
Incentive Auctions and Stable Marriages Problems
Solved with bn/2c-Privacy of Human Preferences

Marius C. Silaghi
Florida Institute of Technology

July 8, 2004

Technical Report CS-2004-11

Abstract

Incentive auctions let several participants to cooperate for clearing a set
of offers and requests, ensuring that each participant cannot do better than
by inputing his true utility. This increases the social welfare by efficient al-
locations, and is proven to have similar outcomes as the traditional English
Auctions. The desk-mates (stable matchings) problem comes from the need
of placing students in pairs of two for working in projects or seating in two-
seats desks. The stable marriages problem consists of finding matches of a
man and a woman out of two sets of men, respectively women. Each of the
persons in the previous two problems has a (hopefully stable) secret prefer-
ence between every two possible partners. The participants want to find an
allocation satisfying their secret preferences and without leaking any of these
secret preferences, except for what a participant can infer from the identity
of the partner/spouse that was recommended to her/him.

We use a distributed weighted constraint satisfaction (DisWCSP) frame-
work where the actual constraints are secrets that are not known by any agent.
They are defined by a set of functions on some secret inputs from all agents.
The solution is also kept secret and each agent learns just the result of ap-
plying an agreed function on the solution. The new framework is shown to
improve the efficiency in modeling the aforementioned problems. We show
how to extend our previous techniques to solve securely problems modeled
with the new formalism, and exemplify with the two problems in the title.

1

1 Introduction

Incentive auctions let several participants to cooperate for clearing a set of offers
and requests, ensuring that each participant cannot do better than by inputing his
true utility. This increases the social welfare by efficient allocations, and is proven
to have similar outcomes as the traditional English Auctions.

The desk-mates (or stable matchings) problem consists in grouping a set of
students in stable working teams of two, such that whenever one person wants
to change her partner for a third one, the third one prefers her current partner to
the change. The students have a secret preference between any pair of potential
partners, and between working with each partner or working alone.

The stable marriages problem consists of matching pairs out of two distinct
sets of participants [GS62]. One member of the pair should belong to the first set
and the second member should belong to the second set. Whenever one participant
wants to change her partner for a third one, the third participant prefers her current
partner to the change. The participants have a secret preference between any pair
of potential partners.

Versions of these problems, without privacy requirements, have been long
known and studied. Techniques for the stable marriages problem are used in US to
assign hospitals to medical interns [Ski90]. It is an example of constraint satisfac-
tion problem (CSP). A CSP is modeled as a set of variables and a set of constraints
on the possible values of those variables. The CSP problem consists in finding
assignments for those variables with values from their domains such that all con-
straints are satisfied. The CSP techniques require every eventual participant to
reveal its preferences (e.g. to a trusted server), to compute the solution. There-
fore, they apply only when the participants accept to reveal their preferences to the
trusted party.

There exist frameworks and techniques to model and solve distributed CSPs
(DisCSPs) with privacy requirements, namely when the domains of the variables
are private to agents [YDIK98, MJ00], or when the constraints are private to
agents [SSHF00a, Sil03b, SR04].

However, incentive auctions cannot be fully modeled with existing DisCSP
frameworks. Also, the desk-mates and the stable marriages problems seem not
to be modeled efficiently (i.e. with a reduced search space) with any of the two
known types of distributed CSP frameworks. In this article we propose a new
framework for the distributed constraint satisfaction problems. It can model natu-
rally existing distributed constraint satisfaction problems, and also the desk-mates,
stable marriages problems, and all necessary steps for incentive auctions. The new
framework assumes that the constraints are not known to absolutely any agent but
they are computable from secret inputs, with known functions. These functions use

2

T W

Q

P
x1

x2

0 1

1 0

Figure 1: A constraint between two variables,
place (x1) x1∈{Paris(P), Quebec(Q)}, and time (x2)
x2∈{Tuesday(T),Wednesday(W)}. The 0s mark rejected tuples. I.e.
this constraint allows only the pairs (P,W) and (Q,T), and can be written
{(P,W), (Q,T)}.

secret inputs provided securely by the different participants. Similarly, the final as-
signments are secret and each agent can retrieve just the result of applying some
agreed function on the secret solution.

We also show how secure multi-party computation techniques that we have
recently developed for solving DisCSPs with private constraints can be extended
to solve problems described in the new framework. We start introducing formally
the CSP problem.

CSP. A constraint satisfaction problem (CSP) is defined by three sets: (X , D,
C). X = {x1, ..., xm} is a set of variables and D = {D1, ..., Dm} is a set
of finite domains such that xi can take values only from Di = {vi1, ..., vidi}.
C = {φ1, ..., φc} is a set of constraints. A constraint φi limits the legality of
each combination of assignments to the variables of an ordered subset Xi of the
variables inX ,Xi ⊆ X . An assignment is a pair 〈xi, vik〉meaning that the variable
xi is assigned the value vik.

A tuple is an ordered set. The projection of a tuple ε of assignments over a
tuple of variables Xi is denoted ε|Xi . A solution of a CSP (X ,D,C) is a tuple of
assignments, ε∗, with one assignment for each variable in X such that each φi∈C
is satisfied by ε∗|Xi . The search space of a CSP is the Cartesian product of the
domains of its variables.
Example 1 In a CSP, one has to find a place (x1) and time (x2) for meet-
ing. x1 is either Paris (P) or Quebec (Q), i.e. D1={P,Q}. x2 is either
Tuesday (T) or Wednesday (W), i.e. D2={T,W}. There are two constraints:
φ1={(P,W), (Q,T)}, and φ2={(P,W), (Q,T), (Q,W)}. φ1 is depicted in Fig-
ure 1. The problem is to find values for x1 and x2 satisfying both φ1 and φ2.

We consider that a set of participants are the source of such CSPs and one

3

has to find agreements for a solution, from the set of possible alternatives, that
satisfies a set of (secret) requirements of the participants. This view suggests a
concept of a distributed CSP. Several frameworks were proposed so far for Dis-
tributed Constraint Satisfaction [ZM91, CDK91, YSH02a, MJ00]. Some versions
consider that each agent owns a constraint of the CSP [ZM91, SGM96]. This con-
straint could model the private information of the agent [SSHF00a]. Other versions
consider that each agent owns the domain of a variable while the constraints are
shared [YDIK98]. The secret domains can also model some private constraints of
the agent.

None of the two approaches, namely private variables or private domains, can
model efficiently the desk-mates or stable marriages problems. This is because
their private data does not directly constrain the allocation of the natural shared
resources. An indirect relation exist with such a constraint. Redundant variables
would need to be introduced in the system. A new framework will be introduced
in this article to avoid the redundant variables.

2 Background

Our techniques here apply only to problems whose constraints and outputs can
be represented as first order logic expressions, or as arithmetic circuits on inputs.
Actually, we propose a procedure to translate first order logic definitions of con-
straints/outputs into arithmetic circuits. In the following we introduce arithmetic
circuits and a short overview of the literature and techniques that made them rele-
vant.

2.1 Secure Arithmetic Circuit Evaluation

Secure multi-party computations can simulate any arithmetic circuit [BOGW88] or
boolean circuit [Kil88, Gol04] evaluation. An arithmetic circuit can be intuitively
imagined as a directed graph without cycles where each node is described either
by an addition/subtraction or by a multiplication operator (see Figure 2). Each leaf
is a constant. In a secure arithmetic circuit evaluation, a set of participants perform
the operations of an arithmetic circuit over some inputs, each input being either
public or an (encrypted/shared) secret of one of them. The result of the arithmetic
circuit are the values of some predefined nodes. The protocol can be designed to
reveal the result to only a subset of the agents, while none of them learns anything
about intermediary values. One says that the multi-party computation simulates
the evaluation of the arithmetic circuit. A boolean circuit is similar, just that the
leafs are boolean truth values, false or true, often represented as 0 and 1. The rest

4

X −

x y z

+ +

X

f

X

g

Figure 2: An arithmetic circuit, g = yz + (x − z) and f=(xz + yz)g. Each
input can be the secret of some participant. The output may not be revealed to all
participants. All intermediary values remain secret to everybody.

of the nodes are boolean operators like AND or XOR. A function does not have to
be represented in this form to be solvable using general secure arithmetic circuit
evaluation. It only needs to have such an equivalent representation. For example,
the operation

∑E
i=B f(i) is an arithmetic circuit if B and E are public constants and

f(i) is an arithmetic circuit. The same is true about
∏E
i=B f(i). Such constructs

are useful when designing arithmetic circuits.

Secure simulation of arithmetic circuit evaluation. The secure multi-party
simulation of arithmetic circuit evaluation proposed in [BOGW88] exploits
Shamir’s secret sharing [Sha79]. This sharing is based on the fact that a polynomial
f(x) of degree t−1 with unknown parameters can be reconstructed given the evalu-
ation of f in at least t distinct values of x, using Lagrange interpolation. Absolutely
no information is given about the value of f(0) by revealing the valuation of f in
any at most t−1 non-zero values of x. Therefore, in order to share a secret number
s to n participants A1, ..., An, one first selects t−1 random numbers a1, ..., at−1

that will define the polynomial f(x) = s+
∑t−1

i=1(aix
i). A distinct non-zero num-

ber τi is assigned to each participant Ai. The value of the pair (τi, f(τi)) is sent
over a secure channel (e.g. encrypted) to each participant Ai. This is called a
(t, n)-threshold scheme. Once secret numbers are shared with a (t, n)-threshold
scheme, evaluation of an arbitrary arithmetic circuit can be performed over the
shared secrets, in such a way that all results remain shared secrets with the same
security properties (the number of supported colluders, t−1) [BOGW88, Yao82].

5

For [Sha79]’s technique, one knows to perform additions and multiplications when
t ≤ (n − 1)/2. Since any bn/2c participants cannot find anything secret by col-
luding, such a technique is called bn/2c-private [BOGW88].

2.2 Overview of MPC-DisCSP1

In [Sil03b] we have proposed a multi-party computation technique, called MPC-
DisCSP1, that extracts a random solution of a distributed CSP. MPC-DisCSP1 uses
general multi-party computation building blocks. General multi-party computation
techniques can solve securely certain functions, one of the most general classes of
solved problems being the arithmetic circuits (see Section 2.1). A distributed CSP
is not a function. A DisCSP can have several solutions for an input problem, or can
even have no solution. Two of the three reformulations of DisCSPs as a function
(see [SR04]) are relevant for MPC-DisCSP1:

i A function DisCSP1() returning the first solution in lexicographic order, re-
spectively an invalid valuation τ when there is no solution.

ii A probabilistic function DisCSP() which picks randomly a solution if it ex-
ists, respectively returns τ when there is no solution.

For privacy purposes only the 2nd alternative is satisfactory. DisCSP()
only reveals what we usually expect to get from a DisCSP, namely some solu-
tion. DisCSP1() intrinsically reveals more [SR04]. MPC-DisCSP1 implements
DisCSP() in five phases:

1. Share the secret parameters of the input DisCSP using Shamir’s secret shar-
ing.

2. The shared DisCSP problem is shuffled in a cooperative way, reordering val-
ues (and eventually variables), by composing secret permutations from each
participant agent, such that no agent can retrieve the total domains permuta-
tion by comparing the initial with the obtained DisCSP.

3. A version of DisCSP1() where the operations performed by agents are in-
dependent of the input secrets (to avoid leaking the secrets), is executed by
simulating arithmetic circuits evaluation with the technique in [BOGW88].

4. The solution returned by DisCSP1() at Step 3 is translated into the initial
problem formulation using a transformation that is inverse of the shuffling at
Step 2.

5. Construct the solution from its secret shares.

6

Aj

xi 1

xjAi

Figure 3: A constraint between xi and xj for the desk-mates and stable-marriages
problems.

It is also possible and very simple to find all solutions [HCN+01]. However,
when only a single solution is needed, this leaks a lot of information. At Step 3,
MPC-DisCSP1 requires a version of the DisCSP1() function whose cost is inde-
pendent of the input, since otherwise the users can learn things like: The returned
solution is the only one, being found after unsuccessfully checking all other tuples,
all other tuples being infeasible. Since the used DisCSP1() has to be independent
of the problem details, its cost is exponential (at least as long as nobody proves
P=NP).

3 Distributed CSPs with constraints secret to everybody

In this article we redefine the distributed CSP framework, aiming to model effi-
ciently (i.e. with a reduced search space) the distribution of some famous CSP
problems, namely the incentive auctions, desk-mates and the stable marriages
problems.

Desk-mates The desk-mates problem consists in placing a set of persons A =
{A1, ..., Am} in a set of two-seats desks, such that if any personAi prefers a person
Aj to the desk-mate selected for her, then Aj prefers her current desk-mate to Ai.

A way of modeling the desk-mates problem as a CSP is to have one variable
xi for each person Ai specifying the index of the desk-mate assigned to her by
the solution, or specifying i, the index of Ai itself, if she remains alone. The
constraints are obtained by preprocessing the input from participants about their
preferences. The fact that a person Ai prefers Au to Av is specified by the first
order logic predicate PAi(u, v). There is a constraint φij between every pair of
distinct variables xi and xj . In first order logic notation, the constraint between

7

each two variables xi and xj is:

∀xi, xj : φij(xi, xj)
def
= (PAi(xj , xi)⇒ PAxj (j, i)) ∧ (PAj (xi, xj)⇒ PAxi (i, j)) ∧

((xi = j)⇔ (xj = i)) (1)

Note that this model subsumes the constraints: ∀i, j : xi 6= xj .

Stable Marriages The stable marriages problem is the problem of finding a set
of matches between a set of females, A1, ..., Am, and a set of males, B1, ..., Bm,
such that if any person from the set of females, Ai, prefers some male, Bj , to the
partner selected for her, then Bj prefers his current partner to Ai. If any male,
Bi, prefers some female, Aj , to the partner selected for him, then Aj prefers her
current partner to Bi.

The stable marriages problem is an instance of the desk-mates problem, that
can be modeled with a lower search space. A way of modeling the stable mar-
riages problem as a CSP is to have one variable xi for each female1, specifying
the index of the male assigned to her by the solution. The constraints are obtained
by preprocessing the input of participants about their preferences. The fact that a
person Ai prefers Bu to Bv is specified by the first order logic predicate PAi(u, v).
The fact that Bi prefers Au to Av is specified by the first order logic predicate
PBi(u, v). There is a constraint φij between every pair of variables xi and xj . In
first order logic notation, the constraint between each two variables xi and xj is:

∀xi, xj : φij(xi, xj)
def
= (PAi(xj , xi)⇒ PBxj (j, i)) ∧

(PAj (xi, xj)⇒ PBxi (i, j)) ∧ (xi 6= xj) (2)

In this formulation, the preferences of an agent do not necessarily require a
total order on the possible spouses. Note that a total order is part of the common
definition of the stable marriages problem [GS62, Ski90].

It is possible to extend the stable marriages problem to the case with an unequal
number of males and females. In this case, it can be modeled either:

• as a usual instance of the desk-mates problem, with one variable for the
partner of each participant, each participant publicly preferring to work alone
rather then with somebody of the same type, or

• with variables only for females (or males), where the variables have an addi-
tional value, 0, for specifying that the participant remains single.

1Or male. Then, everything is defined symmetrically.

8

For the second case, there is a global constraint:

∀ε, φ(ε)
def
= (∀i, k : ((k 6= ε|{xi}) ∧ PAi(k, ε|{xi}))⇒ (3)

((k 6= 0) ∧ (∃j : (ε|{xj} = k) ∧ PBk(j, i)))) ∧
(∀q, t : ε|{xq} 6= ε|{xt}) (4)

The main complication with this kind of CSPs is that the constraints are func-
tions of secrets that cannot be easily elicited from the participants. Distributed CSP
frameworks are meant to address such problems.

Modeling the desk-mates and stable marriages problem with DisCSPs with
secret constraints that are known to some agents. One can model the desk-
mates problem with secret constraints known to some agents [ZM91, SSHF00b]
by choosing as variables, x1, ..., xm, the index of the partner associated to each
agent (that has to be computed) and using one additional boolean variable for each
secret preference, PAi(u, v). The total number of boolean variables is m3, m2 of
them being actually fixed by public constraints (e.g. PAi(u, u) = 0). However,
also taking into account the variables x1, ..., xm, the total search space becomes
O(mm2m

3
). This is O(2m

3
) times worse than the centralized CSP formalization

whose search space is only O(mm).
We propose now a distributed constraint satisfaction framework that allows

to model these problems with the same search space size as the CSP framework,
O(mm).

3.1 Redefining the Distributed Constraint Satisfaction Framework

In the previous part of this section we have exemplified CSP models for the desk-
mates and stable marriage problem. We have seen that it is difficult to model
efficiently these problems using existing private variable-, or private constraint-
oriented distributed constraint satisfaction frameworks.

Let us propose a framework for modeling distributed CSPs, where a constraint
is not (necessarily) a secret known to an agent, or public, but can also be a secret
unknown to all agents.

Definition 1 A Distributed CSP (DisCSP) is defined by six sets (A,X,D,C, I ,
O). A={A1, ..., An} is a set of agents. X , D, and the solution are defined like for
CSPs.

I={I1, ..., In} is a set of secret inputs. Ii is a tuple of αi secret inputs (defined
on a set F) from the agent Ai. Each input Ii belongs to Fαi .

9

Like for CSPs, C is a set of constraints. There may exist a public constraint in
C, φ0, defined by a predicate φ0(ε) on tuples of assignments ε, known to everybody.
However, each constraint φi, i>0, in C is defined as a set of known predicates
φi(ε, I) over the secret inputs I , and the tuples ε of assignments to all the variables
in a set of variables Xi, Xi ⊆ X .

O={o1, ..., on} is the set of outputs to the different agents. oi : D1×...×Dm →
Fωi is a function receiving as parameter a solution and returning ωi secret outputs
(from F) that will be revealed only to the agent Ai.

Theorem 1 The framework in the Definition 1 can model any distributed con-
straint satisfaction problems with private constraints [SSHF00b].

Proof. The new DisCSP framework can be used to model any of the DisCSP problems
with constraints private to agents, by defining Ii as the extensional representation of the pri-
vate constraint of Ai (assuming the simple but sufficient case of one constraint per agent).
φi(ε, I) is then given by the corresponding value for ε in Ii. The outputs are going to be
oi(ε) = ε for all i. q.e.d.

Theorem 2 The framework in the Definition 1 can model distributed constraint
satisfaction problems with private domains [YDIK98].

Proof. A private domain of an agent can also be modeled as a private unary constraint, in
a DisCSP where each domain is the maximum possible domain for the variable. Then, the
Theorem 1 applies. q.e.d.

We do not claim that the new framework is more general than the existing
frameworks. It enables us to model naturally and efficiently the desk-mate and
stable marriages problems. One can also model these problems with the old frame-
works, but they seem to yield much larger search spaces, and therefore less efficient
solutions. Let us now exemplify how this framework can model the new problems.

Modeling the desk-mates problem as a DisCSP. A way of modeling the desk-
mates problem as a DisCSP is to have one agent, Ai, and one variable, xi, for
each participant in the problem description. xi specifies the index of the desk-mate
assigned to Ai by the solution, or specifies i if she remains alone. The inputs Ii
of each agent are given by the set of preferences PAi(u, v), specifying whether Ai
prefers Au to Av, for each u and v. The set F , to which belong the inputs and the
outputs, is {true, false}.

There is a constraint φij between every pair of variables xi and xj , defined as

in Equation 1. The output functions are defined as: oi(ε)
def
= ε|{xi}. Namely, each

10

agent learns only the name of her desk-mate. There is a public constraint:

φ0
def
= ∀i, j, ((xi = j)⇔ (xj = i)) ∧ (xi 6= xj) (5)

Modeling the stable marriages problem as a DisCSP. To model the stable mar-
riages problem as a DisCSP, one can also have one agent, Ai, for each female
participant Ai in the problem description. Each participant Bj is mapped to an
agent Am+j . One has m variables, x1, ..., xm, modeling the partners of the agents
A1, ..., Am. xi specifies the index of the spouse assigned to Ai by the solution, or
specifies 0, if she remains alone. The inputs Ii of each agent are given by the set
of preferences PAi(u, v) and PBi(u, v), specifying whether Ai prefers Bu to Bv,
respectively whether Bi prefers Au to Av, for each u and v. The set F for inputs
and outputs is {true, false}.

The constraint φij between every pair of variables xi and xj , is defined as in

Equation 2. The output functions for i ∈ [1..m] are defined as: oi(ε)
def
= ε|{xi}.

Namely, each female learns only the index of the husband proposed to her. To
return to each male Am+i the identity of the spouse proposed the him, the corre-
sponding output is om+i

def
= {k|xk = i}.

There is a public constraint:

φ0
def
= ∀i, j, xi 6= xj (6)

3.2 Distributed Weighted Constraint Satisfaction Problems

Definition 2 A distributed constraint satisfaction problem (DisWCSP) is defined
by six sets (A,X,D,C, I,O) and a set of acceptable solution qualities B, that can
be often represented as an interval [B1, B2]. A={A1, ..., An} is a set of agents.
X = {x1, ..., xm} is a set of variables and D = {D1, ..., Dm} is a set of finite
domains such that xi can take values only from Di = {vi1, ..., vidi}. An assignment
is a pair 〈xi, vik〉 meaning that the variable xi is assigned the value vik. A tuple is
an ordered set. I={I1, ..., In} is a set of secret inputs. Ii is a tuple of αi secret
inputs (defined on a set F) from the agent Ai. Each input Ii belongs to Fαi .
C = {φ0, ..., φc} is a set of constraints. A constraint φi weights the legality of
each combination of assignments to the variables of an ordered subset Xi of the
variables in X , Xi ⊆ X . φ0 is a public constraint defined by a function φ0(ε)
on tuples of assignments ε, known to everybody. Each constraint φi, i>0, in C is
defined as a known function φi(ε, I) over the secret inputs I , and the tuples ε of
assignments to all the variables in a set of variablesXi,Xi ⊆ X . The projection of
a tuple ε of assignments over a tuple of variables Xi is denoted ε|Xi . A solution is

11

ε∗ = argmin
ε∈D1×...×Dn

∑c
i=1 φi(ε|Xi), if

∑c
i=1 φi(ε∗|Xi) ∈ [B1...B2]. O={o1, ..., on}

is the set of outputs to the different agents. oi : I × D1 × ... × Dm → Fωi is a
function receiving as parameter the inputs and a solution, and returning ωi secret
outputs (from F) that will be revealed only to the agent Ai.

Solvers developed in our previous work require that the functions in setsO and
C are input either in first order logic form, or in the form of arithmetic circuits.

The public constraint φ0 can be input into the system using a set of constraints
{φ1

0, φ
2
0, ...}, and the tuples of assignments accepted by φ0 can be obtained sep-

arately by each agent, when needed, using any systematic search technique that
finds all solutions of a CSP, e.g. backtracking or lookahead algorithms (BT, BM,
CBJ, FC, MAC, EMAC, etc.).

4 Adapting existing secure solvers to the new DisCSP
framework

There exist a large set of algorithms addressing distributed CSPs with privacy of
constraints [Sil02, HCN+01, FMW01, WS04, YSH02b, Sil03b]. The ones that we
succeed to extend to the new framework are:

• Finding the set of all solutions of a distributed constraint problem with secret
constraints [HCN+01].

• Finding the first solution in a lexicographic order for a distributed con-
straint satisfaction problem with secret constraints that are known to some
agents [Sil03a].

• Finding a random solution for a DisCSP with secret constraints that are
known to some agents [Sil03b].

When a solution is returned to the desk-mates problem, each agentAi can infer
that: any agentAk preferred byAi to her current desk-mateAj , prefers her current
partner toAi. If only one solution is returned (picked randomly among the existing
solutions), then no other secret preference can be inferred with certainty.

Theorem 3 The desk-mates problem and the stable marriages problem can have
several solutions.

Proof. Consider a case with three agents, A1, A2, A3 where PA1
(2, 3), PA2

(3, 1),
PA3

(1, 2). This is a loop of preferences, and has three stable solutions, the sets of teams

12

{(A1, A2), (A3)}, {(A2, A3), (A1)}, {(A3, A1), (A2)}. Such an example can be con-
structed out of any similar loop of preferences, of any size.

A similar construct can show that the stable marriages problem can have several so-
lutions. Namely take four agents with PA1

(1, 2), PA2
(2, 1), PB1

(2, 1), PB2
(1, 2). q.e.d.

If there exist several solutions, the agents will prefer not to reveal more then
one of them. The remaining solutions would only reveal more secret preferences:

• Typically there is no other fair way, except randomness, to break the tie
between several solutions.

• If the single solution that is returned is selected as the first one in some
given lexicographic order on the variables and domains of the problem,
then additional information is leaked concerning the fact that tuples placed
lexicographically before the suggested solution do not satisfy the con-
straints [Sil03b].

As it follows, if it is known that a certain problem has only one solution, then
any technique is acceptable among either:

• Finding and returning all solutions using the technique in [HCN+01], or

• Returning only the first solution (e.g. by sequentially checking each tuple in
lexicographical order until a solution is found).

Otherwise, strong privacy requirements make techniques returning a random solu-
tion [Sil03b] desirable, despite their potential of having a lower efficiency.

4.1 General Scheme

We will note that the main difference between the new DisCSP framework, and
the one with secret constraints that are known to some agents, is that now the
constraints need to be computed dynamically from secrets inputs.

The techniques solving DisCSPs with private constraints can be used as a black
box, except for the equivalent of the Step 1 and Step 5 in MPC-DisCSP1 (see Sec-
tion 2). Namely, instead of simply sending encrypted Shamir shares of one’s con-
straint, those shares of the constraints have to be computed from the secret inputs
of the agents. We therefore propose to replace the equivalents of Step 1 ad Step 5
with simulations of arithmetic circuit evaluation which will compute each φk(ε, I)
for each tuple ε and for the actual inputs I . This step is called preprocessing.

Similarly, instead of just reconstructing the assignments to variables in a solu-
tion ε at Step 5, one will have to design and execute secure computations of the

13

functions ok(ε). This step is called post-processing. We show that in our cases this
can also be done using simulations of arithmetic circuit evaluations.

AssumeA is some algorithm using Shamir’s secret sharing for securely finding
a solution of a distributed CSP (with secret constraints known to some agents). The
generic extension of the algorithmA to solve the DisCSP in the new framework is:

• Preprocessing: Share the secrets in I with Shamir’s secret sharing scheme.
Compute each φk(ε|Xk , I) for each tuple ε|Xk and for the actual inputs I by
designing it as an arithmetic circuit and simulating securely its evaluation.
The public constraint φ0 can be shared by any agent.

• Run the algorithm A as a black-box, for finding a solution ε∗ shared with
Shamir’s secret sharing scheme, for a DisCSP with parameters (i.e. con-
straints) shared with Shamir’s secret sharing scheme.

• Post-processing: Compute each oi(ε∗) by designing it as an arithmetic cir-
cuit and simulating securely its evaluation. Reveal the result of oi(ε∗) only
to Ai.

4.2 Pre- and post- processing for desk-mate and stable marriages
problems

In the remaining part of the article we will prove that it is possible to design the
needed preprocessing and post-processing to solve our two examples of DisCSPs:
desk-mates and stable marriages, using the general scheme defined above.

Preprocessing for the desk-mates problem. We assume the same choice of
variables, as for the CSP formalization of this problem in Section 3. Let us now
show how simple arithmetic circuits can implement the required preprocessing.

Each variable xi specifies the index of the desk-mate associated to Ai. The
input of each agent Ai is a preference value PAi(j, k) for each ordered pair of
agents (Aj , Ak), and specifying whether Ai prefers Aj to Ak. PAi(j, k)=1 if
and only if Ai prefers Aj to Ak. Otherwise PAi(j, k)=0. A constraint φij is
defined between each two variables, xi and xj . I.e. φij [u, v] is the acceptance
value of the pair of matches: (Ai, Au), (Aj , Av). One synthesizes m(m − 1)/2
such constraints:

φi,j [u, v] =





0 when u = v

(1− PAi(v, u) ∗ (1− PAv(j, i)))∗
(1− PAj (u, v) ∗ (1− PAu(i, j))) when u 6= v

14

The public constraint φ0 (same as in Equation 5) restricts each pair of assign-
ments:

∀ε, ε=(〈xi, u〉, 〈xj , v)〉 : φ0(ε)
def
= ((u=j)⇔ (v=i)) ∧ (u 6= v)

φ0 is known by everybody, and therefore there is no need to compute it with arith-
metic circuits. The complexity of this preprocessing is O(m4) multiplications of
secrets (for m2 binary constraints with m2 tuples each).

The desk-mates problem does not require any arithmetic circuit evaluation for
the post-processing, as each agentAi learns a value existing in the solution, oi(ε) =
ε|{xi}. The participants just reveal to Ai their shares of xi in the solution.

Preprocessing for the stable marriages problem. Some simple arithmetic cir-
cuits can implement the preprocessing for the stable marriages problem, too.

Each variable xi specifies the index of the male associated to the female Ai.
The input of each female Ai specifies a preference value PAi(j, k) for each pair
of males, (Bj , Bk). Each male Bi specifies a preference value PBi(j, k) for each
pair of females (Aj , Ak). PAi(j, k)=1 if and only if Ai prefers Bj to Bk. Oth-
erwise PAi(j, k)=0. PBi(j, k)=1 if and only if Bi prefers Aj to Ak. Otherwise
PBi(j, k)=0. A constraint φij is defined between each two variables xi and xj .
φij [u, v] is the acceptance value of the pair of matches: (Ai, Bu), (Aj , Bv). One
synthesizes m(m− 1)/2 constraints:

φi,j [u, v] =





0 when u = v

(1− PAi(v, u) ∗ (1− PBv(j, i)))∗
(1− PAj (u, v) ∗ (1− PBu(i, j))) when u 6= v

The public constraint φ0 (same as in Equation 6) restricts each pair of assignments:

∀ε, ε=(〈xi, u〉, 〈xj , v〉) : φ0(ε)
def
= (u 6= v)

specifying that it is not possible for two persons to be associated to the same spouse
in a solution.

Post-processing for the stable marriages problem. The stable marriages prob-
lem requires a post-processing phase to compute and reveal to each male the spouse
proposed to him. Remember that the variables specify only the spouse for each fe-
male. The function om+i

def
= {k|xk = i} can be computed with the following

arithmetic circuit.

15

om+i =
1

(i− 1)!(m− i)!
m∑

j=1

j
i−1∏

k=1

(xj − k)
m∏

k=i+1

(k − xj)

5 Incentive Auctions

To clear a combinatorial auction according to the 1-st price when several alloca-
tions may be optimal. :

• The participants select as public parameters of the problem a set of variables
X where there is a distinct variable for each item to be sold, and the domain
of each variable is the set of participants that may own the item at the end of
the auction (by winning it or by not selling it). There is a function φk(ε, I) for
each participantAk, which associates to each possible tuple ε of assignments
of the variables in X , an element of Ik (the bid of Ak for ε). The maximum
and minimum value of the sum of the bids B1, B2, are also enforced by
allocating ranges of possible bids to each participant.

• Each participant decides its secret inputs Ik (bids) for each tuple defining
an allocation, by taking into account both the items she acquires and the
reservation price of the items she cedes in that allocation.

• The secret inputs are shared with Shamir’s scheme. Each agent encrypts her
share with her own public key and the agents of the participants form a mix-
net shuffling these shares, and randomizing them at each permutation. The
shares can also be sent directly from their creator to the mix-net, encrypted
with the public key of the destination participant.

• A solution of the DisWCSP is computed with a secure protocol (e.g. MPC-
DisWCSPx).

• The chosen allocation and its total price is revealed by revealing the shares.

• To only reveal the winner allocation to the participants involved in it, the
participants must define the functions ok such that each participant learns
the items that she receives. Also, each participant receives the shares of the
variables for items that she is selling, to learn whom to give them. Namely,
ok returns an array such that with m items and n participants, ∀i, 0 < i ≤
m, if xi models an item of Ak then ok[i] = xi, otherwise ok[i] = (xi =
k). These first order logic predicates are translated in arithmetic circuits as
shown later: (xi = k) becomes 1

(k−1)!(n−k)!

∏k−1
i=1 (xi − i)

∏n
i=k+1(i− xi).

16

• The exact price pu to be paid by each agent Au in this case is the bid
of the agent Au for the solution, and can be made known to a partic-
ipant Ai with an output o′i[u] = φu(ε∗, I), by the arithmetic circuit:∑

k λ(
∑n

i=1 (wi
∏i−1
j=1 di),

∏n
i=1 di)[k]φu(εk, I),

where wi is the shared secret specifying the index of xi in the solution and
λ(s, d) is a function translating a shared secret s into a vector of shared
secrets with dimesion d+1 having a one at index s and 0 elsewhere (see
function value2unaryconstraintX in [Sil03b]).

For incentive auctions (using Clarke tax), everything is similar with the case of
1st price auctions, except for:

• At the end of the last step, the price pk to be paid by each agent Ak is not
revealed but it is subtracted from w0 (the shared secret representing the to-
tal weight of the solution to the DisWCSP, as returned by the used MPC-
DisWCSPx) obtaining a shared secret w′0[k].

• The computation is run n more times, each k-th time by not considering the
bids of the agent Ak, and recording the w0 as w0[k]. The price (Clarke tax)
to be paid by each agent is given by w0[k]− w′0[k].

6 Transforming first order logic in arithmetic circuits

Based on the experience with the examples analyzed so far, we conclude that with
the new DisCSP framework it is useful to have a mechanism for automatic transla-
tion of first order logic sentences about secrets, into arithmetic circuits.

The main constructs in first order logic whose translation to arithmetic circuits
will be given here are: ∀i ∈ [1..n]P (i), ∃i ∈ [1..n]P (i), P ∧ Q, P ∨ Q, ¬P ,
minP (i)(i), and f = k, where P and Q are predicates with a true (1) or false (0)
value, f is a secret integer in a given interval, [1..n], i is a quantified variable that
can take integer values in a given interval, [1..n], and k is a constant. They can also
apply to variables and secrets from any finite set of numbers, S = {a1, ..., an}.
minP (i) i is the function returning the minimum i such that P (i) holds. The equiv-
alent arithmetic circuits are shown in Table 1.

Let us exemplify how this translation applies to the first order logic predicate
defining the global constraint for stable marriages with n males and m females,
given in Equation 4. Consider that publicly PAi(u, u)=0 for all u and i. By ap-
plying the transformations for quantifiers, implication and conjunction, treating
separately the case k=0 as well as the enforcement of distinct assignments, we

17

First Order Logic Sentence Equivalent Arithmetic Circuit
P P

∀i ∈ [1..n], P (i)
∏n
i=1 P (i)

∀a ∈ S, P (a)
∏n
i=1 P (ai)

∃i ∈ [1..n], P (i)
∑n

i=1[P (i)
∏i−1
j=1(1− P (j))]

∃a ∈ S, P (a)
∑n

i=1[P (ai)
∏i−1
j=1(1− P (aj))]

P ∧Q P ∗Q
P ∨Q P + (1− P)Q

P ⇒ Q 1− P (1−Q)

¬P 1− P
f = k, (f, k ∈ [1..n]) 1

(k−1)!(n−k)!

∏k−1
i=1 (f − i)∏n

i=k+1(i− f)

f = ak, (f ∈ S, k ∈ [1..n])

∏
ai∈S,i6=k(f−ai)∏
ai∈S,i6=k(ak−ai)

minP (i),i∈[1..n] i
∑n

i=1[iP (i)
∏i−1
j=1(1− P (j))]

Table 1: Equivalences between first order logic constructs and arithmetic circuits.
P and Q are predicates and P and Q are their equivalent arithmetic circuits. S =
{a1, ..., an}.

obtain:

φ (〈xε1 , u1〉, ..., 〈xεn , un〉) =



0, when ui=uj for different i,j, and ui 6= 0

∏n
i=1((1− PAi(0, ui)) ∗ otherwise∏m

k=1,k 6=ui(1−PAi(k, ui)∗
(1−∑n

j=1,uj=k
(PBk(j, i)

∏j−1
t=1,ut=k

(1− PBk(t, i))))))

The previous arithmetic circuit is obtained by simply applying the transforma-
tions in Table 1 to the first order logic definition in Equation 4. It can be noted that
since the variables are constrained to take distinct values, the arithmetic circuit can
be written in a simpler equivalent form:

φ (〈xε1 , u1〉, ..., 〈xεn , un〉) ={
0, when ui=uj for different i,j, and ui 6= 0; otherwise∏n
i=1((1− PAi(0, ui))

∏m
k=1,k 6=ui(1− PAi(k, ui)(1−

∑n
j=1,uj=k

(PBk(j, i)))))

18

The total number of multiplications needed to construct this global constraint is
O(mnm+1), namely mn multiplications for each of the nm tuples. A public con-
straint for this problem is:

φ0(〈xε1 , u1〉, ..., 〈xεn , un〉)
def
=

{
0, when ui=uj for different i,j and ui 6= 0
1, otherwise

6.1 Complexity

For a problem with size of the search space Θ and c constraints, the number
of messages for finding all solutions with secure techniques similar to the one
in [HCN+01] is given by (c− 1)Θ multiplications of shared secrets (n(n−1) mes-
sages for each such multiplication). For the desk-mates problem modeled with the
new framework, Θ=mm and c=1 for the version with a single global constraint,
or c=m2/2 for the version with binary constraints. For the case with binary con-
straints, it yields a complexity of O(mm+2). As mentioned before, the preprocess-
ing has complexity O(m4) multiplications between shared secrets, resulting in a
total complexity O(m2(mm +m2)).

Solving the same problem with the same algorithm but modeled with the old
DisCSP framework with private constraints, Θ = mm2m

3
and c = m, for one

global constraint from each agent. There is no preprocessing, but the total com-
plexity is O(mm+12m

3
). The new framework behaves better since m << 2m

3
.

The comparison is similar for other secure algorithms, like MPC-DisCSP1 (see
Section 2.2) whose complexity is given by O(dm(c+m)Θ) multiplications be-
tween shared secrets.

7 Conclusions

DisCSPs [BMM01, SGM96, LV97, Ham99, MR99, ZWW02, BD97, FBKG02,
MTSY04] are a very active research area. Privacy has been recently stressed
in [MJ00, BB01, FMW01, WF02, FMG02, YSH02b] as an important goal in de-
signing algorithms for solving DisCSPs.

In this article we have investigated how versions of old and famous problems,
incentive auctions and the stable marriages problems [GS62, Ski90], can be solved
such that the privacy of the participants is guaranteed except for what is leaked
by the selected solution. Incentive auctions are a very intense field of research and
application of agents and economic theories. Techniques for stable marriages prob-
lems are currently applied to college admissions and medical interns assignments
in US. Our technique uses secure simulations of arithmetic circuit evaluations and

19

is therefore robust whenever no majority of the participants colludes to find the
secret of the others, and when all agents follow the protocol.

We note that the desk-mates and the stable marriages problems cannot be effi-
ciently modeled (at least not in an obvious way) with existing distributed constraint
satisfaction frameworks. We have therefore introduced a new distributed constraint
satisfaction framework that can model such problems with the same search space
size as the classic centralized CSP models. We have shown how some techniques
for the existing frameworks can be adapted to problems modeled with the new
DisCSPs, and we exemplify the model with the desk-mates, stable marriages, and
incentive auctions problems. For m participants in the desk-mates problem, the
size of the search space in the DisCSP model achieved with the new framework
is O(mm) while the previous framework with private constraints yields DisCSP
instances with a size of the search space of O(mm2m

3
). A similar ratio is ob-

tained for the stable marriages problem. In existing secure algorithms for solving
DisCSPs, the number of exchanged messages is fix and directly proportional to the
search space size, making this property of a problem instance particularly relevant.

References

[BB01] G. Bella and S. Bistarelli. Soft constraints for security protocol anan-
ysis: Confidentiality. In Third International Symposium on Practical
Aspects of Declarative Languages, number 1990 in LNCS, 2001.

[BD97] B. Baudot and Y. Deville. Analysis of distributed arc-consistency al-
gorithms. Technical Report RR-97-07, U. Catholique Louvain, 1997.

[BMM01] C. Bessière, A. Maestre, and P. Meseguer. Distributed dynamic back-
tracking. In CP, page 772, 2001.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computating. In
STOC, pages 1–10, 1988.

[CDK91] Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed
constraint satisfaction. In Proceedings of IJCAI 1991, pages 318–324,
1991.

[FBKG02] C. Fernàndez, R. Béjar, B. Krishnamachari, and C. Gomes. Com-
munication and computation in dis. CSP algorithms. In CP, pages
664–679, 2002.

20

[FMG02] B. Faltings and S. Macho-Gonzalez. Open constraint satisfaction. In
CP, 2002.

[FMW01] E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency trade-
offs in distributed meeting scheduling by constraint-based agents. In
Proc. IJCAI DCR, pages 63–72, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography, volume 2. Cam-
bridge, 2004.

[GS62] D. Gale and L.S. Shapley. College admissions and the stability of
marriage. American Mathematics Monthly, 69:9–14, 1962.

[Ham99] Youssef Hamadi. Traitement des problèmes de satisfaction de con-
traintes distribués. PhD thesis, Université Montpellier II, Juillet 1999.

[HCN+01] T Herlea, J. Claessens, G. Neven, F. Piessens, B. Preneel, and
B. Decker. On securely scheduling a meeting. In Proc. of IFIP SEC,
pages 183–198, 2001.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proc. of
ACM Symposium on Theory of Computing, pages 20–31, 1988.

[LV97] Michel Lemaı̂tre and Gérard Verfaillie. An incomplete method for
solving distributed valued constraint satisfaction problems, 1997.

[MJ00] P. Meseguer and M. Jiménez. Distributed forward checking. In DCS,
2000.

[MR99] Eric Monfroy and Jean-Hugues Rety. Chaotic iteration for distributed
constraint propagation. In SAC, pages 19–24, 1999.

[MTSY04] P.J. Modi, M. Tambe, W.-M. Shen, and M. Yokoo. Adopt: Asyn-
chronous distributed constraint optimization with quality guarantees.
AIJ, 2004.

[SGM96] G. Solotorevsky, E. Gudes, and A. Meisels. Algorithms for solv-
ing distributed constraint satisfaction problems (DCSPs). In AIPS96,
1996.

[Sha79] A. Shamir. How to share a secret. Comm. of the ACM, 22:612–613,
1979.

21

[Sil02] Marius-Călin Silaghi. Asynchronously Solving Distributed Problems
with Privacy Requirements. PhD Thesis 2601, (EPFL), June 27, 2002.
http://www.cs.fit.edu/˜msilaghi/teza.

[Sil03a] M.C. Silaghi. Arithmetic circuit for the first solution of distributed
CSPs with cryptographic multi-party computations. In IAT, Halifax,
2003.

[Sil03b] M.C. Silaghi. Solving a distributed CSP with cryptographic multi-
party computations, without revealing constraints and without involv-
ing trusted servers. In IJCAI-DCR, 2003.

[Ski90] S. Skiena. Stable Marriages, chapter 6.4.4, pages 245–246. AW,
1990.

[SR04] M. Silaghi and V. Rajeshirke. The effect of policies for selecting the
solution of a DisCSP on privacy loss. In AAMAS, 2004.

[SSHF00a] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search
with aggregations. In Proc. of AAAI2000, pages 917–922, Austin,
August 2000.

[SSHF00b] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous
search with private constraints. In Proc. of AA2000, pages 177–178,
Barcelona, June 2000.

[WF02] R.J. Wallace and E.C. Freuder. Constraint-based multi-agent meet-
ing scheduling: Effects of agent heterogeneity on performance and
privacy loss. In DCR, pages 176–182, 2002.

[WS04] R. Wallace and M.C. Silaghi. Using privacy loss to guide decisions in
distributed CSP search. In FLAIRS’04, 2004.

[Yao82] A. Yao. Protocols for secure computations. In FOCS, pages 160–164,
1982.

[YDIK98] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed
constraint satisfaction problem: Formalization and algorithms. IEEE
TKDE, 10(5):673–685, 1998.

[YSH02a] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint
satisfaction: Reaching agreement without revealing private informa-
tion. In Proc. of the AAMAS-02 DCR Workshop, Bologna, July 2002.

22

[YSH02b] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint
satisfaction: Reaching agreement without revealing private informa-
tion. In CP, 2002.

[ZM91] Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms
for finite constraint satisfaction problems. In Proc. of Third IEEE
Symposium on Parallel and Distributed Processing, pages 394–397,
1991.

[ZWW02] W. Zhang, G. Wang, and L. Wittenburg. Distributed stochastic search
for constraint satisfaction and optimization: Parallelism, phase transi-
tions and performance. In PAS, 2002.

23

