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ABSTRACT 
 
Most of the prevalent anomaly detection systems use some training data to build models. These models 
are then utilized to capture any deviations resulting from possible intrusions. The efficacy of such 
systems is highly dependent upon a training data set free of attacks. “Clean” or labeled training data is 
hard to obtain. This paper addresses the very practical issue of refinement of unlabeled data to obtain a 
clean data set which can then train an online anomaly detection system.  
 
Our system, called MORPHEUS, represents a system call sequence using the spatial positions of motifs 
(subsequences) within the sequence. We also introduce a novel representation called sequence space to 
denote all sequences with respect to a reference sequence. Experiments on well known data sets indicate 
that our sequence space can be effectively used to purge anomalies from unlabeled sequences. Although 
an unsupervised anomaly detection system in itself, our technique is used for data purification. A “clean” 
training set thus obtained improves the performance of existing online host-based anomaly detection 
systems by increasing the number of attack detections. 
 
1   INTRODUCTION 
 
Anomaly detection, an idea introduced by Denning [8], models normal behavior of applications and 
significant deviations from this behavior are considered anomalous. Anomaly detection systems can 
detect novel attacks but also generate false alarms since not all anomalies are hostile. Monitoring system 
call sequences has been successful in detecting process-based anomalies corresponding to attacks. But all 
the proposed techniques rely on “clean” training data to build their model. Current audit sequence is then 
examined for anomalous behavior. An attack embedded inside the training data would result in an 
erroneous model, since all future occurrences of the attack would be treated as normal. Purging all 
malicious content from audit data is hence imperative. 
 
Unsupervised learning techniques have been proposed in the field of network anomaly detection but have 
not been well researched in host-based systems. In this paper, we present a representation for a system 
call sequence using the spatial relationships between the motifs (subsequences) occurring in the 
sequence. Utilizing this representation, we propose a novel way to represent system call sequences 
(called sequence space), which can eventually be used to determine anomalies. Our system called 
MORPHEUS (Motif Oriented Representations to Purge Hostile Events from Unlabeled Sequences), an 
anomaly detector itself, can refine data which can then be used to train other anomaly detection systems.  
 
Empirical results indicate that our representation can be effectively used to detect malicious sequences 
from the data using unsupervised learning techniques. The filtered training data leads to better 
application modeling and an enhanced performance (in terms of the number of detections) for online 



anomaly detection systems. MORPHEUS does not depend on the user for any parameter values, as is the 
norm for most of the anomaly detection systems. 
 
The paper is organized as follows. In Section 2, we review some anomaly detection systems. In Section 3, 
we present the system architecture and detail the various phases of MORPHEUS. In Section 4, we 
summarize and analyze the results obtained from the experiments performed on synthetic and real data 
sets. In Section 5, we conclude and put forth some issues we plan to address in the future. 
 
2   RELATED WORK  
 
Traditional host based anomaly detection techniques create models of normal behavioral patterns and 
then look for deviations in test data. Such techniques perform supervised learning. Forrest et al. [10] 
memorized normal system call sequences using a look-ahead pairs. Lane and Brodley [17, 18] examined 
UNIX command sequences to capture normal user profiles using a fixed size window. Later work by 
Warrender et al [35] extended sequence modeling by using n-grams and their frequency. Wespi et al [36, 
37] proposed a scheme with variable length patterns using Teiresias [29], a pattern discovery algorithm 
in biological sequences. Ghosh and Schwartzbard [11] used artificial neural networks, Sekar et al [31] 
proposed a finite state automaton, Jiang et al [13] also proposed variable length patterns, Liao and 
Vemuri [21] used text categorization techniques, Jones and Li [14] learnt temporal signatures, Coull et al 
[7] suggested sequence alignment, Mazeroff et al [25] proposed probabilistic suffix trees, and Lee at al 
[20] used machine learning algorithm called RIPPER [6] to learn normal user behavior. All these 
techniques require “clean” or labeled training data to build models of normal behavior, which is hard to 
obtain. The data sets used are synthetic and generated in constrained environments. They are not 
representative of actual application behavior, which contains many irregularities. The need for a system 
to filter audit data and produce a “clean” data set motivates our current research. 
 
Unsupervised learning is an extensively researched topic in network anomaly detection [27, 9, 5, and 19]. 
Network traffic comprises of continuous and discrete attributes which can be considered along different 
dimensions of a feature space. Distance and density based algorithms can then be applied on this feature 
space to detect outliers. Due to the lack of a similar feature space, not much work has been done using 
unsupervised learning techniques in host based systems. In this paper, we present a novel framework of 
system call sequences (called sequence space) and demonstrate the efficacy of our representation to 
purge outliers using unsupervised learning techniques. 
 
3   SYSTEM ARCHITECTURE 
 
In this section, we present the system architecture and describe the various stages involved in our system. 
The overview of our system is presented in Figure 1. 

 
Audit sequences corresponding to all the processes for an application are the inputs to our system (Phase 
0). Every sequence is a process in execution and initial preprocessing might be required to obtain them. 
The preprocessing of audit data is explained in Section 4.1. In the first phase, all the unique system calls 
are extracted and mapped to a unique id. We impose an intuitive ordering on the system calls. Using the 
sequences and the system call mapping table, we extract motifs (subsequences) which are either 
repetitive within the same sequence or are common across any two sequences (Phase 2). Once all motifs 
have been extracted and inserted into a database, they are ranked and assigned a unique id. 
 
Using the motif database, we create a representation for a sequence by recording all the motifs that occur 
within that sequence and their corresponding positions (Phase 3). In Phase 4, these representations are 
used to map all sequences in a single plot (called sequence space). Anomaly detection is performed on 



 

Figure 1: System Architecture of MORPHEUS 
 
 
the sequence space and outliers are detected (Phase 5). These suspicious components are removed to 
obtain a relatively “clean” data set, which is then fed as training input to an online detection algorithm in 
Phase 6.
 

3.1 Phase 1: Translation and ordering of system calls 
 
We represent a process (system call sequence) as a finite sequence of system calls, where each system 
call belongs to the finite set ∑. A system call sequence (SCS) s is thus represented as (c1 c2 c3  .   .   . cn), 
where .1,ci ni ≤≤Σ∈ |s| represents the length of SCS s.  
 
As a result of the pre-processing stage, we obtain system call sequences as finite (but not necessarily 
equal) length strings. We then map each system call to a unique symbol using a translation table. Once 
we have mapped all the system calls, we rank their corresponding ids by utilizing prior knowledge as to 
how susceptible the system call is to malicious usage. Bernaschi et al [3] proposed kernel enhancements 
to Linux using a threat level classification. We use a similar ranking scheme which allows system calls 
with similar threat levels to be grouped together. This ranking is used in Phase 2. 
 
3.2 Phase 2: Motif extraction and id generation  
 
A motif is defined as a subsequence of length greater than p if it appears more than k times, for some 
positive integers p and k, within the finite set S = {s1, s2, . . . sm} comprising m SCSs. Now our task is 
reduced to extract motifs (subsequences) from the strings (corresponding to the system call sequences). 
We extract two sets of motifs via “auto-match” and “cross-match”. 
 
 



3.2.1 Motif extraction using auto-match 
 
Our first set of motifs comprises the frequently occurring patterns within each sequence. For our 
experiments, we considered any pattern at least 2 characters long, occurring more than once as frequent. 
While the set of SCSs S is the input to this algorithm, a set of unique motifs M={m1, m2, . . ., mq} is the 
output. It may happen that a smaller length subsequence is subsumed by a longer one. We prune the 
smaller motif only if it is not more frequent than a larger motif that subsumes it.  
 
Definition A motif im  extracted using auto-match (1) has length ≥ 2, (2) has frequency ≥ 2, and (3) if 
there exists a motif Mm j ∈ in a sequence Ssk ∈  such that mi is a subsequence of mj but occurs 

independently in SCS sk. 
 
To illustrate this idea, consider the following synthetic sequence 
  

acggcggfgjcggfgjxyz             (I) 
 
One may note that in this sequence we have a motif cgg with frequency 3, and another motif cggf with 
frequency 2, which is longer and sometimes subsumes the shorter motif but not always. We consider 
them as two different motifs since the frequency of the shorter motif was higher than the longer one. 
Thus, a motif of shorter length may be subsumed by a longer motif only if it has the same frequency as 
that of the shorter motif. Frequency of a shorter motif in a sequence cannot obviously be less than that of 
the longer one. The frequently occurring subsequences (with their respective frequency) are cg(3), gg(3), 
gf(2), fg(2), gj(2), cgg(3), cggf(2), ggfg(2), gfgj(2), cggfg(2), ggfgj(2), cggfgj(2). The longest pattern 
cggfgj subsumes all the smaller subsequences except cg, gg and cgg since they are more frequent than the 
longer pattern, implying independent occurrence. But cg and gg are subsumed by cgg, since they all have 
the same frequency. Thus, the final set of motifs M={cgg, cggfgj}. 
 
We start by looking at such sub-strings of length two within each string. Then, we do the same for 
substrings of increasing lengths. Two or more overlapping motifs may be merged together to form a 
motif of greater length. This is how we create motifs of arbitrarily lengths. Representing sequences with 
possibly overlapping motifs is based on Allen's temporal reasoning scheme [2]. After extracting motifs of 
length 4 in the example sequence (I), we have motifs cggf, ggfg and gfgj, all with frequency 2. Since 
these patterns are overlapping and have the same frequency, they may be merged together in order to 
obtain a longer motif cggfgj with the same frequency 2. However, there are instances when the smaller 
motifs may concatenate forming a longer motif at some places, but may occur at other positions on the 
sequences independently (i.e., not overlapping). Even though they have the same frequency, the 
concatenated longer motif does not subsume the shorter ones. Consider the sequence 
cggfgjabcggfpqrggfgxyzgfgj. Here, the motifs cggf, ggfg and gfgj each have a frequency 2. But the longer 
motif cggfgj occurs only once, though we may wrongly conclude a frequency of 2 by using the above 
derivation. The remaining instances of the smaller motifs are at different (non-overlapping) positions 
within the string. The solution to this problem is that the occurrence of the longer motif obtained from 
the fusion of the smaller motifs should be verified for accuracy. If the frequency of the longer motif is 
found to be the same as that of a smaller one, then merging of the latter ones is all right, i.e., we ignore 
the smaller motifs. This technique reduces the effort of going through all possible string lengths and of 
finding all possible motifs for those lengths. The procedure of finding motifs of variable lengths by first 
merging and then verifying is repeated until no more motifs could be merged.  
 
 
 



3.2.2 Motif generation using cross-match 
 
Apart from frequently occurring patterns, we are also interested in patterns which do not occur frequently 
but are present in more than one SCS. We believe that these motifs could also be instrumental in 
modeling an intrusion detection system since they reflect common behavioral patterns across sequences. 
We performed pair-wise cross-match between different sequences to obtain these.  
Definition A motif im extracted using cross-match (1) has length ≥ 2, (2) appears in at least a pair of 
sequences Sss lk ∈, , and (3) is maximal, i.e., there does not exist a motif )( ijMm j ≠∈ such that 

lkj ssm ,⊆  and ji mm ⊂ . 

 
Let us consider the following pair of synthetic sequences:  
 

acgfgjcgfgjxyzcg         (II) 
          cgfgjpqrxyzpqr       (III) 

 
Using cross-match between the example sequences (II) and (III), we get the motifs cgfgj and xyz, since 
these are the maximal common subsequences across the two given sequences. 
 
A simple method for comparing amino acid and nucleotide sequences called the Matrix Method is 
described by Gibbs and McIntyre [12]. A matrix is formed with one sequence written across and the 
other in the downward position on the left of the matrix. Any common element was marked with a dot 
and a series of dots along a diagonal gave a common subsequence between the two sequences. Using a 
technique similar to the Matrix Method, we extract motifs which occur across sequences but may not be 
frequent within a single sequence itself. Also, there are instances when the sequences corresponding to 
different processes are exactly the same. In these cases, cross-match gives us the entire string as the 
motif. This is correct since an exact match to a string obtained like this would automatically and 
convincingly classify a test string as an expected attack or normal behavior. We are not certain if this is 
too abstract a representation and if this hides some details. 
 
After generating all the motifs for a sequence (auto-match) or pairs of sequences (cross-match), we added 
them to the motif database and pruned redundant motifs. We ordered the motifs on the likelihood of 
involving in an attack using a dictionary sort and the ranking of the system calls in Section 3.1. The 
motifs are then assigned a unique id based upon their position within the ordered motif database.  

 
3.3 Phase 3: Motif-based representation of a sequence 
 
Once we have all the motifs that exist in the set S of sequences in the motif database M, we would like to 
represent each sequence in terms of the motifs existing within it. For each sequence Ssi ∈ , we list all the 
motifs occurring within it along with their starting positions within the sequence. 
 
This creates a two dimensional representation for each SCS si, where the X-axis is the distance along the 
sequence from its beginning, and the Y-axis is the motif id of those motifs present in si. With this scheme 
a sequence could be visualized as a scatter plot of the motifs present in a sequence. Figure 2 depicts such 
a representation for the synthetic sequence (II), where the motifs cg, cgfgj and xyz are represented at the 
positions of occurrence within the respective sequence. A motif’s starting point is the abscissa and the 
motif ID is the ordinate of the corresponding point in the scatter plot. A total of 4 unique motifs (cg, 
cgfgj, pqr and xyz), obtained from auto-match and cross-match of (II) and (III), are assumed in the motif 
database for the plot in Figure 2. This representation is for visualization purposes only. At the end of this  



 
Figure 2: Motif-oriented representation for sequence (II) 

 
 
phase, our system stores each SCS as a list of all motifs present within along with their spatial positions 
from the beginning of the sequence. 

 
3.4 Phase 4: Sequence space – a single representation for all sequences 
 
We model all sequences on the basis of their motifs. Malicious activity results in alterations in the SCS 
which is reflected by the variations in the motifs and their spatial positions. Plotting all the SCSs (based 
upon their motif representations) in a single feature space could reflect the similarity/dissimilarity 
between them. 
 
After creating a motif-based representation for each sequence (Section 3.3), we plot all the test sequences 
S in a feature space called the sequence space. In this representation we measure the distance between 
pairs of SCSs along each of the two axes (motifs and their locations). Utilizing one (arbitrarily chosen) 
SCS from the set S as a reference sequence s1, we measure (dx, dy) distances for all SCSs Ssi ∈ . Thus, 
the sequences are represented as points in this 2D sequence space, where the sequence s1   is at the origin 
(reference point) on this plot. Let s2 be any other sequence in S whose relative position with respect to s1 
is to be computed. Inspired by the symmetric Mahalanobis distance [23], the distance is computed as 
follows: 

 
 
 
            (IV) 
 
 
where s1 has n1 motif occurrences and s2 has n2 motif occurrences, (dx, dy) is the position of s2 w.r.t. s1, 
and             is the mean and              is the standard deviation along the x and y axes. Using this metric, 
we try to calculate the variation in motifs and their locations in the two sequences. 
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(a)                                               (b) 

Figure 3: Sequence space for (a) ftpd, and (b) lpr applications 
 
 

After computing (dx, dy) for all sequences in S with respect to the reference sequence (s1), we plot them 
in the sequence space, as represented by the two plots in Figure 3. The origin represents the reference 
sequence It is important to note that the position of another sequence (calculated using IV) with respect 
to the randomly selected reference sequence can be negative (in X and/or Y direction). In that case the 
sequence space will get extended to other quadrants as well, as in Figure 3(b). 
 
We now have an abstract representation of an entire set of sequences which can be used to determine 
sequence similarity. We can adopt some unsupervised techniques on our novel representation to classify 
application behavior as well as user activity. 
 
3.5 Phase 5: Purging sequence space anomalies 
 
Similar sequences are expected to cluster together in the sequence space. Malicious activity is known to 
produce irregular sequence of events. These anomalies would correspond to spurious points (global 
outliers) or local outliers in the scatter plot created in Phase 4. In Figure 3(a), the point on the top-right 
corner of the plot is isolated from the rest of the points, making it anomalous. In this section we will 
concentrate on outlier detection, which has been well researched topic in databases and knowledge 
discovery [16, 4, 28, and 1]. 
 
LOF [4] is a density-based outlier finding algorithm which defines a local neighborhood, using which a 
degree of outlierness is assigned to every object. A reachability distance is computed for every object 
based upon its distance from its kth-nearest neighbor. A reachability density is then calculated for every 
object based upon the average reachability distance of that object from its neighbors (number of 
neighbors – MinPts – being an input parameter). Finally, a local outlier factor (LOF) is associated with 
every object by comparing its reachability density with each of its neighbors. A local outlier is one whose 
neighbors have a high reachability density as compared to that object. For each point this algorithm gives 
a degree to which that point is an outlier as compared to its neighbors. This LOF score corresponds to the 
anomaly score of that point in our model. Our system computes the anomaly scores for all the SCSs 
(represented as points in sequence space). All the points for which the score is greater than a threshold 
are considered anomalous and removed.  
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3.5.1 Automating the LOF parameters 
 

3.5.1.1 MinPts 

 

We use LOF for anomaly detection in the sequence space. LOF takes MinPts as an input parameter, 
which signifies the number of neighborhood points to be compared with. The performance of the system 
is sensitive to the parameter MinPts. A human expert (in our case a system administrator) would be 
required to analyze the sequence space and then come up with a reasonable value of MinPts. But the LOF 
values increases and decreases non-monotonically [4]. So it is highly desirable for this parameter 
selection to be automated. We present one intuitive way in which this can be computed without the help 
of any human expert. To select MinPts, we use clustering to identify the larger neighborhoods. Then, we 
scrutinize each cluster and approximate the number of neighbors in an average neighborhood. 

 

(a) Finding the number of clusters: 

After creating the sequence space, we use the L-Method [30] to predict the number of clusters in the 
representation. This is done by creating a “number of clusters vs. merge distance” graph obtained from 
merging one data point at a time in the sequence space. Starting with all N points in the sequence space, 
the 2 closest points are merged to form a cluster. At each step, a data point with minimum distance to 
another cluster or data point is merged. At the final step, all points are merged into the same cluster. The 
graph obtained has 3 distinct areas – a horizontal region (points/clusters close to each other merged), a 
vertical region (far away points/clusters merged), and a curved region in between. The number of clusters 
is represented by the knee of this curve, which is the intersection of a pair of lines fitted across the points 
in the graph that minimizes the root mean square error. Further details can be obtained from [30]. 

 

(b) Calculating MinPts: 

Assume k clusters are obtained in a given sequence space using L-Method (with each cluster containing 
at least 2 points). Let αi be the actual number of points in cluster i, ki ≤≤1 . Let ρi be the maximum pair-
wise distance between any 2 points in cluster i; and τi is the average (pair-wise) distances between 2 
points in cluster i. Let βi be the expected number of points in cluster i. Its value can be computed by 
dividing the area of the bounding box for the cluster with the average area occupied by the bounding box 
of any 2 points in the cluster (for simplicity we assume square shaped clusters). Therefore, we get  

βi = 
2










i

i

τ
ρ

           (V) 

This gives us the expected number of points within the cluster. But the actual number of points is αi. 
Thus, we equally distribute the excess points among all the points constituting the cluster. This gives us 
an approximate value for MinPts (number of “close” neighbors) of the cluster: 

 

MinPts for cluster i =           (VI) 

 

After obtaining MinPts for all k clusters, we compute a weighted mean over all clusters to obtain the 
average number of MinPts for the entire sequence space. 
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            (VII) 
   

 

Only clusters with at least 2 points are used in this computation.  

 

(c) Considering duplicates: 

But this approach gives a reasonable value for the average number of MinPts in a sequence space if all 
the points are unique and there are no duplicates. In our case, there are many instances when the 
sequences are exactly the same. This is representative of exactly same application behavior. Density is 
the basis of our system and we cannot ignore duplicates. But the equation (V) would be affected since the 
maximum distance still remains the same whereas the average value is suppressed due to the presence of 
points with same spatial coordinates. Also, if there are q points corresponding to a coordinate (x, y), then 
each of the q points is bound to have (q-1) MinPts in the worst case.  

 

Let p be the number of frequent data points (i.e. frequency > 1) in cluster i. Let ψj be the frequency of a 
data point j in cluster i. We compute γ` the same way as equation (VI), where γ` is the MinPts value for 
cluster i assuming unique points in the sequence space. 

 

            (VIII) 

 
This value is then modified to accommodate the frequently occurring points (corresponding to sequences 
sharing the same spatial positions in the sequence space). We compute a weighted mean to obtain an 
appropriate value of MinPts in cluster i as follows: 

 

            (IX) 

 

 

 

Average MinPts for the entire plot can then be computed using equation (VII) above.  
 
3.5.1.2 Threshold for raising alarms 
 
LOF only assigns a local outlier factor for a point in the sequence space which corresponds to its 
anomaly score. If the score is above a user specified threshold, then it is considered as anomalous and 
hence filtered from the data set. If the threshold is too low, there is a risk of filtering a lot of points, many 
of which may depict normal application behavior. On the contrary, if the threshold is too high, some of 
the data points corresponding to actual intrusions (but close to many other data points on the sequence 
space) may not get filtered. One way to compute a threshold automatically is to order and plot the LOF 
scores in increasing order of the scores (with each data point along the X-axis and the anomaly/LOF 
score along the Y-axis). Since the normal points are assumed in abundance, their LOF scores are ideally 
1. We are interested in the scores after the first steep rise of this plot, since these correspond to outliers. 
Ignoring all the scores below the first steep rise (corresponding to normal sequences), the cut-off value 
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can be computed as the median of all the scores thereafter. This heuristic gives a reasonable threshold 
value for the various applications in our data sets. 
 
3.6 Phase 6: Training and online detection 
 
The filtered data set obtained above provides clean data as training input to any online anomaly  
detection system like stide and LERAD. 
 
stide (Sequence TIme-Delay Embedding) [35] memorizes all contiguous sequences of predetermined, 
fixed length (n-grams) during training. This is done by using a sliding window and adding all unique 
sequences to the database. During test phase, an anomaly count is associated with n-gram mismatches 
and is defined as the number of mismatches in a temporally local region for a sequence. A threshold is set 
for the anomaly score above which a sequence is flagged anomalous, indicating a possible attack.  
 
LERAD (LEarning Rules for Anomaly Detection) [24] is a randomized algorithm that learns rules for the 
normal data set. With every rule a probability is assigned for encountering a novel value of the attribute 
in the consequent when the conditions in the antecedent are true. A non-stationary model is assumed for 
LERAD – frequency is made irrelevant and only the last occurrence of an event is assumed important. 
The anomaly scoring function uses the probability and time since last anomaly of the rule violated by the 
test input. Details for the rule learning algorithm are available in [24]. The applicability of LERAD to 
host based anomaly detection has been demonstrated in [33]. 
 
4   EXPERIMENTAL EVALUATION 
 
Our goal is to determine if our proposed representation can be used with an unsupervised learning 
algorithm (namely LOF) to detect and purge out anomalies, creating a “clean” training set for online 
detection systems. We would also like to note the change in performance after using our filtering scheme. 
 
4.1 Data sets and preprocessing 
 

We evaluated our techniques on 7 applications obtained from three different data sets: 

 

(i) The DARPA intrusion detection evaluation data set was developed at the MIT-Lincoln Labs [22]. The 
test bed involved a simulation of an air force base that has machines that are under attack. These 
machines comprised of Linux, SunOS, Sun Solaris and Windows NT systems. Various intrusion 
detection systems were evaluated using this test bed, which comprised of three weeks of training data 
obtained from network sniffers, audit logs, file system dumps and BSM logs.  

 

We used the Solaris data from the Basic Security Module (BSM) audit logs [26]. This data has to be 
preprocessed before use by MORPHEUS. We divided the entire data set into various applications. For 
each application, we grouped the data on the basis of the process ID. Data for which we could not trace 
the start of the process was excluded from our experiments. A parent process can also spawn a child 
process with the fork() system call. All the system calls for a child process are for the same application as 
the parent process until it encounters its own execve() system call. In this way, we divided the data into 
applications, and further into processes belonging to the various applications/programs. All the system 
calls (with their arguments) pertaining to a single process were thus differentiated from the set of system 
calls (and arguments) for another process belonging to the same application. In a similar manner, 



sequences of system calls for various processes of different applications were differentiated from one 
another and were ready to be used by our system. 

 

For our experiments, we selected the ftpd, ps, fdformat and eject applications to obtain a good range in 
the number of sequences and the number of system calls (~1200-26000). These applications also have a 
good mix of different attack types [15]. The ftpd application comprises of R2L (guessftp, ftpwrite) and 
DoS (warez, warezclient) attacks. On the other hand, ps, eject and fdformat are all U2R attacks. 

 

(ii) Two applications (lpr and login) from the University of New Mexico (UNM) data sets [35] were also 
used. The lpr application comprised of 2703 normal traces running lpr collected from 77 hosts running 
SUNOS 4.1.4 at the MIT Artificial Intelligence Lab. Another 1001 traces correspond to the execution of 
the lprcp attack script. Older versions of lpr use only 1000 different names for printer queue files. The 
attack takes advantage of the fact that the old files are not removed from the queue before they can be 
used again. The attack works as follows: a symbolic link is placed to the victim file at the beginning. All 
the intermediary traces increment the counter and the intruder overwrites the target file in the last trace. 
Traces from the login application were obtained from a Linux machine running kernel 2.0.35. A 
homegrown Trojan program was used for the attack traces. 

 

(iii) We also used system call sequence logs corresponding to Microsoft excel macros in execution used 
by researchers at Florida Institute of Technology (FIT) [38] and University of Tennessee at Knoxville 
(UTK) [25]. 36 normal traces correspond to some statistical, chemistry and cost estimation related Excel 
macros. 2 malicious traces modify the registry settings and execute some other application. Such a 
behavior is exhibited by the ILOVEYOU worm which opens the web browser to a specified website and 
executes a program, modifying registry keys and corrupting user files. This worm results in a distributed 
denial of service (DDoS) attack. 

 

4.2 Outlier (anomaly) detection in sequence space 
 

Our system creates a sequence space and plots all sequences as points with respect to other sequences. 
We claim that the malicious sequences are reflected as outliers in the sequence space. It is therefore 
imperative for us to evaluate if the outliers in the sequence space correspond to actual attacks. The 
underlying assumption is that the bulk of the data set constitutes of normal SCSs. We assume that the 
similar nature of normal behavior will cause them to cluster together. Outliers to these clusters would be 
the anomalies resulting from possible intrusions. 
 
For the MIT-Lincoln lab data set, week 3 comprises of clean data while weeks 4 and 5 data has attacks. 
We are also given the timestamp for the occurrence of the attacks. In this experiment, after dividing the 
data into different applications and their processes (as explained in Section 4.1), we combine the data for 
the 3 weeks together (on a per application basis) and feed it to our system. This gives a good mix of 
normal application behavior and some sequences resulting from intrusions. We also use an aggregation 
of all traces for the other data sets (UNM and FIT-UTK) on a per application basis for similar reasons. 
 
We created a sequence space for each application. Figure 3(a) represents the sequence space for the ftpd 
application from the DARPA evaluation data set, whereas 3(b) corresponds to the lpr data set from 
UNM. The X-axis on the plots is the distance due to the motif separation amongst sequences and Y-axis 
corresponds to the distance with respect to the motifs present in the sequence. Similar sequences tend to 
cluster together while anomalous sequences are represented as outliers. 



Table 1: Automated MinPts computation 

Application eject fdformat ftpd ps lpr login excel 

Number of 
sequences 

21 19 91 341 3704 16 38 

Average 
sequence 
length 

66.43 57.63 284.93 66.45 835.73 730.81 2862.87 

MinPts 3 2 10 71 6 3 2 

 

 

We used the sequence space to detect local outliers using LOF on all the datasets. LOF takes MinPts-
nearest neighbors (the number of points comprising the neighborhood of a point) as an input parameter 
and the results are very sensitive to this parameter selection [4]. For our experiments, we varied this 
parameter value as a percentage of the entire population. We also used the MinPts value that we 
computed using our automated technique (as in Section 3.5.1.1). These values are listed in Table 1. After 
computing the LOF or anomaly scores, we ranked them in descending order. All the sequences with 
scores greater than the threshold were considered anomalies and evaluated for detections and false 
alarms. 

 

The results from the experiments, depicted in Table 2, indicate that none of the MinPts values were ideal 
to detect all the attacks. The two parameter values – 15% and 20% – seem to have the maximum number 
of detections (17 each, out of 19 total attacks). The only attacks missed were the ones in the excel 
application where a reasonable value of MinPts is best suggested as 5%. Our methodology for MinPts 
calculation was successful in computing the correct number for the parameter and hence successfully 
detected the attack sequence as outlier (for which the 15% and 20% values failed). The automated LOF 
parameter detected all the attacks except the ones in the ftpd application. The reason for such a behavior 
can be better understood from Figure 3(a). There are 2 main clusters in the sequence space – one close to 
the origin and the other towards the center of the plot. The total number of points is 91 (80 in the large 
cluster, 10 in the smaller one, and one spurious point far away on the top-right corner of the plot). The 
MinPts value obtained by using our heuristic is 10, which seems to be an appropriate value. Inability of 
LOF to detect the anomalies in this representation is attributed to the fact that all the 10 points in the 
smaller cluster correspond to 6 different attacks. Therefore, the anomaly scores for all these points are 
very low. This implies that the concept of local outliers is not sufficient to capture such anomalous data 
points. Thus, we need to adopt a global view to find anomalous clusters as well, which can be 
incorporated in our sequence space. This would also be beneficial in detecting flooding attacks, which 
would typically correspond to high density points/clusters in the sequence space. Other than the ftpd 
application, the automated technique successfully detected all other attacks. This suggests that the 
MinPts values computed using our heuristic are generally reasonable.  

 

As can be observed from Table 2, the number of false alarms is very high for the lpr application, which 
constitutes of over 3700 sequences and approximately 3.1 million system calls. The data was collected 
over 77 different hosts and represents high variance in application behavior. Though we were able to 
capture the lpr attack invoked by the lprcp attack script, we also detected other behavioral anomalies 
which do not correspond to attacks. One point to note here is that the effect of false alarms for data 
purification is not as adverse as that of false alarm generation during online detection, if still within 
reasonable limits which are defined by the user. Our goal here is to retain generic application behavior  



Table 2: True positives and false positives for various applications at varied LOF MinPts values 

Number of different attacks detected (with false alarm count) for 
different values of LOF MinPts (% of total population) 

Application Total 
Attacks 

5% 10% 15% 20% Automated 
(from Table 1) 

eject 2 1 (1) 2 (1) 2 (0) 2 (0) 2 (0) 

fdformat 3 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 

ftpd 6 0 (6) 0 (11) 6 (6) 6 (1) 0 (11) 

ps 4 0 (6) 4 (1) 4 (1) 4 (2) 4 (49) 

lpr 1 0 (123) 1 (193) 1 (198) 1 (157) 1 (97) 

login 1 0 (1) 0 (2) 1 (2) 1 (2) 1 (2) 

excel 2 2 (0) 0 (3) 0 (0) 0 (0) 2 (0) 

Total 19 6 (137) 10 (211) 17 (207) 17 (162) 13 (159) 

 

 

and shun anomalies. Peculiar (but normal) sequences would also be deemed anomalous since they are not 
representative of the general way in which the application functions, as in this case. 

 

Our representation scheme also subsumes the ideas presented in [35, 36, 37, and 13]. The underlying 
assumption is that similar sequences would appear together in the sequence space. An attack modifies the 
course of events. This results in (a) either the absence of a motif, or (b) altered spatial positions of motifs 
within the sequence due to repetition of a motif, or (c) the presence of an entirely new motif. All these 
instances affect the spatial relationships amongst the different motifs within the sequence. Ultimately, 
this affects the distance of the malicious sequence with respect to the reference sequence, resulting in an 
outlier being plotted on the sequence space. It is this drift within the sequence space that the outlier 
detection algorithm is able to capture as an anomaly. Since the reference sequence is picked randomly, it 
may so happen that the reference sequence is the attack sequence itself. This does not affect our system 
since our distance metric is symmetric and the point is still classified as an outlier.  

 

An attacker might devise a clever technique to evade typical sequence-based anomaly detection systems. 
Wagner and Soto [34] presented one such idea wherein they were successful in modeling a malicious 
sequence by adding null operators to make it consistent with the sequence of system calls. The sequence 
based techniques dealing with short sub-string patterns can be bypassed by spreading the attack over 
longer duration (or longer sub-sequences). MORPHEUS uses variable length motifs and also takes the 
relative positions of the motifs for anomaly detection, and is better equipped and more robust against 
such evasions. In essence, our system models sequences at two different levels – at the individual motif 
level and also at the level of spatial relationship between motifs within the audit sequence. The latter 
level adds to the security of the system and would make it even harder for the attacker to evade the 
system, since he has to now not only use the “normal” audit event patterns, but also place those event-
sequences/motifs within the respective sequence at proper relative positions. 
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Figure 4: Comparison of attack detections with and without filtering for stide and LERAD respectively 

 

4.3 Effects of filtering the data 
 

We reemphasize that our ultimate goal is to obtain “clean” data for other intrusion detection systems to 
train on. Thus, it is important to study how well our system can clean the training data and what effect 
does it have on the performance of an online detection system (in terms of true detections as well as false 
alarm generation). 

 

Only the MIT-Lincoln Labs and FIT-UTK data sets were used for this set of experiments since they 
contained sufficient attacks to be used in both “adulterated” training and test data sets. The lpr and login 
data sets from UNM comprised of only a single attack. We have already demonstrated in the previous 
section that our technique could filter them as spurious outliers. But a single attack is not sufficient for 
this set of experiments, as we would like to have attacks in both training and test data. Therefore, we did 
not involve those two applications for this experiment. We combined the “clean” week 3 data with the 
“mixed” week 4 data of the MIT-Lincoln lab data set to obtain an unlabeled data set. We use this to train 
stide and LERAD. We then tested on week 5 data (containing attacks with known timestamps). 
Subsequently, we used MORPHEUS to filter out spurious data points (and hence SCSs) from the 
combined data set. This marks the end of phase 5 of our system. The sixth and final phase is next, which 
uses the refined data set for training stide and LERAD. Week 5 data is used for testing purposes. As per 
the 1999 DARPA evaluation criteria, a system is considered to have successfully detected an attack if it 
generates an alarm within 60 seconds of the occurrence of the attack. We follow the same criterion for 
our evaluation. For the FIT-UTK Microsoft Excel data set, we randomly picked 33 traces (including one 
attack) for training and remaining 5 traces for testing purposes. 

 

The parameter selection for our experiments was as follows: For stide, we used a window size of 6. A 
locality frame of 20 is used, that is the anomaly count keeps track of the number of mismatches in a 
temporally local region comprising 20 system calls. All the parameter values used are suggested to give 
best results in [35]; parameter sensitivity is studied in [32]. For LERAD, each tuple comprised of the 
system call, its return value and error status besides other arguments. In all cases, alarms are accumulated 
for the applications and then evaluated for the number of true detections and false positives. 

 
Figure 4 depicts the number of attacks detected by stide and LERAD for the 5 applications under study. 
It is observed that in both cases, the IDS was able to detect more attacks in ftpd and ps applications after 
data filtering by MORPHEUS while there was no change in the performance for the other three 



applications (eject, fdformat and excel). This is because the training data also contained some attacks. 
For the ftpd and ps applications, the attacks in the test data were similar to the ones seen in the 
adulterated training data set, and were hence missed by both the IDSs. When filtered using MORPHEUS, 
the attack SCSs were purged and hence detections were possible in the test phase. For the applications 
eject and fdformat, the attacks in the adulterated training and testing data sets were different in character. 
Hence both the systems detected them irrespective of the filtering procedure. For excel, stide was able to 
detect the worm in both cases due to similar reasons. LERAD was not able to capture the malicious 
sequence since it creates rules based upon arguments of the system calls but the worm was better 
detected using system call ordering. 
 
No false alarms were generated in any case in stide except the excel application, where one false positive 
was produced in each case. For LERAD, 1 false alarm was generated for the ps application with and 
without filtering. No other false positives were obtained. Overall, the results indicate that the filtering 
process was instrumental in increasing the number of detections without increasing the number of false 
alarms.  
 
5 CONCLUSIONS AND FUTURE WORK 
 
Most of the traditional host based IDSs require a “clean” training data set which is difficult to obtain. Our 
system, called MORPHEUS, addresses and attempts to solve this problem of data filtering. We present a 
motif-based representation for system call sequences (SCSs) based upon their spatial positions within the 
sequence. We also propose a novel representation of sequences – called sequence space – using a 
distance metric between the motif-based representations. We also exhibited the efficacy of this feature 
space to filter anomalies by integrating it with an existing unsupervised learning algorithm (called LOF) 
for outlier detection. Experiments were performed on different applications which varied in size, 
operating system (SUNOS, Solaris, Linux and Windows), and environment (simulated and live/real). 
Results indicate that our system can successfully detect the vulnerability-based anomalies. The 
generation of false alarms is caused by the irregularities in the data set and the results are sensitive to the 
parameter selection for the outlier algorithm. We proposed heuristics to automate the parameters to 
MORPHEUS – MinPts (a parameter to LOF) and threshold for raising alarms, thereby making our 
system parameter-free. Our automatically computed parameter was generally able to detect the attacks 
producing the least false alarms in the most irregular real data set. After filtering the anomalous points, 
the “clean” training data set was used by an online detection system resulting in higher detection rates, 
implying that MORPHEUS effectively purged the anomalies to create a better training data set.  
 
MORPHEUS can be integrated with a hybrid of signature and anomaly based systems for better accuracy 
and the ability to detect novel attacks. Our system can also be used for user profiling and detecting 
masquerade. Also, as mentioned earlier, we need to expand our perspective from local to global outliers 
to detect attack clusters. In terms of efficiency, the only bottleneck in our system is the motif extraction 
phase where cross-match is performed pair-wise. Speed-up is possible by using other techniques like 
suffix trees. We are also working on refining the motif relationships in the motif-based representation. 
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