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Abstract 

On 

The Use of Randomness in Computing 

To Perform Intelligent Tasks 

By 

Ryan Scott Regensburger 

Principal Advisor: Dr. Gregory Harrison 

The study of Artificial Intelligence attempts to simulate the processes of 

human intelligence in a set of computable algorithms.  The purpose of Random 

Algorithms in this field is to provide a best-guess approach at identifying the 

unknown.  In this thesis, research shows that random algorithms are able to break 

down many intelligent processes into a set of solvable problems.  For example, 

solving puzzles and playing games involve the same estimating ability shown in 

standard problems such as the Coupon Collector problem or the Monty Hall 

problem.  This thesis shows Random Algorithmic applications in two overlapping 

categories of intelligent behavior:  Pattern Recognition (to solve puzzles) and Mind 

Simulation (to play games).  The first category focuses on one of the prominent 

intelligent processes, recognizing patterns from randomness, which the human 

mind must continually and dynamically perform.  The second category deals with 

simulating the processes of making decisions and solving problems in a more 

abstract and uncontrolled way, much like the unpredictable human mind.  
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Chapter 1: Introduction and Background 

1.1 Universal Purpose 

Everything is random.  This statement is an oxymoron in that, if the 

dictionary definition of random were “everything”, then the true meaning and 

nature of the word would cease to hold any credibility.  However, this paradox is 

ultimately true and was first revealed by Claude Shannon with his Theory of 

Information.  The Merriam-Webster dictionary states that the meaning of random is 

“lack of a definite plan, purpose, or pattern”, “haphazard”, and/or “without aim, 

direction, rule, or method.”  Yet, when human beings perceive in the world around 

us, we find much purpose, planning, and patterns.  How can everything be random? 

In the purposes and patterns we find in the universe, there also exists 

uniqueness.  Classical uniqueness is revealed in snowflakes, fingerprints, and 

DNA.  These are natural occurring phenomena that ‘do not occur the same way 

twice.’  If we look further, we can find uniqueness in many other places, and 

ultimately, all other places.  For example, humans intelligently define a ‘tree’ 

pattern to classify all species of tree.  The basic shape and abstract qualities are 

outlined so humans can recognize a tree when they see one.  However, no two trees 

are ever alike.  No two trees have the exact same features because there are an 

infinite amount of naturally unpredictable events that determine their existence.  

This idea also applies to inanimate objects.  A machine that molds Yo-Yos from 
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plastic into the exact same form each and every time still cannot create two Yo-Yos 

that are, in essence, equivalent.   

The investigation of this phenomenon is not difficult to understand.  By 

simply stating that there are two of something in this universe automatically means 

that they cannot be physically equivalent.  Even if two objects were structurally 

built with the exact same atomic structure, the fact that there are two distinct 

objects means that they are different.  Microscopically, different particles are used 

in an object’s construction (and even swapped out for replacements) and 

macroscopically, one object may have more dust on it than the other, thus making 

the two objects different. 

The meaning of all this uniqueness in the universe is that everything is 

random.  The human brain perceives a universe with no redundancy.  Redundancy 

leads to boredom, such as may happen when repeatedly watching the same 

television show, or having the same daily process of getting ready for work.  

Everything we see, smell, taste, touch, and hear is random and has meaning.  

Everything we perceive is pure information.  The remarkable computing power of 

the human brain is responsible for identifying and recognizing patterns from the 

randomness, and reasoning with the uncertainty. 

Most computer hardware and software has been developed to work in a 

world of determinism and control.  Automated universal machines perform certain 
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processes efficiently, according to strict protocol, every single time they are 

summoned.  This thesis shows how software can utilize randomness for coping 

with a random world.  It shows classes of problems that random algorithms can 

solve efficiently, optimally, and approximately, by focusing mainly on pattern 

recognition and the simulation of intelligent processes.  Random algorithmic 

techniques are demonstrated to provide insight into the mysteriousness of the 

ultimate computing machine, the human mind. 

1.2 Randomness Defined 

The behavior of randomized algorithms is based on the dynamic generation 

of numerical values that drive decisions made by the algorithm.  A single number, 

or a sequence of numbers is difficult to classify as random.  An intuition about an 

arbitrary number or sequence of numbers being random holds no credibility 

because an unknown rule can negate the assumption.  For example, given the 

sequence 1100110, it would seem that the sequence is random since there are no 

easily discernable patterns.  Given the additional digits of the sequence, 01100, a 

pattern begins to develop.  The repeated pattern of 1100 emerges from the 

additional information, making the initial sequence no longer uncertain. 

Prior to knowing the generation rules of the sequence, it contained much 

uncertainty.  If a sequence can be deterministically generated to produce a pattern, 

it is no longer uncertain.   Future iterations can be easily predicted and computed.  
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Word games and number games aim to challenge the mind to deduce patterns by 

cleverly hiding them with noise.  This noise acts as an adversary to confuse a mind 

‘clouded’ with complexities.  In the above example, if the player were told that 

some pattern exists in a sequence containing 1100110, a reasonable starting point 

would be mathematics or logic to deduce the information.  However, these 

paradigms are not needed to deduce or create a pattern.  The player can simply 

copy the string and append it to the end and claim a viable pattern exists.  Or, as in 

the case above, the player can tack on another set digits to create a pattern utilizing 

the information that already exists.  In these two cases, the sequences 1100110-

1100110 and 1100-1100-1100-1100 have been created from a seemingly random 

set of digits.  Both are deterministic and predictable.  Therefore, any intuition about 

a set of seemingly random digits can easily be proven false. 

This intuition pitfall regarding random sequences is referred to as the 

Undefined Reference Sample (Whitney, 1990).  No intuition can hold if an object, 

such as a sequence or arbitrary number, is presented with no information of where 

it came from.  In the above case, a sequence that looked random can be shown to be 

deterministic.  The reverse also holds true.  For a seemingly deterministic sequence, 

a simple rule can show that it is random.  For example, the number 1111 does not 

look random because it contains a recognizable pattern of repeated 1’s.  However, 

it is perfectly normal to choose this number in a random drawing of numbers from 
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0 to 5000.  It is therefore difficult to label a sequence of numbers given no 

intimation of the rules that produced it. 

1.2.1 Random Process 

A process for generating a sequence of random numbers, which are 

independent of each other, is easier to define.  The next number in a random 

sequence that is generated using a random process cannot be predicted by referring 

to the previous numbers.  A random generation process has no memory of previous 

events to generate future events.  For example, if it is stated that an evenly balanced 

coin will be tossed end over end into the air making a number of tumbles that are 

unable to be measured by the human eye, then it is safe to assume that the sequence 

of heads and tails will be random.  This is because the complex movements of the 

coin are unpredictable and depend on immeasurable factors.  The trajectory of the 

coin is extremely sensitive to the initial conditions of the event.  A slightly different 

angle or a slightly differing wind direction can produce different outcomes, even 

though the coin is obeying the laws of physics.  Other truly random processes 

include dice throwing, a roulette game, and card shuffling, assuming that no factors 

can unfairly affect the outcome (such as weighted dice or a sneaky dealer).  These 

tasks rely on the unpredictability of the underlying physical processes in place, 

whether they are inherently random or even chaotically deterministic.  Naturally-

random processes are arguably random however, since they depend on an infinite 

amount of microscopic factors as well as larger factors such as temperature or 
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wind.  Depending on the rules of the universe, they may also be dependent on time.  

For example, if it were possible to travel back in time, would seemingly natural 

random events occur the exact same way twice?  Since time travel has yet to pan 

out, and the amount of natural factors involved is infinite and impossible to 

measure, it is acceptable that such processes are deemed random by using 

mathematical testing techniques.  Examples include the statistical goodness-of-fit 

Kolmogorov-Smirnov test and the ‘noise sphere’ technique between triplets of 

random numbers (Weisstein, Kolmogorov and Noise Sphere 2004).  The goal of 

these tests is to estimate that a random number or series of random numbers have 

been chosen seemingly independently from a given probability distribution. 

The central rule of probability theory is that a large amount of independent 

events will cause a random variable to converge to some likelihood of occurrence.  

An infinite series of coin tosses will result in 50% heads and 50% tails with 

absolute certainty.  The result of a single coin toss is completely uncertain.  This 

statement is reasonable before the toss, but is completely false afterwards since the 

uncertainty of the event is gone.  Since an infinite amount of events cannot occur in 

a finite time frame, a random variable is measured based on its expected value.  

The randomness imbedded in a random algorithm causes them to be measured by 

expected behavior.  This allows the unpredictable algorithm behavior to be 

averaged and hopefully it behaves according to some expected bounds.   
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The built-in determinism and the ability to model only concrete 

mathematical equations unfortunately make generating a random sequence 

impossible by means of a computer algorithm.  This is because no matter how 

sophisticated, an executed algorithm is a completely predictable series of steps that 

performs a task.  A predictable process cannot be used to create random numbers.  

Computer algorithms must therefore rely on a pseudorandom process in order to 

obtain near-random sequences of numbers. 

1.2.2 Pseudorandom Process 

A pseudorandom process approximates a truly random process, yet unlike a 

random process, it uses previously generated values to obtain the next value in the 

sequence.  Such an algorithm is used to deterministically generate sequences of 

numbers that appear random when statistically tested.  Pseudorandom generators 

use an initial ‘seed’ value to begin the generation of numbers.  Therefore, the same 

‘seed’ value yields the same sequence of ‘random’ numbers, and is perfectly 

predictable.  This fact becomes a burden when dealing with computer security, 

which relies heavily on random numbers for secret keys.  Eq. 1 shows the 

deterministic algorithm commonly known as the ‘linear congruence’ method of 

calculating seemingly random values.  In the equation, variables A, C, and M are 

non-negative integers.  The initial value of X is the seed (Liu, 1999).   

                               ))(mod*(
1

MCA XX ii
+=+                                      (1) 
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Successive calculations using the linear congruence method generate 

pseudorandom numbers that have the potential of passing statistical tests for 

randomness (Eastlake, Crocker, & Schiller, 1994).  To avoid repeating number 

sequence patterns, it is useful to reference the system clock for a seed value.  

Turning the clock back and running the algorithm again at the same instant of time 

would, unfortunately, produce the same sequence.  With time constantly moving 

forward, the seed value would be different at each future unit of time.  Therefore, it 

is possible to look at algorithms that generate pseudorandom sequences using time 

as the seed value as being truly random if the universe works in similar ways in 

which the clock cannot be turned back.  Time travel is beyond the scope of this 

thesis, but not beyond the scope of the system clock. 

1.2.3 Recommendations 

The incompleteness of a pseudorandom number generator can often be 

overcome by the scope of the problem.  Pseudorandom numbers are useful for 

gaming, simulation, and sampling.  When the scope of the problem requires a better 

solution, truly random numbers must be used.  True random numbers are not 

difficult to obtain and are recommended for use in security applications. 

Normally, hardware electronics suffer from random electromagnetic 

disturbances.  For example, the static noise on the radio or the ‘snow’ on a 

television screen is the presentation of natural random energy picked up by the 
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antenna or receiver as a result of other electronics in the area or even what has been 

attributed to leftover energy from the big bang, seen as Cosmic Background 

Radiation.  A natural way to obtain random numbers is to capture this energy at 

some point in time.  For example, to create the effect of a random coin toss, one 

can choose a pixel on a black and white screen, and measure its color value through 

a series of frames.  Figure 1 is a screenshot of a program that fills in black and 

white squares using pseudorandom numbers.  After filling in a rectangle of pixels 

and processing many frames per second, the result appears like an off-broadcast 

television station.  Although the image is completely random, can the mind still 

find patterns? 

 

Figure 1. One frame of Random Noise. 
 
 

Randomness plays a crucial role for security systems, especially in 

applications over the Internet (Eastlake et al., 1994).  Security systems rely on 

cryptographic algorithms that try to foil adversaries attempting to recognize 
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patterns.  The trick is to use algorithms that contain little to no patterns.  This task 

is extremely difficult, given that computer systems are built on structured 

mathematical rules.  Randomness acts as a means to provide the unpredictability 

needed in a secure system.  Hardware provides a good level of unpredictability 

needed to obtain random sequences (Eastlake et al., 1994).  The linear congruence 

method, as described earlier, may be suitable for simulations but terrible for 

security systems due to the ability to decipher an entire pseudorandom sequence 

given the initial state (Eastlake et al., 1994).  A pseudorandom process does not 

provide the level of security required for generating secret values such as password 

and keys. 

1.3 Early Uses 

Randomization in algorithms was first used to find approximate solutions to 

numerical problems.  Named after the city that is famous for roulette tables and 

probabilistic gambling in the Principality of Monaco, the development of numerical 

probabilistic algorithms called Monte Carlo dates to atomic bomb research in 

World War II (Brassard & Bratley, 1996). 

Prior to WWII, numerical probabilistic algorithms were employed on a 

smaller scale to solve problems.  Most notably, the method of “Buffon’s needle” 

dates to the eighteenth century where Georges Louis Leclerc, comte de Buffon, 

used random methods to approximate the value of � with needles thrown at random 
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onto wooden planks (Brassard & Bratley, 1996).  With the needle being half as 

long as the width of a plank and the plank cracks having a width of 0, the 

probability of a needle intersecting a crack between planks was proved to be 1/�.  

Therefore, n throws results in n/� needles intersecting plank cracks.  As the number 

of needles thrown moves towards infinity, the answer gets more precisely closer to 

the true value.  However, like most numerical probabilistic algorithms, this 

precision gain is extremely slow.  This method is described fully in Section 1.6. 

The Leclerc algorithmic approach to approximating � is not practical since 

deterministic methods have shown to be much more precise.  However, this early 

example was one of the first probabilistic algorithms, and stands as an intriguing 

example of the power and ability of such algorithms. 

1.4 Random Algorithms 

“An algorithm corresponds to a Turing machine that always halts” 

(Motwani & Raghavan, 1995, p. 17).  Represented as an abstract model of 

computation, a randomized algorithm is a probabilistic Turing machine that always 

halts.  This type of Turing machine chooses transitions randomly from the set of 

available transitions and accepts or rejects input with some probability (Motwani & 

Raghavan, 1995).  Like a non-deterministic Turing machine, a probabilistic one has 

many paths to choose from, yet only follows one at a time instead of all of them in 

parallel (“probabilistic” & “nondeterministic”, NIST 2004).  The path to be chosen 
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is the result of a random draw.  See Section 1.5.2 for the complexity classes used to 

organize decision problems that random algorithms solve. 

At a lower level, randomizing an algorithm is a process that uses a dynamic 

and unpredictable mechanism to re-order input, sample a population, distribute 

objects, measure variations, and calculate approximations.  This mechanism (e.g. 

random number draw) helps the algorithm make decisions to estimate problems 

where closed form solutions or deterministic methods are too complex and/or 

infeasible.  These cases arise in the real world where the computation of an exact 

solution is not possible, in principle, because of the uncertainty of data and/or the 

computational resources are unable to model the needed units (e.g. irrational 

numbers – �2, �3, �, e) (Brassard & Bratley, 1996).  In the precise world of the 

digital computer, an answer may be infeasible due to the amount of running time it 

takes to find it.  Making random choices and arriving at an approximate solution 

may be preferably faster than a lengthy runtime search for the optimal solution.  As 

a result of the uncertainty in random algorithm decisions, approximate answers 

and/or varying run times exist for a problem instance. 

Deterministic methods aim to produce the same solution with each run and 

execute according to a fixed set of rules.  Any variation or error in their behavior 

for a specific instance of a problem will prove that the algorithm is never suitable 

for that instance (division by 0, etc.).  In contrast, random algorithms should behave 

differently from one run to the next.  Variables include: the length of execution 



 13 

time, as well as the result of the algorithm.  Solutions may vary to a certain 

probability, or even be incorrect altogether.  If the algorithm returns a known 

incorrect result, it can be executed again to hopefully arrive at a better solution.  If 

there are multiple solutions, comparing results after a combination of runs provides 

an increased level of confidence. 

The most common random algorithms behave in such ways that are similar 

to human behavior.  For example, using randomness in searching makes the run 

time of the algorithm vary from run to run.  Like a human searching a telephone 

book for a specific name, a random algorithm can be guided by the alphabetic 

order, but pinpointing an entry can be an uncertain task that involves random 

decisions.  Humans cannot search the phone book in a strictly deterministic fashion 

because there are other factors that our minds must perceive than just the ordered 

list of entries.  For instance, large ads are provided in the Yellow Pages, so a search 

for Ryan’s Surf Shop would start in the R section of the retail stores category.  

Some amount of randomness would lead the visual search to an advertisement 

instead of the list of textual entries, hopefully finding the phone number in large, 

bold print quicker.  The advertisement stands out compared to the list of entries that 

all look the same with very small text. 

Random algorithms help to suppress the killers of deterministic algorithms, 

adversaries.  An adversary is an input to an algorithm that causes it to perform 

poorly.  For example, Quicksort has a very fast O(n log n) average-case running 
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time.  However, the adversary of an already-sorted list causes the algorithm to 

behave with Ω( n²) time.  Random algorithms ‘foil’ adversaries by making random 

decisions on-the-fly so that they cannot be predicted and fooled.  A randomized 

Quicksort algorithm chooses a pivot at random and allows the expected running 

time to be O(n log n) for all input instances. 

Much like the human mind, random algorithms are built to focus on a 

varying set of problem situations.  Random algorithms are useful when dealing 

with the following problem spaces:  1) As stated above, adversary conditions that 

cause deterministic algorithms to perform poorly can be thwarted using random 

methods to reduce or eliminate their negative affect.  2) If a search space contains a 

large number of acceptable solutions, a random sample from the population can be 

used to efficiently find one of them.  3) Random sampling also helps to obtain a 

solution from a subset of a population to approximately model the entire 

population.  4) Deadlock and symmetry problems show that randomness is helpful 

to load balance resources and avoid or break deadlock conditions.  5) Environments 

where variety and uncertainty are necessary to provide training use randomness to 

approximate and simulate real-world effects.  6) Simulation must also be able to 

test scenarios and obtain statistical data, and random algorithms provide the 

necessary mechanisms to do so.  7) Where creativity is needed, especially in the 

field of artificial intelligence, random algorithms attempt to make decisions outside 
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of the bounds of determinism and provide controlled noise in the form of 

unpredictable variety. 

The following pseudo-code examples display the inner workings of a few 

randomized algorithms.  Each example utilizes a procedure ‘uniform(i..j)’ to obtain 

a random value in the interval ‘i’ to ‘j’.  The value can then used for making a 

decision, testing an event, feeding an object attribute, assigning a task to a 

processor, etc.  This results in algorithmic procedures that contain varying run 

times and varying answers.   
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Chaos Game - draw random points according to simple rules. 
 
Input: 3 points of a perfect triangle, width and height of graphic display 
Output: a visual approximation of the Sierpinski gasket (Pascal triangle with odd 
numbers displayed as points) 
 
Source: (Gleick, 1987) 
1: Draw the points of the triangle 
2: Choose a random starting point: P = uniform(1..width), uniform(1..height) 
3: Loop 
4: Choose a random vertex: V = uniform(1..3) 
5: Calculate new point. newP = ½ way between V and P. 
6: Draw newP. 
7: Set P = newP. 
8: End Loop 

 
 

Figure 2. Chaos Game randomized algorithm with example result. 
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Min-Cut – find a set of edges (with minimum cardinality) to remove that breaks a 
connected, undirected multigraph into two or more components (cut). 
 
Input: connected, undirected, multigraph G 
Output: a cut (and candidate min-cut) of G 
 
Source: (Motwani & Raghavan, 1995) 
1: While G.number_of_vertices > 2 loop 
2: Pick random edge: E = uniform(1..G.number_of_vertices) 
3: Contract edge vertices and preserve multi-edges 
4: Remove loops 
5: End loop 
6: Output remaining edges 

 
Figure 3. Min-Cut randomized algorithm. 

 
 

The benefits of random algorithms are outlined throughout this paper.  Two 

common features that random algorithms contain are speed and simplicity.  One 

unusual feature that they may also possess is reliability.  Random algorithms are 

reliable when confidence bounds are defined for their range of solutions or range of 

expected run time.  These algorithms will sometimes have so small of an error that 

the probability of a hardware failure is more likely.  Therefore, if a slow 

deterministic algorithm has to run longer than the hardware is reliable for, then a 

faster, approximate random algorithm will provide a much better solution (Brassard 

& Bratley, 1996). 

1.5 Complexity 

The universal computational machine, the Turing machine, is only as good 

as the software (algorithm) that is ran on it.  The main challenge of developing the 

software is to solve problems efficiently.  Gödel’s incompleteness theorem shows 
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that there exist problems that are unsolvable due to the incompleteness of ‘self’ 

describing rules in a complex system.  Also, the Church-Turing thesis shows the 

famous undecidable problem in which a Turing machine cannot tell ahead of time 

if an algorithm will halt or provide an answer.  These theories show that algorithms 

must be analyzed and measured in time and space to determine if they are useful. 

1.5.1 Standard Problem Classes 

Complexity theory classifies problems based on their difficulty.  The P class 

of languages contains decision problems that can be solved in polynomial time by a 

deterministic Turing Machine.  Problems in this class are considered to be 

tractable.  The NP class of languages contains decision problems that can be solved 

by a non-deterministic (multiple-tape) Turing Machine in polynomial time.  The 

answer to an NP problem can be verified quickly, but not necessarily solved 

quickly.  NP-hard refers to the class of problems that are naturally more difficult 

than those in NP.  If a problem’s correctness can be verified in polynomial time 

(NP), and its algorithmic solution can be translated to solve any other NP problem 

(NP-hard), then the problem is classified as NP-Complete.  These problems are the 

hardest of the NP class. 

By measuring time and space requirements for an algorithm, complexity 

theory expresses the existence of problems that can be classified as intractable.  

Algorithms built to solve these problems are slow or infeasible.  For example, 

solving the Traveling Salesperson problem, which is NP-Hard, for a large number 
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of cities could take more time (thus, cost more money), than if the salesperson were 

to make an educated guess and be willing to accept some amount of error.  

Therefore, in order to provide approximate solutions to intractable classes of 

problems, estimation algorithms are needed.  These algorithms are considered 

acceptable if they are efficient (i.e. polynomial), and contain a high probability of 

not producing terribly incorrect answers. 

The human mind often uses approximation to reason and decide in the 

world.  Instead of pulling off onto the shoulder to wait and see how a traffic 

situation pans out, a driver instead must sit in the traffic jam and estimate the best 

route without knowing the obstacles that lie ahead.  This estimation ability uses 

probability and statistics to analyze a situation.  Randomness is inherent because of 

the uncertainty that probability theory contains.  Therefore, an algorithmic process 

that uses the result of a random draw to make an approximated decision has the 

ability to estimate reasonable solutions. 

1.5.2 Random Problem Classes 

The above standard problem classes can be generalized to allow 

probabilistic requirements for the behavior of random algorithms.  Random 

problem classes use probabilities to describe their correctness in a polynomial run 

time (Motwani & Raghavan, 1995).  Random Polynomial (RP) algorithms accept 

input with probability 50% or more if the input is a member of the language.  If the 

input is not a member, the algorithms accept the input with zero probability.  These 
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rules mean that the algorithm only errors for input that is a member of the 

language.  This is known as a One-Sided Error Monte Carlo algorithm.  A Two-

Sided Error Monte Carlo algorithm is allowed to error for both members and non-

members of the language.  These Probabilistic Polynomial (PP) algorithms 

correctly accept input with probability greater than 50% and incorrectly accept 

input with probability less than 50%.  Bounded-Error Probabilistic Polynomial 

(BPP) algorithms put tighter bounds on the error probabilities with a polynomial 

number of iterations to reduce the error probability further. 

Random algorithmic behavior can also be classified as Zero-Error 

Probabilistic Polynomial (ZPP).  These algorithms still make random decisions but 

always produce correct answers.  The trade-off is a variation in run time.  These 

algorithms are named Zero-Sided Error Las Vegas.  Las Vegas algorithms are 

described further in Section 1.8. 

1.6 Numerical Probabilistic algorithms 

Numerical probabilistic algorithms are one type of random algorithm that 

always yields approximate answers to numerical problems.  They give a probability 

of correctness and a given confidence interval of upper and lower bounds.  These 

algorithms may improve on the precision of the answer along with the tightness of 

the bounds with increased available running time.  A real-world example of this 

type of algorithm is an opinion poll, with its deterministic equivalent as a general 
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election.  A general election takes a lot more time and resources to execute than a 

poll in which a random sample of votes is used to approximate the opinions of 

many.  The more sampling that is performed, the more accurate the poll will be to 

the actual election. 

An example of this type of algorithm comes from a classic technique of 

estimating the value of �.  As stated in Section 1.3, the Buffon needle experiment 

uses randomness to estimate the value of � within certain boundaries that get 

smaller as the algorithm is repeated.  For example, if only 10 needles are used, the 

best possible estimation of � is 3.333.…  The algorithm could also possibly output 

an answer of 1.0 with the bad luck that only one needle intersects a plank crack.  

This answer is not incorrect; it is just outside of the expected bounds.  Using a 

larger set of needles, the estimate of � becomes closer.  Buffon proved that the 

answer would be correct if an infinite amount of needles were used.  This is not 

possible on a computing machine with finite resources, so we must deal with the 

numerical probabilistic approximation. 

The Buffon’s Needle method works by exploiting the properties of 

geometry utilizing randomness to approximate area ratios.  The angle of a 

randomly thrown needle (�) ranges from 0 to � as measured from the center point 

of the needle.  The distance from the center of a needle to the nearest plank crack 

(D) is never greater than ½ the distance between cracks.  Since the length of the 

needle is ½ the size of the distance between plank cracks, an intersection of the 
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needle and crack occurs when D is less than or equal to (¼ sin �).  Figure 4 is a 

diagram of the experiment space.  The blue line, f(x)= (¼ sin �), represents the 

threshold for needle intersections with plank cracks.  The area under the blue curve, 

from 0 to �, measures ½.  The area of the entire experiment space is ½ * �.  

Therefore, the probability of a randomly thrown needle intersecting a plank crack is 

the ratio of the area under the curve to the total area (½ / (�/2)) = 1/�.  In a 

simulation of N randomly thrown needles, the points representing � and D are 

uniformly distributed over the search space, shown in pink on Figure 4.  Therefore, 

the ratio of total points (N) to points on or below the curve (number of needles that 

intersect plank cracks) is approximately equal to �. 

 



 23 

 

Figure 4. Buffon Needle experiment space. 
 
 

As stated previously, as the number of needles increases (pink points in 

Figure 4), the value of � gets more accurate.  Figure 5, Figure 6, and Figure 7 each 

show a scenario of a Buffon’s Needle program with varying amounts of needles.  

With 10 needles, Figure 5 contains 4 intersections, and a � estimation of 2.5.  The 

100 needles of Figure 6 intersect planks 31 times estimating � at 3.23.  The 10,000 

needles of Figure 7 have 3187 intersections, thus a � estimation of 3.1377. 
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Figure 5. Buffon’s Needle.  10 needles. 
 
 

 

Figure 6. Buffon’s Needle.  100 needles. 
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Figure 7. Buffon’s Needle.  10,000 needles. 
 
 

A very similar example to Buffon’s Needle is the estimation of � using the 

ratio of a unit circle encompassed by a unit square.  As shown in Figure 8, the 

number of randomly plotted points that fall in the circle area divided by the number 

of total points in the square area is approximately equal to � divided by 4.  This is 

based on the fact that the ratio of the area of the circle to the area of the square is 

exactly � divided by 4.  An algorithm that plots random points in a unit square and 

computes the ratio of points in the unit circle to those in the square is numerical 

probabilistic.  The algorithm attempts to uniformly fill in the areas and obtain a 

better answer with more trials.   
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Figure 8. Random points occupying a unit square and unit circle. 
 
 

Numerical probabilistic algorithms relate to intelligent ways of searching, 

recognizing patterns, and simulating the mind.  These algorithms continuously 

sample a population and attempt to provide an estimate.  In the field of artificial 

intelligence, it is important to use clever techniques to approximate difficult 

problems.  Numerical probabilistic algorithms help by simulating the ‘thinking’ of 

a mind that wishes to take some amount of time to build and improve the answer.  

For example, while quickly trying to do mathematics, the mind may first take some 

time and estimate the values to obtain a quick, rough answer.  The mind may then 

process the numbers further and improve upon their estimation.  Like the 

performance of numerical probabilistic algorithms, the run time of a thought must 
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be analyzed ahead of time to get an idea of how long it will take to obtain a 

solution, and how accurate that solution will be. 

Brainstorming is an intelligent technique that attempts to extract an 

unknown solution from a set of related ideas.  In reference to Buffon’s Needle, the 

search area is represented by the topic of a brainstorm activity.  Every random 

needle thrown represents an idea, uniformly covering the topic area.  The resulting 

solution via ratio comparison is the consideration of a subset of developed ideas, 

within some boundary, to the whole set.  The result of the brainstorm activity is an 

average, core idea.  As with Buffon’s Needle, the preferred scope or ‘accuracy’ of 

the brainstorm is improved with repetition.  As the amount of generated ideas that 

are random and uniform grows, the more effective the solution turns out since 

repeated trials seek to fully cover the search space.  Newly generated ideas while 

brainstorming can be stimulated by previously generated ideas, thus improving the 

solution and tightening the bounds of variation. 

Numerical probabilistic algorithms are often referred to as Monte Carlo.  

This thesis regards Monte Carlo algorithms as a similar technique where there 

exists the possibility of obtaining an incorrect answer. 

1.7 Monte Carlo algorithms 

True Monte Carlo algorithms produce answers with a high probability of 

correctness on every instance, but unlike numerical probabilistic algorithms, run 
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the risk of producing incorrect answers.  These types of random algorithms must be 

able to handle all instances of a problem with none having a high probability of 

error.  Some Monte Carlo algorithms “… allow p [the probability of correctness] to 

depend on the instance size but never on the instance itself.” (Brassard & Bratley, 

1996, p. 341).   

If a Monte Carlo algorithm is unable to determine if an incorrect answer has 

resulted, allowing it more running time may reduce the probability of error.  On the 

other hand, some Monte Carlo algorithms have the ability to produce an answer 

that will positively be known to be correct.  If this answer is obtained, then it is 

certain that the correct solution has been reached.  If the answer is not obtained, 

then repetition of the algorithm may yield a higher confidence interval, and/or a 

wider search for the definitive answer.  Allowing a Monte Carlo algorithm more 

time to produce a more confident answer is known as “amplifying the stochastic 

advantage” (Brassard & Bratley, 1996, p. 341). 

An example of this certainty is represented in the verification of matrix 

multiplication algorithm known as Freivalds (Brassard & Bratley, 1996) that may 

output a ‘false positive’.  When the algorithm returns false, the answer is 

guaranteed to express that two multiplied matrices do not equal a third (Brassard & 

Bratley, 1996).  Repetition in the absence of a guaranteed answer drops the 

probability of error in the algorithm.  Many Monte Carlo algorithms that attempt to 
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solve decision problems are known for their rapid convergence to approximate 

equilibrium. 

The min-cut algorithm specified above in Section 1.4 Figure 3, is a Monte 

Carlo algorithm that has the possibility of returning a candidate that is not a min-

cut.  For the graph in Figure 9, a valid min-cut occurs when removing edges 0 and 

1, or 4 and 5.  Many repetitions of the Monte Carlo algorithm produce 

approximately a 66% chance that one of the valid solutions is found.  The other 

34% of solutions output by the algorithm are incorrect and of cardinality 4, such as 

edges 0-2-3-5 or 0-2-3-4.   

 

Figure 9. Connected, undirected multigraph. 
 
 

A Monte Carlo method notable for testing a very large odd integer for 

primality is popular because no deterministic method is known to be optimal 

(Brassard & Bratley, 1996).  Application of such an algorithm is important to 

security encryption methods where large prime numbers are used for key values. 
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Monte Carlo algorithms relate to the workings of the human mind, which is 

known to produce incorrect answers from time to time.  Whether attempting to 

recognize a pattern or recall some memory, the mind produces a probability of 

correctness with error bounds, and runs the risk of being wrong. 

1.8 Las Vegas algorithms 

A Las Vegas algorithm is a type of randomized algorithm that uses a 

random value to make probabilistic choices and never produces an incorrect 

answer.  The choices made during computation attempt to guide the algorithm to 

the desired solution faster than other methods.  This is possible because of the 

ability of randomness to avoid adversary conditions that may lead to a lengthy 

exhaustive search for the correct solution. 

A simple Las Vegas algorithm example is a sock-sorting program.  This 

program works with the problem of selecting matching socks from a drawer.  Any 

deterministic algorithm to accomplish this task will take O(n) worse-case execution 

time when faced with a bad instance.  For example, a deterministic algorithm could 

loop through an array of socks and attempt to find a match for the very first sock 

selected.  As new unmatched socks are picked up, they are continually eliminated.  

With an instance of input such that the only matching pair is the first and last 

elements, this deterministic approach must search through the entire list, thus O(n) 

behavior. 
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The randomized, Las Vegas version loops through the array and collects 

pairs of socks.  If a match is not found, it randomly eliminates one of the chosen 

socks.  This algorithm has a very small possibility of taking just as long as the 

deterministic approach worst-case due to bad decisions.  It also shares the 

possibility of failing to find a matching pair with the deterministic approach.  

However, simulations of the random search show the expected behavior of 4 

choices for every input instance.  The randomized version has eliminated the 

adversary input instances that cause poor running time in a deterministic method.   

One generic type of Las Vegas algorithm may perform efficient correctness 

checks and, rather than producing an incorrect answer, output no answer at all (or 

better, an apology message).  These error cases can be handled by repeatedly 

running the algorithm until a successful answer is found.  For a deterministic 

algorithm, this behavior is unacceptable.  It is acceptable for Las Vegas algorithms 

if the probability of a dead end is not high or if an efficient deterministic method 

does not exist, such as large integer factorization (Brassard & Bratley, 1996).  

Instead of occasionally returning no answer, other Las Vegas algorithms are 

always guaranteed to return an answer, but could suffer long running times due to 

poor choices.  These algorithms are usually used when a known deterministic 

algorithm can solve a problem quickly on average, but suffers major setbacks when 

encountering a specific input instance.  The randomness in the Las Vegas versions 

of these algorithms is used to reduce or remove the probability of these instances 
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from occurring.  The worst case is not prevented, but instead the association is 

removed between the bad instance(s) and their probability of occurrence. 

Las Vegas algorithms cause the phenomenon known as the Robin Hood 

effect (Brassard & Bratley, 1996).  That is, when the deterministic method 

counterpart solves an instance very slowly, the Las Vegas algorithm performs 

quickly.  On the other hand, when the deterministic method is fast on an instance, 

the Las Vegas method slows it down.  Similar to Robin Hood, Las Vegas 

algorithms steal from the rich (fast deterministic instances) and give to the poor 

(slow deterministic instances).  However, the average case behavior of such 

algorithms over any instance of the problem results in good expected performance. 

A more common and useful example of a Las Vegas algorithm to address 

the selection and sort problem is called selectionLV (Brassard & Bratley, 1996).  

The problem of finding the k-th smallest element in an array can be handled 

deterministically by partitioning the array using a pivot point, and repeatedly 

searching each sub-array.  This technique known as divide-and-conquer is most 

efficient when the pivot point is as closest to the median of the elements.  

Calculating the exact median is not efficient because the process involves a special 

case of the problem at hand.  Deterministically choosing a pseudo-median avoids 

the “infinite recursion”, but is still inefficient (Brassard & Bratley, 1996).  

Choosing the pivot as the first element is better, with average linear execution time, 

but has worst-case quadratic time.  Therefore, deterministic approaches with linear 
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worst-case times are not optimal because of hidden constants, and simple 

deterministic approaches require quadratic worst-case time. 

The selectionLV algorithm chooses the pivot randomly to avoid the pitfalls 

of the deterministic worst-case instance.  The execution time is now only dependent 

on the size of the instance, instead of the instance itself.  Any instance of the 

problem results in linear expected time, although quadratic time is possible.  The 

possibility of quadratic behavior results from poor random decisions, and becomes 

very small as the instance size grows. 

The same idea is used for the popular sorting algorithm known as 

Quicksort.  This deterministic algorithm has a very fast O(n log n) average case 

running time.  However, in the worst-case of an already-sorted list, the algorithm 

behaves with Ω( n²) time.  The recursive nature of splitting an array according to a 

pivot is optimal for Quicksort if the pivot splits the array into same size sub-arrays.  

The result of choosing a pivot at random causes the expected running time to be 

O(n log n) for all instances under consideration. 
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Chapter 2: Theory 

2.1  Approximation and Simulation 

Problems that are NP-complete and/or NP-hard are unlikely to be optimally 

solved using a polynomial running time algorithm.  The intractability of finding an 

exact solution can possibly be solved by a number of interesting methods including 

the following: using an exponential running time algorithm, isolating special 

instances, or using a polynomial running-time algorithm that outputs near-optimal 

solutions (Cormen, 2001).  The mentioned polynomial, near-optimal method of 

providing approximate answers is usually good enough for situations where it is 

reasonable to sacrifice optimality for a feasible, efficient solution. 

The National Institute of Standards and Technology defines an 

approximation algorithm as: “An algorithm to solve an optimization problem that 

runs in polynomial time in the length of the input and outputs a solution that is 

guaranteed to be close to the optimal solution. “Close” has some well-defined sense 

called the performance guarantee” (“approximation”, NIST 2004).  Randomization 

in algorithms is one of many methods used for the approximation of problem 

solutions.  Monte Carlo and numerical probabilistic algorithms both produce 

approximate answers.   They specify a type of ‘performance guarantee’ in terms of 

a probability of correctness and/or confidence intervals. 
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Simulation is an approximation technique used to model the real world.  

Using randomness to abstract details, repeated statistical tests are executed to 

narrow in on a solution with a sense of accuracy.  It is a powerful way to study 

complex problems without analytically studying fine details.  These details are 

abstracted and the resulting solution is an estimated proportion.  For example, a 

simulation of the weather may find that the probability of rain is 80% when a cold 

front moves through.  A weather simulation does not model every atomic detail of 

the wind, pressure, and temperature conditions at every point in space.  Many 

factors are estimated, which could lead to the forecast being incorrect.  Although a 

simulation could be slow and costly, it could also save lives and money for 

sensitive systems where extra analysis is never a bad thing.  The alternative to 

simulation is an even costlier experimentation effort consisting of trial and error. 

Simulation allows choices to be made without actually making them.  

Choices are ‘virtually’ made, and the results are studied to see the behavior of a real 

system under approximately the same environment.  The simulation can then be run 

over and over with different arrangements to study the effects.  Once the effects are 

acceptable, the variables in the simulation can be applied to the real world, and a 

real decision can be made with confidence that the expected behavior is known. 

Simulation is a type of random algorithm that is solely responsible for 

approximating and analyzing.  A simulation contains an approximation mechanism 

that causes results similar to a random algorithm.  Like random algorithms, 
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simulations can be wrong.  Weather simulations are often incorrect for the path of a 

hurricane, or the movement of a cold front.  These imperfections arise because the 

simulation itself is imperfect.  However, if a simulation were constructed to 

measure every detail, it would be very costly and serve as a useless redundant 

system.  Simulation attempts to approximate the unimportant details and pinpoint 

the end result. 

2.2  Performance 

The theoretical study of random algorithms is an important and necessary 

science due to the uncertainty contained in the computational process.  While 

deterministic algorithms are analyzed for their worst-case time performance, 

random algorithmic performance presents a different problem.  Numerical 

probabilistic algorithms produce different answers on repeated runs; Monte Carlo 

algorithms can be wrong; and Las Vegas algorithms produce varying execution 

times.  Therefore, the analysis of these algorithms cannot be defined by solid rules 

like deterministic algorithms.  The complexity analysis of these algorithms must be 

performed using estimations of the expected behavior.   

2.2.1 Complexity Analysis 

Analyzing algorithms that use random methods is quite different from 

analyzing deterministic complexity.  The notion of averages and expectations is 

appropriate for random algorithms since these algorithms work with a random 
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variable chosen from some probability distribution whose value is uncertain.  

Therefore, analyzing such algorithms must take into account the average or 

expected value of the random decisions. 

The average running time of deterministic algorithms is the measurement of 

likely behavior of the algorithm over a series of problem instances.  This 

measurement assumes that each possible instance of a problem is equally likely to 

occur at random.  The problem with this approach is that if some instances are 

more likely to occur, which occurs quite frequently in some problems, then the 

average behavior can be misleading since the instance probability distribution is not 

uniform.  For example, updating a checking account history usually involves 

inserting the newest transactions into a pre-sorted list.  The entries themselves must 

be sorted and inserted so the list is in correct order.  Such algorithms like Insertion 

Sort can do this computation much faster than its average case, which in this case, 

is misleading (Brassard & Bratley, 1996). 

In order to make average case analysis useful in deterministic algorithms, 

random methods can be used to modify the instance probability distribution.  A 

deterministic algorithm that performs well under the average case, yet has a bad 

worst case, can be altered to make the worst-case instance very unlikely or 

impossible to occur.  By incorporating a random variable, the algorithm can 

become less prone to the worst-case instance. 
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2.2.2 Expected Run Time 

With random algorithms, the complexity analysis heuristic that is widely 

used is the expected running time.  This refers to the mean running time of a 

randomized algorithm on a particular instance, multiple times.  Unlike the average 

time of a deterministic algorithm, the expected time of a random algorithm is 

“defined on each individual instance” (Brassard & Bratley, 1996, p. 331).   

Since random choices are under direct control of the algorithm, it is not 

useful to measure the unfortunate case where an algorithm is inefficient due to bad 

choices.  Unlike deterministic algorithms, no one particular instance causes worst-

case behavior in a random algorithm.  While one instance may be a victim of the 

algorithm’s terrible choices and have a long running time, the next may be solved 

quickly due to better or more flexible choices.  The analysis of random algorithms 

measures the expected equilibrium behavior over multiple runs on the same 

problem instance, similar to the expected equilibrium value of a random variable. 

Instead of relying on a probability distribution of input instances, where 

some may occur more or less often than others, random algorithms attempt to treat 

every instance in an equal manner.  The expected behavior is therefore applicable 

for all instances instead of a subset that must be averaged.  The distribution of the 

random decisions made internal to the algorithm governs its behavior.  

Understanding this distribution is important for analyzing the expected behavior.  

However, it is still helpful to measure the average and worst case expected 
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behavior.  These measurements refer to the analysis of the expected running time of 

an algorithm with respect to the average and the worst instance of a given size as 

opposed to the behavior based on lucky or unlucky decisions. 

2.2.3 Unknown Run Time 

Another interesting category of analyzing random algorithms concerns the 

consideration of run times that may be unknown.  While the benefits of this 

realization may be minimal, the importance can be seen when considering some 

human-like processes.  For example, it is obvious that humans do not perform 

linear searches for retrieving memories.  We instead can only guess at how we can 

lose a thought and regain it at some later time, such as remembering a dream that 

occurred a week ago.  How are we to analyze such performance?  The uncertainty 

of thought recollection processes causes the run-time of a memory search to be 

unknown.  The uncertainty built into a random algorithm can cause them to 

perform in the same manner.  For example, when drawing a number of random 

black and white pixels on the screen to simulate an off-broadcast television 

channel, how long must we wait until every other pixel is black, and every other 

pixel is white?  Is it even possible to estimate this?  Probability theory states that 

this event will never occur (probability of 0).  This does not rule out that it can 

happen since it is a legitimate distribution of pixel configurations.  However, the 

continuous random variable takes on the value so rarely that its proportion of 

occurrence is reduced to 0. 
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Randomness translates to a level of uncertainty, which cannot be tolerated 

in an environment that is required to be highly reliable.  Randomized algorithms 

produce approximate and uncertain answers, and have uncertain run times.  In 

critical real-time applications such as avionics or biotechnology, the use of random 

algorithms should be limited.  It is ironic that the computer has seemingly been 

developed to function as a slave in which simple deterministic algorithms, that are 

reliable and fast, are trusted to perform tasks better than that of their creator. 

2.3  Probability and Game Theory 

Probability and Game Theory are the best mechanisms for explaining 

randomness.  Probability problems can be both intuitive and perplexing, even at the 

same time.  Game Theory uses probabilities to analyze games and predict the 

behavior of players.  Random algorithms can be both designed and analyzed using 

the rules of these theories to determine expected behavior and rational strategies. 

2.3.1 Intuitive Probability Problems 

Random methods are intuitive to the algorithm designer when the order of 

decision operations does not matter and there is no supporting evidence of choosing 

one path over the next.  For example, situations that cause a deadlock condition 

have arrived in a state of equilibrium where it is not important who/what takes 

precedence.  What matters is that the deadlock must be broken to avoid losing 

processing time.  A processor with four pending tasks that have arrived at the same 
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time, and determined to be equal in size, has no gain in picking one over another.  

The goal is to get out of the deadlock state and process any of them.  Picking the 

order at random is a fair way of breaking the deadlock. 

A deterministic algorithm is unable to fairly break the symmetry because it 

contains no variation in its choosing ability.  Deterministic algorithms are ‘dumb’ 

in that they cannot make decisions to ward off adversaries.  This is analogous to a 

pinball machine that continually shoots the ball in an unbreakable circular path in 

which the player can accumulate a large amount of points with absolutely no 

interaction.  The user has found a built-in adversary, and has to eventually wait for 

the inherent randomness in the universe to free the ball.  Without a variation in 

bounce speeds, or perhaps a random spin of the ball, the machine is ‘dumb’ and 

cannot adapt to fight this condition. 

The conscious decision of choosing something randomly raises an 

interesting question in the debate of mind versus machine.  Any decision in which a 

human must “just pick one” involves some sort of random generation.  How do we 

perform such a task?  Do we base it on other events?  Are the other events 

independent of each other?  For example, did I decide to put on my left sock first 

because I happened to stub my right toe yesterday on a box that was delivered 

incorrectly to my house because the delivery man was upset because his right sock 

had a hole in it?  Just pondering about one simple case makes it mind boggling to 

think of the large amount of randomness that one uses per day. 
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2.3.2 Counter Intuitive Probability Problems 

Probability problems must be analyzed fully to realize their value since they 

may present counter-intuitive results.  A probability problem that is not properly 

analyzed could cause haphazard decisions because of incorrect assumptions.  For 

example, consider a version of the Prisoner’s Dilemma described by Frederick 

Mosteller (Weisstein, Prisoner 2004).  Three prisoners apply for parole and only 

two of them are to be released.  One prisoner asks a knowledgeable warder for the 

name of one of the lucky prisoners.  The warder tells the prisoner the name of one 

of the two other prisoners.  While the prisoner now would think that his chances of 

being released are 50% because only two prisoners remain, they are actually still 

66.666…%, the same as they were if he did not have the extra knowledge.  The 

prisoner’s incorrect assumption is due to the misuse of extra knowledge in a 

probabilistic environment. 

Now consider a similar, yet opposite problem known as the Monty Hall 

problem.  Named after the famous television game show host, this problem 

involves three doors in which only one contains a prize behind it.  A player chooses 

one door that they believe contains the prize.  The problem exists when the host 

displays a booby prize behind one door, and asks the player if they want to switch 

their guess to the remaining door.  Since the strategy for the first choice was 

rationally random, it would seem that the second choice of switching would also 

be.  However, statistical analysis shows that this is not the case.  Probability theory 
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shows that switching doors results in a 66.666…% percent chance of choosing the 

correct door.  When the player does not switch, the chance of choosing the correct 

door is only 33.333…%. 

It seems that these two problems are identical, yet have drastically differing 

rational solutions.  In the Prisoner’s Dilemma, it seems rational that the extra 

knowledge would allow for better chances.  In the Monty Hall problem, it seems 

rational to either stick with your initial ‘gut’ instinct and not switch your decision 

or randomly decide to switch your decision.  However, in these cases, the intuitions 

are false.  Extra knowledge in the Monty Hall problem is beneficial, and extra 

knowledge in the Prisoner Dilemma is irrelevant. 

Programming these problems reveals that they are not so tricky after all.  

Figure 10 and Figure 11 combine a random number generator and logic statements 

to show that the Prisoner Dilemma is simply a random choice between three 

numbers, and that the Monty Hall problem results in two common solutions 

(switching doors, 66.666…%) and one lone solution (sticking, 33.333…%). 
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Prisoner Demo – performs a guessing game with two of three prisoners to be released.  
Repeated iterations of this program will result in a probability of 66.666…% release 
rate since (C==H) 33.333…% of the time. 
 
Input: 
Output: boolean – true if released 
 
1: Identify a prisoners to be held: H = uniform(1..3) 
2: Identify a curious prisoner: C = uniform (1..3) 
3: Release one prisoner != H 
4: Release other prisoner != H 
5: Return (If C was released) 

 
Figure 10. Prisoner demonstration algorithm. 

 
 

Monty Hall Demo – performs a guessing game with three doors and switches the guess 
when a dummy door is opened.  Repeated iterations of this program will result in a 
probability of 66.666…% win rate since (G==D) 33.333…% of the time. 
 
Input: 
Output: boolean – true if win 
 
1: Choose a door that hides the prize: D = uniform(1..3) 
2: Choose a guess of the prize door: G = uniform(1..3) 
3: If: G == D switch guess to incorrect door – return false 
4: Else: switch guess to correct door – return true 

 
Figure 11. Monty Hall demonstration algorithm. 

 
 

It is important to notice how probability theory has certain properties that 

can lead to misuse.  Some non-intuitive properties of a random process were 

pointed out in Section 1.2.1.  The above mentioned Prisoner’s Dilemma points out 

another useful property: predicting future events according to probability theory 
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does not follow the intuitive Law of Averages (Whitney, 1990).  An independent 

random event is completely random on every single instance.  This is why a 

random flip of a coin could possibly turn up heads five times in a row.  Using past 

knowledge does not change the probability of an independent event to occur.  The 

Law of Averages only applies to past events and probability theory shows that the 

likeliness of an event is applicable for an infinite number of trials.   Since the future 

is not known, the Law of Averages cannot be used.  Therefore, probability theory is 

simultaneously claiming to describe the future with complete certainty (probability 

of an event occurring) and to describe the future with complete uncertainty 

(randomness, anything can happen). 

Like a magician and his bag of tricks, these counter intuitive situations 

occur because of uncertainty in the problem domain.  The magician takes 

advantage of their naïve audience and amazes them with the unexplained.  The 

audience’s lack of understanding causes them to accept what they see because they 

do not know any better.  The information that the magician is allowing them to 

perceive does not fully explain the situation.  The magician attempts to render the 

intuitions of the audience false through the use of illusions.  For example, it is 

assumed that a lady sawed in half cannot continue to smile and wave at the 

audience, but the magician is able to cleverly shock the audience by disguising the 

event with ‘smoke and mirrors’.  Misuse of the illusions presented by magicians 
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(sawing a person in half is bad) shows how the illusions of probability theory can 

lead to incorrect assumptions. 

2.3.3 Minimax Principle 

With the realization of probability theory benefits and pitfalls, it becomes 

clear that randomness and probability are the perfect mechanisms for analyzing and 

playing games.  The analysis of games and the role that chance plays highly 

depends on the study of probability.  Games are designed to challenge players and 

allow them to devise strategies in order to win.  Ideally, the most rational strategies 

will win.  Ironically, randomization helps to determine which strategies are the 

most rational. 

A zero-sum game is one in which a player benefits only at the expense of 

other players.  At any point in the game, the net-amount won and lost for all players 

is zero, such as in Chess or Poker.  In these games, it is ideal for an offensive player 

to choose a strategy that will maximize their payoff outcome, while a defensive 

player would ideally like to minimize it.  An optimal strategy allows the player to 

guarantee a payoff amount that they will be satisfied with, no matter what action 

the opponent takes.  In games where there is no definite strategy that will produce 

optimal results for any player, a randomization method can be used to choose a 

rational strategy.  A definite strategy would, in essence, make the game boring and 

cause the player to have no sense of creativity.  A devised strategy according to a 

probability distribution would allow for interesting play. 
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Using the payoff matrix in Figure 12, the optimal choice for the row player 

in order to maximize the minimal payoff amount is strategy b.  The optimal choice 

for the column player in order to minimize the maximal payoff amount is strategy b 

also.  This game has a solution in which a player can deterministically establish 

their optimal strategy and place a bound on their payoff amount.  Each player is 

guaranteed to payoff 0 no matter what the other player chooses to do. 

 a b 
a 0 -1 
b 1 0 

 
Figure 12. Payoff Matrix with solution. 

 
 

The payoff matrix in Figure 13 shows why probabilities must be used to 

find a strategy in the absence of a solution.  Each player does not have a clearly 

defined optimal strategy.  If a player were to choose one strategy and stick with it, 

they could end up losing many points to the other player.  Assigning probabilities 

to the strategies allows for a more interesting game.  If each player chooses a 

strategy with a 50% probability, the expected payoff of the game is 0.  Also note 

that if the row player chooses strategy ‘a’ with 90% probability, and the column 

player chooses ‘a’ with 90% probability, the expected payoff is now 0.64 points in 

favor of the row player.  The expected payoff is calculated by summing the row and 

column probabilities multiplied by the point value (Motwani & Raghavan, 1995). 
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 a b 
a 1 -1 
b -1 1 

 
Figure 13. Payoff Matrix with no solution. 

 
 

John von Neumann’s Minimax Theorem shows that using probabilities to 

determine a strategy causes the guaranteed maximized expected payoff amount to 

equal the guaranteed minimal expected payoff amount, thus any two-person zero-

sum game always has a solution (Motwani & Raghavan, 1995).  The offensive and 

defensive players agree to disagree about optimal strategies since they are designed 

to disrupt one another (Ruelle, 1991). 

Using randomness when playing games is a perfectly rational way to devise 

a clever strategy against an opponent.  In an uncertain competitive environment, the 

best strategy to use is random.  A baseball pitcher can choose a random set of 

pitches to use to confuse a hitter.  A boxer can devise a random set of punches to 

throw.  A tennis player can serve over a random area and keep their opponents 

return strategy to a best-guess.  The more random the activity, the more 

randomness the opponent needs to use to combat it.  Therefore, in theory, the 

player with the most amount of randomness wins. 

Acting according to probabilities allows for approximate answers, but more 

freedom.  Always making the optimal choice can lead a strategy to a dead-end 

because of unforeseen information.  For example, it is optimal for a boxer to hit as 
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hard as possible, but an unforeseen consequence is the stamina of the player.  A 

boxer hitting with maximum strength can usually only last a few rounds.  A boxer 

that randomly mixes strength, agility, and awareness is more rational.  Using these 

principles, algorithms can act erratically and still produce rational solutions. 

2.3.4 Lower Bound Performance 

The Minimax Theorem provides more information about random 

algorithms than simply that of a mechanism to play a game.  The idea of studying 

player strategies to accomplish some optimal goal coincides with the wish to place 

bounds on a random algorithm.  A random algorithm is a struggle between an input 

distribution and an algorithm distribution.  Since a random algorithm is eventually 

executed on a logical computing machine, it must follow the rules of a standard, 

deterministic state machine.  Just like the rules of probability are obsolete after an 

uncertain event, a random algorithm execution path is deterministic after all 

random numbers have been generated.  That is, the same random numbers will 

produce the same output.  Therefore, a random algorithm with a finite number of 

states and finite input can be viewed as a distribution of deterministic algorithms.  

This fact allows a random algorithm to be analyzed for a lower bound using the 

Minimax Theorem. 

For analyzing such a random algorithm, the payoff matrix contains rows of 

different input and columns of the deterministic algorithms contained within the 

random algorithm.  The payoff amount specified in the matrix is some measure of 
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the algorithm such as run time or memory.  Just like a game payoff matrix, the row 

player (the adversary choosing an input) would like to maximize the payoff and 

cause the algorithm to perform poorly.  The column player (the mechanism 

choosing which algorithm to use) would like to minimize the payoff and execute 

efficiently.  If a deterministic strategy were used to choose an algorithm, then the 

optimal strategy would result in the worst-case performance.  This is because if an 

adversary input is chosen, the algorithm will guarantee an upper bound of the 

behavior.  No matter what input is chosen, the algorithm will perform no worse 

than the chosen strategy.  However, using a mixed (random) strategy results in a 

probability distribution over the set of deterministic algorithms resulting in a Las 

Vegas, randomized algorithm (Motwani & Raghavan, 1995). 

For this random algorithm, represented as a set of deterministic algorithms, 

it is possible to define a lower bound on its behavior.  Choosing the worst possible 

input distribution and the best algorithm, the complexity is smaller than the pure 

strategy (deterministic worst-case) because the input distribution is known 

(Motwani & Raghavan, 1995).  Using the Minimax Theorem, this game has a 

solution, and the solution reflects that the complexity of the best algorithm for the 

worst input is a lower bound for the expected run time of any randomized 

algorithm.  For any input, the expected run time of the optimal algorithm is a lower 

bound of the optimal Las Vegas algorithm since the randomness allows for other 

algorithms to perform the task at hand.  To prove the lower bound, any input 



 51 

distribution can be used to find the best behaving expected run time of the 

deterministic algorithms.  This lower bound is useful for random algorithms in 

which the computation time is finite, the number of algorithms is finite, the number 

of inputs is finite, and the size of every input is finite. 

 The Minimax Theorem shows that the input distribution does not matter 

when proving a lower bound.  This is because the algorithm must be able to handle 

the worst possible input.  Given the worst input, the Las Vegas algorithm can 

perform no better than its best deterministic computation behavior.  This reduction 

to determinism is beneficial because the input distribution is known, which is an 

advantage in any game. 

2.4 Random Walk 

Modeling probabilities and games over time is achieved by using a 

construct known as the random walk.  Any system can be modeled by a set of states 

and transitions.  The behavior and design of random algorithms benefit from the 

patterns that can be discovered walking through a probabilistic state machine. 

A deterministic state machine has the knowledge of exactly how it arrived 

in a state, and all future states are determined by the transitions of the past.  There 

is no variation of behavior because the movement from state to state strictly follows 

the rules of logic.  The machine’s final state can be completely predicted given an 

initial state and a sequence of actions. 
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A state machine that uses probabilities to determine state transitions allows 

for a more dynamic and flexible machine.  Given the initial state of the machine, 

and a set of actions, the final state cannot be completely predicted.  The transition 

from state to state is based on the result of a random draw.  Navigation through 

such a machine is called a random walk.  A random walk can be performed on any 

connected, undirected graph where the next state to visit is chosen uniformly at 

random from the set of neighbors.  Figure 14 shows a random walk and associated 

transition matrix.  The weights of all edges are equal, so the probability of 

transition between vertices is calculated by 1/(# neighbors).  In Figure 14, vertex D 

has three neighbors, so the probability of transition to each one is 0.333…, which 

sums to 1. 

 

Figure 14. Random Walk graph with transition matrix. 
 
 

A Markov chain is an abstraction of a random walk over a graph that 

contains weighted, directed edges.  For each vertex, the transition to the next state 
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is calculated by normalizing the outgoing edges to create a matrix of transition 

probabilities.  The higher the weight, relative to the other outgoing edges, the more 

probable the state transition.  The normalized outgoing edges therefore sum to 1.  

Figure 15 shows a Markov Chain with edge weights that are already normalized.  

Unlike a deterministic state machine, a Markov chain is memoryless.  Future states 

of the system are determined on-the-fly and are only dependent on the current state 

of the system, not the previous states.   

 

Figure 15. Markov chain graph and transition matrix. 
 
 

As an abstraction of a random walk, a Markov chain is also an abstraction 

of a random algorithm.  A random algorithm contains a number of states, and the 

draw of a random number determines the movement along the states, according to a 

distribution, to a solution.  Although random walks contain uncertainty, there are 

measurable properties that can be used to determine the expected behavior of a 
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given probabilistic state machine.  These properties are, in turn, useful for 

analyzing the behavior of random algorithms. 

The measurable properties of a random walk can be divided into two main 

areas discussed in the following sections.  The first area deals with the distribution 

of the expected final state in random walks of a certain length.  The second area 

groups together measures of the expected number of cycles to transition between 

states and includes the complicated and mysterious cover time. 

2.4.1 Endpoints 

A random walk by itself is, by definition, very unpredictable.  It does not 

express anything about the nature of the state machine.  However, a series of 

random walks on the same graph can extract interesting patterns and measure 

commonalities that may not be obvious.  As the quantity of random walks 

increases, the distribution given by the transition probabilities emerges.  The study 

of these patterns extracts the expected behavior of the state machine, even though 

one run can vary greatly from the next.  Analyzing a random walk by measuring 

the distribution of the final states gives a good indication of the nature of the 

machine. 

Given a random algorithm that transitions between states on a line, it is 

beneficial to determine the expected final state of the algorithm after N cycles.  For 

example, a random walk can be performed to simulate the movement of an ant 

towards food.  The ant moves left or right with 50% probability.  If the food were 
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located only towards the outreaches of the ants range, then the only ants that would 

survive would be the most adventurous ones.  Starting in the middle of the line with 

a large number of ants, only few would reach the food since the distribution of 

endpoints in this type of random walk is similar to a normal curve.  These ants must 

make the same directional move many times in a row.  This is the same as a 

random sequence of 1’s and 0’s turning out 000000 or 111111.  It is rare, but not 

impossible. 

Figure 16 is a summary of a random walk simulation with 10,000 random 

walks of length 10 along a line.  The random walk begins with the center vertex 

and the movement is binary (left or right).  The number of random walks that 

completed at a particular vertex is shown as vertical bars with the exact quantity 

specified in red.  Because the length of the walk is even, no random walk can finish 

at the even numbered vertices.  The odd numbered vertices show that most walks 

ended towards the center starting point, with few walks reaching the ends. 



 56 

 

Figure 16. Distribution of random walk endpoints on a line. 
 
 

Another way of performing the above random walk model to produce the 

familiar endpoint distribution pattern is to use a Galton Board.  A Galton board is a 

structure of pegs arranged in a triangle with row N having N pegs.  A random walk 

on a Galton board can be expressed by dropping a ball from the top, and watching 

it bounce to the bottom with the probability of 50% falling to the right or left of one 

peg in each row.  The number of paths to the bottom row of bins in a Galton board 

is equal to the values of the Pascal Triangle (Whitney, 1990).  Therefore, it is not 

surprising that a large number of random walks produce an approximate binomial 

distribution of balls into bins, like the numbers of the Pascal Triangle.  With a large 

amount of walks, the number of balls in bins can be normalized and approach the 



 57 

proportions of the Pascal Triangle numbers.  This is the same result for the random 

walk along a line since the Galton board is, in essence, equivalent.  The Galton 

board shows that the random walk will tend to follow the most common paths.  The 

middle bins are easily accessible, and the outer bins are difficult to reach.   

To obtain accurate values of the Pascal triangle, a very large amount of 

random walks on a Galton Board must take place.  As the number of bins increases, 

the amount of random walks must drastically increase to get a good approximation.  

This is why Figure 17 shows only up to the ninth row since it took 1,679,616 

random walks to achieve the accurate Pascal triangle results of the bottom row.   

 

Figure 17. Rows derived by a Galton Board random walk. 
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2.4.2 Routes and the Cover Time 

Other important measures of random walks involve the expected number of 

cycles needed to visit a range of vertices.  The hitting time (expected number of 

cycles to travel from one vertex to another), the commute time (expected number of 

cycles to travel from one vertex to another and back), and the difference time (the 

delta between the two (to and from) paths in the commute time) are measures that 

provide addition information about the patterns of a random walk.  The cover time 

is a unique and difficult measure of a random walk.  The cover time measures the 

expected number of cycles needed to exhaustively cover all states.  Although it is 

not known if the cover time can be computed exactly or approximately in 

deterministic polynomial time, Feige and Rabinovich (2003) outline a deterministic 

algorithm that can approximate the cover time with polylogarithmic factors.  This 

deterministic algorithm is an alternative to a polynomial numerical probabilistic 

algorithm that simulates a series of random walks and approximates the cover time.  

The numerical probabilistic version calculates random numbers and walks along 

the graph counting state transitions until all vertices are covered.  The simulation 

then repeats the experiment and calculates the approximate result.  Like any 

numerical probabilistic algorithm, the precision gain is very small for a large 

increase in simulations.  Therefore, for a large amount of vertices, the algorithm is 

not reliable. 
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The application of a random walk and the cover time relates to the 

intelligent task of decision-making.  A random walk acts as a good mechanism to 

create or find a decision in which an expectation value exists.  Many random walks 

along the problem space converge to some set of expected decisions.  However, 

some decision paths will stray from the norm from time to time.  The cover time is 

an estimate of the expected time to visit all states of the decision-making process, 

thus could be used to produce a well-informed decision.  As well as decision-

making, a random walk and its properties also apply to the problem of allocation.   

2.5 Allocating Balls into Bins 

Many problems of chance deal with the ability to estimate the distribution 

of balls into bins.  How many rounds of poker are necessary to obtain a royal flush?  

How can a number of tasks be distributed to complete them all within a given time 

frame?  A distributed computer network, a microprocessor, or even a workflow 

software application must be able to handle load balancing of processes to 

resources efficiently.  With a completely random interface to the world, these 

systems have no knowledge of incoming processes (balls) that need allocating.  

They must distribute the processes to a number of resources (bins) in a rational and 

efficient manner. 
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2.5.1 Allocation Problem 

Randomness can benefit the allocation process and eliminate the need for a 

central point of control.  It provides variation, needed to minimize the load over 

resources, and distribution, to reduce the number of decisions required to allocate a 

process.  A deterministic allocation scheme has limited flexibility and requires a 

‘global controller’ to assign balls to bins. 

Like a deterministic allocation process that can calculate and guarantee 

loads, a random one can similarly set bounds on load balancing.  The ‘classical 

allocation process’ assigns a ball to a bin by choosing the bin uniformly at random 

and has an average allocation time of 1 (Czumaj & Stemann, 2001).  This method 

is still not ideal due to the possibility of wasting resources because of unlucky 

random draws.  For example, the first bin could be chosen five times in a row to 

allocate processes, while all the other bins are idle.  Therefore, it is useful to study 

‘adaptive allocation processes’ that still use randomness, but provide a better 

tradeoff between the maximum load, the maximum allocation time, and the average 

allocation time (Czumaj & Stemann, 2001).  Another useful strategy for allocation 

is to reassign processes to improve efficiency.  Reallocating processes to resources 

can provide an ideal balance, but the operations involved are usually expensive and 

should be limited (Czumaj & Stemann, 2001). 

A random walk, described in Section 2.4, acts as a simulation of the 

allocation process.  Processes can be assigned to resources by being distributed by 
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some random walk scheme where the expected patterns are known, and the 

variation from the expected path is acceptable and possibly beneficial.  For 

example, if four processors were available with a binomial distribution of 

computing power (2 slow machines and 2 fast), a Galton board random walk would 

allocate more processes to the fast machine if they are arranged like the bottom row 

of a 4 level Pascal triangle with the slow machines on the outside and fast machine 

in the middle (1,3,3,1). 

Algorithms that schedule and allocate processes to resources are susceptible 

to adversaries, especially in distributed, fail-prone environments (Chlebus & 

Kowalski, 2004).  Distributed computing allows for the execution of independent 

tasks concurrently.  A distributed system must deal with processors that fail, or 

crash, and be able to reallocate tasks.  Adversaries decide which distributed 

processors to fail and when.  ‘Weakly-adaptive’ adversaries must choose the 

processors to fail prior to execution.  Therefore, randomization during execution 

can be used to disguise the assignments of processes to resources (Chlebus & 

Kowalski, 2004).  Since the adversaries are unable to predict the uncertainty, they 

cannot produce an unfair failure strategy.  This allows randomized algorithms to 

solve the problem of performing tasks reliably in a distributed environment to be 

more efficient than deterministic methods (Chlebus & Kowalski, 2004). 
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2.5.2 Coupon Collector Problem 

When using randomness to distribute processes to resources, it is important 

to place bounds on the allocation time.  This, and other problems that are suitable 

for random algorithmic techniques to perform intelligent tasks, such as game 

playing, fall into a category that is described by the Coupon Collector problem.  

This problem estimates the number of trials that are necessary to randomly allocate 

balls into a set of bins such that each bin has at least one ball.  The name is derived 

from a collector of coupons that wishes to have at least one coupon of each 

available type by randomly choosing them.  The problem encompasses the most 

influential areas of analyzing random algorithms such as the cover time, random 

walk, and allocation time.   

The main problem with randomness is the uncertainty in the value of a 

random variable over very few problem instances.  The definition of the variable 

being random causes the value to be completely unknown, even if it is chosen from 

a known distribution.  The run time for waiting for a particular value of a random 

variable is completely unknown.  The only help in this area comes from the 

Coupon Collector Problem.  The solution to this problem tells us when all the bins 

will be full opposed to when one of them will be filled.  For example, when waiting 

for the number ‘3’ when uniformly picking a random number between ‘1’ and ‘10’, 

the only accurate estimate that can be made (other than the probability of 0.1 of 

being chosen) is derived from the Coupon Collector Problem.  The solution to the 
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problem produces an expected upper bound of about 29 trials before the number 3 

is chosen.  Therefore, the number 3 is expected to be chosen anywhere from the 

first choice, to the twenty-ninth choice, and possibly more. 

The solution to the Coupon Collector Problem comes from harmonic 

numbers.  Motwani and Raghavan (1995) show that the expected value of the 

number of trials to collect at least one of every type of coupon is n*H(n) where 

H(n) is the nth harmonic number.  The nth harmonic number is defined in Eq. 2.  

Therefore, the expected number of trials to collect all N coupons is given in Eq. 3. 
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 Although the solution to the coupon collector problem can be calculated 

easily for small values of N, the calculation gets messy for large N.  Therefore, for 

large N, the solution must be approximated.  Motwani and Raghavan (1995) put a 

sharp threshold on the approximation of the solution. 

The Coupon Collector problem provides expected upper bounds for the 

cover time of a random walk on a complete graph with self-loops, as shown in 

Figure 18.  Many simulations of a random walk along this graph converge to the 

actual solution for the quantity of vertices (bins).  For example, in a simulation of 
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the graph in Figure 18 with four vertices, 100 random walks were averaged to 

produce an estimate of 8.76 while 10,000 walks estimated 8.3156.  As the quantity 

of random walks increases, the solution becomes closer to the actual value of 

8.333…. 

 

Figure 18. The Coupon Collector random walk graph and transition matrix. 
 
 

The application of the Coupon Collector problem in intelligence problems 

is the ability to provide expected upper bounds and obtain a controlled grasp of 

uncertainty.  A random search with replacement is bounded from above by the 

expected number of uniform random choices to make to exhaustively cover all 

possibilities.  The bounds provide good worst-case analysis for guessing games and 

chance games where other analysis is too complex or infeasible.  For the allocation 

problem, these bounds provide a randomized load-balancing algorithm with the 

expected number of task assignments to keep all resources occupied. 
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2.6 Search and Fingerprinting 

Searching is the most important technique to finding patterns and devising 

strategies.  The quickest and most efficient search technique is classified as the 

most intelligent technique.  Accordingly, the ability to make the computer 

extremely fast and efficient when searching is one of many possible methods to 

demonstrate intelligence.   

The role of randomness in searching is an ironic one.  The benefit that 

uncertainty brings is the ability to be flexible and non-biased.  Random algorithmic 

processes are not restricted to an orderly search path that could allow adversaries to 

take advantage of. 

2.6.1 Random Search 

Random Search is a method of searching with no planned structure or 

memory.  This method has the same intent of the typical intuitive search, but the 

opposite strategy to achieve it.  A random technique may be preferred if it takes 

more time to devise a better technique, or the additional work involved is 

negligible.  For example, the Coupon Collector problem shows that a random 

search is bounded from above by the expected number of trials to exhaustively visit 

all vertices of a graph.  If the extra factor associated with the random search is 

acceptable then the simplicity of it can be utilized. 
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Numerical probabilistic algorithms use random search when zeroing in on a 

target value.  For example, approximating the area of a figure or approximating the 

value of � is a random search.  Iterations of the algorithm loop independently to 

contribute to a random sample.  At the end of all iterations, the sampled values are 

combined and usually averaged to output an approximated value.  This random 

search is not exact, but instead is a random sampling technique that uses a subset of 

information to approximate a whole.  Theoretically, an exhaustive random search, 

in this case, will lead to the entire population represented, thus emerging the exact, 

correct value.  An exhaustive random search for a numerical probabilistic algorithm 

is one who’s run time is infinite, like the probability of ‘heads’ or ‘tails’ for an 

infinite number of coin tosses.   

With numerical probabilistic problems, the search is conducted for some 

unknown value that must be approximated.  The random search is continuous 

because the accuracy of the answer is related to the number of repetitions.  

However, only an infinite number of repetitions will provide the exact answer.  

Better answers are provided with a large sample size that obtains more coverage of 

the search space.  Random search is also beneficial where the solution pattern is 

known and can be verified so the search can end.  This method is closer to the 

standard search scheme, where the goal is realized, yet performs the search in an ad 

hoc manner.  This Las Vegas type of searching allows for creativity and adversary 

elimination.  Since the search path is not known is advance, an adversary cannot be 
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planted ahead of time to cause the search to perform its worst.  This ability also 

allows the algorithm to be free of any constraints such as leading down the wrong 

path and having to backtrack. 

It is worthy to note the downfalls of a random search because it is certainly 

not the best technique for all situations.  Random search has a very long upper-

bound expected run time for a large search space, as defined by the coupon 

collector problem.  It is only acceptable where the possibility of an exhaustive 

search is tolerable or not likely to occur.  Random search may even take longer than 

a deterministic exhaustive search due to entries being revisited any number of times 

with replacement. 

2.6.2 Fingerprinting 

Fingerprinting is a mechanism for randomly mapping members of a 

population into a smaller population to allow for fast, approximate string matching 

(searching).  The mapping of a member in the new, smaller population is called its 

fingerprint.  This is a misnomer because the fingerprint is not exactly unique.  This 

quality causes searches to be approximate when using fingerprint values for 

comparisons. 

Motwani and Raghavan (1995) show a pattern-matching algorithm that uses 

the basic fingerprint function ‘mod’ to hash data to almost-unique values to match 

against.  Therefore, unique values in the original population can take on non-unique 
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values in the new population.  To obtain more unique values and reduce the 

occurrence of a false match while searching, it helps to choose larger values to hash 

against.   

The role of randomness in fingerprinting is to fight adversary input that can 

cause many false matches, thus the search algorithm must verify each one and run 

longer.  For example, if it was known that the fingerprint function was always (Z 

mod 3), then in a search space of ‘2222222’, the algorithm would have to verify 

each occurrence of 2 to determine if it was really a ‘2’ or a ‘5’ (they both hash to 

2). 

Instead, if the value to hash against were chosen randomly, then it would be 

difficult to produce an input that is known to cause the algorithm to slow down for 

verification purposes.  Also, if the value were chosen from a large set of primes, the 

probability of overlap, and thus a false match, would decrease.  When using a 

prime number ‘p’ to hash against, a ‘p’ value that is equal to or smaller than the 

maximum integer value in the original population will produce the possibility of 

overlap.  Over-lapping values in the new population is not a terrible thing and can 

be very beneficial for the algorithm if it does not happen too often.  Motwani and 

Raghavan (1995) show a method of calculating the probability of a false match by 

bounding the set of primes by a threshold value. 
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The process of fingerprinting is presumed to be human-like because of the 

relations that are set up.  Fingerprinting converts and breaks down (hashes) a data 

set into pieces, and assigns the pieces to a smaller set of recognizable values.  

Similar data is converted or abstracted to the same value.  While the computer 

considers ‘similar’ to be mathematical structure, the human mind can consider 

‘similar’ to be visual, aural, or even emotional structure.  When doing pattern 

matching, the mind can compare against the abstract set of information instead of 

the entire original population. 

This human-like quality of fingerprinting can be expressed in a problem 

such as recognizing a word in a sentence.  For example, instead of recognizing an 

entire word by each individual character, the mind could convert similar ‘looking’ 

words into non-unique fingerprint values.  Therefore, words like ‘tree’ and ‘the’ 

can have the same fingerprint: ‘te’.   

The fingerprinting function for this concept could be any number of 

manipulations such as removing random vowels or characters or removing 

redundant letters.  Randomness could help by fighting adversary input that attempts 

to confuse the reader (searcher).  For example, an adversary sentence could contain 

a lot of ‘noise’, like a word-find puzzle does, in the form of misspelled words or 

structurally similar words.  Randomness could be used to hash these words into 

fingerprints that can be deciphered, yet sometimes can be interpreted incorrectly, 

like a tongue twister. 
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Chapter 3: Concept Demonstration 

3.1 Concept categories 

This thesis considers random algorithms to be loosely divided into three 

main categories.  Any program that makes a decision using a random number is 

considered a Random Algorithm.  However, the devised categories are split to 

express the purpose of the random draw.  First, truly ‘randomized’ algorithms are 

those that are built upon randomness to perform some task.  Many of these 

algorithms have been summarized in the above chapter.  The second category of 

algorithms contains programs with ‘injected’ randomness to provide a level of 

variation.  The randomness in these programs is not necessary to accomplish the 

primary goal, but instead acts as abstraction of details, or a simulation of reality.  

These features are beneficial for training environments where reactions are 

measured against unpredictable events.  The third category combines inherent and 

injected randomness to attempt to solve problems intelligently using pattern 

recognition and puzzle solving.  The following programs were written to 

demonstrate the second and third categories.   

3.2 Abstracting Reality: Projectile Simulation 

The projectile program demonstrates how randomness can be injected to 

express variety and even simulate the real world by abstracting fine details about 

the environment.  The program is a physics simulation where projectiles are fired at 
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one another.  If they collide, they will set off an explosion and disperse a number of 

new projectiles.  The randomness is injected in the explosion where the particle 

velocities and angles use a random number generator to determine their future 

deterministic paths via physical equations.  Therefore, each run of the simulation 

with the exact same initial projectiles will result in an explosion that looks 

different, yet is bounded by the probability distribution of the calculated explosion.   

3.2.1 Determinism 

A deterministic simulation contains no variation of behavior.  This makes it 

difficult to create approximations of the real world where events are haphazard in 

nature.  A version of the graphical projectile program using pure determinism to 

plot the explosion shows no variation in distribution.  Also, determinism and 

preprogrammed paths will cause the explosion to look the same every time.  Figure 

19 shows a run of the program where the exploded projectile speed is fixed, and the 

angle is based on (array) index.  Therefore, the red colored projectiles are the first 

25 and have low angles; the next 25 are yellow with higher angles, and so on.  

Realistic explosions do not seem to exhibit this kind of behavior. 
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Figure 19. Projectiles following a deterministic path. 
 
 

3.2.2 Randomness 

An easy method of producing realistic results is to subject the projectiles to 

a random draw upon explosion.  An explosion projectile’s speed and angle can be 

randomly bounded using a pseudorandom number generator to obtain uncertain 

values from 0 to 35 meters per second, and 0 to 360 degrees, respectively.  The 

distribution of the blast is now uniform and realistic.  Figure 14 shows an example 

of using randomness.  The colored projectiles of the deterministic explosion are 

now scattered all around in an uncertain manner.  Repeated simulations will cause 

different ‘looking’ explosions, thus providing the uncertainty needed to study and 

train against similar behavior in the real world. 
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Figure 20. Projectiles using randomness to determine their destiny. 
 
 
 For a simulation to be ‘accurate’, it must be ‘uncertain’.  A simulation of 

the real world must contain some of the uncertainties that are expected.  If a 

simulation was deterministic where the ‘players’ quickly recognize how events 

occur and why events occur, they will be able to tell the future (predict), fool the 

system (create adversaries), and cause unwanted symmetry (deadlock).  If 

uncertainty is absent, then the ‘players’ are unable to train or learn the skills to 

handle unexpected events. 

3.3 Intelligent Puzzle Solving: Word-Find 

The classical word-find puzzle contains many features common to 

intelligence problems that involve randomness.  The object of the puzzle is to 
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search and locate a set of words from apparent chaos.  The intelligent tasks used to 

solve this problem are search, pattern recognition, and memory. 

3.3.1 Determinism 

Searching the puzzle can easily be solved using deterministic methods.  The 

player can traverse one character at a time from the top left corner to the bottom 

right corner and search for words starting with that character.  The number of 

positions searched is always the width multiplied by the height.  This use of 

determinism does not satisfy the typical player because the challenge of the game is 

removed.   

The devised deterministic solution is equivalent to the following 

randomized version, except the flow of the search through the puzzle is 

deterministic from top-left to bottom-right.  The search ends when all words have 

been found.  Therefore, an adversary condition exists when words are placed near 

the bottom of the puzzle.  The deterministic algorithm must always traverse the 

entire character array to find them.  This occurs quite frequently in standard word-

find puzzles with a uniform distribution of words. 

3.3.2 Randomness 

When presented with a table full of seemingly random characters, and no 

other guiding help, a reasonable search method is a random one.  Randomly 
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jumping around the board and looking for patterns provides the player with a more 

uncertain, yet challenging game play. 

Using a random approach to solving the puzzle could possibly force the 

problem to be more difficult and take longer to solve.  However, analysis of this 

problem shows that random techniques can be quicker than deterministic ones due 

to the presence of adversaries, and luck.  As stated above, if all the words are 

grouped in the lower right corner, the deterministic algorithm will not find them 

until the end.  The deterministic algorithm must search the entire puzzle in the 

worst-case and waste time by visiting empty ‘white space’ in the puzzle where 

words are not hiding.  The random version selects bits and pieces from all over, and 

on lucky runs, is able to ignore much of the white space.   

The devised solution to the word-find puzzle, expressed in pseudo-code in 

Figure 21, is based on a completely random search.  The program continually loops 

and chooses a random character in the puzzle (step 2).  This is the extent of 

randomization in the program, leaving all other processing as deterministic.  The 

program then searches in eight directions for a series of characters to determine a 

list of possible candidate matches.  For example, if the puzzle randomly chose the 

character ‘a’, and found the character ‘t’ in one of the eight directions, then a 

candidate match could be ‘hat’ or ‘cat’.  Once a word is found, it is removed from 

the candidate list. 



 76 

Random Word-Find - walk randomly along a puzzle and find words 
 
Input: puzzle of characters P[][],list of words to find W[] 
Output: empty word list 
 
1: While (W.length > 0) Loop 
2: Choose a random character in P[][]: RC 
3: For (int I in up, up-right, right, down-right, down, down-left, left, up-left) Loop 
4:  Gather next character in direction I: NC 
5:  Append character RC to NC: SS 
6:  Search W for words containing SS forwards: FSS[] 
7:  Search W for words containing SS backwards: BSS[] 
8:  For (int J in FSS.length) Loop 
9:   Gather additional characters to create string of length J.length: T 
10:   If (T==J) remove J from W 
11:  Loop 
12:  For (int K in BSS.length) Loop 
13:   Gather additional characters to create string of length K.length: T 
14:   If (T==J) remove J from W 
15:  Loop 
16: End Loop 

 
Figure 21. Random Word-Find pseudo-code. 

 
 

The key result, compared with the deterministic version, is the measurable 

execution time of the initial character search.  The deterministic program visits all 

characters in the worst case while the random program visits a seemingly unknown 

amount of characters.  The presumed problem with the random program is that the 

same character can be visited over and over, while the deterministic program visits 

each character only once.  The worst-case expected runtime of a random search 

over the characters in a word-find puzzle is bounded by the results of the coupon 

collector problem. 

In the random solution, each character represents a coupon to be collected.  

The deterministic program shows a guarantee that once all the characters have been 
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visited, all the words have been found.  Therefore, when collecting random 

characters with replacement, the algorithm is simulating the coupon collector 

problem and its search time should be measured by the expected amount of trials to 

choose each character at least once.  This gives an expected upper bound to how 

many characters are visited.  Choosing every character at least once is the very 

worst case and will take a very long time for a large puzzle.  Table 1 shows the 

coupon collector solutions for up to 25 coupons.  The table expresses that, in a 

puzzle containing only 25 characters, a random search will take 95 trials to cover 

each character at least once. 
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Table 1. Coupon Collector solutions for up to 25 coupons 
 

 

 
 

While the coupon collector expected number of trials (nlnn+O(n)) is 

asymptotically greater than the deterministic search time (n), experiments while 

running the randomized program resulted in, on average, much fewer choices.  This 

shows that the random solution is a good candidate for solving the puzzle and 

provides benefits that the deterministic solution does not.  For an average amount 
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of words that are typically distributed (do not crowd the game board), the random 

solution usually searches faster, yet sometimes does perform more trials than there 

are characters.  The randomized search time is therefore dependent on the quantity 

and size of words.  The more crowded the puzzle is with words, the more 

characters the random algorithm must find.  The smaller the length of words, the 

less likely it is that the word will be found.  For example finding the word ‘cat’ 

could take longer than the word ‘simulation’ because the algorithm has a better 

chance of finding the larger word since the characters span over a larger area.  

Table 2 shows the quantity of characters visited to find all words for 20 random 

search trials on a 15X15 character puzzle.  The varying amount of words 

demonstrates that the more crowded the game board, the longer the search takes.  

Also, each configuration averaged a search time less than the worst-case 

deterministic search time of around 225.  However, trial 7 with 16 words and 

numerous trials with 22 words showed longer search times. 
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Table 2. Word-Find program result 
 

 

 
 

The random search of the puzzle is subject to the same uncertainty of any 

probabilistic trial.  For one trial, the results are completely random.  Therefore, the 

random search time can be anywhere from 1 to the expected coupon collector worst 

case, or even more.  A search time of 1 is the very lucky case that the algorithm 

chooses a letter in which all words intersect.  This is usually not the typical case, so 

the lower bound is on the order of the number of words (taking into account 
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overlaps).  The expected worst case given by the coupon collector problem is 

considered to be unlucky, with a longer search time being very unlucky. 

For argument’s sake, we can ‘write-off’ the extra runtime factor and label it 

a ‘challenge’ or ‘fun’ factor.  If an intelligent being were to attempt solving this 

puzzle, they would take the challenge out of the game by using a deterministic 

strategy.  Even a ‘deterministic’ strategy from a human point of view may not be 

perfect because of mistakes in processing.  The proposed random search strategy 

allows for the emergence of patterns from uncertainty and provides fun, mind-

teasing game play. 
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Chapter 4: Applications 

4.1 Pattern Recognition 

The goal of this thesis is to understand how randomness plays a role in 

computing in order to perform intelligent tasks.  The primary lesson to be learned is 

the uniqueness of all matter and energy in the universe.  Intelligent beings are able 

to function in this world of randomness by defining reality as a set of patterns that 

abstract information.  Intelligence is built on the ability to hypothesize and test, in 

order to recognize patterns. 

4.1.1 Order from Uncertainty 

Intelligent software needs to handle random information as input and make 

decisions in such random environments as puzzles or mazes.  Pattern recognition is 

the process that intelligent beings use to make sense of randomness.  It is inherent 

in the universe that processes are random, including the processes involved with 

every living being.  As game theory suggests, in order to strategize and make sense 

from randomness, some random element must be used.  If your opponent is using a 

random strategy, the best strategy to combat it involves randomness.  For example, 

consider the task of peering into a room of items for some period of time, then 

recalling these items from memory at some future point.  The viewer initially 

considers the items in the room to be completely random.  It is their responsibility 

to then recognize or create patterns and store analogies into memory for extraction 

at a later time.  The best way to handle the randomness of the items in the room is a 
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random process of perceiving.  It is beneficial to the viewer to use their ‘internal’ 

randomness generator to decide on where and how to start memorizing items.  The 

presence of adversaries could cause a deterministic method to break down.  The 

arrangement of the room could be purposefully set up to confuse someone who 

starts left-to-right, or there could be so many items that trying to store the large 

amount of data in short-term memory will not be successful.  Randomness provides 

a way to break the potential deadlock and offers a fresh, unbiased way of sampling 

data. 

The process of random searching a random environment is most applicable 

to solving puzzles.  Repetition in such processes is encouraged because the purpose 

is to remember redundancy and likenesses in order to classify patterns.  As shown 

in Section 3.3, randomness is a good method of searching a word-find puzzle for 

words.  In a word list, if the most common letter is ‘e’, then a random scan of the 

puzzle can find and store the different locations of ‘e’.  These locations can then be 

returned to in the future when testing different words. 

4.1.2 Memory and Reconstruction 

It is obvious that the human mind does not store and recall data like that of 

a typical computer system.  For example, if words are stored in a database, it is 

trivial to enumerate every word.  Imagine reading a dictionary, then being asked to 

list all the words from A-Z.  This seems like a very complex task.  However, the 
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task of recognizing if a word exists in the dictionary is a relatively simple task that 

is expressed in games like Scrabble®. 

It is intuitive that the mind does not waste time storing all the words, but 

rather uses a more efficient method to construct or recognize a word such as storing 

grammatical rules or using hardware-like in-line functions. Then, when asked to 

verify a word, the mind uses the faster technique and comes up with a probability 

of correctness.  Instead of storing the exact data (the dictionary of words), it is 

easier to approximately recognize them.  Recognizing the data and matching it to a 

stored pattern can be accomplished using randomness, similar to the fingerprint 

hashing technique.  Also, like fingerprinting, storing and recognizing words in the 

mind can produce incorrect output in which the meaning of a word is mistaken, or a 

word is constructed (spelled) incorrectly. 

The recollection of a thought could be performed in a similar fashion.  

Instead of re-thinking a thought, the mind could store enough information to 

approximately re-create it.  For example, children can easily remember the faces of 

their parents.  They sometimes makes mistakes, but after some thought (gathering 

of supplementary data), realize that they made an incorrect assumption.  The 

pattern matching that they are doing is thus not perfect.  Some data is missing and 

must be reconstructed.  Adults also can have similar pattern matching “mistaken 

identities”.  It seems that the reconstruction of the child’s parent’s face is from a 

subset of data.  A computer algorithm may be able to act in the same way by using 
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a sample of random data to approximate or re-create a thought pattern and make a 

decision. 

4.1.3 Security 

Information security deals with the ability of a computer to protect data and 

hide patterns.  The more random a stream of data, the more impossible it is to 

predict.  No computing power has the ability to predict the next ‘bit’ in a sequence 

of random bits (Ruelle, 1991).  Although transmitted data is always random to the 

receiver, the patterns that are deduced by the receiver are what they perceive as 

useful information.  This is the information that must be protected.  If an 

eavesdropper were to access transmitted data and recognize patterns, the system’s 

security is compromised.  Therefore, the more random the transmitted data is, the 

less likely it is to be recognized by unwanted receivers. 

Steganography is a technology that embeds information in already 

noticeable patterns.  Instead of garbling data so it is unreadable, steganography 

utilizes an existing pattern of information to hide another.  For example, the pixels 

of an image can be slightly altered to contain additional information available to a 

party that knows it’s there, yet unsuspecting parties just see a close approximation 

to the original picture.  This is similar to the form of security that exists in 

monetary artifacts.  A dollar bill has several ‘hidden’ features to ensure its 

authenticity, yet these features are only noticeable and recognizable to those who 
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are aware of it.  Some features are noticeable by the human eye, others with a 

microscope, and even others that are invisible such as magnetic materials. 

Securing data from unwanted recipients is important in computer security, 

but the Internet also requires a means to secure data from automated programs.  

Automated programs can take advantage of systems that are intended to register e-

mail addresses and purchase tickets.  These services provided through the Internet 

are intended for human use only, not SPAM e-mail or ticket scalping programs.  

Therefore, a reverse Turing Test must be used to prove if the user is human.  This 

test is known as Captcha (Completely Automated Public Turing test to tell 

Computers and Humans Apart) (“Captcha”, 2004).  One common method used for 

Captcha implementations is randomness. 

The Captcha concept is an exploitation of the realization that algorithms 

have a difficult time recognizing even the slightest distorted pattern.  A typical 

implementation of Captcha creates a random amount of background noise to 

overlay onto an image of a word.  The user is then asked to verify the word.  The 

human senses can deal with distortion and ‘see’ through all the noise to reproduce 

the word.  The noise acts as an adversary for programs that cannot decipher the 

pattern.  Figure 22 shows a word that has been masked by a Captcha type process. 
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Figure 22. Captcha masked word. 
 
 

For a pattern recognition algorithm to show a level of intelligence similar to 

humans, it must be able to solve this problem.  Captcha shows that computers are 

very far from true human-like pattern recognition intelligence.  This is especially 

true when non-textual patterns are distorted.  The problem of identifying an image 

within a set of noise is much harder than text.  For example, while it is difficult for 

an algorithm to recognize the distorted word ‘couch’, it is much harder for an 

algorithm to recognize a distorted image of a man sitting on a couch and output the 

description: ‘man sitting on couch’.  This adversary condition also leads to the idea 

of presenting a series of distorted text or images to the user and have them solve a 

simple mind teaser puzzle.  For example, the reverse Turing test could display 

Figure 23 and expect the user to type the word ‘beautiful’.  The difficulty involved 

here for pattern recognition algorithms could be orders of magnitude higher than 

simply recognizing text and images. 
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Figure 23. Beautiful. 
 
 

Breaking the Captcha concept is not an easy task.  Certain built-in 

accidental pitfalls help the breaking process, such as using common words that can 

be guessed, but Captcha was designed to create a test that it could not pass itself.  

This irreversibility makes for difficult problem solving that, instead of devising 

clever ways to create adversaries, deals more with uncovering the mysteries of 

artificial intelligence (“Captcha”, 2004).  Intuitive methods of solving such word 

puzzles involve some level randomness to avoid adversaries and deadlock.  

Random sampling and developing probabilities of correctness are examples of 

candidate methods for recognizing distorted patterns. 

4.1.4 Word Problems 

One of the main communication methods between humans is language.  

Therefore, the words we use are of utmost importance to express ideas.  Pattern 

recognizing a set of words is one of the most important intellectual properties of 

humans.  Word games are played to challenge the mind and, although many 

languages are redundant, mastering them is a difficult task to perform.  Many 
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phrases and sentences are written and/or spoken with more information than is 

needed to comprehend the expression.  According to Claude Shannon’s 

Information Theory, the redundancy of English is about 50% (Shannon, 1948).  

This helps the mind that has to multitask and share computation power with other 

processes, so a missed word here or there will not take too much away from the 

meaning.  Only a subset of information is actually perceived and understood.  For 

example, consider the following sentence:  It is cold outside and I want to go play 

football with the neighbors.  The sentence could really be arranged to express 

similar meaning in much less words:  Cold out, want play football with neighbors.  

The sentence could also be recognized by the typical human eye while missing 

data:  It is cld outsde nd I wnt to go ply footbal wth the neghbors. 

Word problems like the above use randomness to play with the redundancy 

of language and the ability of human intelligence to pattern recognize through noise 

and missing data.  As Shannon (1948) stated, any two-dimensional array of letters 

in a language with 0% redundancy produces a complete crossword puzzle.  The 

same is true for a word-find puzzle; yet there is no search to be performed since 

every combination of characters would be a valid word.  These word games would 

not be as interesting since they contain no uncertainty. 

E-mail known as SPAM is becoming a large problem over the Internet 

because it takes up valuable memory space and disturbs unwanted recipients.  As 

SPAM filters are being developed, there are systems creating SPAM that can 



 90 

quickly learn to create an adversary to fool the filter and bypass it successfully.  

The use of randomness to foil adversaries is an advantage that can be used to 

develop SPAM filters.  Therefore, a SPAM creating system will not know the exact 

method used to identify e-mail as SPAM.  For example, instead of a deterministic 

algorithm looking for words such as “viagra” or “debt consolidation”, a random 

algorithm similar to the random searching of the word-find problem in Section 3.3 

can be used to find hidden words or phrases or even contextual meanings that 

recipients do not wish to view. 

4.2 Mind Simulation 

Simulation and playing games are analogous to real life.  Reality and life 

are a type of game in which a conscious being struggles and searches for meaning.  

Even if the world does not contain any inherent randomness, Chaos Theory shows 

that the massive amount of data perceived in the world is enough to affect some 

end result by stirring up variables with uncertainty.  Players in any game must deal 

with uncertainty and use probabilities and random help to make decisions. 

Random algorithms are useful for dealing with problems that the mind has 

to approximate because of the uncertainty of the environment, or more specific, the 

lack of understanding of the environment.  The ability of random algorithms to deal 

with uncertainty and still make rational decisions allows them to simulate the 

intuitive processes that the mind performs. 
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The mind must deal with many uncertainties in order to make decisions.  In 

estimating the trajectory of a tennis serve, the mind must process the behavior of 

the ball in such a way to stimulate a reaction and return it.  The velocity of the ball 

is so fast that the mind must either attempt to slow down time and analyze every 

three dimensional position at intervals in time, or the mind could estimate the 

trajectory based on initial position, wind, and other factors.  The player must also 

estimate what the results will be in some error deviation range.  Too hard of a 

return will render the ball out of bounds, while too soft will hit the net.  A 

reasonable return is the result of the analysis of many uncertain parameters used to 

place the ball in an approximate target area in order to provide the opponent with 

seemingly random information to hide patterns that could be exploited to win the 

game.  The mind processes this analysis and makes complex decisions in the blink 

of an eye. 

4.2.1 Human-like Artificial Intelligence 

The brain’s ability to develop scientific and mathematical knowledge does 

not seem to have been an evolutionary artifact (Ruelle, 1991).  The brain does not 

keep time, memorize a mass of information, or perform mathematics very well.  

Instead, the brain is better suited to devise strategies to gather, fight, and hunt.  

However, the brain does comprehend mathematics, logic, and computing, and can 

build machines that could possibly surpass it in power.  Although we do not 

understand the reason we are able to discover mathematical truth, and although 



 92 

Gödel’s theorem does not guarantee we will find solutions, we continue to work on 

and solve problems (Ruelle, 1991).  This includes the problem of artificial 

intelligence.   

One branch of artificial intelligence aims to produce computing machines 

that exhibit human-like qualities.  This may be the most understandable view of 

artificial intelligence since human intelligence is all that is known from the 

perspective of our species.  Unlike the application of the rules of logic, humans 

make irrational decisions.  Human-like artificial intelligence research questions if 

irrational decisions are reasonable enough to exhibit repeatable, reliable 

intelligence.  This thesis shows that randomness can be used in algorithms to 

simulate processes and make intelligent decisions.  Randomness may be most 

applicable to the thought processes that are executed in the mind to make decisions 

and solve problems.  Simulation of mind processes can help understand how and 

why decisions are made. 

4.2.2 Decision Making, Playing Games 

It is assumed that making useful decisions is the ultimate expression of 

intelligence.  Random algorithms make choices somewhat erratically by depending 

on the uncertainty of a random draw.  As seen in game theory, in an environment of 

uncertainty, this strategy is not irrational.   
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Simulation and numerical probabilistic algorithms use probability theory to 

make decisions and narrow in on some expectation value.  The decisions that the 

mind makes are similar in nature.  The mind could continually simulate a decision 

before arriving at an average or preferred conclusion.  Some decisions, like Monte 

Carlo algorithms, run the chance of producing incorrect conclusions.  Other 

decisions can be formulated using a type of Las Vegas algorithm where the solution 

can always be correct, yet takes a varying amount of time to compute (think of).  

For example, when searching for the television remote, the path of decisions could 

be haphazard, but always lead to successfully finding it. 

Imagine the process of making a decision as passing through a graph of 

mental states to arrive at a conclusion.  The steps involved with navigating these 

states are probabilistic in nature because decisions depend on many factors that can 

dynamically change.  Therefore, the process of making a decision is similar to a 

random walk on the graph.  Many random walks will converge to an average result 

and patterns will emerge (do not touch a hot stove).  However, single random walks 

are unpredictable and can cause decisions to seem erratic.  It is logical to conclude 

that the mind uses similar constructs to random algorithms, and there may in fact be 

a built in random generator to drive the system. 

4.2.3 Personality and Behavior 

Personality and behavior are ignored qualities when it comes to computing 

languages and logic.  Without these traits, programmed machines are not able to 
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express the emotional side of man.  Machines that express emotion will be more 

relatable and understandable.  They will be able to use feeling to describe 

environments in which humanity does not have to personally witness to understand.  

Randomness provides a certain level of variation that is more relatable as opposed 

to deterministic, slave-like cyborgs. 

A deterministic algorithm that continually performs the same operation with 

no variation is seen as ‘dumb’.  Using the analogy of weapons, ‘smart’ bombs are 

able to react while on the way to the target and display some sense of variation.  

They adapt based on the environment.  ‘Dumb’ bombs follow the deterministic 

path of a projectile that is unchangeable and predictable once released from the 

host.  Adversaries such as weather can cause the ‘dumb’ bomb to miss the target 

because it cannot adapt and change its path.  To create a program that performs in a 

more human-like manner, the designer would have to include factors that cause its 

output, or behavior, to be unpredictable, yet adaptive and rational. 

A 1969 article titled “The Art of Using Computers to Model Human 

Personality” (Dorf, 1974) is one of the many sources that express a need for 

machines to interact with humans more naturally.  Because humans are influenced 

by other conscious beings that they come in contact with, a machine with a 

personality could have the same effect.  Like intelligence, the definition of 

personality is not specific enough to model perfectly.  Therefore, a computer that 

models personality can only be an approximation measured by the expression of its 
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behavior, and the reactions to it.  The problem lies in the machine’s ability to 

predict which actions and behaviors are appropriate for a personality in an 

approximated environment.  This is a subset of general artificial intelligence where 

the machine tries to exhibit behavior patterns that are intelligent.  Personality 

modeling involves three main areas of research with a fourth that has still yet to be 

discovered (Dorf, 1974).  First, task-oriented models combine subcomponents of 

human personality, such as games and music, and aim to build systems that are 

highly specialized in many different areas.  The problem lies in the complexity of 

the interface between components.  Processing cycles and memory units are 

quickly occupied.  Second, heuristic programming is used as a mechanism for 

machines to learn.  Third, intelligent processes such as pattern recognition, 

inference, and hypothesis formation are grouped in a category labeled ‘simulation 

of concept formation’.  Finally, the fourth and still undiscovered concept to 

artificial intelligence and personality modeling is a new way of thinking and 

problem solving to provide solutions to the problems that were originally thought 

to be simple, yet turned out to be highly complex.  It is unknown if we will ever 

have the knowledge to program the uncertainty of human behavior. 

4.2.4 Agent-based Modeling 

Agent-based modeling is a paradigm that measures complex systems by 

extracting patterns from the interaction of chaotic events.  Behaviors of agents are 

programmed to simulate personalities that reflect research and experience.  The 
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agents learn and use knowledge to achieve some goal.  Ant behavior can be 

analyzed by measuring the interactions within a colony.  Terrorist behavior can be 

analyzed by measuring the interactions with society. 

Randomness can be programmed into agent-based modeling, and is also 

inherent based on the unpredictable interactions.  An agent can base its actions 

from a random draw.  The behavior of a group of agents is unpredictable and 

emerges from cooperative interactions much like the emergence of patterns in a 

random walk.  The emergence of patterns from randomly interacting agents is used 

to understand the expected behavior of the entire population. 

4.2.5 Genetic Algorithms 

Like algorithms that simulate the processes of the mind, genetic algorithms 

simulate the processes of natural evolution to solve problems.  Random methods 

are inherent to evolution because so much is unknown about the process.  It is 

known that during reproduction, parent genes recombine to form a new 

chromosome.  During copying of parent genes, random errors occur in the form of 

mutation.  The new cell then goes on to survive and reproduce like its predecessors.  

According to natural selection, the fittest members survive.  The term ‘fittest’ is an 

approximation in that surviving members could be ’lucky’ and not necessarily the 

optimal choices for continuation.  This built-in anomaly allows for diversity, and a 

diverse population adapts better to the environment.  As a whole, the population 

evolves a solution and finds purpose in an uncertain world. 
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Genetic algorithms are built to exploit the properties of natural evolution, 

using randomness as an advantage.  Instead of using randomness as a haphazard 

method of guessing or searching, genetic algorithms use it to build on previous 

knowledge.  Randomness introduces variety and leads the algorithm to a solution, 

adapting its behavior along the way.   

Genetic algorithms simulate the reproduction process by first starting with a 

population of possible solutions (members).  The fitness of each member is 

calculated using a ‘fitness function’.  This function ranks the members relative to 

each other, according to their ability to survive.  Members are chosen based on their 

ranking and placed into the mating pool.  Members that are more fit are more likely 

to be chosen for the mating pool.  The crossover process then chooses two 

members from the mating pool and randomly determines if recombination should 

take place.  If so, the members are spliced and combined in some manner, 

producing new members that are added to the population.  If crossover is not 

performed, then the members are directly copied to the new population.  This 

continues until a new population has formed.  The ranking, selecting, and 

combining process continues until the best (most fit) solutions are identified in the 

midst of noise.  Another source of noise, in addition to the selection and 

combination methods, is the process of mutation.  Mutation randomly changes parts 

of a member somewhere in the process.  Like natural mutation, this introduces 

diversity to a population and avoids deadlock or stagnant situations.   
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The flexibility and strength of genetic algorithms is a result of the 

emergence of ‘fit’ members.  This occurs because the features that a fit member 

exhibits have a good chance of surviving through bits of randomness used to weed 

out less-fit features.  Although crossover, splicing, and mutation could modify 

them, the features are able to survive throughout the process.  This is the reason 

that crossover should not always occur, and mutation rate should be low.  Too 

much modification may lead to the changing or destruction of strong features. 

Randomness plays a crucial role in the performance of genetic algorithms.  

Random decisions are made to select, crossover, and mutate members.  Cantú-Paz 

(2004) shows that using a pseudorandom number generator that contains minor 

variation can produce large deviations in algorithm performance.  Cantú-Paz (2004) 

also compares the results of using true random numbers and a “good” 

pseudorandom number generator and finds no difference in performance.  Accurate 

results from the simulation of the reproduction process are a result of a suitable 

source of randomness that does not affect the process. 

4.3 Others 

Other than pattern recognition and mind simulation, the application of 

random algorithms is unlimited because of the similarities between their behavior 

and the behavior of the universe.  So many processes remain a mystery.  Therefore, 

while we search for acceptable explanations, we must utilize randomness to provide 
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a best-guess approximation.  This is the case for physics, biology, astronomy, etc.  

In physics, the Uncertainty Principle limits knowledge of the microscopic.  In 

biology, the mysteries of life remain unbounded.  In astronomy, we can only 

imagine the structure of dark matter, while the randomness of the stars is organized 

into constellation patterns.  While randomness in machines can be used to 

approximate and analyze our world, it must be used wisely when presenting output 

to the users, and creators. 

4.3.1 Physics, Quantum Mechanics, Genetics 

Uncertain environments make for a good application of random algorithms.  

Randomness in computing plays a role in physics and genetics since these fields 

work directly with the uncertainty of the universe.   

The field of quantum mechanics has shown that the study of very small 

objects creates an uncertainty in which probabilities must be used to describe.  

Known as the Uncertainty Principle discovered by Heisenberg, the position and 

velocity of a particle cannot be known with complete certainty simultaneously.   

The process of genetics, reproduction, and life are other fascinating 

examples of inherent randomness.  Genetic algorithms show how randomness can 

help to evolve solutions.  Sexual reproduction shows that there is some regularity in 

the universe since genes are able to combine and create new life (Ruelle, 1991).  

Yet, the recombination of genes is not perfect.  The path of life contains much 
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uncertainty.  Less fit individuals do not survive, yet some do because they are 

‘lucky’.  The path is assumed to not be the result of a deterministic and predictable 

set of actions.  For example, in a typical video game, a character’s path is 

determined by a set of button presses.  With no image displayed on the screen, a 

player that has memorized the timing of a deterministic game can produce the same 

results by following a script of button presses.  The process of reproduction and life 

are assumed to contain much randomness, of which random algorithms can help 

approximate. 

Computing in these fields must not be limited to traditional deterministic 

methods involving mass storage and exhaustive search techniques.  The available 

data is much too large and the underlying rules of these systems are unknown.  

Therefore, using the lessons of game theory, rational techniques used to understand 

and model such systems should be probabilistic.   

4.3.2 Human Computer Interface 

The obvious dilemma when using randomness in any system is the user 

interaction.  Living beings are able to interact with the universe because, although 

everything is random and unique within it, intelligence is able to make sense of it 

through patterns.  A system with randomness must be governed by a set of rules 

that produce output to the user in recognizable form.  While every user is different 

in their comprehension, there is a level of commonality that they are expected to 

have.  For example, watching a television screen with static is not enjoyable 
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because the random black and white pixels do not contain relatable information.  

Watching a television program is enjoyable because the characters and scenery, 

albeit randomly transmitted to aural and visual senses, are physically and 

emotionally recognizable.  Cartoons are more relatable to children, while adults 

understand and relate to drama programs. 

A computing machine that uses randomness can very easily confuse the 

user.  If the user is expecting a set of menu options, and a complete random draw is 

used to determine which ones are available, the user will quickly get discouraged.  

However, probabilistic techniques can be used to determine the frequency of used 

menu options, and provide the user with an approximated set of options that they 

wish to see and are predicted to use.   

Current technologies that contain uncertainty test the limits of human 

frustration.  An Internet surfer that witnesses random page errors while visiting a 

site is quickly turned off.  For example, a banking site that incorrectly manages 

cookies and causes arbitrary page errors during the transfer of funds causes the web 

surfer much grief in understanding the success or failure of a transaction.  Or, an 

Internet surfer may happen upon a randomly generated advertisement, and follow 

the link.  Upon a browser crash, the surfer is unable to navigate back to the link 

since it is now a different random permutation.  Uncertain behavior is frustrating 

and confusing to the user.  An operating system that is not stable or does not 

produce consistent feedback is not user-friendly.  For example, if the behavior of an 
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operating system while deleting a file is non-deterministic, the user becomes 

frustrated because they do not know how long they must wait for the task to 

succeed.  Also, in the case of the previously mentioned Captcha technique, if the 

verification image is so distorted that it is unreadable to even a human, then the 

user becomes frustrated with the system because they are unable to prove their 

consciousness!  These scenarios show that there is certain levels of computing that 

are expected to be deterministic, while others, such as a programmed personality, 

are assumed to be acceptable if they contain randomness. 
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Chapter 5: Conclusion and Suggestions for Future Work 

5.1 Problems 

The use of randomness to accomplish artificially intelligent machines is 

arguable since random algorithms are ultimately executed on a deterministic 

computation device.  However, this determinism does not impair the uncertainty 

that the algorithms exhibit.  In Chaos Theory, deterministic equations are used to 

produce chaotic results.  Fractal images that display similar complexity to natural 

forms are evolved from determinism, and the boundary of turbulence can be 

simulated with deterministic equations like those of the Lorenz butterfly.   

Michael Barnsley, the developer of the technique known as the Chaos 

Game used to draw natural, fractal-like images using randomness admitted, 

“Randomness is a red herring.” (Gleick, 1987, p. 239).  In many situations, 

randomness is simply a tool that attempts to approximate a result that already 

exists, and can be deterministically found.  Like mathematics, the result is not 

invented, but discovered.  Random algorithms seek to discover solutions faster and 

more intuitively than deterministic methods. 

In the field of artificial intelligence, randomness does not provide a machine 

with understanding or consciousness any more than is available from pure 

determinism.  While the output and behavior of the machine is more flexible and 

the power of creativity is expressed, the features of a conscious being are not 
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available.  It is assumed that no one feature is expected to result in a conscious 

machine.  A random number generator or the injection of an unknown sequence of 

bits does not satisfy the requirements of a conscious machine, nor does the 

combination of randomness and logical statements.  The features and properties of 

the combination of randomness and algorithms do provide the building blocks for 

intelligent activities.  The problem of artificially supplying a programmable entity 

with the qualities exhibited by a natural, intelligent being is to be continued.  The 

combination of intuitive logic, intelligent processing, and complex problem 

solving, along with the flexibility and creativity of randomness, are assumed to 

play a vital role in the discovery. 

5.2 Recommendations 

Recommendations for continued research in the field of random algorithms 

and artificial intelligence involve the core concepts introduced in this paper, and 

others that have not been discussed.  Parallel and distributed computing 

technologies fit well with the multitasking nature of the mind.  Randomness in 

these fields will help uncover how the mind deals with noise and learns with 

uncertainty.  It is recommended that randomness be controlled to perform useful 

tasks.  Noise in a neural network or genetic algorithm helps to introduce variation, 

but too much uncertainty leads to erratic results, like that of a ‘snowy’ television 

screen.  Large problem spaces are recommended for further research.  Some 

examples in this paper showed useful random algorithmic solutions with bounds on 
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the problem space.  When the search space gets large with few solution witnesses, 

or the accuracy of an approximation needs to be precise, random methods begin 

performing poorly.  Improvements to the word-find problem in Section 3.3 are 

recommended to place tighter bounds on performance through search strategies or 

variations in pattern recognition. 

5.3 Conclusions 

This thesis has shown a summary of popular random algorithms that 

perform intelligent tasks and behave in a more flexible manner than deterministic 

algorithms.  The random techniques used apply to artificial intelligence and the 

interaction between man and machine.  Algorithms are built to simulate the 

processes and decisions of the mind, and are then analyzed to relate their behavior 

back to the assumed workings of the mind.  While random algorithmic analysis 

focuses on pure mathematics, the results do not fully express their ultimate 

applications.  Random algorithms have more flexibility and more creativity than 

standard logic statements and deterministic algorithms.  The originality that is 

supplied by random algorithms provides the ability to create and simulate 

intelligent processes and lead to a new way of thinking about building intelligent 

machines. 

If everything in the universe is unique, then everything perceived has a 

random nature and is pure information according to Claude Shannon and 
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Information Theory.  If everything is pure information with no redundancy, then 

intelligent beings need some mechanism to classify common patterns and recognize 

those patterns.  One method to begin classifying patterns is to use a random 

technique.  Random techniques help to avoid deadlock (where to start or other 

confusion), foil adversaries (blockage or very similar patterns), and allow room for 

more intelligence and creativity (new thoughts, new ideas, new reasoning).  Thus, 

for a machine to be intelligent, it should use random techniques in its algorithmic 

processes. 

If used to search, random algorithms are good for eliminating adversaries 

and sampling a population fairly.  If used to decide, random algorithms are good 

for producing estimations and approximations within reasonable bounds.  If used to 

adapt, random algorithms can continually change their behavior.  If used for 

creativity, random algorithms are able to exhibit unpredictability. 

A player in a game is confronted with uncertainty and must decipher and 

translate it into patterns to express intelligence.  In a word-find puzzle, the player 

must search through random letters and find recognizable patterns.  In a baseball 

game, the player must hit a randomly thrown pitch and the fielders must interpret a 

randomly hit ball.  In surfing, the wave-rider must continually deal with the 

uncertainties of the water to exhibit grace and style.  To translate uncertainty into 

patterns, and be able to recognize and learn from patterns, is an ultimate expression 

of intelligence. 
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The goal of Artificial Intelligence is to simulate human mind processes such 

as: learning, rationalizing, recognizing patterns, and decision-making.  By 

definition, the word simulation equates to approximation.  Artificial Intelligence is 

therefore an approximation to the mind and what humanity considers rational 

thinking.  The study of Artificial Intelligence is bounded by approximations 

because we simply do not know how the mind works.  We cannot view the rule set 

that allows us to learn sheet music, recognize our parent’s faces, or decide what to 

have for breakfast.  These background processes and algorithms are hidden from 

our conscious understanding.  Whether this is planned or just a chaotic result of the 

system (life), we may never know. 

Like all problems, the study of Artificial Intelligence is bounded by 

uncertainty.  Science and research in this field must continue because, although 

brain processes are unknown, it has not been proven impossible to create an 

artificially conscious machine that expresses intelligence.  In this sense, the pursuit 

of ‘strong’ artificial intelligence is analogous to the search for extra-terrestrial life.  

For all we currently know, it may not exist in the universe.  However, we continue 

our search because there is nothing that tells us that it CANNOT exist.  If it were 

proven that ‘strong’ artificial intelligence is impossible, then the problem would not 

exist in the first place.  For both problems, there is even plenty of evidence to 

suggest otherwise.  Water is known to exist all over the universe, and water is 

needed for life.  Calculations and computations occur in the human mind and allow 
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for tasks to be accomplished.  Unlike the search for aliens however, the problem of 

artificial intelligence and the theory of the computational machine exist because we 

are in search of ourselves. 

The correlation between the human mind and artificial intelligence should 

be studied with caution.  The current direction of man and machine has not changed 

a great deal from the original creation of the Turing Machine and Babbage’s 

Analytical Engine.  The development of computers and algorithms has progressed a 

great deal, but many capabilities still require the logic and reasoning of the human 

mind.  For example, a human is still needed to provide verification of an algorithm 

to perform fingerprint pattern recognition.  A computer algorithm has the capability 

to rapidly store and search fingerprints, but can only output best guess “scores” 

when searching for matches.  The machine has no conscious self and thus can make 

no sense of its own 1’s and 0’s.  The machine’s human operator must be the master, 

and deduce the output. 

The study of artificial intelligence must not neglect the aspects of humanity 

and rationalism that involve consciousness, emotion, and the self.  The study of 

computer science is constantly testing technologies to provide insight into these 

constructs.  Random algorithms are one of the many technologies that can continue 

to lead to the path of the truly interactive man and machine. 
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