
Solving
Combinatorial Optimization Problems

Using a New Algorithm
Based on Gravitational Attraction

by

Barry Lynn Webster

A dissertation
submitted to the College of Engineering at

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
May, 2004

© Copyright 2004 Barry Lynn Webster
All Rights Reserved

The author grants permission to make single copies _________________________

Solving Combinatorial Optimization Problems Using a New Algorithm
Based on Gravitational Attraction

a dissertation by
Barry Lynn Webster

Approved as to style and content

______________________________ ______________________________
P. J. Bernhard, Ph.D. O. Frieder, Ph.D.
Associate Professor Professor
Computer Sciences Computer Sciences
Dissertation Advisor Committee Member

______________________________ ______________________________
W. P. Bond, Ph.D. J. Hadjilogiou, Ph.D.
Associate Professor Professor
Computer Sciences Electrical and Computer Engineering
Committee Member Committee Member

W. D. Shoaff, Ph.D.
Associate Professor
Computer Sciences
Department Head

 iv

Abstract

Solving Combinatorial Optimization Problems Using a New Algorithm

Based on Gravitational Attraction

by

Barry Lynn Webster

Dissertation Advisor: P. J. Bernhard, Ph.D.

This dissertation represents the culmination of research into the development of

a new algorithm for locating optimal solutions to difficult problems. This new

algorithm is founded upon one of the most basic concepts in nature – so basic that

it is in fact one of the four primary forces in physics: gravity.

It is called the Gravitational Emulation Local Search algorithm, or GELS. Four

variants of the algorithm were developed, representing combinations of two basic

methods of operation and two modes of search space exploration. Following

development, a series of experiments were conducted to assess the capabilities of

this new algorithm. Three test problems were used (Traveling Salesman, Bin

Packing, and File Assignment). Instances of these problems were generated using

several different problem sizes, then solved using three well-known comparison

 v

algorithms (Hill Climbing, Genetic Algorithm, and Simulated Annealing) in

addition to the four variants of GELS.

The outcomes of the experiments were rigorously analyzed using a variety of

statistical techniques. The results of the analyses showed that GELS was able to

perform on a par with, and in many cases better than, the much more mature and

extensively studied comparison algorithms. One of the GELS combinations

achieved the best performance ratings of any algorithm in solving instances of Bin

Packing, and finished in a virtual tie with Simulated Annealing for solving

instances of File Assignment and for general purpose performance. Two of the

four GELS combinations were also shown to outperform Hill Climbing and the

Genetic Algorithm.

GELS also performed its task efficiently. Two of the four combinations were

shown to be more efficient in locating their solutions than any of the comparison

algorithms except Hill Climbing (a greedy algorithm known to produce solutions in

very few steps). The solutions produced by GELS were thus not only of

comparable or better quality than those of the comparison algorithms, but usually

were arrived at more efficiently.

 vi

Table of Contents

List of Keywords.. ix

List of Exhibits...x

List of Abbreviations ...xv

Acknowledgements .. xvi

Dedication .. xviii

1 Preliminary Material ..1

1.1 Introduction..2

1.2 Background Information ..3

1.2.1 Combinatorial Optimization Problems ..4

1.2.1.1 The Traveling Salesman Problem..9

1.2.1.2 The Bin Packing Problem ..10

1.2.1.3 The File Assignment Problem..11

1.2.2 Existing Solution Methods...12

1.2.2.1 Systematic Methods ...13

1.2.2.2 Stochastic (Heuristic) Methods..14

1.2.2.3 Advantages/Disadvantages of Method Types..................................16

1.2.3 Statistical Validation of Research Hypotheses....................................19

1.2.3.1 Design of Experiments...19

1.2.3.2 Evaluating Results of Experiments ..25

 vii

1.2.3.2.1 Graphical Analysis Tools...26

1.2.3.2.2 Analysis of Variance..33

1.2.3.2.3 Evaluating Experimental Results Using SPSS.........................36

1.3 A New Method for Solving Combinatorial Optimization Problems42

2 Analysis and Evaluation of the GELS Algorithm..47

2.1 Preliminary Work Done With GELS ...48

2.2 Current Research Completed Using GELS..58

2.2.1 Premises of the Research ...58

2.2.2 Design of the Current Research Experiments61

2.2.3 Implementation of the Test Problems ..66

2.2.3.1 Traveling Salesman Problem Implementation.................................67

2.2.3.2 Bin Packing Problem Implementation ...70

2.2.3.3 File Assignment Problem Implementation.......................................74

2.2.4 Implementation of the Test Algorithms ...78

2.2.4.1 Hill Climbing Implementation ...82

2.2.4.2 Simulated Annealing Implementation..84

2.2.4.3 Genetic Algorithm Implementation ...87

2.2.4.4 GELS Implementation ...97

2.2.5 Validation of the Experimental Environment113

2.2.6 Performance of the Research Experiments ..117

2.2.7 Results of the Current Research Experiments....................................121

2.2.7.1 Algorithm Performance Results...121

2.2.7.1.1 Problem Size Ten Performance Results.................................122

 viii

2.2.7.1.2 Problem Size Twenty Performance Results...........................160

2.2.7.1.3 Problem Size Thirty Performance Results166

2.2.7.1.4 Problem Size Forty Performance Results173

2.2.7.1.5 Problem Size Fifty Performance Results180

2.2.7.1.6 Random Problem Size Performance Results..........................187

2.2.7.2 Algorithm Efficiency Results...195

2.2.7.2.1 Problem Size Ten Efficiency Results.....................................197

2.2.7.2.2 Problem Size Twenty Efficiency Results...............................204

2.2.7.2.3 Problem Size Thirty Efficiency Results.................................210

2.2.7.2.4 Problem Size Forty Efficiency Results216

2.2.7.2.5 Problem Size Fifty Efficiency Results221

2.2.7.2.6 Random Problem Size Efficiency Results226

3 Research Efforts Summary and Evaluation ...234

3.1 Interpretation of Research Results ...235

3.2 Overall Evaluation of GELS ..240

3.3 Conclusion ...243

References..245

 ix

List of Keywords

Algorithm Efficiency

Algorithm Performance

Artificial Intelligence

Bin Packing Problem

Combinatorial Optimization Problems

File Assignment Problem

Genetic Algorithm

Heuristic

Hill Climbing

Local Search

Monte Carlo Algorithm

NP-Hard

Objective Function

Optimization Algorithm

Simulated Annealing

Traveling Salesman Problem

 x

List of Exhibits

Exhibit 1. Example Box Plot Generated by SPSS ...28

Exhibit 2. Example Line Plot Generated by SPSS...30

Exhibit 3. Example P-P Plot Generated by SPSS ..32

Exhibit 4. Example Scatter Plot Generated by SPSS...33

Exhibit 5. Example ANOVA Results Generated by SPSS36

Exhibit 6. Example Kolmogorov-Smirnov Test Generated by SPSS....................38

Exhibit 7. Example Kruskal-Wallis Test Generated by SPSS39

Exhibit 8. Example Homogeneous Subsets List Generated by SPSS....................41

Exhibit 9. Average Difference from Optimal, Early Experiments.........................55

Exhibit 10. Average Improvement over Random, Early Experiments56

Exhibit 11. Average Number of Iterations per Test, Early Experiments57

Exhibit 12. Box Plot, TSP Size 10 Performance..123

Exhibit 13. Line Plot, TSP Size Ten Performance...124

Exhibit 14. ANOVA Results, TSP Size Ten Performance125

Exhibit 15. Residual Normal P-P Plot, TSP Size Ten Performance126

Exhibit 16. Kolmogorov-Smirnov Test, TSP Size Ten Performance..................127

Exhibit 17. Predicted vs. Residual Plot, TSP Size Ten Performance128

Exhibit 18. Residual Trend Plot, TSP Size Ten Performance..............................129

Exhibit 19. Kruskal-Wallis Test, TSP Size Ten Performance130

 xi

Exhibit 20. Homogeneous Subsets, TSP Size Ten Performance131

Exhibit 21. Box Plot, BPP Size Ten Performance ...133

Exhibit 22. Line Plot, BPP Size Ten Performance...134

Exhibit 23. ANOVA Results, BPP Size Ten Performance135

Exhibit 24. Residual Normal P-P Plot, BPP Size Ten Performance....................136

Exhibit 25. Kolmogorov-Smirnov Test, BPP Size Ten Performance..................137

Exhibit 26. Predicted vs. Residual Plot, BPP Size Ten Performance138

Exhibit 27. Residual Trend Plot, BPP Size Ten Performance139

Exhibit 28. Homogeneous Subsets, BPP Size Ten Performance140

Exhibit 29. Box Plot, FAP Size Ten Performance ...143

Exhibit 30. Line Plot, FAP Size Ten Performance ..144

Exhibit 31. ANOVA Results, FAP Size Ten Performance..................................145

Exhibit 32. Residual Normal P-P Plot, FAP Size Ten Performance....................146

Exhibit 33. Kolmogorov-Smirnov Test, FAP Size Ten Performance..................147

Exhibit 34. Predicted vs. Residual Plot, FAP Size Ten Performance148

Exhibit 35. Residual Trend Plot, FAP Size Ten Performance149

Exhibit 36. Homogeneous Subsets, FAP Size Ten Performance.........................150

Exhibit 37. Box Plot, Composite Size Ten Performance151

Exhibit 38. Line Plot, Composite Size Ten Performance152

Exhibit 39. Problem Type Plot, Composite Size Ten Performance.....................153

Exhibit 40. ANOVA Results, Composite Size Ten Performance........................154

Exhibit 41. Residual Normal P-P Plot, Composite Size Ten Performance..........155

Exhibit 42. Kolmogorov-Smirnov Test, Composite Size Ten Performance........156

 xii

Exhibit 43. Predicted vs. Residual Plot, Composite Size Ten Performance157

Exhibit 44. Residual Trend Plot, Composite Size Ten Performance158

Exhibit 45. Homogeneous Subsets, Composite Size Ten Performance...............159

Exhibit 46. Homogeneous Subsets, TSP Size Twenty Performance161

Exhibit 47. Homogeneous Subsets, BPP Size Twenty Performance162

Exhibit 48. Homogeneous Subsets, FAP Size Twenty Performance...................163

Exhibit 49. Homogeneous Subsets, Composite Size Twenty Performance.........165

Exhibit 50. Problem Type Plot, Composite Size Twenty Performance...............166

Exhibit 51. Homogeneous Subsets, TSP Size Thirty Performance167

Exhibit 52. Homogeneous Subsets, BPP Size Thirty Performance168

Exhibit 53. Homogeneous Subsets, FAP Size Thirty Performance170

Exhibit 54. Homogeneous Subsets, Composite Size Thirty Performance171

Exhibit 55. Problem Type Plot, Composite Size Thirty Performance173

Exhibit 56. Homogeneous Subsets, TSP Size Forty Performance.......................174

Exhibit 57. Homogeneous Subsets, BPP Size Forty Performance.......................175

Exhibit 58. Homogeneous Subsets, FAP Size Forty Performance177

Exhibit 59. Homogeneous Subsets, Composite Size Forty Performance178

Exhibit 60. Problem Type Plot, Composite Size Forty Performance...................179

Exhibit 61. Homogeneous Subsets, TSP Size Fifty Performance........................181

Exhibit 62. Homogeneous Subsets, BPP Size Fifty Performance182

Exhibit 63. Homogeneous Subsets, FAP Size Fifty Performance183

Exhibit 64. Homogeneous Subsets, Composite Size Fifty Performance185

Exhibit 65. Problem Type Plot, Composite Size Fifty Performance186

 xiii

Exhibit 66. Homogeneous Subsets, Random Size TSP Performance..................188

Exhibit 67. Homogeneous Subsets, Random Size BPP Performance..................189

Exhibit 68. Homogeneous Subsets, Random Size FAP Performance190

Exhibit 69. Homogeneous Subsets, Random Size Composite Performance192

Exhibit 70. Problem Type Plot, Random Size Composite Performance..............193

Exhibit 71. Problem Size Plot, Random Size Composite Performance...............195

Exhibit 72. Homogeneous Subsets, TSP Size Ten Efficiency200

Exhibit 73. Homogeneous Subsets, BPP Size Ten Efficiency.............................201

Exhibit 74. Homogeneous Subsets, FAP Size Ten Efficiency.............................202

Exhibit 75. Homogeneous Subsets, Composite Size Ten Efficiency...................203

Exhibit 76. Problem Type Plot, Composite Size Ten Efficiency.........................204

Exhibit 77. Homogeneous Subsets, TSP Size Twenty Efficiency205

Exhibit 78. Homogeneous Subsets, BPP Size Twenty Efficiency.......................206

Exhibit 79. Homogeneous Subsets, FAP Size Twenty Efficiency.......................208

Exhibit 80. Homogeneous Subsets, Composite Size Twenty Efficiency.............209

Exhibit 81. Problem Type Plot, Composite Size Twenty Efficiency...................210

Exhibit 82. Homogeneous Subsets, TSP Size Thirty Efficiency211

Exhibit 83. Homogeneous Subsets, BPP Size Thirty Efficiency212

Exhibit 84. Homogeneous Subsets, FAP Size Thirty Efficiency.........................213

Exhibit 85. Homogeneous Subsets, Composite Size Thirty Efficiency...............214

Exhibit 86. Problem Type Plot, Composite Size Thirty Efficiency.....................215

Exhibit 87. Homogeneous Subsets, TSP Size Forty Efficiency...........................216

Exhibit 88. Homogeneous Subsets, BPP Size Forty Efficiency217

 xiv

Exhibit 89. Homogeneous Subsets, FAP Size Forty Efficiency218

Exhibit 90. Homogeneous Subsets, Composite Size Forty Efficiency219

Exhibit 91. Problem Type Plot, Composite Size Forty Efficiency220

Exhibit 92. Homogeneous Subsets, TSP Size Fifty Efficiency222

Exhibit 93. Homogeneous Subsets, BPP Size Fifty Efficiency223

Exhibit 94. Homogeneous Subsets, FAP Size Fifty Efficiency224

Exhibit 95. Homogeneous Subsets, Composite Size Fifty Efficiency225

Exhibit 96. Problem Type Plot, Composite Size Fifty Efficiency226

Exhibit 97. Homogeneous Subsets, TSP Random Size Efficiency......................227

Exhibit 98. Homogeneous Subsets, BPP Random Size Efficiency228

Exhibit 99. Homogeneous Subsets, FAP Random Size Efficiency229

Exhibit 100. Homogeneous Subsets, Composite Random Size Efficiency230

Exhibit 101. Problem Type Plot, Composite Random Size Efficiency231

Exhibit 102. Problem Size Plot, Composite Random Size Efficiency.................232

Exhibit 103. Summary of Algorithm Comparison Rankings...............................236

Exhibit 104. Averages of Algorithm Comparison Rankings237

Exhibit 105. Algorithm Selection Suggestions ..238

 xv

List of Abbreviations

ANOVA: Analysis of Variance

BPP: Bin Packing Problem

DOE: Design of Experiments

FAP: File Assignment Problem

GA: Genetic Algorithm

GELS: Gravitational Emulation Local Search

HC: Hill Climbing

MC: Monte Carlo

OF: Objective Function

RCBD: Randomized Complete Block Design

SA: Simulated Annealing

SPSS: Statistical Package for the Social Sciences

SQL: Structured Query Language

TA11: GELS – Method 1, Movement Type 1

TA12: GELS – Method 1, Movement Type 2

TA21: GELS – Method 2, Movement Type 1

TA22: GELS – Method 2, Movement Type 2

 xvi

Acknowledgements

I would like first to thank my major advisor Dr. Bernhard for taking me on as a

student, for his availability for the many meetings (sometimes on rather short

notice), for his encouragement, his trust, and his assistance, without which this

dissertation could not have become a reality.

I would like to thank next the members of my committee, both collectively and

individually:

• To Dr. Hadjilogiou, for his willingness to join the committee after only the

briefest of introductions

• To Dr. Bond, for his insight at the beginning of this endeavor into how the

experiments should be conducted

• To Dr. Frieder, for his willingness to serve on a committee of mine not once

but twice, for his encouragement throughout this long process, and certainly

not least, for his ever-present wry humor

I would also like to thank Dr. Wade Shaw for his guidance in setting up the

experiments and ensuring that the analysis of the results was done properly.

A note of thanks is also due to my supervisor Gary Smith and my co-workers

Paul Geneczko, Steve Grant, Liz Price, Jeff Straehla, Scott Strmel, and Frank Van

Langen, who put up with me being extremely distracted and frequently incoherent

 xvii

during the many months that this work was progressing, and who also gave me

many words of encouragement.

Thanks should also be extended to my parents Dewey and Winifred Webster,

who both being school teachers instilled in me the value of an education, and to my

late grandfather Dr. Myron Webster, who inspired me to go this far with that

education.

Lastly, I would like to offer thanks to my wife Pawinee, who endured my

seemingly endless hours of absorption in this effort without complaint, who gave

me her unwavering support, and who took care of many of those “nuisance” items

usually referred to as “Real Life” when I was off in my other world, that of

completing this endeavor.

 xviii

Dedication

Normally, one would expect a dedication to go to one individual, or at most a

small group of persons. However, there were many people who provided

assistance and/or inspiration to complete this task, and in many ways. To give a

dedication to any one of them would seem to elevate that one to a position of

greater importance, and thus somewhat diminish the roles played by the others.

Furthermore, there was a considerable amount of adversity encountered during this

odyssey, and there were many temptations to decide that it was just not worth the

trouble. The drive to see it through to completion came from a variety of sources,

but in the end it came down to sheer willpower. Therefore, this work is dedicated

to every person who had a hand in making it a reality, and to everyone who, facing

adversity in pursuit of a lofty goal, will nonetheless find the will to succeed.

 1

1 Preliminary Material

 2

1.1 Introduction

When examining the types of problems that computers are undertaking to solve,

one cannot help but notice the sheer size and complexity of some of those

problems. From the very beginning, as the computational power and capabilities of

computers have increased, so have the size and complexity of the problems that

have been assigned to them. With each passing year, more and more problems that

once were considered too large and/or too involved to be solved in a reasonable

manner via computer are becoming viable, if not routine.

Yet even so, there remain many instances of problems that are very difficult to

solve, even for powerful computers. These problems are sufficiently large and

complex that it may not be feasible to produce a solution within a reasonable

amount of time. Now, it is true that what constitutes a “reasonable amount of time”

is subjective. For some applications, a solution that appears within several days

may be acceptable (Harrell et al., 2000). For other applications, such as a real-time

business intelligence provider, a solution appearing after only a few seconds have

elapsed may be considered too slow (Hewlett-Packard, 2002). In any case,

problems can be found that will tax the ability of the computer to provide a solution

within a timeframe that meets the situation’s standards of “reasonable” (Harrell et

al., 2000, Hewlett-Packard, 2002, Kondrak et al., 1995). It is precisely those types

of problems that are of interest herein.

 3

This dissertation is the result of research into the development of a new

algorithm to locate solutions to difficult problems in a reasonable amount of time.

It is organized to outline the course of that research. In the first part, concepts

necessary for an understanding of the development and evaluation of the new

algorithm are presented. In the second part, the algorithm itself is discussed, from

its beginnings to the present, with a focus on the results of a series of experiments

conducted in order to determine the ability of the algorithm to accomplish its

intended purpose. In the final part, the results are tied together and conclusions are

formulated from the data. The document ends with a discussion of the direction in

which this research is heading and a few concluding remarks.

1.2 Background Information

In discussions regarding this research, it was noted that a sizeable number of

people, both without and within the computer sciences community, were at least

somewhat unfamiliar with one or more of the concepts involved in the research.

Certain of these concepts are critical to an understanding of the research material,

and to an ability to place the disparate portions of the material into their proper

context. Therefore, it was deemed prudent that there should be included herein a

discussion of those critical concepts.

It is not intended that this discussion should be comprehensive. To make such

an attempt is neither necessary nor feasible. Rather, for each concept only the

 4

items that are directly pertinent to the research material will be discussed, and only

to the level they were applied to that material.

First will be a discussion of combinatorial optimization problems. This is the

class of problems that formed the focus of the research, the class of problems for

which the new algorithm was designed to locate solutions. Differing methods

currently in place for solving these problems will be mentioned, along with the

advantages and disadvantages of each.

Next will be a discussion of some statistical methods that can be used to assist

in drawing conclusions from experimental data. Various techniques for analyzing

data and presenting conclusions, both visual and mathematical, will be identified.

A brief tutorial will follow showing how each of the techniques is implemented by

SPSS, the statistical package that was used to analyze the research data.

Finally, the new algorithm will be introduced. Its origins will be outlined,

along with early experimentation leading up to the current set of experiments.

1.2.1 Combinatorial Optimization Problems

This research revolved around the development and design of a new algorithm.

Yet, algorithms are designed to solve problems. Some algorithms are designed to

solve specific problems, as with control mechanisms for various types of automated

machinery (Harrell et. al., 2000). Other algorithms are designed to solve more

general classes of problems, as with linear programming (Papadimitriou, 1994).

 5

So, there must of necessity be a problem or class of problems for which the new

algorithm was designed.

One of the most basic problems under study within the computer sciences is the

search problem. This is actually a general class of problems with a similar goal.

Simply put, that goal is to find something of interest within a designated search

area. To state the problem formally,

Given: set S

 key value k

SEARCH(S, k) = x, such that x is a pointer to an element of S with a value

equal to k, or NIL if no such element exists within S (Corman et al., 1991).

That is, given a set of elements to search through, called the search space, and a

particular value to search for, SEARCH will attempt to locate an element of that

value within the search space. If such an element is found, SEARCH will return

the location of that element within the search space. If no such element can be

found, SEARCH will return a null value or otherwise indicate that the search failed.

Of interest herein is a special case of the more general search problem known as

the optimization search problem, or combinatorial optimization. This too is a class

of problems with a similar goal, and since it is a special case of the search problem,

that goal is still to find something of interest within a given search space.

However, with combinatorial optimization the “something of interest” is more

restrictive than in the general case. Note that there may be multiple elements

within the search space that satisfy the search condition. In the generalized search

 6

problem, locating any one of those elements is sufficient. In combinatorial

optimization, though, simply locating any element that satisfies the search

condition is not enough.

Combinatorial optimization tacks on the additional requirement that the search

locate an element that not only matches the search condition but is in some sense

the “best” element that matches the search condition out of a possible many that

satisfy said condition. The notion of which element is “best” is determined by what

is known as the objective function.

As its name implies, the objective function is a function that can be applied to

elements within the solution space to determine their relative ability to attain a

specific objective. For example, suppose that the search space consists of all

integers i such that 0 < i < 101. Suppose further that the objective function that is

to be applied is F(x) = x. That is, the value of the objective function is simply the

value of the element itself. For the purposes of this example the objective is

defined to be maximizing F(x).

Now, given that the search condition is to locate an element e such that

e mod 10 = 0 (i.e. e is evenly divisible by ten), it is easy to see that the search

condition will be satisfied by more than one element in the search space; in fact, it

will be satisfied by ten different elements. If generalized search is being

performed, then finding any one of those ten will suffice. However, since

optimization search is being performed, it is necessary to apply the objective

function to each element found matching the search condition (such an element

 7

being called a solution to the problem). For this example, it can be seen that doing

so will result in the element with the value 100 being declared the optimal solution,

since it satisfies the search condition and has the highest value of the objective

function F(x) of all the solutions.

From this example, it should be fairly obvious that combinatorial optimization

is more complex than generalized search. Whereas with generalized search it is

necessary only to find one solution, with combinatorial optimization it is necessary

to find all possible solutions (either explicitly or implicitly), applying the objective

function to each in order to determine which solution is optimal. The problem is

further complicated by the fact that in many instances the search space is so large

that searching every element to find all possible solutions is highly impractical, if

not impossible (Freuder et. al., 1995). Also, the search space may contain many

solutions that have equal or near-equal values for the objective function, and these

solutions may be widely dispersed throughout the search space. Lastly, the

solutions may consist of several parts, and there may be a complex interplay

between the parts, meaning that the overall value of the objective function often

cannot be determined by just looking for patterns in the solutions (Aarts and

Lenstra, 1987).

It is precisely this type of problem that is of interest in this document: the class

of problems where

• An optimal solution is desired, but where the search space is large enough

that performing an exhaustive search is not an option.

 8

• There is no guarantee that the optimal solution or solutions will be located

near another solution or solutions of similar quality

• The solutions are multi-dimensional (contain more than one part)

Such problems constitute an interesting and challenging area of study.

Combinatorial optimization appears in a variety of situations, from academic

problems used to teach the principles of optimization to problems of everyday

interest in industry. It is also used extensively in Artificial Intelligence (AI)

applications. Search in and of itself is fundamental to the study of AI. It is so

fundamental, in fact, that it has been said that almost all the basic methods used by

AI applications are some variation of search (Newell et. al., 1977). Combinatorial

optimization in particular is used by expert systems to choose the best course of

action to take (Englemore and Morgan, 1988, Giarratano and Riley, 1993, Webster,

1995), by Constraint Satisfaction Problems to find the best solution that satisfies all

constraints of the problem (Prosser, 1993, Tsang, 1996), and by intelligent

scheduling systems to find the best out of a list of feasible schedules (Bresina,

1996, Bresina et. al., 1994). Conducting in-depth research on all combinatorial

optimization problems is obviously beyond the sphere of a single research study,

and so the scope needed to be narrowed to a few specific examples. The example

problem types that were included in the research studies will now be described.

 9

1.2.1.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a very thoroughly studied problem

that is popular in the classroom for introducing optimization and the challenges it

presents. The idea of this problem is to imagine a salesman who is about to embark

on a sales trip. There are a certain number of cities on his proposed itinerary, and

he needs to visit all of them before returning to his home city. The restriction is

that he is only allowed to visit each city once during his trip. Thus, TSP is a

variation of a Hamiltonian cycle problem (Aho et. al., 1983).

There is defined to be some sort of cost involved in traveling between any two

given cities on the itinerary. This cost may be thought of in monetary terms, as in

the cost of an airline ticket to fly between the two cities, or in terms of the time it

will take to travel between the cities, or some other kind of cost. It really doesn’t

matter; the important thing is that some type of cost will be incurred to the

salesman as he moves from one city to another, and the cost to go from city A to

city B might not be the same as it is to move from city B to city A.

Faced with a directive from his management to control costs of sales trips, the

salesman wants to be as efficient as he can when planning his trip. His goal is

therefore to minimize the total cost of completing his itinerary. Thus, a solution for

TSP is a complete tour itinerary for the salesman, showing the order in which each

city will be visited. The objective function value of the solution is the sum total of

 10

costs to visit all the cities on the complete tour, with the objective of minimizing

that value.

The salesman is presented with many choices. He may visit the cities on his

itinerary in any order, but he has to visit them all and may only visit each one once.

He may travel between any pair of cities, but travel between some pairs is more

expensive than others. This multitude of options makes TSP a very complex

problem to tackle (Aho et. al., 1983).

1.2.1.2 The Bin Packing Problem

The Bin Packing Problem (BPP) is another very thoroughly studied problem

that is popular in the classroom. There are a number of variations to this problem,

but the one that is of interest herein is 1-Dimensional Bin Packing. The premise of

this problem is that there is a collection of objects of varying size, with the one

restriction that all objects are less than a specified size n. There is also available an

unlimited supply of bins of size n in which to store the objects. Each of the objects

in the collection is to be placed in one of the available bins. Any number of objects

may be placed in a particular bin, provided the combined size of the objects does

not exceed the size of the bin.

The goal of the problem is to find the minimum number of bins required to

store all the objects in the collection. Thus, a solution for BPP is an assignment of

objects to bins, and the objective function value for the solution is the number of

 11

bins that have been used to store the collection, with the objective being to

minimize that value.

This simple problem, with its simple goal, is actually rather deceptive in its

simplicity. When placing the objects into bins, there is no restriction on how the

objects may be combined, save that of not exceeding the bin size. Many options

are available, meaning that the choice of bin in which to place each object is far

from trivial (Corman et. al., 1991).

1.2.1.3 The File Assignment Problem

The File Assignment Problem (FAP) is of everyday interest to the business

community. This problem supposes a computer system that has a certain number

of hardware devices available for storage, each with its own performance

characteristics. The usage of the system requires that a certain group of files will

need to be stored, and will be accessed in a variety of manners (e.g. differing

orders, read vs. write, etc.). There are a variety of costs associated with this

process, including the cost of accessing a file on a given device, the cost of

(potentially) maintaining copies of a file on different devices and keeping them

consistent when the file changes, and the cost of coordinating the operations of the

hardware devices (Dowdy and Foster, 1982).

The idea in this problem is to allocate each of the files that will be accessed to

one or more of the available hardware devices in such a way as to minimize some

 12

pre-determined cost (average access time, throughput, etc.). Thus, a solution for

FAP is a mapping of files to devices, and the objective function value for the

solution is a measurement of some cost associated with storing the files in that

configuration, with the objective being to minimize that value.

FAP is of interest in many common settings. It is of interest to system

managers, who want to know how best to arrange their systems to maximize

performance for their users. It is also of interest to database administrators, who

want to know how to store their data files to maximize the performance of their

databases (Bernhard and Fox, 2000). Since the problem can be expressed in a

number of variations and employed with a number of objective functions, its uses

can be quite extensive. Since the problem also involves storing a group of files on

a group of devices, and the many ways in which that could be accomplished, FAP

is also a very complex problem (Bernhard and Fox, 2000).

1.2.2 Existing Solution Methods

There are currently a great many methods that are used to solve combinatorial

optimization. One need only examine the ever-growing list of literature to see the

collection of methods that have been offered for solving TSP alone. Once again, to

attempt a comprehensive discussion of these myriad methods would be neither

necessary nor prudent. As such, an overview of the general types of approaches

 13

that are in use and some basic explanations will be offered, in order to compare and

contrast these methods with the new algorithm under study.

1.2.2.1 Systematic Methods

Systematic methods for solving combinatorial optimization problems are

searches that follow a specified step-by-step procedure to systematically go through

the search space until either the search has located its quarry or it becomes clear

that the search cannot succeed. By utilizing a systematic method, the search has a

guarantee that if a solution to the given problem exists within the search space, the

method will locate it – a property known as completeness (Pearl, 1985). Systematic

methods can be further subdivided into uninformed and informed methods.

Uninformed systematic searches presume no knowledge of the search space or

the data within, and proceed solely on the basis of the proscribed procedure (Pearl,

1985). Examples of uninformed systematic search include:

• Linear – progresses through the search space entry by entry, treating it as if

it was one long line of potential solution values

• Backtracking – performs a depth-first or breadth-first search of the search

space, moving along a given path until a solution is found or a dead end is

reached, then backing up and moving on to the next path

• Forward Checking – similar to backtracking, except that at each step of

the path a check is performed to see if the next step in the path would

 14

contribute to a viable solution, or whether that path does not contribute and

should be abandoned in favor of another path

Informed systematic search is used in cases where something is known about

the search space and/or the data within (Pearl, 1985). For example, the data might

be sorted alphabetically, or might be arranged according to some other known

organization. Informed search can take advantage of such situations to improve the

search performance. Examples of informed systematic search include:

• Yes/No (Binary Tree) Search – at each step in the search path a decision is

made to follow one of two paths that will lead to a solution; works when

data are sorted or otherwise organized to accommodate the binary decisions,

and is very efficient

• Hashed/Indexed Search – uses hash functions or indexes to point the

search to a specific location or region where a solution will be located;

again, works on organized data and is extremely efficient

• Domain Ordering – uses pre-processing to order or partially order the

search space to enable the use of other informed search techniques

1.2.2.2 Stochastic (Heuristic) Methods

On the other side of the table are the stochastic, or heuristic, techniques. These

approaches apply a heuristic (or “rule-of-thumb”) in an attempt to guide the search

towards a solution (Pearl, 1985). The heuristic will make use of knowledge

 15

regarding the objective function (i.e. what types of things are needed to produce a

solution with good objective function values) to make decisions as the search

progresses that will (hopefully) locate high-quality solutions. Heuristic searches

generally are local searches, meaning that they search a very small area of the

search space and then apply the heuristic to the search results to determine the path

that the search will take (Aarts and Lenstra, 1997).

Heuristic searches can either take a generate-and-test approach or be repair-

based. A technique that takes a generate-and-test approach will build a solution

piece by piece until a complete solution is constructed (Pearl, 1985), while a repair-

based technique will start with a given solution (which may or may not be a valid

solution to the problem at hand) and repetitively alter it until a valid or better

solution is found (Aarts and Lenstra, 1997). Examples of heuristic search include:

• Hill Climbing – at each step in the search process, follows the path that

adds the most value to the objective function; stops when there is no

longer any path that will result in a better objective function value

• Simulated Annealing – technique that simulates the physical process of

annealing metal. If molten metal is allowed to cool too quickly, it will

develop imperfections that will weaken the intended structure, so the

temperature has to be lowered in a controlled fashion. In simulated

annealing, at each step in the process an attempt is made to find a path

with a better objective function value, but even if one exists there is a

non-zero probability that the path will not be followed and some other

 16

path will be taken in an attempt to find an even better solution at another

location. The “temperature” in simulated annealing is a pre-set value that

is gradually lowered after a specified number of changes are made to the

current solution (or after a specified number of iterations – there are a

number of variants of the general algorithm). The procedure stops when

a certain temperature value threshold is reached.

• Genetic Algorithms – attempts to model the process of genetics in

nature. Solutions are evaluated according to a “fitness rating” that

corresponds to the objective function. At each step in the process, certain

solutions with low fitness ratings are allowed to “die out”, while others

are “crossbred” (combined) and/or “mutated” (changed) in an attempt to

make them into better solutions. The procedure stops after a specified

number of “generations”, or iterations of the process.

1.2.2.3 Advantages/Disadvantages of Method Types

As could be reasonably expected, each of the general types of approach to

solving combinatorial optimization problems comes with its own set of advantages

and disadvantages. As mentioned, systematic techniques have the advantage that

they are complete; that is, if a solution exists within the search space they are

guaranteed to find it. A disadvantage of uninformed systematic searches is that for

combinatorial optimization problems, completeness entails finding not just a valid

 17

solution but every valid solution in the search space (either explicitly or implicitly,

in order to determine which is the “best”), and as has been noted, for many classes

of problems the search space is simply too large to render this feasible. A

disadvantage of informed systematic searches is that, while they are very efficient

at locating solutions, they pay the price by requiring that the search space be

organized in some known fashion. Again, for many classes of problems a search

space that comes organized in this way cannot be expected, and pre-processing the

search space to make it sufficiently organized would once again take far too long.

Heuristic techniques, on the other hand, have the advantage that they are able to

locate high-quality solutions in a relatively short amount of time, even for search

spaces of immense size. A disadvantage of these techniques is that they are not

complete, which means they are not guaranteed to find the best solution. In cases

where a near-optimal solution is sufficient, this is not a problem. However, in

situations where it is imperative that the absolute highest quality solution be found,

this disadvantage becomes an issue.

A major reason why heuristic techniques do not always find the best solution is

that their termination conditions often cause them to stop in local optima (sing.

local optimum). Local optima are solutions that have better objective function

values than other solutions that occur nearby in the search space; that is, they are

the best solutions to be found within a local neighborhood of the search space

(Aarts and Lenstra, 1997). However, local optima are not necessarily the best

solutions to be found within the entire search space. Nevertheless, because of the

 18

way the techniques are designed they often stop in one of these local optima instead

of a global optimum.

When designing heuristic search techniques, there are several important things

to keep in mind. The first is to develop a solid heuristic. Employing a weak or

faulty heuristic renders moot the whole point of the technique and reduces the

chances of the technique performing well and finding high quality solutions. Also

important is choosing a mechanism for determining the local neighborhood. Since

the neighborhood is what will be searched next, the choice of neighborhood

function will strongly influence the direction that the search takes.

Another item that should be considered when designing heuristic search

techniques is a mechanism to allow the technique to escape local optima and settle

only on a global optimum. Having a technique that is too prone to stopping at local

optima reduces the chances of it finding a global optimum, thus making the

technique less effective. Given the fact that heuristic techniques are by nature

incomplete, and that time constraints and search space sizes often render

completeness infeasible anyway, a certain amount of risk of stopping on a local

optimum is inevitable. In spite of this, attempts should be made to mitigate this

risk and reduce it as much as possible.

 19

1.2.3 Statistical Validation of Research Hypotheses

Being able to validate conclusions drawn from research is of vital importance.

Results from a series of experiments may seem to confirm a hypothesis, but if the

data can be somehow bolstered by other evidence, the conclusions will be placed

on a much stronger footing. Statistical methods can be used for exactly that

purpose. Using appropriate statistical methods can provide a solid mathematical

backing for confirming or rejecting hypotheses constructed regarding the results of

research experimentation.

It is for this reason that statistical validation was desirable for use within this

research. Early experiments seemed to confirm that the new algorithm under

development was effective in solving certain combinatorial optimization problems

(see section 2.1), but only a rudimentary analysis of the data was conducted (due to

the fact that at the time it was not known if the research would continue, and so

only nominal indications were desired). The later experiments done for this

research, however, utilized a much more rigorous set of statistical evaluations to

test the results obtained. The techniques that were used to conduct these

evaluations will now be described.

1.2.3.1 Design of Experiments

Design of Experiments (DOE) means exactly what it says; it is the process of

designing a set of experiments suitable for accomplishing the purposes of the

 20

research. Using a proper DOE is critical to assuring that the experiments will

produce the correct results – not in terms of getting the results one wanted but in

terms of getting results that are untainted by extraneous or unwanted effects

(Montgomery, 2001). For example, suppose that a series of experiments are being

conducted to compare two pieces of like equipment from different manufacturers.

One set of tests, with the two pieces of equipment operating in a given test

machine, is run first thing Monday morning by first shift personnel. A second set

of tests, with the two pieces of equipment operating in a different test machine, is

run Thursday afternoon by second shift personnel after the two pieces of equipment

have been operating all day. The results of the tests are compiled and the results

announced.

Unwittingly, though, several effects have entered into the experiments that the

designers did not consider and that may have compromised the results. First, the

fact that one set of tests was run using one test machine and the other using a

second test machine has introduced an effect based on the machines used, since

these machines were not checked to verify that they yield equal test results for the

same piece of equipment. Second, the fact that one set of tests was run on

equipment that was just starting up and the other after the equipment was operating

for awhile has introduced a warm-up effect, since the equipment being tested may

need to operate for awhile before achieving a steady-state level of performance.

Third, the fact that one set of tests was run by first shift personnel and the other by

second shift personnel has introduced an effect of operator, since the different

 21

personnel may have different levels of training and experience and may not operate

the equipment in the same fashion.

None of these effects represent something that is of interest to the

experimenters. They are not, for instance, interested in whether there is a differing

level of operator capability between first and second shift personnel, at least not at

this point. However, this and the other effects may have had a substantial influence

on the final outcome of the tests. Now, it may be the case that the overall results of

the tests would not have changed had these effects been accounted for, but the point

is that this cannot be known for sure without having accounted for them, and the

test results as obtained may be spurious.

When designing experiments, usually the researcher wants to determine

whether a particular item or items have an effect on an outcome of interest. These

items that may or may not have an effect are known as the factors that are being

investigated (Walpole and Myers, 1972). Each factor, in turn, will have different

settings to be used for determining whether the factor does in fact have an effect on

the outcome of interest. These settings are known as the levels for the factor

(Walpole and Myers, 1972). Normally what is done is to decide what factor(s) will

be examined, and then design a set of experiments to test various levels of each

factor and compare the results obtained at each level.

Along with deciding what factors and levels should be included in the

experiments, it should be decided as to exactly what hypothesis will be evaluated.

When comparing the effects of different levels of a factor, the normal procedure is

 22

to put forth a hypothesis that the choice of level makes no difference, i.e. the factor

does not have any statistically significant effect on the outcome (Walpole and

Myers, 1972). This hypothesis is referred to as the null hypothesis, usually

rendered symbolically as H0. The counterpart to the null hypothesis is the

alternative hypothesis (usually symbolized as H1), which states the converse of the

null hypothesis, i.e. that the choice of level for the factor does have a significant

effect on the outcome. In simple experiments there may be only one null

hypothesis under examination, while in more complex experiments there may be

several.

The concepts of factors, levels, and hypothesis testing can be illustrated by

returning to the example of the equipment tests. This example has one factor of

interest, namely the piece of equipment being tested. This factor has two levels,

one for each manufacturer of the piece of equipment. There will be a single null

hypothesis that will be evaluated, which will be that there is no difference between

the performances of the pieces of equipment based on which manufacturer supplied

them. The experiments should be designed around testing the factor at each level,

or in this case testing the piece of equipment from each manufacturer. But, what of

the extraneous factors? It has already been shown that there are other elements in

this example that could have an effect on the outcome. These elements are not of

interest to the experiments, but since they could have an effect on the outcome they

are factors and must be dealt with as such.

 23

One way of dealing with the extraneous factors is to try to eliminate them from

the experiments. In the example, the test machine factor could be eliminated by

ensuring that all experiments are run on the same test machine. Likewise, the

warm-up factor could be eliminated by ensuring that all experiments are run only

after the equipment has been in operation for awhile. Finally, the personnel factor

could be eliminated by ensuring that all experiments are conducted by the same

operators.

Sometimes, however, eliminating the effect of the unwanted factors may not be

feasible. It may not be possible, for instance, to conduct all the experiments on the

same test machine or run the equipment for extended periods to get them to steady-

state due to time constraints. It may also be the case that the first shift personnel

were needed for other efforts and were unavailable for the second round of tests. In

such cases as these, where the unwanted factors cannot be eliminated, there are

techniques available for accounting for them without removing them.

Factors that do not have their effects included in the experimental results but

that have been accounted for are said to be blocked. Blocking factors have had

their effects statistically pooled into a block that can then be removed from the

overall effects (Montgomery, 2001). In the case of the example, it would be wise

to block on the test machine, warm-up, and personnel factors to account for and

statistically remove their effects from the experiments.

In order to be able to properly account for the effects of factors, it is necessary

that a reasonable number of repetitions of the experiment be performed. Just as

 24

flipping a coin twice might yield one head and one tail, attempting to discover the

true nature of the probabilities of coin flipping would be better accomplished by

increasing the number of times the coin is flipped. Normally it is not necessary to

conduct thousands of repetitions of an experiment. There are statistical techniques

available that can produce excellent results with only a relatively small number of

repetitions (from as few as around ten to a few hundred, depending on the number

of factors and levels to be considered) (Montgomery, 2001). These techniques will

be discussed in the next section.

It is also wise to include the element of randomness when designing

experiments. Randomness helps to ensure that the results of one experiment will

not be related to the results from a previous experiment (a condition known as

correlation) (Montgomery, 2001). In the example, it may be the case that the test

machines lose a little bit of their calibration with each successive test that is run. If

all the pieces of equipment from manufacturer A are tested before the pieces from

manufacturer B, it stands to reason that the results for the pieces from manufacturer

A will be more accurate. While this form of correlation cannot be eliminated

entirely (assuming it is infeasible to re-calibrate the machines after every test), it

can be mitigated somewhat by randomizing the order in which the pieces from the

two manufacturers are tested. Also, while in the example the simplest way to

reduce correlation might be to alternate the testing of pieces from the two

manufacturers, in many other problems it might not be so simple, and thus

randomization is the recommended approach. A DOE that includes one or more

 25

blocking factors (each containing all levels of the factor to be studied) and that has

been randomized in its setup is called a Randomized Complete Block Design

(RCBD) (Montgomery, 2001). Such a DOE was used in the course of this research

to allow comparison of the results obtained by the new algorithm with those

obtained by other algorithms for the same problem instances.

1.2.3.2 Evaluating Results of Experiments

As important as it is to properly design an experiment to ensure that the correct

results are obtained, it is equally important to properly evaluate the results to ensure

that the correct conclusions are drawn. The benefits of a well-designed experiment

are lost if the results of that experiment are improperly interpreted. There are two

general categories of errors that may arise when interpreting the results of

experiments: Type I errors and Type II errors (Walpole and Myers, 1972). Type I

errors occur when, as a result of the interpretation of the experimental results, the

null hypothesis is rejected when it is actually true. Type II errors occur when the

null hypothesis is affirmed when it is actually false.

Knowing whether the null hypothesis is in fact true is never a matter of absolute

certainty in an experimental setting (if it could be known with absolute certainty,

then there would be no need of an experimental setting to test it). Instead, the idea

is to know whether an asserted hypothesis is true with a given probability. Two

symbols are used: α, which represents the probability of a Type I error and is often

 26

referred to as the significance level, and β, which represents the probability of a

Type II error. The normal method of evaluating experimental results is to interpret

the results using a specified significance level, which is set to a value representing

the acceptable amount of risk of incorrectly rejecting a factual research hypothesis

(Montgomery, 2001).

There are many statistical tools available to assist with the evaluation process.

The types of tools that should be employed are dependent on the nature of the

experiments and the null hypothesis to be tested. For instance, if only two levels of

a factor are being compared, there are some tests that are suitable for that type of

comparison. On the other hand, if multiple factor levels are to be simultaneously

compared, there are different tests that are suitable for that type of comparison.

Also, if a statistical package is being used to conduct the analysis, the types of tools

available and how they are employed will be dependent on what tools are provided

by the statistical package and how they are implemented by that package. Since the

experiments conducted for this research effort utilized the SPSS statistical package

to conduct the analysis of the results, the tools that were used to conduct that

analysis and how they are presented by SPSS will be introduced.

1.2.3.2.1 Graphical Analysis Tools

Some of the simplest and most aesthetically pleasing tools for analyzing

experimental results are the graphical analysis tools. By presenting a visual

 27

depiction of the data, graphical tools give the researcher a concise overall view of

the results of the experiments. Sometimes these graphical views are even enough

to provide the researcher with sufficient information to draw valid conclusions

regarding research hypotheses, although one must be very careful when doing so

since what appears to be a significant result on a graphic may not turn out to be so

when rigorous mathematical tests are applied (and vice versa). Of the variety of

graphical tools available, four general types were used in this research effort.

The first type of graphical tool used was the box plot. A box plot is used to

display summary information regarding ranges of data values for one or more

categories. For each category on the plot, there is a box with one line drawn

through it. The box represents the values in the range that fall between the 25th and

the 75th percentile, also called the inter-quartile range (quartiles being the 25th,

50th, and 75th percentiles of the values), with the line representing the median value

of the range. On opposite ends of the box are lines that extend out to some value in

the range, often referred to as the whiskers of the diagram. There are several

variations of exactly what values are represented by the end of the lines

(Montgomery and Runger, 1999), but the SPSS package denotes the ends of the

lines to be the maximum and minimum values of the range, excluding outliers

(outliers are values that are considered to be significantly rare and extreme) (SPSS,

2001). The SPSS package also plots the outliers and their values outside the box

plot range lines.

 28

Exhibit 1 shows an example box plot generated by the SPSS package. It shows

seven category levels of a particular factor along the X axis, and the value range

scale along the Y axis. It also shows three examples of how outlier values are

displayed on a box plot by SPSS.

Category

GFEDCBA

S
ca

le

.8

.7

.6

.5

.4

.3

.2

.1

0.0

91

90

202

Exhibit 1. Example Box Plot Generated by SPSS

The second type of graphical tool used was the line plot. A line plot is used to

show comparisons of a variable’s value for two or more categories. The categories

are listed along the X axis, with a scale of values along the Y axis. For each

 29

category, a value is plotted, and then a reference line is drawn connecting the

plotted points to assist in visualizing the comparison between the values. It is also

possible to show the values for multiple variables in order to compare not only the

values of those variables between categories, but also the values of those variables

against the values of the other variables for the same category.

Exhibit 2 shows an example line plot generated by the SPSS package. It shows

the comparison between values of three variables for seven categories. Different

line types and point markers were used to distinguish between the lines and points

for the three variables. A legend appears at the right to identify which variable uses

which line types and point markers.

 30

Category

GFEDCBA

S
ca

le

.7

.6

.5

.4

.3

.2

.1

0.0

Variable

1

2

3

Exhibit 2. Example Line Plot Generated by SPSS

The third type of graphical tool used was the P-P plot. A P-P plot is used to

show how well the observed data points of a variable match a particular type of

probability distribution. Both axes of the plot are scaled in terms of cumulative

probability, meaning that each point on an axis represents the proportion of values

that occur with less than that probability (SPSS, 2001). The X axis represents the

cumulative probability for the data points observed in the variable, and the Y axis

the cumulative probability expected for the particular test distribution type. Points

are plotted showing the relationship between the observed probabilities and the

 31

expected. A straight line is marked on the plot showing where the relationship

points should be plotted if the variable exactly matches the test distribution type.

The closer the points actually are to this line, the closer the variable matches the

test distribution type.

Exhibit 3 shows an example P-P plot generated by the SPSS package. In this

example, the test distribution type of interest is the normal distribution, so the plot

is showing how well the observed data points for the variable match those that

would be expected for a normal distribution. The plotted points are always fairly

close to the line in this example, but there are some places where they do stray

somewhat. This raises an alert that the variable might not be normally distributed,

and that further testing using other methods is called for to make a final

determination.

 32

Observed Cumulative Probability

1.00.75.50.250.00

E
xp

ec
te

d
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

1.00

.75

.50

.25

0.00

Exhibit 3. Example P-P Plot Generated by SPSS

The fourth and final graphical type used was the scatter plot. A simple scatter

plot (there are other types, not used in the research effort and thus not discussed

here) is used to mark one variable’s values against those of another variable (SPSS,

2001). Because of this rather general nature, scatter plots can be used for a variety

of purposes. As will be seen in later sections, this research effort did make use of

scatter plots in a number of different ways to convey different types of information.

Exhibit 4 shows an example scatter plot generated by the SPSS package. Points

are shown on the plot identifying the mapping of the values for the variable

 33

represented by the X axis to the values of the variable represented by the Y axis.

Reference lines can also be included on these plots to show a fit to the pattern of

the plot, or the mean value of the plotted points with respect to one axis’ values.

X Scale

.8.7.6.5.4.3.2.1

Y
 S

ca
le

.2

.1

0.0

-.1

-.2

Exhibit 4. Example Scatter Plot Generated by SPSS

1.2.3.2.2 Analysis of Variance

Graphical analysis tools provide a very good means of presenting an overall

summary view of experimental results. However, as mentioned earlier it is risky to

develop conclusions regarding the experiments solely on the basis of the data

 34

provided by the graphics. While graphical tools can provide good supporting

evidence in support of conclusions, solid mathematical methods will render them

much more concrete.

The choice of methods to use is dependent on the DOE employed since, as also

mentioned previously, different statistical methods are apropos for different

situations. For situations requiring a comparison of multiple factor levels, the

Analysis of Variance, or ANOVA, serves very well. So well, in fact, that

Montgomery states that ANOVA “is probably the most useful technique in the field

of statistical inference” (Montgomery, 2001).

The ANOVA procedure contains a fair amount of mathematical calculations

that are not germane to this discussion (and that are accomplished automatically by

statistical packages anyway). The main point is that the ANOVA procedure

recognizes that in any set of experiments there is bound to be a certain amount of

variance within the results. This variance can stem from a variety of sources.

Some of it is due to pure random error. Some of it can be due to the effects of

particular factor levels. The ANOVA procedure uses its mathematical techniques

to attempt to partition the variance in the experiments according to the sources that

caused it. The objective is to determine if the variance attributable to the effects of

factor levels is sufficiently larger than that which could be expected from random

error. If so, this is a strong indication that the factor levels are having a significant

effect on the outcome of the experiments.

 35

To perform an ANOVA, a model of the experiments needs to be constructed.

Included in the model should be all factors for which a comparison is desired, plus

any blocking factors. Blocking factors need to be included since their effects could

be significant and must be accounted for, even if those effects are not of interest. If

it is suspected that there might be effects from interactions between two or more of

the factors, those interactions also need to be included in the model.

Once the model has been constructed, the ANOVA calculations can be carried

out. There are variations between statistical packages in how they present their

ANOVA results, but generally there is a table showing a breakout of the total

variance in the experiments, how much of it was attributed to each source, and

some mechanism for determining which sources contributed a sufficient amount to

be deemed as having a significant effect on experiment outcomes.

By examining the results of an ANOVA, the researcher is able to verify or

reject a hypothesis that different factor levels have no effect on experimental

outcome. The results of the ANOVA can be combined with the supporting

evidence from the graphical tools to form a basis for forming solid research

conclusions. The next section will show how this can be done using the SPSS

statistical package.

 36

1.2.3.2.3 Evaluating Experimental Results Using SPSS

When conducting experiments to compare the effects of multiple factor levels

on a variable, as was done for this research effort, the evaluation of the

experimental results will center on the ANOVA. Exhibit 5 shows an example

ANOVA result generated by the SPSS package. The sources of variance in the

experiment are listed on the left. The “Error” source represents the variance

coming from random error. The “Corrected Model” and “Intercept” sources are

those coming from the model itself. The “Factor 1” and “Factor 2” sources show

the amount of variance due to the effects of those factors.

Dependent Variable: Performance Ratio

6.007b 55 .109 28.126 .000 .840 1546.931 1.000

71.094 1 71.094 18307.321 .000 .984 18307.321 1.000

3.770 49 7.693E-02 19.811 .000 .768 970.750 1.000

2.238 6 .373 96.030 .000 .662 576.181 1.000

1.142 294 3.883E-03

78.243 350

7.149 349

Source

Corrected Model

Intercept

Factor A

Factor B

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a.

R Squared = .840 (Adjusted R Squared = .810)b.

Exhibit 5. Example ANOVA Results Generated by SPSS

There are quite a few numbers listed on the diagram, but the primary ones of

interest are those in the column marked “Sig.”. Recalling that statistical packages

have some mechanism for determining which sources of variance are significant,

SPSS uses the values in this column for that purpose. If a value in this column is

 37

less than the researcher-specified significance level for the analysis, the

corresponding source of variance is deemed significant (SPSS, 2001). In this

example, the bottom of the diagram shows that a significance level of 0.05 (the

“alpha” value) was used. Looking at the values in the “Sig.” column, all are less

than 0.05. Therefore, the model itself is shown to contain variance that cannot be

attributed to random error alone, and thus something else must be contributing to

the experimental outcomes. Since both Factor 1 and Factor 2 have values less than

0.05 they are shown to be contributors, and that their level settings do matter to the

experimental outcomes.

Though the ANOVA results provide the focus of the evaluation, there are

several other items that must be taken into consideration when performing the

analysis. First, ANOVA assumes that the error in the experiments is random and

normally distributed (Montgomery, 2001). To check this assumption, both a

Residual Normal P-P Plot and a Kolmogorov-Smirnov Normality Test (Massey,

1951) can be generated. Both use the residuals of the experiments as their test

basis. Residuals are differences between the observed value of a variable for a

given factor level and its average value for that factor level, and are commonly

used to check the adequacy of an ANOVA (Montgomery, 2001). An example of a

P-P plot has already been shown. Exhibit 6 shows an example of the Kolmogorov-

Smirnov test. The example shows the values used in the calculation of the test.

The line marked “Asymp. Sig. (2-tailed)” shows the result. If this number is

greater than 0.05, the test indicates that the variable being tested is normally

 38

distributed (SPSS, 2001). In the example this value is 0.500, indicating the test

variable is normally distributed.

350

.0000000

.03467621

.044

.044

-.029

.827

.500

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Dep. Var.

Test distribution is Normal.a.

Calculated from data.b.

Exhibit 6. Example Kolmogorov-Smirnov Test Generated by SPSS

Another assumption of ANOVA is that the residuals should be non-structured

(Montgomery, 2001). That is, when examining the residual values against

predicted observation values or over time, they should not show any obvious

patterns such as consistent widening or narrowing (sometimes called a megaphone

effect). Scatter plots can be used to plot observed residuals versus predicted

observation values or observed residuals versus time sequence to test this

assumption. An example of a scatter plot has already been shown; the only

difference would be what values are being represented by the two axes of the plot.

 39

If the assumptions of the ANOVA do not hold, an alternative technique is

available for testing hypotheses of equality of effect between factor levels. This

technique is called the Kruskal-Wallis test (Kruskal and Wallis, 1952). Exhibit 7

shows an example of what this test looks like. The different factor levels are

mathematically assigned a ranking, and the test determines whether the rankings

are significantly different. The value on the line marked “Asymp. Sig.” shows the

conclusion of the test. If this value is less than 0.05, the factor level effects are

determined to be different (SPSS, 2001). In the example, the value is 0.000,

indicating a significant factor level difference.

Ranking Test Statisticsa,b

97.397

6

.000

Chi-Square

df

Asymp. Sig.

Dependent
Variable

Kruskal Wallis Testa.

Grouping Variable: Test Variableb.

Exhibit 7. Example Kruskal-Wallis Test Generated by SPSS

If the results of the Kruskal-Wallis test concur with those of the ANOVA, this

indicates that the original ANOVA results are trustworthy in spite of the failed

assumptions. If the results do not concur, the Kruskal-Wallis results should take

precedence.

 40

Since for many analyses of experiments (and indeed for this research effort) the

goal of the analysis is to determine if there is any difference between factor levels,

and since for the purposes of this research the interest was in finding optimal

solutions to combinatorial optimization problems, once it has been determined by

an ANOVA and/or a Kruskal-Wallis test that a particular factor does exert a

significant effect on the outcome of the experiment it is important to know which

levels of the factor tend to produce the best results. This can be accomplished by

producing a list of homogeneous subsets of factor levels. This test will divide the

possible factor level settings into subsets based on which level settings tend to

produce results that are significantly different from other levels. That is, level

settings that generate results that are statistically indistinguishable from each other

will be grouped together into subsets. Using this list of subsets, it will be easy to

see which level settings produce the best results.

Tukey (Tukey, 1953) and Duncan (Duncan, 1955) each developed a method for

determining the homogeneous subsets, and SPSS can utilize each of these popular

methods to generate a list of subsets. Exhibit 8 shows an example of a list of

homogeneous subsets generated by SPSS using both of these techniques. In this

example there are five factor levels for the given factor. Tukey’s method assigns

the five levels into four homogeneous subsets, with factor level 1 generating the

highest value and factor levels 4 and 5 generating the lowest value (factors 4 and 5

being indistinguishable from each other). Duncan’s method gives slightly different

results, assigning each of the five factor levels into its own subset. Still, though,

 41

level 1 produces the highest value and level 5 the lowest. So, though the Tukey

and Duncan methods do not agree entirely on the subset designations, they both

agree that factor level 1 will tend to produce the highest result value for the

experiment, while factor level 5 will tend to produce the lowest result value.

49 .3203544

56 .3346349

70 .3675620

98 .4194931

77 .4682279

.231 1.000 1.000 1.000

49 .3203544

56 .3346349

70 .3675620

98 .4194931

77 .4682279

1.000 1.000 1.000 1.000 1.000

Factor Level

5

4

3

2

1

Sig.

5

4

3

2

1

Sig.

Tukey HSDa,b,c

Duncana,b,c

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.554E-03.

Uses Harmonic Mean Sample Size = 66.013.a.

The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are
not guaranteed.

b.

Alpha = .05.c.

Exhibit 8. Example Homogeneous Subsets List Generated by SPSS

By using statistical techniques such as ANOVA and Kruskal-Wallis, research

hypotheses regarding equality of effect of factor levels on an experiment can be

verified mathematically, giving the researcher (and the evaluators of the research) a

high level of confidence in the validity of the research experiments. By further

 42

evaluating the basis of an ANOVA to confirm its conclusions and using graphical

tools as supporting evidence, the experimental results are made that much stronger.

These methods were used in this research effort for just that purpose: to place the

evaluation of the algorithm test experiments on a concrete foundation.

1.3 A New Method for Solving Combinatorial

Optimization Problems

Having discussed the concepts behind combinatorial optimization problems and

statistical analysis of research hypotheses, it is time to introduce the reason for

which a basic knowledge of those concepts is necessary, and for which this

research was embarked upon. That reason is the new algorithm developed for

solving combinatorial optimization problems.

This new algorithm is called Gravitational Emulation Local Search, or GELS.

As its name implies, GELS is a heuristic, local search technique. In addition, it is

repair-based, and it belongs to the class of techniques that emulate some natural or

physical process like simulated annealing and genetic algorithms.

GELS takes as its basis the natural principles of gravitational attraction.

Gravity works in nature to cause objects to be pulled towards each other. The more

massive the object, the more gravitational “tug” it exerts on other objects. Also, the

closer two objects are to each other, the stronger the gravitational forces between

them. This means that a given object will be more strongly attracted to a larger,

 43

more massive object than to another object of lesser mass at a given distance, and it

will also be more strongly attracted to an object close by than to another, more

distant object having the same mass (Sears et. al., 1987).

GELS makes the attempt to emulate these processes of nature and use them to

formulate a heuristic algorithm. The idea is to imagine the search space as being

the universe. Contained within the search space are, hopefully, one or more valid

solutions to the problem at hand. Each of these solutions has a “mass” that is

represented by its objective function value. The better the solution’s objective

function value, the higher its mass. Locations within the search space that do not

contain valid solutions are assigned a zero mass.

A small object represented as a pointer is moving through the search space. As

it approaches a solution object, the mass of the solution object will cause the

pointer object to be pulled towards it. Newton’s laws of gravitational attraction are

used to define how much gravitational “force” exists between the pointer object and

the solution object.

As mentioned in a previous section, a heuristic technique also needs to consider

how it will attempt to avoid stopping at a local optimum. GELS does this by virtue

of the same principles of gravitation. In nature, when one object is being pulled by

gravity towards another, the pulled object will pick up speed. In many instances,

by the time the object being pulled reaches the object pulling it, it will have

sufficient momentum to keep moving past the pulling object. In some instances,

the pulling object’s gravity will be sufficient to cause the pulled object to come

 44

back to it, but in other instances the pulled object will move off towards other

objects.

GELS attempts to avoid getting stuck at local optima by emulating this process.

As the pointer object approaches a solution object, the “speed” of the pointer object

increases. Once it reaches the solution (or passes by on one side or another), its

speed in the original direction will decrease due to the fact that the solution object’s

gravity is now pulling it back the way it came. If the solution object’s gravity is

strong enough, the pointer object will stop altogether, terminating the procedure.

But, if the pointer object’s speed is sufficient, it will continue moving past the

solution object. The intention is that the “momentum” of the pointer object as it

moves through the search space will be such that it will be able to bypass solutions

of lesser quality, stopping only on high-quality solutions with better objective

function values (indeed, hopefully at a solution with the best objective function

value, a global optimum).

At the time the idea for GELS was formulated, it was completely unknown as

to whether it would perform at all as intended. It was not even clear that the

algorithm would produce a reasonable solution at all. Gravity works very well in

nature, but there are potential issues. For example, there are gravitational forces

between the Earth and the Sun. However, instead of falling into the Sun, the

interplay of the gravitational forces has caused the Earth to settle into a stable orbit

around the Sun, continually moving instead of coming to rest. While this is very

good for the inhabitants of Earth, it would not be good if the same type of event

 45

would occur in GELS. This would mean that a solution would never be settled on

and GELS would continue running indefinitely.

There were many questions to be answered, even at an initial level. Would an

implementation of GELS, operating in an actual problem-solving environment, be

able to produce valid solutions? If it did, what would be the quality of the solutions

produced? How long would it take to find a solution? Would it be able to find a

global optimum? Would it get stuck in an “orbit” around some solution without

ever stopping?

The only way to answer even these most basic questions was to implement the

technique and test it against actual problem instances. But there was another

question that needed answering first: why bother to study this algorithm at all?

There are already a host of algorithms available for solving combinatorial

optimization problems, some of them with very good track records for producing

high quality solutions. Given this situation, what would be the benefit of adding

yet another algorithm to the mix?

The answer to this question was twofold. First, if further investigation would

reveal that GELS could perform better than other algorithms, even occasionally on

only one type of problem, then the question would become: why not use it? To be

faced with solving a problem, having a solution method available that is likely to

give the best solution, and then not using it, would seem to be illogical.

On the other hand, if further investigation would show that GELS did not

perform well, the investigation would still have not been in vain. The literature is

 46

replete with examples of algorithms that in general perform rather poorly, yet are

still useful because they can be used as instruments for instruction on various

concepts. For example, consider simple backtracking. This algorithm typically

performs very poorly as a search method, yet even today it is used to teach

principles of algorithmic procedure and systematic search. In the same manner,

even if GELS would not be a top performing algorithm, it could still be used as an

example of methods that emulate processes that occur in nature to solve problems,

and thus the research would not have been wasted.

This, however, would be a worst-case scenario. It was never intended that the

study of GELS would be pursued with the idea in mind that it would not work well.

Rather, it was hoped that GELS would perform admirably, in a variety of

situations. But, as stated it would not be possible to know for sure without fully

developing the algorithm and putting it through some rigorous testing.

 47

2 Analysis and Evaluation of the

GELS Algorithm

 48

2.1 Preliminary Work Done With GELS

To begin a study of the GELS method, a conceptual framework was developed,

and a preliminary design was produced. At this point the algorithm was called the

Gravitational Local Search Algorithm, or GLSA. This name was later changed to

GELS since there are a number of places in the literature where the initials GLS are

used to refer to Guided Local Search (Voudouris and Tsang, 1995), and another

identifier was wanted to avoid confusing the two procedures. Two separate

versions of GLSA were implemented, using the C programming language. The

two versions operated in essentially the same fashion, but with two key differences.

The first version, dubbed GLSA1, used as its heuristic Newton’s equation for

gravitational force between two objects, while the second, dubbed GLSA2, used as

its heuristic Newton’s method for gravitational field calculation. Additionally, in

GLSA1 the pointer object moved through the search space one position at a time,

while the pointer object in GLSA2 was allowed to move multiple positions at a

time.

Each of the two procedures had operational parameters that the user could set to

fine tune its performance. These parameters (and their four-character names as

used in the procedure) were:

• Density (DENS) – represented the relative “density” of the search space. It

was used as part of a calculation of “resistive” force that the pointer object

would meet as it moved. This resistive force was intended to help prevent

 49

the pointer object from never slowing down and stopping. It had a default

value of 1.2 (the relative density of air) (Sears et. al., 1987).

• Drag (DRAG) – represented the “drag coefficient” of the pointer object. It

was also used as part of the resistive force calculation, and had a default

value of 0.5 (the drag coefficient of a relatively streamlined body) (Sears et.

al., 1987).

• Friction (FRIC) – represented the “motion coefficient of friction” of the

pointer object. It was also used as part of the resistive force calculation, and

had a default value of 0.003 (the value for steel rolling on steel) (Sears et.

al., 1987).

• Gravity (GRAV) – represented the coefficient of gravity acting between two

objects, and was used only in the GLSA1 version of the procedure. It was

used in the calculation of the gravitational force between the pointer object

and an adjacent solution object. It had a default value of 6.672 (as appears

in Newton’s equation) (Sears et. al., 1987).

• Initial Velocity (IVEL) – represented the maximum permissible initial

“speed” of the pointer object in any possible dimension of movement. It

was used to put a bound on the initial speed of the pointer object as it began

moving through the solution space when the procedure commenced. It had

a default value of 10 (an arbitrary setting).

 50

• Iteration Limit (ITER) – the maximum number of iterations that the

procedure could perform for a given run before being forcibly terminated.

It was used to ensure that even if the pointer object did get into an “orbit”

condition as described previously, or the procedure encountered some other

difficulty in finding a solution, the procedure would still terminate. If the

procedure completed this number of iterations and the pointer object had

not yet stopped moving, the procedure terminated regardless and returned

the best solution seen to that point.

• Mass (MASS) – represented the “mass” of the pointer object. It was used in

calculations where mass of an object was required. It had a default value of

1 (an arbitrary setting).

• Radius (RADI) – represented the distance between two objects, and was

used only in the GLSA1 version of the algorithm. It was used in the

calculation of the gravitational force between the pointer object and an

adjacent solution object. It had a default value of 2 (an arbitrary setting).

• Silhouette (SILH) – represented the “silhouette area” of the pointer object

as seen from the front. It was another item used as part of the resistive force

calculation, and had a default value of 0.1 (an arbitrary setting).

• Threshold (THRE) – represented the threshold at which the speed of the

pointer object in a given direction would be assumed to drop to zero. It was

used to prevent the speed of the pointer object in any direction from

 51

asymptotically approaching zero but not ever actually getting there due to

the rounding off of numbers and the precision limits of the calculations. It

had a default value of 2 (an arbitrary setting).

To test the procedure, a problem had to be identified or created. The problem

needed to be simple enough that it could be easily generated and evaluated, yet still

constitute a test of sufficient complexity that it would not be trivial. The problem

instance that was eventually settled on had as its basis a 10x100 matrix. This

matrix was populated with integer values ranging from zero to one hundred, and

was to be searched for a ten-variable optimal solution. The optimality of the

solution was to be decided by an objective function that consisted simply of the

sum of the integer values assigned to each variable of the solution.

This problem type was chosen because it fit the bill both in terms of ease of

generation and sufficient complexity. Each instance of the problem could easily be

generated by randomly assigning integer values to every location within the matrix.

The optimal solution could be determined during problem instance generation by

keeping track of which assignments of matrix row values to variables yielded the

highest sum. Yet, even though the problem instances were easy to generate and an

optimal solution easy to determine, any procedure that would be used to search the

matrix would not have this a priori knowledge and would simply be searching a

large search space for a ten-variable solution. Thus, tests run using one or more of

these solution procedures would be valid since there was a large space to search

 52

and the techniques used by the solution would not be dependent on the “short cut”

to finding the optimal solution.

Having chosen the problem, it was then necessary to select some solution

methods to compare against GLSA. To this end, it was decided to utilize two

methods. The first method would be a Monte Carlo, or random solution, whereby

random assignments of elements from the search matrix would be made to each of

the ten solution variables. The other method to be used would be basic Hill

Climbing. The Monte Carlo solution was chosen because it was guaranteed to find

a solution in time linear in the number of matrix rows, and because it would

provide a good “starting point” for determining an average-quality solution that the

other solution methods could then attempt to improve upon. Hill Climbing was

chosen as the other method because it is a simple, well-known example of a local

search technique that could serve as a basic benchmark for local search

improvement over the Monte Carlo solution.

Together with the implementations of GLSA1 and GLSA2, the Monte Carlo

and Hill Climbing procedures formed the test suite that would be used for the

comparison tests. To complete the scenario, a set of experiments had to be devised.

When creating an instance of the problem, the capability existed to specify an

integer parameter that would represent the probability of non-zero entries within

the search matrix. For example, by specifying a value of twenty for the parameter,

each node of the matrix would have a 20% chance of being assigned a non-zero

value when the matrix was generated. By adjusting the parameter value between

 53

zero and one hundred, the relative number of occurrences of quality solutions

within the search matrix could be determined beforehand.

With this capability in hand, the test scenario was set up as follows: a series of

problem instances was generated, at varying levels of solution availability.

Specifically, ten tests each were conducted at parameter settings ten, twenty, thirty,

forty, fifty, sixty, seventy, eighty, ninety, and one hundred, respectively. For each

test, a problem instance was generated and the optimal solution for that instance

was recorded. Then, the Monte Carlo procedure generated a solution, and the

objective function value of that solution was recorded. Using the Monte Carlo

solution as a starting point, the Hill Climbing procedure was then run, and the

solution it generated and its associated objective function value was recorded.

Finally, using the Monte Carlo solution again as a starting point, each of GLSA1

and GLSA2 was run and their respective solutions and associated objective

function values were recorded. This resulted in a grand total of one hundred tests

being run comparing the four methods (Monte Carlo, Hill Climbing, GLSA1, and

GLSA2) against the same data sets, using the same starting points.

Approximately one dozen test scenarios were set up and run as described. The

results were then collected and analyzed. The analysis showed that while none of

the procedures “won” every test by generating the solution with the highest

objective function value, some clearly performed better than others. As expected,

the Monte Carlo procedure produced a solution very quickly (in a single step), but

the solutions were generally of poor quality. The Hill Climbing procedure

 54

generated solutions quickly (typically in two to five steps), and in almost all

instances was able to improve upon the Monte Carlo solution.

While these results were interesting, of primary interest in running the test

scenarios was seeing how the GLSA procedures would perform. To that end, the

analysis indicated that both GLSA1 and GLSA2 were able to generate valid

solutions, typically in twenty to twenty-five steps. There were a very few cases

where the particular sequence of gravitational effects engendered by a problem

instance caused GLSA2 to cycle through the search space back to the same point,

where the sequence would repeat. This led to a potentially endless harmonic

motion through the search space, and the algorithm had to be terminated by

maximum iteration count.

Like Hill Climbing, the solutions generated by both GLSA1 and GLSA2 were

in almost all instances better than the Monte Carlo solution. In addition, both

GLSA1 and GLSA2 were in the overwhelming majority of instances able to

generate solutions that were better than the solution produced by Hill Climbing. In

fact, in many instances the solutions produced by GLSA1/GLSA2 were

substantially better than the Hill Climbing solution. Lastly, the solutions produced

by GLSA2 were on average better than those produced by GLSA1, and in a number

of instances GLSA2 was able to locate the optimal solution when none of the other

three methods had.

Exhibit 9 is a graph of the results of the experiments pertaining to solution

quality (Webster and Bernhard, 2003). It shows the average difference between the

 55

objective function value of the optimal solution and the objective function value of

the solution produced by each of the algorithms. Since the objective function value

was the sum of the assignments to each of the ten variables in a solution, and since

the maximum value that could be assigned to a variable was one hundred, the

maximum value of the objective function was one thousand. Thus, if the optimal

solution value for a problem instance was nine hundred, and the solution value for

one of the algorithm types for that problem instance was eight hundred, that

algorithm registered a difference of one hundred for that problem instance. The

values in Exhibit 9 represent the average such distances for each algorithm type

over all problem instances tested.

686.55

424.78

187.22

120.22

0

100

200

300

400

500

600

700

800

Monte Carlo Hill Climb GLSA1 GLSA2

Algorithm

Difference

Exhibit 9. Average Difference from Optimal, Early Experiments

 56

Exhibit 10 is another graph of the results of the experiments pertaining to

solution quality (Webster and Bernhard, 2003). However, instead of showing the

average distance of the algorithms’ solution qualities from the optimal, it shows the

average improvement in solution quality over that obtained by the random Monte

Carlo solution. That is, if the objective function value of the Monte Carlo solution

for a problem instance was four hundred, and the value for one of the algorithm

types was five hundred, that algorithm posted a one hundred point improvement in

solution quality over the Monte Carlo solution. Once again, the values shown in

Exhibit 10 represent the average value of such improvements over all problem

instances tested.

261.77

499.33

566.33

0

100

200

300

400

500

600

Hill Climb GLSA1 GLSA2

Algorithm

Difference

Exhibit 10. Average Improvement over Random, Early Experiments

 57

Exhibit 11 is a graph of the results of the experiments pertaining to algorithm

efficiency (Webster and Bernhard, 2003). It shows the average number of

iterations each algorithm took to arrive at a solution over all problem instances

tested. Since the number of iterations for the Monte Carlo solution was always

one, it is not shown.

2.66

25.58
26.82

0

5

10

15

20

25

30

Hill Climb GLSA1 GLSA2

Algorithm

Iterations

Exhibit 11. Average Number of Iterations per Test, Early Experiments

These early experiments with GLSA were very encouraging. The algorithm

had shown, over hundreds of problem instances, that it could generate noticeably

better objective function values than random solutions and Hill Climbing solutions.

The improved results were obtained at a cost of an additional twenty-three or

 58

twenty-four iterations of the GLSA algorithm (on average, with no perceptible

increase in overall execution time), well worth the price.

2.2 Current Research Completed Using GELS

With the promising results of the early experimentation with the GELS method

in hand, it was decided that research should begin in earnest on a much more

rigorous set of experiments with the algorithm. This time a completely new set of

experiments was designed from the ground up, one that would add the weight of

statistical analysis to the raw data in addition to evaluation on multiple, difficult

optimization problems. It was hoped that results could be produced similar to those

obtained by the early experiments, which would then be bolstered by that statistical

analysis. The details of this research, and its results, will now be described.

2.2.1 Premises of the Research

The first item to be decided for the new experiments was exactly what was to

be tested. As discussed in the background material, a proper DOE needs at least

one null hypothesis and its corresponding alternate hypothesis. The whole point of

this follow-on set of experiments was to be how the GELS algorithm would

perform in solving combinatorial optimization problems compared to other

algorithms. Obviously, then, there should be a null hypothesis to make a statement

regarding algorithm performance.

 59

In keeping with the general format for stating null hypotheses (and the one best

supported by the SPSS package), it was decided that there would be a null

hypothesis (and corresponding alternate hypothesis) as follows:

H0 : There is no difference between the ability of the GELS algorithm to

improve on the solution qualities (i.e. objective function values) of

random solutions and the ability of other algorithms to improve on the

same random solutions for the same combinatorial optimization problems

H1 : The GELS algorithm’s ability to improve on the solution qualities of

random solutions is significantly different from the ability of other

algorithms to improve on the same random solutions for the same

combinatorial optimization problems

Additionally, it was of interest to find out not only how well the GELS

algorithm would perform in finding solutions, but also how efficiently it would

perform in arriving at those solutions. This led to a second null/alternate

hypothesis formulation:

H0 : There is no difference between the rate at which the GELS algorithm

improves on the solution qualities of random solutions and the rate at

which other algorithms improve on the same random solutions for the

same combinatorial optimization problems

H1 : The GELS algorithm improves on the solution qualities of random

solutions at a significantly different rate than the rate at which other

 60

algorithms improve on the same random solutions for the same

combinatorial optimization problems

For the sake of convenience, the first null hypothesis will hereafter be referred

to as the performance hypothesis for the experiments, and the second null

hypothesis will hereafter be referred to as the efficiency hypothesis for the

experiments. On first glance, it may appear that these hypotheses are somewhat

trivial. Specifically, how could it be reasonably expected that there is no difference

between algorithms in their ability to improve on solution quality, or that there is

no difference between the rate at which each algorithm achieves its results? It

would seem that these hypotheses are designed to fail, that almost any set of

experiments would be able to cause them to be rejected.

This is in fact partially true, but there is more to the story. It is not a problem

that the hypotheses are likely to be rejected. In experiments such as these, where

multiple items are being compared, the SPSS package wants to take the base view

that there is no difference between the items and then try to prove that view to be

incorrect (SPSS, 2001). If successful in this, SPSS can then state an ordering to the

items using the homogeneous subsets tests. In this manner, if an SPSS analysis

succeeds in rejecting the performance and/or efficiency hypotheses, it can also tell

whether the performance/efficiency of the GELS algorithm is not only different,

but better or worse than other algorithms. So in that sense, the goal is much more

than to simply reject the hypotheses and state that there are differences between the

 61

algorithms; it is also to be able to state how much difference exists, and between

which algorithms.

2.2.2 Design of the Current Research Experiments

Having decided upon the hypotheses to be tested in the research experiments,

the next step was to prepare a DOE to test them. A complete experimental

environment was needed, to consist of:

• A set of combinatorial optimization problem types to use as test problems

• A set of algorithm types to use as test algorithms

• A framework within which the tests of each of the test algorithms against

each of the test problems would be conducted

To select problem types to act as test problems, the goal was to choose a small

representative sample that are well known and sufficiently complex to present a

genuine challenge to solution algorithms. To that end, three problem types were

ultimately chosen: the Traveling Salesman problem (introduced in section 1.2.1.1),

the Bin Packing problem (introduced in section 1.2.1.2) and the File Assignment

problem (introduced in section 1.2.1.3).

Each of these problem types easily met the criteria for selection. They are all

very familiar to and extremely well studied by researchers. They are also all very

difficult problems to solve, belonging to the class of problems known as NP-Hard

(Garey and Johnson, 1979). NP-Hard problems are among the most difficult to

 62

solve, with most researchers believing that these problems are intractable, meaning

that there is no known solution algorithm for them that can be accomplished in

deterministic polynomial time (i.e. in NK steps for any input size N and constant

value of K) (Cormen et. al., 1991). Some very good approximation algorithms

exist to aid in the solution of these problems under the appropriate conditions

(Arora, 1998, Karmarkar and Karp, 1982, Papadimitriou, 1994). However, these

algorithms do not guarantee finding optimal solutions (hence the term

“approximation”), and they do not change the fact that unless it can be shown that

polynomial solutions exist for NP-Hard problems, such problems will remain

difficult to solve optimally.

Once the set of test problems was defined, a set of test algorithms was needed

to solve them. The goal here was to establish a small collection of well known

algorithms suitable for comparison with the GELS procedure. Chosen for inclusion

in this collection were Hill Climbing, Simulated Annealing, and a Genetic

Algorithm, all introduced in section 1.2.2.2. The Hill Climbing algorithm was

selected as a representative of a greedy algorithm, and also because of its prior use

in the early experiments. Simulated Annealing and the Genetic Algorithm were

selected because of their popularity and because they are, like GELS,

representatives of algorithms that are based at least in part on processes that occur

in nature.

With the sets of test problems and test algorithms in place, the one remaining

item was to design the framework within which the test algorithms would be used

 63

to solve the test problems. This involved a number of decisions that had to be

made regarding how the problems would be set up, how the algorithms would be

configured to solve them, and how the comparisons between the algorithms would

be conducted. Of primary importance was rendering the “playing field” as level as

possible in an attempt to remove as much bias from the experiments as possible.

To accomplish this, it was decided to retain the same general mechanism that

had been successfully used in the early experiments (Webster and Bernhard, 2003).

This mechanism operated in the following manner:

1. Generate an instance of a problem to be tested

2. Generate a Monte Carlo (random) solution to the problem instance

3. Using the Monte Carlo solution as a starting point, solve the problem

instance using Hill Climbing

4. Again using the Monte Carlo solution as a starting point, solve the problem

instance using Simulated Annealing

5. Again using the Monte Carlo solution as a starting point, solve the problem

instance using the Genetic Algorithm

6. Once more using the Monte Carlo solution as a starting point, solve the

problem instance using GELS

7. Repeat steps 1 through 6 for each problem instance to be tested

Using this mechanism provided several benefits. Generating a Monte Carlo

solution for each problem instance could be expected, on average, to deliver an

objective function value neither the worst possible nor the best, but somewhere in

 64

the middle. By using this solution as the common starting point for all the other

algorithms, it ensured that all algorithms had an equal opportunity to improve upon

the same solution. Had each algorithm been allowed to have a different starting

point, each could have begun in a different neighborhood of the solution space, and

it could not have been known for certain whether improvements in solution quality

obtained by each algorithm were due to its performance capability, or because it

began in a more advantageous neighborhood. By following the mechanism it was

guaranteed that for every problem instance tested, each algorithm would begin in

the same neighborhood and would be forced to realize any improvement based

solely on its own merits.

In addition, it was decided that each problem type would utilize a common

neighborhood selection definition. In doing so, when local search neighborhoods

were needed each algorithm would construct them in exactly the same way. Since

the neighborhood plays such a vital role in determining how a local search

algorithm will navigate through a search space, allowing each algorithm to

determine its own neighborhood selection method could have given one algorithm

an advantage over another by virtue of having neighborhoods that produced better

search patterns.

When deciding on configurations to use for each of the test algorithms, at first it

was thought that it might be a simpler and easier matter to use prepackaged

procedures. There are a number of such packages available for use, and several

were tried. Ingber provides a general purpose Simulated Annealing package called

 65

Adaptive Simulated Annealing (ASA) (Ingber, 1993). Kliewer and Tschöke also

describe a Simulated Annealing library called parSA (Kliewer and Tschöke, 1998).

Goodman describes a Genetic Algorithm package called GALOPPS (Genetic

ALgorithm Optimized for Portability and Parallelism System), produced by the

Genetic Algorithm Research and Applications Group (GARAGe) at Michigan State

University (Goodman, 1996). Wall at the Massachusetts Institute of Technology

provides another Genetic Algorithm package called GALib (Wall, 1996).

After some examination, though, it was decided not to use any of the

prepackaged procedures. Though very sophisticated and capable of operation with

many different parameter settings, using these procedures would have introduced

some of the same biases that attempts had been made to avert with the design of the

problem types. Namely, in many cases they could not make the guarantee that all

algorithms would use the same starting point and the same neighborhood selection

method.

Ultimately, it was decided that the best means of ensuring that as much control

as possible was maintained over the experimentation process was to develop a

custom-made framework. Consequently, what emerged was a completely self-

contained environment written in C++. Each of the test problems became a C++

class, with member functions to create problem instances, calculate objective

function values, generate local search neighborhoods, solve the instances using

each of the test algorithms, and output the results. This ensured that each test

would have the same problem instance being solved using the same objective

 66

function definitions, by the same algorithm configurations, with the same

neighborhood selection methods, and all within the same environment, designed

specifically for these experiments by the same developer.

2.2.3 Implementation of the Test Problems

Creating the classes that would implement each of the test problems, though

obviously requiring elements unique to each of the problem types, had a common

theme. Each class would have to be able to generate problem instances. Each class

would require methods for determining local search neighborhoods, calculating

objective function values, and selecting Monte Carlo solutions. Each class would

require some way of keeping track of the solutions produced by the various

algorithms for each problem instance, and would have to output them in a manner

usable by SPSS for later analysis.

The process of keeping track of solutions was handled by variables that stored

the solutions and their associated objective function values as produced by each test

algorithm. Common print routines were then used to output the results to a flat text

file that could later be loaded into SPSS. How each of the problems implemented

the other necessities will now be discussed.

 67

2.2.3.1 Traveling Salesman Problem Implementation

To implement the TSP class, a specific version of the problem had to be

chosen. As was the case with the other test problem types, over time the generic

definition of TSP had evolved into several variations, each with its own special

conditions. The variant implemented used symmetric costs; that is, if going from

city A to city B incurs a given cost, then going from city B to city A incurs the

same cost. This is one of the most straightforward versions of the problem, and

was chosen for that reason.

Generating problem instances for TSP involved creating an NxN symmetric

matrix of integer values representing the cost to move from any one city on the tour

to any other, where N was the given size of the problem instance (i.e. the total

number of cities on the tour). The matrix was populated by first setting all diagonal

values to zero (since there is no cost for moving from city A to city A). One half of

the matrix was then initialized by generating random values between one and ten

(ten being an arbitrarily determined maximum cost for any one movement). The

other half of the matrix was set to mirror the values of the first half to enforce

symmetry of the matrix and of city movement costs (Stewart, 1973).

 68

Determination of local search neighborhoods for TSP was accomplished by

using a pair-wise rearrangement scheme (Aarts and Lenstra, 1997). The procedure

for this rearrangement was as follows:

1. Start with a given solution (for which a neighborhood is to be generated)

and an empty neighborhood

2. Swap the first and last elements in the given solution

3. Add the resulting solution to the neighborhood

4. Set an index variable to the second element in the given solution

5. Swap the element in the given solution indicated by the index variable with

the preceding element in the given solution

6. Add the resulting solution to the neighborhood

7. Increment the index variable

8. Repeat steps 5 – 7 until the index variable reaches the last element in the

given solution

Note that the given solution itself is never actually modified; each member of

the neighborhood is produced by starting with the original solution as given and

altering a copy of it to place in the neighborhood. By using this method, the local

search neighborhood would consist of N members for a problem instance of size N,

meaning that the size of the neighborhood would grow linearly in the size of the

tour, as opposed to the higher growth rates of some other methods.

The objective function for TSP was calculated via the problem instance matrix

previously described. Since the definition of TSP states that a tour begins and ends

 69

at a home city, it was stipulated that problem instance tours would always begin

and end at city 0. To calculate the objective function value for any given solution,

the following procedure was accomplished:

1. Start with an objective function value of 0

2. Consult the problem instance matrix to find the cost of moving from city 0

to the first city on the tour

3. Add this cost to the objective function value

4. Consult the problem instance matrix to find the cost of moving from the

current city to the next city on the tour

5. Add this cost to the objective function value

6. Repeat steps 4 and 5 for each successive city on the tour

7. Consult the problem instance matrix one last time to find the cost of moving

from the last city on the tour back to city 0

8. Add this cost to the objective function value to yield the final total

 70

The other item required for the TSP class definition was a mechanism for

determining Monte Carlo solutions. This was done by completing the following

procedure:

1. Start with an empty Monte Carlo Solution

2. Generate a random integer between 1 and N (N being the number of cities

on the tour)

3. Make this value the first city on the Monte Carlo tour

4. Generate a random integer between 1 and N

5. If the city represented by this value is not already on the Monte Carlo tour,

add it to the end of that tour, otherwise go back to step 4

6. Repeat steps 4 and 5 until all of the N cities have been included, giving a

complete Monte Carlo tour for the problem instance

2.2.3.2 Bin Packing Problem Implementation

As with TSP, there are a number of variants of BPP that have evolved, and one

of them had to be selected for implementation. The particular version selected was

the 1-Dimensional BPP which, as described in the problem introduction, consists of

adding objects of one dimension (size) to bins that are also of one dimension. This

is in contrast to other variants such as the 2-Dimensionsal BPP, where the objects

and bins have length and width dimensions, and was selected for its relative

simplicity.

 71

Generating problem instances for BPP was a simple process of generating a

series of N random integer values, where N was the given size of (i.e. number of

objects in) the problem instance. Each value would range between one and fifty

(half the predefined size of a bin). Each value represented the size of one object to

be put into a bin, and at the outset each object was assigned to its own bin. Thus,

each problem instance would consist of N objects in N bins.

Determination of local search neighborhoods for BPP was a somewhat more

complex process (Kochetov and Usmanova, 2001). To accomplish this task, the

following procedure was used:

1. Start with a given solution (for which a neighborhood is to be generated)

and an empty neighborhood

2. Establish a counting variable with an initial value of 1

3. Make the first bin in the given solution the current bin

4. If the current bin contains at least as many objects as the value of the

counting variable, move a number of objects equal to the value of the

counting variable to the next bin (if the current bin is the last bin in the

given solution, move the object(s) to the first bin), and add the resulting

solution to the neighborhood

5. Repeat step 4 for each bin in the given solution, or until there are N

solutions in the neighborhood

 72

6. If all bins in the given solution have been examined, and there are still less

than N solutions in the neighborhood, increment the counting variable and

go back to step 3

Objects were stored in bins as if in a queue. Thus, when moving a certain

number of objects from one bin to another, the objects were taken from the front of

the first bin’s queue in order and added to the end of the second bin’s queue in the

same order. Again, as with TSP the original given solution was not actually

modified, but copies of this solution were altered according to the aforementioned

neighborhood generation procedure in order to be added to the neighborhood. Also

as with TSP, this procedure produced a local search neighborhood that grew

linearly in the size of the problem instance. Note that altering the original given

solution as indicated in the procedure could lead to neighborhood solutions that

were invalid (e.g. a bin with exceeded capacity). This situation was dealt with by

assigning invalid solutions a particular objective function value, as will be seen

momentarily.

Calculating the objective function for solutions was a simple matter of counting

the number of non-empty bins – this number would then be the objective function

value. There is normally not as much variation between high quality and low

quality solutions for BPP as there is for TSP, and methods such as computing the

average percent full over all bins can be used to further distinguish between

solutions. While these methods may serve to widen the potentially narrow spread

of solution qualities, it was decided that since the objective of BPP is to minimize

 73

the number of bins to store all the objects, the objective function should be a direct

reflection of this fact. Hence, the procedure of using the number of non-empty bins

in a solution as its objective function value was retained. Any invalid solutions that

may have appeared as a result of neighborhood generation were assigned an

objective function value of N + 1. Since the worst possible valid solution for BPP

has each object in its own bin (thus giving N non-empty bins), an objective

function value of N + 1 ensured that invalid solutions would always have a worse

value than any valid solution. Since, as stated, problem instances began with each

object in its own bin, this guaranteed that at least one solution would be present

with an objective function value less than N + 1, and hence no invalid solution

could ever be returned by any algorithm as the best solution seen.

To generate Monte Carlo solutions for BPP, the following procedure was used:

1. Start with the original problem instance solution (each object in its own bin)

2. Select the object in the first bin as the current object

3. Randomly reassign the current object to one of the N bins in the original

solution (possibly back where it started)

4. Check the validity of the reassignment (i.e. would assigning that object to

that bin cause the bin’s capacity to be exceeded)

5. If the reassignment is not valid, repeat steps 3 and 4 until the reassignment

is valid

6. Repeat steps 3 – 6 for each object in the original problem instance solution

 74

2.2.3.3 File Assignment Problem Implementation

Like TSP and BPP, to implement the FAP class required the selection of a

specific version of the problem. There were many considerations: how many

devices to use, how many files to use, what kind of device accesses to account for

and how to represent them, what kind of costing should be used to formulate an

objective function, etc. Here again the decisions came down to matters of

straightforwardness. It was never intended that the experiments should represent

solution patterns for some exotic special cases of FAP, but rather that they would

show solution patterns for a very generic form of the problem (this was in fact the

case when making similar considerations for all test problem types).

Consequently, it was decided to build the problem instances around an actual

benchmark for database access: TPC-H. TPC-H stands for Transaction Processing

Performance Council – H, and is a standard for testing query processing efficiency

for decision support databases (TPC, 2002). It posits a collection of eight database

tables, against which twenty-two separate queries will be executed. Using this

standard, a table was constructed listing the number of “hits” that would occur

against each table in the database for a single execution of each of the queries. Hits

were determined by examining the queries and looking for references to the tables

in the “FROM” clause of the Structured Query Language (SQL) code used to

formulate the queries. If a particular table was to be selected from in a given query,

it would count as a hit against that table for each execution of that query.

 75

Of course, the exact number of times a particular table will be accessed cannot

be determined simply by examining a query. The number of accesses will be

determined by the amount of data in the table, interactions with other tables, filters,

etc., all data that are unavailable in these experiments due to the fact that hypothetic

tables are to be stored on hypothetic devices. Once again, the principle of

straightforwardness prevailed, and the rule became “one table reference, one hit”.

That is, if a particular table was referenced once in the “FROM” clause of a given

query, that table would register one hit per execution of that query. If the table was

referenced multiple times, as could occur with table joins, the table would register

one hit for each reference in the query.

Once this cross-reference of queries and table hits was constructed, it became

possible to get a relative gauge of how frequently tables were being accessed by

query executions. Armed with this information, problem instances could be

constructed by generating a sequence of executions of any of the twenty-two

queries, each one in the sequence randomly selected. Given a number of total

queries to process, the total number of hits registered against each table could be

calculated and noted. Each table was then assigned to one of the available devices

in a round-robin fashion, beginning with the first device. The number of these

devices was set to four, each with a simulated size of thirty-six gigabytes. This was

done to mimic a recommended minimum setup for a commercial database

installation, using commonly available disk sizes (Oracle, 2002). Each table was

 76

set to a simulated size of eight hundred megabytes, in order to allow for the

possibility of all tables being stored on a single device with room for overhead.

Defining local search neighborhoods for FAP was accomplished in much the

same manner as for BPP. The only differences between the neighborhood

generation procedure for BPP and the one for FAP were:

1. Instead of moving objects from one bin to the next, tables were moved from

one device to the next

2. Since each device was capable of holding all the tables, there was no

possibility of an invalid solution being generated by the procedure

3. The size of the neighborhood was relative to the number of tables and

devices rather than the number of objects and bins

Other than these three differences, the neighborhood generation procedures for

the two problem types were identical. This produced fixed-size neighborhoods,

due to the fact that problem sizes for FAP were determined not by the number of

tables and/or devices (which were static), but by the number of queries to be

executed against them.

In defining the objective function for FAP, again there were many options.

Dowdy and Foster, in their seminal paper on FAP, described a number of different

cost indicators that could be optimized (Dowdy and Foster, 1982). The final

selection was made based on a factor that would be of common interest to database

administrators, namely disk contention. Database administrators, this author

among them, are keenly interested in maintaining a high level of performance from

 77

their databases, and one of the methods for doing this is to monitor storage devices

for unbalanced access rates.

Along these lines, Bernhard and Fox outlined a method for using minimum

database device contention as an objective function measure (Bernhard and Fox,

2000). This measure was the initial one implemented, but in test runs it was

discovered that the same objective function values were being produced by all the

test algorithms on almost all problem instances. This turned out to be because the

most active tables in the TPC-H queries were setting a lower bound on the possible

minimum device contention value. Consequently, it did not matter on which

device these most active tables were placed or what other tables were placed with

them; because of their influence the minimum device contention values were

always identical for any given problem instance. Since Bernhard and Fox had

success with this measure in their work, this situation would appear to be a function

of the particular TPC-H query structure and device configuration used to

implement the problem.

Because of this issue, the final objective function was defined to be the average

device contention over all queries instead of the minimum device contention. This

allowed some form of device contention to be retained as a measure of FAP

objectives, and test runs showed that by using this measure it did make a difference

on which device and with which other tables the most active tables were stored.

Thus, the objective function value for FAP became the average number of hits per

device over the course of a certain number of queries.

 78

As with the local search neighborhood definitions, generating Monte Carlo

solutions for FAP was done in much the same way as for BPP. Each of the eight

TPC-H tables was randomly assigned to one of the four available devices. The

Monte Carlo solution thus became a particular mapping of the tables to the devices.

2.2.4 Implementation of the Test Algorithms

Having defined classes that implemented each of the test problem types, it was

then necessary to implement each of the test algorithm types. Each algorithm was

implemented as a member function for each test problem type. This was done due

to the different structures necessary to represent solutions for the different problem

types. Each problem type required slightly different methods for accessing and

manipulating solutions and solution parts, and performing such operations occupied

significant sections of the activities of each algorithm. So, rather than implement

the common parts of each algorithm as generic functions, with subroutines unique

to each problem type for every instance of a solution operation (which would have

constituted a goodly portion of the implementations anyway), it was decided to port

the implementation of the algorithms between problem types and alter the solution

operations as necessary.

Testing the performance and efficiency hypotheses for the algorithms, the

primary reason for this research, required some overall standard to provide a basis

of comparison for the algorithms’ performance and efficiency. For the

 79

performance hypothesis, the leading candidate for this standard would seem to be

the objective function values. After all, these values are a direct representation of

the quality of solutions. However, as pointed out already the objective function

values can vary greatly between problem types, rendering the usage of objective

function value alone misleading as a basis of comparison between problem types.

The performance measure that was eventually settled on is a ratio of change in

objective function value with respect to the Monte Carlo solution for a problem

instance. Stated formally, the measure is

MC

OFMC −

where MC = Monte Carlo solution objective function value

 OF = algorithm objective function value

This measure expresses a particular algorithm’s ability to improve on the

original Monte Carlo solution as a percentage of that solution’s objective function

value, and thus the higher the measure, the better the performance. As a result, it is

less dependent on the problem type than the objective function value alone. It is

designed to function with minimization problems, a characteristic common to all

three of the test problem types. It also normalizes values to between zero and one,

meaning that the measure will generate the same maximum range of values

regardless of problem type. It is true that problem types with larger objective

function values will tend to have larger MC values, allowing for more margin for

improvement and thus larger values for the measure than problem types with

 80

smaller objective function values. However, this effect can be tempered during

analysis by making each problem instance part of a blocking factor. By doing so,

variances in MC values between problem instances can be accounted for. This

makes the measure suitable for use as a performance measure for any one problem

type by itself, or as a comparative measure between problem types.

Likewise, a standard measure of algorithm efficiency had to be adopted in order

to test the efficiency hypothesis. The measure selected to serve in this capacity was

a function of the number of solutions within the solution space that an algorithm

examined prior to termination. It may not be clear why a count of the number of

solutions examined would be the measure of efficiency for an algorithm, instead of

an iteration count or something similar. Iteration count is not a very good

candidate for an efficiency measure. Different algorithms follow different

procedures, and a single iteration of one algorithm could involve a substantially

different number of operations than a single iteration of another algorithm.

Comparing algorithms on this count would not be comparing “apples to apples”.

One item that does mean the same thing between algorithms is the count of

solutions examined. All search algorithms examine solutions to see if they meet

the criteria for solving their respective problems. For local search algorithms, the

normal method is for the algorithm to examine a certain number of solutions within

one or more successive neighborhoods and at some point terminate, returning the

best solution it found from all solution examinations. The total number of solutions

examined will then represent the total amount of search space that has been

 81

examined to reach a conclusion. Some solutions may have been examined multiple

times; still, the number of solutions examined will show the total amount of

“territory” that was covered before the algorithm terminated. This is similar to the

method of counting the number of consistency checks performed to determine the

efficiency of algorithms for solving Constraint Satisfaction Problems (Prosser,

1993, Tsang, 1996), and it seemed to be an egalitarian and easily implemented

method for use as an efficiency measure.

The actual measure used was a ratio of change in objective function value to

number of solutions examined for the problem instance, change meaning relative to

the Monte Carlo solution. The formal statement of this measure is:

1−
−

SE

OFMC

where MC = Monte Carlo solution objective function value

 OF = algorithm objective function value

 SE = number of solutions examined by algorithm

This measure represents the incremental amount of improvement in objective

function value achieved by a particular algorithm per solution examined within the

solution space, relative to the Monte Carlo solution, and consequently once again

the higher the measure, the greater the efficiency of the algorithm. The MC value

is obtained by examining a single solution (hence the “1” in the denominator). On

the other hand, the algorithm obtained its solution by examining SE solutions. By

relating the amount of improvement over the MC value that the algorithm was able

 82

to achieve to the additional number of solutions it had to examine to get there, a

picture of how efficiently the algorithm operates will emerge.

Like the performance measure, this efficiency measure is not immune to

differences in expected MC values between problem instances. Once again,

though, this can be mediated by blocking on the problem instance factor during the

analysis phase. Also like the performance measure, the efficiency measure is

designed for minimization problems to match the characteristics of the test problem

types, and values are normalized to between zero and one. And, since the measure

has the same meaning regardless of problem type or instance, it is suitable for a

single problem type or multiple types.

Having established the performance and efficiency measures for the

experiments, the implementation of each of the test algorithms contained a

mechanism for recording the final objective function value obtained by the

algorithm for the problem instance and the number of solutions examined during its

run. This allowed for later calculation of the performance and efficiency measures

to be loaded into SPSS for analysis. The specific procedures that each of the test

algorithms followed to obtain those values will now be discussed.

2.2.4.1 Hill Climbing Implementation

As it is a representative of a greedy algorithm, the aim of the Hill Climbing

(HC) algorithm is quite simple: get more with every turn. The “more” in this case

 83

meant improvement in objective function value. There are two general versions of

basic HC that were considered, first fit and best fit. The first fit version will move

to the first solution it finds within the local search neighborhood that has a better

objective function value than the current solution, while the best fit version will

examine all solutions in the neighborhood and then move to the one that offers the

best improvement in objective function value over the current solution. While the

algorithm was implemented to operate in either mode, for the purposes of these

experiments the best fit mode would be used as it offered the “purest” form of

greedy pursuit and was likely to generate better results.

The base procedure of HC was as follows:

1. Make the Monte Carlo solution the current solution

2. Generate a local search neighborhood for the current solution

3. Find the solution in the neighborhood with the best objective function value

4. If that value is better than the value for the current solution, make that

solution the current solution and go back to step 2

5. Record the current solution, its objective function value, and the total

number of solutions examined

In step 3, for each solution in the neighborhood that was checked to see if it is

better than the current solution, the count of solutions examined was incremented

by one (having been initialized to zero at the outset of the procedure). There were

no necessary variations in the implementation between TSP, BPP, and FAP, so the

 84

base procedure was used virtually unchanged for each test problem type, except for

how solutions were constituted.

2.2.4.2 Simulated Annealing Implementation

The base procedure used to implement the Simulated Annealing (SA) test

algorithm was an adaptation of the Metropolis algorithm (Metropolis et. al., 1953).

This is a general identifier used to describe an algorithm that will always follow a

selected path if that path leads to a higher quality solution, and will also

occasionally follow a selected path if that path leads to a lower quality solution.

The Metropolis algorithm is based in turn on the Maxwell-Boltzmann probability

distribution. This is a continuous probability distribution representing energy states

of a system (Sears et. al., 1987). The theory is that the total energy within a system

in thermal equilibrium at a given temperature T will be distributed among various

energy states E according to the equation

A

e
EP

kTE /

)(
−

=

where A is a normalization constant

 k is a constant value known as Boltzmann’s constant

This distribution shows that even in systems with low overall energy, there

could be points of relatively high energy, and vice versa. The classical form of SA

uses the probability equation of the Maxwell-Boltzmann distribution to determine

probabilities of moving along a path to lower quality solutions than the current

 85

solution. It begins at a given “temperature” and examines successive solutions one

at a time. If the examined solution is better than the current solution, it will

become the current solution. If the examined solution is not better than the current

solution, it will still become the current solution with Maxwell-Boltzmann

probability. Gradually the temperature value is lowered, reducing the probability

of accepting lower quality solutions. When a certain temperature is reached, the

algorithm terminates.

The rate at which the temperature is lowered is called the annealing rate, and is

usually a parameter setting. Other parameters are usually available to determine

how many times a new solution must be accepted (or how many times a new

solution acceptance must be attempted, or both) prior to each temperature

reduction, and the terminating temperature threshold. There are theoretically an

infinite number of possible combinations of values that could be set for these

parameters, so obviously it would be impossible to test them all. Instead, the

parameters were implemented to be adjustable at run time and defaulted to values

commonly in use, particularly for TSP. Specifically, the initial temperature

defaulted to two thousand and was set to be reduced by an annealing rate of 0.01

for each ten solutions accepted or one hundred solutions examined, whichever

came first. The termination threshold defaulted to 0.01 as well.

Thus, the base SA procedure became:

1. Make the Monte Carlo solution the current solution

 86

2. Reset the number of solutions accepted and number of solutions attempted

to zero

3. Generate a local search neighborhood for the current solution

4. Randomly select a candidate solution from the neighborhood

5. If the objective function value of the candidate solution is better than that of

the current solution, make the candidate solution the current solution

6. If the objective function value of the candidate solution is not better than

that of the current solution, generate a random number between zero and

one, and compare it to the Maxwell-Boltzmann probability value for the

difference between the objective function value of the candidate solution

and that of the current solution for the current temperature (excluding the

normalization constant and Boltzmann’s constant); if the probability value

is greater than the random number, make the candidate solution the current

solution

7. If the candidate solution was accepted in either step 5 or step 6, increment

the number of solutions accepted by one

8. Increment the number of solutions attempted by one

9. If the number of solutions accepted has reached ten, or the number of

solutions attempted has reached one hundred, reduce the temperature by the

annealing rate and go back to step 3

10. If the current temperature is greater than the termination threshold, go back

to step 2

 87

11. Record the best solution seen during the run, its objective function value,

and the total number of solutions examined

Each time a solution was selected to be a candidate, this constituted an

examination of a solution, and hence in step 4 the count of solutions examined was

incremented by one (again having started at zero). Once again there were no

necessary variations in the implementation between TSP, BPP, and FAP, so the

only difference in the procedure between problem types was in how solutions were

constituted.

2.2.4.3 Genetic Algorithm Implementation

The implementation that was decided upon for a Genetic Algorithm (GA) was

to use three components commonly found in many other such algorithms. The first

of these components was a method for simulating Darwinian natural selection, or

“survival of the fittest” as it is colloquially (and somewhat incorrectly) known.

This method had to evaluate members of a “population” of solutions according to

their relative “fitness”, which in this case was represented by the quality of the

solution – the objective function value. Then, over successive “generations”

(iterations) of the algorithm, the method would have to decide which members of

the population would survive to remain members of the population. The decision

of which solutions would survive would have to be directly related to their fitness;

that is, higher quality solutions had to stand a better chance of surviving than

 88

solutions of lesser quality, though no absolute guarantee was required. This

component was intended to build up the overall quality of the population solutions.

Because the population was the venue for performing local search operations, it

supplanted the usual neighborhood as used by the other algorithm types. The

population was the neighborhood, which is typical behavior for genetic algorithms.

This meant that the usual methods for generating and manipulating neighborhoods

would not be used, but would be handled by GA itself. Initial populations were the

one exception to this rule. An initial population was generated at the start of a GA

run, and was generated by taking the Monte Carlo solution and generating a

standard neighborhood for that solution. The initial population was then

established by taking solutions from that neighborhood. Tests showed that the

required running time, even for small problem sizes, increased dramatically after

the population size began to go over twenty. These increased running times were

not accompanied by increases in ability to achieve higher quality solutions, and so

the population size for GA was set to a fixed value of twenty. Solutions were taken

from the neighborhood in a round-robin fashion until twenty were accumulated in

the initial population.

The second component chosen for inclusion in GA was a method for simulating

genetic recombination, often called breeding or crossover. This method would take

pairs of solutions from the population and combine them to produce one or more

“offspring” containing elements of both “parent” solutions. It would also decide

which pairs of solutions would become parents each generation. This component

 89

was intended to create newer, higher quality solutions to add to the population by

merging two established solutions (solutions that, by virtue of surviving to remain

in the population to breed, would already be of higher quality than other solutions

that did not survive).

The third component chosen was a method for simulating genetic mutation.

This method would select solutions from the population and perform some random

change to reconstitute them as different solutions. It would decide what forms of

changes could take place, and at what rate. This component was intended to

introduce random changes into the population in the hope that they would be

beneficial, raising the quality of the solution in the same way random genetic

mutations introduced into a population of plants or animals sometimes produce

beneficial changes that make them better able to flourish in their environment.

The selection component was implemented to use a probabilistic selection

based on the best fitness currently in the population. The current population was

examined to find the solution with the best fitness (objective function value). The

probability of a particular solution remaining in the population then became the

ratio of that solution’s fitness to the population’s best fitness. One by one each

solution in the population would be examined, and a random number between zero

and one would be generated. If the solution’s ratio was greater than the random

number, it was moved into a new population. Once all solutions had been

examined, if the new population still did not have the maximum number of

members then the process would repeat until the new population was full.

 90

The crossover component was implemented to first generate a random number

between zero and one. This number was then compared to the crossover

probability, a run-time parameter set to 0.25 (a value commonly used for this

purpose). If the crossover probability was greater than the random number,

crossover was triggered to occur. The actual crossover process involved taking

each successive pair of solutions in the new population (containing the solutions

chosen by the selection process from the original population as just described) and

redistributing their respective solution elements. Care had to be taken when doing

this, since such redistributions could easily result in solutions that were invalid.

Also, solutions for each problem type were different, requiring a different crossover

mechanism for each.

For TSP, the crossover mechanism operated by moving through the tour list for

each successive pair of solutions in the new population. At each stop in the tour, it

randomly selected either the city at that stop for the first solution, or the city at that

stop for the second solution. It then rebuilt the two solutions by placing the

selected city value at the first stop in the solutions that had not yet been rebuilt. A

list was kept of the cities that had been used in order to prevent duplicates and

ensure that the solutions would still be valid after being rebuilt. To show how this

worked, consider the following pair of solutions:

S1 = {3 1 2 4 5}

S2 = {2 5 4 1 3}

 91

The mechanism would start at the first stop on the tour and randomly select one

of the values, say in this case 3. Since none of the parts of the solutions had been

built yet, it would assign city 3 to the first stop for both solutions. Moving on,

suppose 1 was the value selected for stop two. This value would then be assigned

to the second stop for both solutions, since the first stop had already been rebuilt.

For stop three, suppose the value 4 is selected. That value would be assigned to the

third stop for both solutions. Suppose then that for stop four, the value 1 was

selected. Since this value had already been used, this selection was skipped.

Finally, at stop five, suppose the value 3 was selected. Once again, this value had

already been used, so the selection was skipped.

All stops in the original pair of solutions had now been examined, but due to

duplicates being selected and one value being missed, only three of the stops had

been rebuilt. The remaining two values, 2 and 5, would be assigned to the

remaining two stops in order, making the rebuilt solutions look as follows:

S1 = {3 1 4 2 5}

S2 = {3 1 4 2 5}

In this way, a single new solution was manufactured from the two original

solutions by recombining their elements, and the validity of the new solution was

also ensured. Both of the original solutions within the new population were

overwritten with this new solution, and both were retained within the new

population to keep the population size constant.

 92

For BPP, the crossover mechanism again moved through successive pairs of

solutions in the new population, taking the elements in each corresponding pair of

bins (one from the first solution and one from the second) for each pair of solutions

and randomly assigning them back to either the bin in the first solution or the bin in

the second solution. This produced new solutions that were rearrangements of the

originals. Lists of the original solution contents and original bin contents were kept

to ensure that all elements (and no others) originally in each solution and in each

bin pairing from those solutions were still in the rearrangement in order to preserve

the validity of the solutions, and to ensure that no bin would have its capacity

exceeded. As an example of this mechanism, consider the following pair of

solutions:

S1 = { B1: 10, 30

 B2: 20, 30

 B3: 40, 50 }

S2 = { B1: 20, 40

 B2: 10, 30, 30

 B3: 50 }

Note that it is not a problem to have duplicate elements, since they represent a

size, not an identifier. The crossover mechanism would first place all elements

from S1 into a group, and all elements from S2 into another group. The mechanism

would then examine B1 with B1, putting all their elements (10, 30, 20, and 40) into

a group. Suppose then that elements 10 and 40 were assigned back to S1, and

 93

elements 20 and 30 were assigned back to S2. All elements from the group were

accounted for and assigned, and there were sufficient elements in the groups for

each solution to cover the assignments, so the procedure would move on to the

second pair of bins, putting their elements into a group. Suppose that elements 20

and two of the 30 elements were assigned to the first solution and elements 10 and

the other 30 were assigned to the second solution. Again, all of the original

elements from the bin group were accounted for and assigned, and there were

sufficient remaining elements in the groups of original solution elements, so the

procedure would move on to the final pair of bins, putting their elements into a

group. Suppose that from this group, elements 40 and the first 50 were assigned to

the second solution. Then the next random draw indicated that the last 50 element

should also be assigned to the second solution. But, this could not happen since

there was only one 50 element originally in the second solution, and it had already

been assigned back to a bin in that solution. To preserve validity of the solutions,

the second 50 element would have to be assigned to the first solution, which still

had an available 50 element that had not been assigned. Also, assigning a second

50 element to the second solution would have exceeded the capacity (100) of the

bin. The draw also failed the capacity check and the element was instead assigned

to the first solution.

 94

The final arrangement of the solution pair would have been:

S1 = { B1: 10, 40

 B2: 20, 30, 30

 B3: 50 }

S2 = { B1: 20, 30

 B2: 10, 30

 B3: 40, 50}

In this manner, the original solutions were rearranged to produce new solutions.

The content of each solution remained the same, but the contents of the bins have

been altered, though not so as to violate the capacity of any bin. The validity of the

solutions has been ensured, and now there are two new solutions to work with.

Note that in this example applying crossover did not improve the quality of either

solution (each had three occupied bins to begin with, and it remained so after

crossover), and this could be the case the majority of the time. However, in some

instances the quality could improve. In fact, if the 50’s in the example would have

been 10’s instead, a different random draw could have cut the second solution

down to two bins. Also, though a crossover may not actually improve a solution, it

could set the stage for an improvement in a later generation.

For FAP, the crossover mechanism operated in a manner virtually identical to

that for BPP. The only difference was that instead of reassigning elements between

bins as in BPP, files were reassigned between devices. Exactly the same methods

of reassignment and solution validity preservation were used, with the exception

 95

that checks to verify that devices did not exceed capacity were not necessary since

all files were capable of being stored on a single device.

Implementing the mutation component was a matter of injecting a random

change into solutions at a certain rate. This rate was set to be 0.01, or one percent

of the time, again a common value used for such purposes. For each solution in the

new population (now containing the solutions chosen from the original population

by the selection mechanism, plus any changes to those solutions that may have

occurred if crossover had been triggered), a random number between zero and one

was generated. If this number was less than the mutation rate value, mutation was

triggered to occur.

For TSP, mutations were done by randomly selecting a point in the solution

representing a tour stop. The city at this point was then swapped with the city at

the previous tour stop (or the last stop, if the first stop was the point selected). This

produced a new solution, and since none of the cities in the solution had changed

but only their ordering, the solution was still valid.

For BPP and FAP, mutations were done by randomly selecting a non-empty bin

(or device, for FAP). The first element in this bin/device was moved to another

randomly selected bin/device. The first element from this second bin/device was

then moved to the first bin/device. Performing this maneuver did carry with it a

slight risk in BPP that one of the bins would exceed capacity, rendering the solution

invalid. However, changing elements between bins seemed to be the only intra-

solution mutation that made sense, as swapping bins would accomplish nothing and

 96

simply changing the value of elements within bins carried with it the risk of

corrupting the solution and/or converting it into a different problem instance

altogether. If by some chance a bin did exceed capacity and the solution became

invalid, its probability of being retained in the next generation dropped to zero and

thus it was guaranteed to be eliminated. If somehow this happened to all solutions

in the population in the same generation (an extremely unlikely event), a

mechanism was in place to generate a completely new population (the same

mechanism that was used to generate an initial population).

The three individual components (selection, crossover, and mutation) needed to

be combined into a single GA. This was accomplished by making each component

a stage in the process of a generation of the population. Starting with a current

population (either an initial population or one from the previous generation), first

selection would occur to determine which solutions would survive in a new

population. Then, crossover would be applied to the new population. Finally,

mutation would be applied to the new population. The member solutions as they

appeared in the new population following the execution of all three stages would

then become the current population and would be the input generation for the next

round, when all three components would repeat.

Thus, the general form of GA was:

1. Generate an initial population from the Monte Carlo solution

2. Apply the probabilistic selection to the current population to create a new

population

 97

3. Probabilistically apply crossover to the new population

4. Probabilistically apply mutation to the new population

5. Remove the old population and make the new population the current

population

6. If the number of generations has not reached the specified limit, go back to

step 2

7. Record the best solution seen during the run, its objective function value,

and the total number of solutions examined

Each time a current population was established (either through initialization or

through transitioning from a new population), each solution in the current

population would be examined to see if any solutions had a better objective

function value than seen to that point. If so, a new “best solution” would be

registered. After examining each solution, the count of solutions examined would

be incremented. The total number of generations allowed was arbitrarily set to ten

thousand, a value that allowed a substantial number of solutions to be examined

without extending run times tremendously for larger problem sizes.

2.2.4.4 GELS Implementation

During early experimentation, the GELS algorithm had been known as GLSA

and had consisted of two versions: one that was based on the gravitational

attraction between two objects and allowed navigation only to adjacent positions

 98

within the solution space, and another that was based on gravitational field

attractions and allowed navigation to non-adjacent positions. Along with a change

in name prior to the current experiments came a number of changes to the

algorithm itself. As development of the algorithm progressed, it became clear that

with the transition from hypothetical search spaces to genuine search spaces for

actual problem types, alterations to the algorithm were necessary.

Definitions of neighborhoods had changed, from being adjacent positions

within the search space to being solutions that were slight variants of the current

solution. Objective function values of neighboring solutions were no longer

randomly determined but were now functions of those solutions. Some solutions

no longer merely had poor objective function values, but were completely unusable

since they did not form valid solutions to the problem at hand.

Many adjustments were made to the algorithm. Along the way, the original two

methods of operation were significantly reworked. In addition, it was discovered

that several of the parameters in the original model had either become so sensitive

to adjustment that finding points of equilibrium was extremely difficult or had

become redundant in their effect on the outcome. In the end, two modes of

operation and two methods of navigation remained, albeit different from the

originals, and only five parameters.

GELS has several elements in common with the other algorithms in the test

suite. Like SA, GELS is based on a formula describing a process that occurs in

nature. In SA, this formula is the Maxwell-Boltzmann distribution of energy states.

 99

In GELS, the formula is Newton’s law of gravitational force between two objects,

expressed as

2
21

r

mGm
F =

where G = the gravitational constant, ~ 6.672

 m1 = the mass of the first object

 m2 = the mass of the second object

 r = the radius of the distance between the two objects

Like HC, GELS will navigate towards better solutions. In HC, this occurs as

direct movement to solutions with better objective function values. In GELS,

movement occurs generally towards solutions with higher “gravity” (meaning

better objective function values). Like GA, there is an expectation of iterative

improvement, and both algorithms can be terminated by iteration count.

Along with the elements that GELS has in common with the other algorithms,

there are also some striking differences. Unlike SA, GELS will not always move to

a solution with a better objective function value, even if one is presented to it, and

it will not move to solutions with worse objective function values on a probabilistic

basis, but deterministically according to its rules of motion. Unlike HC, GELS will

not always move directly towards the solution in the neighborhood with the best

objective function value, and it will not always stop on a locally optimal solution,

but can move off in an attempt to locate even better solutions. Unlike GA, GELS

does not proceed by randomly altering solutions, but by examining existing

 100

solutions, and it has distinct termination conditions that can cause the algorithm to

complete prior to reaching a specified iteration count.

So, though it does have some elements of randomness within it, GELS does not

proceed strictly probabilistically. Though it uses local search neighborhoods to

look for solutions, it does not always move through them in the same fashion. And,

though it does have some behaviors characteristic of greedy algorithms, it does not

always seek to follow the best path or grab the most resources. GELS uses a law

that governs the motion of objects in physical space to guide the motion of a search

through a complex search space.

The two methods of operation for GELS utilize the same gravitational force

formula, but in slightly different ways. The first method applies the formula to a

single solution within the local search neighborhood to determine the gravitational

force between that solution and the current solutions, while the second method

applies the formula to all solutions within the neighborhood and tracks the

gravitational force between each of them and the current solution individually. The

procession of the search through the search space is governed by the gravitational

forces, either in a single direction or in all directions, as determined by the formula.

The two modes of movement through the search space, or stepping modes,

differ only in how much of the search space they span. The first mode (called

single stepping) allows movement only to solutions within the current local search

neighborhood, while the second mode (called multiple stepping) allows movement

to solutions well outside of the neighborhood. Each stepping mode can be used

 101

with either method of operation. This results in four total variants of how GELS

can conduct a search. Shorthand monikers have been assigned to identify each

variant. Each moniker takes the form “TA” (for “test algorithm”) followed by a 1

or a 2 to identify which method of operation is being used, followed by another 1 or

2 to identify whether the algorithm is using single stepping or multiple stepping,

respectively. Thus, to identify an instance of the algorithm using the second

method of operation and single stepping, the moniker used to identify that instance

would be TA21.

GELS maintains a vector, the size of which is determined by the number of

dimensions in a solution. For example, a ten-city TSP tour would generate a vector

with ten elements, a twenty-city tour would generate a vector with twenty elements,

and so on. This vector’s values represent the relative “velocity” in each dimension.

The velocity is a measure of how much of a tendency there is to bypass solutions.

The higher the velocity, the more the tendency to bypass solutions (this is the

GELS mechanism for escaping local optima). If the multiple stepping mode is

being used, the velocity is also used to determine how far past the local search

neighborhood the search will relocate. There is also a pointer to identify which of

the elements in the vector is the current “direction of movement”.

 102

Both methods of operation and both stepping modes have been combined into a

single module. The choice of which method and which stepping mode to use can

be made at run time. Other parameters that are available are:

• Maximum velocity – defines the maximum value that any element within

the velocity vector can have; used to prevent velocities that become too

large to be usable

• Radius – sets the radius value in the gravitational force formula; used to

determine how quickly the gravitational force can increase or decrease

• Iterations – defines the number of iterations of the algorithm that will be

allowed to complete before it is automatically terminated; used to ensure

that the algorithm will terminate

The settings of these parameters for the current experiments were arrived at

through trial-and-error during the development of GELS. Some settings caused the

algorithm to run too long; others caused conditions where numbers were becoming

too large, causing the algorithm to behave erratically. After a number of tests, the

values settled on were 10 for the maximum velocity, 4 for the radius, and 10,000

for the iterations.

The algorithm begins by initializing the current solution, velocity vector, and

direction of movement. As with all the other test algorithms, the initial current

solution is set to the Monte Carlo solution. For each dimension in the velocity

vector, a random integer between one and the maximum velocity is chosen, and this

becomes the value of the element at that dimension. A minimum value of one is set

 103

to ensure that there will be a non-zero velocity component in each dimension at the

outset. After all dimensions of the vector have received values, the one having the

largest value is set as the initial direction of movement (in the event of a tie, the

first element in the vector having the largest value will be selected).

Next, a series of iterations of the algorithm are executed. What happens in each

iteration will be dependent on which method of operation has been selected, and

each will be described separately. The algorithm will terminate when one of two

conditions occurs: either all of the elements in the velocity vector have gone to

zero, or the maximum allowable number of iterations has been completed.

One iteration of the first method of operation consists of first selecting a

candidate solution. This solution will be the solution in the local search

neighborhood having the same ordinal identifier as the current direction of

movement indicator, i.e. if the indicator is currently set to five, the fifth solution in

the neighborhood will become the candidate solution. Once selected, the candidate

solution’s objective function value is checked to see if it is the best one seen to this

point. If so, the candidate solution is marked as being the best solution seen so far.

The count of number of solutions examined is also incremented at this point.

Next, the gravitational force between the current solution and the selected

candidate solution is calculated. Newton’s formula is used, with the alteration that

the two masses in the numerator of the equation are replaced by the value of the

difference between the objective function value of the candidate solution and that

 104

of the current solution. The value of the gravitational force between the two

solutions then becomes:

()
2R

CACUG
F

−=

where G = 6.672

 CU = objective function value of the current solution

 CA = objective function value of the candidate solution

 R = value of the radius parameter

This formula is designed to be a positive value if the objective function value of

the current solution is larger than that of the candidate solution and negative if the

candidate’s value is larger. This is because the gravitational pull should be towards

solutions with better objective function values. Since the problem types used in the

experiments are all minimization problems, a lesser objective function value is

better. Thus, if the candidate solution is better it will have a lower objective

function value, making CU – CA a positive value.

It would have been possible to replace the two mass numbers in Newton’s

formula by the objective function values of the two solutions and apply the

appropriate sign based on which one was larger. It was decided to use the

difference between them instead simply because using the multiplication led to

much larger values (and much larger ranges of values) and made the determination

of a radius value suitable for several different problem sizes more difficult. It was

 105

believed that using the difference tended to normalize the values somewhat,

without loss of the spirit of what Newton’s formula was intended to indicate.

Having calculated the relative gravitational force in the current direction of

movement, the velocity vector can now be updated. The force value, positive or

negative, is added to the component of the velocity vector at the position of the

current direction of movement. If doing so makes the value exceed the maximum

velocity parameter setting, it is set to the maximum. If the update would cause the

value to go negative, it is set to zero.

Note that this process is emulating the acceleration effect that a gravitational

force would have, and that in actual physics the acceleration would be calculated by

dividing the force by the mass of the object acted upon. However, the object being

acted upon would be the solution pointer object moving through the search space,

not either of the solution objects themselves (which do not move). Including a

mass value for the solution pointer would have meant only that a constant value

was being included in the calculation. This would have involved an additional

computation that did not add any value to the process, so it was excluded.

If the value of the velocity vector for the current direction of movement has

decreased as a result of the update, a check is done to see if it should remain the

current direction. As at the start of the algorithm, each element in the vector is

examined to find the largest, which will become the new direction indicator. This

check is not necessary if the vector element value increased as a result of the

 106

update, since the element updated was already the largest element, and increasing

its value cannot make it smaller than one of the others.

Performing an iteration of the algorithm using the second method is very much

like the first method. Gravitational forces are calculated, the velocity vector is

updated, and a new direction of movement is determined. The only difference is

that instead of calculating the force value and updating the vector only for the

current direction, the calculation and update are performed for each element in the

vector, using as a candidate solution the objective function value of the

neighborhood solution corresponding to the index of the element within the vector.

Since values are updated for the entire vector, the check for new direction is always

performed. Each candidate solution will generate a check for best solution seen

and an incrementing of the count of number of solutions examined.

Once an iteration has completed, be it using the first method or the second, the

solution pointer is relocated within the search space according to the stepping

mode. If single stepping is set, the pointer will be relocated to the solution in the

local search neighborhood identified by the current direction of movement. This

solution will be checked to evaluate if it qualifies as best solution seen, and the

count of number of solutions examined will be incremented.

If multiple stepping is set, the pointer will also be relocated to the neighborhood

solution in the current direction. However, if the element value in the velocity

vector at the index of the current direction is greater than one, a new neighborhood

is generated for the solution to which the pointer just relocated, and the pointer will

 107

move again to the neighborhood solution corresponding to the direction of

movement. This process of generating a new neighborhood and moving the

solution pointer will repeat a number of times equal to the value of the velocity

vector at the current direction index. At each stop of the pointer during this

process, a check will be done to see if the solution being pointed to is the best

solution seen, and the count of solutions examined will be incremented.

A variation to this process had to be made for TSP. Recall that the method used

by TSP to generate solutions for local search neighborhoods is to swap successive

pairs of elements in the original solution. If the standard process for multiple

stepping is followed in this case, the process of generating neighborhoods will

trigger an oscillation in movement, and the solution pointer will not actually move

multiple steps beyond the original neighborhood. To see this, consider the

following TSP solution: {1 4 2 3 5}. Suppose that the current direction is 3, and

element three of the velocity vector is currently set to a value of 5. When it comes

time to relocate the solution pointer, it will need to move five times. The first time

it moves, it will move to the third solution in the neighborhood. In producing that

neighborhood, the third solution would have been produced by swapping the

second and third elements in the original solution, meaning the pointer would move

to solution {1 2 4 3 5}. On the second move, the third solution in the neighborhood

generated for this solution would again be produced by swapping the second and

third elements, meaning the pointer would move to solution {1 4 2 3 5}. But, this

is right back where it started. A third move would take the pointer back to

 108

{1 2 4 3 5}, a fourth back to {1 4 2 3 5}, and the fifth back to {1 2 4 3 5}.

Obviously, the pointer is not really moving five steps beyond the original

neighborhood.

To counter this problem, the multiple-stepping procedure was modified for

TSP. Instead of moving at each step to the neighborhood solution in the current

direction of movement, the pointer would move to a random neighborhood

solution. This made the chances of a prolonged oscillation process occurring

extremely small. This modified procedure was only required for TSP, as the

neighborhood generation procedures for BPP and FAP required completely

different methods from TSP, and the problem did not manifest itself there.

After completing the stepping process, the stopping point for the solution

pointer is made the current solution, and the count of available iterations remaining

is decremented by one (having been initialized at the start of the algorithm to the

value specified by the iterations parameter). If there are available iterations

remaining, and if there is at least one non-zero value remaining in the velocity

vector, the entire procedure consisting of: a) generate a neighborhood for the

current solution, b) follow either method one or method two to calculate

gravitational forces and update the velocity vector and current direction of

movement, and c) perform either single or multiple stepping, is repeated.

A pseudo-code outline of the procedures just described for GELS is as follows:

CurrentSolution = BestSolution = MonteCarloSolution

SolutionsExamined = 0

 109

IterationsRemaining = MaxIterationsParameter

VelocitySum = 0

for each Index in VelocityVector

VelocityVector[Index] = random integer between 1 and MaxVelocityParameter

VelocitySum = VelocitySum + VelocityVector[Index]

end for

Direction = MaximumValueIn (VelocityVector)

while (VelocitySum > 0 and IterationsRemaining > 0)

GenerateNeighborhood (CurrentSolution)

if MethodOneSelected

CandidateSolution = Neighborhood (Direction)

if ObjectiveFunction (CandidateSolution) < ObjectiveFunction

(BestSolution)

BestSolution = CandidateSolution

end if

SolutionsExamined = SolutionsExamined + 1

Force = Integer (6.672 * (ObjectiveFunction (CurrentSolution) –

ObjectiveFunction (CandidateSolution)) / RadiusParameter ** 2)

VelocityVector[Direction] = VelocityVector[Direction] + Force

if VelocityVector[Direction] < 0

VelocityVector[Direction] = 0

end if

 110

if VelocityVector[Direction] > MaxVelocityParameter

VelocityVector[Direction] = MaxVelocityParameter

end if

VelocitySum = 0

for each Index in VelocityVector

VelocitySum = VelocitySum + VelocityVector[Index]

end for

Direction = MaximumValueIn (VelocityVector)

else if MethodTwoSelected

for each Index in Neighborhood

CandidateSolution = Neighborhood (Index)

if ObjectiveFunction (CandidateSolution) < ObjectiveFunction

(BestSolution)

BestSolution = CandidateSolution

end if

SolutionsExamined = SolutionsExamined + 1

Force = Integer (6.672 * (ObjectiveFunction (CurrentSolution) –

ObjectiveFunction (CandidateSolution)) / RadiusParameter ** 2)

VelocityVector[Index] = VelocityVector[Index] + Force

if VelocityVector[Index] < 0

VelocityVector[Index] = 0

end if

 111

if VelocityVector[Index] > MaxVelocityParameter

VelocityVector[Index] = MaxVelocityParameter

end if

end for

VelocitySum = 0

for each Index in VelocityVector

VelocitySum = VelocitySum + VelocityVector[Index]

end for

Direction = MaximumValueIn (VelocityVector)

end if

if SingleSteppingSelected

if TSPProblemBeingSolved

CurrentSolution = Neighborhood[random]

else

CurrentSolution = Neighborhood[Direction]

end if

if ObjectiveFunction (CurrentSolution) < ObjectiveFunction (BestSolution)

BestSolution = CurrentSolution

end if

SolutionsExamined = SolutionsExamined + 1

else if MultipleSteppingSelected

for 1 to VelocityVector[Direction]

 112

if TSPProblemBeingSolved

CurrentSolution = Neighborhood[random]

else

CurrentSolution = Neighborhood[Direction]

end if

if ObjectiveFunction (CurrentSolution) < ObjectiveFunction

(BestSolution)

BestSolution = CurrentSolution

end if

SolutionsExamined = SolutionsExamined + 1

GenerateNeighborhood (CurrentSolution)

end for

end if

IterationsRemaining = IterationsRemaining – 1

end while

return BestSolution, ObjectiveFunction (BestSolution), SolutionsExamined

This is the version of the GELS algorithm that was used in the algorithm

comparison experiments. Each possible configuration of the algorithm (TA11,

TA12, TA21, and TA22) was treated as a separate algorithm for the purposes of

those experiments, complete with its own set of run statistics. This was done

because not only was it of interest to discover how GELS would perform against

 113

the other algorithm types, but also how each variant of GELS would perform

against the other variants.

2.2.5 Validation of the Experimental Environment

As alluded to in the discussions regarding implementation of the problem and

algorithm types, a fair amount of ad hoc testing was done in the course of the

development effort, prior to the pieces being put together into a cohesive

experimental environment. When it came time to put those pieces together, a series

of tests were conducted to confirm that the environment was operating properly.

The first C++ class to be placed into the environment was TSP. The

infrastructure of the problem was put into place (i.e. class definition, necessary

program control variables, etc.), and then the implementation of the problem

instance generator was initiated. The generator was tested by generating problem

instances and printing out the resulting tour movement cost matrix. Each matrix

was checked to ensure that all costs were between the specified minimum and

maximum values of 1 and 10, respectively (except for the diagonal of the matrix,

which should have been all zeroes). Each matrix was also checked to ensure that it

was in fact symmetric, with all costs of movement from any given city A to any

other city B equal to the cost of movement from city B to city A.

Once the problem instance generator was shown to be operating correctly, the

implementations for the Monte Carlo solution generator and objective function

 114

value calculator were added. Solutions to problem instances produced by the

generator were verified to be valid TSP tours, with every city in the tour being

accounted for with no duplicates. The quality of the Monte Carlo solutions being

produced was gauged by evaluating them with the objective function value

calculator, which was in turn validated by matching the values calculated against

manual calculations done by using the cost matrix to find the cost for each

individual leg of the tour and then summing all the costs.

 Next, the implementation for the Hill Climbing algorithm was added. This in

turn required that the procedure for local search neighborhood generation be in

place. The neighborhood generator was tested by using a symbolic debugger to

step through HC, and at each point that a new neighborhood was required it was

verified that the generated neighborhood was correct. Stepping through HC

continued to ensure that it was finding the best solution in the local search

neighborhood and was following the best fit greedy pattern by moving to the best

solution found in the neighborhood with a better objective function value than the

current solution. Finally, it was verified that HC would terminate when it could no

longer find any solutions in the neighborhood better than the current solution.

The next item to be added was the implementation for the Simulated Annealing

algorithm. Since the methods for local search neighborhood generation and

objective function value calculation were already present, the SA procedure was set

up to use these procedures. The symbolic debugger was used to step through the

SA procedure, verifying that it was following its proscribed steps correctly, and

 115

that individual pieces (like the formula for calculating the Maxwell-Boltzmann

probability values) were working properly. Entire runs of SA were followed in the

debugger, using break points and watch points to view its progress and ensure that

things were in order.

Next to be added was the implementation for the Genetic Algorithm. This

followed the same procedure as for SA, hooking GA to the existing objective

function value calculator (the local search neighborhood generator not being

required) and using the symbolic debugger to verify that each of the GA

components (population selection, crossover, and mutation) was operating

properly. Also, as with SA complete runs of GA were done through the debugger

to verify its progress.

Once its development efforts were finalized, the implementation for GELS was

added in. Again, GELS was set up to use the existing local search neighborhood

generator and objective function value calculator. As was done with SA and GA,

the symbolic debugger was used to verify that each of the designed phases of

operation for GELS was correctly functioning, and complete runs were

accomplished to observe and verify operations.

The addition of the GELS implementation rounded out the set of test algorithms

to be used for TSP. All that remained was to add in the output method to write the

results of the algorithm comparisons to file for later uploading into SPSS. Once

this was done some complete tests involving all the algorithms and different

problem sizes were conducted, both to verify the correctness of the output routine

 116

and to verify that the system would still function correctly during multiple

consecutive runs and with different (sometimes quite large) problem sizes.

With the completion of testing for TSP, work began on BPP. Testing of BPP

followed the same format as for TSP. First, the class definitions and infrastructure

were put together. Then, the common-use procedures (problem instance generator,

local search neighborhood generator, and objective function calculator) were added

and tested, using the same testing methods as for TSP. The algorithms were then

added in one by one in the order MC, HC, SA, GA, and GELS, including the BPP-

specific modifications necessary for GA already mentioned and the removal of the

special multiple stepping modification needed for GELS only on TSP. Each

algorithm was in turn tested in the same manner as was done for TSP. The output

routine was then added and complete runs were done both of BPP standalone and

in concert with TSP. The output file was examined to verify the correct writing

and identification of results for BPP and TSP together.

Once testing was completed on BPP, the final test problem type, FAP, was put

together. The steps and methods used in assembling and validating FAP were

exactly the same as those for TSP and BPP. When they were completed, complete

runs of all three problem types together were done. Results of these runs were

compared with those of previous runs of each of the problem types by itself to see

if they appeared to be consistent. At this point everything appeared to be

functioning properly, which meant that the entire package was now ready to

conduct the official algorithm comparison experiments.

 117

2.2.6 Performance of the Research Experiments

With the completion of the development and testing efforts for the experimental

environment, the DOE for the algorithm comparison experiments could be put into

action. This design was fairly simple; generate a series of problem instances for

each of the test problem types, and for each problem instance produce a solution

from each of Monte Carlo, Hill Climbing, Simulated Annealing, Genetic

Algorithm, GELS method one with single stepping, GELS method one with

multiple stepping, GELS method two with single stepping, and GELS method two

with multiple stepping. Then, the data would be analyzed by SPSS to either

confirm or reject the performance and efficiency hypotheses.

When analyzing the data, problem instance was used as a blocking factor. The

reason for this was because of the inherent variability of the Monte Carlo solutions.

Since they are random, a Monte Carlo solution for one problem instance might be

relatively poor in relation to the optimal solution. This would mean that each of the

test algorithms would have ample room to improve on it. In another problem

instance, however, the Monte Carlo solution might be very close to the optimal. In

this case, improving on it would be very difficult no matter what the solution

algorithm. Since the Monte Carlo solutions serve as the starting point for all the

other algorithms, their relation to the optimal solution will influence the overall

results of every experiment. This influence must be accounted for, even if its cause

is not of particular interest to the experiments. The relative quality of the Monte

 118

Carlo solutions in relation to the optimal was not known during the experiments,

and indeed could not have been known for certain without exhaustive search of

each problem instance search space, a completely infeasible task. Therefore, the

relative quality of the Monte Carlo solutions for each problem instance was not an

item of interest. Yet, it influenced the outcomes of the experiments, as just

explained, and thus had to be accounted for to ensure the validity of the

interpretation of the results; hence, its inclusion in the experiments as a blocking

factor.

The number of experiments to be included in the series was effectively dictated

by SPSS. The version of SPSS that was available was the student edition, which

limits the number of cases in a single analysis to fifteen hundred (SPSS, 2001),

with each case amounting to a single line in the output file. Because of the way

SPSS handles its analyses, each case needed to be structured as follows:

{Run No.} {Problem Type} {Algorithm Type} {Performance Value} {Efficiency Value}

The “Run No.” field represented the problem instance count, used for blocking

of the problem instance factor. The “Problem Type” field identified which of the

test problem types the problem instance was generated for, and the “Algorithm

Type” field identified which of the test algorithm types was being used to solve the

problem instance. These two fields were used to allow grouping of the results by

problem and algorithm. The “Performance Value” and “Efficiency Value” fields

 119

contained the metrics used in the analysis. As an example, the SA solution for the

tenth TSP problem instance generated would have a case that looked something

like the following:

10 TSP SA 0.75 0.11

Structuring cases in this manner allowed SPSS to conduct all of the necessary

analysis of the data, but it did limit the number of problem instances experiments

that could be conducted. By generating fifty problem instances for each problem

type of a given size, twelve hundred cases were created (8 algorithm types x 3

problem types x 50 problem instances = 1,200 cases), falling within the limits of

the SPSS student edition. A few more problem instances per problem type could

have been generated and still have met the SPSS case limitation, but fifty provided

a convenient round number for use in calculations and, as it turned out, generated

more than sufficient data for SPSS to produce meaningful conclusions.

To evaluate the effect of different problem sizes on the algorithm comparison, it

was decided to conduct separate experiments, each with a different problem size,

which would allow the effect to be analyzed while meeting the case limitation.

Problem sizes of ten, twenty, thirty, forty, and fifty were each to be analyzed. For

TSP, problem size was determined by the number of cities to be included in a tour.

For BPP, size was determined by the number of objects to be placed in bins. For

FAP, since the number of devices and files was predetermined, size was

 120

determined by the number of queries that would be executed. Each increment of

problem size represented one thousand TPC-H queries, e.g. a problem size of ten

meant that ten thousand randomly-ordered queries from the TPC-H standard would

be executed for that run.

It was also decided that a single set of experiments encompassing all problem

sizes would be run, to further evaluate the effect of problem size within a single

analysis. Of course, this meant reducing the number of problem instances per

problem size. To accommodate the inclusion of problem size as a factor, the case

structure for this set of experiments needed to be altered to look like the following:

{Run No.} {Prob. Type} {Prob. Size} {Alg. Type} {Performance Value} {Efficiency Value}

To avoid any possible unforeseen side effects of running problem sizes in a

particular order, the size for each problem instance was determined randomly out of

the original sizes of ten, twenty, thirty, forty, and fifty. This meant a possible

inequality in the number of cases of each problem size, which would place some

limitations on the analysis (some statistical tests want equal numbers of cases for

each factor value), but it was in keeping with recommended DOE techniques.

Thus, there were a total of six sets of experiments – one for each of the five

defined problem sizes, and one consisting of random problem sizes. Each set was

designed to allow statistical comparison of the algorithm types, and provided the

 121

SPSS tool with a grand total of 7,200 cases with which to perform that comparison

– well more than SPSS required to accomplish the task.

2.2.7 Results of the Current Research Experiments

With the DOE for the algorithm comparison experiments defined, the six sets of

experiments were run according to the design and the data collected into output

files to be uploaded into SPSS for analysis. As the aim of the experiments was to

either confirm or reject both the performance and the efficiency hypotheses, the

analysis of each experiment’s data was conducted in two phases. First, the

performance results from each set of experiments were analyzed to compare the

relative performance of each of the algorithms against random solutions and against

each other. Then, a second analysis was done on the efficiency results from each

set of experiments to compare the relative efficiency of each of the algorithms in

the same manner. The results of the analyses are presented here in the same order

in which they were conducted; first the performance data analysis, then the

efficiency data analysis.

2.2.7.1 Algorithm Performance Results

The analysis of the algorithm performance results was conducted by first

loading the raw data into SPSS. Then, for each of the three test problem types a

box plot and line plot were generated to give any visual indications of a difference

 122

in algorithm performance. Next, an ANOVA was run to see if any statistically

significant difference could be detected between the performances recorded for

each algorithm type. A fourth box plot and line plot were also generated, and a

fourth ANOVA run, each consisting of composite data over all problem types in

order to detect any significant difference between algorithm performances across

all three problem types considered together. The outcome of each ANOVA was

evaluated and if necessary corroborated using the tests described in section

1.2.3.2.3. If a significant difference was determined to exist, an ordering of the

algorithms by relative performance was established according to the homogeneous

subsets defined by the analysis. This procedure was then repeated for each of the

five sets of experiments using a fixed problem size and the one set of experiments

using random problem sizes.

2.2.7.1.1 Problem Size Ten Performance Results

Exhibit 12 shows the box plot that was generated for the set of experiments

encompassing TSP problem instances of size ten. This plot seems to show a very

slight edge in performance capability for SA, but the SA box does not completely

fall outside the borders of the boxes for several other algorithms. Also, the median

lines for SA, TA21, and TA22 are at about the same level. The box widths are

roughly the same, with those for HC, TA11, and TA12 being slightly larger. The

whiskers are also roughly the same length, with those for HC and TA12 being a

 123

little longer. These two items show that the inter-quartile and min/max ranges for

each of the algorithms are comparable, indicating similar variances between

algorithm types.

Algorithm Type

TA22TA21TA12TA11SAHCGA

P
er

fo
rm

an
ce

 R
at

io

.8

.6

.4

.2

0.0

-.2

Exhibit 12. Box Plot, TSP Size 10 Performance

Exhibit 13 shows the line plot of marginal means that was generated for the

same data. This plot shows average performance values that are apparently very

similar for SA, TA21, and TA22, and better than the rest. The ANOVA for this

problem group should be able to confirm if this is in fact the case.

 124

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

Exhibit 13. Line Plot, TSP Size Ten Performance

Exhibit 14 shows the results of the ANOVA. The significance values are all

zero, giving a strong indication that variances in performance values for the model

in general, and the run number and algorithm type factors in particular, cannot be

attributed to random error alone. The run number and algorithm type are almost

certainly affecting the performance values being produced. It is good, then, that the

run number (problem instance) was included as a blocking factor. Had it been left

out, its influence on the model would not have been accounted for and could have

distorted the effects seen for the algorithm type factor.

 125

Dependent Variable: Performance Ratio

6.007b 55 .109 28.126 .000 .840 1546.931 1.000

71.094 1 71.094 18307.321 .000 .984 18307.321 1.000

3.770 49 7.693E-02 19.811 .000 .768 970.750 1.000

2.238 6 .373 96.030 .000 .662 576.181 1.000

1.142 294 3.883E-03

78.243 350

7.149 349

Source

Corrected Model

Intercept

Factor A

Factor B

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a.

R Squared = .840 (Adjusted R Squared = .810)b.

Exhibit 14. ANOVA Results, TSP Size Ten Performance

The results of the ANOVA needed to be confirmed by testing to verify that the

assumed conditions for a valid ANOVA were in fact present. Exhibit 15 shows the

P-P plot of the ANOVA residuals. There is evidence of departure from the normal

marker line in two sections of the plot, leading to suspicion that the residuals might

not be normally distributed. A Kolmogorov-Smirnov normality test was used at

this point to provide a more precise indication.

 126

Observed Cumulative Probability

1.00.75.50.250.00

E
xp

ec
te

d
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

1.00

.75

.50

.25

0.00

Exhibit 15. Residual Normal P-P Plot, TSP Size Ten Performance

Exhibit 16 shows the results of the Kolmogorov-Smirnov test. Here there is a

problem. The significance factor shown on the last line is 0.037, which is lower

than the threshold of 0.05. This means that the Kolmogorov-Smirnov test has

rejected the hypothesis of normally distributed residuals. This cast some doubt on

the validity of the ANOVA results, and further evidence was required to

corroborate those results.

 127

350

.0000000

.05719588

.076

.058

-.076

1.413

.037

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Performance

Ratio

Test distribution is Normal.a.

Calculated from data.b.

Exhibit 16. Kolmogorov-Smirnov Test, TSP Size Ten Performance

However, before examining that additional evidence the other condition of non-

structured residuals was tested. The first of these tests was the plot of the predicted

values versus observed residuals, shown in Exhibit 17. This plot shows if there is a

pattern of relationship between the residuals and the predicted values of

performance based on average outputs for given inputs. While there is an

indication of narrowing in the plotted points towards the right of the diagram, there

is no overall “megaphone” shape or similar pattern discernable. Thus, the plot

gives no reasonable indication of a serious problem.

 128

w/Mean Value Line

Predicted Value

.8.7.6.5.4.3.2.10.0

R
es

id
ua

l V
al

ue

.2

.1

-.0

-.1

-.2

-.3

Exhibit 17. Predicted vs. Residual Plot, TSP Size Ten Performance

The other test of the assumption of non-structured residuals was the plot of

residuals over time, shown in Exhibit 18. This plot shows if there is a trend for

residuals to become larger or smaller with each additional experiment run (in this

case, problem instance). The plotted points resemble a tube, with no obvious

narrowing or widening, and thus there is no indication of a serious problem with

structured residuals here either.

 129

w/Mean Value Line

Run Number

50403020100

R
es

id
ua

l V
al

ue

.2

.1

-.0

-.1

-.2

-.3

Exhibit 18. Residual Trend Plot, TSP Size Ten Performance

The tests for non-structured residuals did not reveal any cause for alarm.

However, the normality of the residual distribution was rejected by the

Kolmogorov-Smirnov test. Since the residuals could not be assumed to be

normally distributed, one of the assumptions of the ANOVA had been violated, and

it needed additional evidence to corroborate its conclusions. The Kruskal-Wallis

test could be used for this purpose, as it is a non-parametric test not subject to the

same assumptions as the ANOVA. The test was conducted using algorithm type as

the test factor.

 130

Exhibit 19 shows the results of this test. The significance value shown on the

last line is zero, below the threshold of 0.05, meaning that the test accepts the

hypothesis that there is a difference between the algorithm types. This result is in

agreement with the results obtained by the ANOVA, lending credence to those

results in spite of the failed test for residual normality. Since both the ANOVA and

the Kruskal-Wallis Test agree on this count, it can be concluded that there is a

significant difference between the performance values obtained by the different

algorithms for TSP problem instances of size ten.

Ranking Test Statisticsa,b

107.785

6

.000

Chi-Square

df

Asymp. Sig.

Performance
Ratio

Kruskal Wallis Testa.

Grouping Variable: Algorithm Typeb.

Exhibit 19. Kruskal-Wallis Test, TSP Size Ten Performance

To find out exactly what differences were considered significant, the

homogeneous subsets for algorithm performance were generated, using both the

Tukey and Duncan methods. The results are shown in Exhibit 20. In this case both

methods have generated four subsets. Since the subsets are automatically arranged

by increasing performance ratio, and since better performance of an algorithm is

 131

indicated by higher values for this measure, the best performing algorithms will be

in subset 4, and the worst in subset 1. Both the Tukey and Duncan methods also

agree on which algorithms should be placed in which subsets. The subset

assignments indicate that the performance of SA, TA22, and TA21 are the best, and

furthermore, that performance between the three is statistically indistinguishable.

The next best performers were TA12 and GA, also indistinguishable. Next down

the list was TA11, and HC came in as the worst performer of the group.

50 .3097601

50 .3847190

50 .4302296

50 .4350807

50 .5206225

50 .5352588

50 .5391901

1.000 1.000 1.000 .751

50 .3097601

50 .3847190

50 .4302296

50 .4350807

50 .5206225

50 .5352588

50 .5391901

1.000 1.000 .697 .162

Algorithm Type

HC

TA11

GA

TA12

TA21

TA22

SA

Sig.

HC

TA11

GA

TA12

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 3.883E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 20. Homogeneous Subsets, TSP Size Ten Performance

 132

The results of the analysis for TSP problem instances of size ten led to the

conclusion that the performance hypothesis could be safely rejected for this group

of problem instances. There is a statistically significant difference between the

performances of the different algorithm types. The analysis also concluded that

Simulated Annealing, GELS method two with single stepping, and GELS method

two with multiple stepping are the best performing for problem instances of this

type, with performances that are statistically indistinguishable from each other.

To continue with the analysis process, BPP problem instances of size ten were

considered. Exhibit 21 shows the box plot for this group of problem instances.

The boxes for GA and TA21 appear to be a little bit higher, but otherwise it appears

to be a rather tight grouping. Also, this time the box sizes for GA and TA21 are

notably smaller than the others, and the whiskers for GA are considerably shorter.

This indicates a wider variance in performance than there was for the TSP size ten

problem instances, except for GA which apparently had a very tight variance. Still

though, there are no outlier markers on the diagram, which would be an indication

of some extreme values having an undue effect on the variance.

 133

Algorithm Type

TA22TA21TA12TA11SAHCGA

P
er

fo
rm

an
ce

 R
at

io

.8

.6

.4

.2

0.0

-.2

Exhibit 21. Box Plot, BPP Size Ten Performance

Exhibit 22 shows the line plot of marginal means for this group of problems.

Again, GA and TA21 appear higher than the others, strengthening the suspicion

that they are the best performers. In any event, there appears to be a significant

difference between the performance of some of the algorithms, and the ANOVA

should be able to confirm this.

 134

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

Exhibit 22. Line Plot, BPP Size Ten Performance

The results of the ANOVA are shown in Exhibit 23. All significance values are

at zero, below the threshold of 0.05, indicating that the model contains significant

amounts of variance that cannot be attributed to random error, and that choice of

algorithm does make a difference to performance. The run number again is

significant, making it a good thing that it was set up as a blocking factor.

 135

Dependent Variable: Performance Ratio

5.819b 55 .106 9.109 .000 .630 501.014 1.000

57.154 1 57.154 4920.861 .000 .944 4920.861 1.000

4.693 49 9.577E-02 8.246 .000 .579 404.037 1.000

1.126 6 .188 16.163 .000 .248 96.977 1.000

3.415 294 1.161E-02

66.388 350

9.234 349

Source

Corrected Model

Intercept

Run Number

Algorithm Type

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a.

R Squared = .630 (Adjusted R Squared = .561)b.

Exhibit 23. ANOVA Results, BPP Size Ten Performance

To validate the results of the ANOVA, the assumptive preconditions of normal

distribution of and no structure to the residuals were tested. The P-P plot of the

residuals is shown in Exhibit 24. There appears to be a very good fit for this plot,

with only one small deviation near the middle. This would lead to the belief that

the assumption of residual normality can be upheld, but in order to confirm this the

Kolmogorov-Smirnov test was run.

 136

Observed Cumulative Probability

1.00.75.50.250.00

E
xp

ec
te

d
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

1.00

.75

.50

.25

0.00

Exhibit 24. Residual Normal P-P Plot, BPP Size Ten Performance

Exhibit 25 shows the results of the Kolmogorov-Smirnov test. The significance

value of the test is 0.169, above the threshold of 0.05, meaning that the test accepts

the normality of the distribution. This confirms what was seen in the P-P plot, and

verifies the assumption of normally distributed residuals.

 137

350

.0000000

.09891547

.059

.025

-.059

1.111

.169

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Performance

Ratio

Test distribution is Normal.a.

Calculated from data.b.

Exhibit 25. Kolmogorov-Smirnov Test, BPP Size Ten Performance

To test the assumption of non-structured residuals, the predicted values versus

residuals and residual trend plots were examined. Exhibit 26 shows the first of

these plots. There is a slight “pinching” of the plot at both ends but no overall

pattern of widening or narrowing, and the majority of points are clustered within an

equidistant band around the mean value line, so this plot is no cause for alarm.

 138

w/Mean Value Line

Predicted Value

.8.7.6.5.4.3.2.1

R
es

id
ua

l V
al

ue

.3

.2

.1

0.0

-.1

-.2

-.3

-.4

Exhibit 26. Predicted vs. Residual Plot, BPP Size Ten Performance

Exhibit 27 shows the residual trend plot. This plot looks very good as well,

with no indication at all of any narrowing or widening over the runs of the

experiment. The predicted values versus residuals and residual trend plots provide

good evidence that the residuals are non-structured, and that this assumption can

therefore be made.

 139

w/Mean Value Line

Run Number

50403020100

R
es

id
ua

l V
al

ue

.3

.2

.1

0.0

-.1

-.2

-.3

-.4

Exhibit 27. Residual Trend Plot, BPP Size Ten Performance

Since the assumptions of normal distribution and no structure to the residuals

can be upheld, the original ANOVA results can be considered solid. Those results

indicated that there is a difference between the performances of the different

algorithms. To see which differences can be considered significant, the

homogeneous subsets were generated.

These results are shown in Exhibit 28. In this case, the Tukey and Duncan

methods have generated a different number of subsets. The Tukey method places

GA and TA21 in the top subset, TA21 and SA in the next subset, SA, HC, TA11,

 140

and TA22 in the next, and HC, TA11, TA22, and TA12 in the next, for a total of

four subsets. The Duncan method, on the other hand, places GA and TA21 in the

top subset, SA and HC in the second, and HC, TA11, TA22, and TA12 in the last

for a total of three subsets.

50 .3349286

50 .3635794 .3635794

50 .3689206 .3689206

50 .3744444 .3744444

50 .4149444 .4149444

50 .4706349 .4706349

50 .5012540

.527 .209 .135 .790

50 .3349286

50 .3635794

50 .3689206

50 .3744444 .3744444

50 .4149444

50 .4706349

50 .5012540

.095 .061 .157

Algorithm Type

TA12

TA22

TA11

HC

SA

TA21

GA

Sig.

TA12

TA22

TA11

HC

SA

TA21

GA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.161E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 28. Homogeneous Subsets, BPP Size Ten Performance

Notice that in several cases the same algorithm appears in two subsets

simultaneously. The homogeneous subsets methods generate groups of factor

 141

levels that cannot be distinguished statistically. It may be the case that there is not

enough of a difference between factor levels A and B to be considered statistically

significant. There may also not be enough of a difference between factor levels B

and C to be considered significant. This would mean that A and B cannot be

distinguished and would be placed in a subset, and B and C cannot be distinguished

and would be placed in another subset. However, the difference between A and C

may be just enough to be significant. Thus, factor levels A and C would appear in

different subsets, but factor level B would appear in a subset with A and in a subset

with C at the same time.

Such is the case here. For example, in Tukey’s method GA and TA21 appear in

the top subset, but TA21 also appears in the next subset with SA. This is saying

that there is not enough of a difference in performance between GA and TA21 to be

significant, so they are placed in a subset, and there is also not enough of a

difference between TA21 and SA to be significant, so they are placed in a subset.

However, there is enough of a difference between GA and SA to be significant, so

they appear in different subsets. In this way, TA21 appears in two different subsets

at the same time.

The results of the analysis of BPP problem instances of size ten showed a

significant difference in performance between the test algorithms. Thus, the

performance hypothesis can be rejected for this group of problem instances.

Further, though there was a difference in the number of homogeneous subsets

between the Tukey and Duncan methods, both agreed that the top performers in

 142

this category of problem were the Genetic Algorithm and GELS method two with

single stepping.

Continuing on, the next group of problem instances to be analyzed was the FAP

instances of size ten. The box plot for this group appears in Exhibit 29. Here there

would appear to be a distinct difference between algorithm performances, with the

boxes for SA and TA21 falling completely outside several of the others. Since

these boxes are above the others, it also indicates that SA and TA21 are the best

performers. Box sizes for HC, SA, and TA21 are relatively small compared to the

others, and whisker lengths for SA and TA21 are comparatively shorter than the

others. There are also outlier values for GA, HC, and TA21. Overall, this indicates

lower variability in performance for SA and TA21 in particular. Should these two

algorithms be confirmed to have the best performance (which from the diagram

would appear to be the case), they would not only be better performing but better

performing with a lower chance of returning a poor solution.

 143

Algorithm Type

TA22TA21TA12TA11SAHCGA

P
er

fo
rm

an
ce

 R
at

io

.8

.6

.4

.2

0.0

-.2

951

802

1122

836

Exhibit 29. Box Plot, FAP Size Ten Performance

The line plot for these data appears in Exhibit 30. This plot agrees with the box

plot that there is a definite difference between the performances of the different

algorithms, and that SA and TA21 are the best performers. It is expected that the

ANOVA will confirm this.

 144

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

Exhibit 30. Line Plot, FAP Size Ten Performance

Exhibit 31 shows the ANOVA results. Once again, the significance values are

all zero. The model almost certainly contains variance that cannot be explained by

random error, the algorithm type factor is playing a significant role in determining

the outcome, and the run number factor is exerting a significant influence and was

rightly blocked.

 145

Dependent Variable: Performance Ratio

6.829b 55 .124 18.366 .000 .775 1010.106 1.000

57.586 1 57.586 8518.208 .000 .967 8518.208 1.000

2.862 49 5.841E-02 8.640 .000 .590 423.336 1.000

3.967 6 .661 97.795 .000 .666 586.770 1.000

1.988 294 6.760E-03

66.403 350

8.816 349

Source

Corrected Model

Intercept

Run Number

Algorithm Type

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a.

R Squared = .775 (Adjusted R Squared = .732)b.

Exhibit 31. ANOVA Results, FAP Size Ten Performance

To confirm the results of the ANOVA, the tests of the assumptive conditions

were performed. Exhibit 32 shows the P-P plot of the residuals for this group of

problems. Most of the points are right on the line, and those that are not are very

close to it. This would lead to the belief that the residuals are normally distributed.

 146

Observed Cumulative Probability

1.00.75.50.250.00

E
xp

ec
te

d
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

1.00

.75

.50

.25

0.00

Exhibit 32. Residual Normal P-P Plot, FAP Size Ten Performance

The Kolmogorov-Smirnov test for normality of the residuals, shown in Exhibit

33, confirms this belief. The significance value of 0.144 is above the threshold of

0.05, so the test accepts the assumption that the residuals are normally distributed.

 147

350

.0000000

.07546525

.061

.035

-.061

1.147

.144

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Performance

Ratio

Test distribution is Normal.a.

Calculated from data.b.

Exhibit 33. Kolmogorov-Smirnov Test, FAP Size Ten Performance

With the assumption of the normality of the residuals upheld, the tests for non-

structured residuals were conducted. Exhibit 34 shows the first of these tests, the

plot of predicted values versus residuals. Again the ends of the plot appear

somewhat pinched, but a close look shows that this effect is due to a small number

of individual points. Most of the points are clustered together in a fairly tight

arrangement with no indication of a consistent pattern, so this plot should not raise

any warning flags.

 148

w/Mean Value Line

Predicted Value

1.0.8.6.4.20.0

R
es

id
ua

l V
al

ue

.2

.1

0.0

-.1

-.2

-.3

-.4

Exhibit 34. Predicted vs. Residual Plot, FAP Size Ten Performance

Exhibit 35 shows the plot of residual trend, the other test for non-structured

residuals. Again, there are a few outliers, but there is no indication of consistent

widening or narrowing, and so there are no warning flags here either. The

assumption of non-structured residuals appears reasonable.

 149

w/Mean Value Line

Run Number

50403020100

R
es

id
ua

l V
al

ue

.2

.1

0.0

-.1

-.2

-.3

-.4

Exhibit 35. Residual Trend Plot, FAP Size Ten Performance

Having validated the results of the ANOVA, with its conclusion that there is a

difference between the performances of the algorithms, the homogeneous subsets

of those differences were generated. Exhibit 36 shows those subsets. Tukey and

Duncan are in agreement as to the number and contents of the subsets. Both

methods place SA and TA21 in the top subset, TA22 and TA11 in the next subset,

HC by itself in the next, and finally TA12 and GA in the lowest subset.

 150

50 .2676534

50 .2773018

50 .3508193

50 .4238876

50 .4258730

50 .5381334

50 .5557158

.997 1.000 1.000 .937

50 .2676534

50 .2773018

50 .3508193

50 .4238876

50 .4258730

50 .5381334

50 .5557158

.558 1.000 .904 .286

Algorithm Type

GA

TA12

HC

TA11

TA22

TA21

SA

Sig.

GA

TA12

HC

TA11

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 6.760E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 36. Homogeneous Subsets, FAP Size Ten Performance

The result of the analysis for FAP size ten problem instances indicates that the

performance hypothesis can be rejected for this group. There is a significant

difference in the performance of the algorithms, with Simulated Annealing and

GELS method two with single stepping together claiming the best performance.

To complete the analysis of the size ten problems, the composite analysis of all

size ten problem instances over all three problem types was conducted. The box

plot for this appears in Exhibit 37. Here the box sizes and whisker lengths for SA

 151

and TA21 appear smaller than for the others, indicating that they have smaller

variances in performance, even though both of them have outliers. SA and TA21

also appear slightly higher (and therefore would have better performance), but they

also overlap several of the other boxes, so this cannot be considered conclusive.

The variances in the performances of GA, TA11, and TA12 are extreme, fully

encompassing the entire sizes of the others, pointing to a wide range in

performance for those algorithms on problem instances of this type.

Algorithm Type

TA22TA21TA12TA11SAHCGA

P
er

fo
rm

an
ce

 R
at

io

.8

.6

.4

.2

0.0

-.2

775
591

771
731
419763

715435

802
130250
69811221781124

Exhibit 37. Box Plot, Composite Size Ten Performance

 152

The composite line plot is shown in Exhibit 38. This plot is even more

suggestive of SA and TA21 being the better-performing algorithms for this group

of problems than was the box plot. It also suggests that the ANOVA will show the

performances of the two to be about the same.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

Exhibit 38. Line Plot, Composite Size Ten Performance

One other line plot for this group of problems is shown in Exhibit 39. This plot

gives a side-by-side comparison of the performances of the algorithms for each

problem type. If there was any interaction between the problem type factor and the

 153

algorithm type factor when solving size ten problems, some of the lines would

cross. If no such interaction was present, the lines would remain virtually parallel,

varying only with the algorithm type.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

Problem Type

BPP

FAP

TSP

Exhibit 39. Problem Type Plot, Composite Size Ten Performance

As can be seen in the plot, there are several points at which the lines cross.

This indicates that the algorithms’ ability to solve size ten problems is not

independent of the type of problem being solved. For instance, looking at GA it

appears that if this algorithm is to be used it would most likely produce its best

 154

solutions on a size ten BPP problem, and considerably worse on an FAP problem of

the same size. The fact that algorithms perform with different capabilities on

different types of problems should come as no surprise. What is noteworthy,

however, is that because of the nature of the experiments being conducted, this

difference can here be statistically verified and viewed for specific types of

problems.

The composite ANOVA for size ten problems is shown in Exhibit 40. All the

significance values are zero, including the one for the interaction of the problem

type factor with the algorithm type factor. The choice of algorithm for solving size

ten problems does have a significant effect on performance, and this effect is not

independent of the type of problem being solved.

Dependent Variable: Performance Ratio

11.920b 69 .173 12.295 .000 .464 848.386 1.000

185.344 1 185.344 13191.343 .000 .931 13191.343 1.000

4.099 49 8.365E-02 5.954 .000 .229 291.735 1.000

.491 2 .245 17.455 .000 .034 34.911 1.000

4.092 6 .682 48.543 .000 .229 291.260 1.000

3.238 12 .270 19.207 .000 .190 230.480 1.000

13.769 980 1.405E-02

211.034 1050

25.690 1049

Source

Corrected Model

Intercept

Run Number

Problem Type

Algorithm Type

Problem Type vs.
Algorithm Type

Error

Total

Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

Noncent.
Parameter

Observed
Powera

Computed using alpha = .05a.

R Squared = .464 (Adjusted R Squared = .426)b.

Exhibit 40. ANOVA Results, Composite Size Ten Performance

 155

To verify the results of the ANOVA, the checks on the assumptive conditions

were performed. The P-P plot for checking the normality of the residuals is shown

in Exhibit 41. The points in this plot look almost like a straight line; there can be

little doubt that the residuals are normally distributed. However, the Kolmogorov-

Smirnov test was still run to confirm this assertion.

Observed Cumulative Probability

1.00.75.50.250.00

E
xp

ec
te

d
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

1.00

.75

.50

.25

0.00

Exhibit 41. Residual Normal P-P Plot, Composite Size Ten Performance

 156

The results of this test are given in Exhibit 42. The significance value is 0.382,

above the 0.05 threshold as expected. The case for the normality of the residuals is

upheld.

1050

.0000000

.11456977

.028

.012

-.028

.908

.382

N

Mean

Std. Deviation

Normal Parametersa,b

Absolute

Positive

Negative

Most Extreme
Differences

Kolmogorov-Smirnov Z

Asymp. Sig. (2-tailed)

Residual for
Performance

Ratio

Test distribution is Normal.a.

Calculated from data.b.

Exhibit 42. Kolmogorov-Smirnov Test, Composite Size Ten Performance

Checking the other ANOVA assumptive condition, non-structured residuals,

the plot of predicted values versus residuals is shown in Exhibit 43. Once again

there is the pinching effect on the ends of the plot, but some of this at least can be

explained by the nature of the performance ratio. It cannot exceed one, nor can it

go less than zero. Consequently, the farther the performance ratio from mid-range,

the less room there is for the residuals to fluctuate. Thus, a narrowing at the

extremes of this plot is somewhat to be expected, and certainly no cause for alarm.

 157

w/Mean Value Line

Predicted Value

.7.6.5.4.3.2.10.0

R
es

id
ua

l V
al

ue

.6

.4

.2

-.0

-.2

-.4

-.6

Exhibit 43. Predicted vs. Residual Plot, Composite Size Ten Performance

The other check for non-structured residuals, the plot of residual trend, is

shown in Exhibit 44. This plot looks almost like a cylinder, with no hint of

narrowing or widening, so there is certainly not a problem here.

 158

w/Mean Value Line

Run Number

50403020100

R
es

id
ua

l V
al

ue

.6

.4

.2

-.0

-.2

-.4

-.6

Exhibit 44. Residual Trend Plot, Composite Size Ten Performance

With no problems found for either residual normality or residual structures, the

results of the ANOVA appear solid. Given this, the homogeneous subsets for the

experiment set as a whole were generated. These are shown in Exhibit 45.

Tukey’s and Duncan’s methods are in full agreement in this case. Both have

generated four subsets, with TA21 and SA occupying the top spot. In the next

subset is TA22 by itself, then GA and TA11 in the next subset, and finally TA12

and HC in the final subset.

 159

150 .3450079

150 .3491037

150 .3925091

150 .3997123

150 .4415704

150 .5032835

150 .5097969

1.000 .998 1.000 .999

150 .3450079

150 .3491037

150 .3925091

150 .3997123

150 .4415704

150 .5032835

150 .5097969

.765 .599 1.000 .634

Algorithm Type

HC

TA12

TA11

GA

TA22

SA

TA21

Sig.

HC

TA12

TA11

GA

TA22

SA

TA21

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.405E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 45. Homogeneous Subsets, Composite Size Ten Performance

The performance hypothesis has been solidly rejected for the composite set of

size ten problems. There is a definite difference in the performances of the

algorithms across problem types of this size, and there is a measurable difference

between how the algorithms perform on different algorithm types. For problem

instances of size ten across all test problems, GELS method two with single

stepping was indistinguishable from Simulated Annealing in being the best

performers.

 160

2.2.7.1.2 Problem Size Twenty Performance Results

The next portion of the analysis involved the consideration of problem

instances of size twenty. All of the methods, tests, tools, and diagrams used in

performing this part of the analysis were exactly the same as were used in the

analysis of the set of problem instances of size ten. Such was also the case for the

examination of the other remaining experiment sets (size thirty, size forty, size

fifty, and the random size problem instances). Displaying the individual results of

all the tests would require many hundreds of pages; consequently, the diagrams of

the tests have been omitted, and the summary results will be given.

For TSP problem instances of size twenty, the analysis showed that the

performance hypothesis could be rejected for this group of problems. With a

significance value of zero in the ANOVA, the algorithm type factor demonstrated

that it had a significant effect on performance. The ANOVA results were verified

through testing of the residuals, and the homogeneous subsets were calculated.

The subsets produced are shown in Exhibit 46. From this diagram, it can be

seen that though the count of the subsets generated by the two methods was

different, the ordering of the algorithms within them was not. The only difference

between them was that Tukey’s method put GELS method two with multiple

stepping in the same subset with GELS method two with single stepping, while

Duncan’s method separated them. Both agreed that the best performer for this

group of problem instances was Simulated Annealing. The best performing of the

 161

GELS combinations were method two with multiple stepping and method two with

single stepping, which came in second and third, respectively, in the Duncan

method, and were tied for second best performance in the Tukey method.

50 .3120485

50 .3148042

50 .3214439

50 .3518877

50 .4277217

50 .4560472

50 .5674781

.966 1.000 .072 1.000

50 .3120485

50 .3148042

50 .3214439

50 .3518877

50 .4277217

50 .4560472

50 .5674781

.380 1.000 1.000 1.000 1.000

Algorithm Type

GA

HC

TA11

TA12

TA21

TA22

SA

Sig.

GA

HC

TA11

TA12

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.499E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 46. Homogeneous Subsets, TSP Size Twenty Performance

For BPP problem instances of size twenty, the performance hypothesis was

easily rejected again. The ANOVA results, verified by checks on the assumptions,

showed all zeroes for the significance values, indicating significant effect of

algorithm type on performance. When constructing the homogeneous subsets, this

time Tukey’s method created three subsets, and Duncan’s method created five. The

 162

results are shown in Exhibit 47. Once again, though the overall number of subsets

differed between the two methods, both agreed that the best performers for this

group of problem instances were the Genetic Algorithm and GELS method two

with single stepping together.

50 .1953327

50 .2396508

50 .2974454

50 .3332408

50 .3409857

50 .4217291

50 .4221470

.121 .135 1.000

50 .1953327

50 .2396508

50 .2974454

50 .3332408

50 .3409857

50 .4217291

50 .4221470

1.000 1.000 1.000 .646 .980

Algorithm Type

TA12

TA22

TA11

SA

HC

TA21

GA

Sig.

TA12

TA22

TA11

SA

HC

TA21

GA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.101E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 47. Homogeneous Subsets, BPP Size Twenty Performance

For FAP problem instances of size twenty, the ANOVA results (verified by

checks on the assumptions) showed that the performance hypothesis could be

safely rejected for this group of problem instances. The homogeneous subsets

generated are given in Exhibit 48. This time both methods agreed on the number of

 163

subsets, but not on the content for each individual subset. Nevertheless, both

agreed on the contents of the top subset, naming the best performers for this group

of problems as a three-way tie between Simulated Annealing, GELS method two

with multiple stepping, and GELS method one with multiple stepping.

50 .3397125

50 .4023753

50 .6658073

50 .7057492 .7057492

50 .7790635 .7790635

50 .7925096

50 .7996660

.317 .812 .151 .992

50 .3397125

50 .4023753

50 .6658073

50 .7057492

50 .7790635

50 .7925096

50 .7996660

1.000 1.000 .168 .506

Algorithm Type

GA

HC

TA11

TA21

TA12

TA22

SA

Sig.

GA

HC

TA11

TA21

TA12

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.092E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 48. Homogeneous Subsets, FAP Size Twenty Performance

In looking at the composite view of all size twenty problem instances, the

ANOVA once again rejected the performance hypothesis, meaning that it

 164

determined that for any given problem instance of size twenty there is a significant

difference in performance between the algorithm types, regardless of which of the

test problem types is being solved. The interesting item here is that while the

assumption of normal distribution of the residuals held for all three problem types

individually, the Kolmogorov-Smirnov test rejected this assumption for the

composite case. This meant that the ANOVA results had to be corroborated by

additional evidence. Fortunately, the results of the Kruskal-Wallis test conducted

on the algorithms’ performances concurred with those of the ANOVA, providing

that necessary corroboration.

Having affirmed the difference in performance between the algorithms, the

homogeneous subsets were generated, and the results are shown in Exhibit 49.

This time the two methods were in complete agreement, creating four subsets and

naming the overall best performer for the size twenty set of experiments to be

Simulated Annealing. The best performances of the GELS combinations were

GELS method two with single stepping and GELS method two with multiple

stepping, which finished together in the second spot.

 165

150 .3527217

150 .3579693

150 .4282322

150 .4420946

150 .4960692

150 .5184000

150 .5667950

1.000 .970 .757 1.000

150 .3527217

150 .3579693

150 .4282322

150 .4420946

150 .4960692

150 .5184000

150 .5667950

.728 .359 .139 1.000

Algorithm Type

HC

GA

TA11

TA12

TA22

TA21

SA

Sig.

HC

GA

TA11

TA12

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.710E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 49. Homogeneous Subsets, Composite Size Twenty Performance

The results of the ANOVA also asserted a significant effect of problem type on

algorithm performance, indicating the presence of some interaction between the

problem type and algorithm type factors. A visual depiction of the interaction

detected is shown in Exhibit 50. While there is not as much interaction as was

shown for size ten problem instances, some line crossing can be seen, as can

notably better performances obtained overall for FAP problem instances than for

instances of the other problem types.

 166

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.9

.8

.7

.6

.5

.4

.3

.2

.1

Problem Type

BPP

FAP

TSP

Exhibit 50. Problem Type Plot, Composite Size Twenty Performance

2.2.7.1.3 Problem Size Thirty Performance Results

The next set of experiments to be analyzed was the set of problem instances of

size thirty. For TSP problem instances of this size, the ANOVA results, confirmed

by checks of the assumptions, showed that the algorithm type factor was having a

significant effect on performance, thus rejecting the performance hypothesis for

this group of problems. In constructing the homogeneous subsets, the Tukey and

Duncan methods were in complete agreement on the arrangement. The sets they

generated are shown in Exhibit 51. Both generated five subsets, and gave the nod

 167

to Simulated Annealing as the best performer for this group of problems. The best

result for GELS was for method two with multiple stepping, which was placed in

the second best subset.

50 .2541734

50 .2583976

50 .3055335

50 .3218444

50 .3591655

50 .3900728

50 .5640582

.999 .491 1.000 1.000 1.000

50 .2541734

50 .2583976

50 .3055335

50 .3218444

50 .3591655

50 .3900728

50 .5640582

.626 .060 1.000 1.000 1.000

Algorithm Type

GA

TA11

TA12

HC

TA21

TA22

SA

Sig.

GA

TA11

TA12

HC

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.870E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 51. Homogeneous Subsets, TSP Size Thirty Performance

For the BPP problem instances of size thirty, the ANOVA rejected the

performance hypothesis for this group of problems, asserting that the choice of

algorithm did have a significant effect on the performance results. The ANOVA

results were verified by checks on the assumptions, and the homogeneous subsets

were generated. The results of this are shown in Exhibit 52. Tukey’s method

 168

produced four subsets, while Duncan’s method produced five. The Tukey method

also named GELS method two with single stepping to be the best performer for this

group of problems, in a tie with the Genetic Algorithm. The Duncan method,

however, differentiated between the two, naming GELS method two with single

stepping to the top spot by itself and placing the Genetic Algorithm in second

place. In either case, though, GELS method two with single stepping was indicated

as the top performer for this group of problems.

50 .1341031

50 .1762473

50 .2510508

50 .2731156

50 .3443429

50 .3744462 .3744462

50 .4228052

.216 .878 .622 .098

50 .1341031

50 .1762473

50 .2510508

50 .2731156

50 .3443429

50 .3744462

50 .4228052

1.000 1.000 .216 .092 1.000

Algorithm Type

TA12

TA22

TA11

SA

HC

GA

TA21

Sig.

TA12

TA22

TA11

SA

HC

GA

TA21

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.921E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 52. Homogeneous Subsets, BPP Size Thirty Performance

 169

For the FAP problems of size thirty, the ANOVA again indicated that the

algorithm type factor was having a significant effect on performance for this group

of problems, and therefore the performance hypothesis should be rejected for this

group of problems. These results were confirmed by the checks on the

assumptions, and the homogeneous subsets were generated. The results of this are

given in Exhibit 53. Tukey’s method generated three subsets, while Duncan’s

method generated four, but both methods agreed on a three-way tie between

Simulated Annealing, GELS method two with single stepping, and GELS method

two with multiple stepping for the best performing algorithm for this group of

problems.

 170

50 .2800623

50 .3974322

50 .4094645

50 .4505783

50 .5350326

50 .5428214

50 .5700861

1.000 .297 .772

50 .2800623

50 .3974322

50 .4094645 .4094645

50 .4505783

50 .5350326

50 .5428214

50 .5700861

1.000 .618 .089 .173

Algorithm Type

GA

HC

TA11

TA12

TA22

TA21

SA

Sig.

GA

HC

TA11

TA12

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.455E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 53. Homogeneous Subsets, FAP Size Thirty Performance

For the composite of all problem instances of size thirty, the ANOVA indicated

that in the overall case for this set of experiments the performance hypothesis

should be rejected. It found a significant effect of algorithm type on performance,

and these results were confirmed through checks on the assumptive conditions of

the ANOVA. The homogeneous subsets generated are shown in Exhibit 54. In this

case both the Tukey and the Duncan methods are in complete agreement. Both

created three subsets, and both named Simulated Annealing and GELS method two

 171

with single stepping to be in a tie for the overall best performer in the set of

problem instances of size thirty.

150 .2967383

150 .3028940

150 .3063043

150 .3545398

150 .3671176

150 .4415974

150 .4690866

.996 .984 .565

150 .2967383

150 .3028940

150 .3063043

150 .3545398

150 .3671176

150 .4415974

150 .4690866

.565 .417 .076

Algorithm Type

TA12

GA

TA11

HC

TA22

TA21

SA

Sig.

TA12

GA

TA11

HC

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.798E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 54. Homogeneous Subsets, Composite Size Thirty Performance

The ANOVA also found a significant effect of the problem type on the

performances of the algorithms. A graph of this is shown in Exhibit 55. It shows

several places where the lines cross, indicating the interaction between the problem

 172

type being solved and the algorithm being used to solve it. The lines for FAP and

TSP problem instances have a similar shape, suggesting that these two problem

types have similar effects on the algorithms. The line for BPP problem instances,

on the other hand, has nearly a completely different shape, suggesting an entirely

different effect on algorithms attempting to solve them. That being the case, it

would suggest further that a different selection of algorithm for solving BPP

problem instances might be apropos. One counter-indication to this is the spike on

BPP for GELS method two with single stepping, showing its high level of

performance for those problem instances, and its comparable level of performance

on instances of the other problem types.

 173

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

.1

Problem Type

BPP

FAP

TSP

Exhibit 55. Problem Type Plot, Composite Size Thirty Performance

2.2.7.1.4 Problem Size Forty Performance Results

Next to be analyzed was the set of problem instances of size forty. For the TSP

problem instances in this group, the confirmed ANOVA results led to the rejection

of the performance hypothesis for this group of problem instances. The

homogeneous subsets were generated, giving the results shown in Exhibit 56.

Once again Tukey’s method generated one fewer subset than did Duncan’s method,

but both agreed that the top performer for this group of problem instances was

Simulated Annealing, with GELS method two with multiple stepping being the

 174

highest rated of the GELS combinations, in the second slot. Of note here is that the

Duncan method found enough difference between each of the algorithms that it was

almost willing to put each one in its own subset, with only Hill Climbing and

GELS method two with single stepping being placed together.

50 .2427152

50 .2675271

50 .2884991

50 .3317160

50 .3370489

50 .3637347

50 .5688824

1.000 .067 .991 1.000 1.000

50 .2427152

50 .2675271

50 .2884991

50 .3317160

50 .3370489

50 .3637347

50 .5688824

1.000 1.000 1.000 .467 1.000 1.000

Algorithm Type

GA

TA11

TA12

TA21

HC

TA22

SA

Sig.

GA

TA11

TA12

TA21

HC

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5 6

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.342E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 56. Homogeneous Subsets, TSP Size Forty Performance

For the size forty BPP problem instance group, the ANOVA indicated rejection

of the performance hypothesis. However, it failed the test for normality of the

residuals, registering only a 0.022 significance rating on the Kolmogorov-Smirnov

test. Needing additional evidence to corroborate the ANOVA results, a Kruskal-

Wallis test was run. This test was able to affirm the results of the ANOVA with a

 175

perfect score, providing reassurance of its conclusions. Having corroborated the

ANOVA results, the homogeneous subsets were generated, and are shown in

Exhibit 57. Again, the Tukey method produced one fewer subset than the Duncan

method. Both methods placed GELS method two with single stepping as the best

performer for this group of problems, with Duncan’s method having placing it there

by itself and Tukey’s method matching it with Hill Climbing (a rather surprising

finish for HC given its performance in the other problem instance groups).

50 .1126178

50 .1605698

50 .2357028

50 .2461047

50 .3333715

50 .3573521 .3573521

50 .3998529

.149 .998 .865 .272

50 .1126178

50 .1605698

50 .2357028

50 .2461047

50 .3333715

50 .3573521

50 .3998529

1.000 1.000 .582 .205 1.000

Algorithm Type

TA12

TA22

SA

TA11

GA

HC

TA21

Sig.

TA12

TA22

SA

TA11

GA

HC

TA21

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 8.911E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 57. Homogeneous Subsets, BPP Size Forty Performance

 176

For the FAP problem instances of size forty, the ANOVA again rejected the

performance hypothesis for this group of problems. This time, the ANOVA results

were confirmed by check of the assumptive conditions, and the homogeneous

subsets were generated. The results of this are shown in Exhibit 58. For the first

time, there were only two subsets generated, identical between the Tukey and

Duncan methods. In the subset indicative of best performance for this group of

problem instances, Simulated Annealing was grouped together with all four of the

GELS combinations, all statistically indistinguishable.

 177

50 .3056053

50 .3491229

50 .5738065

50 .5805035

50 .6003191

50 .6180262

50 .6200262

.638 .569

50 .3056053

50 .3491229

50 .5738065

50 .5805035

50 .6003191

50 .6180262

50 .6200262

.096 .117

Algorithm Type

GA

HC

TA12

TA11

TA21

TA22

SA

Sig.

GA

HC

TA12

TA11

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.703E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 58. Homogeneous Subsets, FAP Size Forty Performance

The composite analysis for all problem instances of size forty was then

performed. The ANOVA indicated a difference in performance between the

algorithms across problem types. However, it completely failed the check of

normality of the residuals, scoring a zero on the Kolmogorov-Smirnov test.

Fortunately, a Kruskal-Wallis test comparing the algorithm types found solid

evidence of its significance as a factor, bolstering the ANOVA results. Since the

 178

non-parametric test had agreed with the ANOVA, there was sufficient evidence of

difference between the performances of the algorithms to warrant rejection of the

performance hypothesis for the size forty experiment set, and the homogeneous

subsets were generated as shown in Exhibit 59. This time there was a two-subset

difference between the Tukey and the Duncan methods, with the Duncan method

again being more discriminatory in its selection of subsets than was Tukey.

Duncan’s method put Simulated Annealing alone at the top, with GELS method

two with single stepping in the second spot, while the Tukey method could not

distinguish between those them as the best performers for this set of experiments.

150 .2938973

150 .3249745 .3249745

150 .3478413 .3478413

150 .3647117 .3647117

150 .3807769

150 .4439627

150 .4748705

.275 .065 .211 .282

150 .2938973

150 .3249745

150 .3478413 .3478413

150 .3647117 .3647117

150 .3807769

150 .4439627

150 .4748705

1.000 .100 .224 .247 1.000 1.000

Algorithm Type

GA

TA12

HC

TA11

TA22

TA21

SA

Sig.

GA

TA12

HC

TA11

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5 6

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.444E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 59. Homogeneous Subsets, Composite Size Forty Performance

 179

Again, the ANOVA results also found that the performance of the algorithms

was not independent of the problem type being solved, and that there was

interaction between the two factors as shown in Exhibit 60. There are several

points where the lines cross, highlighting the interaction between problem type and

algorithm performance, and there is that same general shape between the FAP and

TSP lines, with a markedly different shape to the BPP line, as seen previously,

again indicating a different effect on algorithm performance from BPP problem

instances than from instances of the other problem types.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.7

.6

.5

.4

.3

.2

.1

0.0

Problem Type

BPP

FAP

TSP

Exhibit 60. Problem Type Plot, Composite Size Forty Performance

 180

2.2.7.1.5 Problem Size Fifty Performance Results

The set of experiments consisting of problem instances of size fifty was next

analyzed. For the TSP problem instances of this size, the ANOVA indicated

rejection of the performance hypothesis for this group of problem instances. These

results were confirmed through the necessary checks, and the list of homogeneous

subsets was generated. Exhibit 61 shows this list. While once before the Duncan

procedure was almost prepared to place each algorithm in its own subset, this time

it actually did do so. Even the Tukey method placed only two of the algorithms in

the same subset. Both methods put Simulated Annealing in the top spot, with the

best performing GELS combination being method two with multiple stepping, in

third place in Duncan and tied for second in Tukey.

 181

50 .1944183

50 .2372775

50 .2608414

50 .2882691

50 .3119696

50 .3329833

50 .5478063

1.000 1.000 1.000 1.000 .057 1.000

50 .1944183

50 .2372775

50 .2608414

50 .2882691

50 .3119696

50 .3329833

50 .5478063

1.000 1.000 1.000 1.000 1.000 1.000 1.000

Algorithm Type

GA

TA11

TA12

TA21

TA22

HC

SA

Sig.

GA

TA11

TA12

TA21

TA22

HC

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5 6 7

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.295E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 61. Homogeneous Subsets, TSP Size Fifty Performance

For the BPP problem instances of size fifty, the confirmed ANOVA results

rejected the performance hypothesis. The homogeneous subsets for this group of

problems are shown in Exhibit 62. Once again the Tukey method generated one

less subset than the Duncan method, but both placed GELS method two with single

stepping in a tie with Hill Climbing (another high finish) as the best performers for

this group of problem instances.

 182

50 .0809039

50 .1109964

50 .1618859

50 .1877836

50 .2880904

50 .3420107

50 .3442204

.332 .521 1.000 1.000

50 .0809039

50 .1109964

50 .1618859

50 .1877836

50 .2880904

50 .3420107

50 .3442204

1.000 1.000 .066 1.000 .875

Algorithm Type

TA12

TA22

SA

TA11

GA

HC

TA21

Sig.

TA12

TA22

SA

TA11

GA

HC

TA21

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 4.942E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 62. Homogeneous Subsets, BPP Size Fifty Performance

For the FAP problem instances of size fifty, the ANOVA found a difference

between the algorithm performances. A check of the normality of the residuals

failed, however, with only a 0.003 significance on the Kolmogorov-Smirnov test.

To provide additional evidence, a Kruskal-Wallis test was performed on the

algorithm type factor. This test was able to corroborate the ANOVA, with the

same findings of a difference in algorithm performance. Thus, the list of

homogeneous subsets could be generated, and is shown in Exhibit 63. Only three

subsets, identical in each method, were produced. The best performing algorithms

 183

for this group of problem instances was determined to be a four-way tie, consisting

of Simulated Annealing and all of the GELS combinations with the exception of

method one with multiple stepping, which was placed in the secondary subset.

50 .3408493

50 .4022736

50 .7182439

50 .8237925

50 .8513245

50 .8646275

50 .8715972

.516 1.000 .780

50 .3408493

50 .4022736

50 .7182439

50 .8237925

50 .8513245

50 .8646275

50 .8715972

.066 1.000 .194

Algorithm Type

GA

HC

TA12

TA11

TA21

TA22

SA

Sig.

GA

HC

TA12

TA11

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.761E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 63. Homogeneous Subsets, FAP Size Fifty Performance

Looking at the composite of all problem instances of size fifty, the ANOVA

found sufficient cause to reject the performance hypothesis for this set of

 184

experiments. Once more, though, it completely failed the Kolmogorov-Smirnov

test of normality of the residuals (with a significance of zero), calling the results

into question. A run of a Kruskal-Wallis test against the algorithm type factor was

fortunately able to solidly reaffirm the ANOVA results, providing the necessary

additional evidence to declare the rejection of the performance hypothesis valid.

The list of homogeneous subsets was then generated, shown in Exhibit 64. Once

again there is a one-set difference between the Tukey and Duncan methods. The

Duncan method declared Simulated Annealing to be the best performing algorithm

for this group of problems, with GELS method two with single stepping in second

place. Tukey’s method, on the other hand, placed both algorithms in the same top

slot for performance.

 185

150 .2744527

150 .3533297

150 .3590892

150 .4162845

150 .4291978

150 .4946046

150 .5270964

1.000 1.000 .977 .305

150 .2744527

150 .3533297

150 .3590892

150 .4162845

150 .4291978

150 .4946046

150 .5270964

1.000 .699 .385 1.000 1.000

Algorithm Type

GA

TA12

HC

TA11

TA22

TA21

SA

Sig.

GA

TA12

HC

TA11

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.658E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 64. Homogeneous Subsets, Composite Size Fifty Performance

The ANOVA noted an effect of problem type on algorithm performance for this

set of experiments also. Exhibit 65 shows a line plot that displays this effect. As

with the previous experiment sets, there is a similar shape to the lines for FAP and

TSP, suggesting that these two problem types have a similar effect on the

algorithms. BPP, however, seems again to have a different effect, as evidenced by

its different shape and the fact that the line for BPP crosses the FAP line in three

places. In particular, BPP seems to have a much more adverse effect on the

performance of Simulated Annealing than the other problems, since the

 186

performance on them for SA goes up, but goes down for BPP. As seen previously,

there is also a notably higher overall performance by the algorithms on FAP

problem instances than on instances of the other problem types, but also the most

overall variability in the quality of the performances between the different

algorithms. BPP and TSP problem instances, while not having as high levels of

performance as for FAP, nevertheless had notably less variability in the

performance ratios between algorithm types.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

1.0

.8

.6

.4

.2

0.0

Problem Type

BPP

FAP

TSP

Exhibit 65. Problem Type Plot, Composite Size Fifty Performance

 187

2.2.7.1.6 Random Problem Size Performance Results

The final set of experiments to be analyzed for performance was the set

consisting of problem instances with randomly assigned problem sizes. For the

group of random TSP problem sizes, the ANOVA found significant differences

between algorithm performances, thus rejecting the performance hypothesis. This

finding was verified through the necessary checks, followed by generation of the

homogeneous subsets, which is shown in Exhibit 66. Here the Tukey and Duncan

methods generated the same subsets, as well as the same content for each of the

subsets. Simulated Annealing was shown to have the best performance for this

group of problems, with the highest rated of the GELS combinations being method

two with multiple stepping, in second place.

 188

50 .3064558

50 .3108164

50 .3500400

50 .3564982

50 .4100139

50 .4398797

50 .5728985

.998 .983 1.000 1.000 1.000

50 .3064558

50 .3108164

50 .3500400

50 .3564982

50 .4100139

50 .4398797

50 .5728985

.581 .413 1.000 1.000 1.000

Algorithm Type

GA

TA11

TA12

HC

TA21

TA22

SA

Sig.

GA

TA11

TA12

HC

TA21

TA22

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.554E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 66. Homogeneous Subsets, Random Size TSP Performance

For the random size BPP problem instances the ANOVA again rejected the

performance hypothesis, finding significant differences among the algorithm

performances. The necessary checks revealed no problems, and the homogeneous

subsets were generated. These results are shown in Exhibit 67. Once again the

Tukey method produced one less subset than the Duncan method, which named

GELS method two with single stepping and the Genetic Algorithm to the highest

performing subset. The Tukey method also placed those two algorithms in the top

subset, adding in Hill Climbing for a three-way tie.

 189

50 .1446418

50 .1890416 .1890416

50 .2410511 .2410511

50 .2551412

50 .3348845

50 .3583587

50 .3907435

.236 .096 .990 .057

50 .1446418

50 .1890416

50 .2410511

50 .2551412

50 .3348845

50 .3583587 .3583587

50 .3907435

1.000 1.000 .461 .220 .091

Algorithm Type

TA12

TA22

TA11

SA

HC

GA

TA21

Sig.

TA12

TA22

TA11

SA

HC

GA

TA21

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 9.116E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 67. Homogeneous Subsets, Random Size BPP Performance

For the FAP random sized problem instances the ANOVA once again found a

significant difference between the performances of the algorithms, leading to a

rejection of the performance hypothesis for this group of problem instances. These

results were affirmed by the necessary checks, and the homogeneous subsets were

generated, as shown in Exhibit 68. Again, the Tukey method produced one fewer

subset than the Duncan method. Duncan’s method had a two-way tie for the top

performance between Simulated Annealing, while Tukey’s method had a four-way

tie between the two algorithms just mentioned and the rest of the GELS

 190

combinations, with the exception of method one with multiple stepping (which was

placed in the next lower subset).

50 .2973995

50 .3389672

50 .5825441

50 .6112350 .6112350

50 .6245444 .6245444

50 .6526007 .6526007

50 .6761866

.632 .074 .124

50 .2973995

50 .3389672

50 .5825441

50 .6112350 .6112350

50 .6245444 .6245444

50 .6526007 .6526007

50 .6761866

.095 .111 .116 .342

Algorithm Type

GA

HC

TA12

TA11

TA22

TA21

SA

Sig.

GA

HC

TA12

TA11

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.535E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 68. Homogeneous Subsets, Random Size FAP Performance

The final portion of the performance analysis was for the composite of the

random sized problem instances. The ANOVA for this set of experiments found a

significant difference between the performances of the algorithms, but in

conducting the necessary checks, it was found to fail the test for normally

 191

distributed residuals, scoring only a significance value of 0.01 on the Kolmogorov-

Smirnov test. Additional evidence was required, and a Kruskal-Wallis test of the

algorithm type factor showed the same significant difference, thus agreeing with

and affirming the ANOVA conclusion to reject the performance hypothesis for this

set of experiments. Exhibit 69 shows the homogeneous subsets that were

generated. Yet again, the Tukey method produced one less subset than the Duncan

method. However, both methods had the same content for their respective top

subsets, naming Simulated Annealing and GELS method two with single stepping

as the co-best performers for the set of random sized experiments.

 192

150 .3207380

150 .3434500

150 .3590753 .3590753

150 .3877008 .3877008

150 .4178219

150 .4844527

150 .5014088

.135 .466 .401 .916

150 .3207380

150 .3434500 .3434500

150 .3590753 .3590753

150 .3877008

150 .4178219

150 .4844527

150 .5014088

.128 .294 .055 1.000 .255

Algorithm Type

GA

HC

TA12

TA11

TA22

TA21

SA

Sig.

GA

HC

TA12

TA11

TA22

TA21

SA

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4 5

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.663E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 69. Homogeneous Subsets, Random Size Composite Performance

Once again, the ANOVA for this set of experiments also found a significant

effect of problem type on the performance of the algorithms. This effect is

illustrated in Exhibit 70. Again, there is somewhat of a similarity between the

shape of the lines for FAP and TSP problem instances, but a notable difference in

the shape of the BPP line. At several points the line for BPP is decreasing from

one point to the next while the lines for the others are increasing, and again BPP

seemed to have a rather severe adverse effect on Simulated Annealing.

Performance ratios are again somewhat higher in general for FAP problem

 193

instances and somewhat lower in general for BPP problem instances, although

lower ratios for BPP are not altogether surprising since there is usually less of an

opportunity to improve upon the objective function values of random solutions

given the typically smaller range of these values within problem instances of any

size in comparison to instances of the other problem types. Still, though, the BPP

problem instances seem to be having an adverse effect on some of the algorithms

(Simulated Annealing in particular), but not others (the Genetic Algorithm and

GELS method two with single stepping, for instance).

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.7

.6

.5

.4

.3

.2

.1

Problem Type

BPP

FAP

TSP

Exhibit 70. Problem Type Plot, Random Size Composite Performance

 194

Due to the fact that this set of experiments contained both problem type and

problem size as factors, this enabled the ANOVA to include both of them in its

analysis and look for interactions. Consequently, the ANOVA also found evidence

of a significant effect of problem size on the algorithms’ ability to produce high

quality solutions to them. This effect is displayed in Exhibit 71. The interaction

between the two factors can be seen in the crossing lines. However, while in plots

of performance for the different problem types there were notably different shapes

to some of the lines (particularly for BPP), here all the lines have formed more or

less the same shape. Also, the difference between the highest point and the lowest

point for any of the algorithms is comparable to the distance for any of the others.

This indicates that the problem size is having a fairly consistent effect on each of

the algorithms.

 195

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

Problem Size

10

20

30

40

50

Exhibit 71. Problem Size Plot, Random Size Composite Performance

2.2.7.2 Algorithm Efficiency Results

Recalling that there were two hypotheses in the original DOE, the second phase

of the analysis process was to investigate the efficiency of the algorithms. That is,

now that an analysis has been completed of how good the solutions produced by

the algorithms were, the second phase was to investigate how quickly the

algorithms arrived at those solutions. This is of interest because in situations such

as in these experiments where suboptimal solutions are being delivered, an

algorithm that can produce solutions better than those of another algorithm is more

 196

valuable. However, if the solutions produced by that algorithm are only slightly

better than those of the other, and it took much longer for that algorithm to produce

the solution than it took for the other, the value of that algorithm is reduced.

The sets of experiments to investigate algorithm efficiency mirrored those

conducted to test algorithm performance. A total of six sets of experiments were

conducted, consisting of a set each for problem instance sizes of ten, twenty, thirty,

forty, and fifty, plus a set of random size problem instances, just as was done for

the algorithm performance analysis phase. Exactly the same problem instances that

were used to analyze performance were used to analyze efficiency, and exactly the

same set of tests, tools, and procedures were used in the analysis process, so as with

the last five sets of performance data only the summary results of the efficiency

investigations will be shown.

The only difference between the algorithm performance analysis and the

algorithm efficiency analysis is the metric under study. In the performance phase

this metric measured an algorithm’s ability to improve upon random solutions. In

the efficiency phase, the metric measured how many solutions were examined by

an algorithm before arriving at its ultimate solution. In this way, the qualities of the

solutions being produced by an algorithm were still being taken into consideration,

but they were being tempered by the portion of the search space that was being

covered in producing those solutions.

 197

2.2.7.2.1 Problem Size Ten Efficiency Results

Beginning with the set of problem instances of size ten, the ANOVA showed

that there was a significant difference in algorithm performance, enough to reject

the efficiency hypothesis for this group of problem instances. However, it failed

the Kolmogorov-Smirnov test for normal distribution of the residuals. As will be

seen with the other problem groups and experiment sets, this situation was present

for every problem group of every experiment set in the efficiency analysis.

This situation is due in large part to the nature of the algorithms. Hill Climbing

is a purely greedy algorithm, and as such it tends to terminate very quickly. Thus,

any gains in the quality of solutions produced by the algorithm are obtained at a

cost of very few solutions examined, giving it a very high efficiency ratio. But, the

Genetic Algorithm is by design iterative, repeating the same procedure over and

over until a defined iteration count has been reached. Any gains in quality of

solution are usually obtained only by examining and evaluating large numbers of

solution candidates, meaning its efficiency ratio will tend to be rather small.

So, the efficiency ratio became a double-edged sword. On the one hand it was

a convenient and uniform way of evaluating the efficiency of algorithms across

problem type and size, and for comparing those efficiencies. On the other hand,

because of the way the algorithms operate the ratios for Hill Climbing were very

high, and those of the remaining algorithms substantially lower, resulting in

 198

experiment case residuals that stood a very low chance of being normally

distributed.

This problem could have been alleviated somewhat by excluding Hill Climbing

from the analysis, yet this would have meant that there would have been no means

of comparison between it and the other algorithms other than by rough estimates.

Instead, the HC data were included in the analysis, and Kruskal-Wallis tests were

employed to ensure that the ANOVA results were accurate in spite of non-normal

residuals. With that said, the Kruskal-Wallis test of the algorithms’ efficiency for

the TSP size ten problems was conducted, and matched the results of the ANOVA,

confirming the decision to reject the efficiency hypothesis.

The ANOVA also discovered, for the first time, that the run number did not

play a significant role in the results, as evidenced by its significance value of 0.195

(above the threshold of 0.05). This result would turn out to also be commonplace

during the efficiency analyses, not occurring for every problem group in every

experiment set but in a large percentage of them. This too can be explained by the

nature of the experiments. In the performance phase, problem instances each began

with a Monte Carlo solution and the algorithms attempted to improve on it. The

quality of the Monte Carlo solution was random, so the opportunity to improve on

it varied from problem instance to problem instance. This innate variability

affected the outcome, so the individual experiment runs had to be accounted for and

blocked.

 199

For the efficiency phase, however, this effect was not as potent. It was still

present in that gains in quality were still part of the metric, but it was dampened by

being only part of the ratio, a part that was usually much smaller than the number

of solutions examined. This dampening often meant that the effect was reduced

sufficiently that it was no longer considered significant by the ANOVA.

Nevertheless, it did not hurt to keep the factor blocked in the experiments. In those

situations where it still played a significant effect, it was still necessary for it to be

blocked. In the situations where it was not significant, removing it as a blocking

factor would have taken the variability in the experiments assigned to that factor

and put it back into the general “pool” to be allocated elsewhere. Since there was

already more than a sufficient amount of data to be able to give the ANOVA room

to make its determinations, adding this additional material into the mix was not

needed.

Returning to the analysis of the TSP problem instances of size ten, once the

ANOVA results were confirmed by the Kruskal-Wallis test, the homogeneous

subsets for efficiency were generated, as shown in Exhibit 72. As expected, and as

will become the norm for these analyses, Hill Climbing finished as the most

efficient of the algorithms by a large margin. Of more interest here is the second

place finisher. Duncan’s method determined this to be GELS method one with

single stepping, while Tukey’s method grouped that algorithm with GELS method

one with multiple stepping.

 200

50 .0001206

50 .0005898

50 .0007808

50 .0011020

50 .0152340 .0152340

50 .0414254

50 .4089060

.887 .348 1.000

50 .0001206

50 .0005898

50 .0007808

50 .0011020

50 .0152340

50 .0414254

50 .4089060

.286 1.000 1.000

Algorithm Type

GA

SA

TA22

TA21

TA12

TA11

HC

Sig.

GA

SA

TA22

TA21

TA12

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 3.846E-03.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 72. Homogeneous Subsets, TSP Size Ten Efficiency

For the BPP problem instances, the ANOVA determined that there was a

significant difference between the efficiencies (as will always be the case because

of Hill Climbing), and this was backed up by the Kruskal-Wallis test. The

homogeneous subsets are shown in Exhibit 73. Tukey’s method produced only two

subsets, while Duncan’s produced three. Again, Hill Climbing claimed the top spot

in both methods. Since this is uniformly the case, it will hereafter go unmentioned,

 201

concentrating instead on the next algorithm(s) in the list. The diagrams can be used

as references for the degree of difference between the Hill Climbing efficiencies

and the others. In this case, Tukey’s method placed all the algorithms except Hill

Climbing into the second subset, while Duncan’s method managed to detect

enough of a difference to award GELS method two with single stepping the second

spot.

50 .0000124

50 .0000169

50 .0000229

50 .0001250

50 .0001293

50 .0027439

50 .0707447

.129 1.000

50 .0000124

50 .0000169

50 .0000229

50 .0001250

50 .0001293

50 .0027439

50 .0707447

.923 1.000 1.000

Algorithm Type

TA22

GA

TA12

TA11

SA

TA21

HC

Sig.

TA22

GA

TA12

TA11

SA

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.755E-05.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 73. Homogeneous Subsets, BPP Size Ten Efficiency

 202

For the FAP problem instances, the ANOVA was conducted and corroborated,

and the homogeneous subsets were generated as shown in Exhibit 74. Again the

Tukey method generated one less subset than the Duncan method, and has assigned

the second best efficiency to GELS method one with single stepping and GELS

method two with single stepping together. Duncan’s method assigned each of the

two to its own subset, with the former in second place and the latter in third.

50 .0000357

50 .0000806

50 .0002585

50 .0033077

50 .1162469

50 .1935029

50 .9620087

1.000 .281 1.000

50 .0000357

50 .0000806

50 .0002585

50 .0033077

50 .1162469

50 .1935029

50 .9620087

.933 1.000 1.000 1.000

Algorithm Type

GA

TA22

SA

TA12

TA21

TA11

HC

Sig.

GA

TA22

SA

TA12

TA21

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.994E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 74. Homogeneous Subsets, FAP Size Ten Efficiency

 203

In considering the problem instances of size ten as a whole, the ANOVA was

conducted and corroborated. The homogeneous subsets generated are shown in

Exhibit 75. Both methods put GELS method one with single stepping into the

second place subset.

150 .0000577

150 .0002913

150 .0003259

150 .0061882 .0061882

150 .0400309

150 .0783511

150 .4805531

.999 .103 1.000 1.000

150 .0000577

150 .0002913

150 .0003259

150 .0061882

150 .0400309

150 .0783511

150 .4805531

.664 1.000 1.000 1.000

Algorithm Type

GA

TA22

SA

TA12

TA21

TA11

HC

Sig.

GA

TA22

SA

TA12

TA21

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.192E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 75. Homogeneous Subsets, Composite Size Ten Efficiency

In determining the effect of problem type for this set of experiments, the

ANOVA found a significant interaction between problem type and algorithm

 204

efficiency, as displayed in Exhibit 76. It shows the expected high values for Hill

Climbing, and it also shows a consistent shape for the lines, indicating that problem

type had a relatively consistent effect on each of the algorithms. It is also apparent

that the best efficiencies overall were attained against FAP problem instances.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

1.2

1.0

.8

.6

.4

.2

0.0

Problem Type

BPP

FAP

TSP

Exhibit 76. Problem Type Plot, Composite Size Ten Efficiency

2.2.7.2.2 Problem Size Twenty Efficiency Results

For the TSP problem instances of size twenty, the ANOVA was conducted and

corroborated, and the homogeneous subsets generated as shown in Exhibit 77. The

 205

Tukey method again produced one less subset than the Duncan method, and placed

GELS method one with single stepping and GELS method one with multiple

stepping in the second place subset together. The Duncan method placed GELS

method one with single stepping in its own subset in the second spot, with GELS

method one with multiple stepping also in its own subset in the third spot.

50 .0001691

50 .0001755

50 .0002921

50 .0011623

50 .0114639 .0114639

50 .0234045

50 .2309011

.185 .136 1.000

50 .0001691

50 .0001755

50 .0002921

50 .0011623

50 .0114639

50 .0234045

50 .2309011

.848 1.000 1.000 1.000

Algorithm Type

TA22

GA

TA21

SA

TA12

TA11

HC

Sig.

TA22

GA

TA21

SA

TA12

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 5.349E-04.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 77. Homogeneous Subsets, TSP Size Twenty Efficiency

 206

For the BPP problem instances, the ANOVA was conducted and corroborated,

and the homogeneous subsets were generated as shown in Exhibit 78. Here the two

methods are in complete agreement, placing GELS method two with single

stepping alone in the second spot, with all the rest aside from Hill Climbing in the

third subset together.

50 .0000105

50 .0000243

50 .0000275

50 .0001950

50 .0002410

50 .0050334

50 .0404029

.993 1.000 1.000

50 .0000105

50 .0000243

50 .0000275

50 .0001950

50 .0002410

50 .0050334

50 .0404029

.544 1.000 1.000

Algorithm Type

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.720E-06.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 78. Homogeneous Subsets, BPP Size Twenty Efficiency

 207

For the FAP problem instances, the ANOVA was again conducted and

corroborated, with the homogeneous subsets coming out as shown in Exhibit 79.

The Tukey and Duncan methods agreed on the number of subsets to be produced,

but disagreed on their contents. Duncan’s method put GELS method two with

single stepping in the second subset along with GELS method one with single

stepping, while Tukey’s method added GELS method two with multiple stepping to

that grouping.

 208

50 .0000443

50 .0003463

50 .0265885

50 .1098495 .1098495

50 .3089587

50 .3134450

50 1.2401905

.880 .252 1.000

50 .0000443

50 .0003463

50 .0265885

50 .1098495

50 .3089587

50 .3134450

50 1.2401905

.266 .960 1.000

Algorithm Type

GA

SA

TA12

TA22

TA11

TA21

HC

Sig.

GA

SA

TA12

TA22

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = .198.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 79. Homogeneous Subsets, FAP Size Twenty Efficiency

In considering the problem instances of size twenty together as a whole, once

again the ANOVA was conducted and corroborated, leading to the homogeneous

subsets shown in Exhibit 80. The Tukey and Duncan methods again agreed on

number of subsets, but disagreed on their contents. Duncan’s method declared

GELS method one with single stepping and GELS method two with single stepping

to be in a tie for the second best efficiency for this set of experiments, while

 209

Tukey’s method added GELS method two with multiple stepping to this grouping

for a three-way tie.

150 .0000824

150 .0005832

150 .0126922

150 .0366764 .0366764

150 .1062568

150 .1108527

150 .5038315

.899 .197 1.000

150 .0000824

150 .0005832

150 .0126922

150 .0366764

150 .1062568

150 .1108527

150 .5038315

.285 .882 1.000

Algorithm Type

GA

SA

TA12

TA22

TA21

TA11

HC

Sig.

GA

SA

TA12

TA22

TA21

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.128E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 80. Homogeneous Subsets, Composite Size Twenty Efficiency

The ANOVA for this experiment set also found a significant interaction

between problem type and algorithm efficiency. This is visualized in Exhibit 81.

Again there is a similar shape to the lines, indicating a comparable effect of

 210

problem type on each of the algorithms. Also, the FAP problem instances again

produced notably higher efficiency ratios from the algorithms than the other two

problem types.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

1.4

1.2

1.0

.8

.6

.4

.2

0.0

Problem Type

BPP

FAP

TSP

Exhibit 81. Problem Type Plot, Composite Size Twenty Efficiency

2.2.7.2.3 Problem Size Thirty Efficiency Results

Moving on to the analysis of the problem instances of size thirty, the validated

ANOVA results for the TSP problem instances of this size led to the homogeneous

subsets shown in Exhibit 82. Once again the Tukey and Duncan methods agreed

 211

on count of subsets but not quite on content, with Tukey’s method twice placing the

same algorithm in two different subsets. Both methods agreed, though, that the

second best efficiency for this group of problem instances should go to GELS

method one with single stepping. Duncan’s method put this algorithm alone in

second place, while Tukey’s method grouped it into a tie with GELS method one

with multiple stepping.

50 .0001603

50 .0001907

50 .0002107

50 .0016618 .0016618

50 .0087461 .0087461

50 .0149772

50 .1603784

.996 .054 .134 1.000

50 .0001603

50 .0001907

50 .0002107

50 .0016618

50 .0087461

50 .0149772

50 .1603784

.578 1.000 1.000 1.000

Algorithm Type

TA22

TA21

GA

SA

TA12

TA11

HC

Sig.

TA22

TA21

GA

SA

TA12

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.452E-04.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 82. Homogeneous Subsets, TSP Size Thirty Efficiency

 212

For the BPP problem instances, the validated ANOVA led to the homogeneous

subsets shown in Exhibit 83. This time the Tukey method generated three subsets

as opposed to four by the Duncan method, but both agreed that the second best

efficiency for this group of problem instances belonged to GELS method two with

single stepping.

50 .0000086

50 .0000241

50 .0000368

50 .0002490

50 .0003573

50 .0039249

50 .0288668

.183 1.000 1.000

50 .0000086

50 .0000241

50 .0000368

50 .0002490 .0002490

50 .0003573

50 .0039249

50 .0288668

.126 .448 1.000 1.000

Algorithm Type

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 5.080E-07.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 83. Homogeneous Subsets, BPP Size Thirty Efficiency

 213

For the FAP problem instances, the validated ANOVA led to the homogeneous

subsets shown in Exhibit 84. In this case, both the Tukey and the Duncan method

could not distinguish between the efficiencies of any of the algorithms other than

Hill Climbing, so all finished in a tie for second best.

50 .0000222

50 .0000683

50 .0001443

50 .0072575

50 .0283337

50 .0779681

50 .6522771

.592 1.000

50 .0000222

50 .0000683

50 .0001443

50 .0072575

50 .0283337

50 .0779681

50 .6522771

.133 1.000

Algorithm Type

GA

TA12

SA

TA22

TA11

TA21

HC

Sig.

GA

TA12

SA

TA22

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 5.038E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 84. Homogeneous Subsets, FAP Size Thirty Efficiency

 214

In considering all problem instances of size thirty together, the validated

ANOVA led to the generation of the homogeneous subsets shown in Exhibit 85.

Like the FAP problem instances, neither the Tukey nor the Duncan method could

make any distinction between the efficiencies of any of the algorithms other than

Hill Climbing. Consequently, for the size thirty experiment set all algorithms

besides Hill Climbing finished with the second best efficiency.

150 .0000899

150 .0007211

150 .0024755

150 .0029462

150 .0145200

150 .0273612

150 .2805074

.554 1.000

150 .0000899

150 .0007211

150 .0024755

150 .0029462

150 .0145200

150 .0273612

150 .2805074

.120 1.000

Algorithm Type

GA

SA

TA22

TA12

TA11

TA21

HC

Sig.

GA

SA

TA22

TA12

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.739E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 85. Homogeneous Subsets, Composite Size Thirty Efficiency

 215

The validated ANOVA for this experiment set once again found a significant

interaction between problem type and algorithm efficiency, as shown in Exhibit 86.

Once again there is a consistent shape to the lines indicative of a similar effect of

problem type on each of the algorithms, and the FAP problem instances in general

garnered the highest efficiencies from the algorithms.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.7

.6

.5

.4

.3

.2

.1

0.0

Problem Type

BPP

FAP

TSP

Exhibit 86. Problem Type Plot, Composite Size Thirty Efficiency

 216

2.2.7.2.4 Problem Size Forty Efficiency Results

Moving along to the examination of the set of experiments of size forty, the

validated ANOVA for the TSP problem instances of this size led to the generation

of the homogeneous subsets shown in Exhibit 87. Both the Tukey and Duncan

methods were in complete agreement in this case, putting GELS method one with

single stepping into the slot for the second best efficiency.

50 .0001660

50 .0001850

50 .0002784

50 .0022785

50 .0078855

50 .0129658

50 .1236567

.791 1.000 1.000 1.000

50 .0001660

50 .0001850

50 .0002784

50 .0022785

50 .0078855

50 .0129658

50 .1236567

.200 1.000 1.000 1.000

Algorithm Type

TA22

TA21

GA

SA

TA12

TA11

HC

Sig.

TA22

TA21

GA

SA

TA12

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 5.531E-05.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 87. Homogeneous Subsets, TSP Size Forty Efficiency

 217

For the BPP problem instances, the validated ANOVA led to the homogenous

subsets shown in Exhibit 88. The Tukey and Duncan methods have agreed on the

number of subsets, but Tukey’s method placed three of the algorithms in two

subsets. Both methods, however, agreed that the second best efficiency for this

group of problems was GELS method two with single stepping.

50 .0000084

50 .0000274 .0000274

50 .0000440 .0000440

50 .0003240 .0003240

50 .0003562

50 .0032085

50 .0225612

.075 .054 1.000 1.000

50 .0000084

50 .0000274

50 .0000440

50 .0003240

50 .0003562

50 .0032085

50 .0225612

.767 .773 1.000 1.000

Algorithm Type

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 3.128E-07.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 88. Homogeneous Subsets, BPP Size Forty Efficiency

 218

For the FAP problem instances, the validated ANOVA led to the generation of

the homogeneous subsets shown in Exhibit 89. As with the FAP problem instances

for the size thirty experiment set, both Tukey’s method and Duncan’s method were

unable to make a distinction between the efficiencies of any of the algorithms

besides Hill Climbing. Therefore, all of them fell into the second place position for

this group of problems.

50 .0000194

50 .0000690

50 .0001212

50 .0051760

50 .0079355

50 .0469712

50 .5885714

.928 1.000

50 .0000194

50 .0000690

50 .0001212

50 .0051760

50 .0079355

50 .0469712

50 .5885714

.347 1.000

Algorithm Type

GA

TA12

SA

TA22

TA11

TA21

HC

Sig.

GA

TA12

SA

TA22

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 4.554E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 89. Homogeneous Subsets, FAP Size Forty Efficiency

 219

In considering all the size forty problem instances as a whole, the validated

ANOVA led to the generation of the homogeneous subsets shown in Exhibit 90.

Like the FAP problem instances of size forty and the composite experiment set of

size thirty, neither the Tukey nor the Duncan method was able to distinguish

between the efficiencies of any of the algorithms other than Hill Climbing, and all

were placed in the second place subset together.

150 .0001139

150 .0009187

150 .0017835

150 .0026606

150 .0070751

150 .0167882

150 .2449298

.907 1.000

150 .0001139

150 .0009187

150 .0017835

150 .0026606

150 .0070751

150 .0167882

150 .2449298

.319 1.000

Algorithm Type

GA

SA

TA22

TA12

TA11

TA21

HC

Sig.

GA

SA

TA22

TA12

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.536E-02.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 90. Homogeneous Subsets, Composite Size Forty Efficiency

 220

The ANOVA for this set of experiments also noted an interaction between the

problem type and algorithm efficiency. Exhibit 91 shows the plot of the

efficiencies for the three problem types. The patterns of similar shape of the lines

and generally better efficiency ratios for FAP continued for this experiment set,

although the ratios seem to be on the decrease compared to the smaller problem

size experiments.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.7

.6

.5

.4

.3

.2

.1

0.0

Problem Type

BPP

FAP

TSP

Exhibit 91. Problem Type Plot, Composite Size Forty Efficiency

 221

2.2.7.2.5 Problem Size Fifty Efficiency Results

Next to be analyzed was the experiment set consisting of problem instances of

size fifty. For the TSP problem instances in this set, the validated ANOVA

preceded the generation of the homogeneous subsets as shown in Exhibit 92.

Though the Tukey and Duncan methods produced essentially the same subsets, the

Tukey method did twice place an algorithm in two different subsets. The Duncan

method named GELS method one with single stepping to the second place slot by

itself, while the Tukey method grouped it together with GELS method one with

multiple stepping.

 222

50 .0001466

50 .0001594

50 .0002751

50 .0027098 .0027098

50 .0063639 .0063639

50 .0101841

50 .1042789

.504 .112 .083 1.000

50 .0001466

50 .0001594

50 .0002751

50 .0027098

50 .0063639

50 .0101841

50 .1042789

.089 1.000 1.000 1.000

Algorithm Type

TA22

TA21

GA

SA

TA12

TA11

HC

Sig.

TA22

TA21

GA

SA

TA12

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 4.715E-05.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 92. Homogeneous Subsets, TSP Size Fifty Efficiency

For the BPP problem instances, the validated ANOVA led to the generation of

the homogeneous subsets, and these are shown in Exhibit 93. In this case both the

Tukey and Duncan methods produced the same subsets, and named GELS method

two with single stepping as the second best efficiency for this group of problems.

 223

50 .0000060

50 .0000240

50 .0000470

50 .0003040

50 .0003534

50 .0026562

50 .0183102

.996 .988 1.000 1.000

50 .0000060

50 .0000240

50 .0000470

50 .0003040

50 .0003534

50 .0026562

50 .0183102

.554 .446 1.000 1.000

Algorithm Type

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3 4

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 1.047E-07.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 93. Homogeneous Subsets, BPP Size Fifty Efficiency

For the FAP problem instances, the validated ANOVA led to the homogeneous

subsets shown in Exhibit 94. Like the FAP problem instances of its predecessors,

both Tukey’s method and Duncan’s method failed to distinguish between the

efficiencies of any of the algorithms except Hill Climbing, placing them all into the

same second place subset.

 224

50 .0000185

50 .0000871

50 .0001758

50 .0057499

50 .0064368

50 .0303496

50 .5137097

.956 1.000

50 .0000185

50 .0000871

50 .0001758

50 .0057499

50 .0064368

50 .0303496

50 .5137097

.398 1.000

Algorithm Type

GA

TA12

SA

TA11

TA22

TA21

HC

Sig.

GA

TA12

SA

TA11

TA22

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.351E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 94. Homogeneous Subsets, FAP Size Fifty Efficiency

In examining the composite results for the size fifty experiment set, the

validated ANOVA was followed by the generation of the homogeneous subsets

shown in Exhibit 95. Once again, as with the FAP and composite problem groups

of other sizes, neither Tukey’s nor Duncan’s method could distinguish between any

of the algorithms other than Hill Climbing, and thus there was no outright second

place finisher in efficiency for this set of experiments.

 225

150 .0001135

150 .0010797

150 .0021583

150 .0021965

150 .0054127

150 .0110551

150 .2120996

.938 1.000

150 .0001135

150 .0010797

150 .0021583

150 .0021965

150 .0054127

150 .0110551

150 .2120996

.363 1.000

Algorithm Type

GA

SA

TA12

TA22

TA11

TA21

HC

Sig.

GA

SA

TA12

TA22

TA11

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 7.922E-03.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 95. Homogeneous Subsets, Composite Size Fifty Efficiency

Along with these results, the ANOVA had once again detected an interaction

between problem type and algorithm efficiency, as displayed in Exhibit 96. The

now-familiar patterns of similar line shape, general superiority of efficiency by

algorithms for FAP problem instances, and a decreasing level of efficiency for FAP

problem instances were once more noted in this diagram.

 226

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

.1

0.0

Problem Type

BPP

FAP

TSP

Exhibit 96. Problem Type Plot, Composite Size Fifty Efficiency

2.2.7.2.6 Random Problem Size Efficiency Results

To round out the analyses of efficiency, the set of problem instances having

randomly assigned problem sizes was examined. The ANOVA for the TSP

problem instance group was validated and followed by the generation of the

homogeneous subsets, shown in Exhibit 97. The lists produced by the two methods

were essentially the same, except that the Duncan method put GELS method one

with single stepping in second place by itself, while the Tukey method coupled it

with GELS method one with multiple stepping (which appeared in two subsets).

 227

50 .0001679

50 .0002075

50 .0002601

50 .0015647

50 .0105850 .0105850

50 .0229078

50 .2409103

.408 .210 1.000

50 .0001679

50 .0002075

50 .0002601

50 .0015647

50 .0105850

50 .0229078

50 .2409103

.073 1.000 1.000

Algorithm Type

TA22

GA

TA21

SA

TA12

TA11

HC

Sig.

TA22

GA

TA21

SA

TA12

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 6.689E-04.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 97. Homogeneous Subsets, TSP Random Size Efficiency

For the BPP problem instances, the validated ANOVA was again followed by

the generation of the homogeneous subsets, which appear in Exhibit 98. The lists

produced by the two methods are identical, putting GELS method two with single

stepping into the number two slot for efficiency for this group of problems.

 228

50 .0000084

50 .0000240

50 .0000362

50 .0002640

50 .0002916

50 .0033279

50 .0321323

.993 1.000 1.000

50 .0000084

50 .0000240

50 .0000362

50 .0002640

50 .0002916

50 .0033279

50 .0321323

.549 1.000 1.000

Algorithm Type

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

TA22

TA12

GA

TA11

SA

TA21

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 4.217E-06.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 98. Homogeneous Subsets, BPP Random Size Efficiency

For the FAP problem instances, the validated ANOVA was again followed by

the generation of the homogeneous subsets, as shown in Exhibit 99. Like other

FAP problem instance groups, the Tukey method was unable to distinguish

between the algorithms for efficiency other than Hill Climbing. However, in this

case the Duncan method was able to make somewhat of a distinction, placing

 229

GELS method one with single stepping and GELS method two with single stepping

into a second place subset apart from the others.

50 .0000226

50 .0001906

50 .0045733

50 .0060165

50 .0592630

50 .0881797

50 .6348052

.124 1.000

50 .0000226

50 .0001906

50 .0045733

50 .0060165

50 .0592630 .0592630

50 .0881797

50 .6348052

.119 .391 1.000

Algorithm Type

GA

SA

TA12

TA22

TA21

TA11

HC

Sig.

GA

SA

TA12

TA22

TA21

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 2.830E-02.

Uses Harmonic Mean Sample Size = 50.000.a.

Alpha = .05.b.

Exhibit 99. Homogeneous Subsets, FAP Random Size Efficiency

To complete the second phase of analysis, the problem instances with randomly

generated problem sizes were examined across problem types. Once more the

ANOVA was conducted and corroborated, and the homogeneous subsets were

 230

generated as shown in Exhibit 100. Both the Tukey and Duncan methods

generated three subsets. Duncan’s method awarded the second spot in a tie to

GELS method one with single stepping and GELS method two with single

stepping. Tukey’s method concurred with this assessment, but added GELS

method one with multiple stepping to make it a three-way tie for the second best

efficiency for this set of experiments.

150 .0000888

150 .0006823

150 .0020643

150 .0050608 .0050608

150 .0209503 .0209503

150 .0371172

150 .3026159

.541 .080 1.000

150 .0000888

150 .0006823

150 .0020643

150 .0050608

150 .0209503 .0209503

150 .0371172

150 .3026159

.108 .161 1.000

Algorithm Type

GA

SA

TA22

TA12

TA21

TA11

HC

Sig.

GA

SA

TA22

TA12

TA21

TA11

HC

Sig.

Tukey HSDa,b

Duncana,b

N 1 2 3

Subset

Means for groups in homogeneous subsets are displayed.
Based on Type III Sum of Squares
The error term is Mean Square(Error) = 9.959E-03.

Uses Harmonic Mean Sample Size = 150.000.a.

Alpha = .05.b.

Exhibit 100. Homogeneous Subsets, Composite Random Size Efficiency

 231

Once more, the ANOVA found an interaction between problem type and

algorithm efficiency, and this is displayed in Exhibit 101. The same patterns

appear as for the other experiment sets, with comparable line shapes indicating

similar effect of the problem types on each algorithm and a generally higher

efficiency obtained by FAP problem instances.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.8

.6

.4

.2

0.0

-.2

Problem Type

BPP

FAP

TSP

Exhibit 101. Problem Type Plot, Composite Random Size Efficiency

Finally, the ANOVA also found an interaction between the problem size and

the algorithm efficiency, as displayed in Exhibit 102. Like the plot showing the

 232

effect of problem type on the algorithms’ efficiency, this plot shows a very

consistent shape to the lines, indicating that the problem size, like the type, has a

similar effect on the efficiencies of all algorithms. There also appears a downward

trend in efficiency for each algorithm (where visible) with increasing problem size.

Algorithm Type

TA22TA21TA12TA11SAHCGA

E
st

im
at

ed
 M

ar
gi

na
l M

ea
ns

.6

.5

.4

.3

.2

.1

0.0

-.1

Problem Size

10

20

30

40

50

Exhibit 102. Problem Size Plot, Composite Random Size Efficiency

This completed the two phases of analysis comparing the algorithms’

performance and efficiency. In all cases, both the performance and the efficiency

hypotheses had been rejected, showing solid evidence that there was indeed a

 233

significant difference in the ability of the different algorithms to produce high

quality solutions to the generated problem instances, and also a significant

difference in how much of the search space was examined by the different

algorithms in producing their solutions. At every step, the results of the

experiments were carefully analyzed, maintaining a watch on any and all necessary

conditions to ensure that they were met and if not, that alternate sources of

evidence were examined to verify the original results. All of this was done in an

effort to ensure the integrity of the analyses and provide a firm grounding for

establishing conclusions. In this way, any conclusions that would be drawn

regarding the experiments in general or the GELS algorithm in particular would be

based on solid statistical procedures and not merely on the wishful thinking of the

author.

 234

3 Research Efforts Summary and

Evaluation

 235

3.1 Interpretation of Research Results

In interpreting the results of the two phases of analysis, it was evident that there

was no clear “winner” in terms of best performance and efficiency over all

experiment sets. No one algorithm had managed to be that dominant, even in a

single category (with the exception of Hill Climbing efficiency, for the reasons

already noted). In order to better bring the results into focus and provide a clearer

picture of the results for drawing appropriate conclusions, the results data needed to

be consolidated and collated.

Exhibit 103 shows a concise view of all the algorithm comparison results. For

each problem type (“COM” is used here to identify the composite of all problem

instances across problem types) and size, the ranking of each algorithm is given in

terms of which homogeneous subset it was placed into. Thus, a value of 1 indicates

the algorithm was in the top ranked subset, higher values indicate lower ranked

subsets. The rankings are identified as “P” for performance and “E” for efficiency,

and each entry consists of the Tukey method ranking and the Duncan method

ranking, respectively, separated by a slash.

 236

Algorithm Rankings

HC GA SA TA11 TA12 TA21 TA22

Type Size P E P E P E P E P E P E P E

10 4/4 1/1 2/2 3/3 1/1 3/3 3/3 2/2 2/2 2/3 1/1 3/3 1/1 3/3

20 4/5 1/1 4/5 3/4 1/1 3/4 4/5 2/2 3/4 2/3 2/3 3/4 2/2 3/4

30 4/4 1/1 5/5 4/4 1/1 3/4 5/5 2/2 4/4 2/3 3/3 4/4 2/2 4/4

40 3/3 1/1 5/6 3/4 1/1 3/4 4/5 2/2 4/4 2/3 3/3 3/4 2/2 3/4

50 2/2 1/1 6/7 4/4 1/1 3/4 5/6 2/2 4/5 2/3 3/4 4/4 2/3 4/4

TSP

R 4/4 1/1 5/5 3/3 1/1 3/3 5/5 2/2 4/4 2/3 3/3 3/3 2/2 3/3

10 3/2 1/1 1/1 2/3 2/2 2/3 3/3 2/3 4/3 2/3 1/1 2/2 3/3 2/3

20 2/2 1/1 1/1 3/3 2/2 3/3 2/3 3/3 3/5 3/3 1/1 2/2 3/4 3/3

30 2/2 1/1 1/2 3/4 3/3 3/3 3/3 3/3 4/5 3/4 1/1 2/2 4/4 3/4

40 1/2 1/1 2/2 3/4 3/3 3/3 3/3 3/3 4/5 3/4 1/1 2/2 4/4 4/4

50 1/1 1/1 2/2 4/4 3/3 3/3 3/3 3/3 4/5 4/4 1/1 2/2 4/4 4/4

BPP

R 1/2 1/1 1/1 3/3 2/3 3/3 2/3 3/3 4/5 3/3 1/1 2/2 3/4 3/3

10 3/3 1/1 4/4 3/4 1/1 3/4 2/2 2/2 4/4 3/4 1/1 2/3 2/2 3/4

20 4/3 1/1 4/4 3/3 1/1 3/3 3/2 2/2 1/1 3/3 2/2 2/2 1/1 2/3

30 2/3 1/1 3/4 2/2 1/1 2/2 2/2 2/2 2/2 2/2 1/1 2/2 1/1 2/2

40 2/2 1/1 2/2 2/2 1/1 2/2 1/1 2/2 1/1 2/2 1/1 2/2 1/1 2/2

50 3/3 1/1 3/3 2/2 1/1 2/2 1/1 2/2 2/2 2/2 1/1 2/2 1/1 2/2

FAP

R 3/4 1/1 3/4 2/3 1/1 2/3 1/2 2/2 2/3 2/3 1/1 2/2 1/2 2/3

10 4/4 1/1 3/3 4/4 1/1 4/4 3/3 2/2 4/4 3/4 1/1 3/3 2/2 4/4

20 4/4 1/1 4/4 3/3 1/1 3/3 3/3 2/2 3/3 3/3 2/2 2/2 2/2 2/3

30 2/2 1/1 3/3 2/2 1/1 2/2 3/3 2/2 3/3 2/2 1/1 2/2 2/2 2/2

40 2/4 1/1 4/6 2/2 1/1 2/2 2/3 2/2 3/5 2/2 1/2 2/2 2/3 2/2

50 3/4 1/1 4/5 2/2 1/1 2/2 2/3 2/2 3/4 2/2 1/2 2/2 2/3 2/2

COM

R 4/4 1/1 4/5 3/3 1/1 3/3 2/3 2/2 3/3 2/3 1/1 2/2 2/2 3/3

Exhibit 103. Summary of Algorithm Comparison Rankings

 237

By taking a simple average of the rankings over each of the problem types,

Exhibit 104 is produced. Here the averages for the Tukey method are located in the

rows marked with a “T” in the column labeled “M” (for “Method”). The Duncan

method averages are located in the “D” rows.

Average Algorithm Rankings

HC GA SA TA11 TA12 TA21 TA22

Type M P E P E P E P E P E P E P E

T 3.50 1.00 4.50 3.33 1.00 3.00 4.33 2.00 3.50 2.00 2.50 3.33 1.83 3.33
TSP

D 3.67 1.00 5.00 3.67 1.00 3.67 4.83 2.00 3.83 3.00 2.83 3.67 2.00 3.67

T 1.67 1.00 1.33 3.00 2.50 2.83 2.67 2.83 3.83 3.00 1.00 2.00 3.50 3.17
BPP

D 1.83 1.00 1.50 3.50 2.67 3.00 3.00 3.00 4.67 3.50 1.00 2.00 3.83 3.50

T 2.83 1.00 3.17 2.33 1.00 2.33 1.67 2.00 2.00 2.33 1.17 2.00 1.17 2.17
FAP

D 3.00 1.00 3.50 2.67 1.00 2.67 1.67 2.00 2.17 2.67 1.17 2.17 1.33 2.67

T 3.17 1.00 3.67 2.67 1.00 2.67 2.50 2.00 3.17 2.33 1.17 2.17 2.00 2.50
COM

D 3.67 1.00 4.33 2.67 1.00 2.67 3.00 2.00 3.67 2.67 1.50 2.17 2.33 2.67

Exhibit 104. Averages of Algorithm Comparison Rankings

Using the numbers in Exhibits 103 and 104 as a guide, Exhibit 105 shows some

basic recommendations that can be made regarding choice of algorithm for solving

the various problem types. These are only suggestions based on the experimental

analyses, and cannot be considered hard-and-fast rules for selecting an algorithm to

solve a problem. For each set of selection criteria, the top three candidate

algorithms are shown in order, separated by a slash.

 238

If the primary

interest is…

And the secondary

interest is…

And the problem to

be solved is…

The solution algorithm of

choice should likely be…

Performance N/A TSP SA / TA22 / TA21

Performance Efficiency TSP SA / TA22 / HC

Efficiency N/A TSP HC / TA11 / TA12

Efficiency Performance TSP HC / SA / TA11

Performance N/A BPP TA21 / GA / HC

Performance Efficiency BPP TA21 / HC / GA

Efficiency N/A BPP HC / TA21 / (SA, TA11)

Efficiency Performance BPP HC / TA21 / GA

Performance N/A FAP SA / TA21 / TA22

Performance Efficiency FAP TA21 / SA / TA22

Efficiency N/A FAP HC / TA11 / TA21

Efficiency Performance FAP HC / TA21 / TA11

Performance N/A Any SA / TA21 / TA22

Performance Efficiency Any SA / TA21 / TA22

Efficiency N/A Any HC / TA11 / TA21

Efficiency Performance Any HC / TA21 / SA

Exhibit 105. Algorithm Selection Suggestions

 239

Based on the data from the experiments and the summaries in Exhibits 103,

104, and 105, a number of observations can be made regarding the results of the

research:

1. For the TSP problems, Simulated Annealing was the overall best. It had the

best performance ratings, and though its efficiency was mediocre it had

much better performance numbers than the algorithms with better

efficiencies.

2. For the BPP problems, GELS method two with single stepping was the

overall best. It had the best performance ratings, and the best efficiency

ratings aside from Hill Climbing (which didn’t have the performance

numbers that GELS had).

3. For the FAP problems, it was a close call. Simulated Annealing and GELS

method two with single stepping were virtually tied in terms of

performance, with Simulated Annealing rated number one for all problem

sizes by both the Tukey and Duncan methods, and GELS rated number one

for all problem sizes but one (for which it was rated number two), also by

both methods. GELS also had slightly better efficiency numbers.

4. For the overall composite cases, it was another close call. Again, Simulated

Annealing and GELS method two with single stepping were virtually tied in

terms of performance, with Simulated Annealing rated number one for all

problem sizes by both the Tukey and Duncan methods, and GELS rated

number one for all problem sizes but one by the Tukey method and three of

 240

the problem sizes by the Duncan method (the other three being number

two). And again, GELS had the better efficiency numbers.

5. The performance of GELS method one with single stepping was mediocre,

with the exception of a good showing on the FAP problems. Its one shining

spot was its efficiency, second only to Hill Climbing (and having better

performance than Hill Climbing most of the time).

6. The performance of GELS method one with multiple stepping was also

mediocre, across the board. It also had very mediocre efficiency numbers.

7. The performance of GELS method two with single stepping was very good,

winning one category of problems outright (the BPP problems) and coming

very close to winning two others, including the overall. It also had very

good efficiency numbers. It did seem to have some difficulty with TSP,

posting numbers for both performance and efficiency that were substantially

worse than it received for the other problem types.

8. The performance of GELS method two with multiple stepping showed

some bright spots, but it had some problems with efficiency, posting quite

mediocre numbers.

3.2 Overall Evaluation of GELS

In the research experimentation, the GELS algorithm in its various

combinations gave a very good showing. The method two variations had very

 241

good performance, finishing near the top of the rankings. Method two with single

stepping was the clear performance winner for BPP problem instances, and it came

very close to having the best performance for FAP problem instances, and again for

all problem types in general. The single stepping variations of the algorithm also

finished at the top of the rankings for efficiency, besting all algorithms except the

greedy Hill Climbing.

The other algorithms used in the study have been studied and optimized for

years, and the parameters that were used to run them during the experiments were

set to values that had been found over the course of much study to be suited for

producing good results for the types of problems in use. The GELS algorithm,

however, had only been under study for a relatively short period of time. The

parameters used to run it had undergone a number of changes during its

development, and there certainly was not a period of many years of tweaking and

tuning behind the settings that were used for them during the experiments. In spite

of these handicaps, GELS was able to go head-to-head with the much more mature

algorithms on very well studied problems and in many cases beat them in terms of

both quality of solutions produced and efficiency of search.

This then is the contribution of GELS to the literature. It is novel; a search of

the literature at the beginning of this research revealed nothing that referenced the

use of the principles of gravitation to guide the search of an optimization algorithm.

Furthermore, it cannot be classified as merely a variation on the theme of another

algorithm. Though it does always tend to move towards better solutions, it is not

 242

purely greedy because it does not always move towards the best solutions available.

Though it contains some elements of randomness, its movement through a search

space is not random, but quite deterministic. And though it contains several

elements in common with other algorithms, such as a heuristic to guide the search

and a mechanism for escaping local optima, by definition all local search

algorithms will contain those elements, and GELS employs them in a different way

than the others. Finally, though new it was able to withstand the rigors of statistical

examination on a variety of problem types and have that examination report

operation on a par with if not better than the other algorithms.

Still, there are many opportunities for future research. Many of the

opportunities lie in further study of the algorithm and its operation, such as:

• Investigating the algorithm heuristic to find out if using the mass

components instead of just the difference between objective function values

can be made cost-effective and beneficial

• Investigating the use of a fixed number of elements in the velocity vector

• Reintroducing the concept of resistive force, used in the early experiments

but found to be too cumbersome for use in the research experiments (but

perhaps could be useful if “streamlined” and made easier to control)

• Experimentation with different mechanisms for updating the velocity vector

• Experimentation with different mechanisms for multiple step motion

 243

• Testing different combinations of parameter values to find settings inclined

to produce better solutions

• Inserting some additional randomness into the procedure, like occasional

random events that cause movement direction to shift

• Attempt to put more “intelligence” into the algorithm, e.g. allowing it to

automatically alter its operation as it acquires information about the

problem and senses the need for adjustment

Of course, there is also the possibility of conducting further studies with GELS

using different problem types and comparison algorithms. It is the suspicion of this

author, based on tantalizing data received during the early experiments with the

algorithm, that the multiple step movement option would prove to be quite useful in

problems where the search space is sparse, that is, contains very few valid

solutions. Designing some experiments with algorithms of that nature to test this

theory would provide useful information, regardless of whether or not the theory

turned out to be correct.

3.3 Conclusion

To say that the research experimentation revealed the GELS algorithm to bring

revolutionary new capabilities in solving combinatorial optimization problems to

the table would be a falsehood. But, to say that it is useful only as a potential

teaching vehicle would also be incorrect. It outperformed Hill Climbing and a

 244

Genetic Algorithm, two styles of algorithm that are in widespread use to solve a

variety of combinatorial optimization problems. It was tested against several

common problem types and sizes which, although limited in number by the

restrictions of the available analysis tool, nonetheless provided more than enough

cases for the statistical analysis to produce solid backing for its capabilities.

For GELS to be relegated to an occasional mention in passing as an example of

optimization algorithms that emulate natural processes to produce solutions would

be to ignore that statistical backing. Certainly more study is required before the full

capabilities and usefulness of the GELS algorithm will be known, but this research

has demonstrated that such an undertaking would be worthwhile.

 245

References

Aarts, E. and J. K. Lenstra, eds. Local Search in Combinatorial Optimization. New

York, NY: John Wiley & Sons, Ltd., 1997.

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullmann. Data Structures and

Algorithms. Reading, MA: Addison-Wesley, 1983.

Arora, Sanjeev. “Polynomial Time Approximation Schemes for Euclidean

Traveling Salesman and Other Geometric Problems.” Journal of the ACM, vol.

45, iss. 5 (September 1998): 753-782.

Bernhard, Philip J. and Kevin L. Fox. “Experimental Evaluation of Techniques for

Database File Assignment.” N.P., 2000.

Bresina, John. “Heuristic-Biased Stochastic Sampling.” Proceedings of the 13th

National Conference on Artificial Intelligence (1996).

Bresina, John, Mark Drummond, and Keith Swanson. “Search Space

Characterization for a Telescope Scheduling Application.” Working notes of

the AAAI Fall Symposium, Planning and Learning: On to Real Applications,

1994.

Corman, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. MIT Press, 1991.

 246

Dowdy, Lawrence W. and Derrell V. Foster. “Comparative Models of the File

Assignment Problem.” ACM Computing Surveys, vol. 14, no. 2 (June 1982).

Duncan, D. B. “Multiple Range and Multiple F Tests.” Biometrics, vol. 11 (1955):

1-42.

Englemore, Robert S. and Anthony J. Morgan, eds. Blackboard Systems. Reading,

MA: Addison-Wesley, 1988.

Freuder et al. “Systematic Versus Stochastic Constraint Satisfaction.” Proceedings

of the 14th International Joint Conference on Artificial Intelligence (1995):

2027-2032.

Garey, Michael R. and Johnson, David S. Computers and Intractability: a Guide to

the Theory of NP-Completeness. New York, NY: W. H. Freeman, 1979.

Giarratano, Joseph C. and Gary Riley. Expert Systems: Principles and

Programming, 2nd ed. Boston, MA: PWS Publishing Company, 1993.

Goodman, Erik D. "An Introduction to GALOPPS -- the Genetic ALgorithm

Optimized for Portability and Parallelism System, Release 3.2." Technical

Report 96-07-01, Intelligent Systems Laboratory and Case Center for

Computer-Aided Engineering and Manufacturing, Michigan State University

(July 16, 1996).

Harrell, C., B. Ghosh, and R. Bowden. Simulation Using ProModel, 3rd ed. Boston,

MA: McGraw-Hill, 2000.

Hewlett-Packard Corporation. “Zero Latency Enterprise Architecture.” White paper

(2002).

 247

Ingber, Lester. “Adaptive Simulated Annealing (ASA).” Global optimization C-

Code, Caltech Alumni Association, Pasadena, CA (1993).

Karmarkar, N. and R. M. Karp. “An Efficient Approximation Scheme for the One-

Dimensional Bin-Packing Problem.” Proceedings of the 23rd IEEE Symposium

on the Foundations of Computer Science (1982): 312-320.

Kliewer, Georg and Stefan Tschöke. "A general parallel simulated annealing

library (parSA) and its applications in industry." PAREO'98: First meeting of

the PAREO working group on Parallel Processing in Operations Research,

Versailles, France, July 8-10, 1998.

Kochetov, Yuri and Anjelika Usmanova. “Probabilistic Tabu Search with

Exponential Neighborhood for Bin Packing Problem.” Proceedings of the 4th

Metaheuristics International Conference (2001): 619-623.

Kondrak, Grzegorz, and Peter van Beek. “A Theoretical Evaluation of Selected

Backtracking Algorithms.” Proceedings of the 14th International Joint

Conference on Artificial Intelligence (1995): 541-547.

Kruskal, W. H. and W. A. Wallis. “Use of Ranks on One Criterion Variance

Analysis.” Journal of the American Statistical Association, vol. 47 (1952): 583-

621. Corrections appear in vol. 48: 907-911.

Massey, F. J. Jr. “The Kolmogorov-Smirnov Test of Goodness of Fit.” Journal of

the American Statistical Association, vol. 46 (1951).

 248

Metropolis, N., A. Rosenblurb, M. Rosenblurb, A. Teller, and E. Teller. “Equation

of State Calculations by Fast Computing Machines.” Journal of Chem. Physics,

vol. 21 (1953):1087-1092.

Montgomery, Douglas C. Design and Analysis of Experiments, 5th ed. New York,

NY: John Wiley & Sons, Ltd., 2001.

Montgomery, Douglas C. and G. C. Runger. Applied Statistics and Probability for

Engineers, 2nd ed. New York, NY: John Wiley & Sons, Ltd., 1999.

Newell, A., J. McDermott, and C. L. Forgy. Artificial Intelligence: A Self-Paced

Introductory Course. Computer Science Department, Carnegie-Mellon

University, 1977.

Oracle Corporation. Oracle9i Administrator’s Reference, Release 2 (9.2.0.1.0) for

UNIX Systems: AIX-Based Systems, Compaq Tru64 UNIX, HP 9000 Series

HP-UX, Linux Intel, and Sun Solaris. Oracle Corporation, 2002.

Papadimitriou, Christos H. Computational Complexity. Reading, MA: 1994.

Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Reading, MA: Addison-Wesley, 1985.

Prosser, Patrick. “Hybrid Algorithms for the Constraint Satisfaction Problem.”

Computational Intelligence, vol. 9, no. 3 (1993).

Sears, Francis W., Mark W. Zemansky, and Hugh D. Young. University Physics,

7th ed. Reading, MA: Addison-Wesley, 1987.

SPSS, Inc. SPSS 11.0 Student Edition. N.P., 2001.

 249

Stewart, G. W. Introduction to Matrix Computations. New York, NY: Academic

Press, 1973.

Transaction Processing Performance Council (TPC). TPC Benchmark™ H

(Decision Support). Standard Specification, Revision 2.1.0 (2002).

Tsang, Edward. Foundations of Constraint Satisfaction. London, UK: Academic

Press Limited, 1996.

Tukey, J. W. “The Problem of Multiple Comparisons.” N.P., Princeton University,

(1953).

Voudouris, Chris and Edward Tsang, “Guided Local Search.” Technical Report

CSM-247, Department of Computer Science, University of Essex, UK (August

1995).

Wall, Matthew. “GALib: A C++ Library of GeneticAlgorithm Components.” User

documentation for GALib, version 2.4, documentation revision B (August

1996).

Walpole, Ronald E. and Raymond H. Myers. Probability and Statistics for

Engineers and Scientists, 2nd ed. New York, NY: Macmillan Publishing Co.,

Inc., 1972.

Webster, Barry. An Object-Oriented Blackboard Expert System for Selecting

Professional Baseball Players to Comprise a Team. Masters thesis, Florida

Institute of Technology, 1995.

 250

Webster, Barry and Philip J. Bernhard, “A Local Search Optimization Algorithm

Based on Natural Principles of Gravitation.” Proceedings of the International

Conference on Information and Knowledge Engineering, vol. 1. (2003): 255-

261.

