
Identifying Variable-Length Meaningful Phrases
with Correlation Functions

Hyoung-rae Kim and Philip K. Chan
Department of Computer Sciences Technical Report CS-2004-10,

Florida Institute of Technology
Melbourne, FL 32901, USA

hokim@fit.edu, pkc@cs.fit.edu

ABSTRACT
Finding meaningful phrases in a document has been studied in
various information retrieval systems in order to improve the
performance. Many previous statistical phrase finding methods
had different aim such as document classification. Some are
hybridized with statistical and syntactic grammatical methods;
others use correlation heuristics between words. We propose a
new phrase-finding algorithm that adds correlated words one by
one to the phrases found in the previous stage, maintaining high
correlation within a phrase. Our results indicate that our
algorithm finds more meaningful phrases than an existing
algorithm. Furthermore, the previous algorithm could be
improved by applying different correlation functions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]:Information Search
and Retrieval –information filtering, selection process.

General Terms
Algorithms.

Keywords
phrase, variable-length phrase finding algorithm.

1. INTRODUCTION
Statistical phrase finding algorithms are mainly used for
improving the performance of information retrieval [5,6,19].
There are three main approaches: syntactic [12,14], statistical
[14], and hybridized [8]. Our research mainly focuses on the
statistical approach, which does not need any grammatical
knowledge and has easy adaptability to other languages.
Statistical phrase-finding approaches have been used for
expanding vector dimensions in clustering multiple documents
[19,20], or finding more descriptive or important/meaningful
phrases [1,2]. This paper compares previous statistical
approaches and attempts to find meaningful phrases in a
document.

Ahonen et al [1], Zamir and Etzioni [21], and Chan [2]

introduced phrase-finding algorithms. Ahonen’s algorithm
depends on conditional probability and needs a fixed maximum
phrase length. We suspect that the use of two parameters – a
threshold to remove less descriptive phrases in generating stage
and maximum phrase length – are too strict. Zamir and Etzioni
[21] introduced a fast algorithm, but it uses only frequency
information. Chan’s algorithm [2] improved the performance by
using correlation information within a phrase. However, Chan’s
algorithm can generate non-existing phrases and is vulnerable to
synthetic data.

The definition of meaningful is unique to each individual. So,
we define a phrase as more meaningful if it is meaningful to the
most people. We let each individual define his or her own
definition of meaningful. We propose two variable-length
phrase-finding algorithms, VPF-1 and VPF-2, which find more
meaningful phrases. VPF-1 is designed to remove the maximum
length of phrases in Ahonen’s algorithm, and VPF-2 is designed
to fix the problem in Chan’s algorithm by combining it with
VPF-1. Both algorithms add correlated words one by one to the
phrases made in the previous stage. Both apply pruning to
remove less meaningful phrases.

The main contributions are:

(1) We proposed two variable-length phrase-finding algorithms
that is designed for finding meaningful phrases;

(2) The time complexity remains as O(N) where N is the size of
the input sequence under a specified condition;

(3) These algorithms do not need any user-specified parameters;
(4) The algorithms achieve improved performance by pruning

less meaningful phrases;
(5) More meaningful phrases than previous methods are found

and the improvement in performance is statistically
significant;

(6) Some correlation functions are prominent by being ranked
high with both algorithms;

(7) Ahonen’s algorithm is improved by applying different
correlation functions.

The rest of this paper is as follows: Section 2 presents related
work regarding statistical phrase-finding methods; Section 3
discusses input and output and compares our approach with
previous algorithms; Section 4 provides detailed description of
our variable-length meaningful phrase-finding algorithms (VPF-
1 and VPF-2); Section 5 describes the desirable properties of
correlation functions and lists all correlation functions we used;
Section 6 discusses about experiment; Section 7 presents and
analyzes our results; Section 8 summarizes out work.

2. RELATED RESEARCH
There are two main approaches to finding phrases. The first is
related to clustering documents and retrieving documents that
most likely match the user’s information need. This research
focuses on which words and phrases are more important in
clustering documents. The other attempts to find phrases
meaningful to human users.

Wu and Gunopulos [20] examined the usefulness of phrases as
terms in vector-based document classification. They used
statistical techniques to extract phrases from documents whose
document frequency (df) is larger than or at least equal to a
predefined threshold. Fagan [6] selected phrases having a
document frequency of at least 55 and a high co-occurrence in
the same sentence. Mitra et al. [14] collected all pairs of non-
function words that occur contiguously in at least 25 documents.
Turpin and Moffat [19] used Mitra’s method for statistical
phrases for vector-space retrieval. Since the aim of these
approaches is to find the significant words or phrases among
documents, they remove common words or phrases among
documents, which could also remove meaningful phrases in a
document. Furthermore, only two-word phrases are considered,
whereas ours has no limitation in phrase length.

Croft, et al. [5] describe an approach where phrases identified in
natural language queries are used to build structured queries for
a probabilistic retrieval model and showed that using phrases
could improve performance. They used tf*idf information for a
similarity measure. Croft [4] segmented a document’s text using
a number of phrase separators such as verbs, numbers, dates,
title words, company designators, format changes, etc. Next, his
method checks the candidate phrases to see if they are
syntactically correct. Finally, the occurrence frequency of the
remaining phrases is checked. Our paper mainly focuses on a
statistical approach without introducing a syntactic method. We
uses simple phrase separators (i.e., stop-words and non-alphabet
characters), which generalizes our method independent from a
certain language.

Gokcay and Gokcay [8] used statistically extracted keywords
and phrases for title generation. Their statistical method used
grammatical information of tags and sentences, but it is hard to
determine a sentence without grammatical information. They
used cosine correlation function for comparing the similarity of
two words. Our research experimentally shows which
correlation functions are better than others in terms of
measuring word correlation. Ahonen et al. [1] applied Mannila
and Toivonen’s [13] algorithm for finding phrases. In this
algorithm a user has to specify the maximum phrase length and
certain thresholds. Our algorithm does not need a specified
maximum phrase length.

3. PROBLEM
We desire to find phrases meaningful to human users. The goal
will be to devise an algorithm that improves the number of
matching phrases to these phrases selected by a human subject.
The term “meaningful phrase” is the phrase that satisfies a
higher % of the individual’s definition of meaningful. The input
and output data can be specified as:
Input: a sequence of words (a document)
Output: a set of meaningful phrases

Ahonen et al [1], Zamir and Etzioni [21], and Chan [2]
introduced phrase-finding methods. Ahonen’s method finds all
possible combinations of words within a fixed window. Suppose
the window size is 6 and the string in that window is “abcdef”.
Their algorithm generates all possible cases: “ab”, “bc”, “cd”,
“de”, “ef”, “abc”, “bcd”, “def”, … “bcdef”, “abcdef”. Then, it
computes the conditional probability for the weight of those
phrases. A phrase “abc” has two possible weights from P(“c”|
“ab”) and P(“bc”| “a”), from which the higher value is chosen.
Even with the algorithm’s exhaustive examination, its
performance is, as will be shown later, lower than Chan’s [2].

Zamir’s [21] has linear time complexity. The critical drawback
of Zamir’s algorithm is that their algorithm uses only frequency
information. They build the suffix tree based on the overlap of
words (frequency) and then collect neither too frequent nor too
rare phrases. Suppose we are collecting a phrase “abcd”,
Zamir’s method uses only the frequency of the term. This
method needs two user defined parameters: one for removing
too rare or too frequent words and the other for selecting phrases
out of all possible phrases.

Chan’s phrase-finding algorithm calculates the correlation
values of all pairs. For instance, for a phrase “abcd”, it
calculates all correlations of pairs: Corr(“a”,“b”,0),
Corr(“a”,“c”,1), Corr(“a”,“d”,2), Corr(“b”,“c”,0),
Corr(“b”,“d”,1), and Corr(“c”,“d”,0). The function Corr gets
three variables - two words and the distance between the two
words. The main drawback of this method resides in its
incompleteness. Suppose there is a string
S=“abaxbxaxxbxaxxxb…xxbbxbxbxxbxxxb…”, where ‘a’ and
‘b’ represent words, and ‘x’ represents any word. If all
correlations between ‘a’ and ‘b’ with 1 through 4 distances, and
correlations between ‘b’ and ‘b’ with 1 through 4 distances have
value of higher than the threshold, Chan’s algorithm will
generate a word “abbbb” that does not exist in the string. This
problem also makes the quality of phrases suspicious, because
correlation values for each pair of words within a phrase can be
affected by other phrases. For example, the correlation value of
the non-existing word “abbbb” could be high, if the correlation
values for all pairs are high. Moreover, if the correlations
between ‘a’ and ‘a’ with 1 through 4 distances (like
“..xxaaxaxxaxxxa..”) are higher than the threshold, then the
algorithm will generate 25 possible combinations of ‘a’ and ‘b’
with length of 5 (e.g., “aaaaa”, “aaaab”, “aaaba”, … “bbbba”,
“bbbbb”). These cases are very unlikely to happen in a normal
article such as newspaper or journal article. But web pages
contain lists of similar product names or tables that just arrange
a few different repeating words many times. We experienced
these non-existing words in our experiment such as “test pass
test”, “student test pass”, “teach assist teach class”, etc. Another
disadvantage of Chan’s algorithm is that it requires a user-
defined maximum phrase length. Our method is similar to
Chan’s original method. We added the correlations
Corr(“ab”,“c”,0) and Corr(“abc”,“d”,0) in addition to Chan’s in
the case of the running example above.

One might insist that each phrase P{m} of length m has the form
P{m-1}w, where w is one word and P{m-1} is a phrase of
length m-1. Since the phrase P{m-1}w is defined by the
correlation between P{m-1} and w, it is possible that the
correlation exists between a non-phrase P{m-1} and a word w.

That is, P{m-1} is not a phrase, but can be extended into a
phrase of length m. If this is possible, it is also possible that
even if there exists a phrase, P{m}, in a document, the phrase
P{m}, could not be generated because P{m-1} does not exist.
For example, there exists a phrase “wireless powerful computer”
in a web page. But, since “wireless powerful” is not a phrase, it
is possible that the phrase could not be generated. However, if
the phrase is meaningful/important enough, the sub phrases
“wireless powerful” and “powerful computer” will be generated.
Next, “computer” will be added to “wireless powerful”. To
relieve this problem, we calculate the threshold once at the
beginning – this means the threshold is consistent. If the
correlation value of “wireless powerful” is lower than the value
of “wireless powerful computer” then the shorter phrase will be
removed at a pruning stage. Ahone [1] generates all possible
phrases within a specified length, which prevents this problem
from happening. In contrast, our method emphasizes inner
correlation of a phrase - if a phrase has low inner correlation our
method does not consider that phrase meaningful.

4. APPROACH
Our algorithm consists of two components: the main algorithm
and the correlation function. In this section we describe the main
algorithm. In preparation for our phrase-finding algorithm, we
extract words from a web page visited by the user, filter them
through a stop list, and stem them [1,2,7,21]. Our original
implementation suffers from the exponential time complexity
with large numbers of different words. We explain different
ways of implementation, and compare both implementation
strategies.

4.1 VPFs Algorithms
Our algorithm receives a sequence of words as input and returns
meaningful phrases. It combines words into phrases until it
generates no more phrases. Figure 1 illustrates the pseudo code
for the Variable-length phrase-finding algorithm (VPF). VPF
uses three functions - FindPhrase, Corr, and Check - and three
main variables - List, thre, and Hash. The List variable stores all
collected phrases (in PList attribute). All correlation values
between selected pair of words are stored in Hash table. We
originally stored all correlation values generated with the first
word in a phrase in PList and all distinct words in PList. The
problem resided in its computation of the correlation of
unnecessary pairs. This algorithm uses only the phrases that
exist in the example input sequence. An element of the PList
attribute consists of multiple words (w1..wn), has its position list
in posi attribute, and keeps its inner correlation value in sim
attribute. The thre variable keeps the calculated threshold value
that differentiates “strong” relations from “weak” relations.

All 1-gram distinct words are stored in List[1].PList and 2-gram
distinct words are in List[2].PList while we are scanning a
sequence. Then the CalculateThreshold function calculates
threshold using List[2].PList:

thre←Average of {Corr(w1.posi,w2.posi,0) |
w1+w2 ∈ List[2].PList}

The List and thre data are passed into the FindPhrase procedure
which collects all variable-length phrases. Once the phrases are
acquired, they are pruned. The PrunPhrase function simply
removes all sub-phrases which have a sim value lower than the
sim value of the super-phrases.

The FindPhrase procedure uses two variables: a temporary
variable Nseq that keeps a new sequence and N that is the length
of phrases (initial value is 2). The Hash variable is initialized as
NULL. FindPhrase then creates new sequence using the
previous PList.

The CreateNewSequence function lists all distinct words in
PList and sorts them by positions. Because we already collected
all 2-grams, if N is 2 then it does nothing but returns Null, and
the CollectNGram function returns List[2].PList. The
CollectNGram function gets Nseq as input, scans it for n-grams,
and stores them in PList. The input sequence can have distance
or gaps between positions, because the sequence is made by
only the words in the previous PList. Then it collects only valid
pairs having no gap in a n-gram. The for loop checks all phrases
in PList and removes phrases with low correlation values (sim)
from PList using Check function. The FindPhrase procedure
recursively increases the phrase length until no new phrases are
generated. The Nseq variable is a temporary variable, where all
distinct words that exist in the phrases collected in the previous
stage are sorted by their position. The time complexity of
building Nseq will be O(S logS), where S is the size of a
sequence. The process of building this Nseq is the most
expensive. However, when we sort distinct words in
List[2].PList, many of the words are already removed.
Therefore, we can claim that the time complexity of building
List[j].PList is:

O(S), where S is the sequence size,
under the condition of Si+1 log Si+1 < Si. What properties of an
article keep this condition will be our future work.

There are two VPFs: VPF-1 and VPF-2. The only difference
between the two is that VPF-2 cross-references more
correlations than VPF-1. Check in Figure 2 calculates the
correlation value between two events and returns a true or false
response depending on whether their correlation is “strong” or
“weak”. If we run VPF-1, then Check calculates the correlation
between two events, p[1..n-1] and p[n], and keeps the
correlation value in the sim property of the phrase. For example,
if p= “computer science seminar”, then p[1..n-1]= “computer
science” and p[n]= “seminar”. If we run VPF-2, then Check
measures the inner correlation value of a phrase.

The for loop in Figure 2 checks to see if any of the correlation
values between a pair of words in a phrase p are lower than the
calculated threshold. When we calculate a correlation value for
phrase p, it needs only (n-1) number of comparisons, where n is
the length of a phrase p. For example, if we calculate the inner
correlation of “abcd”, then the only calculations we need are
Corr(“a”,“d”,2), Corr(“b”,“d”,1), and Corr(“c”,“d”,0). Suppose
we store the sum in temp_sum. In this case, the time complexity
is O(n), where n is the length of a phrase p. The correlation for a
phrase p is calculated as:

p.sim←(old_p.sim × Combinatorial(n-1,2)+
temp_sum)/ Combinatorial(n,2),

where, old_p is p[1..n-1] and temp_sum is the sum of newly
calculated correlation values. The item method in Hash searches
for the corresponding key and return the correlation value. The
add method adds a key and a correlation value to the Hash
table. The Key was composed of two words and distance.

Input: Example– a sequence of words
Output: Collected phrases
Procedure VPF (Example)
 List– array of lists that store all phrases
 thre- threshold value
 Hash- stores correlation value
1. List[1].PList← 1-gram with position
2. List[2].PList← 2-gram with position
3. thre←CalculateThreshold(List[2].PList)
4. FindPhrase(List, Null, 2, thre)
5. PrunPhrase(List)
6. return all phrases in List
End Procedure

Input: List- store all phrases
 Hash- store correlation value
 N- length of phrase, initial value is 2
 thre- threshold value
FindPhrase(List, Hash, N, thre)
1. NSeq←CreateNewSequence(List[N-1].PList)
2. List[N].PList←CollectNGram(Nseq)
3. for each p in List[N].PList
4. if Check(Hash,p,N,thre)=True then
5. recount positions of p
6. else
7. remove p from PhraseList
8. end if
9. next
10. FindPhrase(List, Hash, N+1, thre)
End Procedure

Figure 1. VPFs algorithm

Input: Hash- store correlation value
 p- a phrase
 n- length of a phrase
 thre- threshold value
Function Check (Hash, p, n, thre)
1. // if we run VPF-1 then
2. p.sim←Corr(p[1..n-1],p[n],n-2)
3. if p.sim > thre then
4. return true
5. end if
6. // if we run VPF-2 then check this also
7. p.sim←Calculate new correlation value
8. for each wj in p step j=[1..n-1]
9. temp←Hash.item(Key(wj,p[n],n-j-1))
10. if temp < thre or temp=NULL then
11. return false // check inner corr

value
12. end if
13. next
14. Hash.add(Key(p[1],p[n],n-2),

Corr(p[1],p[n],n-2)
15. return true
End Function

Figure 2. Check function

Input: T1, T2- array of position occurred
 Dist- distance
Output: correlation value between T1 and T2
Function Corr (T1,T2,Dist)
1. A←CalcuPrePercentage(T1)
2. B←CalcuPostPercentage(T2)
3. A∩B←Intersection(T1,T2,Dist)/(page size-

1)
4. return CorrelationFunction(A,B,A∩B)
End Function

Figure 3. Corr function (calculate correlation)

Corr in Figure 3 calculates a correlation value of events. The
inputs are two arrays of positions (T1 and T2) and distance/gap
(dist) – note that the input only receives the position information
from the input event. It calculates pre- and post-percentages of
each events. The way the two percentages are calculated is
detailed in the next section. We can also apply various
correlation functions in the place of CorrelationFunction. We
apply 32 different correlation functions. The Intersection counts
all adjacent points based on the distance in time O(T), where T
is the maximum distance between T1 and T2.

Intersection = Count {a+1 = b – dist | a∈T1 and b∈T2}

The time complexity of this implementation of VPFs consists of
four operations: the number of recursion, which is equivalent to
the maximum phrase length generated (L); the time required
building Nseq (S). The Corr function has O(T) time complexity,
where T is the position length. Check has O(L) time complexity,
where L is the phrase length. The time complexity of VPFs in
general case is roughly:

O(S), where S is the sequence size.

4.2 Calculating Pre- and Post-Percentage
This section explains mainly the CalculatePrePercentage and
CalculatePostPercentage in Corr function in Figure 3.
Correlation function uses three probability values: P(A), P(B),
P(A,B). In order to improve the phrase-selection accuracy, we
need to calculate for each word the percentage that a word can
come before any other words and the percentage that the word
can come after any other words, called pre-percentage and post-
percentage respectively. The idea is that if a word occurred at
the end of a sequence, then this word lose one chance to come
before any other words, so we adjust the pre-percentage of the
word by deducting one from the # of occurrence of a word. The
post-percentage is vice versa. This adjustment is minor in a
lengthy document, but it is significant in a shorter document.

Suppose we have a sequence of five words:
“banana ice-cream banana ice-cream spoon”.

A simple way to calculate the probability of each word and pair:
P(w1)=2/5, P(w2)=2/5, and P(w3)=1/5, where w1= “banana”, w2=
“ice-cream”, w3= “spoon”, and the total page size is 5. The
intersections are P(w1,w2)=2/4, P(w2,w3)=1/4, P(w1,w3)=0, etc.,
where the total possible number of phrases is 4. However, when
we calculate P(w1,w2′), it produces an erroneous result by
yielding a negative value (P(w1)-P(w1,w2) = –1/10 = 2/5-2/4).
This example shows the need for calculating pre- and post-
percentages.

We can view a string S[1..n] of n consecutive words as two sub
strings, Spre=S[1..n-1] and Spost=S[2..n]. Pre- and post-percentage
of w can be computed in time O(1), when we know all the
positions where w occurred:

wpre-percentage= Frequency of w in Spre / |Spre|
wpost-percentage= Frequency of w in Spost / |Spost|.

With the previous example, the pre-percentage of w1 “banana”
is (2/4) where w1 occurred two times; the post-percentage is
(1/4) where w1 occurred one time in Spost. For example,

P(w1,w2′) becomes 0 (=1/4–1/4) and the result is very reasonable
because “banana” and “ice-cream” are adjacent in the sequence.

5. CORRELATION FUNCTIONS
The VPF algorithms build phrases and correlation functions
actually calculate the weight of a phrase. Correlation function is
important in terms of selecting more meaningful phrases. The
VPF is able to cooperate with many different existing
correlation functions, and it can be hard to choose one
correlation function out of many. In this section, we describe
several key properties of a good correlation function.

Much of the statistical work in building multi-word features
focuses on co-occurrence [3,16]. All correlation measures are
not equally good at capturing the dependencies between
variables. It is because each correlation function has its own bias
in preferring a set of diagrams to another. Those dependencies
can be described in a Venn diagram as shown in a feature of A,
B, and A∩B.

Piatetsky-Shapiro [15] has proposed three key properties that a
good correlation function, F, should satisfy:
P1: if A and B are statistically independent,
then F is 0;

P2: F monotonically increases with P(A,B)
when P(A) and P(B) remain the same;

P3: if P(A) (or P(B)) increases when the rest
of the parameters (P(A,B) and P(B) (or
P(A))) remain unchanged, then F
monotonically decreases.

Statistical independence can be measured by the determinant
operator, where Det (A,B) = A∩B×A′∩B′ − A∩B′×A′∩B. Thus, a
singular diagram D is independent when its determinant is equal
to zero [17]. Another important operation in finding phrases is
distinguishing between positive and negative correlations (P4).
Measuring their cross product ratio (CPR) can assess the
significance of the correlation between A and B [16] and is
defined as:

)',(),'(
)','(),(log),(log

BAPBAP
BAPBAPBACRP =

Negative correlation has a negative log CPR value. P4 is that F
can distinguish positive and negative correlation of A and B.
Tan et al. [17] described this property in detail. Since positive
correlation is much more important than negative correlation in
finding phrases, we only measured the change of correlation
values over positive correlation.

Tan et al. [18] illustrated those properties and extended them to
each of the existing measures to determine if the existing
measure satisfies the properties required [10]. Some of these
properties have been extensively investigated in the data mining
literature [9,17,18]. We examined 32 correlation functions of
properties and cooperated them with phrase-finding algorithms.
A complete list of the correlation functions to be examined in
this study is given in Table 11.

6. EXPERIMENTS
We use five New York Times articles and five Web pages
collected from our department server. We chose five web pages
to test, because contents in a web page differ from the content
found in normal article. The data used in this study is accessible

at http://my.fit.edu/~hokim/conference/phrase/dataset.pdf. The
article size was about 2 pages, because each volunteer had to
read 10 articles.

We asked ten human subjects, other than the authors, to read the
articles and choose their top 10 meaningful phrases for each
article or Web page. The instruction that we gave them were:

• Identify top 10 "meaningful/important" phrases
for each article.

• Phrases are defined as two or more adjacent
words that are meaningful, for example,
"computer science," "florida institute of
technology," ... The definition of meaningful
is up to you.

We will measure the number of matches between the human
subjects’ selections and different correlation functions’
selections as well as different phrase-finding algorithms.

We evaluate the meaningfulness of phrases. We believe the
closer a match comes to our set of human-selected phrases, the
better the phrase-finding algorithm is in terms of finding
meaningful phrases. To evaluate the correlation functions for
each phrase-finding algorithm, we have two evaluation criteria:
the number of exact matches and the number of simple matches.
The # of exact matches of a method is measured by the
percentage of the matches between the human’s and a method’s
(we have 160 methods = 5 algorithms × 32 correlation
functions). We count each match with a human’s and then
average the 10 compared results.

The number of simple matches counts the matched phrases
against the list collected by all human (i.e., the union of the
words from the 10 human subjects). The list will be less then
100 because some phrases can overlap. Some words are more
popular than the others. The counting of the # of simple match is
less affected by popularity.

We also count average matching of human – in this case, we
divided the sum by 9. There are cases for human or algorithm to
select less than 10 phrases. In order to be fair in these cases, we
use an additional adjustment function. For example, if there are
5 matches out of 10, the # of matching is 5×1/10. If there are 5
matches out of 9, then we assigned 5×1/9. But, if there are 5
matches out of 8, then we assigned 5×1/8.5. The denominator is
not 8 so as to assess a small penalty for not finding 10. The
generalized formula is:

f

m

−+
=

102
28

 f)(m,function Adjustment

where m is the # of matched items and f is the # of selected
items.
We also applied different correlation functions to Ahonen’s
algorithm to see if the difference of the performance depended
on the correlation functions. Ahonen used two different
similarity functions: conditionaly probability (Confidence, S11)
for filtering phrases and mutual confidence (S32) for ordering
the collected phrases determining which phrase is more
important than the other. Since he used fixed user-defined
threshold (0.2) for filtering the phrases, we only varied the
correlation function used for ordering phrases.

Table 1. Comparing by top 10 best methods - exact match
with prune without prune

Rank Method Avg. Rank Method Avg.
1 vpf-1 S25 0.933 1 vpf-1 S25 0.883
2 vpf-1 S16 0.920 2 vpf-1 S28 0.871
3 vpf-1 S28 0.912 3 vpf-1 S16 0.866
4 vpf-2 S16 0.860 4 vpf-2 S16 0.858
5 vpf-2 S29 0.851 5 vpf-2 S25 0.856
6 vpf-2 S25 0.837 6 vpf-2 S29 0.850
7 vpf-2 S28 0.832 7 vpf-2 S28 0.848
8 vpf-1 S8 0.824 8 vpf-1 S10 0.825
9 vpf-1 S10 0.819 9 vpf-1 S29 0.810
10 vpf-1 S29 0.814 10 vpf-1 S27 0.796

Table 2. Comparing by maximum cases - exact match

Method Prune Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Yes 1.16 1.85 1.20 .50 .48 .89 2.00 1.10 1.18 1.00 1.40VPF-1
No 1.12 1.67 1.10 .50 .48 .89 2.00 1.10 1.18 1.00 1.30
Yes 1.23 2.00 1.20 .50 .48 .90 2.44 1.22 1.30 .80 1.40VPF-2
No 1.17 1.67 1.10 .50 .48 .90 2.00 1.22 1.30 1.20 1.30

Table 3. Ranked by average - exact match

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1vpf-1 S25 0.933 1.8 .8 .4 .3 .6 1.9 .2 1.0 1.0 1.3

2 vpf-1 S16 0.920 1.8 .5 .3 .5 .9 1.7 .1 1.0 1.0 1.3
3 vpf-1 S28 0.912 1.8 .8 .4 .3 .6 1.9 .2 .8 1.0 1.3
4 vpf-2 S16 0.860 1.8 .5 .3 .5 .9 1.7 .1 1.0 .4 1.3
5 chans S16 0.858 1.7 .5 .3 .5 .9 1.7 .1 .8 .8 1.3
6 chans S25 0.856 1.7 .8 .4 .3 .6 1.8 .1 .8 .8 1.3
7 vpf-2 S29 0.851 1.2 1.1 .4 .1 .7 2.0 .1 .7 .8 1.4
8 chans S29 0.850 1.1 1.0 .3 .2 .7 2.0 .1 .7 1.2 1.3
9 chans S28 0.848 1.7 .7 .4 .3 .6 1.8 .1 .8 .8 1.3
10 vpf-2 S25 0.837 1.8 .8 .4 .3 .6 1.5 .1 1.0 .5 1.3
29 ahonen S32 0.767 1.3 .8 .3 .1 .5 1.5 .2 1.0 .8 1.2

136 ahonen gap S32 0.452 1.0 .7 .3 .1 .4 1.4 .0 .0 .7 .0

Table 4. Ahonen with other correlation function-exact match

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
18 ahonen S6 0.797 1.4 .8 .4 .1 .5 1.5 .3 .8 .9 1.2
21 ahonen S10 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S11 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S12 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S17 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
21 ahonen S26 0.779 1.2 .8 .3 .2 .7 1.5 .3 .8 .9 1.2
26 ahonen S20 0.774 1.3 .8 .3 .1 .5 1.5 .3 .8 .9 1.2
26 ahonen S23 0.774 1.3 .8 .3 .1 .5 1.5 .3 .8 .9 1.2

7. ANALYSIS

7.1 With-Prune vs. Without-Prune
Our algorithm has a pruning function. The results differed
whether we added the pruning function or not. We compared
them by comparing the top 10 best methods and by comparing
maximum cases.
We measure the average # of matches for each method. The
method’s result is compared with each human subject’s selection
for one article. If a phrase is selected by several subjects, every
match is counted. Therefore, finding more popular phrases
increases the matching average. This counting is called exact
match.
By composing 2 algorithms and 32 correlation functions, we
generated 64 methods. All methods were ordered and ranked in
the order of average # of matches. We presented the result in
Table 1 for with and without prune. Both cases include the top 10
methods and their average # of matches. With-prune won 6 times
and without-prune won 4 times. However, the higher-ranking
methods were more important than lower-ranking methods.

We selected the best combination of an algorithm and a
correlation function for each article. This told us the maximum
performance of an algorithm when they are combined with the
best correlation function. The comparison by maximum cases was
shown in Table 2. We had two algorithms: VPF-1 and VPF-2.
Each algorithm had two cases with prune (Yes) and without prune
(No). Then we calculated the average of all articles. Both VPFs
had higher average of maximum case when they have pruning.
From the observation of the two tables above, we concluded that
VPFs had higher performance when they had pruning.

7.2 Analysis of Exact Match
From the above experiment we decided to use pruning in our
algorithms. The following analysis is conducted over the
algorithms with pruning. We first used exact match counting as
before. The main purpose of the analysis in this section is to
choose the best method.

7.2.1 Top 10 best methods
Which method is the best is the most interesting question. We
averaged the results from 10 articles and sorted by the average to
rank all 160 methods. We presented the results in Table 3 and
included the rank, methods used, and the average of 10 articles. In
the next 10 columns, we showed the results’ average from 10
human subjects. Each method was composed of an algorithm and
a correlation function. Notice that, at the bottom of the table we
also presented the results of previous methods. Ahonen used
correlation function S32. He also introduced a method with gaps.
The row Ahonen_gap represented the results using Ahonen’s
method allowing gaps within a phrase.
The best method was the combination of VPF-1 and correlation
functions S25 followed by S16 and S28 – all those three
correlation functions satisfied Piatetsky-Shapiro’s three desirable
properties and distinguish positive from negative correlations. The
best method VPF-1 with S25 matched 0.93 phrases on average
with the phrases selected by a human subject. Interestingly, VPF-
1 won the top 3. Chan’s algorithm and VPF-2 occupied the next
ranks. Another observation was that the correlation functions S25,
S16, and S28 that marked high rank with VPF-1 also marked high
rank with Chan’s and VPF-2. This observation implied that the
performance also depends on the correlation functions.

Table 5. Comparing with human – exact match

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Human best 1.48 2.70 1.50 .33 1.10 .40 1.90 1.89 2.94 .50 1.50
Human worst 1.03 1.20 .44 .78 .40 .70 1.61 .70 1.10 1.22 2.18
Human avg. 1.30 1.97 .88 .60 .64 .57 1.96 1.44 2.00 1.26 1.70

Table 6. Maximum cases – exact match

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
VPF-1 1.16 1.85 1.20 .50 .48 .89 2.00 1.10 1.18 1.00 1.40
VPF-2 1.23 2.00 1.20 .50 .48 .90 2.44 1.22 1.30 .80 1.40
ahonen .90 1.40 .85 .47 .18 .70 1.45 .50 1.00 1.00 1.50

Unfortunately, Ahonen’s algorithm ranked 30 and Ahonen_gap
139. These methods matched 0.76 and 0.45 numbers of phrases
with human subjects respectively. The low performance with gap
is the same phenomenon as shown in the Ahonen’s experiment
[1]. We conducted t-Test (paired two sample for means) between
VPF-1 with S25 and Ahonen with S32. There was a clear
statistically significant difference between the two methods with
95% confidence (P=0.016). Therefore, we can conclude that VPF-
1 with S25 found statistically significantly more meaningful
phrases than Ahonen’s previous algorithm.
Ahonen’s algorithm with other correlation functions received
higher ranks such as S6, S10, S11, S12, S17, S26, and S20 as
shown in Table 4. They all ranked above 18, 21, and 26, which
are higher than Ahonen’s original method (29). This indicates
Ahonen’s algorithm can be improved upon by using different
correlation functions.
The correlation functions S25, S16, and S28 satisfied the four
desirable properties, but S29 did not satisfy these properties. In
particular, the correlation function S25 and S28 both were
included in the top 10 in simple match. These results indicate that
correlation functions S25 and S28 had higher matching rates than
the other correlation functions.

7.2.2 Comparing with human subjects
To see the average # of matches among human subjects is
interesting and also provides insight into interpreting the average
of matching by the algorithm. For instance, if an algorithm
matches 1 on average and the human matches 7, then the
performance of the algorithm is almost negligible no matter how
much higher its performance is compared to others.
We presented the best, worst and average of human results in
Table 5. The results told us that only 1.3 phrases out of 10 picked
by a human subject matched with the phrases picked by the others
in average. We also conducted a t-Test with the human average
and VPF-1 with S25. the human subjects’ average was
statistically significantly better than the best result obtained by the
algorithm with a 95% confidence interval (P=0.02). It would be
interesting to see if the worst case of human matching was higher
than the algorithm’s. The answer was no. It was not statistically
significantly better than the machine’s. This result indicates that
human matching is better than the matching of algorithms in
general but not always.

7.2.3 The maximum cases
While reading the above results a question may arise “what will
be the best match that the algorithms (VPF-1, VPF-2, and
Ahonen) can achieve?” In order to answer this question we picked
the best result created by each algorithm. In other words, we
picked different correlation functions for the different articles that
yielded the best result.

We presented the maximum match cases in Table 6. If we can
somehow choose the best correlation function for different article,
VPF-1 would achieve a 1.16 match, VPF-2 achieves a 1.23 match,
and Ahonen’s achieves a 0.9 match. Even using the highest
computation among those algorithms examined, Ahonen’s
algorithm did not perform well. We assume the filtering stage of
Ahonen’s algorithm filtered many meaningful phrases out or their
weighting scheme using the length of a phrase and tightness (refer
to [1]) distracted the correlation value of a phrase. Notice that
VPF-2 could achieve higher match results if it chooses the best
correlation function for each different article. Does this mean
VPF-2 finds more meaningful phrases than VPF-1? But didn’t
VPF-1 score the 3 most exact matches (Table 3)? We cannot
resolve this dilemma. But, this result indicates that we can still
devise a method of higher matching using more information.

7.3 Analysis of Simple Match
Simple match uses a list of meaningful phrases by taking the
union of phrases selected by the 10 human subjects. The phrases
found by any method and the phrases in the list are compared.
Simple match is not directly related to finding more meaningful
phrases, because more meaningful is related to more popular.
However, this type of count removed the popularity information.

7.3.1 Top 10 best methods
We ranked all methods in the order of the average and presented
top 10 in Table 7. Ahonen’s methods with and without gap are
also listed for comparison. The results showed VPF-1 produced 8
of the top 10 this time. VPF-2 is ranked 10. Ahonen without gap
ranked 63 and Ahonen with gap ranked 153 out of 160. These
results also told us that VPF-1 and VPF-2 found more phrases
than Ahonen’s. The reason for the dominance of VPF-1 in this
experiment was that VPF-1 found more less-meaningful phrases
than VPF-2, which means, “quantity before quality”. Three facts
supported this conclusion: the dominance of VPF-1 in simple
match, the competitive results of VPF-2 in exact match, and the
higher average of VPF-2 in maximum case in Table 6. We also
compared the correlation functions, which ranked high to see if
they satisfy the 4 correlation properties. Correlation functions
S28, S25, S27, S21 and S4 satisfied the correlation properties, but
correlation functions S13, S8, S24 and S29 did not. We could not
find any clear proof from this table that the desirable properties
are related to the performance. VPF-1 with S1 had a higher match
percentage than Ahonen’s with S32 on average, but the results
were not statistically significant.

Table 7. Ranked by average – simple match

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1 vpf-1 S28 3.70 5 4 3 2 4 4 2 3 6 3
2 vpf-1 S25 3.69 5 5 3 2 4 4 2 3 6 3
3 vpf-1 S13 3.67 4 4 3 2 5 4 3 5 4 3
4 vpf-1 S8 3.66 4 5 4 2 4 4 3 3 4 3
5 vpf-1 S27 3.57 4 5 4 2 4 4 3 2 5 3
5 vpf-1 S24 3.57 4 5 4 2 4 4 3 3 4 3
7 vpf-1 S21 3.38 5 5 3 2 5 3 2 3 3 3
8 chans S4 3.36 4 6 3 1 4 6 2 3 3 2
8 vpf-2 S4 3.36 4 6 3 1 4 6 2 3 3 2
10 vpf-1 S29 3.34 4 6 3 2 4 4 1 2 5 3
61 ahonen S32 2.93 4 5 2 1 3 3 2 3 5 2

149 ahonen_gap_S32 1.75 3 4 2 1 2 2 0 0 4 0

Table 8. Ahonen with other corr. function-simple match

Rank Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
23 ahonen S10 3.20 4 5 2 1 3 3 3 3 5 4
24 ahonen S11 3.20 4 5 2 1 3 3 3 3 5 4
25 ahonen S12 3.20 4 5 2 1 3 3 3 3 5 4
26 ahonen S17 3.20 4 5 2 1 3 3 3 3 5 4
27 ahonen S26 3.20 4 5 2 1 3 3 3 3 5 4
30 ahonen S6 3.18 5 5 3 1 4 3 3 3 5 2
43 ahonen S2 3.02 5 4 2 1 4 3 3 3 4 2
44 ahonen S20 3.02 4 5 2 1 3 3 3 3 5 2
45 ahonen S22 3.02 4 5 2 1 3 3 3 3 5 2
46 ahonen S23 3.02 4 5 2 1 3 3 3 3 5 2

Table 9. Comparing with human – simple match

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Human best 6.3 8.0 5.0 5.0 3.5 6.0 8.9 6.7 7.1 6.7 6.0
Human worst 4.7 5.0 4.4 5.6 3.0 5.0 5.0 4.0 2.0 6.7 6.1
Human avg. 5.6 6.8 4.9 4.2 4.3 4.2 6.7 6.5 6.0 6.8 5.8

Table 10. Maximum cases – simple match

Method Avg. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
VPF-1 4.9 6.0 7.0 4.0 4.0 5.6 4.7 4.0 5.0 6.0 3.0
VPF-2 4.9 6.0 7.0 4.0 4.0 6.0 5.6 4.4 4.0 5.0 3.0
Ahonen 3.6 4.7 4.6 2.7 1.3 5.0 2.7 2.5 3.3 6.0 3.6

Ahonen’s algorithm can be improved by incorporating different
correlation functions. The correlation functions S6, S10, S11,
S12, S17, S26, and S20 appeared in both the exact match and
simple match experiments. However, correlation functions S2,
S22, and S23 were higher only in the simple match experiment.
Therefore, we can say Ahonen’s algorithm can be improved by
using the correlation functions S6, S10, S11, S12, S17, S26, and
S20.

7.3.2 Comparing with human subjects
Human subjects may have different lists than the machine,
because there are 9 other people selecting phrases. In order to
compensate for this problem, we divided the human’s results by 9
not 10. The best, worst, and average human matches are listed
inTable 9. VPF-1 with S1 (0.49) scores higher than the worst case
of human matching (0.47). This result is different than the results
of exact match (VPF-1 with S25 was lower than the worst case in
exact match by human subjects). This implies that human subjects
share only some popular phrases, while the other phrases
selections vary.

7.3.3 The maximum cases
We also listed the maximum cases for each article in Table 10.
VPF-1 and VPF-2 yielded similar results – both 0.49 on average,
but the value details were different. And both VPF-1 and VPF-2
had higher average match values than Ahonen’s algorithm did.
These results also support the case our algorithms find more
matching phrases in the maximum case.

8. CONCLUDING REMARKS
The goal of this paper is to devise an algorithm, which finds more
meaningful phrases than older methods. We proposed two
algorithms, which meet this goal: VPF-1 and VPF-2. We also
coordinated these algorithms with 32 different correlation
functions. They regenerate sequences recursively with the words
selected in the previous stage and search for increased length of

phrases in time O(N), where N is the page size. Since our
algorithm uses average as a threshold and stops when the length
of phrases does not increase, no user-defined parameter is
required. By comparing the top 10 best measures and comparing
the average of best cases, we observed that when we add pruning,
both algorithms (VPFs) had improved performance.
In order to choose the best method, we conducted an experiment
by asking 10 human subjects to select 10 phrases from 10
different articles. We compared the # of matching phrases chosen
by a method to those phrases chosen by 10 human subjects. We
concluded that VPF-1 with S25 found a statistically significantly
greater number of meaningful phrases than Ahonen’s previous
method. We suspect the filtering stage of Ahonen’s algorithm
filtered many meaningful phrases out or their weighting scheme
using the length of a phrase and tightness (refer to [1]) distracted
the correlation value of a phrase.
Interestingly, the correlation functions S25 and S28 were both
included in the top 10 in both exact match and simple match. This
result indicates the correlation functions S25 and S28 had higher
matching rates than the other correlation functions. These two
correlation functions both satisfied Piatetsky-Shapiro’s three
desirable properties [15] and are able to distinguish positive and
negative correlations [17]. We can also improve Ahonen’s
algorithm by incorporating correlation functions S10, S11, S12,
S17, S26, S6, and S20. Those functions resulted in a higher match
of average scores for both exact match and simple match
experiments.
The performance of our two methods varied depending on the
articles selected. We currently do not understand the reason for
the variance in performance over different articles. We assume it
is due to the intrinsic characteristics of an article. In the future, we
hope to apply these collected phrases to improve a recent
hierarchical user-interest model [11]. We will also investigate the
property of an article that keeps the size of the next sequence less
than S logS, where S is the size of the current sequence.

Table 11. Correlation functions

 Name Formula
1 φ-coefficient (CE) (AB - (A × B)) / Sqr(A × B × (1 - A) × (1 - B))

2 Goodman-Kruskal’s (MAX(AB, AB′) + MAX(A′B, A′B′) + MAX(AB, A′B) + MAX(AB′, A′B′)
- MAX(A, A′) - MAX(B, B′)) / (2 - MAX(A, A′) - MAX(B, B′))

3 Odds ratio (OR) D((AB × A′B′), (AB′ × A′B))

4 Yule’s Q (YQ) (AB × A′B′ - AB′ × A′B) / (AB × A′B′ + AB′ × A′B)

5 Yule’s Y (YY) (Sqr(AB × A′B′) - Sqr(AB′ × A′B)) / (Sqr(AB × A′B′) + Sqr(AB′ × A′B))

6 Kappa (k) (KP) (AB + A′B′ - (A × B) - (A′ × B′)) / (1 - (A × B) - (A′ × B′))

7 Mutual Information (M)
(AB × log2(AB / (A × B)) + AB′ × log2(AB′ / (A × B′))

+ A′B × log2(A′B / (A′ × B)) + A′B′ × log2(A′B′ / (A′ × B′)))
/ (MIN(-(A × log2(A) + A′ × log2(A′)), -(B × log2(B) + B′ × log2(B′))))

8 J-Measure MAX(AB × log2(P(B|A) / B) + AB′ × log2(P(B′|A) / B′), AB × log2(P(A|B) / A) + A′B × log2(P(A′|B) / A′))

9 Gini index (G) MAX(A(pow(P(B|A),2) + pow(P(B′|A),2)) + A′(pow(P(B|A′),2) + pow(P(B′|A′),2)) - pow(B,2) - pow(B′,2),
B(pow(P(A|B), 2) + pow(P(A′|B), 2)) + B′(pow(P(A|B′), 2) + pow(P(A′|B′), 2)) - pow(A, 2) - pow(A′, 2))

10 Support AB

11 Confidence (c) MAX(P(B|A), P(A|B))

12 Laplace (L) MAX((100 × AB + 1) / (100 × A + 2), (100 × AB + 1) / (100 × B + 2))

13 Conviction (CV) MAX((A × B′) / AB′, (B × A′) / A′B)

14 Interest (IT) AB / (A × B)

15 Cosine (IS) AB / Sqr(A × B)

16 Piatetsky-Shapiro’s (PS) AB - A × B

17 Certainty Factor (CF) MAX((P(B|A) - B) / (1 - B), (P(A|B) - A) / (1 - A))

18 Added Value (AV) MAX(P(B|A) - B, P(A|B) – A)

19 Collective strength (S) ((AB + A′B′) / (A × B + A′ × B′)) × ((1 - A × B - A′ × B′) / (1 - AB - A′B′))

20 Jaccard AB / (A + B - AB)

21 Klosgen (KL) Sqr(AB) × MAX(P(B|A) - B, P(A|B) - A)

22 MI Log2(AB / (A × B))

23 STC_MIN MIN(P(B|A), P(A|B))

24 EMI AB × log(AB / (A × B)) + AB′ × log(AB′ / (A × B′))
+ A′B × log(A′B / (A′ × B)) + A′B′ × log(A′B′ / (A′ × B′))

25 AEMI AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′)
- A′B × log(A′B/ A′ × B) + A′B′ × log(A′B′/ A′ × B′)

26 dMAX AB × MAX(P(B|A), P(A|B))

27 dMI AB × log2(AB / (A × B))

28 AEMI3 AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′) - A′B × log(A′B/ A′ × B)

29 dMIN AB × MIN(P(B|A), P(A|B))

30 dMIN2 1 + AB × log(MIN(P(B|A), P(A|B)))

31 NegativeCosine (1 - AB) / Sqr((1 - A) × (1 - B))

32 MutualConfidence (AB / A + AB / B) / 2

9. ACKNOWLEDGMENTS
We thank all those who voluntarily joined our experiment and
Matt Scripter’s valuable comments.

10. REFERENCES
1. Ahonen, H., Heinonen, O., Klemettinen, M., and Verkamo,

A.I. Applying Data Mining Techniques for Descriptive
Phrase Extraction in Digital Document Collections,
Proceedings of the Advances in Digital Libraries
Conference, 1998

2. Chan, P.K. A non-invasive learning approach to building
web user profiles, KDD-99 Workshop on Web Usage
Analysis and User Profiling, 7-12, 1999.

3. Chen, L., and Sycara, K. Webmate: A personal agent for
browsing and searching, In Proc. 2nd Intl. Conf. Autonomous
Agents, pp. 132-139, 1998.

4. Croft, W.B. (editor), Advances in Information Retrieval:
Recent Research from the Center for Intelligent Information
Retrieval, Massachusetts, Kluwer Academic Publishers, pp.
243, 2000.

5. Croft, W.B., Turtle, H.R. and Lewis, D.D. The use of
phrases and structured queries in information retrieval, ACM
SIGIR, pp. 32-45, 1991.

6. Fagan, J.L. Automatic phrase indexing for document
retrieval, Proceedings of the Tenth Annual ACM SIGIR
Conference on Research & Development in Information
Retrieval, pp. 91-101, 1987.

7. Frakes, W.B., and Baeza-Yates, R. Information Retrieval:
Data Structures and Algorithms, Prentice-Hall, 1992.

8. Gokcay, D. and Gokcay, E. Generating titles for paragraphs
using statistically extracted keywords and phrases, Systems,
Man and Cybernetics, 1995. 'Intelligent Systems for the 21st
Century'., IEEE International Conference on, Volume: 4
, 22-25 Oct. 1995

9. Hilderman, R. and Hamilton, H. Evaluation of
interestingness measures for ranking discovered knowledge.
In Proc. Of the 5th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2001.

10. Kamber, M. and Shinghal, R. Evaluating the interestingness
of characteristic rules. In Proc. Of the Second Int’l
Conference on Knowledge Discovery and Data Mining,
Pages 263-266, Portland, Oregon, 1996.

11. Kim, H. and Chan, P.K. Learning implicit user interest
hierarchy for context in personalization. International
Conference on Intelligent User Interfaces, 101-108, 2003.

12. Lima, E.F. and Pedersen J.O. Phrase Recognition and
expansion for short, precision-biased queries based on a
query log, SIGIR, 1999.

13. Mannila, H. and Toivonen, H. Discovering generalized
episodes using minimal occurrences, Knowledge Discovery
and Data Mining, 1996

14. Mitra, M., Buckley, C., Singhal, A. and Cardie, C. An
Analysis of Statistical and Syntactic Phrases, Proceedings of
RIAO-97, 5th International Conference, 1997.

15. Piatetsky-Shapiro, G. Discovery, analysis and presentation of
strong rules. In G. Piatetsky-Shapiro and W. Frawley,
editors, Knowledge Discovery in Database, pages 2299-248.
MIT Press, Cambridge, MA, 1991.

16. Rosenfeld, R. Adaptive Statistical Language Modeling: A
Maximum Entropy Approach, PhD thesis, Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1994.

17. Tan, P. and Kumar, V. Interestingness Measure for
Association Patterns: A Perspective*, KDD, 2000.

18. Tan, P. Kumar, V. and Srivastava J. Selecting the Right
Interestingness Measure for Association Patterns. In Porc.
ACM SIGKDD, 2002.

19. Turpin, A. and Moffat, A. Statistical phrases for vector-space
information retrieval. In Proceedings of SIGIR-1999, pp.
309--310, 1999.

20. Wu, H. and Gunopulos, D. Evaluating the Utility of
Statistical Phrases and Latent Semantic Indexing for Text
Classification, IEEE International Conference on Data
Mining, 2002.

21. Zamir, O., and Etzioni, O. Web document clustering: a
feasibility demonstration. In Proc. SIGIR-98, 1998.

