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Abstract

In the recent years we have proposed a set of secure multiparty computations
for solving distributed constraint satisfaction and optimization problems, with ap-
plications to areas like distributed scheduling, configuration, team-making, and
auctions. Some of the newest versions were based on an arithmetic circuit for se-
lecting a random element out of the elements with a given value in a (secret) array.
Here we show how to improve that arithmetic circuit by a factor of at least 4. The
improvement is based on an optimization of the functions and on the usage of CSP
solvers to exploit public constraints.
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Figure 1: Constraint: 0s mark rejected tuples.

1 Introduction
In this article we propose techniques to solve distributed problems with constraints
that are secret to agents. The main applications are: auctions, distributed scheduling,
configuration, and team-making.

CSP A constraint satisfaction problem (CSP) is defined by three sets: (X , D, C).
X = {x1, ..., xm} is a set of variables and D = {D1, ..., Dm} is a set of domains
such that xi can take values only from Di = {vi1, ..., vidi}. C = {φ1, ..., φc} is a set of
constraints, φi involving an ordered subset Xi = {xi1 , ..., xiki} of the variables in X ,
Xi⊆X , and constrains the legality of each combination of assignments to the variables
in Xi. An assignment is a pair 〈xi, vik〉 meaning that variable xi is assigned the value
vik.

A tuple is an ordered set. The projection of a tuple ε of assignments over a tuple of
variables Xi is denoted ε|Xi . A solution of a CSP (X ,D,C) is a tuple of assignments ε
with one assignment for each variable in X such that each φi∈C is satisfied by ε|Xi .

For applications like meeting scheduling, each agent has his own private constraints
and one has to also find an agreement for a solution, from the set of possible meeting
places and dates, that satisfies everybody. Distributed constraint satisfaction is a handy
formulation that can model these issues.

Definition 1 A Distributed CSP (DisCSP) is defined by five sets (A,X,D,C,O). A={A1, ..., An}
is a set of agents. X , D, C and the solution are defined like in CSPs. Each constraint
φi is known only by one agent, being the secret of that agent. There may exist a public
constraint in C, φ0.

Example 1 Alice (A1), Bob (A2), and Carol (A3) want to find a common place (x1)
and time (x2) to meet. x1 is either Paris (P ) or Quebec (Q), i.e. D1 = {P,Q}.
x2 is either Tuesday (T ) or Wednesday (W ), i.e. D2 = {T,W}. Each of them
has a secret constraint. Alice accepts only {(P, T ), (P,W ), (Q,W )} which defines
φ1. Bob accepts either of {(P, T ), (Q, T ), (Q,W )}, defined by φ2. Carol has φ3 =
{(P, T ), (Q,W )}. φ3 is shown in Figure 1. There is also a publicly known con-
straint, φ0, which due to an announced strike forbids a meeting in Paris on Wednesday,
φ0 = {(P, T ), (Q, T ), (Q,W )}. The problem is to publish values for x1 and x2 satis-
fying all constraints and without revealing anything else to Alice about φ2 and φ3, to
Bob about φ1 and φ3, or to Carol about φ1 and φ2.
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Figure 2: An arithmetic circuit, g = yz + (x− z) and f=(xz + yz)g. Each input can
be the secret of some participant. The output may not be revealed to all participants.
All intermediary values remain secret to everybody.

Arithmetic Circuit The arithmetic circuits are a class of functions that can be evalu-
ated securely and are exploited in our technique [1]. An arithmetic circuit is a function
f , using solely the addition/subtraction and multiplication operations of a finite set
F = [0..(ν−1)] modulus a prime number ν (Zν), f : F i → F j (see Figure 2). An
arithmetic circuit can be intuitively imagined as a directed graph without cycles where
each node is described either by an addition/subtraction or by a multiplication operator.
Each source node is a (public or secret) constant. The only outputs of the circuit are
the sinks of its graph (anything else can remain secret).

∑e
i=b f(i) and

∏e
i=b f(i) are

arithmetic circuits if b and e are public constants and f(i) is an arithmetic circuit.

Intuition Consider a constraint in its multidimensional matrix representation, where
each element restricts the compatibility of some values for distinct variables. Each
element encoded as 0 (forbidden) or 1 (possible) is encrypted with a shared key (it can
be decrypted only when the majority of the agents agree). One can perform additions
and multiplications of such values, while they are encrypted.

The agents cooperate to generate a secret permutation of the encrypted problem pa-
rameters, that cannot be manipulated by any of them. To avoid that agents get a chance
to learn the final permutation by matching final encrypted parameter values with the
ones they generated, a randomization step is applied at each shuffling. Each agent ap-
plies a randomization step on the encryption for each secret tuple acceptance/rejection
encoding. Because the secrets are encrypted, this randomization step exploits the ho-
momorphic properties of some encryption schemes.

We also give a fix (exponential) set of additions and multiplications that, applied
on the constraints encrypted in the aforementioned way, returns the encrypted assign-
ments in a solution picked according to a uniform distribution over the set of possible
solutions. The agents may show now their share of the keys for the assignments in the
solution. Each agent learns only the assignments of interest to him.

Complexity To hide the secret parameters of the problem, the distributed compu-
tation must not depend on those parameters. Since the problem is NP-complete, an
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algorithm that does not exploit problem structure will be exponential, as long as we do
not prove P=NP. Therefore, the privacy requirements leave us no alternative from an
exponential cost. The good news is that experiments show that problems with accept-
able size (10-50 alternatives) can be solved in a few seconds.

Related Work The subtlety is how to formalize a distributed constraint satisfaction
problem as an arithmetic circuit! An arithmetic circuit whose outcome is the set of
all solutions was designed in [3]. If one tries to use that approach when only one
solution is needed, the result returned by the function will reveal to everybody a lot
more information than needed. It will tell, for example, that everybody is available
and can reach the corresponding places on the days in the alternative solutions. It also
reveals that at least one person is busy on each alternative that is not a solution. Some
of this information can lead to undesired leaks of privacy. The approach of testing each
alternative one by one has similar leaks.

In consequence, one needs to design arithmetic circuits returning only one solution.
There is still the problem of which solution should be returned. It is possible to return
the first solution in the lexicographical order on the search space [8]. However, know-
ing that the solution was computed in this way leaks that the alternatives placed before
it in that lexicographical order are rejected by some agents.

Therefore, what we need is a probabilistic arithmetic circuit that returns a solution
picked randomly among the possible solutions to the problem. MPC-DisCSP1 [9] and
MPC-DisCSP2 [10], generate a secret permutation of domains (and eventually vari-
ables) on an encrypted description of the problem. The permuted encrypted problem
is then input to an arithmetic circuit that computes an encryption of the first solution
in lexicographic order. The solution is then translated with the inverse permutations to
the initial problem formulation, before being decrypted. The used permutation guar-
antees to give each solution a chance to be returned, so that no secret about meeting
acceptance/rejection can be inferred from the returned result. If there is no solution,
this will intrinsically reveal to everybody that each alternative is constrained by some
agent, but this leak is inherent to the problem and not to the algorithm1.

The remaining problem is that the permutation in these techniques does not guaran-
tee that solutions are picked with a uniform distribution over all solutions. Therefore,
when an agent uses his constraints in several such computations, some statistical in-
formation can be extracted about his secrets, besides his acceptance of the solution.
For example, if the returned solutions often specify a meeting in Quebec on Tuesday
and rarely other alternatives, then it can be inferred that “some agent can go to Quebec
only Tuesday”, with higher probability than what can be inferred by statistics ignorant
of the used permutation algorithm.

In [5] we analyzed this leak and designed a scheme, MPC-DisCSP3, where the so-
lutions are picked with a uniform distribution over the possible solutions. Repeated use
of the same constraint in different problems will still suggest that a certain meeting is
the only one possible, if it is always returned. However, the likelihood of the inference
is lower than in the previous techniques and this time it is inherent to the problem and

1This can also be avoided by modifying the problem. Namely asking for a failure to be reported with a
certain probability even if there exists a solution.
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not to the algorithm.
It is easy to extend the technique such that alternatives known to be accepted by an

agent are verified first, which saves someone’s privacy in the detriment of the others.
Here we propose a new technique, MPC-DisCSP4, that improves on MPC-DisCSP3

both by improving efficiency and privacy. It can be used with optimization, by adding
the same extensions as in [10].

2 Secure Arithmetic Circuit Evaluation
Secure evaluation of functions (arithmetic circuits) with secret inputs is introduced
in [1]. For randomizing the representation of shuffled secrets we use (+,×)-homomorphic
encryption functions EKE : Zµ→Zµ2 , i.e. respecting:

∀m1,m2 ∈ Zµ : EKE (m1)EKE (m2) = EKE (m1 +m2).

Some encryption functions take a randomizing parameter r. However, we write Ei(m)
instead of Ei(m, r), to simplify the notation. An example of a (+,×)-homomorphic
scheme with randomizing parameter is the Paillier encryption.

To destroy the visibility of the relations between the initial problem formulation
and the formulation actually used in computations we design random joint permuta-
tions that are not known to any participant. Here we reformulate the initial problem
by reordering its parameters. Related permutations appeared in Chaum’s mix-nets [2].
The shuffling is obtained by a chain of permutations (each being the secret of a partic-
ipant) on the encrypted secrets.

The secure multi-party simulation of arithmetic circuit evaluation proposed in [1]
exploits Shamir’s secret sharing. This sharing is based on the fact that a polynomial
f(x) of degree t−1 with unknown parameters can be reconstructed given the evaluation
of f in at least t distinct values of x, using Lagrange interpolation. Instead, absolutely
no information is given about the value of f(0) by revealing the valuation of f in
any at most t−1 non-zero values of x. Therefore, in order to share a secret number
s to n participants A1, ..., An, one first selects t−1 random numbers a1, ..., at−1 that
will define the polynomial f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero number ki
is assigned to each participant Ai. The value of the pair (ki, f(ki)) is sent over a
secure channel (e.g. encrypted) to each participant Ai. This is called a (t, n)-threshold
scheme. Once secret numbers are shared with a (t, n)-threshold scheme, evaluation of
an arbitrary arithmetic circuit can be performed over the shared secrets, in such a way
that all results remain shared secrets with the same security properties (the number of
supported colluders, t) [1]. For Shamir’s technique, one knows to perform addition and
multiplications when t ≤ (n− 1)/2.

2.1 All Possible Schedules
In [3] one computes for each possible meeting, ε, a boolean circuit:

∧
φk∈C φk(ε|Xk ).

The results of all these boolean circuits are revealed. Everybody learns whether each
alternative meeting is possible or not. This is more than what one may want to leak
(see Introduction).

5



Some people desire to examine all solutions before choosing one. Course-books
claim that this may be a sign of an ill set problem. One should formulate such a
problem as an optimization.

2.2 MPC-DisCSP1
MPC-DisCSP1 [9] is a multi-party computation technique. Former multi-party com-
putation techniques can solve securely only certain functions, one such class of solved
problems being the arithmetic circuits over finite fields. A Distributed CSP is not a
function. A DisCSP can have several solutions for an input problem, or can even have
no solution. Two of the three reformulations of DisCSPs as a function (see [9]) are
relevant here: i) A function DisCSP1() returning the first solution in lexicographic or-
der, respectively an invalid valuation τ when there is no solution. ii) A probabilistic
function DisCSP() which picks randomly a solution if it exists, respectively returns τ
when there is no solution. For privacy purposes only the 2nd alternative is satisfactory.
DisCSP() only reveals what we usually expect to get from a DisCSP, namely some so-
lution. DisCSP1() intrinsically reveals more [9]. MPC-DisCSP1 implements DisCSP()
in three phases:

1. The input DisCSP problem is jointly shuffled by reordering values (and eventu-
ally variables) randomly by composing secret permutations from each participant
agent, and randomizing secret shares.

2. A version of DisCSP1() where operations performed by agents are independent
of the input secrets, is computed by simulating a certain arithmetic circuit evalu-
ation with the technique in [1].

3. The solution returned by the DisCSP1() at step 2 is translated into the initial
problem definition using a transformation that is inverse of the shuffling at Step 1,
and randomizing secret shares.

At step 2, MPC-DisCSP1 requires a version of the DisCSP1() function whose cost
is independent of the input since otherwise the users can learn things like: The returned
solution is the only one, being found after unsuccessfully checking all other valuations,
all other valuations being infeasible. The DisCSP1() used by MPC-DisCSP1 is very
complex, and MPC-DisCSP2 and MPC-DisCSP3 offers a simpler and faster version,
parts of which are reused here.

3 MPC-DisCSP4
Now let us present MPC-DisCSP4, a multiparty computation simulating securely the
method of [4]. MPC-DisCSP4 is shown in Algorithm 1.

MPC-DisCSP4 starts by sharing the encoded constraints with the Shamir secret
sharing scheme. A complete (e.g. backtracking) CSP solver is used to generate two
vectors: S′′ = {ε|φ0(ε)} and S′[i] = p(S′′[i]), of size Θ. S′′ contains all tuples ε that
satisfy φ0, and S′ the shares obtained for securely evaluating p(ε) using [1].
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procedure MPC-DisCSP do

1. Each agent shares the {0,1} encoded secret
constraints for each tuple.

2. Compute ε returned by the CSP solver for
φ0, and place the results in a shared secret
vector S′′, at the index given by the lexico-
graphical order.

3. Compute a vector S ′, S′ = p(S′′[ε]).

4. Each agent Ai encrypts shares in its vector
S′ with his own public key, and submits the
resulting vector to the mix-net.

5. The mix-net shuffles the vectors of shares,
S′, randomizing the shares at each permuta-
tion by adding shares of 0 exploiting homo-
morphic encryption.

6. The shuffled S′ is broadcasted by the mix-
net to agents.

7. Compute now a vector S with the Arithmetic
Circuit of Function 1

8. The mix-net decodes the vectors of shares,
S, randomizing the shares at each inverse
permutation by adding shares of 0 exploiting
homomorphic encryption.

9. The shuffled S is broadcasted by the mix-net
to agents.

10. Compute the assignments of the variables in
solution with Arithmetic Circuits in Equa-
tion 2.

11. Reveal assignments to the interested agents.

Algorithm 1: MPC-DisCSP4

S′ is now shuffled and the shares are randomized with a mix-net. Details are given
later. Let εk denote the kth tuple in the lexicographic order. We define:

h1(P ) = 1

hi(P ) = hi−1(P ) ∗ (1− S′[i− 1])
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The index of the lexicographically first solution can be computed by accumulating the
weighted terms of the h series:

S[i] = S′[i] ∗ hi(P ) (1)

The vector S is computed with Equation 1.
The vector S is now decoded by traversing the mix-net in the inverse direction and

with the inverse permutations, randomizing the shares as at shuffling. The solution is
the tuple of S′′ situated at the same index as the only element of S ′ that is different
from 0.

Alternatively2, the solution can also be transformed into a set of indexes of values of
the variables by following the following method. Assume the value of the uth variable
in the tth tuple of the search space is denoted ηu(t). In the end, the values in the
solution are computed with the arithmetic circuits in Equation 2.

fi(P ) =
Θ∑

t=1

(ηi(t) + 1) ∗ S′[t−1] (2)

Each variable xi is assigned in the solution to the value in Di at index given by the
functions fi, and can be revealed.

MPC-DisCSP4’s mix-net for reordering vectors of shared secrets. Each agent Ai
chooses a random secret permutation πi, picked with a uniform distribution over the
set of possible permutations: πi : [1..Θ]→ [1..Θ].

Each agent chooses a pair of keys for a (+,×)-homomorphic public encryption
scheme and publishes the public key. The secret shares, of the non-empty values com-
puted in the vector S’, are encrypted by each Ai with her public key and are serialized.
The serialized encrypted vectors are sent to A1. A1 shuffles the serialized vectors ac-
cording to her permutation π1, then passes them to A2 which applies π2, etc., until the
agent An which applies πn. An sends each vector to the agent that originated it.

To avoid that agents get a chance to learn the final permutation by matching final
shares with the ones that they encrypted, a randomization step is also applied at each
shuffling. Each agent applies a randomization step on the set of shares for each element
of S′, by adding corresponding shares of zero. Since operands are encrypted, to be able
to perform this summation we propose to exploit the (+,×)-homomorphic properties
of some encryption schemes. For each secret in S ′, a 0’s Shamir shares are computed,
and ∀i, i≤n, the 0′s ith share is encrypted with the public key of Ai, then it is multi-
plied to the corresponding Ai’s encrypted share of the secret (resulting in resharing the
secret). This assumes µ>ν(n+1), for the decryption to be correct in Zν .
Example 2 Let us see an example of how MPC-DisCSP4 is applied to the Example 2.
p(P,W ) is not computed (φ0).
p(P, T )=1, p(Q, T )=0, p(Q,W )=1.
S”=((P,T),(Q,T),(Q,W))
S’=(1,0,1)

2The technique of MPC-DisCSP3 can also be used, reconstructing first the permutation π from S ′′.
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Shuffle (1,0,1), (assume it remains unchanged)
h1(P )=1, h2(P )=0, h3(P )=0.
This is used according to Equation 1 to generate the vector S={1,0,0}.
Unshuffle S=(1,0,0):
S=(1,0,0)
The vector S is used to compute the values of the variables in the solution, using
Equation 2:
η1(1)=0, η1(2)=1, η1(3)=1. η2(1)=0, η2(2)=0, η2(3)=1. f1(P )=1, f2(P )=1.

This signifies that the solution chosen by this arithmetic circuit is x1=Paris and
x2=Tuesday.

Hiding the (in)existance of a solution. To hide the fact that a solution does not exist
for a problem, the participants may prefer to miss an existing solution with a probability
p. Then, the fact that no solution is found does not prove that no solution exist, and
certain secrets induced by the lack of a solution will not be leaked. This can be achieved
by generating secret random number(s) K, such that with probability p it has value 0,
otherwise it has value 1. An example appears in [7].

Now, each of the secret elements of the vector S (or the secret values f ) are multi-
plied with such a number K, losing the solution with a probability p.

Analysis and Conclusions When compared with classical agent approaches to solv-
ing distributed meeting scheduling and CSPs [11], the advantages and drawbacks of
MPC-DisCSP4 are the ones defined by t-privacy [1], and highlighted in [6] (i.e. no
collusion of less than t participants can learn anything, but the final solution with its
quality, and what can be inferred from it).

The main advantage of MPC-DisCSP4 over its previous alternatives MPC-DisCSP1
and MPC-DisCSP2, is that it offers the solutions picked according to a uniform distri-
bution over the total set of solutions. Compared to MPC-DisCSP3, it also hides the
(in)existance of a solution.

From the space requirements point of view, it has the same worst case exponential
complexity as MPC-DisCSP2 and MPC-DisCSP3, namely O(dm), since it uses the
same data structures (having to store and manipulate the whole vector S). It gains over
MPC-DisCSP3 as it does not need the permutations π and πi. From this point of view
MPC-DisCSP4 is inferior to MPC-DisCSP1 which has polynomial space requirements.

In terms of time complexity, its worst performance (namely when Γ=Θ) is always
approximatively 4 times better then MPC-DisCSP3 by not needing to translate values
to vectors of size Θ. Compared to MPC-DisCSP1, which is O(dm) times slower than
MPC-DisCSP2, MPC-DisCSP4 will be faster. This is because MPC-DisCSP1 requires
passing more than just the vector S.

When Γ >> Θ, MPC-DisCSP4 can be much faster then competitors, which do not
exploit public constraints.

In conclusion, MPC-DisCSP4 offers a privacy that is stronger than any of the pre-
viously existing methods, and is approximatively 4 times faster than MPC-DisCSP3,
which has the closest performance in privacy.
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