
Learning Rules for Time Series Anomaly Detection

Matthew V. Mahoney and Phili p K. Chan
Technical Report CS-2005-04

Computer Science Dept.
Florida Institute of Technology

Melbourne FL 32901
{mmahoney,pkc}@cs.fit.edu

Abstract
 We describe a multi -dimensional time series anomaly detection method in which
each point in a test series is required to match the value, slope, and curvature of a point
seen in training (with an optional sequential constraint), and a method of generating a
model in the form of concise, human-comprehensible, and editable rules. Training time
complexity is O(n log n), and testing is O(n). The method generalizes to multiple
training series by allowing test points to fall within the range bounded by the training
data. We use this approach to detect test failures in Marotta fuel control valves used on
the Space Shuttle.
 Keywords: Time series anomaly detection, Machine health monitoring, Path
model, Box model, Rule Learning, NASA.

1. Introduction
 Failures in complex systems are often detected by monitoring sensor data and
comparing it to a model. For example, a home electrical system is equipped with sensors
to detect current flow, and a circuit breaker to disconnect power if the limit specified by
the model is exceeded. Another example would be an automobile engine, where a
designer specifies an acceptable range of values for engine temperature, oil pressure,
battery current, and so on.
 Some failures might remain undetected if the failure mode is not anticipated by
the designer. However, such failures might still be detectable by learning a model of
normal behavior and detecting deviations from this model. For example, a driver may
recognize a problem with the engine if it makes a strange sound, even if the problem is
not detected by the dashboard sensors. It is this type of anomaly detection that we wish
to automate: learning a model of normal behavior of a time series and detecting
deviations from it.
 A shortcoming of many machine learning approaches is that the learned model is
often not comprehensible to a designer. We wish to allow the designer to examine and
edit the model, first to verify that it is correct; and second, to modify the model to
account for known failure modes. To see the importance of this capabili ty, consider
training a circuit breaker using machine learning. If the wiring is designed to handle 20
Amps, but the current never exceeds 5 Amps in training, then the model would probably
be incorrect regardless of which machine learning approach was used.
 For some time series we wish to ignore events that cannot be observed over a
short time window. For example, a circuit breaker's behavior should depend on the

immediate value of the current but not on the average value over the last hour. Another
example is shown in Figure 1 below. Here we model the state transitions of a two-state
device, such as a valve or switch where we do not care how long the device is in one state
or the other, or how many transitions occur, but we do care about the shape of the time
series during a transition.

Fig. 1. An example time series anomaly detection problem.

 We can model short term events by requiring that each point of the test time series
match (in value, slope, and curvature) a point somewhere in the training data.
Furthermore, we can describe this model using a concise set of rules. The model is:

 (x = 0 and dx = 0) (dx means the slope of x)
 or (0 < x < 1 and dx = 3)
 or (x = 1 and dx = 0)
 or (0 < x < 1 and dx = -3)

 Some commonly used measures such as Euclidean distance or dynamic time
warping (DTW) would fail to distinguish the normal and abnormal pulses in this example.
The Euclidean measure would require that the test series look exactly like the training
series, but the normal test pulses are different widths. DTW would stretch the normal
pulses horizontally to fit, but would still fail because the abnormal pulse would also be
stretched to fit. Other, more complex methods might succeed, but they often lack concise,
comprehensible models.
 In addition to modeling short term events using concise rules, we might also wish
to generalize from multiple training sets. In Figure 2, we wish to allow test signals that
fall "between" the two training signals. Some common methods such as 1-nearest
neighbor would fail because the normal and abnormal signals have the same distance
from the nearest normal signal. We solve this problem by generating a rule set from one
training series, and then expanding the rule parameters to fit the other series.

Fig. 2. A generalization problem.

 The rest of this paper is organized as follows. In Section 2, we review time series
anomaly detection. In Section 3, we introduce a path model, which requires that each test

Train Train Normal Abnormal

Training data Normal Normal Abnormal

x = 1

x = 0

point match a point somewhere in the training data. In Section 4, we describe a rule-
based approximation of the set of allowable points using a box model. In Section 5, we
describe how box models can be extended to generalize across multiple training series.
In Section 6, we describe how the sequential ordering of boxes can be used to speed
testing. In Section 7, we detect test failures in Marotta series fuel control valves used on
the Space Shuttle by monitoring solenoid current. In Section 8, we conclude.

2. Related Work
 Time series anomaly detection has been characterized as a special case of time
series data mining, which also includes problems such as classification, clustering, and
rule discovery. The central problem in all of these cases is to define a distance or
dissimilarity function for a pair of time series. In the case of anomaly detection, an
anomaly is indicated by a large dissimilarity between the training series and the test series.
 Keogh and Kasetty [1] and Keogh, Lonardi, and Ratanamahatana [2] exhaustively
evaluated about 50 proposed distance measures published over a 10 year period on a
corpus of 18 pairs of time series from many domains, and found that a simple Euclidean
measure on the normalized series (scaled to a mean of 0 and standard deviation of 1)
outperforms most of them in a clustering task identifying the original pairs of related
series. Given time series x = x1...xn and y = y1..yn of n points each, the Euclidean distance
is given by:

 D(x, y) =

�
i=1...n (xi – yi)

2
.

 These results can be improved using a dynamic time warping (DTW) measure:
shifting the series on the time axis to minimize the Euclidean distance. However, DTW
requires O(n2) computation time, compared to O(n) for Euclidean distance.
 The best result obtained by Keogh et al. [2] on this data set uses an information
theoretic approach. The idea is that the information content of concatenated series xy
relative to x or y alone increases as x and y differ. Keogh approximates the information
content of a time series by quantizing it and compressing it, and uses the dissimilarity
measure:

 D(x, y) = C(xy) / (C(x) + C(y)),

where C(x) denotes the compressed size of x using an off -the-shelf data compressor such
as gzip [3]. To use for anomaly detection, we would let x be the training time series, and
y be the test series.
 In unpublished work [4], we independently derived Keogh's information theoretic
measure (but used D(x, y) = (C(xy) – C(x)) / C(y), which is monotonic with Keogh's
measure) and confirmed its abili ty to detect anomalies in 10 of the TEK series traces
described in Section 7. We used gzip, rk [5], and paq4 [6], which use three different
compression algorithms (LZ77 [7], delta coding, and a context mixing model
respectively). We confirmed that with one training series, one normal test series, and 8
abnormal test series, that the normal series has a lower dissimilarity to the training data
than all 8 of the abnormal series for gzip and paq4, and 7 of 8 cases for rk.

 Unfortunately, a compression measure fails to produce a human comprehensible
model. Other approaches, such as Bayesian models, neural networks, and support vector
machines [8], and immunological models [9], also fail i n this regard. One can argue that
a Euclidean measure meets this requirement if we allow graphical editing of the model,
but it requires synchronization between the training and test series, making it unsuitable
for some applications. A DTW measure solves the synchronization problem, but is
computationally inefficient (O(n2) speed).
 In an earlier approach to solving this problem, our group developed the Gecko
algorithm [10]. Gecko models a time series by finding a piecewise polynomial
approximation corresponding to states in a linear state machine, then uses RIPPER [11]
to find rules that classify each of the training points to these states by their values and
first and second derivatives. A test series passes if each point satisfies the rules for either
the current state or the next state (moving to the next state in the latter case).
 Gecko satisfies the requirement for a comprehensible model because the number
of states is typically small (about 10-20 for the TEK data) and each state can be described
by a small (usually 1-3) set of rules. Testing is also fast, because each test point only
needs to be tested against a small set of rules. However there are two problems. First,
Gecko produces a binary result (anomalous or not anomalous), and second, the rules
generated by RIPPER are optimized to classify data points with a minimal set, rather than
a more restrictive set that should better detect anomalies.
 To ill ustrate the second problem consider the training and test series in Fig. 3.
The training series can be divided into two segments. The first segment is flat with a
value of x = 0 and a slope of dx = 0. In the second segment, the value ranges from 0 to 1
and the slope is a constant 1. RIPPER then finds the simplest rule set that distinguishes
between the states, which is "if dx > 0.5 then state = 2 else state = 1. Although the
training data passes the Gecko test, so does the anomalous test data shown in Fig. 1c.

Fig. 3. (a) Training data. (b) Gecko model. (c) An anomalous time series that satisfies
the model.

3. Path Modeling
 We propose a path model representation of a time series. Given a training point xi,
we compute its slope, dxi = xi – xi–1, and its curvature, d2xi = dxi – dxi–1, and store the
point (xi, dxi, d

2xi) in a 3 dimensional model. Given a test point yi, we compute (yi, dyi,
d2yi) in the same way, then assign an anomaly score equal to the square of the Euclidean
distance to the nearest point in x. Thus, the dissimilarity measure for a path model is:

 D(x, y) = � i minj (xj – yi)

2 + (dxj – dyi)
2 + (d2xj – d2yi)

2.

x=0,
dx=0

0<x<1
dx=1 x=0

dx=0

0<x<1
dx=3

State 1
Start

State 2
Accept

dx > 0.5

 This measure easily extends to more than one dimension. Given n sensors, each
reading is mapped to a point in 3n dimensions. We call this a path model because a time
series and its first and second derivatives tend to be continuous, so that the set of points
(xi, dxi, d

2xi) tend to lie along a continuous path through 3n dimensional space.
 The first and second differences dxi and d2xi will depend on the sampling rate. In
order to remove the effects of the sampling rate on D(x, y), we scale the path model to a
unit cube, so that the points range from 0 to 1 in all dimensions. This is not the only
approach, however. For example, we could also normalize the standard deviation to 1, or
we could specify the scale factors manually.
 A practical concern with some time series is noise, which becomes especially
prevalent in the first and second differences. In our work, we smooth the time series and
its differences using a series of low-pass digital filters F: x → x' defined as:

 xi' = F(xi) = (xi + (T – 1)xi–1')/T.

This has the effect of removing frequencies with periods shorter than T samples. In our
experiments described in Section 7, we use T around 3 to 10 samples, and filter a total of
6 times. We filter xi twice, and then compute the difference of the filtered result. Then
we filter dxi twice and compute the difference of that result, d2xi. Then we filter that
result twice and use it in the path model. Thus, the set of points used in the doubly
smoothed path model is (xi'', dxi'', d

2xi''), where:

 xi'' = F(F(xi))
 dxi = xi'' – xi–1''
 dxi'' = F(F(dxi))
 d2xi = dxi'' – dxi–1''
 d2xi'' = F(F(d2xi),

followed by scaling to a unit cube such that 0 � [i, dxi, d

2xi ��� IR � D ��� i.
 Figure 4 shows an example of path model anomaly detection on an artificial time
series. The series is 1000 samples long. The time series consists of a sawtooth waveform
(black). We compute its first difference (green square wave) and second difference (blue
alternating spikes) using double smoothing in each dimension as described here with T =
5 samples. We let the first two cycles be training data and the last three be test data. The
instantaneous anomaly score (shown smoothed with T = 10 for clarity) is shown in red at
the bottom. The score is 0 throughout the first test cycle because every 3-D point
matches a point in the training series. The second cycle has a steeper slope (indicated by
the greater amplitude of dy) and is anomalous during the rising and falling portions of the
waveform. The third test waveform has the correct dy throughout, but is anomalous at
the peak because the spike in d2y occurs when y is too small.

Fig.4. Path model anomaly detection score (red) on a time series (black sawtooth). The
first and second derivatives are the green square wave and blue alternating spikes.

 A smoothed path model has one parameter, T. As a general guide, the fil tering
constant should be selected so that the features we wish to observe have duration between
T and several times T. Features with shorter duration, such as noise, will t end to be
filtered out, while long duration features, such as the interval between state transitions in
Fig. 1 will not be observed. Often this is exactly what we want to do. The effect of
smoothing is to match pieces of the test series with length on the order of T to the training
data.

4. Rule-Based Approximation
 Path modeling as described would not be fast. The testing time for a path model
would be O(n2) because each test point must be compared to all of the training points.
Instead, we approximate the path as a string of k boxes, k << n. Then we test each of the
n points by finding the nearest of k boxes, which takes O(kn) time. Each box represents
one conjunction of a rule based model, bounding y, dy, and d2y. For example, the model
in Section 1 is represented by 4 boxes. We may consider the anomaly score to be the
square of the distance to the nearest box, or 0 if the test point falls within a box. We set
the parameter k as a tradeoff between speed (small k) and accuracy (large k).
 We wish to construct the most restrictive model possible that allows all of the
training data by minimizing the total volume of the k boxes. Modeling points in space is
often accomplished by clustering, but this technique is not effective for time series data
[12]. Instead, our approach is to first approximate the path of n points by bounding the n
– 1 pairs of adjacent points in a string of small boxes, then approximate by merging
adjacent boxes until k are left. Our goal is to find the most restrictive model possible,
that is, we wish to minimize the total volume of the boxes. The algorithm we describe is
not optimal in this respect, but is a good approximation with reasonable run time
eff iciency. Given path x = x1...xn, the algorithm is as follows:

 For i = 1 to n – 1 do
 Create box b i enclosing points x i and x i+1

 Repeat n – k – 1 times
 Find i such that cost(b i) is minimum
 Remove b i

 Expand b i - 1 and b i+1 to enclose the cent er of b i

 cost(b i) = vol(new b i - 1) + vol(new b i+1)
 – vol(old b i - 1) – vol(old b i) – vol(old b i+1)

 When a box is removed, the two neighboring boxes are expanded to enclose the
center of the removed box (Fig. 5). The cost of removing a box is the volume of the two
new boxes minus the volume of the three original boxes.

Fig. 5. Box approximation. The box centered at + is removed. The two neighboring
boxes are expanded to enclose the point +. Boxes are selected for removal such that the
increase in volume is minimized.

 A box model can be computed in O(n log n) time by storing the boxes in a doubly
linked heap sorted by cost, with links between adjacent boxes in the path. The heap is a
balanced binary tree in which each node has lower cost than its children. Removing the
lowest cost box from the front of the heap and restoring the heap property takes O(log n)
time. After removing a box, the costs of its two nearest neighbors on each side must be
updated and their nodes moved up or down the heap using a series of swaps, which also
takes O(log n) time.

5. Rule Generalization to Multiple Training Series
 A box model can be expanded to fit additional training data. We first construct a
box model from one training series as described in Section 4. Then for each additional
training point, we expand the nearest box to enclose it by the following algorithm:

+

+

 Construct a box model from one path
 For each additional training point do
 Label the point with the nearest box
 For each additional training point do
 Expand the labeled box to enclose it

 Box extension requires two passes. If we were to immediately expand the nearest
box to a new training point, then it is highly likely that we would expand the same box
repeatedly because successive training points are usually close together. This could
result in a correct but undesirable model in which one box encloses the entire training set.
 Note that the model depends on the order in which the training series are
presented. For practical purposes, the effect is small.
 It is sometimes useful to extend a box model on the data used to create the
original model. The algorithm described in Section 4 does not guarantee that the box
model will enclose all of the original training data. Recall that when a box is removed,
the neighboring boxes are expanded to enclose the center of the removed box. Although
the original path will usually pass near the center of the box, it will not always pass
exactly through it.

6. Sequential Modeling
 We used box modeling to reduce testing time from O(n2) to O(nk), k << n. This
involves a tradeoff, because the approximation to the training data worsens as k decreases.
 A second optimization is possible. If we constrain the test data to follow the k
boxes in sequence (like Gecko), then it is only necessary to test the current and next box,
rather than all of the boxes in the path. With this constraint, test time is O(n), as fast as
Gecko. Given a box model with boxes b1...bk, the sequential test algorithm is as follows:

 i := 1 (initial state)
 For each test point, y
 If dist(y, bi+1) < dist(y, bi)
 i := i + 1
 score := score + dist(y, bi)

2

 In this algorithm, dist(y, b) is the Euclidean distance from point y to box b, or 0 if
y is inside the box.
 Constraining the model so that the boxes are visited in order has the effect of
modeling large scale features, like DTW and Gecko. Such features may or may not be
important, depending on the application. Figure 6 shows an anomaly that is detected
using a sequential box model, but not by an unconstrained model. The unconstrained
model accepts the test data because every test point matches a point in the training data,
but does not require that the matched training points occur in sequence. The spike in the
training data, which corresponds to a loop in the path, is skipped. However, the
constrained model becomes "stuck" in a local minimum at the loop in the corresponding
path and judges the rest of the test series to be anomalous because neither the current nor
the next box is closest but it is not possible to advance the state without moving further
away first.

Fig. 6. A time series that tests normal in a path model or unconstrained box model, but
abnormal in a sequential box model. The training path (solid line) would actually be a
string of small boxes.

 If we wish to disregard large scale features, then we need a mechanism to escape
local minima. We adopt the following strategy: at each iteration of the sequential test
algorithm, we test r boxes in order of roughly decreasing likelihood when in state i: bi,
bi+1, bi-1, bi+2, and the remaining r – 4 boxes picked at random. We make the closest of
these boxes the new state. This probabili stic strategy has an expected worst case
recovery time from a local minima of O(k/r) and test time complexity of O(nr). If r = k,
then the algorithm reduces to unconstrained box modeling.
 Other recovery strategies, including deterministic ones, are certainly possible.
For example, a recent version of Gecko goes into a recovery mode when a test point lies
outside both the current and next box, then recovers by running k state machines in
parallel, each starting in a different state.

7. Experimental Results
 We performed anomaly detection on solenoid current readings from Marotta
series fuel control valves as the valve is actuated for about 0.3 to 0.5 seconds under
various forced failure conditions. Each time series is one second, consists of 1000
samples at a rate of 1 ms. Each datum is a current reading recorded using a Hall effect
sensor, generally ranging from about 0 to 4 Amps with a quantization level of 0.02 Amps
and a noise level of about 0.04 Amps. There are 12 time series, 4 normal (TEK 0-3) and
8 abnormal (TEK 10-17).
 Figure 7 shows some of the raw data. The first waveform (TEK 3) is normal.
The spikes on the rising and falli ng edges are due to reverse EMF from the movement of
the valve poppet and attached solenoid magnet. In the second waveform (TEK 10), the
poppet is stuck closed, so that the spikes are missing. In the third waveform (TEK 14),
the poppet movement is partially restricted, reducing the size of the spikes. In the fourth
waveform (TEK 16), the poppet is stuck, then released midway through the cycle.

Train Normal?

x

dx

Path

Fig. 7. TEK 3, 10, 14, and 16.

 Figure 8 shows the path models for the four waveforms in Figure 7. The data was
double smoothed in each dimension as described in Section 3 with time constant T = 5
ms. In this diagram, the x axis is up, the dx axis is to the right, and the d2x axis is to the
back. The path direction is from the bottom center (x = dx = d2x = 0) counterclockwise,
moving rapidly to the top center and staying there for the duration of the energized cycle
(the flat upper region of Fig. 7). Then the path moves rapidly downward along the left
side back to the starting point.
 The smaller loops on the rising and falling portions of the main loop correspond
to the spikes on the rising and falling edges of the time series. The loop on the rising side
is normal in TEK 3 (red), missing in TEK 10 (yellow) and TEK 16 (blue), and reduced in
size in TEK 14 (green). TEK 16 has an extra loop returning to the top, corresponding to
the dip in the middle of the time series. Note that all of the abnormal paths deviate from
the normal (red) path at some point.
 Figures 9 and 10 show the box models for TEK 0 (which has the same shape as
TEK 3) for k = 100 and 20 boxes, respectively. Note that with 20 boxes, the details of the
smaller, descending loop are lost.

Fig. 8. Paths of TEK 3 (red), TEK 10 (yellow), TEK 14 (green) and TEK 16 (blue). The
dimensions are x (up), dx (right), and d2x (back).

Fig. 9. Box model of TEK 0 with k = 100 boxes. The path order is from red to blue.

Fig. 10. Box model of TEK 0 with k = 20 boxes. The line shown connecting the centers
of the boxes approximates the original path.

 We evaluated the box modeling algorithm by constructing a box approximation of
TEK 0, expanding the model to fit TEK 1, and computing the total anomaly score for all
of the time series (both training and test). The criteria for successful detection is a
margin greater than 1, where the margin is defined as the ratio of the lowest abnormal
score (TEK 10-17) divided by the highest normal score (TEK 0-3). Table 1 shows the
anomaly scores and margins for k = 20 and 100 boxes, using strict sequential testing (r =
2), sequential testing with recovery (r = 5), and unconstrained testing (r = k). The
smoothing time constant is T = 5 ms.

Table 1. TEK anomaly scores. Margin = lowest abnormal score / highest normal score.

Data k=20

r=2
k=20
r=5

k=20
r=k

k=100
r=2

k=100
r=5

k=100
r=k

TEK 0 (train) 13.3 1.77 0.240 2.42 1.14 0.149
TEK 1 (expand) 13.2 0.435 5.33e-10 2.24 1.07 3.81e-8
TEK 2 (normal) 21.5 6.91 6.32 188 77.5 74.7
TEK 3 (normal) 21.7 8.70 7.51 204 93.0 88.4
TEK 10 23238 142 107 6.42e5 8340 3522
TEK 14 26284 328 340 4.07e5 8942 9159
TEK 16 1551 493 385 1.83e5 18541 6955
Lowest abnormal
score

118
TEK 17

65.9
TEK 12

23.6
TEK 11

2405
TEK 17

1991
TEK 17

2616
TEK 12

Margin 5.49 7.57 3.14 11.8 21.4 29.5

 In Table 1, all of the anomalies are detected, with higher margins for the more
accurate model, k = 100 boxes. Anomaly detection begins to fail on this data for coarse

models, k < 20 boxes, or for very large or small smoothing constants, T < 2 ms or T > 50
ms.
 It would appear from the raw data in Fig. 7 that it is necessary to use sequential
modeling to detect missing spikes on the rising and falling edges as in Fig. 6. However,
for a fairly broad range of T, the smoothing provides enough state information to detect
these missing spikes without constraining the testing order. The deviation from the
training path around the missing loop in Fig. 8 due to smoothing can be seen in contrast
to Fig. 6.
 Our implementation executes essentially instantaneously on a 750 MHz PC for
even the slowest version (r = k = 100). We have also successfully detected voltage,
temperature, and poppet restriction anomalies on other data using box models of 4 traces,
with generalization to allow intermediate voltages as described in Section 5. For example,
when trained on 18V, 22V, 26V and 30V traces, the model accepts 20V, 24V or 28V, but
not 14V, 16V or 32V. We omit detailed results.

8. Conclusion
 Path and box modeling are appropriate for situations where we wish to monitor
the shape of a time series, and where a designer has knowledge about expected behavior
that might not be captured in the training data. Training and testing are fast. A model
uses very little memory, and there is a fixed upper bound on testing time per data point,
making it suitable for a real-time embedded processor
 We do not claim that path or box modeling is superior to other dissimilarity
measures for other data mining tasks such as clustering or search. These models are
intended to detect events in the test data that do not appear in the training data, but not
vice versa. Our measure is asymmetric: D(x, y) ≠ D(y, x). While there may be better
dissimilarity measures, many of them generate models that cannot be easily inspected,
forcing us to blindly depend on the correctness of the training data.
 Box approximation does not work well on complex, high frequency, or repetitive
waveforms. For repetitive data, it is necessary to prepare the training data by slicing out
single cycles representing the bounds of normal behavior.
 Model development is not fully automated, nor is it intended to be. It is
appropriate for an environment in which test data is available to evaluate the effects of
setting parameters and editing the model. The parameters include a smoothing filter time
constant T, model granularity k, and a sequential testing option r.
 We detected a wide range of anomalies in one domain. More testing is needed,
but good data is difficult to obtain because anomalies must be manually labeled for
testing, and the labeling process is often subjective. Test data could be synthesized by
injecting anomalies at known points, but this is contrary to the whole purpose of anomaly
detection, which is to detect unanticipated events.

Acknowledgements
 Funding for this work was provided by Interface and Control Systems, Inc.,
Indialantic Florida. The Marotta valve data was provided by NASA. It is available at
http://www.cs.fit.edu/~pkc/nasa/data/

References

[1] E. Keogh and S. Kasetty, On the Need for Time Series Data Mining Benchmarks: A
Survey and Empirical Demonstration, Proc. SIGKDD, 2002.

[2] E. Keogh, S. Lonardi, C. A. Ratanamahatana, Towards Parameter-Free Data Mining,
Proc. ACM SIGKDD, 2004.

[3] J. Gailly, gzip, http://www.gzip.org/

[4] M. Mahoney, Space Shuttle Engine Valve Anomaly Detection by Data Compression,
2003, http://cs.fit.edu/~mmahoney/nasa/msg1.txt

[5] M. Taylor, RK Software, http://rksoft.virtualave.net/

[6] M. Mahoney, The PAQ Data Compression Programs,
http://cs.fit.edu/~mmahoney/compression/

[7] T. Bell, I. H. Witten, and J. G. Cleary, Modeling for Text Compression, ACM
Computing Surveys, 21(4):557-592, 1989.

[8] A. Ypma, Learning Methods for Machine Vibration Analysis and Health Monitoring,
Dissertation, Delft University of Technology, Netherlands, 2001.

[9] D. Dasgupta and S. Forrest, Artificial Immune Systems in Industrial Applications,
Proc. International Conference on Intelligent Processing and Manufacturing Material
(IPMM), Honolulu, HI, 1999.

[10] S. Salvador, P. Chan, J. Brodie, Learning States and Rules for Time Series Anomaly
Detection, Proc. FLAIRS, 2004.

[11] W. Cohen, Fast Effective Rule Induction, Proc. ICML, 1995.

[12] E. Keogh, J. Lin, W. Truppel, Clustering of Time Series Subsequences is
Meaningless: Implications for Previous and Future Research, Proc. ICDM, 2003.

