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Abstract

We describe amulti-dimensional time series anomaly detedion methodin which
ead padnt in atest seriesisrequired to match the value, slope, and curvature of a point
seen in training (with an optional sequential constraint), and amethod d generating a
model in the form of concise, human-comprehensible, and editable rules. Training time
complexity isO(n log n), and testing is O(n). The method generali zes to multiple
training series by al owing test points to fall within the range bourded by the training
data. We use this approach to deted test failuresin Marottafuel control valves used on
the SpaceShuitle.

Keywords. Time series anomaly detedion, Machine hedth monitoring, Path
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1. Introduction

Fail uresin complex systems are often deteded by monitoring sensor data and
comparing it to amodel. For example, ahome dectricd system is equipped with sensors
to deted current flow, and a drcuit breger to dsconned power if the limit speafied by
the model is excealed. Anather example would be an automobile engine, where a
designer spedfies an acceptable range of values for engine temperature, oil presaire,
battery current, and so on.

Some fail ures might remain undeteded if the failure mode is nat anticipated by
the designer. However, such failures might still be detedable by learning amodel of
normal behavior and detecting deviations from this model. For example, adriver may
reaognize aproblem with the engineif it makes a strange sound,even if the problem is
not deteded by the dashbaard sensors. It isthistype of anomaly detedion that we wish
to automate: learning amodel of normal behavior of atime series and ceteding
deviations from it.

A shortcoming of many madine learning approaches is that the leaned model is
often nat comprehensible to adesigner. We wish to al ow the designer to examine and
edit the mode, first to verify that it is corred; and second, to modify the model to
acourt for known failure modes. To seethe importance of this cgpabili ty, consider
training a drcuit breaker using macdine leaning. If thewiring isdesigned to handle 20
Amps, bu the arrent never exceals 5 Ampsin training, then the model would probably
be incorred regardlessof which madine learning approad was used.

For some time series we wish to ignore events that canna be observed ower a
short timewindow. For example, a drcuit breaker's behavior shoud depend onthe



immediate value of the current but not on the average value over the last hour. Another
exampleis shownin Figure 1 below. Here we model the state transitions of atwo-state
device, such as avalve or switch where we do not care how long the device isin one state
or the other, or how many transitions occur, but we do care about the shape of the time
series during atransition.

x=0
Training data Normal Norma Abnorma

Fig. 1. Anexampletime series anomaly detection problem.

We can model short term events by requiring that each point of the test time series
match (in value, slope, and curvature) a point somewhere in the training data.
Furthermore, we can describe this model using a concise set of rules. The model is:

= 0 and dx = 0) (dx means the slope of x)
or (0 <x <1 and dx = 3)

or (x =1 and dx = 0)

or (0 <x <1and dx =-3)

Some commonly used measures such as Euclidean distance or dynamic time
warping (DTW) would fail to distinguish the normal and abnormal pulsesin this example.
The Euclidean measure would require that the test series ook exactly like the training
series, but the normal test pulses are different widths. DTW would stretch the normal
pulses horizontally to fit, but would still fail because the abnormal pulse would also be
stretched to fit. Other, more complex methods might succeed, but they often lack concise,
comprehensible models.

In addition to modeling short term events using concise rules, we might also wish
to generalize from multiple training sets. In Figure 2, we wish to allow test signals that
fall "between" the two training signals. Some common methods such as 1-nearest
neighbor would fail because the normal and abnormal signals have the same distance
from the nearest normal signal. We solve this problem by generating a rule set from one
training series, and then expanding the rule parameters to fit the other series.
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Fig. 2. A generaization problem.

Therest of this paper isorganized asfollows. In Section 2, we review time series
anomaly detection. In Section 3, we introduce a path model, which requires that each test



point match a point somewhere in the training data. In Section 4, we describe arule-
based approximation of the set of allowable points using abox model. In Section 5, we
describe how box models can be extended to generalize across multiple training series.
In Section 6, we describe how the sequential ordering of boxes can be used to speed
testing. In Section 7, we detect test failuresin Marotta series fuel control valves used on
the Space Shuttle by monitoring solenoid current. In Section 8, we conclude.

2. Related Work

Time series anomaly detection has been characterized as a special case of time
series data mining, which also includes problems such as classification, clustering, and
rule discovery. The central problem in al of these casesisto define adistance or
dissimilarity function for a pair of time series. In the case of anomaly detection, an
anomaly isindicated by alarge dissimilarity between the training series and the test series.

Keogh and Kasetty [1] and Keogh, Lonardi, and Ratanamahatana [2] exhaustively
evaluated about 50 proposed distance measures published over a 10 year period on a
corpus of 18 pairs of time series from many domains, and found that a simple Euclidean
measure on the normalized series (scaled to amean of 0 and standard deviation of 1)
outperforms most of them in a clustering task identifying the original pairs of related
series. Given time series X = X1...X, and y = y1..y,, of n points each, the Euclidean distance
isgiven by:

DX, Y) =Y i=1.n (Xi = ¥i)?.

These results can be improved using a dynamic time warping (DTW) measure:
shifting the series onthe time ais to minimize the Euclidean distance. However, DTW
requires O(n?) computation time, compared to O(n) for Euclidean distance.

The best result obtained by Keogh et al. [2] onthis data set uses an information
theoretic gpproach. Theideais that the information content of concatenated series xy
relativeto x or y aloneincreases as x andy differ. Keogh approximates the information
content of atime series by quantizing it and compressng it, and wses the disgmil arity
measure:

D(x, y) = Clxy) / (C(x) + C(y)),

where C(x) denotes the compressed size of x using an off-the-shelf data compressor such
asgzp [3]. To usefor anomaly detedion, we would let x be the training time series, and
y be the test series.

In unpulhi shed work [4], we independently derived Keogh's information theoretic
measure (but used D(X, y) = (C(xy) — C(x)) / C(y), which is monaonic with Keogh's
measure) and confirmed its abili ty to detect anomaliesin 100f the TEK series traces
described in Sedion 7. We used gzp, rk [5], and pag4 [6], which use threediff erent
compresson agorithms (LZ77[7], delta coding, and a cntext mixing model
respedively). We nfirmed that with ore training series, orne normal test series, and 8
abnarmal test series, that the normal series has alower dissmilarity to the training data
than all 8 of the dnamal seriesfor gzip and pag4, and 7 d 8 casesfor rk.



Unfortunately, a compression measure fail sto produce ahuman comprehensible
model. Other approades, such as Bayesian models, neura networks, and suppat vedor
madines [8], and immunologicad models[9], aso fail in thisregard. One can argue that
a Euclidean measure meets this requirement if we dlow graphicd editing of the model,
but it requires synchronization between the training and test series, making it unsuitable
for some gplicaions. A DTW measure solves the synchronization problem, bu is
computationally inefficient (O(n?) speed).

In an earlier approach to solving this problem, our group developed the Gecko
algorithm [10]. Gedko models atime series by finding a piecewise paynomial
approximation corresponding to statesin alinear state macine, then uses RIPFER [11]
to find rules that clasgfy ead of the training points to these states by their values and
first and secondderivatives. A test series passesif ead pant satisfies the rules for either
the aurrent state or the next state (moving to the next state in the latter case).

Gedko satisfies the requirement for a comprehensible model because the number
of statesistypically small (abou 10-20for the TEK data) and each state can be described
by asmall (usually 1-3) set of rules. Testing is also fast, because eadh test point only
needs to be tested against asmall set of rules. However there ae two problems. First,
Gedko produces abinary result (anomalous or nat anomalous), and second, the rules
generated by RIPFER are optimized to classfy data points with aminimal set, rather than
amore restrictive set that should better deted anomali es.

To ill ustrate the second problem consider the training and test seriesin Fig. 3.
The training series can be divided into two segments. The first segment isflat with a
value of x = 0 andaslope of dx = 0. In the seaond segment, the value ranges from 0 to 1
andthe slopeisa @mnstant 1. RIPFER then finds the simplest rule set that distinguishes
between the states, which is"if dx > 0.5then state =2 else state =1. Although the
training data passes the Gedko test, so dces the anomalous test data shown in Fig. 1c.

/ dx > 0.5 / Osx<1
O<x<1 X ’ dx=3

x=0, dx=1 State 1 > State2 x=0
dx=0 Start Accept dx=0

Fig. 3. (a) Training data. (b) Gecko model. (c) An anomaloustime series that satisfies
the model.

3. Path Modeling

We propase a path model representation d atime series. Given atraining point X;,
we mmputeits dope, dx; = x; — X1, and its curvature, d?; = dx; — dx;_1, and store the
point (x;, dx;, d>;) in a3 dmensional model. Given atest paint y;, we wmpute (y;, dy;,
d?y;) in the same way, then assgn an anomaly score equal to the square of the Euclidean
distanceto the nearest point in x. Thus, the disgmilarity measure for a path model is:

D(x, y) =X i min; (x; —yi)* + (dx; — dy;)” + (d’x; — dPyi)>.



This measure easily extends to more than ore dimension. Given n sensors, eat
reading is mapped to a point in 3n dimensions. We cadl this a path model because atime
series and itsfirst and second derivatives tendto be continuous, so that the set of points
(xi, dx, oX;) tendto lie dong a @ntinuous path through 3n dimensiona space

Thefirst and second dfferences dx; and d’; will depend onthe sampling rate. In
order to remove the effeds of the sampling rate on D(X, y), we scde the path model to a
unit cube, so that the paintsrangefrom Oto 1in al dimensions. Thisisnot the only
approad, however. For example, we could also normali ze the standard deviationto 1, a
we @uld spedfy the scde fadors manualy.

A pradica concern with some time seriesis noise, which becomes espeadally
prevalent in the first and second dfferences. In our work, we smoath the time series and
its diff erences using a series of low-passdigital filtersF: x — X defined as:

xi' = F(xi) = (% + (T = Dxia)IT.

This has the dfed of removing frequencies with periods shorter than T samples. In our
experiments described in Sedion 7,we use T around 3to 10samples, andfilter atotal of
6 times. Wefilter x; twice and then compute the diff erence of thefiltered result. Then
wefilter dx; twice and compute the diff erence of that result, d®;. Then wefilter that
result twice and wse it in the path model. Thus, the set of paints used in the douldy
smoocthed path model is (x", dx;", "), where:

Xi" = F(F(X,))

dXI - XiII —Xi_l”
dx;" = F(F(dx;))
dle - dXi" — dXi_l"
d;" = F(F(d?),

followed by scding to aunit cube such that 0 < x;, dx;, d*; < 1 for all i.

Figure 4 shows an example of path model anomaly detection on an artificia time
series. The seriesis 1000 sampleslong. The time series consists of a sawtooth waveform
(black). We compute itsfirst difference (green square wave) and second difference (blue
alternating spikes) using double smoothing in each dimension as described herewith T =
5 samples. We let the first two cycles be training data and the last three be test data. The
instantaneous anomaly score (shown smoothed with T = 10 for clarity) isshownin red at
the bottom. The scoreis 0 throughout the first test cycle because every 3-D point
matches a point in the training series. The second cycle has a steeper slope (indicated by
the greater amplitude of dy) and is anomalous during the rising and falling portions of the
waveform. The third test waveform has the correct dy throughout, but is anomalous at
the peak because the spike in d’y occurs when y is too small.
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Fig.4. Path model anomaly detedion score (red) onatime series (black sawtooth). The
first and secondderivatives are the green square wave and Hue dternating spikes.

[ W

A smoathed path model has one parameter, T. Asageneral guide, thefiltering
constant shoud be seleded so that the features we wish to olserve have duration ketween
T and several times T. Fedures with shorter duration, such as noise, will tendto be
filtered ou, while long duration feaures, such asthe interval between state transitionsin
Fig. 1 will not be observed. Often thisis exadly what we want to do. The effect of
smoathing isto match pieces of the test series with length onthe order of T to the training
data.

4. Rule-Based Approximation

Path modeling as described would nat be fast. The testing time for a path model
would be O(n?) because eab test point must be compared to al of the training points.
Instead, we approximate the path as a string of k boxes, k << n. Then wetest ead o the
n pants by finding the neaest of k boxes, which takes O(kn) time. Each box represents
one mnjunction o arule based model, boundng y, dy, and dfy. For example, the model
in Sedion lisrepresented by 4 bokes. We may consider the anomaly score to be the
sguare of the distanceto the neaest box, or O if the test paint fallswithin abox. We set
the parameter k as a tradeoff between speed (small k) and accuracy (large k).

We wish to construct the most restrictive model passble that allows al of the
training data by minimizing the total volume of the k boxes. Modeling paintsin spaceis
often accompli shed by clustering, bu thistechnique is nat eff ective for time series data
[12]. Instead, aur approach isto first approximate the path of n paints by boundng the n
— 1 pairs of adjacent paintsin astring of small boxes, then approximate by merging
adjacent boxes until k are left. Our goal isto find the most restrictive model passble,
that is, we wish to minimize the total volume of the boxes. The dgorithm we describeis
not optimal in thisresped, bu is a goodapproximation with reasonable run time
efficiency. Given path x = X;...X, the dgorithm is as foll ows:



Fori=1ton —1do

Create box b ; enclosing points x i and X i1
Repeatn -k —1times

Find i such that cost(b i ) IS minimum

Remove b ;

Expand b j.;and b i; to enclose the cent erofb
cost(b ;)=vollnewb  j.i)+vollnewb 1)

—vololdb  i.1) —vololdb ;) —vol(oldb i)

When abox is removed, the two neighboring boxes are expanded to enclose the
center of the removed box (Fig. 5). The cost of removing abox is the volume of the two
new boxes minus the volume of the three original boxes.

Fig. 5. Box approximation. The box centered at + isremoved. The two neighboring
boxes are expanded to enclose the point +. Boxes are selected for removal such that the
increase in volume is minimized.

A box model can be computed in O(n log n) time by storing the boxes in adoubly
linked heap sorted by cost, with links between adjacent boxesin the path. The heapisa
balanced binary tree in which each node has lower cost than its children. Removing the
lowest cost box from the front of the heap and restoring the heap property takes O(log n)
time. After removing abox, the costs of its two nearest neighbors on each side must be
updated and their nodes moved up or down the heap using a series of swaps, which also
takes O(log n) time.

5. Rule Generalization to Multiple Training Series

A box model can be expanded to fit additional training data. We first construct a
box model from one training series as described in Section 4. Then for each additional
training point, we expand the nearest box to enclose it by the following algorithm:



Construct a box nodel from one path

For each additional training point do
Label the point with the nearest box

For each additional training point do
Expand the | abel ed box to enclose it

Box extension requires two passes. If we were to immediately expand the nearest
box to anew training point, then it is highly likely that we would expand the same box
repeatedly because successive training points are usualy close together. This could
result in a correct but undesirable model in which one box encloses the entire training set.

Note that the model depends on the order in which the training series are
presented. For practical purposes, the effect is small.

It is sometimes useful to extend abox model on the data used to create the
original model. The algorithm described in Section 4 does not guarantee that the box
model will enclose all of the original training data. Recall that when abox is removed,
the neighboring boxes are expanded to enclose the center of the removed box. Although
the original path will usually pass near the center of the box, it will not always pass
exactly throughit.

6. Sequential Modeling

We used box modeling to reduce testing time from O(n?) to O(nk), k << n. This
involves atradeoff, because the approximation to the training data worsens as k decreases.

A second optimization is possible. If we constrain the test datato follow the k
boxes in sequence (like Gecko), then it is only necessary to test the current and next box,
rather than all of the boxes in the path. With this constraint, test timeis O(n), as fast as
Gecko. Given abox model with boxes b;...by, the sequential test algorithm is as follows:

i =1 (initial state)
For each test point, vy
If dist(y, bi+1) < dist(y, bi)
=0+ 1
score := score + dist(y, b;)?

In this algorithm, dist(y, b) is the Euclidean distance from point y to box b, or O if
y isinside the box.

Constraining the model so that the boxes are visited in order has the effect of
modeling large scale features, like DTW and Gecko. Such features may or may not be
important, depending on the application. Figure 6 shows an anomaly that is detected
using a sequential box model, but not by an unconstrained model. The unconstrained
model accepts the test data because every test point matches a point in the training data,
but does not require that the matched training points occur in sequence. The spikein the
training data, which corresponds to aloop in the path, is skipped. However, the
constrained model becomes "stuck™ in alocal minimum at the loop in the corresponding
path and judges the rest of the test series to be anomal ous because neither the current nor
the next box is closest but it is not possible to advance the state without moving further
away first.



Tran Normal? Path

Fig. 6. A time series that tests normal in apath model or unconstrained bax model, bu
abnamal in asequential box model. The training path (solid line) would actually be a
string of small boxes.

If we wish to dsregard large scde features, then we need a medhanism to escgpe
locd minima. We aopt the following strategy: at ead iteration o the sequential test
algorithm, we test r boxes in order of roughly deaeasing likelihoodwhen in state i: by,
bi+1, b-1, bi+2, andtheremaining r — 4 boxes picked at randam. We make the dosest of
these boxes the new state. This probabili stic strategy has an expeded worst case
recvery time from alocal minimaof O(k/r) andtest time complexity of O(nr). If r =k,
then the dgorithm reduces to urconstrained bax modeling.

Other recovery strategies, including deterministic ones, are cetainly possble.
For example, arecent version d Gedko goes into arecmvery mode when atest point lies
outside bath the arrent and rext box, then recovers by runnng k state machinesin
parale, each starting in adifferent state.

7. Experimental Results

We performed anomaly detedion onsolenaid current readings from Marotta
series fuel control valves as the valveis actuated for abou 0.3to 0.5semnds under
various forced failure mnditions. Ead time seriesis one seond,consists of 1000
samples a arate of 1 ms. Each datum isa aurrent reading recorded using a Hall effed
sensor, generally ranging from abou 0 to 4 Amps with a quantization level of 0.02Amps
andanaise level of about 0.04Amps. There are 12 time series, 4 namal (TEK 0-3) and
8 abnama (TEK 10-17).

Figure 7 shows ome of the raw data. The first waveform (TEK 3) isnormal.
The spikes on the rising and falli ng edges are due to reverse EMF from the movement of
the valve poppet and attached solenoid magnet. In the secondwaveform (TEK 10), the
poppet is guck closed, so that the spikes are misgng. In the third waveform (TEK 14),
the poppet movement is partially restricted, reducing the size of the spikes. In the fourth
waveform (TEK 16), the popyet is duck, then released midway through the oycle.



Fig. 7. TEK 3, 10, 14, and 16.

Figure 8 shows the path models for the four waveformsin Figure 7. The datawas
double smoothed in each dimension as described in Section 3 with time constant T = 5
ms. In thisdiagram, the x axisis up, the dx axisisto the right, and the d®x axisisto the
back. The path direction is from the bottom center (x = dx = d’x = 0) counterclockwise,
moving rapidly to the top center and staying there for the duration of the energized cycle
(theflat upper region of Fig. 7). Then the path moves rapidly downward along the left
side back to the starting point.

The smaller loops on the rising and falling portions of the main loop correspond
to the spikes on the rising and falling edges of the time series. Theloop on therising side
isnormal in TEK 3 (red), missing in TEK 10 (yellow) and TEK 16 (blue), and reduced in
sizein TEK 14 (green). TEK 16 has an extraloop returning to the top, corresponding to
the dip in the middle of thetime series. Note that all of the abnormal paths deviate from
the normal (red) path at some point.

Figures 9 and 10 show the box models for TEK O (which has the same shape as
TEK 3) for k=100 and 20 boxes, respectively. Note that with 20 boxes, the details of the
smaller, descending loop are lost.



Fig. 8. Paths of TEK 3 (red), TEK 10 (yellow), TEK 14 (green) and TEK 16 (blue). The
dimensions are x (up), dx (right), and d*x (back).

Fig. 9. Box model of TEK 0 with k= 100 boxes. The path order isfrom red to blue.



Fig. 10. Box model of TEK 0 with k = 20 boxes. The line shown connecting the centers

of the boxes approximates the origina path.

We evauated the box modeling agorithm by constructing a box approximation of

TEK 0, expanding the model to fit TEK 1, and computing the total anomaly score for all
of the time series (both training and test). The criteriafor successful detectionisa
margin greater than 1, where the margin is defined as the ratio of the lowest abnormal
score (TEK 10-17) divided by the highest normal score (TEK 0-3). Table 1 showsthe
anomaly scores and margins for k = 20 and 100 boxes, using strict sequential testing (r =
2), sequential testing with recovery (r = 5), and unconstrained testing (r = k). The
smoothing time constant is T =5 ms.

Table1. TEK anomaly scores. Margin = lowest abnormal score / highest normal score.

Data k=20 k=20 k=20 k=100 k=100 k=100
r=2 r=5 r=k r=2 r=5 r=k

TEK O (train) 13.3 1.77 0.240 2.42 1.14 0.149
TEK 1 (expand) 13.2 0.435 5.33e-10 | 2.24 1.07 3.81e-8
TEK 2 (normal) 215 6.91 6.32 188 775 74.7
TEK 3 (normal) 21.7 8.70 7.51 204 93.0 88.4
TEK 10 23238 142 107 6.42e5 8340 3522
TEK 14 26284 328 340 4.07e5 8942 9159
TEK 16 1551 493 385 1.83e5 18541 6955
Lowest abnormal | 118 65.9 23.6 2405 1991 2616
score TEK 17 | TEK12 | TEK 11 | TEK 17 | TEK 17 | TEK 12
Margin 5.49 7.57 3.14 11.8 21.4 29.5

In Table 1, al of the anomalies are detected, with higher margins for the more
accurate model, k = 100 boxes. Anomaly detection begins to fail on this data for coarse




models, k < 20 boxes, or for very large or small smoothing constants, T <2 msor T > 50
ms.

It would appear from the raw datain Fig. 7 that it is necessary to use sequential
modeling to detect missing spikes on the rising and falling edges asin Fig. 6. However,
for afairly broad range of T, the smoothing provides enough state information to detect
these missing spikes without constraining the testing order. The deviation from the
training path around the missing loop in Fig. 8 due to smoothing can be seen in contrast
toFig. 6.

Our implementation executes essentially instantaneously on a 750 MHz PC for
even the slowest version (r = k=100). We have also successfully detected voltage,
temperature, and poppet restriction anomalies on other data using box models of 4 traces,
with generaization to allow intermediate voltages as described in Section 5. For example,
when trained on 18V, 22V, 26V and 30V traces, the model accepts 20V, 24V or 28V, but
not 14V, 16V or 32V. We omit detailed results.

8. Conclusion

Path and box modeling are appropriate for situations where we wish to monitor
the shape of atime series, and where a designer has knowledge about expected behavior
that might not be captured in the training data. Training and testing are fast. A model
uses very little memory, and there is a fixed upper bound on testing time per data point,
making it suitable for areal-time embedded processor

We do not claim that path or box modeling is superior to other dissimilarity
measures for other data mining tasks such as clustering or search. These models are
intended to detect eventsin the test data that do not appear in the training data, but not
viceversa. Our measure is asymmetric: D(X, y) # D(y, X). While there may be better
dissimilarity measures, many of them generate models that cannot be easily inspected,
forcing usto blindly depend on the correctness of the training data.

Box approximation does not work well on complex, high frequency, or repetitive
waveforms. For repetitive data, it is necessary to prepare the training data by slicing out
single cycles representing the bounds of normal behavior.

Model development is not fully automated, nor isit intended to be. Itis
appropriate for an environment in which test data is available to evaluate the effects of
setting parameters and editing the model. The parameters include a smoothing filter time
constant T, model granularity k, and a sequential testing optionr.

We detected a wide range of anomalies in one domain. Moretesting is needed,
but good datais difficult to obtain because anomalies must be manually labeled for
testing, and the labeling processis often subjective. Test data could be synthesized by
injecting anomalies at known points, but thisis contrary to the whole purpose of anomaly
detection, which isto detect unanticipated events.
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