Performance N/A TSP SA / TA22 / TA21  

Performance Efficiency TSP SA / TA22 / HC 

Efficiency N/A TSP HC / TA11 / TA12 

Efficiency Performance TSP HC / SA / TA11 

Performance N/A BPP TA21 / GA / HC 

Performance Efficiency BPP TA21 / HC / GA 

Efficiency N/A BPP HC / TA21 / (SA, TA11) 

Efficiency Performance BPP HC / TA21 / GA 

Performance N/A FAP SA / TA21 / TA22 

Performance Efficiency FAP TA21 / SA / TA22 

Efficiency N/A FAP HC / TA11 / TA21 

Efficiency Performance FAP HC / TA21 / TA11 

Performance N/A Any SA / TA21 / TA22 

Performance Efficiency Any SA / TA21 / TA22 

Efficiency N/A Any HC / TA11 / TA21 

Efficiency Performance Any HC / TA21 / SA 

Exhibit 105.  Algorithm Selection Suggestions 
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Based on the data from the experiments and the summaries in Exhibits 103, 

104, and 105, a number of observations can be made regarding the results of the 

research: 

1. For the TSP problems, Simulated Annealing was the overall best.  It had the 

best performance ratings, and though its efficiency was mediocre it had 

much better performance numbers than the algorithms with better 

efficiencies. 

2. For the BPP problems, GELS method two with single stepping was the 

overall best.  It had the best performance ratings, and the best efficiency 

ratings aside from Hill Climbing (which didn’t have the performance 

numbers that GELS had). 

3. For the FAP problems, it was a close call.  Simulated Annealing and GELS 

method two with single stepping were virtually tied in terms of 

performance, with Simulated Annealing rated number one for all problem 

sizes by both the Tukey and Duncan methods, and GELS rated number one 

for all problem sizes but one (for which it was rated number two), also by 

both methods.  GELS also had slightly better efficiency numbers. 

4. For the overall composite cases, it was another close call.  Again, Simulated 

Annealing and GELS method two with single stepping were virtually tied in 

terms of performance, with Simulated Annealing rated number one for all 

problem sizes by both the Tukey and Duncan methods, and GELS rated 

number one for all problem sizes but one by the Tukey method and three of 
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the problem sizes by the Duncan method (the other three being number 

two).  And again, GELS had the better efficiency numbers. 

5. The performance of GELS method one with single stepping was mediocre, 

with the exception of a good showing on the FAP problems.  Its one shining 

spot was its efficiency, second only to Hill Climbing (and having better 

performance than Hill Climbing most of the time). 

6. The performance of GELS method one with multiple stepping was also 

mediocre, across the board.  It also had very mediocre efficiency numbers. 

7. The performance of GELS method two with single stepping was very good, 

winning one category of problems outright (the BPP problems) and coming 

very close to winning two others, including the overall.  It also had very 

good efficiency numbers.  It did seem to have some difficulty with TSP, 

posting numbers for both performance and efficiency that were substantially 

worse than it received for the other problem types. 

8. The performance of GELS method two with multiple stepping showed 

some bright spots, but it had some problems with efficiency, posting quite 

mediocre numbers. 

3.2 Overall Evaluation of GELS 

In the research experimentation, the GELS algorithm in its various 

combinations gave a very good showing.  The method two variations had very 
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good performance, finishing near the top of the rankings.  Method two with single 

stepping was the clear performance winner for BPP problem instances, and it came 

very close to having the best performance for FAP problem instances, and again for 

all problem types in general.  The single stepping variations of the algorithm also 

finished at the top of the rankings for efficiency, besting all algorithms except the 

greedy Hill Climbing. 

The other algorithms used in the study have been studied and optimized for 

years, and the parameters that were used to run them during the experiments were 

set to values that had been found over the course of much study to be suited for 

producing good results for the types of problems in use.  The GELS algorithm, 

however, had only been under study for a relatively short period of time.  The 

parameters used to run it had undergone a number of changes during its 

development, and there certainly was not a period of many years of tweaking and 

tuning behind the settings that were used for them during the experiments.  In spite 

of these handicaps, GELS was able to go head-to-head with the much more mature 

algorithms on very well studied problems and in many cases beat them in terms of 

both quality of solutions produced and efficiency of search. 

This then is the contribution of GELS to the literature.  It is novel; a search of 

the literature at the beginning of this research revealed nothing that referenced the 

use of the principles of gravitation to guide the search of an optimization algorithm.  

Furthermore, it cannot be classified as merely a variation on the theme of another 

algorithm.  Though it does always tend to move towards better solutions, it is not 
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purely greedy because it does not always move towards the best solutions available.  

Though it contains some elements of randomness, its movement through a search 

space is not random, but quite deterministic.  And though it contains several 

elements in common with other algorithms, such as a heuristic to guide the search 

and a mechanism for escaping local optima, by definition all local search 

algorithms will contain those elements, and GELS employs them in a different way 

than the others.  Finally, though new it was able to withstand the rigors of statistical 

examination on a variety of problem types and have that examination report 

operation on a par with if not better than the other algorithms. 

Still, there are many opportunities for future research.  Many of the 

opportunities lie in further study of the algorithm and its operation, such as: 

• Investigating the algorithm heuristic to find out if using the mass 

components instead of just the difference between objective function values 

can be made cost-effective and beneficial 

• Investigating the use of a fixed number of elements in the velocity vector 

• Reintroducing the concept of resistive force, used in the early experiments 

but found to be too cumbersome for use in the research experiments (but 

perhaps could be useful if “streamlined” and made easier to control) 

• Experimentation with different mechanisms for updating the velocity vector 

• Experimentation with different mechanisms for multiple step motion 
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• Testing different combinations of parameter values to find settings inclined 

to produce better solutions 

• Inserting some additional randomness into the procedure, like occasional 

random events that cause movement direction to shift 

• Attempt to put more “intelligence” into the algorithm, e.g. allowing it to 

automatically alter its operation as it acquires information about the 

problem and senses the need for adjustment 

Of course, there is also the possibility of conducting further studies with GELS 

using different problem types and comparison algorithms.  It is the suspicion of this 

author, based on tantalizing data received during the early experiments with the 

algorithm, that the multiple step movement option would prove to be quite useful in 

problems where the search space is sparse, that is, contains very few valid 

solutions.  Designing some experiments with algorithms of that nature to test this 

theory would provide useful information, regardless of whether or not the theory 

turned out to be correct. 

3.3 Conclusion 

To say that the research experimentation revealed the GELS algorithm to bring 

revolutionary new capabilities in solving combinatorial optimization problems to 

the table would be a falsehood.  But, to say that it is useful only as a potential 

teaching vehicle would also be incorrect.  It outperformed Hill Climbing and a 
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Genetic Algorithm, two styles of algorithm that are in widespread use to solve a 

variety of combinatorial optimization problems.  It was tested against several 

common problem types and sizes which, although limited in number by the 

restrictions of the available analysis tool, nonetheless provided more than enough 

cases for the statistical analysis to produce solid backing for its capabilities. 

For GELS to be relegated to an occasional mention in passing as an example of 

optimization algorithms that emulate natural processes to produce solutions would 

be to ignore that statistical backing.  Certainly more study is required before the full 

capabilities and usefulness of the GELS algorithm will be known, but this research 

has demonstrated that such an undertaking would be worthwhile. 
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