

On
The Use of Randomness in Computing

To Perform Intelligent Tasks

by

Ryan Scott Regensburger

A thesis submitted to the
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
December 2004

© Copyright 2004 Ryan Scott Regensburger

All Rights Reserved

The author grants permission to make single copies ___________________

We the undersigned committee

hereby approve the attached thesis

On
The Use of Randomness in Computing

To Perform Intelligent Tasks

by

Ryan Scott Regensburger

Gregory Harrison, Ph.D. Richard James, Ph.D.
Adjunct Professor Adjunct Professor
Computer Science Computer Science
(Principal Advisor)

David E. Clapp, Ph.D. William D. Shoaff, Ph.D.
Associate Professor Associate Professor
Management Program Chair
 Computer Science

 iii

Abstract

On

The Use of Randomness in Computing

To Perform Intelligent Tasks

By

Ryan Scott Regensburger

Principal Advisor: Dr. Gregory Harrison

The study of Artificial Intelligence attempts to simulate the processes of

human intelligence in a set of computable algorithms. The purpose of Random

Algorithms in this field is to provide a best-guess approach at identifying the

unknown. In this thesis, research shows that random algorithms are able to break

down many intelligent processes into a set of solvable problems. For example,

solving puzzles and playing games involve the same estimating ability shown in

standard problems such as the Coupon Collector problem or the Monty Hall

problem. This thesis shows Random Algorithmic applications in two overlapping

categories of intelligent behavior: Pattern Recognition (to solve puzzles) and Mind

Simulation (to play games). The first category focuses on one of the prominent

intelligent processes, recognizing patterns from randomness, which the human

mind must continually and dynamically perform. The second category deals with

simulating the processes of making decisions and solving problems in a more

abstract and uncontrolled way, much like the unpredictable human mind.

 iv

Table of Contents

List of Figures ...vi
List of Tables .. vii
List of Symbols .. viii
Acknowledgement ... ix
Dedication ..x
Chapter 1: Introduction and Background...1

1.1 Universal Purpose ..1
1.2 Randomness Defined ...3

1.2.1 Random Process ...5
1.2.2 Pseudorandom Process...7
1.2.3 Recommendations ..8

1.3 Early Uses ..10
1.4 Random Algorithms...11
1.5 Complexity...17

1.5.1 Standard Problem Classes ..18
1.5.2 Random Problem Classes...19

1.6 Numerical Probabilistic algorithms..20
1.7 Monte Carlo algorithms ...27
1.8 Las Vegas algorithms...30

Chapter 2: Theory ..34
2.1 Approximation and Simulation..34
2.2 Performance ...36

2.2.1 Complexity Analysis..36
2.2.2 Expected Run Time..38
2.2.3 Unknown Run Time...39

2.3 Probability and Game Theory ..40
2.3.1 Intuitive Probability Problems ...40
2.3.2 Counter Intuitive Probability Problems ...42
2.3.3 Minimax Principle..46
2.3.4 Lower Bound Performance ..49

2.4 Random Walk...51
2.4.1 Endpoints ...54
2.4.2 Routes and the Cover Time..58

2.5 Allocating Balls into Bins ..59
2.5.1 Allocation Problem ..60
2.5.2 Coupon Collector Problem...62

2.6 Search and Fingerprinting ..65
2.6.1 Random Search ..65
2.6.2 Fingerprinting...67

 v

Chapter 3: Concept Demonstration..70
3.1 Concept categories ...70
3.2 Abstracting Reality: Projectile Simulation...70

3.2.1 Determinism...71
3.2.2 Randomness ...72

3.3 Intelligent Puzzle Solving: Word-Find ..73
3.3.1 Determinism...74
3.3.2 Randomness ...74

Chapter 4: Applications ...82
4.1 Pattern Recognition..82

4.1.1 Order from Uncertainty..82
4.1.2 Memory and Reconstruction ..83
4.1.3 Security ..85
4.1.4 Word Problems ..88

4.2 Mind Simulation ..90
4.2.1 Human-like Artificial Intelligence ...91
4.2.2 Decision Making, Playing Games..92
4.2.3 Personality and Behavior ...93
4.2.4 Agent-based Modeling ...95
4.2.5 Genetic Algorithms ..96

4.3 Others ...98
4.3.1 Physics, Quantum Mechanics, Genetics ..99
4.3.2 Human Computer Interface..100

Chapter 5: Conclusion and Suggestions for Future Work103
5.1 Problems...103
5.2 Recommendations ..104
5.3 Conclusions..105

List of References ..109

 vi

List of Figures

Figure 1. One frame of Random Noise. ...9
Figure 2. Chaos Game randomized algorithm with example result.........................16
Figure 3. Min-Cut randomized algorithm. ...17
Figure 4. Buffon Needle experiment space..23
Figure 5. Buffon’s Needle. 10 needles..24
Figure 6. Buffon’s Needle. 100 needles..24
Figure 7. Buffon’s Needle. 10,000 needles...25
Figure 8. Random points occupying a unit square and unit circle.26
Figure 9. Connected, undirected multigraph. ...29
Figure 10. Prisoner demonstration algorithm. ...44
Figure 11. Monty Hall demonstration algorithm. ..44
Figure 12. Payoff Matrix with solution..47
Figure 13. Payoff Matrix with no solution...48
Figure 14. Random Walk graph with transition matrix. ..52
Figure 15. Markov chain graph and transition matrix..53
Figure 16. Distribution of random walk endpoints on a line.56
Figure 17. Rows derived by a Galton Board random walk......................................57
Figure 18. The Coupon Collector random walk graph and transition matrix.64
Figure 19. Projectiles following a deterministic path. ...72
Figure 20. Projectiles using randomness to determine their destiny........................73
Figure 21. Random Word-Find pseudo-code...76
Figure 22. Captcha masked word...87
Figure 23. Beautiful. ..88

 vii

List of Tables

Table 1. Coupon Collector solutions for up to 25 coupons......................................78
Table 2. Word-Find program result ...80

 viii

List of Symbols

log: logarithm base 2
a mod b: remainder in the division of a by b
O: big-oh notation - asymptotic upper bound
�: big-omega notation - asymptotic lower bound
�: pi - the ratio of the circumference to the diameter of a circle

 ix

Acknowledgement

To my thesis advisor, Dr. Gregory Harrison, for the support and guidance

throughout the development of this Thesis.

To my professors at F.I.T. for showing me the next level of computer

science. Thank you Mr. Findling, Dr. Ludwig, and Mr. Slone.

To Lockheed Martin for financial and professional support.

To Dr. David Clapp, for providing firm and truthful guidance in the will to

take on a Master’s degree.

 x

Dedication

This thesis is dedicated to my wife, Teresa Regensburger, and our families,

The Regensburger’s, The Johnson’s, and The Schumann’s. For, without them, the

path to enlightenment and finding my own goals and dreams would not have been

such a joyous one. It is ultimately from them that I have learned the true unique

and random qualities about the world and the chaotic, yet humbling nature of love.

 1

Chapter 1: Introduction and Background

1.1 Universal Purpose

Everything is random. This statement is an oxymoron in that, if the

dictionary definition of random were “everything”, then the true meaning and

nature of the word would cease to hold any credibility. However, this paradox is

ultimately true and was first revealed by Claude Shannon with his Theory of

Information. The Merriam-Webster dictionary states that the meaning of random is

“lack of a definite plan, purpose, or pattern”, “haphazard”, and/or “without aim,

direction, rule, or method.” Yet, when human beings perceive in the world around

us, we find much purpose, planning, and patterns. How can everything be random?

In the purposes and patterns we find in the universe, there also exists

uniqueness. Classical uniqueness is revealed in snowflakes, fingerprints, and

DNA. These are natural occurring phenomena that ‘do not occur the same way

twice.’ If we look further, we can find uniqueness in many other places, and

ultimately, all other places. For example, humans intelligently define a ‘tree’

pattern to classify all species of tree. The basic shape and abstract qualities are

outlined so humans can recognize a tree when they see one. However, no two trees

are ever alike. No two trees have the exact same features because there are an

infinite amount of naturally unpredictable events that determine their existence.

This idea also applies to inanimate objects. A machine that molds Yo-Yos from

 2

plastic into the exact same form each and every time still cannot create two Yo-Yos

that are, in essence, equivalent.

The investigation of this phenomenon is not difficult to understand. By

simply stating that there are two of something in this universe automatically means

that they cannot be physically equivalent. Even if two objects were structurally

built with the exact same atomic structure, the fact that there are two distinct

objects means that they are different. Microscopically, different particles are used

in an object’s construction (and even swapped out for replacements) and

macroscopically, one object may have more dust on it than the other, thus making

the two objects different.

The meaning of all this uniqueness in the universe is that everything is

random. The human brain perceives a universe with no redundancy. Redundancy

leads to boredom, such as may happen when repeatedly watching the same

television show, or having the same daily process of getting ready for work.

Everything we see, smell, taste, touch, and hear is random and has meaning.

Everything we perceive is pure information. The remarkable computing power of

the human brain is responsible for identifying and recognizing patterns from the

randomness, and reasoning with the uncertainty.

Most computer hardware and software has been developed to work in a

world of determinism and control. Automated universal machines perform certain

 3

processes efficiently, according to strict protocol, every single time they are

summoned. This thesis shows how software can utilize randomness for coping

with a random world. It shows classes of problems that random algorithms can

solve efficiently, optimally, and approximately, by focusing mainly on pattern

recognition and the simulation of intelligent processes. Random algorithmic

techniques are demonstrated to provide insight into the mysteriousness of the

ultimate computing machine, the human mind.

1.2 Randomness Defined

The behavior of randomized algorithms is based on the dynamic generation

of numerical values that drive decisions made by the algorithm. A single number,

or a sequence of numbers is difficult to classify as random. An intuition about an

arbitrary number or sequence of numbers being random holds no credibility

because an unknown rule can negate the assumption. For example, given the

sequence 1100110, it would seem that the sequence is random since there are no

easily discernable patterns. Given the additional digits of the sequence, 01100, a

pattern begins to develop. The repeated pattern of 1100 emerges from the

additional information, making the initial sequence no longer uncertain.

Prior to knowing the generation rules of the sequence, it contained much

uncertainty. If a sequence can be deterministically generated to produce a pattern,

it is no longer uncertain. Future iterations can be easily predicted and computed.

 4

Word games and number games aim to challenge the mind to deduce patterns by

cleverly hiding them with noise. This noise acts as an adversary to confuse a mind

‘clouded’ with complexities. In the above example, if the player were told that

some pattern exists in a sequence containing 1100110, a reasonable starting point

would be mathematics or logic to deduce the information. However, these

paradigms are not needed to deduce or create a pattern. The player can simply

copy the string and append it to the end and claim a viable pattern exists. Or, as in

the case above, the player can tack on another set digits to create a pattern utilizing

the information that already exists. In these two cases, the sequences 1100110-

1100110 and 1100-1100-1100-1100 have been created from a seemingly random

set of digits. Both are deterministic and predictable. Therefore, any intuition about

a set of seemingly random digits can easily be proven false.

This intuition pitfall regarding random sequences is referred to as the

Undefined Reference Sample (Whitney, 1990). No intuition can hold if an object,

such as a sequence or arbitrary number, is presented with no information of where

it came from. In the above case, a sequence that looked random can be shown to be

deterministic. The reverse also holds true. For a seemingly deterministic sequence,

a simple rule can show that it is random. For example, the number 1111 does not

look random because it contains a recognizable pattern of repeated 1’s. However,

it is perfectly normal to choose this number in a random drawing of numbers from

 5

0 to 5000. It is therefore difficult to label a sequence of numbers given no

intimation of the rules that produced it.

1.2.1 Random Process

A process for generating a sequence of random numbers, which are

independent of each other, is easier to define. The next number in a random

sequence that is generated using a random process cannot be predicted by referring

to the previous numbers. A random generation process has no memory of previous

events to generate future events. For example, if it is stated that an evenly balanced

coin will be tossed end over end into the air making a number of tumbles that are

unable to be measured by the human eye, then it is safe to assume that the sequence

of heads and tails will be random. This is because the complex movements of the

coin are unpredictable and depend on immeasurable factors. The trajectory of the

coin is extremely sensitive to the initial conditions of the event. A slightly different

angle or a slightly differing wind direction can produce different outcomes, even

though the coin is obeying the laws of physics. Other truly random processes

include dice throwing, a roulette game, and card shuffling, assuming that no factors

can unfairly affect the outcome (such as weighted dice or a sneaky dealer). These

tasks rely on the unpredictability of the underlying physical processes in place,

whether they are inherently random or even chaotically deterministic. Naturally-

random processes are arguably random however, since they depend on an infinite

amount of microscopic factors as well as larger factors such as temperature or

 6

wind. Depending on the rules of the universe, they may also be dependent on time.

For example, if it were possible to travel back in time, would seemingly natural

random events occur the exact same way twice? Since time travel has yet to pan

out, and the amount of natural factors involved is infinite and impossible to

measure, it is acceptable that such processes are deemed random by using

mathematical testing techniques. Examples include the statistical goodness-of-fit

Kolmogorov-Smirnov test and the ‘noise sphere’ technique between triplets of

random numbers (Weisstein, Kolmogorov and Noise Sphere 2004). The goal of

these tests is to estimate that a random number or series of random numbers have

been chosen seemingly independently from a given probability distribution.

The central rule of probability theory is that a large amount of independent

events will cause a random variable to converge to some likelihood of occurrence.

An infinite series of coin tosses will result in 50% heads and 50% tails with

absolute certainty. The result of a single coin toss is completely uncertain. This

statement is reasonable before the toss, but is completely false afterwards since the

uncertainty of the event is gone. Since an infinite amount of events cannot occur in

a finite time frame, a random variable is measured based on its expected value.

The randomness imbedded in a random algorithm causes them to be measured by

expected behavior. This allows the unpredictable algorithm behavior to be

averaged and hopefully it behaves according to some expected bounds.

 7

The built-in determinism and the ability to model only concrete

mathematical equations unfortunately make generating a random sequence

impossible by means of a computer algorithm. This is because no matter how

sophisticated, an executed algorithm is a completely predictable series of steps that

performs a task. A predictable process cannot be used to create random numbers.

Computer algorithms must therefore rely on a pseudorandom process in order to

obtain near-random sequences of numbers.

1.2.2 Pseudorandom Process

A pseudorandom process approximates a truly random process, yet unlike a

random process, it uses previously generated values to obtain the next value in the

sequence. Such an algorithm is used to deterministically generate sequences of

numbers that appear random when statistically tested. Pseudorandom generators

use an initial ‘seed’ value to begin the generation of numbers. Therefore, the same

‘seed’ value yields the same sequence of ‘random’ numbers, and is perfectly

predictable. This fact becomes a burden when dealing with computer security,

which relies heavily on random numbers for secret keys. Eq. 1 shows the

deterministic algorithm commonly known as the ‘linear congruence’ method of

calculating seemingly random values. In the equation, variables A, C, and M are

non-negative integers. The initial value of X is the seed (Liu, 1999).

))(mod*(
1

MCA XX ii
+=+ (1)

 8

Successive calculations using the linear congruence method generate

pseudorandom numbers that have the potential of passing statistical tests for

randomness (Eastlake, Crocker, & Schiller, 1994). To avoid repeating number

sequence patterns, it is useful to reference the system clock for a seed value.

Turning the clock back and running the algorithm again at the same instant of time

would, unfortunately, produce the same sequence. With time constantly moving

forward, the seed value would be different at each future unit of time. Therefore, it

is possible to look at algorithms that generate pseudorandom sequences using time

as the seed value as being truly random if the universe works in similar ways in

which the clock cannot be turned back. Time travel is beyond the scope of this

thesis, but not beyond the scope of the system clock.

1.2.3 Recommendations

The incompleteness of a pseudorandom number generator can often be

overcome by the scope of the problem. Pseudorandom numbers are useful for

gaming, simulation, and sampling. When the scope of the problem requires a better

solution, truly random numbers must be used. True random numbers are not

difficult to obtain and are recommended for use in security applications.

Normally, hardware electronics suffer from random electromagnetic

disturbances. For example, the static noise on the radio or the ‘snow’ on a

television screen is the presentation of natural random energy picked up by the

 9

antenna or receiver as a result of other electronics in the area or even what has been

attributed to leftover energy from the big bang, seen as Cosmic Background

Radiation. A natural way to obtain random numbers is to capture this energy at

some point in time. For example, to create the effect of a random coin toss, one

can choose a pixel on a black and white screen, and measure its color value through

a series of frames. Figure 1 is a screenshot of a program that fills in black and

white squares using pseudorandom numbers. After filling in a rectangle of pixels

and processing many frames per second, the result appears like an off-broadcast

television station. Although the image is completely random, can the mind still

find patterns?

Figure 1. One frame of Random Noise.

Randomness plays a crucial role for security systems, especially in

applications over the Internet (Eastlake et al., 1994). Security systems rely on

cryptographic algorithms that try to foil adversaries attempting to recognize

 10

patterns. The trick is to use algorithms that contain little to no patterns. This task

is extremely difficult, given that computer systems are built on structured

mathematical rules. Randomness acts as a means to provide the unpredictability

needed in a secure system. Hardware provides a good level of unpredictability

needed to obtain random sequences (Eastlake et al., 1994). The linear congruence

method, as described earlier, may be suitable for simulations but terrible for

security systems due to the ability to decipher an entire pseudorandom sequence

given the initial state (Eastlake et al., 1994). A pseudorandom process does not

provide the level of security required for generating secret values such as password

and keys.

1.3 Early Uses

Randomization in algorithms was first used to find approximate solutions to

numerical problems. Named after the city that is famous for roulette tables and

probabilistic gambling in the Principality of Monaco, the development of numerical

probabilistic algorithms called Monte Carlo dates to atomic bomb research in

World War II (Brassard & Bratley, 1996).

Prior to WWII, numerical probabilistic algorithms were employed on a

smaller scale to solve problems. Most notably, the method of “Buffon’s needle”

dates to the eighteenth century where Georges Louis Leclerc, comte de Buffon,

used random methods to approximate the value of � with needles thrown at random

 11

onto wooden planks (Brassard & Bratley, 1996). With the needle being half as

long as the width of a plank and the plank cracks having a width of 0, the

probability of a needle intersecting a crack between planks was proved to be 1/�.

Therefore, n throws results in n/� needles intersecting plank cracks. As the number

of needles thrown moves towards infinity, the answer gets more precisely closer to

the true value. However, like most numerical probabilistic algorithms, this

precision gain is extremely slow. This method is described fully in Section 1.6.

The Leclerc algorithmic approach to approximating � is not practical since

deterministic methods have shown to be much more precise. However, this early

example was one of the first probabilistic algorithms, and stands as an intriguing

example of the power and ability of such algorithms.

1.4 Random Algorithms

“An algorithm corresponds to a Turing machine that always halts”

(Motwani & Raghavan, 1995, p. 17). Represented as an abstract model of

computation, a randomized algorithm is a probabilistic Turing machine that always

halts. This type of Turing machine chooses transitions randomly from the set of

available transitions and accepts or rejects input with some probability (Motwani &

Raghavan, 1995). Like a non-deterministic Turing machine, a probabilistic one has

many paths to choose from, yet only follows one at a time instead of all of them in

parallel (“probabilistic” & “nondeterministic”, NIST 2004). The path to be chosen

 12

is the result of a random draw. See Section 1.5.2 for the complexity classes used to

organize decision problems that random algorithms solve.

At a lower level, randomizing an algorithm is a process that uses a dynamic

and unpredictable mechanism to re-order input, sample a population, distribute

objects, measure variations, and calculate approximations. This mechanism (e.g.

random number draw) helps the algorithm make decisions to estimate problems

where closed form solutions or deterministic methods are too complex and/or

infeasible. These cases arise in the real world where the computation of an exact

solution is not possible, in principle, because of the uncertainty of data and/or the

computational resources are unable to model the needed units (e.g. irrational

numbers – �2, �3, �, e) (Brassard & Bratley, 1996). In the precise world of the

digital computer, an answer may be infeasible due to the amount of running time it

takes to find it. Making random choices and arriving at an approximate solution

may be preferably faster than a lengthy runtime search for the optimal solution. As

a result of the uncertainty in random algorithm decisions, approximate answers

and/or varying run times exist for a problem instance.

Deterministic methods aim to produce the same solution with each run and

execute according to a fixed set of rules. Any variation or error in their behavior

for a specific instance of a problem will prove that the algorithm is never suitable

for that instance (division by 0, etc.). In contrast, random algorithms should behave

differently from one run to the next. Variables include: the length of execution

 13

time, as well as the result of the algorithm. Solutions may vary to a certain

probability, or even be incorrect altogether. If the algorithm returns a known

incorrect result, it can be executed again to hopefully arrive at a better solution. If

there are multiple solutions, comparing results after a combination of runs provides

an increased level of confidence.

The most common random algorithms behave in such ways that are similar

to human behavior. For example, using randomness in searching makes the run

time of the algorithm vary from run to run. Like a human searching a telephone

book for a specific name, a random algorithm can be guided by the alphabetic

order, but pinpointing an entry can be an uncertain task that involves random

decisions. Humans cannot search the phone book in a strictly deterministic fashion

because there are other factors that our minds must perceive than just the ordered

list of entries. For instance, large ads are provided in the Yellow Pages, so a search

for Ryan’s Surf Shop would start in the R section of the retail stores category.

Some amount of randomness would lead the visual search to an advertisement

instead of the list of textual entries, hopefully finding the phone number in large,

bold print quicker. The advertisement stands out compared to the list of entries that

all look the same with very small text.

Random algorithms help to suppress the killers of deterministic algorithms,

adversaries. An adversary is an input to an algorithm that causes it to perform

poorly. For example, Quicksort has a very fast O(n log n) average-case running

 14

time. However, the adversary of an already-sorted list causes the algorithm to

behave with Ω(n²) time. Random algorithms ‘foil’ adversaries by making random

decisions on-the-fly so that they cannot be predicted and fooled. A randomized

Quicksort algorithm chooses a pivot at random and allows the expected running

time to be O(n log n) for all input instances.

Much like the human mind, random algorithms are built to focus on a

varying set of problem situations. Random algorithms are useful when dealing

with the following problem spaces: 1) As stated above, adversary conditions that

cause deterministic algorithms to perform poorly can be thwarted using random

methods to reduce or eliminate their negative affect. 2) If a search space contains a

large number of acceptable solutions, a random sample from the population can be

used to efficiently find one of them. 3) Random sampling also helps to obtain a

solution from a subset of a population to approximately model the entire

population. 4) Deadlock and symmetry problems show that randomness is helpful

to load balance resources and avoid or break deadlock conditions. 5) Environments

where variety and uncertainty are necessary to provide training use randomness to

approximate and simulate real-world effects. 6) Simulation must also be able to

test scenarios and obtain statistical data, and random algorithms provide the

necessary mechanisms to do so. 7) Where creativity is needed, especially in the

field of artificial intelligence, random algorithms attempt to make decisions outside

 15

of the bounds of determinism and provide controlled noise in the form of

unpredictable variety.

The following pseudo-code examples display the inner workings of a few

randomized algorithms. Each example utilizes a procedure ‘uniform(i..j)’ to obtain

a random value in the interval ‘i’ to ‘j’. The value can then used for making a

decision, testing an event, feeding an object attribute, assigning a task to a

processor, etc. This results in algorithmic procedures that contain varying run

times and varying answers.

 16

Chaos Game - draw random points according to simple rules.

Input: 3 points of a perfect triangle, width and height of graphic display
Output: a visual approximation of the Sierpinski gasket (Pascal triangle with odd
numbers displayed as points)

Source: (Gleick, 1987)
1: Draw the points of the triangle
2: Choose a random starting point: P = uniform(1..width), uniform(1..height)
3: Loop
4: Choose a random vertex: V = uniform(1..3)
5: Calculate new point. newP = ½ way between V and P.
6: Draw newP.
7: Set P = newP.
8: End Loop

Figure 2. Chaos Game randomized algorithm with example result.

 17

Min-Cut – find a set of edges (with minimum cardinality) to remove that breaks a
connected, undirected multigraph into two or more components (cut).

Input: connected, undirected, multigraph G
Output: a cut (and candidate min-cut) of G

Source: (Motwani & Raghavan, 1995)
1: While G.number_of_vertices > 2 loop
2: Pick random edge: E = uniform(1..G.number_of_vertices)
3: Contract edge vertices and preserve multi-edges
4: Remove loops
5: End loop
6: Output remaining edges

Figure 3. Min-Cut randomized algorithm.

The benefits of random algorithms are outlined throughout this paper. Two

common features that random algorithms contain are speed and simplicity. One

unusual feature that they may also possess is reliability. Random algorithms are

reliable when confidence bounds are defined for their range of solutions or range of

expected run time. These algorithms will sometimes have so small of an error that

the probability of a hardware failure is more likely. Therefore, if a slow

deterministic algorithm has to run longer than the hardware is reliable for, then a

faster, approximate random algorithm will provide a much better solution (Brassard

& Bratley, 1996).

1.5 Complexity

The universal computational machine, the Turing machine, is only as good

as the software (algorithm) that is ran on it. The main challenge of developing the

software is to solve problems efficiently. Gödel’s incompleteness theorem shows

 18

that there exist problems that are unsolvable due to the incompleteness of ‘self’

describing rules in a complex system. Also, the Church-Turing thesis shows the

famous undecidable problem in which a Turing machine cannot tell ahead of time

if an algorithm will halt or provide an answer. These theories show that algorithms

must be analyzed and measured in time and space to determine if they are useful.

1.5.1 Standard Problem Classes

Complexity theory classifies problems based on their difficulty. The P class

of languages contains decision problems that can be solved in polynomial time by a

deterministic Turing Machine. Problems in this class are considered to be

tractable. The NP class of languages contains decision problems that can be solved

by a non-deterministic (multiple-tape) Turing Machine in polynomial time. The

answer to an NP problem can be verified quickly, but not necessarily solved

quickly. NP-hard refers to the class of problems that are naturally more difficult

than those in NP. If a problem’s correctness can be verified in polynomial time

(NP), and its algorithmic solution can be translated to solve any other NP problem

(NP-hard), then the problem is classified as NP-Complete. These problems are the

hardest of the NP class.

By measuring time and space requirements for an algorithm, complexity

theory expresses the existence of problems that can be classified as intractable.

Algorithms built to solve these problems are slow or infeasible. For example,

solving the Traveling Salesperson problem, which is NP-Hard, for a large number

 19

of cities could take more time (thus, cost more money), than if the salesperson were

to make an educated guess and be willing to accept some amount of error.

Therefore, in order to provide approximate solutions to intractable classes of

problems, estimation algorithms are needed. These algorithms are considered

acceptable if they are efficient (i.e. polynomial), and contain a high probability of

not producing terribly incorrect answers.

The human mind often uses approximation to reason and decide in the

world. Instead of pulling off onto the shoulder to wait and see how a traffic

situation pans out, a driver instead must sit in the traffic jam and estimate the best

route without knowing the obstacles that lie ahead. This estimation ability uses

probability and statistics to analyze a situation. Randomness is inherent because of

the uncertainty that probability theory contains. Therefore, an algorithmic process

that uses the result of a random draw to make an approximated decision has the

ability to estimate reasonable solutions.

1.5.2 Random Problem Classes

The above standard problem classes can be generalized to allow

probabilistic requirements for the behavior of random algorithms. Random

problem classes use probabilities to describe their correctness in a polynomial run

time (Motwani & Raghavan, 1995). Random Polynomial (RP) algorithms accept

input with probability 50% or more if the input is a member of the language. If the

input is not a member, the algorithms accept the input with zero probability. These

 20

rules mean that the algorithm only errors for input that is a member of the

language. This is known as a One-Sided Error Monte Carlo algorithm. A Two-

Sided Error Monte Carlo algorithm is allowed to error for both members and non-

members of the language. These Probabilistic Polynomial (PP) algorithms

correctly accept input with probability greater than 50% and incorrectly accept

input with probability less than 50%. Bounded-Error Probabilistic Polynomial

(BPP) algorithms put tighter bounds on the error probabilities with a polynomial

number of iterations to reduce the error probability further.

Random algorithmic behavior can also be classified as Zero-Error

Probabilistic Polynomial (ZPP). These algorithms still make random decisions but

always produce correct answers. The trade-off is a variation in run time. These

algorithms are named Zero-Sided Error Las Vegas. Las Vegas algorithms are

described further in Section 1.8.

1.6 Numerical Probabilistic algorithms

Numerical probabilistic algorithms are one type of random algorithm that

always yields approximate answers to numerical problems. They give a probability

of correctness and a given confidence interval of upper and lower bounds. These

algorithms may improve on the precision of the answer along with the tightness of

the bounds with increased available running time. A real-world example of this

type of algorithm is an opinion poll, with its deterministic equivalent as a general

 21

election. A general election takes a lot more time and resources to execute than a

poll in which a random sample of votes is used to approximate the opinions of

many. The more sampling that is performed, the more accurate the poll will be to

the actual election.

An example of this type of algorithm comes from a classic technique of

estimating the value of �. As stated in Section 1.3, the Buffon needle experiment

uses randomness to estimate the value of � within certain boundaries that get

smaller as the algorithm is repeated. For example, if only 10 needles are used, the

best possible estimation of � is 3.333.… The algorithm could also possibly output

an answer of 1.0 with the bad luck that only one needle intersects a plank crack.

This answer is not incorrect; it is just outside of the expected bounds. Using a

larger set of needles, the estimate of � becomes closer. Buffon proved that the

answer would be correct if an infinite amount of needles were used. This is not

possible on a computing machine with finite resources, so we must deal with the

numerical probabilistic approximation.

The Buffon’s Needle method works by exploiting the properties of

geometry utilizing randomness to approximate area ratios. The angle of a

randomly thrown needle (�) ranges from 0 to � as measured from the center point

of the needle. The distance from the center of a needle to the nearest plank crack

(D) is never greater than ½ the distance between cracks. Since the length of the

needle is ½ the size of the distance between plank cracks, an intersection of the

 22

needle and crack occurs when D is less than or equal to (¼ sin �). Figure 4 is a

diagram of the experiment space. The blue line, f(x)= (¼ sin �), represents the

threshold for needle intersections with plank cracks. The area under the blue curve,

from 0 to �, measures ½. The area of the entire experiment space is ½ * �.

Therefore, the probability of a randomly thrown needle intersecting a plank crack is

the ratio of the area under the curve to the total area (½ / (�/2)) = 1/�. In a

simulation of N randomly thrown needles, the points representing � and D are

uniformly distributed over the search space, shown in pink on Figure 4. Therefore,

the ratio of total points (N) to points on or below the curve (number of needles that

intersect plank cracks) is approximately equal to �.

 23

Figure 4. Buffon Needle experiment space.

As stated previously, as the number of needles increases (pink points in

Figure 4), the value of � gets more accurate. Figure 5, Figure 6, and Figure 7 each

show a scenario of a Buffon’s Needle program with varying amounts of needles.

With 10 needles, Figure 5 contains 4 intersections, and a � estimation of 2.5. The

100 needles of Figure 6 intersect planks 31 times estimating � at 3.23. The 10,000

needles of Figure 7 have 3187 intersections, thus a � estimation of 3.1377.

 24

Figure 5. Buffon’s Needle. 10 needles.

Figure 6. Buffon’s Needle. 100 needles.

 25

Figure 7. Buffon’s Needle. 10,000 needles.

A very similar example to Buffon’s Needle is the estimation of � using the

ratio of a unit circle encompassed by a unit square. As shown in Figure 8, the

number of randomly plotted points that fall in the circle area divided by the number

of total points in the square area is approximately equal to � divided by 4. This is

based on the fact that the ratio of the area of the circle to the area of the square is

exactly � divided by 4. An algorithm that plots random points in a unit square and

computes the ratio of points in the unit circle to those in the square is numerical

probabilistic. The algorithm attempts to uniformly fill in the areas and obtain a

better answer with more trials.

 26

Figure 8. Random points occupying a unit square and unit circle.

Numerical probabilistic algorithms relate to intelligent ways of searching,

recognizing patterns, and simulating the mind. These algorithms continuously

sample a population and attempt to provide an estimate. In the field of artificial

intelligence, it is important to use clever techniques to approximate difficult

problems. Numerical probabilistic algorithms help by simulating the ‘thinking’ of

a mind that wishes to take some amount of time to build and improve the answer.

For example, while quickly trying to do mathematics, the mind may first take some

time and estimate the values to obtain a quick, rough answer. The mind may then

process the numbers further and improve upon their estimation. Like the

performance of numerical probabilistic algorithms, the run time of a thought must

 27

be analyzed ahead of time to get an idea of how long it will take to obtain a

solution, and how accurate that solution will be.

Brainstorming is an intelligent technique that attempts to extract an

unknown solution from a set of related ideas. In reference to Buffon’s Needle, the

search area is represented by the topic of a brainstorm activity. Every random

needle thrown represents an idea, uniformly covering the topic area. The resulting

solution via ratio comparison is the consideration of a subset of developed ideas,

within some boundary, to the whole set. The result of the brainstorm activity is an

average, core idea. As with Buffon’s Needle, the preferred scope or ‘accuracy’ of

the brainstorm is improved with repetition. As the amount of generated ideas that

are random and uniform grows, the more effective the solution turns out since

repeated trials seek to fully cover the search space. Newly generated ideas while

brainstorming can be stimulated by previously generated ideas, thus improving the

solution and tightening the bounds of variation.

Numerical probabilistic algorithms are often referred to as Monte Carlo.

This thesis regards Monte Carlo algorithms as a similar technique where there

exists the possibility of obtaining an incorrect answer.

1.7 Monte Carlo algorithms

True Monte Carlo algorithms produce answers with a high probability of

correctness on every instance, but unlike numerical probabilistic algorithms, run

 28

the risk of producing incorrect answers. These types of random algorithms must be

able to handle all instances of a problem with none having a high probability of

error. Some Monte Carlo algorithms “… allow p [the probability of correctness] to

depend on the instance size but never on the instance itself.” (Brassard & Bratley,

1996, p. 341).

If a Monte Carlo algorithm is unable to determine if an incorrect answer has

resulted, allowing it more running time may reduce the probability of error. On the

other hand, some Monte Carlo algorithms have the ability to produce an answer

that will positively be known to be correct. If this answer is obtained, then it is

certain that the correct solution has been reached. If the answer is not obtained,

then repetition of the algorithm may yield a higher confidence interval, and/or a

wider search for the definitive answer. Allowing a Monte Carlo algorithm more

time to produce a more confident answer is known as “amplifying the stochastic

advantage” (Brassard & Bratley, 1996, p. 341).

An example of this certainty is represented in the verification of matrix

multiplication algorithm known as Freivalds (Brassard & Bratley, 1996) that may

output a ‘false positive’. When the algorithm returns false, the answer is

guaranteed to express that two multiplied matrices do not equal a third (Brassard &

Bratley, 1996). Repetition in the absence of a guaranteed answer drops the

probability of error in the algorithm. Many Monte Carlo algorithms that attempt to

 29

solve decision problems are known for their rapid convergence to approximate

equilibrium.

The min-cut algorithm specified above in Section 1.4 Figure 3, is a Monte

Carlo algorithm that has the possibility of returning a candidate that is not a min-

cut. For the graph in Figure 9, a valid min-cut occurs when removing edges 0 and

1, or 4 and 5. Many repetitions of the Monte Carlo algorithm produce

approximately a 66% chance that one of the valid solutions is found. The other

34% of solutions output by the algorithm are incorrect and of cardinality 4, such as

edges 0-2-3-5 or 0-2-3-4.

Figure 9. Connected, undirected multigraph.

A Monte Carlo method notable for testing a very large odd integer for

primality is popular because no deterministic method is known to be optimal

(Brassard & Bratley, 1996). Application of such an algorithm is important to

security encryption methods where large prime numbers are used for key values.

 30

Monte Carlo algorithms relate to the workings of the human mind, which is

known to produce incorrect answers from time to time. Whether attempting to

recognize a pattern or recall some memory, the mind produces a probability of

correctness with error bounds, and runs the risk of being wrong.

1.8 Las Vegas algorithms

A Las Vegas algorithm is a type of randomized algorithm that uses a

random value to make probabilistic choices and never produces an incorrect

answer. The choices made during computation attempt to guide the algorithm to

the desired solution faster than other methods. This is possible because of the

ability of randomness to avoid adversary conditions that may lead to a lengthy

exhaustive search for the correct solution.

A simple Las Vegas algorithm example is a sock-sorting program. This

program works with the problem of selecting matching socks from a drawer. Any

deterministic algorithm to accomplish this task will take O(n) worse-case execution

time when faced with a bad instance. For example, a deterministic algorithm could

loop through an array of socks and attempt to find a match for the very first sock

selected. As new unmatched socks are picked up, they are continually eliminated.

With an instance of input such that the only matching pair is the first and last

elements, this deterministic approach must search through the entire list, thus O(n)

behavior.

 31

The randomized, Las Vegas version loops through the array and collects

pairs of socks. If a match is not found, it randomly eliminates one of the chosen

socks. This algorithm has a very small possibility of taking just as long as the

deterministic approach worst-case due to bad decisions. It also shares the

possibility of failing to find a matching pair with the deterministic approach.

However, simulations of the random search show the expected behavior of 4

choices for every input instance. The randomized version has eliminated the

adversary input instances that cause poor running time in a deterministic method.

One generic type of Las Vegas algorithm may perform efficient correctness

checks and, rather than producing an incorrect answer, output no answer at all (or

better, an apology message). These error cases can be handled by repeatedly

running the algorithm until a successful answer is found. For a deterministic

algorithm, this behavior is unacceptable. It is acceptable for Las Vegas algorithms

if the probability of a dead end is not high or if an efficient deterministic method

does not exist, such as large integer factorization (Brassard & Bratley, 1996).

Instead of occasionally returning no answer, other Las Vegas algorithms are

always guaranteed to return an answer, but could suffer long running times due to

poor choices. These algorithms are usually used when a known deterministic

algorithm can solve a problem quickly on average, but suffers major setbacks when

encountering a specific input instance. The randomness in the Las Vegas versions

of these algorithms is used to reduce or remove the probability of these instances

 32

from occurring. The worst case is not prevented, but instead the association is

removed between the bad instance(s) and their probability of occurrence.

Las Vegas algorithms cause the phenomenon known as the Robin Hood

effect (Brassard & Bratley, 1996). That is, when the deterministic method

counterpart solves an instance very slowly, the Las Vegas algorithm performs

quickly. On the other hand, when the deterministic method is fast on an instance,

the Las Vegas method slows it down. Similar to Robin Hood, Las Vegas

algorithms steal from the rich (fast deterministic instances) and give to the poor

(slow deterministic instances). However, the average case behavior of such

algorithms over any instance of the problem results in good expected performance.

A more common and useful example of a Las Vegas algorithm to address

the selection and sort problem is called selectionLV (Brassard & Bratley, 1996).

The problem of finding the k-th smallest element in an array can be handled

deterministically by partitioning the array using a pivot point, and repeatedly

searching each sub-array. This technique known as divide-and-conquer is most

efficient when the pivot point is as closest to the median of the elements.

Calculating the exact median is not efficient because the process involves a special

case of the problem at hand. Deterministically choosing a pseudo-median avoids

the “infinite recursion”, but is still inefficient (Brassard & Bratley, 1996).

Choosing the pivot as the first element is better, with average linear execution time,

but has worst-case quadratic time. Therefore, deterministic approaches with linear

 33

worst-case times are not optimal because of hidden constants, and simple

deterministic approaches require quadratic worst-case time.

The selectionLV algorithm chooses the pivot randomly to avoid the pitfalls

of the deterministic worst-case instance. The execution time is now only dependent

on the size of the instance, instead of the instance itself. Any instance of the

problem results in linear expected time, although quadratic time is possible. The

possibility of quadratic behavior results from poor random decisions, and becomes

very small as the instance size grows.

The same idea is used for the popular sorting algorithm known as

Quicksort. This deterministic algorithm has a very fast O(n log n) average case

running time. However, in the worst-case of an already-sorted list, the algorithm

behaves with Ω(n²) time. The recursive nature of splitting an array according to a

pivot is optimal for Quicksort if the pivot splits the array into same size sub-arrays.

The result of choosing a pivot at random causes the expected running time to be

O(n log n) for all instances under consideration.

 34

Chapter 2: Theory

2.1 Approximation and Simulation

Problems that are NP-complete and/or NP-hard are unlikely to be optimally

solved using a polynomial running time algorithm. The intractability of finding an

exact solution can possibly be solved by a number of interesting methods including

the following: using an exponential running time algorithm, isolating special

instances, or using a polynomial running-time algorithm that outputs near-optimal

solutions (Cormen, 2001). The mentioned polynomial, near-optimal method of

providing approximate answers is usually good enough for situations where it is

reasonable to sacrifice optimality for a feasible, efficient solution.

The National Institute of Standards and Technology defines an

approximation algorithm as: “An algorithm to solve an optimization problem that

runs in polynomial time in the length of the input and outputs a solution that is

guaranteed to be close to the optimal solution. “Close” has some well-defined sense

called the performance guarantee” (“approximation”, NIST 2004). Randomization

in algorithms is one of many methods used for the approximation of problem

solutions. Monte Carlo and numerical probabilistic algorithms both produce

approximate answers. They specify a type of ‘performance guarantee’ in terms of

a probability of correctness and/or confidence intervals.

 35

Simulation is an approximation technique used to model the real world.

Using randomness to abstract details, repeated statistical tests are executed to

narrow in on a solution with a sense of accuracy. It is a powerful way to study

complex problems without analytically studying fine details. These details are

abstracted and the resulting solution is an estimated proportion. For example, a

simulation of the weather may find that the probability of rain is 80% when a cold

front moves through. A weather simulation does not model every atomic detail of

the wind, pressure, and temperature conditions at every point in space. Many

factors are estimated, which could lead to the forecast being incorrect. Although a

simulation could be slow and costly, it could also save lives and money for

sensitive systems where extra analysis is never a bad thing. The alternative to

simulation is an even costlier experimentation effort consisting of trial and error.

Simulation allows choices to be made without actually making them.

Choices are ‘virtually’ made, and the results are studied to see the behavior of a real

system under approximately the same environment. The simulation can then be run

over and over with different arrangements to study the effects. Once the effects are

acceptable, the variables in the simulation can be applied to the real world, and a

real decision can be made with confidence that the expected behavior is known.

Simulation is a type of random algorithm that is solely responsible for

approximating and analyzing. A simulation contains an approximation mechanism

that causes results similar to a random algorithm. Like random algorithms,

 36

simulations can be wrong. Weather simulations are often incorrect for the path of a

hurricane, or the movement of a cold front. These imperfections arise because the

simulation itself is imperfect. However, if a simulation were constructed to

measure every detail, it would be very costly and serve as a useless redundant

system. Simulation attempts to approximate the unimportant details and pinpoint

the end result.

2.2 Performance

The theoretical study of random algorithms is an important and necessary

science due to the uncertainty contained in the computational process. While

deterministic algorithms are analyzed for their worst-case time performance,

random algorithmic performance presents a different problem. Numerical

probabilistic algorithms produce different answers on repeated runs; Monte Carlo

algorithms can be wrong; and Las Vegas algorithms produce varying execution

times. Therefore, the analysis of these algorithms cannot be defined by solid rules

like deterministic algorithms. The complexity analysis of these algorithms must be

performed using estimations of the expected behavior.

2.2.1 Complexity Analysis

Analyzing algorithms that use random methods is quite different from

analyzing deterministic complexity. The notion of averages and expectations is

appropriate for random algorithms since these algorithms work with a random

 37

variable chosen from some probability distribution whose value is uncertain.

Therefore, analyzing such algorithms must take into account the average or

expected value of the random decisions.

The average running time of deterministic algorithms is the measurement of

likely behavior of the algorithm over a series of problem instances. This

measurement assumes that each possible instance of a problem is equally likely to

occur at random. The problem with this approach is that if some instances are

more likely to occur, which occurs quite frequently in some problems, then the

average behavior can be misleading since the instance probability distribution is not

uniform. For example, updating a checking account history usually involves

inserting the newest transactions into a pre-sorted list. The entries themselves must

be sorted and inserted so the list is in correct order. Such algorithms like Insertion

Sort can do this computation much faster than its average case, which in this case,

is misleading (Brassard & Bratley, 1996).

In order to make average case analysis useful in deterministic algorithms,

random methods can be used to modify the instance probability distribution. A

deterministic algorithm that performs well under the average case, yet has a bad

worst case, can be altered to make the worst-case instance very unlikely or

impossible to occur. By incorporating a random variable, the algorithm can

become less prone to the worst-case instance.

 38

2.2.2 Expected Run Time

With random algorithms, the complexity analysis heuristic that is widely

used is the expected running time. This refers to the mean running time of a

randomized algorithm on a particular instance, multiple times. Unlike the average

time of a deterministic algorithm, the expected time of a random algorithm is

“defined on each individual instance” (Brassard & Bratley, 1996, p. 331).

Since random choices are under direct control of the algorithm, it is not

useful to measure the unfortunate case where an algorithm is inefficient due to bad

choices. Unlike deterministic algorithms, no one particular instance causes worst-

case behavior in a random algorithm. While one instance may be a victim of the

algorithm’s terrible choices and have a long running time, the next may be solved

quickly due to better or more flexible choices. The analysis of random algorithms

measures the expected equilibrium behavior over multiple runs on the same

problem instance, similar to the expected equilibrium value of a random variable.

Instead of relying on a probability distribution of input instances, where

some may occur more or less often than others, random algorithms attempt to treat

every instance in an equal manner. The expected behavior is therefore applicable

for all instances instead of a subset that must be averaged. The distribution of the

random decisions made internal to the algorithm governs its behavior.

Understanding this distribution is important for analyzing the expected behavior.

However, it is still helpful to measure the average and worst case expected

 39

behavior. These measurements refer to the analysis of the expected running time of

an algorithm with respect to the average and the worst instance of a given size as

opposed to the behavior based on lucky or unlucky decisions.

2.2.3 Unknown Run Time

Another interesting category of analyzing random algorithms concerns the

consideration of run times that may be unknown. While the benefits of this

realization may be minimal, the importance can be seen when considering some

human-like processes. For example, it is obvious that humans do not perform

linear searches for retrieving memories. We instead can only guess at how we can

lose a thought and regain it at some later time, such as remembering a dream that

occurred a week ago. How are we to analyze such performance? The uncertainty

of thought recollection processes causes the run-time of a memory search to be

unknown. The uncertainty built into a random algorithm can cause them to

perform in the same manner. For example, when drawing a number of random

black and white pixels on the screen to simulate an off-broadcast television

channel, how long must we wait until every other pixel is black, and every other

pixel is white? Is it even possible to estimate this? Probability theory states that

this event will never occur (probability of 0). This does not rule out that it can

happen since it is a legitimate distribution of pixel configurations. However, the

continuous random variable takes on the value so rarely that its proportion of

occurrence is reduced to 0.

 40

Randomness translates to a level of uncertainty, which cannot be tolerated

in an environment that is required to be highly reliable. Randomized algorithms

produce approximate and uncertain answers, and have uncertain run times. In

critical real-time applications such as avionics or biotechnology, the use of random

algorithms should be limited. It is ironic that the computer has seemingly been

developed to function as a slave in which simple deterministic algorithms, that are

reliable and fast, are trusted to perform tasks better than that of their creator.

2.3 Probability and Game Theory

Probability and Game Theory are the best mechanisms for explaining

randomness. Probability problems can be both intuitive and perplexing, even at the

same time. Game Theory uses probabilities to analyze games and predict the

behavior of players. Random algorithms can be both designed and analyzed using

the rules of these theories to determine expected behavior and rational strategies.

2.3.1 Intuitive Probability Problems

Random methods are intuitive to the algorithm designer when the order of

decision operations does not matter and there is no supporting evidence of choosing

one path over the next. For example, situations that cause a deadlock condition

have arrived in a state of equilibrium where it is not important who/what takes

precedence. What matters is that the deadlock must be broken to avoid losing

processing time. A processor with four pending tasks that have arrived at the same

 41

time, and determined to be equal in size, has no gain in picking one over another.

The goal is to get out of the deadlock state and process any of them. Picking the

order at random is a fair way of breaking the deadlock.

A deterministic algorithm is unable to fairly break the symmetry because it

contains no variation in its choosing ability. Deterministic algorithms are ‘dumb’

in that they cannot make decisions to ward off adversaries. This is analogous to a

pinball machine that continually shoots the ball in an unbreakable circular path in

which the player can accumulate a large amount of points with absolutely no

interaction. The user has found a built-in adversary, and has to eventually wait for

the inherent randomness in the universe to free the ball. Without a variation in

bounce speeds, or perhaps a random spin of the ball, the machine is ‘dumb’ and

cannot adapt to fight this condition.

The conscious decision of choosing something randomly raises an

interesting question in the debate of mind versus machine. Any decision in which a

human must “just pick one” involves some sort of random generation. How do we

perform such a task? Do we base it on other events? Are the other events

independent of each other? For example, did I decide to put on my left sock first

because I happened to stub my right toe yesterday on a box that was delivered

incorrectly to my house because the delivery man was upset because his right sock

had a hole in it? Just pondering about one simple case makes it mind boggling to

think of the large amount of randomness that one uses per day.

 42

2.3.2 Counter Intuitive Probability Problems

Probability problems must be analyzed fully to realize their value since they

may present counter-intuitive results. A probability problem that is not properly

analyzed could cause haphazard decisions because of incorrect assumptions. For

example, consider a version of the Prisoner’s Dilemma described by Frederick

Mosteller (Weisstein, Prisoner 2004). Three prisoners apply for parole and only

two of them are to be released. One prisoner asks a knowledgeable warder for the

name of one of the lucky prisoners. The warder tells the prisoner the name of one

of the two other prisoners. While the prisoner now would think that his chances of

being released are 50% because only two prisoners remain, they are actually still

66.666…%, the same as they were if he did not have the extra knowledge. The

prisoner’s incorrect assumption is due to the misuse of extra knowledge in a

probabilistic environment.

Now consider a similar, yet opposite problem known as the Monty Hall

problem. Named after the famous television game show host, this problem

involves three doors in which only one contains a prize behind it. A player chooses

one door that they believe contains the prize. The problem exists when the host

displays a booby prize behind one door, and asks the player if they want to switch

their guess to the remaining door. Since the strategy for the first choice was

rationally random, it would seem that the second choice of switching would also

be. However, statistical analysis shows that this is not the case. Probability theory

 43

shows that switching doors results in a 66.666…% percent chance of choosing the

correct door. When the player does not switch, the chance of choosing the correct

door is only 33.333…%.

It seems that these two problems are identical, yet have drastically differing

rational solutions. In the Prisoner’s Dilemma, it seems rational that the extra

knowledge would allow for better chances. In the Monty Hall problem, it seems

rational to either stick with your initial ‘gut’ instinct and not switch your decision

or randomly decide to switch your decision. However, in these cases, the intuitions

are false. Extra knowledge in the Monty Hall problem is beneficial, and extra

knowledge in the Prisoner Dilemma is irrelevant.

Programming these problems reveals that they are not so tricky after all.

Figure 10 and Figure 11 combine a random number generator and logic statements

to show that the Prisoner Dilemma is simply a random choice between three

numbers, and that the Monty Hall problem results in two common solutions

(switching doors, 66.666…%) and one lone solution (sticking, 33.333…%).

 44

Prisoner Demo – performs a guessing game with two of three prisoners to be released.
Repeated iterations of this program will result in a probability of 66.666…% release
rate since (C==H) 33.333…% of the time.

Input:
Output: boolean – true if released

1: Identify a prisoners to be held: H = uniform(1..3)
2: Identify a curious prisoner: C = uniform (1..3)
3: Release one prisoner != H
4: Release other prisoner != H
5: Return (If C was released)

Figure 10. Prisoner demonstration algorithm.

Monty Hall Demo – performs a guessing game with three doors and switches the guess
when a dummy door is opened. Repeated iterations of this program will result in a
probability of 66.666…% win rate since (G==D) 33.333…% of the time.

Input:
Output: boolean – true if win

1: Choose a door that hides the prize: D = uniform(1..3)
2: Choose a guess of the prize door: G = uniform(1..3)
3: If: G == D switch guess to incorrect door – return false
4: Else: switch guess to correct door – return true

Figure 11. Monty Hall demonstration algorithm.

It is important to notice how probability theory has certain properties that

can lead to misuse. Some non-intuitive properties of a random process were

pointed out in Section 1.2.1. The above mentioned Prisoner’s Dilemma points out

another useful property: predicting future events according to probability theory

 45

does not follow the intuitive Law of Averages (Whitney, 1990). An independent

random event is completely random on every single instance. This is why a

random flip of a coin could possibly turn up heads five times in a row. Using past

knowledge does not change the probability of an independent event to occur. The

Law of Averages only applies to past events and probability theory shows that the

likeliness of an event is applicable for an infinite number of trials. Since the future

is not known, the Law of Averages cannot be used. Therefore, probability theory is

simultaneously claiming to describe the future with complete certainty (probability

of an event occurring) and to describe the future with complete uncertainty

(randomness, anything can happen).

Like a magician and his bag of tricks, these counter intuitive situations

occur because of uncertainty in the problem domain. The magician takes

advantage of their naïve audience and amazes them with the unexplained. The

audience’s lack of understanding causes them to accept what they see because they

do not know any better. The information that the magician is allowing them to

perceive does not fully explain the situation. The magician attempts to render the

intuitions of the audience false through the use of illusions. For example, it is

assumed that a lady sawed in half cannot continue to smile and wave at the

audience, but the magician is able to cleverly shock the audience by disguising the

event with ‘smoke and mirrors’. Misuse of the illusions presented by magicians

 46

(sawing a person in half is bad) shows how the illusions of probability theory can

lead to incorrect assumptions.

2.3.3 Minimax Principle

With the realization of probability theory benefits and pitfalls, it becomes

clear that randomness and probability are the perfect mechanisms for analyzing and

playing games. The analysis of games and the role that chance plays highly

depends on the study of probability. Games are designed to challenge players and

allow them to devise strategies in order to win. Ideally, the most rational strategies

will win. Ironically, randomization helps to determine which strategies are the

most rational.

A zero-sum game is one in which a player benefits only at the expense of

other players. At any point in the game, the net-amount won and lost for all players

is zero, such as in Chess or Poker. In these games, it is ideal for an offensive player

to choose a strategy that will maximize their payoff outcome, while a defensive

player would ideally like to minimize it. An optimal strategy allows the player to

guarantee a payoff amount that they will be satisfied with, no matter what action

the opponent takes. In games where there is no definite strategy that will produce

optimal results for any player, a randomization method can be used to choose a

rational strategy. A definite strategy would, in essence, make the game boring and

cause the player to have no sense of creativity. A devised strategy according to a

probability distribution would allow for interesting play.

 47

Using the payoff matrix in Figure 12, the optimal choice for the row player

in order to maximize the minimal payoff amount is strategy b. The optimal choice

for the column player in order to minimize the maximal payoff amount is strategy b

also. This game has a solution in which a player can deterministically establish

their optimal strategy and place a bound on their payoff amount. Each player is

guaranteed to payoff 0 no matter what the other player chooses to do.

 a b
a 0 -1
b 1 0

Figure 12. Payoff Matrix with solution.

The payoff matrix in Figure 13 shows why probabilities must be used to

find a strategy in the absence of a solution. Each player does not have a clearly

defined optimal strategy. If a player were to choose one strategy and stick with it,

they could end up losing many points to the other player. Assigning probabilities

to the strategies allows for a more interesting game. If each player chooses a

strategy with a 50% probability, the expected payoff of the game is 0. Also note

that if the row player chooses strategy ‘a’ with 90% probability, and the column

player chooses ‘a’ with 90% probability, the expected payoff is now 0.64 points in

favor of the row player. The expected payoff is calculated by summing the row and

column probabilities multiplied by the point value (Motwani & Raghavan, 1995).

 48

 a b
a 1 -1
b -1 1

Figure 13. Payoff Matrix with no solution.

John von Neumann’s Minimax Theorem shows that using probabilities to

determine a strategy causes the guaranteed maximized expected payoff amount to

equal the guaranteed minimal expected payoff amount, thus any two-person zero-

sum game always has a solution (Motwani & Raghavan, 1995). The offensive and

defensive players agree to disagree about optimal strategies since they are designed

to disrupt one another (Ruelle, 1991).

Using randomness when playing games is a perfectly rational way to devise

a clever strategy against an opponent. In an uncertain competitive environment, the

best strategy to use is random. A baseball pitcher can choose a random set of

pitches to use to confuse a hitter. A boxer can devise a random set of punches to

throw. A tennis player can serve over a random area and keep their opponents

return strategy to a best-guess. The more random the activity, the more

randomness the opponent needs to use to combat it. Therefore, in theory, the

player with the most amount of randomness wins.

Acting according to probabilities allows for approximate answers, but more

freedom. Always making the optimal choice can lead a strategy to a dead-end

because of unforeseen information. For example, it is optimal for a boxer to hit as

 49

hard as possible, but an unforeseen consequence is the stamina of the player. A

boxer hitting with maximum strength can usually only last a few rounds. A boxer

that randomly mixes strength, agility, and awareness is more rational. Using these

principles, algorithms can act erratically and still produce rational solutions.

2.3.4 Lower Bound Performance

The Minimax Theorem provides more information about random

algorithms than simply that of a mechanism to play a game. The idea of studying

player strategies to accomplish some optimal goal coincides with the wish to place

bounds on a random algorithm. A random algorithm is a struggle between an input

distribution and an algorithm distribution. Since a random algorithm is eventually

executed on a logical computing machine, it must follow the rules of a standard,

deterministic state machine. Just like the rules of probability are obsolete after an

uncertain event, a random algorithm execution path is deterministic after all

random numbers have been generated. That is, the same random numbers will

produce the same output. Therefore, a random algorithm with a finite number of

states and finite input can be viewed as a distribution of deterministic algorithms.

This fact allows a random algorithm to be analyzed for a lower bound using the

Minimax Theorem.

For analyzing such a random algorithm, the payoff matrix contains rows of

different input and columns of the deterministic algorithms contained within the

random algorithm. The payoff amount specified in the matrix is some measure of

 50

the algorithm such as run time or memory. Just like a game payoff matrix, the row

player (the adversary choosing an input) would like to maximize the payoff and

cause the algorithm to perform poorly. The column player (the mechanism

choosing which algorithm to use) would like to minimize the payoff and execute

efficiently. If a deterministic strategy were used to choose an algorithm, then the

optimal strategy would result in the worst-case performance. This is because if an

adversary input is chosen, the algorithm will guarantee an upper bound of the

behavior. No matter what input is chosen, the algorithm will perform no worse

than the chosen strategy. However, using a mixed (random) strategy results in a

probability distribution over the set of deterministic algorithms resulting in a Las

Vegas, randomized algorithm (Motwani & Raghavan, 1995).

For this random algorithm, represented as a set of deterministic algorithms,

it is possible to define a lower bound on its behavior. Choosing the worst possible

input distribution and the best algorithm, the complexity is smaller than the pure

strategy (deterministic worst-case) because the input distribution is known

(Motwani & Raghavan, 1995). Using the Minimax Theorem, this game has a

solution, and the solution reflects that the complexity of the best algorithm for the

worst input is a lower bound for the expected run time of any randomized

algorithm. For any input, the expected run time of the optimal algorithm is a lower

bound of the optimal Las Vegas algorithm since the randomness allows for other

algorithms to perform the task at hand. To prove the lower bound, any input

 51

distribution can be used to find the best behaving expected run time of the

deterministic algorithms. This lower bound is useful for random algorithms in

which the computation time is finite, the number of algorithms is finite, the number

of inputs is finite, and the size of every input is finite.

 The Minimax Theorem shows that the input distribution does not matter

when proving a lower bound. This is because the algorithm must be able to handle

the worst possible input. Given the worst input, the Las Vegas algorithm can

perform no better than its best deterministic computation behavior. This reduction

to determinism is beneficial because the input distribution is known, which is an

advantage in any game.

2.4 Random Walk

Modeling probabilities and games over time is achieved by using a

construct known as the random walk. Any system can be modeled by a set of states

and transitions. The behavior and design of random algorithms benefit from the

patterns that can be discovered walking through a probabilistic state machine.

A deterministic state machine has the knowledge of exactly how it arrived

in a state, and all future states are determined by the transitions of the past. There

is no variation of behavior because the movement from state to state strictly follows

the rules of logic. The machine’s final state can be completely predicted given an

initial state and a sequence of actions.

 52

A state machine that uses probabilities to determine state transitions allows

for a more dynamic and flexible machine. Given the initial state of the machine,

and a set of actions, the final state cannot be completely predicted. The transition

from state to state is based on the result of a random draw. Navigation through

such a machine is called a random walk. A random walk can be performed on any

connected, undirected graph where the next state to visit is chosen uniformly at

random from the set of neighbors. Figure 14 shows a random walk and associated

transition matrix. The weights of all edges are equal, so the probability of

transition between vertices is calculated by 1/(# neighbors). In Figure 14, vertex D

has three neighbors, so the probability of transition to each one is 0.333…, which

sums to 1.

Figure 14. Random Walk graph with transition matrix.

A Markov chain is an abstraction of a random walk over a graph that

contains weighted, directed edges. For each vertex, the transition to the next state

 53

is calculated by normalizing the outgoing edges to create a matrix of transition

probabilities. The higher the weight, relative to the other outgoing edges, the more

probable the state transition. The normalized outgoing edges therefore sum to 1.

Figure 15 shows a Markov Chain with edge weights that are already normalized.

Unlike a deterministic state machine, a Markov chain is memoryless. Future states

of the system are determined on-the-fly and are only dependent on the current state

of the system, not the previous states.

Figure 15. Markov chain graph and transition matrix.

As an abstraction of a random walk, a Markov chain is also an abstraction

of a random algorithm. A random algorithm contains a number of states, and the

draw of a random number determines the movement along the states, according to a

distribution, to a solution. Although random walks contain uncertainty, there are

measurable properties that can be used to determine the expected behavior of a

 54

given probabilistic state machine. These properties are, in turn, useful for

analyzing the behavior of random algorithms.

The measurable properties of a random walk can be divided into two main

areas discussed in the following sections. The first area deals with the distribution

of the expected final state in random walks of a certain length. The second area

groups together measures of the expected number of cycles to transition between

states and includes the complicated and mysterious cover time.

2.4.1 Endpoints

A random walk by itself is, by definition, very unpredictable. It does not

express anything about the nature of the state machine. However, a series of

random walks on the same graph can extract interesting patterns and measure

commonalities that may not be obvious. As the quantity of random walks

increases, the distribution given by the transition probabilities emerges. The study

of these patterns extracts the expected behavior of the state machine, even though

one run can vary greatly from the next. Analyzing a random walk by measuring

the distribution of the final states gives a good indication of the nature of the

machine.

Given a random algorithm that transitions between states on a line, it is

beneficial to determine the expected final state of the algorithm after N cycles. For

example, a random walk can be performed to simulate the movement of an ant

towards food. The ant moves left or right with 50% probability. If the food were

 55

located only towards the outreaches of the ants range, then the only ants that would

survive would be the most adventurous ones. Starting in the middle of the line with

a large number of ants, only few would reach the food since the distribution of

endpoints in this type of random walk is similar to a normal curve. These ants must

make the same directional move many times in a row. This is the same as a

random sequence of 1’s and 0’s turning out 000000 or 111111. It is rare, but not

impossible.

Figure 16 is a summary of a random walk simulation with 10,000 random

walks of length 10 along a line. The random walk begins with the center vertex

and the movement is binary (left or right). The number of random walks that

completed at a particular vertex is shown as vertical bars with the exact quantity

specified in red. Because the length of the walk is even, no random walk can finish

at the even numbered vertices. The odd numbered vertices show that most walks

ended towards the center starting point, with few walks reaching the ends.

 56

Figure 16. Distribution of random walk endpoints on a line.

Another way of performing the above random walk model to produce the

familiar endpoint distribution pattern is to use a Galton Board. A Galton board is a

structure of pegs arranged in a triangle with row N having N pegs. A random walk

on a Galton board can be expressed by dropping a ball from the top, and watching

it bounce to the bottom with the probability of 50% falling to the right or left of one

peg in each row. The number of paths to the bottom row of bins in a Galton board

is equal to the values of the Pascal Triangle (Whitney, 1990). Therefore, it is not

surprising that a large number of random walks produce an approximate binomial

distribution of balls into bins, like the numbers of the Pascal Triangle. With a large

amount of walks, the number of balls in bins can be normalized and approach the

 57

proportions of the Pascal Triangle numbers. This is the same result for the random

walk along a line since the Galton board is, in essence, equivalent. The Galton

board shows that the random walk will tend to follow the most common paths. The

middle bins are easily accessible, and the outer bins are difficult to reach.

To obtain accurate values of the Pascal triangle, a very large amount of

random walks on a Galton Board must take place. As the number of bins increases,

the amount of random walks must drastically increase to get a good approximation.

This is why Figure 17 shows only up to the ninth row since it took 1,679,616

random walks to achieve the accurate Pascal triangle results of the bottom row.

Figure 17. Rows derived by a Galton Board random walk.

 58

2.4.2 Routes and the Cover Time

Other important measures of random walks involve the expected number of

cycles needed to visit a range of vertices. The hitting time (expected number of

cycles to travel from one vertex to another), the commute time (expected number of

cycles to travel from one vertex to another and back), and the difference time (the

delta between the two (to and from) paths in the commute time) are measures that

provide addition information about the patterns of a random walk. The cover time

is a unique and difficult measure of a random walk. The cover time measures the

expected number of cycles needed to exhaustively cover all states. Although it is

not known if the cover time can be computed exactly or approximately in

deterministic polynomial time, Feige and Rabinovich (2003) outline a deterministic

algorithm that can approximate the cover time with polylogarithmic factors. This

deterministic algorithm is an alternative to a polynomial numerical probabilistic

algorithm that simulates a series of random walks and approximates the cover time.

The numerical probabilistic version calculates random numbers and walks along

the graph counting state transitions until all vertices are covered. The simulation

then repeats the experiment and calculates the approximate result. Like any

numerical probabilistic algorithm, the precision gain is very small for a large

increase in simulations. Therefore, for a large amount of vertices, the algorithm is

not reliable.

 59

The application of a random walk and the cover time relates to the

intelligent task of decision-making. A random walk acts as a good mechanism to

create or find a decision in which an expectation value exists. Many random walks

along the problem space converge to some set of expected decisions. However,

some decision paths will stray from the norm from time to time. The cover time is

an estimate of the expected time to visit all states of the decision-making process,

thus could be used to produce a well-informed decision. As well as decision-

making, a random walk and its properties also apply to the problem of allocation.

2.5 Allocating Balls into Bins

Many problems of chance deal with the ability to estimate the distribution

of balls into bins. How many rounds of poker are necessary to obtain a royal flush?

How can a number of tasks be distributed to complete them all within a given time

frame? A distributed computer network, a microprocessor, or even a workflow

software application must be able to handle load balancing of processes to

resources efficiently. With a completely random interface to the world, these

systems have no knowledge of incoming processes (balls) that need allocating.

They must distribute the processes to a number of resources (bins) in a rational and

efficient manner.

 60

2.5.1 Allocation Problem

Randomness can benefit the allocation process and eliminate the need for a

central point of control. It provides variation, needed to minimize the load over

resources, and distribution, to reduce the number of decisions required to allocate a

process. A deterministic allocation scheme has limited flexibility and requires a

‘global controller’ to assign balls to bins.

Like a deterministic allocation process that can calculate and guarantee

loads, a random one can similarly set bounds on load balancing. The ‘classical

allocation process’ assigns a ball to a bin by choosing the bin uniformly at random

and has an average allocation time of 1 (Czumaj & Stemann, 2001). This method

is still not ideal due to the possibility of wasting resources because of unlucky

random draws. For example, the first bin could be chosen five times in a row to

allocate processes, while all the other bins are idle. Therefore, it is useful to study

‘adaptive allocation processes’ that still use randomness, but provide a better

tradeoff between the maximum load, the maximum allocation time, and the average

allocation time (Czumaj & Stemann, 2001). Another useful strategy for allocation

is to reassign processes to improve efficiency. Reallocating processes to resources

can provide an ideal balance, but the operations involved are usually expensive and

should be limited (Czumaj & Stemann, 2001).

A random walk, described in Section 2.4, acts as a simulation of the

allocation process. Processes can be assigned to resources by being distributed by

 61

some random walk scheme where the expected patterns are known, and the

variation from the expected path is acceptable and possibly beneficial. For

example, if four processors were available with a binomial distribution of

computing power (2 slow machines and 2 fast), a Galton board random walk would

allocate more processes to the fast machine if they are arranged like the bottom row

of a 4 level Pascal triangle with the slow machines on the outside and fast machine

in the middle (1,3,3,1).

Algorithms that schedule and allocate processes to resources are susceptible

to adversaries, especially in distributed, fail-prone environments (Chlebus &

Kowalski, 2004). Distributed computing allows for the execution of independent

tasks concurrently. A distributed system must deal with processors that fail, or

crash, and be able to reallocate tasks. Adversaries decide which distributed

processors to fail and when. ‘Weakly-adaptive’ adversaries must choose the

processors to fail prior to execution. Therefore, randomization during execution

can be used to disguise the assignments of processes to resources (Chlebus &

Kowalski, 2004). Since the adversaries are unable to predict the uncertainty, they

cannot produce an unfair failure strategy. This allows randomized algorithms to

solve the problem of performing tasks reliably in a distributed environment to be

more efficient than deterministic methods (Chlebus & Kowalski, 2004).

 62

2.5.2 Coupon Collector Problem

When using randomness to distribute processes to resources, it is important

to place bounds on the allocation time. This, and other problems that are suitable

for random algorithmic techniques to perform intelligent tasks, such as game

playing, fall into a category that is described by the Coupon Collector problem.

This problem estimates the number of trials that are necessary to randomly allocate

balls into a set of bins such that each bin has at least one ball. The name is derived

from a collector of coupons that wishes to have at least one coupon of each

available type by randomly choosing them. The problem encompasses the most

influential areas of analyzing random algorithms such as the cover time, random

walk, and allocation time.

The main problem with randomness is the uncertainty in the value of a

random variable over very few problem instances. The definition of the variable

being random causes the value to be completely unknown, even if it is chosen from

a known distribution. The run time for waiting for a particular value of a random

variable is completely unknown. The only help in this area comes from the

Coupon Collector Problem. The solution to this problem tells us when all the bins

will be full opposed to when one of them will be filled. For example, when waiting

for the number ‘3’ when uniformly picking a random number between ‘1’ and ‘10’,

the only accurate estimate that can be made (other than the probability of 0.1 of

being chosen) is derived from the Coupon Collector Problem. The solution to the

 63

problem produces an expected upper bound of about 29 trials before the number 3

is chosen. Therefore, the number 3 is expected to be chosen anywhere from the

first choice, to the twenty-ninth choice, and possibly more.

The solution to the Coupon Collector Problem comes from harmonic

numbers. Motwani and Raghavan (1995) show that the expected value of the

number of trials to collect at least one of every type of coupon is n*H(n) where

H(n) is the nth harmonic number. The nth harmonic number is defined in Eq. 2.

Therefore, the expected number of trials to collect all N coupons is given in Eq. 3.

nH n

1
...

2
1

1 +++= (2)

 n
n

n
n

n
x ++

−
+

−
+=Ε ...

21
1][(3)

 Although the solution to the coupon collector problem can be calculated

easily for small values of N, the calculation gets messy for large N. Therefore, for

large N, the solution must be approximated. Motwani and Raghavan (1995) put a

sharp threshold on the approximation of the solution.

The Coupon Collector problem provides expected upper bounds for the

cover time of a random walk on a complete graph with self-loops, as shown in

Figure 18. Many simulations of a random walk along this graph converge to the

actual solution for the quantity of vertices (bins). For example, in a simulation of

 64

the graph in Figure 18 with four vertices, 100 random walks were averaged to

produce an estimate of 8.76 while 10,000 walks estimated 8.3156. As the quantity

of random walks increases, the solution becomes closer to the actual value of

8.333….

Figure 18. The Coupon Collector random walk graph and transition matrix.

The application of the Coupon Collector problem in intelligence problems

is the ability to provide expected upper bounds and obtain a controlled grasp of

uncertainty. A random search with replacement is bounded from above by the

expected number of uniform random choices to make to exhaustively cover all

possibilities. The bounds provide good worst-case analysis for guessing games and

chance games where other analysis is too complex or infeasible. For the allocation

problem, these bounds provide a randomized load-balancing algorithm with the

expected number of task assignments to keep all resources occupied.

 65

2.6 Search and Fingerprinting

Searching is the most important technique to finding patterns and devising

strategies. The quickest and most efficient search technique is classified as the

most intelligent technique. Accordingly, the ability to make the computer

extremely fast and efficient when searching is one of many possible methods to

demonstrate intelligence.

The role of randomness in searching is an ironic one. The benefit that

uncertainty brings is the ability to be flexible and non-biased. Random algorithmic

processes are not restricted to an orderly search path that could allow adversaries to

take advantage of.

2.6.1 Random Search

Random Search is a method of searching with no planned structure or

memory. This method has the same intent of the typical intuitive search, but the

opposite strategy to achieve it. A random technique may be preferred if it takes

more time to devise a better technique, or the additional work involved is

negligible. For example, the Coupon Collector problem shows that a random

search is bounded from above by the expected number of trials to exhaustively visit

all vertices of a graph. If the extra factor associated with the random search is

acceptable then the simplicity of it can be utilized.

 66

Numerical probabilistic algorithms use random search when zeroing in on a

target value. For example, approximating the area of a figure or approximating the

value of � is a random search. Iterations of the algorithm loop independently to

contribute to a random sample. At the end of all iterations, the sampled values are

combined and usually averaged to output an approximated value. This random

search is not exact, but instead is a random sampling technique that uses a subset of

information to approximate a whole. Theoretically, an exhaustive random search,

in this case, will lead to the entire population represented, thus emerging the exact,

correct value. An exhaustive random search for a numerical probabilistic algorithm

is one who’s run time is infinite, like the probability of ‘heads’ or ‘tails’ for an

infinite number of coin tosses.

With numerical probabilistic problems, the search is conducted for some

unknown value that must be approximated. The random search is continuous

because the accuracy of the answer is related to the number of repetitions.

However, only an infinite number of repetitions will provide the exact answer.

Better answers are provided with a large sample size that obtains more coverage of

the search space. Random search is also beneficial where the solution pattern is

known and can be verified so the search can end. This method is closer to the

standard search scheme, where the goal is realized, yet performs the search in an ad

hoc manner. This Las Vegas type of searching allows for creativity and adversary

elimination. Since the search path is not known is advance, an adversary cannot be

 67

planted ahead of time to cause the search to perform its worst. This ability also

allows the algorithm to be free of any constraints such as leading down the wrong

path and having to backtrack.

It is worthy to note the downfalls of a random search because it is certainly

not the best technique for all situations. Random search has a very long upper-

bound expected run time for a large search space, as defined by the coupon

collector problem. It is only acceptable where the possibility of an exhaustive

search is tolerable or not likely to occur. Random search may even take longer than

a deterministic exhaustive search due to entries being revisited any number of times

with replacement.

2.6.2 Fingerprinting

Fingerprinting is a mechanism for randomly mapping members of a

population into a smaller population to allow for fast, approximate string matching

(searching). The mapping of a member in the new, smaller population is called its

fingerprint. This is a misnomer because the fingerprint is not exactly unique. This

quality causes searches to be approximate when using fingerprint values for

comparisons.

Motwani and Raghavan (1995) show a pattern-matching algorithm that uses

the basic fingerprint function ‘mod’ to hash data to almost-unique values to match

against. Therefore, unique values in the original population can take on non-unique

 68

values in the new population. To obtain more unique values and reduce the

occurrence of a false match while searching, it helps to choose larger values to hash

against.

The role of randomness in fingerprinting is to fight adversary input that can

cause many false matches, thus the search algorithm must verify each one and run

longer. For example, if it was known that the fingerprint function was always (Z

mod 3), then in a search space of ‘2222222’, the algorithm would have to verify

each occurrence of 2 to determine if it was really a ‘2’ or a ‘5’ (they both hash to

2).

Instead, if the value to hash against were chosen randomly, then it would be

difficult to produce an input that is known to cause the algorithm to slow down for

verification purposes. Also, if the value were chosen from a large set of primes, the

probability of overlap, and thus a false match, would decrease. When using a

prime number ‘p’ to hash against, a ‘p’ value that is equal to or smaller than the

maximum integer value in the original population will produce the possibility of

overlap. Over-lapping values in the new population is not a terrible thing and can

be very beneficial for the algorithm if it does not happen too often. Motwani and

Raghavan (1995) show a method of calculating the probability of a false match by

bounding the set of primes by a threshold value.

 69

The process of fingerprinting is presumed to be human-like because of the

relations that are set up. Fingerprinting converts and breaks down (hashes) a data

set into pieces, and assigns the pieces to a smaller set of recognizable values.

Similar data is converted or abstracted to the same value. While the computer

considers ‘similar’ to be mathematical structure, the human mind can consider

‘similar’ to be visual, aural, or even emotional structure. When doing pattern

matching, the mind can compare against the abstract set of information instead of

the entire original population.

This human-like quality of fingerprinting can be expressed in a problem

such as recognizing a word in a sentence. For example, instead of recognizing an

entire word by each individual character, the mind could convert similar ‘looking’

words into non-unique fingerprint values. Therefore, words like ‘tree’ and ‘the’

can have the same fingerprint: ‘te’.

The fingerprinting function for this concept could be any number of

manipulations such as removing random vowels or characters or removing

redundant letters. Randomness could help by fighting adversary input that attempts

to confuse the reader (searcher). For example, an adversary sentence could contain

a lot of ‘noise’, like a word-find puzzle does, in the form of misspelled words or

structurally similar words. Randomness could be used to hash these words into

fingerprints that can be deciphered, yet sometimes can be interpreted incorrectly,

like a tongue twister.

 70

Chapter 3: Concept Demonstration

3.1 Concept categories

This thesis considers random algorithms to be loosely divided into three

main categories. Any program that makes a decision using a random number is

considered a Random Algorithm. However, the devised categories are split to

express the purpose of the random draw. First, truly ‘randomized’ algorithms are

those that are built upon randomness to perform some task. Many of these

algorithms have been summarized in the above chapter. The second category of

algorithms contains programs with ‘injected’ randomness to provide a level of

variation. The randomness in these programs is not necessary to accomplish the

primary goal, but instead acts as abstraction of details, or a simulation of reality.

These features are beneficial for training environments where reactions are

measured against unpredictable events. The third category combines inherent and

injected randomness to attempt to solve problems intelligently using pattern

recognition and puzzle solving. The following programs were written to

demonstrate the second and third categories.

3.2 Abstracting Reality: Projectile Simulation

The projectile program demonstrates how randomness can be injected to

express variety and even simulate the real world by abstracting fine details about

the environment. The program is a physics simulation where projectiles are fired at

 71

one another. If they collide, they will set off an explosion and disperse a number of

new projectiles. The randomness is injected in the explosion where the particle

velocities and angles use a random number generator to determine their future

deterministic paths via physical equations. Therefore, each run of the simulation

with the exact same initial projectiles will result in an explosion that looks

different, yet is bounded by the probability distribution of the calculated explosion.

3.2.1 Determinism

A deterministic simulation contains no variation of behavior. This makes it

difficult to create approximations of the real world where events are haphazard in

nature. A version of the graphical projectile program using pure determinism to

plot the explosion shows no variation in distribution. Also, determinism and

preprogrammed paths will cause the explosion to look the same every time. Figure

19 shows a run of the program where the exploded projectile speed is fixed, and the

angle is based on (array) index. Therefore, the red colored projectiles are the first

25 and have low angles; the next 25 are yellow with higher angles, and so on.

Realistic explosions do not seem to exhibit this kind of behavior.

 72

Figure 19. Projectiles following a deterministic path.

3.2.2 Randomness

An easy method of producing realistic results is to subject the projectiles to

a random draw upon explosion. An explosion projectile’s speed and angle can be

randomly bounded using a pseudorandom number generator to obtain uncertain

values from 0 to 35 meters per second, and 0 to 360 degrees, respectively. The

distribution of the blast is now uniform and realistic. Figure 14 shows an example

of using randomness. The colored projectiles of the deterministic explosion are

now scattered all around in an uncertain manner. Repeated simulations will cause

different ‘looking’ explosions, thus providing the uncertainty needed to study and

train against similar behavior in the real world.

 73

Figure 20. Projectiles using randomness to determine their destiny.

 For a simulation to be ‘accurate’, it must be ‘uncertain’. A simulation of

the real world must contain some of the uncertainties that are expected. If a

simulation was deterministic where the ‘players’ quickly recognize how events

occur and why events occur, they will be able to tell the future (predict), fool the

system (create adversaries), and cause unwanted symmetry (deadlock). If

uncertainty is absent, then the ‘players’ are unable to train or learn the skills to

handle unexpected events.

3.3 Intelligent Puzzle Solving: Word-Find

The classical word-find puzzle contains many features common to

intelligence problems that involve randomness. The object of the puzzle is to

 74

search and locate a set of words from apparent chaos. The intelligent tasks used to

solve this problem are search, pattern recognition, and memory.

3.3.1 Determinism

Searching the puzzle can easily be solved using deterministic methods. The

player can traverse one character at a time from the top left corner to the bottom

right corner and search for words starting with that character. The number of

positions searched is always the width multiplied by the height. This use of

determinism does not satisfy the typical player because the challenge of the game is

removed.

The devised deterministic solution is equivalent to the following

randomized version, except the flow of the search through the puzzle is

deterministic from top-left to bottom-right. The search ends when all words have

been found. Therefore, an adversary condition exists when words are placed near

the bottom of the puzzle. The deterministic algorithm must always traverse the

entire character array to find them. This occurs quite frequently in standard word-

find puzzles with a uniform distribution of words.

3.3.2 Randomness

When presented with a table full of seemingly random characters, and no

other guiding help, a reasonable search method is a random one. Randomly

 75

jumping around the board and looking for patterns provides the player with a more

uncertain, yet challenging game play.

Using a random approach to solving the puzzle could possibly force the

problem to be more difficult and take longer to solve. However, analysis of this

problem shows that random techniques can be quicker than deterministic ones due

to the presence of adversaries, and luck. As stated above, if all the words are

grouped in the lower right corner, the deterministic algorithm will not find them

until the end. The deterministic algorithm must search the entire puzzle in the

worst-case and waste time by visiting empty ‘white space’ in the puzzle where

words are not hiding. The random version selects bits and pieces from all over, and

on lucky runs, is able to ignore much of the white space.

The devised solution to the word-find puzzle, expressed in pseudo-code in

Figure 21, is based on a completely random search. The program continually loops

and chooses a random character in the puzzle (step 2). This is the extent of

randomization in the program, leaving all other processing as deterministic. The

program then searches in eight directions for a series of characters to determine a

list of possible candidate matches. For example, if the puzzle randomly chose the

character ‘a’, and found the character ‘t’ in one of the eight directions, then a

candidate match could be ‘hat’ or ‘cat’. Once a word is found, it is removed from

the candidate list.

 76

Random Word-Find - walk randomly along a puzzle and find words

Input: puzzle of characters P[][],list of words to find W[]
Output: empty word list

1: While (W.length > 0) Loop
2: Choose a random character in P[][]: RC
3: For (int I in up, up-right, right, down-right, down, down-left, left, up-left) Loop
4: Gather next character in direction I: NC
5: Append character RC to NC: SS
6: Search W for words containing SS forwards: FSS[]
7: Search W for words containing SS backwards: BSS[]
8: For (int J in FSS.length) Loop
9: Gather additional characters to create string of length J.length: T
10: If (T==J) remove J from W
11: Loop
12: For (int K in BSS.length) Loop
13: Gather additional characters to create string of length K.length: T
14: If (T==J) remove J from W
15: Loop
16: End Loop

Figure 21. Random Word-Find pseudo-code.

The key result, compared with the deterministic version, is the measurable

execution time of the initial character search. The deterministic program visits all

characters in the worst case while the random program visits a seemingly unknown

amount of characters. The presumed problem with the random program is that the

same character can be visited over and over, while the deterministic program visits

each character only once. The worst-case expected runtime of a random search

over the characters in a word-find puzzle is bounded by the results of the coupon

collector problem.

In the random solution, each character represents a coupon to be collected.

The deterministic program shows a guarantee that once all the characters have been

 77

visited, all the words have been found. Therefore, when collecting random

characters with replacement, the algorithm is simulating the coupon collector

problem and its search time should be measured by the expected amount of trials to

choose each character at least once. This gives an expected upper bound to how

many characters are visited. Choosing every character at least once is the very

worst case and will take a very long time for a large puzzle. Table 1 shows the

coupon collector solutions for up to 25 coupons. The table expresses that, in a

puzzle containing only 25 characters, a random search will take 95 trials to cover

each character at least once.

 78

Table 1. Coupon Collector solutions for up to 25 coupons

While the coupon collector expected number of trials (nlnn+O(n)) is

asymptotically greater than the deterministic search time (n), experiments while

running the randomized program resulted in, on average, much fewer choices. This

shows that the random solution is a good candidate for solving the puzzle and

provides benefits that the deterministic solution does not. For an average amount

 79

of words that are typically distributed (do not crowd the game board), the random

solution usually searches faster, yet sometimes does perform more trials than there

are characters. The randomized search time is therefore dependent on the quantity

and size of words. The more crowded the puzzle is with words, the more

characters the random algorithm must find. The smaller the length of words, the

less likely it is that the word will be found. For example finding the word ‘cat’

could take longer than the word ‘simulation’ because the algorithm has a better

chance of finding the larger word since the characters span over a larger area.

Table 2 shows the quantity of characters visited to find all words for 20 random

search trials on a 15X15 character puzzle. The varying amount of words

demonstrates that the more crowded the game board, the longer the search takes.

Also, each configuration averaged a search time less than the worst-case

deterministic search time of around 225. However, trial 7 with 16 words and

numerous trials with 22 words showed longer search times.

 80

Table 2. Word-Find program result

The random search of the puzzle is subject to the same uncertainty of any

probabilistic trial. For one trial, the results are completely random. Therefore, the

random search time can be anywhere from 1 to the expected coupon collector worst

case, or even more. A search time of 1 is the very lucky case that the algorithm

chooses a letter in which all words intersect. This is usually not the typical case, so

the lower bound is on the order of the number of words (taking into account

 81

overlaps). The expected worst case given by the coupon collector problem is

considered to be unlucky, with a longer search time being very unlucky.

For argument’s sake, we can ‘write-off’ the extra runtime factor and label it

a ‘challenge’ or ‘fun’ factor. If an intelligent being were to attempt solving this

puzzle, they would take the challenge out of the game by using a deterministic

strategy. Even a ‘deterministic’ strategy from a human point of view may not be

perfect because of mistakes in processing. The proposed random search strategy

allows for the emergence of patterns from uncertainty and provides fun, mind-

teasing game play.

 82

Chapter 4: Applications

4.1 Pattern Recognition

The goal of this thesis is to understand how randomness plays a role in

computing in order to perform intelligent tasks. The primary lesson to be learned is

the uniqueness of all matter and energy in the universe. Intelligent beings are able

to function in this world of randomness by defining reality as a set of patterns that

abstract information. Intelligence is built on the ability to hypothesize and test, in

order to recognize patterns.

4.1.1 Order from Uncertainty

Intelligent software needs to handle random information as input and make

decisions in such random environments as puzzles or mazes. Pattern recognition is

the process that intelligent beings use to make sense of randomness. It is inherent

in the universe that processes are random, including the processes involved with

every living being. As game theory suggests, in order to strategize and make sense

from randomness, some random element must be used. If your opponent is using a

random strategy, the best strategy to combat it involves randomness. For example,

consider the task of peering into a room of items for some period of time, then

recalling these items from memory at some future point. The viewer initially

considers the items in the room to be completely random. It is their responsibility

to then recognize or create patterns and store analogies into memory for extraction

at a later time. The best way to handle the randomness of the items in the room is a

 83

random process of perceiving. It is beneficial to the viewer to use their ‘internal’

randomness generator to decide on where and how to start memorizing items. The

presence of adversaries could cause a deterministic method to break down. The

arrangement of the room could be purposefully set up to confuse someone who

starts left-to-right, or there could be so many items that trying to store the large

amount of data in short-term memory will not be successful. Randomness provides

a way to break the potential deadlock and offers a fresh, unbiased way of sampling

data.

The process of random searching a random environment is most applicable

to solving puzzles. Repetition in such processes is encouraged because the purpose

is to remember redundancy and likenesses in order to classify patterns. As shown

in Section 3.3, randomness is a good method of searching a word-find puzzle for

words. In a word list, if the most common letter is ‘e’, then a random scan of the

puzzle can find and store the different locations of ‘e’. These locations can then be

returned to in the future when testing different words.

4.1.2 Memory and Reconstruction

It is obvious that the human mind does not store and recall data like that of

a typical computer system. For example, if words are stored in a database, it is

trivial to enumerate every word. Imagine reading a dictionary, then being asked to

list all the words from A-Z. This seems like a very complex task. However, the

 84

task of recognizing if a word exists in the dictionary is a relatively simple task that

is expressed in games like Scrabble®.

It is intuitive that the mind does not waste time storing all the words, but

rather uses a more efficient method to construct or recognize a word such as storing

grammatical rules or using hardware-like in-line functions. Then, when asked to

verify a word, the mind uses the faster technique and comes up with a probability

of correctness. Instead of storing the exact data (the dictionary of words), it is

easier to approximately recognize them. Recognizing the data and matching it to a

stored pattern can be accomplished using randomness, similar to the fingerprint

hashing technique. Also, like fingerprinting, storing and recognizing words in the

mind can produce incorrect output in which the meaning of a word is mistaken, or a

word is constructed (spelled) incorrectly.

The recollection of a thought could be performed in a similar fashion.

Instead of re-thinking a thought, the mind could store enough information to

approximately re-create it. For example, children can easily remember the faces of

their parents. They sometimes makes mistakes, but after some thought (gathering

of supplementary data), realize that they made an incorrect assumption. The

pattern matching that they are doing is thus not perfect. Some data is missing and

must be reconstructed. Adults also can have similar pattern matching “mistaken

identities”. It seems that the reconstruction of the child’s parent’s face is from a

subset of data. A computer algorithm may be able to act in the same way by using

 85

a sample of random data to approximate or re-create a thought pattern and make a

decision.

4.1.3 Security

Information security deals with the ability of a computer to protect data and

hide patterns. The more random a stream of data, the more impossible it is to

predict. No computing power has the ability to predict the next ‘bit’ in a sequence

of random bits (Ruelle, 1991). Although transmitted data is always random to the

receiver, the patterns that are deduced by the receiver are what they perceive as

useful information. This is the information that must be protected. If an

eavesdropper were to access transmitted data and recognize patterns, the system’s

security is compromised. Therefore, the more random the transmitted data is, the

less likely it is to be recognized by unwanted receivers.

Steganography is a technology that embeds information in already

noticeable patterns. Instead of garbling data so it is unreadable, steganography

utilizes an existing pattern of information to hide another. For example, the pixels

of an image can be slightly altered to contain additional information available to a

party that knows it’s there, yet unsuspecting parties just see a close approximation

to the original picture. This is similar to the form of security that exists in

monetary artifacts. A dollar bill has several ‘hidden’ features to ensure its

authenticity, yet these features are only noticeable and recognizable to those who

 86

are aware of it. Some features are noticeable by the human eye, others with a

microscope, and even others that are invisible such as magnetic materials.

Securing data from unwanted recipients is important in computer security,

but the Internet also requires a means to secure data from automated programs.

Automated programs can take advantage of systems that are intended to register e-

mail addresses and purchase tickets. These services provided through the Internet

are intended for human use only, not SPAM e-mail or ticket scalping programs.

Therefore, a reverse Turing Test must be used to prove if the user is human. This

test is known as Captcha (Completely Automated Public Turing test to tell

Computers and Humans Apart) (“Captcha”, 2004). One common method used for

Captcha implementations is randomness.

The Captcha concept is an exploitation of the realization that algorithms

have a difficult time recognizing even the slightest distorted pattern. A typical

implementation of Captcha creates a random amount of background noise to

overlay onto an image of a word. The user is then asked to verify the word. The

human senses can deal with distortion and ‘see’ through all the noise to reproduce

the word. The noise acts as an adversary for programs that cannot decipher the

pattern. Figure 22 shows a word that has been masked by a Captcha type process.

 87

Figure 22. Captcha masked word.

For a pattern recognition algorithm to show a level of intelligence similar to

humans, it must be able to solve this problem. Captcha shows that computers are

very far from true human-like pattern recognition intelligence. This is especially

true when non-textual patterns are distorted. The problem of identifying an image

within a set of noise is much harder than text. For example, while it is difficult for

an algorithm to recognize the distorted word ‘couch’, it is much harder for an

algorithm to recognize a distorted image of a man sitting on a couch and output the

description: ‘man sitting on couch’. This adversary condition also leads to the idea

of presenting a series of distorted text or images to the user and have them solve a

simple mind teaser puzzle. For example, the reverse Turing test could display

Figure 23 and expect the user to type the word ‘beautiful’. The difficulty involved

here for pattern recognition algorithms could be orders of magnitude higher than

simply recognizing text and images.

 88

Figure 23. Beautiful.

Breaking the Captcha concept is not an easy task. Certain built-in

accidental pitfalls help the breaking process, such as using common words that can

be guessed, but Captcha was designed to create a test that it could not pass itself.

This irreversibility makes for difficult problem solving that, instead of devising

clever ways to create adversaries, deals more with uncovering the mysteries of

artificial intelligence (“Captcha”, 2004). Intuitive methods of solving such word

puzzles involve some level randomness to avoid adversaries and deadlock.

Random sampling and developing probabilities of correctness are examples of

candidate methods for recognizing distorted patterns.

4.1.4 Word Problems

One of the main communication methods between humans is language.

Therefore, the words we use are of utmost importance to express ideas. Pattern

recognizing a set of words is one of the most important intellectual properties of

humans. Word games are played to challenge the mind and, although many

languages are redundant, mastering them is a difficult task to perform. Many

 89

phrases and sentences are written and/or spoken with more information than is

needed to comprehend the expression. According to Claude Shannon’s

Information Theory, the redundancy of English is about 50% (Shannon, 1948).

This helps the mind that has to multitask and share computation power with other

processes, so a missed word here or there will not take too much away from the

meaning. Only a subset of information is actually perceived and understood. For

example, consider the following sentence: It is cold outside and I want to go play

football with the neighbors. The sentence could really be arranged to express

similar meaning in much less words: Cold out, want play football with neighbors.

The sentence could also be recognized by the typical human eye while missing

data: It is cld outsde nd I wnt to go ply footbal wth the neghbors.

Word problems like the above use randomness to play with the redundancy

of language and the ability of human intelligence to pattern recognize through noise

and missing data. As Shannon (1948) stated, any two-dimensional array of letters

in a language with 0% redundancy produces a complete crossword puzzle. The

same is true for a word-find puzzle; yet there is no search to be performed since

every combination of characters would be a valid word. These word games would

not be as interesting since they contain no uncertainty.

E-mail known as SPAM is becoming a large problem over the Internet

because it takes up valuable memory space and disturbs unwanted recipients. As

SPAM filters are being developed, there are systems creating SPAM that can

 90

quickly learn to create an adversary to fool the filter and bypass it successfully.

The use of randomness to foil adversaries is an advantage that can be used to

develop SPAM filters. Therefore, a SPAM creating system will not know the exact

method used to identify e-mail as SPAM. For example, instead of a deterministic

algorithm looking for words such as “viagra” or “debt consolidation”, a random

algorithm similar to the random searching of the word-find problem in Section 3.3

can be used to find hidden words or phrases or even contextual meanings that

recipients do not wish to view.

4.2 Mind Simulation

Simulation and playing games are analogous to real life. Reality and life

are a type of game in which a conscious being struggles and searches for meaning.

Even if the world does not contain any inherent randomness, Chaos Theory shows

that the massive amount of data perceived in the world is enough to affect some

end result by stirring up variables with uncertainty. Players in any game must deal

with uncertainty and use probabilities and random help to make decisions.

Random algorithms are useful for dealing with problems that the mind has

to approximate because of the uncertainty of the environment, or more specific, the

lack of understanding of the environment. The ability of random algorithms to deal

with uncertainty and still make rational decisions allows them to simulate the

intuitive processes that the mind performs.

 91

The mind must deal with many uncertainties in order to make decisions. In

estimating the trajectory of a tennis serve, the mind must process the behavior of

the ball in such a way to stimulate a reaction and return it. The velocity of the ball

is so fast that the mind must either attempt to slow down time and analyze every

three dimensional position at intervals in time, or the mind could estimate the

trajectory based on initial position, wind, and other factors. The player must also

estimate what the results will be in some error deviation range. Too hard of a

return will render the ball out of bounds, while too soft will hit the net. A

reasonable return is the result of the analysis of many uncertain parameters used to

place the ball in an approximate target area in order to provide the opponent with

seemingly random information to hide patterns that could be exploited to win the

game. The mind processes this analysis and makes complex decisions in the blink

of an eye.

4.2.1 Human-like Artificial Intelligence

The brain’s ability to develop scientific and mathematical knowledge does

not seem to have been an evolutionary artifact (Ruelle, 1991). The brain does not

keep time, memorize a mass of information, or perform mathematics very well.

Instead, the brain is better suited to devise strategies to gather, fight, and hunt.

However, the brain does comprehend mathematics, logic, and computing, and can

build machines that could possibly surpass it in power. Although we do not

understand the reason we are able to discover mathematical truth, and although

 92

Gödel’s theorem does not guarantee we will find solutions, we continue to work on

and solve problems (Ruelle, 1991). This includes the problem of artificial

intelligence.

One branch of artificial intelligence aims to produce computing machines

that exhibit human-like qualities. This may be the most understandable view of

artificial intelligence since human intelligence is all that is known from the

perspective of our species. Unlike the application of the rules of logic, humans

make irrational decisions. Human-like artificial intelligence research questions if

irrational decisions are reasonable enough to exhibit repeatable, reliable

intelligence. This thesis shows that randomness can be used in algorithms to

simulate processes and make intelligent decisions. Randomness may be most

applicable to the thought processes that are executed in the mind to make decisions

and solve problems. Simulation of mind processes can help understand how and

why decisions are made.

4.2.2 Decision Making, Playing Games

It is assumed that making useful decisions is the ultimate expression of

intelligence. Random algorithms make choices somewhat erratically by depending

on the uncertainty of a random draw. As seen in game theory, in an environment of

uncertainty, this strategy is not irrational.

 93

Simulation and numerical probabilistic algorithms use probability theory to

make decisions and narrow in on some expectation value. The decisions that the

mind makes are similar in nature. The mind could continually simulate a decision

before arriving at an average or preferred conclusion. Some decisions, like Monte

Carlo algorithms, run the chance of producing incorrect conclusions. Other

decisions can be formulated using a type of Las Vegas algorithm where the solution

can always be correct, yet takes a varying amount of time to compute (think of).

For example, when searching for the television remote, the path of decisions could

be haphazard, but always lead to successfully finding it.

Imagine the process of making a decision as passing through a graph of

mental states to arrive at a conclusion. The steps involved with navigating these

states are probabilistic in nature because decisions depend on many factors that can

dynamically change. Therefore, the process of making a decision is similar to a

random walk on the graph. Many random walks will converge to an average result

and patterns will emerge (do not touch a hot stove). However, single random walks

are unpredictable and can cause decisions to seem erratic. It is logical to conclude

that the mind uses similar constructs to random algorithms, and there may in fact be

a built in random generator to drive the system.

4.2.3 Personality and Behavior

Personality and behavior are ignored qualities when it comes to computing

languages and logic. Without these traits, programmed machines are not able to

 94

express the emotional side of man. Machines that express emotion will be more

relatable and understandable. They will be able to use feeling to describe

environments in which humanity does not have to personally witness to understand.

Randomness provides a certain level of variation that is more relatable as opposed

to deterministic, slave-like cyborgs.

A deterministic algorithm that continually performs the same operation with

no variation is seen as ‘dumb’. Using the analogy of weapons, ‘smart’ bombs are

able to react while on the way to the target and display some sense of variation.

They adapt based on the environment. ‘Dumb’ bombs follow the deterministic

path of a projectile that is unchangeable and predictable once released from the

host. Adversaries such as weather can cause the ‘dumb’ bomb to miss the target

because it cannot adapt and change its path. To create a program that performs in a

more human-like manner, the designer would have to include factors that cause its

output, or behavior, to be unpredictable, yet adaptive and rational.

A 1969 article titled “The Art of Using Computers to Model Human

Personality” (Dorf, 1974) is one of the many sources that express a need for

machines to interact with humans more naturally. Because humans are influenced

by other conscious beings that they come in contact with, a machine with a

personality could have the same effect. Like intelligence, the definition of

personality is not specific enough to model perfectly. Therefore, a computer that

models personality can only be an approximation measured by the expression of its

 95

behavior, and the reactions to it. The problem lies in the machine’s ability to

predict which actions and behaviors are appropriate for a personality in an

approximated environment. This is a subset of general artificial intelligence where

the machine tries to exhibit behavior patterns that are intelligent. Personality

modeling involves three main areas of research with a fourth that has still yet to be

discovered (Dorf, 1974). First, task-oriented models combine subcomponents of

human personality, such as games and music, and aim to build systems that are

highly specialized in many different areas. The problem lies in the complexity of

the interface between components. Processing cycles and memory units are

quickly occupied. Second, heuristic programming is used as a mechanism for

machines to learn. Third, intelligent processes such as pattern recognition,

inference, and hypothesis formation are grouped in a category labeled ‘simulation

of concept formation’. Finally, the fourth and still undiscovered concept to

artificial intelligence and personality modeling is a new way of thinking and

problem solving to provide solutions to the problems that were originally thought

to be simple, yet turned out to be highly complex. It is unknown if we will ever

have the knowledge to program the uncertainty of human behavior.

4.2.4 Agent-based Modeling

Agent-based modeling is a paradigm that measures complex systems by

extracting patterns from the interaction of chaotic events. Behaviors of agents are

programmed to simulate personalities that reflect research and experience. The

 96

agents learn and use knowledge to achieve some goal. Ant behavior can be

analyzed by measuring the interactions within a colony. Terrorist behavior can be

analyzed by measuring the interactions with society.

Randomness can be programmed into agent-based modeling, and is also

inherent based on the unpredictable interactions. An agent can base its actions

from a random draw. The behavior of a group of agents is unpredictable and

emerges from cooperative interactions much like the emergence of patterns in a

random walk. The emergence of patterns from randomly interacting agents is used

to understand the expected behavior of the entire population.

4.2.5 Genetic Algorithms

Like algorithms that simulate the processes of the mind, genetic algorithms

simulate the processes of natural evolution to solve problems. Random methods

are inherent to evolution because so much is unknown about the process. It is

known that during reproduction, parent genes recombine to form a new

chromosome. During copying of parent genes, random errors occur in the form of

mutation. The new cell then goes on to survive and reproduce like its predecessors.

According to natural selection, the fittest members survive. The term ‘fittest’ is an

approximation in that surviving members could be ’lucky’ and not necessarily the

optimal choices for continuation. This built-in anomaly allows for diversity, and a

diverse population adapts better to the environment. As a whole, the population

evolves a solution and finds purpose in an uncertain world.

 97

Genetic algorithms are built to exploit the properties of natural evolution,

using randomness as an advantage. Instead of using randomness as a haphazard

method of guessing or searching, genetic algorithms use it to build on previous

knowledge. Randomness introduces variety and leads the algorithm to a solution,

adapting its behavior along the way.

Genetic algorithms simulate the reproduction process by first starting with a

population of possible solutions (members). The fitness of each member is

calculated using a ‘fitness function’. This function ranks the members relative to

each other, according to their ability to survive. Members are chosen based on their

ranking and placed into the mating pool. Members that are more fit are more likely

to be chosen for the mating pool. The crossover process then chooses two

members from the mating pool and randomly determines if recombination should

take place. If so, the members are spliced and combined in some manner,

producing new members that are added to the population. If crossover is not

performed, then the members are directly copied to the new population. This

continues until a new population has formed. The ranking, selecting, and

combining process continues until the best (most fit) solutions are identified in the

midst of noise. Another source of noise, in addition to the selection and

combination methods, is the process of mutation. Mutation randomly changes parts

of a member somewhere in the process. Like natural mutation, this introduces

diversity to a population and avoids deadlock or stagnant situations.

 98

The flexibility and strength of genetic algorithms is a result of the

emergence of ‘fit’ members. This occurs because the features that a fit member

exhibits have a good chance of surviving through bits of randomness used to weed

out less-fit features. Although crossover, splicing, and mutation could modify

them, the features are able to survive throughout the process. This is the reason

that crossover should not always occur, and mutation rate should be low. Too

much modification may lead to the changing or destruction of strong features.

Randomness plays a crucial role in the performance of genetic algorithms.

Random decisions are made to select, crossover, and mutate members. Cantú-Paz

(2004) shows that using a pseudorandom number generator that contains minor

variation can produce large deviations in algorithm performance. Cantú-Paz (2004)

also compares the results of using true random numbers and a “good”

pseudorandom number generator and finds no difference in performance. Accurate

results from the simulation of the reproduction process are a result of a suitable

source of randomness that does not affect the process.

4.3 Others

Other than pattern recognition and mind simulation, the application of

random algorithms is unlimited because of the similarities between their behavior

and the behavior of the universe. So many processes remain a mystery. Therefore,

while we search for acceptable explanations, we must utilize randomness to provide

 99

a best-guess approximation. This is the case for physics, biology, astronomy, etc.

In physics, the Uncertainty Principle limits knowledge of the microscopic. In

biology, the mysteries of life remain unbounded. In astronomy, we can only

imagine the structure of dark matter, while the randomness of the stars is organized

into constellation patterns. While randomness in machines can be used to

approximate and analyze our world, it must be used wisely when presenting output

to the users, and creators.

4.3.1 Physics, Quantum Mechanics, Genetics

Uncertain environments make for a good application of random algorithms.

Randomness in computing plays a role in physics and genetics since these fields

work directly with the uncertainty of the universe.

The field of quantum mechanics has shown that the study of very small

objects creates an uncertainty in which probabilities must be used to describe.

Known as the Uncertainty Principle discovered by Heisenberg, the position and

velocity of a particle cannot be known with complete certainty simultaneously.

The process of genetics, reproduction, and life are other fascinating

examples of inherent randomness. Genetic algorithms show how randomness can

help to evolve solutions. Sexual reproduction shows that there is some regularity in

the universe since genes are able to combine and create new life (Ruelle, 1991).

Yet, the recombination of genes is not perfect. The path of life contains much

 100

uncertainty. Less fit individuals do not survive, yet some do because they are

‘lucky’. The path is assumed to not be the result of a deterministic and predictable

set of actions. For example, in a typical video game, a character’s path is

determined by a set of button presses. With no image displayed on the screen, a

player that has memorized the timing of a deterministic game can produce the same

results by following a script of button presses. The process of reproduction and life

are assumed to contain much randomness, of which random algorithms can help

approximate.

Computing in these fields must not be limited to traditional deterministic

methods involving mass storage and exhaustive search techniques. The available

data is much too large and the underlying rules of these systems are unknown.

Therefore, using the lessons of game theory, rational techniques used to understand

and model such systems should be probabilistic.

4.3.2 Human Computer Interface

The obvious dilemma when using randomness in any system is the user

interaction. Living beings are able to interact with the universe because, although

everything is random and unique within it, intelligence is able to make sense of it

through patterns. A system with randomness must be governed by a set of rules

that produce output to the user in recognizable form. While every user is different

in their comprehension, there is a level of commonality that they are expected to

have. For example, watching a television screen with static is not enjoyable

 101

because the random black and white pixels do not contain relatable information.

Watching a television program is enjoyable because the characters and scenery,

albeit randomly transmitted to aural and visual senses, are physically and

emotionally recognizable. Cartoons are more relatable to children, while adults

understand and relate to drama programs.

A computing machine that uses randomness can very easily confuse the

user. If the user is expecting a set of menu options, and a complete random draw is

used to determine which ones are available, the user will quickly get discouraged.

However, probabilistic techniques can be used to determine the frequency of used

menu options, and provide the user with an approximated set of options that they

wish to see and are predicted to use.

Current technologies that contain uncertainty test the limits of human

frustration. An Internet surfer that witnesses random page errors while visiting a

site is quickly turned off. For example, a banking site that incorrectly manages

cookies and causes arbitrary page errors during the transfer of funds causes the web

surfer much grief in understanding the success or failure of a transaction. Or, an

Internet surfer may happen upon a randomly generated advertisement, and follow

the link. Upon a browser crash, the surfer is unable to navigate back to the link

since it is now a different random permutation. Uncertain behavior is frustrating

and confusing to the user. An operating system that is not stable or does not

produce consistent feedback is not user-friendly. For example, if the behavior of an

 102

operating system while deleting a file is non-deterministic, the user becomes

frustrated because they do not know how long they must wait for the task to

succeed. Also, in the case of the previously mentioned Captcha technique, if the

verification image is so distorted that it is unreadable to even a human, then the

user becomes frustrated with the system because they are unable to prove their

consciousness! These scenarios show that there is certain levels of computing that

are expected to be deterministic, while others, such as a programmed personality,

are assumed to be acceptable if they contain randomness.

 103

Chapter 5: Conclusion and Suggestions for Future Work

5.1 Problems

The use of randomness to accomplish artificially intelligent machines is

arguable since random algorithms are ultimately executed on a deterministic

computation device. However, this determinism does not impair the uncertainty

that the algorithms exhibit. In Chaos Theory, deterministic equations are used to

produce chaotic results. Fractal images that display similar complexity to natural

forms are evolved from determinism, and the boundary of turbulence can be

simulated with deterministic equations like those of the Lorenz butterfly.

Michael Barnsley, the developer of the technique known as the Chaos

Game used to draw natural, fractal-like images using randomness admitted,

“Randomness is a red herring.” (Gleick, 1987, p. 239). In many situations,

randomness is simply a tool that attempts to approximate a result that already

exists, and can be deterministically found. Like mathematics, the result is not

invented, but discovered. Random algorithms seek to discover solutions faster and

more intuitively than deterministic methods.

In the field of artificial intelligence, randomness does not provide a machine

with understanding or consciousness any more than is available from pure

determinism. While the output and behavior of the machine is more flexible and

the power of creativity is expressed, the features of a conscious being are not

 104

available. It is assumed that no one feature is expected to result in a conscious

machine. A random number generator or the injection of an unknown sequence of

bits does not satisfy the requirements of a conscious machine, nor does the

combination of randomness and logical statements. The features and properties of

the combination of randomness and algorithms do provide the building blocks for

intelligent activities. The problem of artificially supplying a programmable entity

with the qualities exhibited by a natural, intelligent being is to be continued. The

combination of intuitive logic, intelligent processing, and complex problem

solving, along with the flexibility and creativity of randomness, are assumed to

play a vital role in the discovery.

5.2 Recommendations

Recommendations for continued research in the field of random algorithms

and artificial intelligence involve the core concepts introduced in this paper, and

others that have not been discussed. Parallel and distributed computing

technologies fit well with the multitasking nature of the mind. Randomness in

these fields will help uncover how the mind deals with noise and learns with

uncertainty. It is recommended that randomness be controlled to perform useful

tasks. Noise in a neural network or genetic algorithm helps to introduce variation,

but too much uncertainty leads to erratic results, like that of a ‘snowy’ television

screen. Large problem spaces are recommended for further research. Some

examples in this paper showed useful random algorithmic solutions with bounds on

 105

the problem space. When the search space gets large with few solution witnesses,

or the accuracy of an approximation needs to be precise, random methods begin

performing poorly. Improvements to the word-find problem in Section 3.3 are

recommended to place tighter bounds on performance through search strategies or

variations in pattern recognition.

5.3 Conclusions

This thesis has shown a summary of popular random algorithms that

perform intelligent tasks and behave in a more flexible manner than deterministic

algorithms. The random techniques used apply to artificial intelligence and the

interaction between man and machine. Algorithms are built to simulate the

processes and decisions of the mind, and are then analyzed to relate their behavior

back to the assumed workings of the mind. While random algorithmic analysis

focuses on pure mathematics, the results do not fully express their ultimate

applications. Random algorithms have more flexibility and more creativity than

standard logic statements and deterministic algorithms. The originality that is

supplied by random algorithms provides the ability to create and simulate

intelligent processes and lead to a new way of thinking about building intelligent

machines.

If everything in the universe is unique, then everything perceived has a

random nature and is pure information according to Claude Shannon and

 106

Information Theory. If everything is pure information with no redundancy, then

intelligent beings need some mechanism to classify common patterns and recognize

those patterns. One method to begin classifying patterns is to use a random

technique. Random techniques help to avoid deadlock (where to start or other

confusion), foil adversaries (blockage or very similar patterns), and allow room for

more intelligence and creativity (new thoughts, new ideas, new reasoning). Thus,

for a machine to be intelligent, it should use random techniques in its algorithmic

processes.

If used to search, random algorithms are good for eliminating adversaries

and sampling a population fairly. If used to decide, random algorithms are good

for producing estimations and approximations within reasonable bounds. If used to

adapt, random algorithms can continually change their behavior. If used for

creativity, random algorithms are able to exhibit unpredictability.

A player in a game is confronted with uncertainty and must decipher and

translate it into patterns to express intelligence. In a word-find puzzle, the player

must search through random letters and find recognizable patterns. In a baseball

game, the player must hit a randomly thrown pitch and the fielders must interpret a

randomly hit ball. In surfing, the wave-rider must continually deal with the

uncertainties of the water to exhibit grace and style. To translate uncertainty into

patterns, and be able to recognize and learn from patterns, is an ultimate expression

of intelligence.

 107

The goal of Artificial Intelligence is to simulate human mind processes such

as: learning, rationalizing, recognizing patterns, and decision-making. By

definition, the word simulation equates to approximation. Artificial Intelligence is

therefore an approximation to the mind and what humanity considers rational

thinking. The study of Artificial Intelligence is bounded by approximations

because we simply do not know how the mind works. We cannot view the rule set

that allows us to learn sheet music, recognize our parent’s faces, or decide what to

have for breakfast. These background processes and algorithms are hidden from

our conscious understanding. Whether this is planned or just a chaotic result of the

system (life), we may never know.

Like all problems, the study of Artificial Intelligence is bounded by

uncertainty. Science and research in this field must continue because, although

brain processes are unknown, it has not been proven impossible to create an

artificially conscious machine that expresses intelligence. In this sense, the pursuit

of ‘strong’ artificial intelligence is analogous to the search for extra-terrestrial life.

For all we currently know, it may not exist in the universe. However, we continue

our search because there is nothing that tells us that it CANNOT exist. If it were

proven that ‘strong’ artificial intelligence is impossible, then the problem would not

exist in the first place. For both problems, there is even plenty of evidence to

suggest otherwise. Water is known to exist all over the universe, and water is

needed for life. Calculations and computations occur in the human mind and allow

 108

for tasks to be accomplished. Unlike the search for aliens however, the problem of

artificial intelligence and the theory of the computational machine exist because we

are in search of ourselves.

The correlation between the human mind and artificial intelligence should

be studied with caution. The current direction of man and machine has not changed

a great deal from the original creation of the Turing Machine and Babbage’s

Analytical Engine. The development of computers and algorithms has progressed a

great deal, but many capabilities still require the logic and reasoning of the human

mind. For example, a human is still needed to provide verification of an algorithm

to perform fingerprint pattern recognition. A computer algorithm has the capability

to rapidly store and search fingerprints, but can only output best guess “scores”

when searching for matches. The machine has no conscious self and thus can make

no sense of its own 1’s and 0’s. The machine’s human operator must be the master,

and deduce the output.

The study of artificial intelligence must not neglect the aspects of humanity

and rationalism that involve consciousness, emotion, and the self. The study of

computer science is constantly testing technologies to provide insight into these

constructs. Random algorithms are one of the many technologies that can continue

to lead to the path of the truly interactive man and machine.

 109

List of References

“approximation algorithm.” NIST Dictionary of Algorithms and Data Structures.
Online. 11 Nov. 2004. http://www.nist.gov/dads/HTML/approximatin.html

Brassard, Gilles, and Paul Bratley. Fundamentals of Algorithmics. New Jersey:

Prentice Hall, 1996.

Cantú-Paz, Erick. “On Random Numbers and the Performance of Genetic
Algorithms.” Online. 11 Nov. 2004.
http://www.llnl.gov/casc/sapphire/pubs/146850.pdf

“Captcha”. Wikipedia. Online. 11 Nov 2004.

http://en.wikipedia.org/wiki/Captcha

Chlebus, Bogdan S., and Dariusz R. Kowalski. “Randomization Helps to Perform
Independent Tasks Reliably” Random Structures and Algorithms 24.1
(2004): 11-41.

Cormen, Thomas H., et al. Introduction to Algorithms. Cambridge,

Massachusetts: The MIT Press, 2001.

Czumaj, Artur, and Volker Stemann. “Randomized Allocation Processes” Random

Structures and Algorithms 18.4 (2001): 297-331

Dorf, Richard C. Computers and Man. San Francisco: Boyd & Fraser Publishing
Company, 1974.

Eastlake, D., S. Crocker, and J. Schiller. “Randomness Recommendations for

Security.” IETF – Request For Comments (Dec. 1994). Online. 11 Nov.
2004. http://www.ietf.org/rfc/rfc1750.txt

Feige, Uriel, and Yuri Rabinovich. “Deterministic Approximation of the Cover

Time” Random Structures and Algorithms 23.1 (2003): 1-22.

Gleick, James. Chaos. Making A New Science. New York: Penguin Books, 1987.

Liu, Baoding. Uncertain programming. New York: John Wiley & Sons, 1999.

Motwani, Rajeev, and Prabhakar Raghavan. Randomized Algorithms. United

Kingdom: Cambridge UP, 1995.

 110

“nondeterministic Turing machine” NIST Dictionary of Algorithms and Data
Structures. Online. 11 Nov. 2004.
http://www.nist.gov/dads/HTML/nondetermTuringMach.html

“probabilistic Turing machine.” NIST Dictionary of Algorithms and Data

Structures. Online. 11 Nov. 2004.
http://www.nist.gov/dads/HTML/probablturng.html

Ruelle, David. Chance and Chaos. Princeton, N.J.: Princeton University Press,

1991.

Shannon, Claude E. “A Mathematical Theory of Communication.” The Bell

Systems Technical Journal. 27 (1948): 379-423, 623-656. Online. 11 Nov.
2004. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

Weisstein, Eric W. "Kolmogorov-Smirnov Test." MathWorld-A Wolfram Web

Resource. Online. 11 Nov. 2004.
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html

Weisstein, Eric W. "Noise Sphere." MathWorld-A Wolfram Web Resource.

Online. 11 Nov. 2004. http://mathworld.wolfram.com/NoiseSphere.html

Weisstein, Eric W. "Prisoner's Dilemma." MathWorld-A Wolfram Web Resource.
Online. 11 Nov. 2004.
http://mathworld.wolfram.com/PrisonersDilemma.html

Whitney, Charles Allen. Random Processes in Physical Systems : an Introduction

to Probability-based Computer Simulations. New York: Wiley, 1990.

