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Abstract 
 We describe a multi -dimensional time series anomaly detection method in which 
each point in a test series is required to match the value, slope, and curvature of a point 
seen in training (with an optional sequential constraint), and a method of generating a 
model in the form of concise, human-comprehensible, and editable rules.  Training time 
complexity is O(n log n), and testing is O(n).  The method generalizes to multiple 
training series by allowing test points to fall within the range bounded by the training 
data.  We use this approach to detect test failures in Marotta fuel control valves used on 
the Space Shuttle. 
 Keywords:  Time series anomaly detection, Machine health monitoring, Path 
model, Box model, Rule Learning, NASA. 

1. Introduction 
 Failures in complex systems are often detected by monitoring sensor data and 
comparing it to a model.  For example, a home electrical system is equipped with sensors 
to detect current flow, and a circuit breaker to disconnect power if the limit  specified by 
the model is exceeded.  Another example would be an automobile engine, where a 
designer specifies an acceptable range of values for engine temperature, oil pressure, 
battery current, and so on. 
 Some failures might remain undetected if the failure mode is not anticipated by 
the designer.  However, such failures might still  be detectable by learning a model of 
normal behavior and detecting deviations from this model.  For example, a driver may 
recognize a problem with the engine if it makes a strange sound, even if the problem is 
not detected by the dashboard sensors.  It is this type of anomaly detection that we wish 
to automate: learning a model of normal behavior of a time series and detecting 
deviations from it. 
 A shortcoming of many machine learning approaches is that the learned model is 
often not comprehensible to a designer.  We wish to allow the designer to examine and 
edit the model, first to verify that it is correct; and second, to modify the model to 
account for known failure modes.  To see the importance of this capabili ty, consider 
training a circuit breaker using machine learning.  If the wiring is designed to handle 20 
Amps, but the current never exceeds 5 Amps in training, then the model would probably 
be incorrect regardless of which machine learning approach was used. 
 For some time series we wish to ignore events that cannot be observed over a 
short time window.  For example, a circuit breaker's behavior should depend on the 



immediate value of the current but not on the average value over the last hour.  Another 
example is shown in Figure 1 below.  Here we model the state transitions of a two-state 
device, such as a valve or switch where we do not care how long the device is in one state 
or the other, or how many transitions occur, but we do care about the shape of the time 
series during a transition. 
 

 
Fig. 1.  An example time series anomaly detection problem. 
 
 We can model short term events by requiring that each point of the test time series  
match (in value, slope, and curvature) a point somewhere in the training data.  
Furthermore, we can describe this model using a concise set of rules.  The model is: 
 
 (x = 0 and dx = 0)   (dx means the slope of x) 
 or (0 < x < 1 and dx = 3) 
 or (x = 1 and dx = 0) 
 or (0 < x < 1 and dx = -3) 
 
 Some commonly used measures such as Euclidean distance or dynamic time 
warping (DTW) would fail to distinguish the normal and abnormal pulses in this example.  
The Euclidean measure would require that the test series look exactly like the training  
series, but the normal test pulses are different widths.   DTW would stretch the normal 
pulses horizontally to fit, but would still fail because the abnormal pulse would also be 
stretched to fit.  Other, more complex methods might succeed, but they often lack concise, 
comprehensible models. 
 In addition to modeling short term events using concise rules, we might also wish 
to generalize from multiple training sets.  In Figure 2, we wish to allow test signals that 
fall "between" the two training signals.  Some common methods such as 1-nearest 
neighbor would fail because the normal and abnormal signals have the same distance 
from the nearest normal signal.  We solve this problem by generating a rule set from one 
training series, and then expanding the rule parameters to fit the other series. 
 

 
Fig. 2.  A generalization problem. 
 
 The rest of this paper is organized as follows.  In Section 2, we review time series 
anomaly detection.  In Section 3, we introduce a path model, which requires that each test 
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point match a point somewhere in the training data.  In Section 4, we describe a rule-
based approximation of the set of allowable points using a box model.  In Section 5, we 
describe how box models can be extended to generalize across multiple training series.  
In Section 6, we describe how the sequential ordering of boxes can be used to speed 
testing.  In Section 7, we detect test failures in Marotta series fuel control valves used on 
the Space Shuttle by monitoring solenoid current.  In Section 8, we conclude. 

2. Related Work 
 Time series anomaly detection has been characterized as a special case of time 
series data mining, which also includes problems such as classification, clustering, and 
rule discovery.  The central problem in all of these cases is to define a distance or 
dissimilarity function for a pair of time series.  In the case of anomaly detection, an 
anomaly is indicated by a large dissimilarity between the training series and the test series. 
 Keogh and Kasetty [1] and Keogh, Lonardi, and Ratanamahatana [2] exhaustively 
evaluated about 50 proposed distance measures published over a 10 year period on a 
corpus of 18 pairs of time series from many domains, and found that a simple Euclidean 
measure on the normalized series (scaled to a mean of 0 and standard deviation of 1) 
outperforms most of them in a clustering task identifying the original pairs of related 
series.  Given time series x = x1...xn and y = y1..yn of n points each, the Euclidean distance 
is given by: 
 
 D(x, y) = 

�
i=1...n (xi – yi)

2
. 

 
 These results can be improved using a dynamic time warping (DTW) measure: 
shifting the series on the time axis to minimize the Euclidean distance.  However, DTW 
requires O(n2) computation time, compared to O(n) for Euclidean distance. 
 The best result obtained by Keogh et al. [2] on this data set uses an information 
theoretic approach.  The idea is that the information content of concatenated series xy 
relative to x or y alone increases as x and y differ.  Keogh approximates the information 
content of a time series by quantizing it and compressing it, and uses the dissimilarity 
measure: 
 
 D(x, y) = C(xy) / (C(x) + C(y)), 
 
where C(x) denotes the compressed size of x using an off -the-shelf data compressor such 
as gzip [3].  To use for anomaly detection, we would let x be the training time series, and 
y be the test series. 
 In unpublished work [4], we independently derived Keogh's information theoretic 
measure (but used D(x, y) = (C(xy) – C(x)) / C(y), which is monotonic with Keogh's 
measure) and confirmed its abili ty to detect anomalies in 10 of the TEK series traces 
described in Section 7.  We used gzip, rk [5], and paq4 [6], which use three different 
compression algorithms (LZ77 [7], delta coding, and a context mixing model 
respectively).  We confirmed that with one training series, one normal test series, and 8 
abnormal test series, that the normal series has a lower dissimilarity to the training data 
than all 8 of the abnormal series for gzip and paq4, and 7 of 8 cases for rk. 



 Unfortunately, a compression measure fails to produce a human comprehensible 
model.  Other approaches, such as Bayesian models, neural networks, and support vector 
machines [8], and immunological models [9], also fail i n this regard.  One can argue that 
a Euclidean measure meets this requirement if we allow graphical editing of the model, 
but it requires synchronization between the training and test series, making it unsuitable 
for some applications.  A DTW measure solves the synchronization problem, but is 
computationally inefficient (O(n2) speed). 
 In an earlier approach to solving this problem, our group developed the Gecko 
algorithm [10].  Gecko models a time series by finding a piecewise polynomial 
approximation corresponding to states in a linear state machine, then uses RIPPER [11] 
to find rules that classify each of the training points to these states by their values and 
first and second derivatives.  A test series passes if each point satisfies the rules for either 
the current state or the next state (moving to the next state in the latter case). 
 Gecko satisfies the requirement for a comprehensible model because the number 
of states is typically small (about 10-20 for the TEK data) and each state can be described 
by a small (usually 1-3) set of rules.  Testing is also fast, because each test point only 
needs to be tested against a small set of rules.  However there are two problems.  First, 
Gecko produces a binary result (anomalous or not anomalous), and second, the rules 
generated by RIPPER are optimized to classify data points with a minimal set, rather than 
a more restrictive set that should better detect anomalies. 
 To ill ustrate the second problem consider the training and test series in Fig. 3.  
The training series can be divided into two segments.  The first segment is flat with a 
value of x = 0 and a slope of dx = 0.  In the second segment, the value ranges from 0 to 1 
and the slope is a constant 1.  RIPPER then finds the simplest rule set that distinguishes 
between the states, which is "if dx > 0.5 then state = 2 else state = 1.  Although the 
training data passes the Gecko test, so does the anomalous test data shown in Fig. 1c. 
 

 
 
Fig. 3. (a) Training data.  (b) Gecko model.  (c) An anomalous time series that satisfies 
the model. 

3. Path Modeling 
 We propose a path model representation of a time series.  Given a training point xi, 
we compute its slope, dxi = xi – xi–1, and its curvature, d2xi = dxi – dxi–1, and store the 
point (xi, dxi, d

2xi) in a 3 dimensional model.  Given a test point yi, we compute (yi, dyi, 
d2yi) in the same way, then assign an anomaly score equal to the square of the Euclidean 
distance to the nearest point in x.  Thus, the dissimilarity measure for a path model is: 
 
 D(x, y) = � i minj (xj – yi)

2 + (dxj – dyi)
2 + (d2xj – d2yi)

2. 
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 This measure easily extends to more than one dimension.  Given n sensors, each 
reading is mapped to a point in 3n dimensions.  We call this a path model because a time 
series and its first and second derivatives tend to be continuous, so that the set of points 
(xi, dxi, d

2xi) tend to lie along a continuous path through 3n dimensional space. 
 The first and second differences dxi and d2xi will depend on the sampling rate.  In 
order to remove the effects of the sampling rate on D(x, y), we scale the path model to a 
unit cube, so that the points range from 0 to 1 in all dimensions.  This is not the only 
approach, however.  For example, we could also normalize the standard deviation to 1, or 
we could specify the scale factors manually. 
 A practical concern with some time series is noise, which becomes especially 
prevalent in the first and second differences.  In our work, we smooth the time series and 
its differences using a series of low-pass digital filters F: x → x' defined as: 
 
 xi' = F(xi) = (xi + (T – 1)xi–1')/T. 
 
This has the effect of removing frequencies with periods shorter than T samples.  In our 
experiments described in Section 7, we use T around 3 to 10 samples, and filter a total of 
6 times.  We filter xi twice, and then compute the difference of the filtered result.  Then 
we filter dxi twice and compute the difference of that result, d2xi.  Then we filter that 
result twice and use it in the path model.  Thus, the set of points used in the doubly 
smoothed path model is (xi'', dxi'', d

2xi''), where: 
 
 xi'' = F(F(xi)) 
 dxi = xi'' – xi–1'' 
 dxi'' = F(F(dxi)) 
 d2xi = dxi'' – dxi–1'' 
 d2xi'' = F(F(d2xi), 
 
followed by scaling to a unit cube such that 0 � [i, dxi, d

2xi ��� IR � D ��� i. 
 Figure 4 shows an example of path model anomaly detection on an artificial time 
series.  The series is 1000 samples long.  The time series consists of a sawtooth waveform 
(black).  We compute its first difference (green square wave) and second difference (blue 
alternating spikes) using double smoothing in each dimension as described here with T = 
5 samples.  We let the first two cycles be training data and the last three be test data.  The 
instantaneous anomaly score (shown smoothed with T = 10 for clarity) is shown in red at 
the bottom.  The score is 0 throughout the first test cycle because every 3-D point 
matches a point in the training series.  The second cycle has a steeper slope (indicated by 
the greater amplitude of dy) and is anomalous during the rising and falling portions of the 
waveform.  The third test waveform has the correct dy throughout, but is anomalous at 
the peak because the spike in d2y occurs when y is too small. 
 



 
 
Fig.4.  Path model anomaly detection score (red) on a time series (black sawtooth).  The 
first and second derivatives are the green square wave and blue alternating spikes. 
 
 A smoothed path model has one parameter, T.  As a general guide, the fil tering 
constant should be selected so that the features we wish to observe have duration between 
T and several times T.  Features with shorter duration, such as noise, will t end to be 
filtered out, while long duration features, such as the interval between state transitions in 
Fig. 1 will not be observed.  Often this is exactly what we want to do.  The effect of 
smoothing is to match pieces of the test series with length on the order of T to the training 
data. 

4. Rule-Based Approximation 
 Path modeling as described would not be fast.  The testing time for a path model 
would be O(n2) because each test point must be compared to all of the training points.  
Instead, we approximate the path as a string of k boxes, k << n.  Then we test each of the 
n points by finding the nearest of k boxes, which takes O(kn) time.  Each box represents 
one conjunction of a rule based model, bounding y, dy, and d2y.  For example, the model 
in Section 1 is represented by 4 boxes.  We may consider the anomaly score to be the 
square of the distance to the nearest box, or 0 if the test point falls within a box.  We set 
the parameter k as a tradeoff between speed (small k) and accuracy (large k). 
 We wish to construct the most restrictive model possible that allows all of the 
training data by minimizing the total volume of the k boxes.  Modeling points in space is 
often accomplished by clustering, but this technique is not effective for time series data 
[12].  Instead, our approach is to first approximate the path of n points by bounding the n 
– 1 pairs of adjacent points in a string of small boxes, then approximate by merging 
adjacent boxes until k are left.  Our goal is to find the most restrictive model possible, 
that is, we wish to minimize the total volume of the boxes.  The algorithm we describe is 
not optimal in this respect, but is a good approximation with reasonable run time 
eff iciency.  Given path x = x1...xn, the algorithm is as follows: 
 
 
 



 For i = 1 to n – 1 do  
  Create box b i  enclosing points x i  and x i+1  

 Repeat n – k – 1 times  
  Find i such that cost(b i ) is minimum  
  Remove b i  

  Expand b i - 1 and b i+1  to enclose the cent er of b i  
 
 cost(b i ) = vol(new b i - 1) + vol(new b i+1 )  
      – vol(old b i - 1) – vol(old b i ) – vol(old b i+1 )  
 
 When a box is removed, the two neighboring boxes are expanded to enclose the 
center of the removed box (Fig. 5).  The cost of removing a box is the volume of the two 
new boxes minus the volume of the three original boxes. 
 

 
Fig. 5.  Box approximation.  The box centered at + is removed.  The two neighboring 
boxes are expanded to enclose the point +.  Boxes are selected for removal such that the 
increase in volume is minimized. 
 
 A box model can be computed in O(n log n) time by storing the boxes in a doubly 
linked heap sorted by cost, with links between adjacent boxes in the path.  The heap is a 
balanced binary tree in which each node has lower cost than its children.  Removing the 
lowest cost box from the front of the heap and restoring the heap property takes O(log n) 
time.  After removing a box, the costs of its two nearest neighbors on each side must be 
updated and their nodes moved up or down the heap using a series of swaps, which also 
takes O(log n) time. 

5. Rule Generalization to Multiple Training Series 
 A box model can be expanded to fit additional training data.  We first construct a 
box model from one training series as described in Section 4.  Then for each additional 
training point, we expand the nearest box to enclose it by the following algorithm: 
 
 

+ 

+ 



 Construct a box model from one path 
 For each additional training point do 
  Label the point with the nearest box 
 For each additional training point do 
  Expand the labeled box to enclose it 
 
 Box extension requires two passes.  If we were to immediately expand the nearest 
box to a new training point, then it is highly likely that we would expand the same box 
repeatedly because successive training points are usually close together.  This could 
result in a correct but undesirable model in which one box encloses the entire training set. 
 Note that the model depends on the order in which the training series are 
presented.  For practical purposes, the effect is small. 
 It is sometimes useful to extend a box model on the data used to create the 
original model.  The algorithm described in Section 4 does not guarantee that the box 
model will enclose all of the original training data.  Recall that when a box is removed, 
the neighboring boxes are expanded to enclose the center of the removed box.  Although 
the original path will usually pass near the center of the box, it will not always pass 
exactly through it. 

6. Sequential Modeling 
 We used box modeling to reduce testing time from O(n2) to O(nk), k << n.  This 
involves a tradeoff, because the approximation to the training data worsens as k decreases. 
 A second optimization is possible.  If we constrain the test data to follow the k 
boxes in sequence (like Gecko), then it is only necessary to test the current and next box, 
rather than all of the boxes in the path.  With this constraint, test time is O(n), as fast as 
Gecko.  Given a box model with boxes b1...bk,  the sequential test algorithm is as follows: 
 
 i := 1 (initial state) 
 For each test point, y 
  If dist(y, bi+1) < dist(y, bi) 
   i := i + 1 
  score := score + dist(y, bi)

2 
 
 In this algorithm, dist(y, b) is the Euclidean distance from point y to box b, or 0 if 
y is inside the box. 
 Constraining the model so that the boxes are visited in order has the effect of 
modeling large scale features, like DTW and Gecko.  Such features may or may not be 
important, depending on the application.  Figure 6 shows an anomaly that is detected 
using a sequential box model, but not by an unconstrained model.  The unconstrained 
model accepts the test data because every test point matches a point in the training data, 
but does not require that the matched training points occur in sequence.  The spike in the 
training data, which corresponds to a loop in the path, is skipped.  However, the 
constrained model becomes "stuck" in a local minimum at the loop in the corresponding 
path and judges the rest of the test series to be anomalous because neither the current nor 
the next box is closest but it is not possible to advance the state without moving further 
away first. 



 

 
Fig. 6. A time series that tests normal in a path model or unconstrained box model, but 
abnormal in a sequential box model.  The training path (solid line) would actually be a 
string of small boxes. 
 
 If we wish to disregard large scale features, then we need a mechanism to escape 
local minima.  We adopt the following strategy: at each iteration of the sequential test 
algorithm, we test r boxes in order of roughly decreasing likelihood when in state i: bi, 
bi+1, bi-1, bi+2, and the remaining r – 4 boxes picked at random.  We make the closest of 
these boxes the new state.  This probabili stic strategy has an expected worst case 
recovery time from a local minima of O(k/r) and test time complexity of O(nr).  If r = k, 
then the algorithm reduces to unconstrained box modeling. 
 Other recovery strategies, including deterministic ones, are certainly possible.  
For example, a recent version of Gecko goes into a recovery mode when a test point lies 
outside both the current and next box, then recovers by running k state machines in 
parallel, each starting in a different state. 

7. Experimental Results 
 We performed anomaly detection on solenoid current readings from Marotta 
series fuel control valves as the valve is actuated for about 0.3 to 0.5 seconds under 
various forced failure conditions.  Each time series is one second, consists of 1000 
samples at a rate of 1 ms.  Each datum is a current reading recorded using a Hall effect 
sensor, generally ranging from about 0 to 4 Amps with a quantization level of 0.02 Amps 
and a noise level of about 0.04 Amps.  There are 12 time series, 4 normal (TEK 0-3) and 
8 abnormal (TEK 10-17). 
 Figure 7 shows some of the raw data.  The first waveform (TEK 3) is normal.  
The spikes on the rising and falli ng edges are due to reverse EMF from the movement of 
the valve poppet and attached solenoid magnet.  In the second waveform (TEK 10), the 
poppet is stuck closed, so that the spikes are missing.  In the third waveform (TEK 14), 
the poppet movement is partially restricted, reducing the size of the spikes.  In the fourth 
waveform (TEK 16), the poppet is stuck, then released midway through the cycle. 
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Fig. 7. TEK 3, 10, 14, and 16. 
 
 Figure 8 shows the path models for the four waveforms in Figure 7.  The data was 
double smoothed in each dimension as described in Section 3 with time constant T = 5 
ms.  In this diagram, the x axis is up, the dx axis is to the right, and the d2x axis is to the 
back.  The path direction is from the bottom center (x = dx = d2x = 0) counterclockwise, 
moving rapidly to the top center and staying there for the duration of the energized cycle 
(the flat upper region of Fig. 7).  Then the path moves rapidly downward along the left 
side back to the starting point. 
 The smaller loops on the rising and falling portions of the main loop correspond 
to the spikes on the rising and falling edges of the time series.  The loop on the rising side 
is normal in TEK 3 (red), missing in TEK 10 (yellow) and TEK 16 (blue), and reduced in 
size in TEK 14 (green).  TEK 16 has an extra loop returning to the top, corresponding to 
the dip in the middle of the time series.  Note that all of the abnormal paths deviate from 
the normal (red) path at some point. 
 Figures 9 and 10 show the box models for TEK 0 (which has the same shape as 
TEK 3) for k = 100 and 20 boxes, respectively.  Note that with 20 boxes, the details of the 
smaller, descending loop are lost. 
 



 
 
Fig. 8. Paths of TEK 3 (red), TEK 10 (yellow), TEK 14 (green) and TEK 16 (blue).  The 
dimensions are x (up), dx (right), and d2x (back). 
 
 

 
 
Fig. 9.  Box model of TEK 0 with k = 100 boxes.  The path order is from red to blue. 
 



 
 
Fig. 10.  Box model of TEK 0 with k = 20 boxes.  The line shown connecting the centers 
of the boxes approximates the original path. 
 
 We evaluated the box modeling algorithm by constructing a box approximation of 
TEK 0, expanding the model to fit TEK 1, and computing the total anomaly score for all 
of the time series (both training and test).  The criteria for successful detection is a 
margin greater than 1, where the margin is defined as the ratio of the lowest abnormal 
score (TEK 10-17) divided by the highest normal score (TEK 0-3).  Table 1 shows the 
anomaly scores and margins for k = 20 and 100 boxes, using strict sequential testing (r = 
2), sequential testing with recovery (r = 5), and unconstrained testing (r = k).  The 
smoothing time constant is T = 5 ms. 
 
Table 1.  TEK anomaly scores.  Margin = lowest abnormal score / highest normal score. 
 
Data k=20 

r=2 
k=20 
r=5 

k=20 
r=k 

k=100 
r=2 

k=100 
r=5 

k=100 
r=k 

TEK 0 (train) 13.3 1.77 0.240 2.42 1.14 0.149 
TEK 1 (expand) 13.2 0.435 5.33e-10 2.24 1.07 3.81e-8 
TEK 2 (normal) 21.5 6.91 6.32 188 77.5 74.7 
TEK 3 (normal) 21.7 8.70 7.51 204 93.0 88.4 
TEK 10 23238 142 107 6.42e5 8340 3522 
TEK 14 26284 328 340 4.07e5 8942 9159 
TEK 16 1551 493 385 1.83e5 18541 6955 
Lowest abnormal 
score 

118 
TEK 17 

65.9 
TEK 12 

23.6 
TEK 11 

2405 
TEK 17 

1991 
TEK 17 

2616 
TEK 12 

Margin 5.49 7.57 3.14 11.8 21.4 29.5 
 
 In Table 1, all of the anomalies are detected, with higher margins for the more 
accurate model, k = 100 boxes.  Anomaly detection begins to fail on this data for coarse 



models, k < 20 boxes, or for very large or small smoothing constants, T < 2 ms or T > 50 
ms. 
 It would appear from the raw data in Fig. 7 that it is necessary to use sequential 
modeling to detect missing spikes on the rising and falling edges as in Fig. 6.  However, 
for a fairly broad range of T, the smoothing provides enough state information to detect 
these missing spikes without constraining the testing order.  The deviation from the 
training path around the missing loop in Fig. 8 due to smoothing can be seen in contrast 
to Fig. 6. 
 Our implementation executes essentially instantaneously on a 750 MHz PC for 
even the slowest version (r = k = 100).  We have also successfully detected voltage, 
temperature, and poppet restriction anomalies on other data using box models of 4 traces, 
with generalization to allow intermediate voltages as described in Section 5.  For example, 
when trained on 18V, 22V, 26V and 30V traces, the model accepts 20V, 24V or 28V, but 
not 14V, 16V or 32V.  We omit detailed results. 

8. Conclusion 
 Path and box modeling are appropriate for situations where we wish to monitor 
the shape of a time series, and where a designer has knowledge about expected behavior 
that might not be captured in the training data.  Training and testing are fast.  A model 
uses very little memory, and there is a fixed upper bound on testing time per data point, 
making it suitable for a real-time embedded processor 
 We do not claim that path or box modeling is superior to other dissimilarity 
measures for other data mining tasks such as clustering or search.  These models are 
intended to detect events in the test data that do not appear in the training data, but not 
vice versa.  Our measure is asymmetric: D(x, y) ≠ D(y, x).  While there may be better 
dissimilarity measures, many of them generate models that cannot be easily inspected, 
forcing us to blindly depend on the correctness of the training data. 
 Box approximation does not work well on complex, high frequency, or repetitive 
waveforms.  For repetitive data, it is necessary to prepare the training data by slicing out 
single cycles representing the bounds of normal behavior. 
 Model development is not fully automated, nor is it intended to be.  It is 
appropriate for an environment in which test data is available to evaluate the effects of 
setting parameters and editing the model.  The parameters include a smoothing filter time 
constant T, model granularity k, and a sequential testing option r. 
 We detected a wide range of anomalies in one domain.  More testing is needed, 
but good data is difficult to obtain because anomalies must be manually labeled for 
testing, and the labeling process is often subjective.  Test data could be synthesized by 
injecting anomalies at known points, but this is contrary to the whole purpose of anomaly 
detection, which is to detect unanticipated events. 
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