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ABSTRACT 
Finding meaningful phrases in a document has been studied in 
various information retrieval systems in order to improve the 
performance. Many previous statistical phrase finding methods 
had different aim such as document classification. Some are 
hybridized with statistical and syntactic grammatical methods; 
others use correlation heuristics between words. We propose a 
new phrase-finding algorithm that adds correlated words one by 
one to the phrases found in the previous stage, maintaining high 
correlation within a phrase. Our results indicate that our 
algorithm finds more meaningful phrases than an existing 
algorithm. Furthermore, the previous algorithm could be 
improved by applying different correlation functions. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]:Information Search 
and Retrieval –information filtering, selection process. 

General Terms 
Algorithms. 

Keywords 
phrase, variable-length phrase finding algorithm. 

1. INTRODUCTION 
Statistical phrase finding algorithms are mainly used for 
improving the performance of information retrieval [5,6,19]. 
There are three main approaches: syntactic [12,14], statistical 
[14], and hybridized [8]. Our research mainly focuses on the 
statistical approach, which does not need any grammatical 
knowledge and has easy adaptability to other languages. 
Statistical phrase-finding approaches have been used for 
expanding vector dimensions in clustering multiple documents 
[19,20], or finding more descriptive or important/meaningful 
phrases [1,2]. This paper compares previous statistical 
approaches and attempts to find meaningful phrases in a 
document. 

Ahonen et al [1], Zamir and Etzioni [21], and Chan [2] 

introduced phrase-finding algorithms. Ahonen’s algorithm 
depends on conditional probability and needs a fixed maximum 
phrase length. We suspect that the use of two parameters – a 
threshold to remove less descriptive phrases in generating stage 
and maximum phrase length – are too strict. Zamir and Etzioni 
[21] introduced a fast algorithm, but it uses only frequency 
information. Chan’s algorithm [2] improved the performance by 
using correlation information within a phrase. However, Chan’s 
algorithm can generate non-existing phrases and is vulnerable to 
synthetic data. 

The definition of meaningful is unique to each individual. So, 
we define a phrase as more meaningful if it is meaningful to the 
most people. We let each individual define his or her own 
definition of meaningful. We propose two variable-length 
phrase-finding algorithms, VPF-1 and VPF-2, which find more 
meaningful phrases. VPF-1 is designed to remove the maximum 
length of phrases in Ahonen’s algorithm, and VPF-2 is designed 
to fix the problem in Chan’s algorithm by combining it with 
VPF-1. Both algorithms add correlated words one by one to the 
phrases made in the previous stage. Both apply pruning to 
remove less meaningful phrases. 

The main contributions are: 

(1) We proposed two variable-length phrase-finding algorithms 
that is designed for finding meaningful phrases; 

(2) The time complexity remains as O(N) where N is the size of 
the input sequence under a specified condition; 

(3) These algorithms do not need any user-specified parameters; 
(4) The algorithms achieve improved performance by pruning 

less meaningful phrases; 
(5) More meaningful phrases than previous methods are found 

and the improvement in performance is statistically 
significant; 

(6) Some correlation functions are prominent by being ranked 
high with both algorithms; 

(7) Ahonen’s algorithm is improved by applying different 
correlation functions. 

The rest of this paper is as follows: Section 2 presents related 
work regarding statistical phrase-finding methods; Section 3 
discusses input and output and compares our approach with 
previous algorithms; Section 4 provides detailed description of 
our variable-length meaningful phrase-finding algorithms (VPF-
1 and VPF-2); Section 5 describes the desirable properties of 
correlation functions and lists all correlation functions we used; 
Section 6 discusses about experiment; Section 7 presents and 
analyzes our results; Section 8 summarizes out work. 

 
 



2. RELATED RESEARCH 
There are two main approaches to finding phrases. The first is 
related to clustering documents and retrieving documents that 
most likely match the user’s information need. This research 
focuses on which words and phrases are more important in 
clustering documents. The other attempts to find phrases 
meaningful to human users.  

Wu and Gunopulos [20] examined the usefulness of phrases as 
terms in vector-based document classification. They used 
statistical techniques to extract phrases from documents whose 
document frequency (df) is larger than or at least equal to a 
predefined threshold. Fagan [6] selected phrases having a 
document frequency of at least 55 and a high co-occurrence in 
the same sentence. Mitra et al. [14] collected all pairs of non-
function words that occur contiguously in at least 25 documents. 
Turpin and Moffat [19] used Mitra’s method for statistical 
phrases for vector-space retrieval. Since the aim of these 
approaches is to find the significant words or phrases among 
documents, they remove common words or phrases among 
documents, which could also remove meaningful phrases in a 
document. Furthermore, only two-word phrases are considered, 
whereas ours has no limitation in phrase length. 

Croft, et al. [5] describe an approach where phrases identified in 
natural language queries are used to build structured queries for 
a probabilistic retrieval model and showed that using phrases 
could improve performance. They used tf*idf information for a 
similarity measure. Croft [4] segmented a document’s text using 
a number of phrase separators such as verbs, numbers, dates, 
title words, company designators, format changes, etc. Next, his 
method checks the candidate phrases to see if they are 
syntactically correct. Finally, the occurrence frequency of the 
remaining phrases is checked. Our paper mainly focuses on a 
statistical approach without introducing a syntactic method. We 
uses simple phrase separators (i.e., stop-words and non-alphabet 
characters), which generalizes our method independent from a 
certain language. 

Gokcay and Gokcay [8] used statistically extracted keywords 
and phrases for title generation. Their statistical method used 
grammatical information of tags and sentences, but it is hard to 
determine a sentence without grammatical information. They 
used cosine correlation function for comparing the similarity of 
two words. Our research experimentally shows which 
correlation functions are better than others in terms of 
measuring word correlation. Ahonen et al. [1] applied Mannila 
and Toivonen’s [13] algorithm for finding phrases. In this 
algorithm a user has to specify the maximum phrase length and 
certain thresholds. Our algorithm does not need a specified 
maximum phrase length. 

3. PROBLEM 
We desire to find phrases meaningful to human users. The goal 
will be to devise an algorithm that improves the number of 
matching phrases to these phrases selected by a human subject. 
The term “meaningful phrase” is the phrase that satisfies a 
higher % of the individual’s definition of meaningful. The input 
and output data can be specified as: 
Input: a sequence of words (a document) 
Output: a set of meaningful phrases 

Ahonen et al [1], Zamir and Etzioni [21], and Chan [2] 
introduced phrase-finding methods. Ahonen’s method finds all 
possible combinations of words within a fixed window. Suppose 
the window size is 6 and the string in that window is “abcdef”. 
Their algorithm generates all possible cases: “ab”, “bc”, “cd”, 
“de”, “ef”, “abc”, “bcd”, “def”, … “bcdef”, “abcdef”. Then, it 
computes the conditional probability for the weight of those 
phrases. A phrase “abc” has two possible weights from P(“c”| 
“ab”) and P(“bc”| “a”), from which the higher value is chosen. 
Even with the algorithm’s exhaustive examination, its 
performance is, as will be shown later, lower than Chan’s [2]. 

Zamir’s [21] has linear time complexity. The critical drawback 
of Zamir’s algorithm is that their algorithm uses only frequency 
information. They build the suffix tree based on the overlap of 
words (frequency) and then collect neither too frequent nor too 
rare phrases. Suppose we are collecting a phrase “abcd”, 
Zamir’s method uses only the frequency of the term. This 
method needs two user defined parameters: one for removing 
too rare or too frequent words and the other for selecting phrases 
out of all possible phrases. 

Chan’s phrase-finding algorithm calculates the correlation 
values of all pairs. For instance, for a phrase “abcd”, it 
calculates all correlations of pairs: Corr(“a”,“b”,0), 
Corr(“a”,“c”,1), Corr(“a”,“d”,2), Corr(“b”,“c”,0), 
Corr(“b”,“d”,1), and Corr(“c”,“d”,0). The function Corr gets 
three variables - two words and the distance between the two 
words. The main drawback of this method resides in its 
incompleteness. Suppose there is a string 
S=“abaxbxaxxbxaxxxb…xxbbxbxbxxbxxxb…”, where ‘a’ and 
‘b’ represent words, and ‘x’ represents any word. If all 
correlations between ‘a’ and ‘b’ with 1 through 4 distances, and 
correlations between ‘b’ and ‘b’ with 1 through 4 distances have 
value of higher than the threshold, Chan’s algorithm will 
generate a word “abbbb” that does not exist in the string. This 
problem also makes the quality of phrases suspicious, because 
correlation values for each pair of words within a phrase can be 
affected by other phrases. For example, the correlation value of 
the non-existing word “abbbb” could be high, if the correlation 
values for all pairs are high. Moreover, if the correlations 
between ‘a’ and ‘a’ with 1 through 4 distances (like 
“..xxaaxaxxaxxxa..”) are higher than the threshold, then the 
algorithm will generate 25 possible combinations of ‘a’ and ‘b’ 
with length of 5 (e.g., “aaaaa”, “aaaab”, “aaaba”, … “bbbba”, 
“bbbbb”). These cases are very unlikely to happen in a normal 
article such as newspaper or journal article. But web pages 
contain lists of similar product names or tables that just arrange 
a few different repeating words many times. We experienced 
these non-existing words in our experiment such as “test pass 
test”, “student test pass”, “teach assist teach class”, etc. Another 
disadvantage of Chan’s algorithm is that it requires a user-
defined maximum phrase length. Our method is similar to 
Chan’s original method. We added the correlations 
Corr(“ab”,“c”,0) and Corr(“abc”,“d”,0) in addition to Chan’s in 
the case of the running example above. 

One might insist that each phrase P{m} of length m has the form 
P{m-1}w, where w is one word and P{m-1} is a phrase of 
length m-1. Since the phrase P{m-1}w is defined by the 
correlation between P{m-1} and w, it is possible that the 
correlation exists between a non-phrase P{m-1} and a word w. 



That is, P{m-1} is not a phrase, but can be extended into a 
phrase of length m. If this is possible, it is also possible that 
even if there exists a phrase, P{m}, in a document, the phrase 
P{m}, could not be generated because P{m-1} does not exist. 
For example, there exists a phrase “wireless powerful computer” 
in a web page. But, since “wireless powerful” is not a phrase, it 
is possible that the phrase could not be generated. However, if 
the phrase is meaningful/important enough, the sub phrases 
“wireless powerful” and “powerful computer” will be generated. 
Next, “computer” will be added to “wireless powerful”. To 
relieve this problem, we calculate the threshold once at the 
beginning – this means the threshold is consistent. If the 
correlation value of “wireless powerful” is lower than the value 
of “wireless powerful computer” then the shorter phrase will be 
removed at a pruning stage. Ahone [1] generates all possible 
phrases within a specified length, which prevents this problem 
from happening. In contrast, our method emphasizes inner 
correlation of a phrase - if a phrase has low inner correlation our 
method does not consider that phrase meaningful. 

4. APPROACH 
Our algorithm consists of two components: the main algorithm 
and the correlation function. In this section we describe the main 
algorithm. In preparation for our phrase-finding algorithm, we 
extract words from a web page visited by the user, filter them 
through a stop list, and stem them [1,2,7,21]. Our original 
implementation suffers from the exponential time complexity 
with large numbers of different words. We explain different 
ways of implementation, and compare both implementation 
strategies. 

4.1 VPFs Algorithms 
Our algorithm receives a sequence of words as input and returns 
meaningful phrases. It combines words into phrases until it 
generates no more phrases. Figure 1 illustrates the pseudo code 
for the Variable-length phrase-finding algorithm (VPF). VPF 
uses three functions - FindPhrase, Corr, and Check - and three 
main variables - List, thre, and Hash. The List variable stores all 
collected phrases (in PList attribute). All correlation values 
between selected pair of words are stored in Hash table. We 
originally stored all correlation values generated with the first 
word in a phrase in PList and all distinct words in PList. The 
problem resided in its computation of the correlation of 
unnecessary pairs. This algorithm uses only the phrases that 
exist in the example input sequence. An element of the PList 
attribute consists of multiple words (w1..wn), has its position list 
in posi attribute, and keeps its inner correlation value in sim 
attribute. The thre variable keeps the calculated threshold value 
that differentiates “strong” relations from “weak” relations. 

All 1-gram distinct words are stored in List[1].PList and 2-gram 
distinct words are in List[2].PList while we are scanning a 
sequence. Then the CalculateThreshold function calculates 
threshold using List[2].PList: 

thre←Average of {Corr(w1.posi,w2.posi,0) | 
w1+w2 ∈ List[2].PList} 

The List and thre data are passed into the FindPhrase procedure 
which collects all variable-length phrases. Once the phrases are 
acquired, they are pruned. The PrunPhrase function simply 
removes all sub-phrases which have a sim value lower than the 
sim value of the super-phrases. 

The FindPhrase procedure uses two variables: a temporary 
variable Nseq that keeps a new sequence and N that is the length 
of phrases (initial value is 2). The Hash variable is initialized as 
NULL. FindPhrase then creates new sequence using the 
previous PList.  

The CreateNewSequence function lists all distinct words in 
PList and sorts them by positions. Because we already collected 
all 2-grams, if N is 2 then it does nothing but returns Null, and 
the CollectNGram function returns List[2].PList. The 
CollectNGram function gets Nseq as input, scans it for n-grams, 
and stores them in PList. The input sequence can have distance 
or gaps between positions, because the sequence is made by 
only the words in the previous PList. Then it collects only valid 
pairs having no gap in a n-gram. The for loop checks all phrases 
in PList and removes phrases with low correlation values (sim) 
from PList using Check function. The FindPhrase procedure 
recursively increases the phrase length until no new phrases are 
generated. The Nseq variable is a temporary variable, where all 
distinct words that exist in the phrases collected in the previous 
stage are sorted by their position. The time complexity of 
building Nseq will be O(S logS), where S is the size of a 
sequence. The process of building this Nseq is the most 
expensive. However, when we sort distinct words in 
List[2].PList, many of the words are already removed. 
Therefore, we can claim that the time complexity of building 
List[j].PList is: 

O(S), where S is the sequence size, 
under the condition of Si+1 log Si+1 < Si. What properties of an 
article keep this condition will be our future work. 

There are two VPFs: VPF-1 and VPF-2. The only difference 
between the two is that VPF-2 cross-references more 
correlations than VPF-1. Check in Figure 2 calculates the 
correlation value between two events and returns a true or false 
response depending on whether their correlation is “strong” or 
“weak”. If we run VPF-1, then Check calculates the correlation 
between two events, p[1..n-1] and p[n], and keeps the 
correlation value in the sim property of the phrase. For example, 
if p= “computer science seminar”, then p[1..n-1]= “computer 
science” and p[n]= “seminar”. If we run VPF-2, then Check 
measures the inner correlation value of a phrase. 

The for loop in Figure 2 checks to see if any of the correlation 
values between a pair of words in a phrase p are lower than the 
calculated threshold. When we calculate a correlation value for 
phrase p, it needs only (n-1) number of comparisons, where n is 
the length of a phrase p. For example, if we calculate the inner 
correlation of “abcd”, then the only calculations we need are 
Corr(“a”,“d”,2), Corr(“b”,“d”,1), and Corr(“c”,“d”,0). Suppose 
we store the sum in temp_sum. In this case, the time complexity 
is O(n), where n is the length of a phrase p. The correlation for a 
phrase p is calculated as: 

p.sim←(old_p.sim × Combinatorial(n-1,2)+ 
temp_sum)/ Combinatorial(n,2), 

where, old_p is p[1..n-1] and temp_sum is the sum of newly 
calculated correlation values. The item method in Hash searches 
for the corresponding key and return the correlation value. The 
add method adds a key and a correlation value to the Hash 
table. The Key was composed of two words and distance. 



Input: Example– a sequence of words 
Output: Collected phrases 
Procedure VPF (Example) 
 List– array of lists that store all phrases 
 thre- threshold value 
 Hash- stores correlation value 
1.  List[1].PList← 1-gram with position 
2.  List[2].PList← 2-gram with position 
3.  thre←CalculateThreshold(List[2].PList) 
4.  FindPhrase(List, Null, 2, thre) 
5.  PrunPhrase(List) 
6.  return all phrases in List 
End Procedure 
 
Input: List- store all phrases 
 Hash- store correlation value 
 N- length of phrase, initial value is 2 
 thre- threshold value 
FindPhrase(List, Hash, N, thre) 
1.  NSeq←CreateNewSequence(List[N-1].PList) 
2.  List[N].PList←CollectNGram(Nseq) 
3.  for each p in List[N].PList 
4.    if Check(Hash,p,N,thre)=True then 
5.      recount positions of p 
6.    else 
7.      remove p from PhraseList 
8.    end if 
9.  next 
10. FindPhrase(List, Hash, N+1, thre) 
End Procedure 

Figure 1. VPFs algorithm 
 
Input: Hash- store correlation value 
 p- a phrase 
 n- length of a phrase  
 thre- threshold value 
Function Check (Hash, p, n, thre) 
1.  // if we run VPF-1 then  
2.  p.sim←Corr(p[1..n-1],p[n],n-2) 
3.  if p.sim > thre then  
4.    return true 
5.  end if 
6.  // if we run VPF-2 then check this also 
7.  p.sim←Calculate new correlation value 
8.  for each wj in p step j=[1..n-1] 
9.    temp←Hash.item(Key(wj,p[n],n-j-1)) 
10.   if temp < thre or temp=NULL then 
11.     return false // check inner corr 

value 
12.   end if 
13. next 
14. Hash.add(Key(p[1],p[n],n-2), 

Corr(p[1],p[n],n-2) 
15. return true 
End Function 

Figure 2. Check function 
 
Input: T1, T2- array of position occurred 
 Dist- distance 
Output: correlation value between T1 and T2 
Function Corr (T1,T2,Dist) 
1.  A←CalcuPrePercentage(T1) 
2.  B←CalcuPostPercentage(T2) 
3.  A∩B←Intersection(T1,T2,Dist)/(page size-

1) 
4.  return CorrelationFunction(A,B,A∩B) 
End Function 

Figure 3. Corr function (calculate correlation) 
 

Corr in Figure 3 calculates a correlation value of events. The 
inputs are two arrays of positions (T1 and T2) and distance/gap 
(dist) – note that the input only receives the position information 
from the input event. It calculates pre- and post-percentages of 
each events. The way the two percentages are calculated is 
detailed in the next section. We can also apply various 
correlation functions in the place of CorrelationFunction. We 
apply 32 different correlation functions. The Intersection counts 
all adjacent points based on the distance in time O(T), where T 
is the maximum distance between T1 and T2. 

Intersection = Count {a+1 = b – dist | a∈T1 and b∈T2} 

The time complexity of this implementation of VPFs consists of 
four operations: the number of recursion, which is equivalent to 
the maximum phrase length generated (L); the time required 
building Nseq (S). The Corr function has O(T) time complexity, 
where T is the position length. Check has O(L) time complexity, 
where L is the phrase length. The time complexity of VPFs in 
general case is roughly: 

O(S), where S is the sequence size. 

4.2 Calculating Pre- and Post-Percentage 
This section explains mainly the CalculatePrePercentage and 
CalculatePostPercentage in Corr function in Figure 3. 
Correlation function uses three probability values: P(A), P(B), 
P(A,B). In order to improve the phrase-selection accuracy, we 
need to calculate for each word the percentage that a word can 
come before any other words and the percentage that the word 
can come after any other words, called pre-percentage and post-
percentage respectively. The idea is that if a word occurred at 
the end of a sequence, then this word lose one chance to come 
before any other words, so we adjust the pre-percentage of the 
word by deducting one from the # of occurrence of a word. The 
post-percentage is vice versa. This adjustment is minor in a 
lengthy document, but it is significant in a shorter document. 

Suppose we have a sequence of five words:  
“banana ice-cream banana ice-cream spoon”. 

A simple way to calculate the probability of each word and pair: 
P(w1)=2/5, P(w2)=2/5, and P(w3)=1/5, where w1= “banana”, w2= 
“ice-cream”, w3= “spoon”, and the total page size is 5. The 
intersections are P(w1,w2)=2/4, P(w2,w3)=1/4, P(w1,w3)=0, etc., 
where the total possible number of phrases is 4. However, when 
we calculate P(w1,w2′), it produces an erroneous result by 
yielding a negative value (P(w1)-P(w1,w2) = –1/10 = 2/5-2/4). 
This example shows the need for calculating pre- and post-
percentages. 

We can view a string S[1..n] of n consecutive words as two sub 
strings, Spre=S[1..n-1] and Spost=S[2..n]. Pre- and post-percentage 
of w can be computed in time O(1), when we know all the 
positions where w occurred: 

wpre-percentage= Frequency of w in Spre / |Spre| 
wpost-percentage= Frequency of w in Spost / |Spost|. 

With the previous example, the pre-percentage of w1 “banana” 
is (2/4) where w1 occurred two times; the post-percentage is 
(1/4) where w1 occurred one time in Spost. For example, 



P(w1,w2′) becomes 0 (=1/4–1/4) and the result is very reasonable 
because “banana” and “ice-cream” are adjacent in the sequence. 

5. CORRELATION FUNCTIONS 
The VPF algorithms build phrases and correlation functions 
actually calculate the weight of a phrase. Correlation function is 
important in terms of selecting more meaningful phrases. The 
VPF is able to cooperate with many different existing 
correlation functions, and it can be hard to choose one 
correlation function out of many. In this section, we describe 
several key properties of a good correlation function. 

Much of the statistical work in building multi-word features 
focuses on co-occurrence [3,16]. All correlation measures are 
not equally good at capturing the dependencies between 
variables. It is because each correlation function has its own bias 
in preferring a set of diagrams to another. Those dependencies 
can be described in a Venn diagram as shown in a feature of A, 
B, and A∩B.  

Piatetsky-Shapiro [15] has proposed three key properties that a 
good correlation function, F, should satisfy: 
P1: if A and B are statistically independent, 
then F is 0; 

P2: F monotonically increases with P(A,B) 
when P(A) and P(B) remain the same; 

P3: if P(A) (or P(B)) increases when the rest 
of the parameters (P(A,B) and P(B) (or 
P(A))) remain unchanged, then F 
monotonically decreases.  

Statistical independence can be measured by the determinant 
operator, where Det (A,B) = A∩B×A′∩B′ − A∩B′×A′∩B. Thus, a 
singular diagram D is independent when its determinant is equal 
to zero [17]. Another important operation in finding phrases is 
distinguishing between positive and negative correlations (P4). 
Measuring their cross product ratio (CPR) can assess the 
significance of the correlation between A and B [16] and is 
defined as: 
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Negative correlation has a negative log CPR value. P4 is that F 
can distinguish positive and negative correlation of A and B. 
Tan et al. [17] described this property in detail. Since positive 
correlation is much more important than negative correlation in 
finding phrases, we only measured the change of correlation 
values over positive correlation. 

Tan et al. [18] illustrated those properties and extended them to 
each of the existing measures to determine if the existing 
measure satisfies the properties required [10]. Some of these 
properties have been extensively investigated in the data mining 
literature [9,17,18]. We examined 32 correlation functions of 
properties and cooperated them with phrase-finding algorithms. 
A complete list of the correlation functions to be examined in 
this study is given in Table 11.  

6. EXPERIMENTS 
We use five New York Times articles and five Web pages 
collected from our department server. We chose five web pages 
to test, because contents in a web page differ from the content 
found in normal article. The data used in this study is accessible 

at http://my.fit.edu/~hokim/conference/phrase/dataset.pdf. The 
article size was about 2 pages, because each volunteer had to 
read 10 articles. 

We asked ten human subjects, other than the authors, to read the 
articles and choose their top 10 meaningful phrases for each 
article or Web page. The instruction that we gave them were: 

• Identify top 10 "meaningful/important" phrases 
for each article. 

• Phrases are defined as two or more adjacent 
words that are meaningful, for example, 
"computer science," "florida institute of 
technology," ... The definition of meaningful 
is up to you. 

We will measure the number of matches between the human 
subjects’ selections and different correlation functions’ 
selections as well as different phrase-finding algorithms. 

We evaluate the meaningfulness of phrases. We believe the 
closer a match comes to our set of human-selected phrases, the 
better the phrase-finding algorithm is in terms of finding 
meaningful phrases. To evaluate the correlation functions for 
each phrase-finding algorithm, we have two evaluation criteria: 
the number of exact matches and the number of simple matches. 
The # of exact matches of a method is measured by the 
percentage of the matches between the human’s and a method’s 
(we have 160 methods = 5 algorithms × 32 correlation 
functions). We count each match with a human’s and then 
average the 10 compared results.  

The number of simple matches counts the matched phrases 
against the list collected by all human (i.e., the union of the 
words from the 10 human subjects). The list will be less then 
100 because some phrases can overlap. Some words are more 
popular than the others. The counting of the # of simple match is 
less affected by popularity. 

We also count average matching of human – in this case, we 
divided the sum by 9. There are cases for human or algorithm to 
select less than 10 phrases. In order to be fair in these cases, we 
use an additional adjustment function. For example, if there are 
5 matches out of 10, the # of matching is 5×1/10. If there are 5 
matches out of 9, then we assigned 5×1/9. But, if there are 5 
matches out of 8, then we assigned 5×1/8.5. The denominator is 
not 8 so as to assess a small penalty for not finding 10. The 
generalized formula is: 

f

m

−+
=

102
28
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where m is the # of matched items and f is the # of selected 
items. 
We also applied different correlation functions to Ahonen’s 
algorithm to see if the difference of the performance depended 
on the correlation functions. Ahonen used two different 
similarity functions: conditionaly probability (Confidence, S11) 
for filtering phrases and mutual confidence (S32) for ordering 
the collected phrases determining which phrase is more 
important than the other. Since he used fixed user-defined 
threshold (0.2) for filtering the phrases, we only varied the 
correlation function used for ordering phrases. 



Table 1. Comparing by top 10 best methods - exact match 
with prune without prune

Rank Method Avg. Rank Method Avg.
1 vpf-1 S25 0.933 1 vpf-1 S25 0.883
2 vpf-1 S16 0.920 2 vpf-1 S28 0.871
3 vpf-1 S28 0.912 3 vpf-1 S16 0.866
4 vpf-2 S16 0.860 4 vpf-2 S16 0.858
5 vpf-2 S29 0.851 5 vpf-2 S25 0.856
6 vpf-2 S25 0.837 6 vpf-2 S29 0.850
7 vpf-2 S28 0.832 7 vpf-2 S28 0.848
8 vpf-1 S8 0.824 8 vpf-1 S10 0.825
9 vpf-1 S10 0.819 9 vpf-1 S29 0.810
10 vpf-1 S29 0.814 10 vpf-1 S27 0.796

 

 

Table 2. Comparing by maximum cases - exact match 

Method Prune Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Yes 1.16 1.85 1.20 .50 .48 .89 2.00 1.10 1.18 1.00 1.40VPF-1 
No 1.12 1.67 1.10 .50 .48 .89 2.00 1.10 1.18 1.00 1.30
Yes 1.23 2.00 1.20 .50 .48 .90 2.44 1.22 1.30 .80 1.40VPF-2 
No 1.17 1.67 1.10 .50 .48 .90 2.00 1.22 1.30 1.20 1.30

 

 

 

Table 3. Ranked by average - exact match 

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1vpf-1 S25 0.933 1.8 .8 .4 .3 .6 1.9 .2 1.0 1.0 1.3

2 vpf-1 S16 0.920 1.8 .5 .3 .5 .9 1.7 .1 1.0 1.0 1.3
3 vpf-1 S28 0.912 1.8 .8 .4 .3 .6 1.9 .2 .8 1.0 1.3
4 vpf-2 S16 0.860 1.8 .5 .3 .5 .9 1.7 .1 1.0 .4 1.3
5 chans S16 0.858 1.7 .5 .3 .5 .9 1.7 .1 .8 .8 1.3
6 chans S25 0.856 1.7 .8 .4 .3 .6 1.8 .1 .8 .8 1.3
7 vpf-2 S29 0.851 1.2 1.1 .4 .1 .7 2.0 .1 .7 .8 1.4
8 chans S29 0.850 1.1 1.0 .3 .2 .7 2.0 .1 .7 1.2 1.3
9 chans S28 0.848 1.7 .7 .4 .3 .6 1.8 .1 .8 .8 1.3
10 vpf-2 S25 0.837 1.8 .8 .4 .3 .6 1.5 .1 1.0 .5 1.3
29 ahonen S32 0.767 1.3 .8 .3 .1 .5 1.5 .2 1.0 .8 1.2

136 ahonen gap S32 0.452 1.0 .7 .3 .1 .4 1.4 .0 .0 .7 .0
 

Table 4. Ahonen with other correlation function-exact match 

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
18 ahonen S6 0.797 1.4 .8 .4 .1 .5 1.5 .3 .8 .9 1.2
21 ahonen S10 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S11 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S12 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S17 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S26 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
26 ahonen S20 0.774 1.3 .8 .3 .1 .5 1.5 .3 .8 .9 1.2
26 ahonen S23 0.774 1.3 .8 .3 .1 .5 1.5 .3 .8 .9 1.2

 

 

7. ANALYSIS 

7.1 With-Prune vs. Without-Prune 
Our algorithm has a pruning function. The results differed 
whether we added the pruning function or not. We compared 
them by comparing the top 10 best methods and by comparing 
maximum cases. 
We measure the average # of matches for each method. The 
method’s result is compared with each human subject’s selection 
for one article. If a phrase is selected by several subjects, every 
match is counted. Therefore, finding more popular phrases 
increases the matching average. This counting is called exact 
match. 
By composing 2 algorithms and 32 correlation functions, we 
generated 64 methods. All methods were ordered and ranked in 
the order of average # of matches. We presented the result in 
Table 1 for with and without prune. Both cases include the top 10 
methods and their average # of matches. With-prune won 6 times 
and without-prune won 4 times. However, the higher-ranking 
methods were more important than lower-ranking methods. 

We selected the best combination of an algorithm and a 
correlation function for each article. This told us the maximum 
performance of an algorithm when they are combined with the 
best correlation function. The comparison by maximum cases was 
shown in Table 2. We had two algorithms: VPF-1 and VPF-2. 
Each algorithm had two cases with prune (Yes) and without prune 
(No). Then we calculated the average of all articles. Both VPFs 
had higher average of maximum case when they have pruning. 
From the observation of the two tables above, we concluded that 
VPFs had higher performance when they had pruning. 

7.2 Analysis of Exact Match 
From the above experiment we decided to use pruning in our 
algorithms. The following analysis is conducted over the 
algorithms with pruning. We first used exact match counting as 
before. The main purpose of the analysis in this section is to 
choose the best method. 

7.2.1 Top 10 best methods 
Which method is the best is the most interesting question. We 
averaged the results from 10 articles and sorted by the average to 
rank all 160 methods. We presented the results in Table 3 and 
included the rank, methods used, and the average of 10 articles. In 
the next 10 columns, we showed the results’ average from 10 
human subjects. Each method was composed of an algorithm and 
a correlation function. Notice that, at the bottom of the table we 
also presented the results of previous methods. Ahonen used 
correlation function S32. He also introduced a method with gaps. 
The row Ahonen_gap represented the results using Ahonen’s 
method allowing gaps within a phrase. 
The best method was the combination of VPF-1 and correlation 
functions S25 followed by S16 and S28 – all those three 
correlation functions satisfied Piatetsky-Shapiro’s three desirable 
properties and distinguish positive from negative correlations. The 
best method VPF-1 with S25 matched 0.93 phrases on average 
with the phrases selected by a human subject. Interestingly, VPF-
1 won the top 3. Chan’s algorithm and VPF-2 occupied the next 
ranks. Another observation was that the correlation functions S25, 
S16, and S28 that marked high rank with VPF-1 also marked high 
rank with Chan’s and VPF-2. This observation implied that the 
performance also depends on the correlation functions. 



Table 5. Comparing with human – exact match 

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Human best 1.48 2.70 1.50 .33 1.10 .40 1.90 1.89 2.94 .50 1.50
Human worst 1.03 1.20 .44 .78 .40 .70 1.61 .70 1.10 1.22 2.18
Human avg. 1.30 1.97 .88 .60 .64 .57 1.96 1.44 2.00 1.26 1.70

 

Table 6. Maximum cases – exact match 

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
VPF-1 1.16 1.85 1.20 .50 .48 .89 2.00 1.10 1.18 1.00 1.40
VPF-2 1.23 2.00 1.20 .50 .48 .90 2.44 1.22 1.30 .80 1.40
ahonen .90 1.40 .85 .47 .18 .70 1.45 .50 1.00 1.00 1.50
 

 
Unfortunately, Ahonen’s algorithm ranked 30 and Ahonen_gap 
139. These methods matched 0.76 and 0.45 numbers of phrases 
with human subjects respectively. The low performance with gap 
is the same phenomenon as shown in the Ahonen’s experiment 
[1]. We conducted t-Test (paired two sample for means) between 
VPF-1 with S25 and Ahonen with S32. There was a clear 
statistically significant difference between the two methods with 
95% confidence (P=0.016). Therefore, we can conclude that VPF-
1 with S25 found statistically significantly more meaningful 
phrases than Ahonen’s previous algorithm. 
Ahonen’s algorithm with other correlation functions received 
higher ranks such as S6, S10, S11, S12, S17, S26, and S20 as 
shown in Table 4. They all ranked above 18, 21, and 26, which 
are higher than Ahonen’s original method (29). This indicates 
Ahonen’s algorithm can be improved upon by using different 
correlation functions. 
The correlation functions S25, S16, and S28 satisfied the four 
desirable properties, but S29 did not satisfy these properties. In 
particular, the correlation function S25 and S28 both were 
included in the top 10 in simple match. These results indicate that 
correlation functions S25 and S28 had higher matching rates than 
the other correlation functions. 

7.2.2 Comparing with human subjects 
To see the average # of matches among human subjects is 
interesting and also provides insight into interpreting the average 
# of matching by the algorithm. For instance, if an algorithm 
matches 1 on average and the human matches 7, then the 
performance of the algorithm is almost negligible no matter how 
much higher its performance is compared to others. 
We presented the best, worst and average of human results in 
Table 5. The results told us that only 1.3 phrases out of 10 picked 
by a human subject matched with the phrases picked by the others 
in average. We also conducted a t-Test with the human average 
and VPF-1 with S25. the human subjects’ average was 
statistically significantly better than the best result obtained by the 
algorithm with a 95% confidence interval (P=0.02). It would be 
interesting to see if the worst case of human matching was higher 
than the algorithm’s. The answer was no. It was not statistically 
significantly better than the machine’s. This result indicates that 
human matching is better than the matching of algorithms in 
general but not always. 

7.2.3 The maximum cases 
While reading the above results a question may arise “what will 
be the best match that the algorithms (VPF-1, VPF-2, and 
Ahonen) can achieve?” In order to answer this question we picked 
the best result created by each algorithm. In other words, we 
picked different correlation functions for the different articles that 
yielded the best result. 

We presented the maximum match cases in Table 6. If we can 
somehow choose the best correlation function for different article, 
VPF-1 would achieve a 1.16 match, VPF-2 achieves a 1.23 match, 
and Ahonen’s achieves a 0.9 match. Even using the highest 
computation among those algorithms examined, Ahonen’s 
algorithm did not perform well. We assume the filtering stage of 
Ahonen’s algorithm filtered many meaningful phrases out or their 
weighting scheme using the length of a phrase and tightness (refer 
to [1]) distracted the correlation value of a phrase. Notice that 
VPF-2 could achieve higher match results if it chooses the best 
correlation function for each different article. Does this mean 
VPF-2 finds more meaningful phrases than VPF-1? But didn’t 
VPF-1 score the 3 most exact matches (Table 3)? We cannot 
resolve this dilemma. But, this result indicates that we can still 
devise a method of higher matching using more information. 

7.3 Analysis of Simple Match 
Simple match uses a list of meaningful phrases by taking the 
union of phrases selected by the 10 human subjects. The phrases 
found by any method and the phrases in the list are compared. 
Simple match is not directly related to finding more meaningful 
phrases, because more meaningful is related to more popular. 
However, this type of count removed the popularity information. 

7.3.1 Top 10 best methods 
We ranked all methods in the order of the average and presented 
top 10 in Table 7. Ahonen’s methods with and without gap are 
also listed for comparison. The results showed VPF-1 produced 8 
of the top 10 this time. VPF-2 is ranked 10. Ahonen without gap 
ranked 63 and Ahonen with gap ranked 153 out of 160. These 
results also told us that VPF-1 and VPF-2 found more phrases 
than Ahonen’s. The reason for the dominance of VPF-1 in this 
experiment was that VPF-1 found more less-meaningful phrases 
than VPF-2, which means, “quantity before quality”. Three facts 
supported this conclusion: the dominance of VPF-1 in simple 
match, the competitive results of VPF-2 in exact match, and the 
higher average of VPF-2 in maximum case in Table 6. We also 
compared the correlation functions, which ranked high to see if 
they satisfy the 4 correlation properties. Correlation functions 
S28, S25, S27, S21 and S4 satisfied the correlation properties, but 
correlation functions S13, S8, S24 and S29 did not. We could not 
find any clear proof from this table that the desirable properties 
are related to the performance. VPF-1 with S1 had a higher match 
percentage than Ahonen’s with S32 on average, but the results 
were not statistically significant.  



Table 7. Ranked by average – simple match 

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1 vpf-1 S28 3.70 5 4 3 2 4 4 2 3 6 3
2 vpf-1 S25 3.69 5 5 3 2 4 4 2 3 6 3
3 vpf-1 S13 3.67 4 4 3 2 5 4 3 5 4 3
4 vpf-1 S8 3.66 4 5 4 2 4 4 3 3 4 3
5 vpf-1 S27 3.57 4 5 4 2 4 4 3 2 5 3
5 vpf-1 S24 3.57 4 5 4 2 4 4 3 3 4 3
7 vpf-1 S21 3.38 5 5 3 2 5 3 2 3 3 3
8 chans S4 3.36 4 6 3 1 4 6 2 3 3 2
8 vpf-2 S4 3.36 4 6 3 1 4 6 2 3 3 2
10 vpf-1 S29 3.34 4 6 3 2 4 4 1 2 5 3
61 ahonen S32 2.93 4 5 2 1 3 3 2 3 5 2

149 ahonen_gap_S32 1.75 3 4 2 1 2 2 0 0 4 0

 

Table 8. Ahonen with other corr. function-simple match 

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
23 ahonen S10 3.20 4 5 2 1 3 3 3 3 5 4
24 ahonen S11 3.20 4 5 2 1 3 3 3 3 5 4
25 ahonen S12 3.20 4 5 2 1 3 3 3 3 5 4
26 ahonen S17 3.20 4 5 2 1 3 3 3 3 5 4
27 ahonen S26 3.20 4 5 2 1 3 3 3 3 5 4
30 ahonen S6 3.18 5 5 3 1 4 3 3 3 5 2
43 ahonen S2 3.02 5 4 2 1 4 3 3 3 4 2
44 ahonen S20 3.02 4 5 2 1 3 3 3 3 5 2
45 ahonen S22 3.02 4 5 2 1 3 3 3 3 5 2
46 ahonen S23 3.02 4 5 2 1 3 3 3 3 5 2

 

Table 9. Comparing with human – simple match 

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Human best 6.3 8.0 5.0 5.0 3.5 6.0 8.9 6.7 7.1 6.7 6.0
Human worst 4.7 5.0 4.4 5.6 3.0 5.0 5.0 4.0 2.0 6.7 6.1
Human avg. 5.6 6.8 4.9 4.2 4.3 4.2 6.7 6.5 6.0 6.8 5.8
 

Table 10. Maximum cases – simple match 

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
VPF-1 4.9 6.0 7.0 4.0 4.0 5.6 4.7 4.0 5.0 6.0 3.0
VPF-2 4.9 6.0 7.0 4.0 4.0 6.0 5.6 4.4 4.0 5.0 3.0
Ahonen 3.6 4.7 4.6 2.7 1.3 5.0 2.7 2.5 3.3 6.0 3.6
 

Ahonen’s algorithm can be improved by incorporating different 
correlation functions. The correlation functions S6, S10, S11, 
S12, S17, S26, and S20 appeared in both the exact match and 
simple match experiments. However, correlation functions S2, 
S22, and S23 were higher only in the simple match experiment. 
Therefore, we can say Ahonen’s algorithm can be improved by 
using the correlation functions S6, S10, S11, S12, S17, S26, and 
S20. 

7.3.2 Comparing with human subjects 
Human subjects may have different lists than the machine, 
because there are 9 other people selecting phrases. In order to 
compensate for this problem, we divided the human’s results by 9 
not 10. The best, worst, and average human matches are listed 
inTable 9. VPF-1 with S1 (0.49) scores higher than the worst case 
of human matching (0.47). This result is different than the results 
of exact match (VPF-1 with S25 was lower than the worst case in 
exact match by human subjects). This implies that human subjects 
share only some popular phrases, while the other phrases 
selections vary. 

7.3.3  The maximum cases 
We also listed the maximum cases for each article in Table 10. 
VPF-1 and VPF-2 yielded similar results – both 0.49 on average, 
but the value details were different. And both VPF-1 and VPF-2 
had higher average match values than Ahonen’s algorithm did. 
These results also support the case our algorithms find more 
matching phrases in the maximum case.  

8. CONCLUDING REMARKS 
The goal of this paper is to devise an algorithm, which finds more 
meaningful phrases than older methods. We proposed two 
algorithms, which meet this goal: VPF-1 and VPF-2. We also 
coordinated these algorithms with 32 different correlation 
functions. They regenerate sequences recursively with the words 
selected in the previous stage and search for increased length of 

phrases in time O(N), where N is the page size. Since our 
algorithm uses average as a threshold and stops when the length 
of phrases does not increase, no user-defined parameter is 
required. By comparing the top 10 best measures and comparing 
the average of best cases, we observed that when we add pruning, 
both algorithms (VPFs) had improved performance. 
In order to choose the best method, we conducted an experiment 
by asking 10 human subjects to select 10 phrases from 10 
different articles. We compared the # of matching phrases chosen 
by a method to those phrases chosen by 10 human subjects. We 
concluded that VPF-1 with S25 found a statistically significantly 
greater number of meaningful phrases than Ahonen’s previous 
method. We suspect the filtering stage of Ahonen’s algorithm 
filtered many meaningful phrases out or their weighting scheme 
using the length of a phrase and tightness (refer to [1]) distracted 
the correlation value of a phrase.  
Interestingly, the correlation functions S25 and S28 were both 
included in the top 10 in both exact match and simple match. This 
result indicates the correlation functions S25 and S28 had higher 
matching rates than the other correlation functions. These two 
correlation functions both satisfied Piatetsky-Shapiro’s three 
desirable properties [15] and are able to distinguish positive and 
negative correlations [17]. We can also improve Ahonen’s 
algorithm by incorporating correlation functions S10, S11, S12, 
S17, S26, S6, and S20. Those functions resulted in a higher match 
of average scores for both exact match and simple match 
experiments.  
The performance of our two methods varied depending on the 
articles selected. We currently do not understand the reason for 
the variance in performance over different articles. We assume it 
is due to the intrinsic characteristics of an article. In the future, we 
hope to apply these collected phrases to improve a recent 
hierarchical user-interest model [11]. We will also investigate the 
property of an article that keeps the size of the next sequence less 
than S logS, where S is the size of the current sequence. 



 

Table 11. Correlation functions 

 Name Formula
1 φ-coefficient (CE) (AB - (A × B)) / Sqr(A × B × (1 - A) × (1 - B)) 

2 Goodman-Kruskal’s (MAX(AB, AB′) + MAX(A′B, A′B′) + MAX(AB, A′B) + MAX(AB′, A′B′)  
- MAX(A, A′) - MAX(B, B′))  /  (2 - MAX(A, A′) - MAX(B, B′)) 

3 Odds ratio (OR) D((AB × A′B′), (AB′ × A′B)) 

4 Yule’s Q (YQ) (AB × A′B′ - AB′ × A′B) / (AB × A′B′ + AB′ × A′B) 

5 Yule’s Y (YY) (Sqr(AB × A′B′) - Sqr(AB′ × A′B)) / (Sqr(AB × A′B′) + Sqr(AB′ × A′B)) 

6 Kappa (k) (KP) (AB + A′B′ - (A × B) - (A′ × B′)) / (1 - (A × B) - (A′ × B′)) 

7 Mutual Information (M) 
(AB × log2(AB / (A × B)) + AB′ × log2(AB′ / (A × B′))  

+ A′B × log2(A′B / (A′ × B)) + A′B′ × log2(A′B′ / (A′ × B′)))  
/ (MIN(-(A × log2(A) + A′ × log2(A′)), -(B × log2(B) + B′ × log2(B′)))) 

8 J-Measure MAX(AB × log2(P(B|A) / B) + AB′ × log2(P(B′|A) / B′), AB × log2(P(A|B) / A) + A′B × log2(P(A′|B) / A′)) 

9 Gini index (G) MAX(A(pow(P(B|A),2) + pow(P(B′|A),2)) + A′(pow(P(B|A′),2) + pow(P(B′|A′),2)) - pow(B,2) - pow(B′,2),  
B(pow(P(A|B), 2) + pow(P(A′|B), 2)) + B′(pow(P(A|B′), 2) + pow(P(A′|B′), 2)) - pow(A, 2) - pow(A′, 2)) 

10 Support AB 

11 Confidence (c) MAX(P(B|A), P(A|B)) 

12 Laplace (L) MAX((100 × AB + 1) / (100 × A + 2), (100 × AB + 1) / (100 × B + 2)) 

13 Conviction (CV) MAX((A × B′) / AB′, (B × A′) / A′B) 

14 Interest (IT) AB / (A × B) 

15 Cosine (IS) AB / Sqr(A × B) 

16 Piatetsky-Shapiro’s (PS) AB - A × B 

17 Certainty Factor (CF) MAX((P(B|A) - B) / (1 - B), (P(A|B) - A) / (1 - A)) 

18 Added Value (AV) MAX(P(B|A) - B, P(A|B) – A) 

19 Collective strength (S) ((AB + A′B′) / (A × B + A′ × B′)) × ((1 - A × B - A′ × B′) / (1 - AB - A′B′)) 

20 Jaccard AB / (A + B - AB) 

21 Klosgen (KL) Sqr(AB) × MAX(P(B|A) - B, P(A|B) - A) 

22 MI Log2(AB / (A × B)) 

23 STC_MIN MIN(P(B|A), P(A|B)) 

24 EMI AB × log(AB / (A × B)) + AB′ × log(AB′ / (A × B′))  
+ A′B × log(A′B / (A′ × B)) + A′B′ × log(A′B′ / (A′ × B′)) 

25 AEMI AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′)  
- A′B × log(A′B/ A′ × B) + A′B′ × log(A′B′/ A′ × B′) 

26 dMAX AB × MAX(P(B|A), P(A|B)) 

27 dMI AB × log2(AB / (A × B)) 

28 AEMI3 AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′) - A′B × log(A′B/ A′ × B) 

29 dMIN AB × MIN(P(B|A), P(A|B)) 

30 dMIN2 1 + AB × log(MIN(P(B|A), P(A|B))) 

31 NegativeCosine (1 - AB) / Sqr((1 - A) × (1 - B)) 

32 MutualConfidence (AB / A + AB / B) / 2 
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