Analysis of Hostile Network Reconnaissance to

Anticipate and Mitigate Network Attacks

by

Luis Angel Rivera

A thesis submitted to the College of Engineering at
Florida Institute of Technology
in partial fulfillment of the requirements
for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
December, 2004

Technical Report
CS-2005-06

©Copyright 2004 Luis Angel Rivera
All Rights Reserved

The author grants permission to make single copies

The undersigned committee,
having examined the attached thesis,
”Analysis of Hostile Network Reconnaissance to
Anticipate and Mitigate Network Attacks”, by
Luis Angel Rivera
hereby indicates its unanimous approval.

Gerald A. Marin, Ph.D
Professor, Computer Sciences
Major Advisor

William H. Allen, Ph.D
Assistant Professor, Computer Sciences
Thesis Advisor

Mohammad Shahsavari, Ph.D
Associate Professor, Computer Sciences
Thesis Advisor

William Shoaff, Ph.D
Associate Professor and Department Head, Computer Sciences
Department Head

Abstract

Title:

Analysis of Hostile Network Reconnaissance to
Anticipate and Mitigate Network Attacks

Author:

Luis Angel Rivera

Principal Advisor:

Gerald Marin, Ph.D.

Network security systems today such as current intrusion detection systems,
intrusion prevention systems and firewalls are good at reacting to attacks as they
occur or shortly after they occur. Current security systems lack the ability to
identify and detect the activity that usually precedes an attack. This activity is
known as network reconnaissance. In this thesis we have developed a technique
that can assist current security systems to detect hostile network reconnaissance to

anticipate and mitigate network attacks.

Acknowledgement

First and foremost | would like to thank Dr. Gerald Marin and Dr. William Allen.
Without your advice, guidance and encouragement | could have not been able to
complete this thesis. I would also like to thank, Nicole Hoier for taking the time to
proof read my work and for advising me; Eric Kledzik for reviewing the technical
accuracy of my work; Christopher Nucci for his assistance with the programming,
thank you Chris, I could not have completed Oinker on time without your
assistance; Dr. Herbert Thompson for taking the time to read my work and for
providing valuable input; Daniel Simpson for his encouragement and advice; Chin
Dou for being my thesis mate and providing me with encouragement, | wish you
the best with your thesis and defense and Stevan Thomas and Jeff Tabatabai for

their technical input.

Dedication

I would like to dedicate this thesis to my better half, my soul mate and
friend, Magdalena Indira Fernandez, my wife. Thank you for your tender loving

care, encouragement and support.

Table of Contents

Chapter 1: INtroduCtioNccviiiiiiie e 1

1.1.Problem OVEIVIEWccoiiirieiieiiisiesisee e 3

L2 APPIOACKH .. 4

1.3.Thesis Organizationcccccceieeiieiieiieeie e 9
Chapter 2: Related work and Network Traffic Analysis

FUNdamentals ..o 10

2.1 Related WOTKc.coveieiiiieiiieseceee e 11

2.2 Network Traffic Analysis Fundamentals............cccocoevviniiiiiinnnnnn 19

Brief TCP/IP OVEIVIEW......cveiiiiiiesierieieseeee s 19

TCP/IP SeCUrity FIAWS.........coiiiiiiiiieicce s 23

Network capture field identificationccocvevvvieerieie e 35

2.3 Network Reconnaissance OVEIVIEWccceoeveerenieneesieeneenieenns 37

Chapter3: Black box network traffic analysis: A Hackers

PEISPECTIVE ... e 40

3.1 Passive RECONNAISSANCEcoruieieriieiinie et 43
Scenario Part 1: Site survey of Florida Techs Network.................. 47

3.2 ACtIVE RECONNAISSANCE.eveereeaieeiteeiesiiesiee e sseesteeste et 50
Scenario Part 2: Filling inthe gapsccccocvvieevvice v 50
Chapter 4: Network traffic analysis: Security Analyst Perspective......86
4.1 Tools for traffic analysiscccovveiiieiiie e 86
4.2 ICMP reconnaissance analysis: XPROBE2..........c..ccccccevverieiiennnnn, 91
4.3 TCP/UDP reconnaissance: NMAP ..o 117
4.4 ARP reconnaissance analysis: ETTERCAP..........ccccccoeevviiieinennn. 130

Chapter 5: Techniques for Detecting and Countering Network

RECONNAISSANCE......ccuiiiieiieieieesie e 133

5.1 Network Reconnaissance Detection tools and Techniques............ 134
Snort: Intrusion detection SYStEM.........ccoovviereerinie e, 135
Acid: Analysis Console for Intrusion Databasescc.ccccvennee. 141

5.2 Oinker: Graphical User Interface to writing Snort rules................ 144
5.3 Developing rules for detecting network reconnaissance............... 149
Snort rule for detecting ICMP reconnaissance..........ccocccvveevvennnans 149
Snort rule for detecting TCP, IP and UDP reconnaissance............ 158
Snort rule for detecting ARP reconnaissance............cocecvveeiveinnens 165

5.4 Applying Snort rules: Experiment ReSUltsS...........ccoccvvvvrieeiviiiennn, 167

Vi

[000] o] 10153 T0] 2 1T 183

RETEIBNCES e 195
APPENAIX A e et ae e 209
APPENTIX B oo 282
APPENAIX C e 311

vii

Chapter 1

Introduction

The Internet came into existence in the 1970’s through what was known as
ARPANET, the Advanced Research Project Agency Network [1]. According to the
Internet Software Consortium, the Internet has grown from a mere 1.3 million hosts
in 1993 to over 285 million in 2004, [2]. This rapid growth has brought about giant
world-wide interwoven complex networks. Requirements have encouraged the
development of new network protocols, which has made communication possible
between software and hardware introduced into the market. This advancement in
technology has given birth to endless information security issues. The risk of cyber
attacks continues to grow year after year [3]. Even organizations that have
deployed a wide range of security technologies can fall victim to significant losses
[4].

Computer Security and Network Security are both areas that deal with
information security, but are quit different. This paper discusses methods, ideas and
concepts that can be applied to computer security, but are intended for networked
systems. A computer that is not networked is not vulnerable to attacks that require
the use of protocols such as TCP/IP. Such a computer can only be compromised if

an attacker has physical access to the system.

It must be understood that information security is more than just deploying
the latest and greatest technology or having unlimited network monitoring.
Information security is a process. Effective information security requires
management support, enforcing information security
policies/procedures/guidelines, and educating employees (making them aware of
social engineering and how it can be used against the organization) so they
understand and support the information security program being implemented. An
understanding of the technology is imperative in order to effectively apply it to the
organization. In addition, a well-educated and managed technical staff is a must.
This is merely a foundation to start from; every organization has unique
information security requirements. Peiter Zatko said it best during an interview
with Information Security magazine, “No matter what security tool is put on the
market, security still must be specifically modeled and personalized to individual
environments” [5].

By no means is the information presented in this paper a total solution to
information security. Rather, it presents ways to help detect network anomalies and
identify when certain tools are being used against a network by understanding how
to analyze and effectively interpret network traffic. It must be noted that network
vulnerabilities can be the result of misconfiguration of a network device, or a flaw

in hardware or software.

1.1 Problem Overview

The concept of information/computer security was present for many years
before creation of the Internet, but those concepts were not applied during
development of the Internet. Convenient collaboration between universities and
government agencies was the driving force behind development of the Internet.
Today, this design flaw has become a nightmare for universities, government
agencies and private organizations alike. Flaws in the key protocol used, TCP/IP,
can now be easily exploited by tools readily available on the Internet. Tools
currently exist that allow attackers to exploit protocol weaknesses remotely and at
great speeds and efficiency with very little knowledge of how it all works. Denial
of service attacks, defacing of web sites, and even scanning a network for known
vulnerabilities can now be done by anyone with access to the Internet. These types
of attackers, known as script kiddies, are novice to mid-level users who know just
enough to be dangerous. Script kiddies typically attack private and public systems
to make their Internet name known among other hackers. However, there exists a
more skillful group of attackers, the most dangerous kind, that attack and break into
systems for profit, revenge or for political reasons. These attackers know how to
cover their tracks and are very difficult to detect and hunt down.

Vulnerabilities of the Internet were demonstrated by Robert Morris’s worm
in 1988 [6], and many more were identified by Steven M. Bellovin in 1989 [7].

Rapid advancements in technology, growth of systems using the TCP/IP protocol,

and poorly trained system administrators have made it very difficult to detect
security holes before they are exploited. There are many other contributors to the
endless security issues we now face with networks, such as poorly written
applications, inherit problems in key programming languages (like C and C++ [8]),
and poor application security maintenance schedules.

How do we defend against these adversaries? The key word here is defend
against. No system is safe once it is connected to the Internet. Once a system is
configured to access the outside world via a Local Area Network (LAN), Wide
Area Network (WAN), Metropolitan Area Network (MAN), Broadband (etc: Cable
Modem, Digital Subscriber Line (DSL), Wireless, or a dial-up connection, it is
vulnerable to weaknesses found in operating systems in addition to network
hardware and software flaws. No matter what defenses are put in place, the system
will always be open to some exploit, whether it is caused by a hardware/software
flaw, misconfiguration or poor maintenance. A key defense to this is identifying
anomalies in network traffic, such as network scans and denial of service attacks
which cause abnormal increases in bandwidth usage, and taking appropriate action

to prevent compromise [9].

1.2 Approach

With so many different protocols and networking devices being developed
today, the analysis of network traffic has become exponentially difficult. Because

of this complexity, network attacks have also become difficult to detect and in

some cases prevent. Current network security solutions, such as network intrusion
detection systems and firewalls, have done a reasonable job at assisting in the
detection and mitigation of attacks. However, whether it is matching signatures,
detecting anomalies based on some statistical profile or regulating access based on
some predefined policies, current network security solutions rely on some event to
trigger a defined threshold in order to take action and hopefully assist in preserving
network confidentiality, integrity and availability.

Our approach in this thesis does not concentrate on detecting attacks,
but rather the activity which precedes most attacks. This activity is referred to
as network reconnaissance; reconnaissance in the literal meaning is an
exploratory survey or examination of an area. In this case the “area” being
surveyed would be a network or a computer system. In order to detect network
reconnaissance, an analysis of inbound network traffic is required. However, in
order to perform an analysis on inbound network traffic to identify network
reconnaissance, an understanding of what network reconnaissance traffic looks
like is important.

To generate network reconnaissance traffic for analysis, we built an

environment, Figure 1, where we were not bound to any rules and would not
interfere with production systems. This laboratory was designed to be dynamic so

that it could be easily reconfigured to meet experimental needs. Tables 1, 2 and 3

provide an explanation of system roles and descriptions for the base configuration

used for this thesis.

SUOREISHIOAN
1abue | |ewa

ENUTIEHDEY JX SMOPUIN, TN SAMODUIM
+ UCHEISHION, € UONEISHION, Z LONEISHION,

HZ SMOPUIAY
| LIONEISHION

sianag jafie]

(UL
AE SMOPUIAG 00T SMOpUIAR HZ SPOPUIAY
glanegisal 7 anieg)sa) | JamsBg 15a)

qny e
10 8oe|d Ul youms
B Ym pauucped

HMH 1BLwayIE

OS5I BIa
SHIEE [EUIEIL|

yaomsy aneedion
L

HeMEIY oL (7
HEma) L ()
un siustisiadya om]

pasn Gueqg ooy
aY] 10| SeInjeul|s
YS{|qESA O] BP0
U} SWiBtsAs HIBe
oy Builea
TV AA T

o) pEST WaEhAg

- S
[| sal | smsesesm e e se se s e
. — _ >
| | i = m _ swalshg Buppepy
‘ |
_ odfowor | | :
_ | | e fuoysoday (0o facysoday 00
I m | | UIELS I USHIELS WY
I | : XU SAOPLIAN
|

way
Joj ssunjeubiis
dojasap

@) 5|00} e
A} jo smEijEue
MOJ[E 0] 248l
pasn sem gny W

ANH 1BuaY3

ISR [BLIBTE

BN

Figure 1.1: Dynamic Laboratory Configuration

External Network

Host Identification Role Description
Windows Attack This system is configured with
Station and analyzers, scanners and a set of
Repository Attacker attack tools
This system is configured with
Linux Attack Station analyzers, scanners and a set of
and Repository Attacker attack tools

This system is used to analyze

Analysis Station Data analysis raw network data
Intrusion
IDS detection system Generate logs for analysis

Internal Network

Table 1.1: External Network

Host Identification Role Description
Windows 2k target -
Test Server 1 Target configured
with a set of services
Test Server 2 Target Windows 2003
Test Server 3 Target Windows 2K target
Workstation 1 Target Windows 2k target

Workstation 2

Windows NT target

Workstation 3

Windows XP target

Workstation 4

RedHat Linux

Analysis Station

data analysis

This system is used to
analyze the raw network
data

Intrusion detection

IDS system generate logs for analysis
Table 1.2: Internal Network
Demilitarized
Zone (DMZ2)
Host Identification Role Description
Honey Pot Hacker Trap Designed to lure hackers

and records all activity

Table 1.3: Demilitarized Zone

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses
fundamentals necessary to perform the types of analysis discussed in later chapters
and related works in network traffic analysis. Chapter 3 presents the black box
hackers’ perspective in analyzing a network, what a hacker does to gain
information on a network, how to analyze the raw data collected, some of the tools
used to collect this information, and finally an analysis and comparison of the tools.
Chapter 4 discusses a security analyst perspective to analyzing network traffic,
some of the traffic analysis tools available, reconnaissance detection and analysis,
and building a stealth network analysis station. Chapter 5 presents experimental
traffic analysis results and discusses how to identify the hacker tools presented in
Chapter 3. Chapter 6 presents conclusions and limitations to the methods discussed
in previous chapters. Cited works and appendices are featured next. Appendix A
covers detail information on various tools used throughout the thesis, Appendix B

contains detailed information with regard to the protocols discussed.

Chapter 2

Related work and Network Traffic Analysis
Fundamentals

Computer systems today are under an unprecedented threat from Internet

attacks initiated by “hackers.”

The poor state of Internet security calls for more
effective ways to protect networked systems. Attacks can be launched from
practically anywhere in the world and the economic losses from attacks have
become extensive [10]. Over the past several years, networked systems have grown
considerably in size, complexity, and the tools and techniques available to attackers
have grown proportionally. Current security technologies are reaching their
limitations, and more innovative solutions are required to deal with current and
future threats [11].

In this chapter, we discuss related work and network traffic analysis
fundamentals. Our goal is to learn to distinguish malicious network traffic from
normal traffic, through detailed analysis of reconnaissance tools used by hackers
and the traffic generated by these tools. While there are times when a network

attack pattern is obvious, one must often search for events of interest. Whenever

attackers write software for denial of service, software exploits, or scanning

LIt is only fair to acknowledge the distinction between the original term hacking to referring to
someone who is a clever programmer and the term “cracker” referring to someone who breaks into
systems, bypassing any security measures put in place. Due to media treatment today there is no
difference between the two. In this paper we use the term hacker or hackers as in common usage
which is unfortunately the definition used for a cracker [94].

10

networks, the software tends to leave a signature that is the result of a crafted
packet. This signature is an example of a network traffic property that makes
traffic analysis feasible. In some respects this is similar to the way a bullet is

marked by the barrel of the gun that fired it. These marks make it possible for
experts to identify the gun that fired the bullet [12].

The analysis of network traffic requires an understanding of network
protocols and reconnaissance techniques, as well as the ability to read and interpret
traffic captures using protocol analyzers [29] [31]. It also requires the ability to
identify “normal” network traffic, which depends on protocols being used by the
organization. In this thesis, normal network traffic is defined as network traffic
which does not exceed the bandwidth and protocol thresholds identified as normal

for a particular network infrastructure.

2.1 Related work

Currently, two widely-used tools for blocking or detecting attacks as they
occur are firewalls and network intrusion detection systems (NIDS). A firewall is a
device with a set of rules specifying what traffic it will allow or deny [83] [110].
Conceptually, there are two types of firewalls: Network Layer and Application
Layer firewalls. Network layer firewalls make decisions based on the source,
destination IP addresses, and port numbers in individual IP packets. A simple
router is the ~“traditional” network layer firewall, since it is not able to make

particularly sophisticated decisions about what a packet is actually communicating

11

or where it originated. Modern network layer firewalls have become increasingly
sophisticated, and now maintain internal information about the state of connections
passing through them, the contents of some of the data streams, etc. Application
layer firewalls are hosts running proxy servers that permit no direct traffic to the
systems being protected and perform elaborate logging and auditing of traffic
passing through them.

A NIDS is like a burglar system for a network, which is used to detect and
alert on suspicious events [37]. The concept of intrusion detection is often credited
to James P. Anderson, who published a paper “Computer Security Threat Modeling
and Surveillance” in 1980, which outlined ways to improve computer security
auditing and surveillance [103]. However, Dorothy Denning first proposed
anomaly detection as an approach for IDS in 1987 [107]. Denning helped to
develop the first model for intrusion detection, the Intrusion Detection Expert
System (IDES), which provided the foundation for IDS technology techniques,

Table 2.1, used for network intrusion detection today [122] .

Technique Description Resources
Anomaly Detection compares observed activity against

Anomaly expected normal usage profiles which may be [103] [104]

detection developed for users, groups of users, applications, or [105] [107]

system resource usage

Data mining refers to the process of extracting

- descriptive models from large stores of data. These

Dgéetle'\élt'ig':g models are then used to discover consistent and useful Hgg} Hgg%
patterns in the data to compute classifiers that can

recognize anomalies and known intrusions

Table 2.1-A: Intrusion Detection Techniques

12

Signature
detection

Signature-based ID systems detect intrusions by
observing events and identifying patterns which match
the signatures of known attacks. These attack
signatures are stored in some form of database and
need to be updated frequently. If a match is found an
alert is triggered

[103] [104]
[111] [112]

Table 2.1-B: Intrusion Detection Techniques

These three techniques have laid the foundation for the development of other

ID techniques such as policy base detection [114] [115], adaptive model generation

[113], user intent identification [112], and specification-based anomaly detection

[116]. In many cases existing research tools have been applied to intrusion

detection, including expert systems, neural nets and colored Petri nets [112]. For

the most part, however, intrusion detection systems are based on one, if not all, of

the techniques in Table 2.1-A and 2.1-B.

Three of the more popular open source intrusion detection systems are listed

in Table 2.2.

IDS Detection technique Resource
Snort signature [37]1[39] [119]
Bro packet filtering and policies [117]
Shadow policy and signature [38] [118]

Table 2.2: Popular Intrusion Detection Systems

There are also a number of commercial NIDS systems such as Dragon IDS,

Network Flight recorder, and Cisco IDS (there are many more commercial 1D

13

systems, but their discussion goes beyond the scope of this paper). In addition to
NIDS, there are also host-based and Hybrid IDS systems [121] [120].
Subsequently, a “new system” has been developed which is intended to make
intrusion detection systems obsolete. This new system is called an IPS, or Intrusion
Prevention System [123]. Interestingly enough, IDS techniques all have the same
thing in common; they rely on some event to trigger some predefined threshold
before any action is taken. As we will discuss in the rest of this chapter, this
limitation is not unique to intrusion detection systems.
Although firewalls and IDSs have important roles to play in defending
networks, their limitations are many, including the following:
e Firewalls actively block certain traffic in or out of a network, but only if
rules have been defined that anticipate characteristics of a particular attack.
Normal traffic may also match those rules.
e IDSs simply raise alerts that network operators must evaluate to determine
whether an attack is truly present, and if so, how it can it be mitigated.
Limitations of these tools have given birth to advanced tools and techniques
that network security professionals can use to complement firewalls and IDSs. One
such tool is called a Honeypot, also referred to as a deception technology because it
is designed to fool the attacker by providing false information [11] [32] [33] [34].
Lance Spitzner [13] states that a Honeypot is a resource whose value lies in being

probed, attacked or compromised. While an attacker is hacking away at a

14

Honeypot, the security professional is able to log all events. This distracts the
hacker from attacking production systems and develops a log that can be used to
identify the attack’s characteristics (perhaps including its source).

Another set of tools has been developed to help minimize and eventually
eliminate what are known as denial of service (DoS) attacks [78]. For example,
RSA laboratories are developing a technique that uses client puzzles as a
countermeasure against connection depletion attacks [14] [35]. In order to receive
the requested service, the client must submit (to the server) a correct solution to the
puzzle within a time-out period [10]. As a second example, Muza Networks
(Boston) has developed auto detection software that stops DoS at the Internet
Service Provider (ISP) [15] [16]. This approach detects and contains a DoS attack
before it leaves the ISP and impacts a destination victim [17].

The University of Massachusetts at Amherst has developed a set of
algorithms for monitoring and warning of Internet worms. These algorithms could
help with the detection of scanning worms, one of the reconnaissance techniques
hackers use today. Scanning worms can act like automated hackers and gather
information on networked systems [22]. There are several options that can be
included in scanning worms. For example, a worm can be modified to scan the
entire local network and send the information back to its creator after exploiting

some vulnerability in the firewall [23].

15

At the University of Wisconsin, a technique is being developed to
characterize important classes of anomalies rapidly and accurately. [24]. A similar
technique is being developed by the AT&T Center for Internet Research at ICSI.
This technique provides intrusion detection systems with the ability to detect a
skilled hacker attempting to exploit ambiguities in the traffic stream to evade
detection. Hacker detection is accomplished by placing an appliance called a
normalizer directly in the path of traffic going into a network. As traffic flows
through the appliance, it removes evasion opportunities by modifying the packet
stream to eliminate potential ambiguities before the traffic is seen by the intrusion
detection system [25].

There are a number of tools and techniques available to security analysts
today that have solved problems which go beyond the capabilities of firewalls and
network intrusion detection systems. Nevertheless, these new techniques, referred
to as countermeasures, all have one thing in common; they are reactive and not
proactive. A reactive countermeasure is one that does not take any action until after
an attack is in progress, for example, an intrusion detection system. A proactive
countermeasure is one that takes steps to prevent the attack from occurring in the
first place. A successful countermeasure would substantially delay the attacker
while giving the defender enough information about his enemy to prevent the
attack from causing damage [11] [19].Alternatively, detecting attack precursors can

lead to preventative measures that may be much more effective.

16

Forescout Technologies has developed a relatively new type of network
defense that augments existing countermeasures by attempting to determine (and
react to) malicious intent [18]. Their tool, Active Scout, leverages the fact that
nearly every attack is preceded by network reconnaissance [20] [29]. The tool
identifies apparent network reconnaissance activity, and supplies a suspected
attacker with false information. If the attacker attempts to use the supplied
information, Active Scout concludes that the intent is malicious. Further traffic
from that particular source (or perhaps subnet) can be blocked, and an attack may
thus be preempted making this tool an effective proactive countermeasure. Instead
of reacting after an attack occurs, Active Scout takes the necessary steps to stop an
attack before it affects the network.

Hackers who want to target a particular network follow a consistent pattern.
To launch a directed attack they need knowledge about a network’s resources [20].
Thus, network reconnaissance is an integral and essential part of any directed
attack. Launching a successful attack requires information about the target’s
network topology, accessible network services, software versions, valid
user/password credentials and any other exploitable information. The tools and
methods hackers use increase in sophistication almost everyday. In addition to an
increase in sophistication, tools have become easier to use and increasingly

available through the Internet.

17

Although solutions such as ActiveScout have been developed and many
more are on their way, exploits and attack methods are emerging at a much faster
pace, rendering these solutions obsolete almost immediately. Therefore, not only is
it imperative that the development and maintenance of countermeasures continue to
evolve, it is equally important for security professionals to understand how to use
available tools such as protocol analyzers to interpret network traffic and be able to
identify possible anomalies that can lead to an attack [26] [27] [28] [29]. In
Chapters 3 and 4 we cover various tools and techniques hackers use to gather
intelligence on networks, and tools and techniques security analysts can use to

counter them.

18

2.2 Network Traffic Analysis Fundamentals

The ability to accurately read and interpret network traffic demands an
understanding of how network protocols work (especially the TCP/IP protocol) and
how to read network traffic using available analysis tools [Appendix B] [80]. We
summarize the necessary background information in this section, which is
organized as follows,

- Brief TCP/IP Overview

- TCP/IP Security Flaws

- Network Capture Field Identification
Brief TCP/IP overview

The acronym TCP/IP is commonly used to describe an entire suite of
protocols, including the Internet Protocol (IP); Transmission Control Protocol
(TCP); User Datagram Protocol (UDP); Internet Control Message Protocol
(ICMP); Address Resolution Protocol (ARP) and Reverse ARP. For the purpose of
this paper, only the TCP and IP protocols are covered. For an in-depth explanation
of these two protocols and their header fields refer to Appendix B and [54].

TCP and IP were developed by a Department of Defense (DOD) research
project in the early 1980’s to connect a number of different networks designed by
different vendors into a network of networks, known today as the “Internet” [41]
[42]. These protocols have succeeded because they deliver a few basic services that

everyone needs across a very large number of client and server systems. Several

19

systems in a small organization can use TCP/IP on a single LAN. The IP
component provides routing from the department to the enterprise network, then to
regional networks, and finally to the global Internet.

Under TCP/IP, data transmission is accomplished by packaging the data in
what is referred to as a packet [42]. One can think of a packet as consisting of
nested envelopes — each with its own header and contents. An envelope contains
the sender’s (source) address, destination address, and payload (the letter) to be
delivered. The payload may include additional nested envelopes. A packet contains
a payload (letter contents), source IP (sender’s) address, and destination IP
address., The following diagrams show the delivery process of a letter compared to

that of a data packet;

w0]

al

Package/Letter is created

Pazt office determines roufe of [etter
bazed on destination address

& % Package or letter is transported
to next station

letter deliveread
= r%

Pozt office determines route of [etter
bazed on destination address

Figure 2.1: Delivery of Package/Letter

1. Letter is created by sender.

20

2. Post office determines the route of the letter.

3. The letter is transported to the next post office station.
4. Post office determines the route of the letter.

5. Letter is delivered.

A packet gets delivered as follows,

Router determines route of packet
based on destination address

Computer System

Data Packet Is created
Packet gets encapsulation
Packet sent

Intemet

= Router determines route of packet
Computer System basad on destination address
Data Packet received
Packaet is de-
encapsulation

Figure 2.2: Delivery of a Data Packet
1. Packet gets created goes though the encapsulation process and gets
created

2. The router determines route of packet based on destination address

21

3. The packet gets transported through the Internet
4. The router determines route of packet based on destination address
5. Packet gets delivered
For further information please refer to [41].
In order to establish a connection between two systems, TCP/IP performs

what is known as a TCP/IP handshake, which is described below;

SYM 12345678:12345678 (this is referred to the initial sequence number,
also known as the 15N)
The TP opfion that is normally set in the
Computer A initial SYM packet is the MSS, Maximum Segment Size
Making the packei a Min of 44 bylas.

Computer B

SYN 12345678:12345678
ACK 12345679 (initial sequence number + 1)

(Computer A ACK 17345679 Computer B

Figure 2.3: TCP/IP Handshake
1. The requesting system (client) sends a connection request specifying a
port to connect on the remote system, also known as a server.
2. The server responds with both an acknowledgment and a queue for a
connection.

3. The client returns an acknowledgment and the connection is established.

22

Security was not part of the design process for the TCP/IP communication
mechanism. As mentioned earlier, TCP/IP was designed to facilitate
communication between institutions collaborating in research, not to prevent
misuse. In the following section we take a look at some of the outcomes due to this

lack of security.

TCP/IP Security Flaws

Although the envelope analogy used earlier to describe TCP/IP is rather
elementary, TCP/IP protocols are complex. This complexity introduces
vulnerabilities that can be (and are) exploited. To detect and defend against attacks
that exploit protocol vulnerabilities, we must have a detailed understanding of how
the protocols work. Only then are we able to identify network traffic with malicious
intent, and reduce the probability of attacks.

In 1989, Steven M. Bellovin, an AT & T Bell Laboratories researcher
pointed out several security holes in the TCP/IP protocol suite [43]. This lack of
security in the TCP/IP protocol suite has become a serious problem. The
widespread use and availability of the TCP/IP protocol suite has exposed its
weaknesses. To provide an idea of what we are up against, a number of well-known
vulnerabilities are presented for TCP/IP and some protocols commonly used along

with TCP/IP (such as DNS) [43] [44] [45] [46] [47].

23

TCP SYN Attack

TCP SYN attacks (also known as SYN Flooding) take advantage of a flaw

in how most hosts implement the three-way handshake discussed earlier. When

host B receives a SYN request from host A, host B must keep track of the partially

opened connection in a "listen queue™ for at least 75 seconds. This is to allow

successful connections even with long network delays [44] [47].

The SYN flood attack sends TCP connection requests faster than a machine

can process them. According to Internet Security Systems [99], the attack would be

executed as follows,

1.

2.

Attacker creates a random source address for each packet.

A SYN flag set in each packet is a request to open a new connection to the
server from the spoofed IP address.

Victim responds to spoofed IP address, then waits for confirmation that
never arrives (waits about 3 minutes).

Victim's connection table fills up waiting for replies.

After table fills up, all new connections are ignored.

Legitimate users are ignored as well, and cannot access the server.

Once attacker stops flooding server, it usually goes back to normal state

(SYN floods rarely crash servers).

Newer operating systems manage resources better, making it more difficult to

overflow tables, but they are still vulnerable. TCP SYN flood can be used as part of

24

other attacks, such as disabling one side of a connection in TCP hijacking, or by
preventing authentication or logging between servers.

The RSA technique mentioned earlier, Client Puzzles, is supposed to resolve
the TCP SYN flood DoS attack problem. This technique can be classified as both
defensive and offensive in response to this well-known class of DoS attack [14]
[35]. The server sends each client that requests a connection a unique client puzzle
based upon time, server secret, and client request information. In order to receive
the requested service, a client must submit a correct solution to the puzzle to the

server within a time-out period [10].

IP Spoofing Attack

In IP Spoofing, an attacker uses a forged IP address and the victim accepts
this address without verification [44] [47] [49]. There are two types of IP Spoofing,
Blind IP Spoofing and Non-Blind IP Spoofing. Blind IP Spoofing is when the
sequence numbers of a TCP connection are predicted and sent to an unsuspecting
host in order to establish a connection which appears as if it came from the
originating host. Prediction of the sequence numbers is necessary because the
attacker is unable to sniff the traffic. Robert T. Morris was first to notice that
security of a TCP/IP connection rested in the sequence numbers and that it was
possible to predict them. Non-Blind IP Spoofing has the same effect as Blind IP

Spoofing; however, instead of predicting the sequence numbers an attacker has

25

access to the network and is able to sniff traffic between the two systems [43] [46]
[49] [52] [53] [58] [62].

IP Spoofing allows hackers to perform what is known as a man-in-the-
middle attack. For example, as illustrated in Figure 2.4, suppose that John is a
hacker, and Warren and Tom are valid users, as shown in [95]. To spoof, John
takes the following steps:

1. John connects to Warren's computer over an open port to view the Initial
Sequence Numbers (ISNs) on Warren's computer and to analyze how they
are changing.

2. With the ISN information, John performs a DoS attack against Warren to
shut down Warren's session.

3. John then sends a message to Tom using Warren's address.

4. Tom responds to Warren with the second part of the three-way handshake.

5. John simulates Warren by sending the last part of the three-way handshake
with the acknowledgement (ACK) and the incremented ISNs discovered
earlier.

6. IP spoof is completed.

26

Step 1 Step_ 5 _
John (hacker) John replies with
connects ACK and ISHsfrom

Wamen

John performs John sends
Do5 attackto messane using

shut down computer Warren's address

Step 4
Tom replies with
SYH rACK

Wiarren

Figure 2.4: IP Spoofing [95]

Source Routing Attack

A variant of IP Spoofing makes use of a rarely used IP option, "Source

Routing". In a source-routing attack, packets are sent to a system with the source-

routing bit set. If the target system responds to this directive, it accepts whatever

path is designated in the connection request and responds to the client using this

path instead of its normal routing-table entries [44] [47] [56] [57]. Using source

routing, a hacker can perform any of the following attacks,

1.

2.

Man-in-the-middle attack
Traffic recording for off-line attack, such as attempting to crack ciphers
Session hijacking (discussed above) attack

Denial of Service attack

27

RIP Attack
Initially built to distribute routing information that facilitates flexible and
efficient routing, Routing Information Protocol (RIP) is easily abused. RIP attacks
provide the foundation for a form of connection hijacking or denial of service. RIP
is probably the most widely used of all the Internet interior routing protocols. It was
added to the Internet suite of protocols when LANS first appeared in the early
1980s [59] [60].
There are currently two versions of RIP,
1. RIPv1 -has no authentication as to whether the route information that it
provides is correct or from a reputable source.
2. RIPv2 - has a rudimentary form of authentication allowing a clear text
password that can be sniffed.
By using RIP to redirect a route, a hacker can "steal™ any number of connections or
cause a denial-of-service attack. A hacker would execute a RIP attack as follows:
1. ldentify the RIP router by scanning UDP port 520.
2. Determine the routing table:
a. If hacker has local access to the same physical segment that the
router is on, he/she will sniff the traffic for RIP broadcasts that
advertise route entries in the case of an active RIP router. If the

router is inactive, an attacker requests the routes to be sent out.

28

b. If the hacker doesn’t have local access to the same physical
segment that the router is on, he/she can use programs such as
RPROBE [161] to extract the routes from the remote router.

3. Determine the best course of attack. For example, if a hacker wanted to
redirect traffic to a particular system so it can be analyzed to gather
some sensitive information (like passwords) the attack would proceed as
follows [96] [97] [98] [100],

a. Add a route to the RIP router that would initiate a redirect of
routes to a system owned by the attacker, which is done by
Spoofing a RIPv1 or RIPv2 packet using a tool called SRIP.

b. At this point all traffic destined to the RIP router will now be
redirected for further forwarding through the attacker’s system.
Before any forwarding can take place, however, the attacker will
use either a tool called FRAGROUTER or kernel-level IP
forwarding to send traffic off normally.

c. Sniff traffic for usernames and passwords.

TCP Session hijacking attack
TCP hijacking is the spoofing of TCP packets in order to disconnect a
system from a TCP connection. This can be done easily in a couple of ways due to

the inherent flaws of TCP protocol. TCP hijacking takes advantage of the way

29

packets are sequenced. By closing a connection that is not fully established and
then starting another or by inserting innocuous packets into the communications
and pushing the sequence numbers beyond the acceptable range, the attacker leaves
the target and the third system unable to communicate, while retaining proper
communications with the target [52] [53] [61] [62].

In order for a TCP/IP session hijack to be successful, the victim must be
using a non-encrypted TCP/IP utility such as telnet, rlogin or ftp. The use of a
SecurlID card, for example, or other token-based second factor authentication is
useless for protection against hijacking [98]. All the attacker has to do is simply
wait until after the user authenticates, then hijack the session. A TCP session hijack
involves 3 systems [98],

1. Attacker - the system used by the attacker for the hijack

2. Victim - the system used to make a connection to the target system

3. The target - the system the attacker wants to compromise

30

A TCP/IP session hijack attack scenario would go as follows,

APPtable before:
" targer (129,95 MN) ar0-10-3-0-5a-bb
aftacker victim we{BRIN
[ealadeatbell] ARPtable ofter:
[ealadeatbel?] target (12095 M) ot ea-a-de-ad-be-1
BO20Th:eh 8 §0:20:3:0024
1B9XY 1895%2Z

ARP tahle before;

CI0A0eab | pype VI (1Z95KZ) stB-0-20-30-0-28
target (12095 M) st 0-10-d-a-b-c

ARP table sfter

victm {12993.XY) ot ea-1a-de-ad-he-2

target (129 93 MMN) af ea-1a-de-ad-be-1

Netwark
Backbone

Router

1895MN

target

Figure 2.5: TCP/IP Session Hijacking [73]

31

The attacker spends some time determining IP addresses of target and
victim systems.

Attacker runs a program called HUNT as root on attacking host [63] and
waits for it to indicate a session has been detected.

Victim logs in to target using telnet.

Attacker sees new connection; lists active connections to see if this one
is potentially "interesting.", decides to hijack.

Victim no longer has access to the target system.

Attacker starts a new session with target host and installs a backdoor.
Attacker now has complete control over the target even after the victim

reboots the target system.

TCP Connection Reset Attack

The primary idea behind a TCP reset attack is to terminate an established

TCP connection maliciously. Applications and protocols that require lengthy

sustained connections are most vulnerable to this attack [51] [56] [64] [65].

According to Tim Newsham [62], if a sequence number within the receive

window is known, an attacker can inject data into the session stream or terminate

the connection. If the ISN value is known and number of bytes already sent is

known, an attacker can send a simple packet to inject data or kill the session. If

these values are not known exactly, but an attacker can guess a suitable range of

32

values, he can send out a number of packets with different sequence numbers in the
range until one is accepted. The attacker doesn’t need to send a packet for every
sequence number, but can send packets with the sequence numbers separated by no
more than a window size. If the appropriate range of sequence numbers is covered,
one of these packets will be accepted. The total number of packets that needs to be
sent is then given by the range to be covered divided by the fraction of the window

size that is used as an increment.

ICMP Attack

Internet Control Message Protocol (ICMP), is an integral part of any IP
implementation. Goals and features as outlined in RFC 792 are to provide a means
to send error messages for non-transient error conditions, and to provide a way to
probe the network in order to determine general characteristics about the network.
These same features are currently being used by attackers to perform network
reconnaissance for determining which exploits can be used against it. Xprobe2 ,
developed by Ofir Arkin, is one of the most complete ICMP scanners available [68]
[69] [70] [71] [72]. This comprehensive tool is discussed in Chapters 3 and 4.

In addition to its network reconnaissance properties, ICMP has also been
used to develop several DoS attacks. Two well-known ICMP type DoS attacks are
Smurf and Fraggle. In a Smurf attack, the hacker sends a large number of ICMP

echo request packets to the broadcast address of a particular network. The IP

33

packets have spoofed source addresses - the address of the targeted machine. In
this way, hundreds of echo replies may be sent to the target. This attack involves
three systems; an attacker, an amplifying network and a victim. The attack is
executed by an attacker sending a spoofed ICMP echo request to the broadcast
address of the amplifying network. The source address of the packet is forged to
make it appear as if the victim initiated the request. Because this request was sent
to the network’s broadcast address, all systems on the amplifying network respond
to the victim. This amplified response renders the victim connectionless for the
duration of the attack. The effectiveness of this attack depends on the number of
systems on the network. The Fraggle attack does the same thing as a Smurf attack,

except that it uses UDP packets [67].

DNS Attack

Domain Name System (DNS), is the application that locates Internet
domain names and translates them into IP addresses. A domain name is a
meaningful and easy-to-remember "handle™ for an Internet address. Clients and
servers are configured to trust the information provided by a DNS server. DNS can
normally be trusted; however, on some implementations it is possible to load the
DNS cache with misleading or invalid entries. These entries are then used instead
of valid entries provided by the server. Of course the DNS server should ignore any

information that it hasn’t specifically requested, but the DNS protocol doesn’t have

34

any security to prevent this. This is why intruders have been able to use naming
servers to execute packet flooding denial of service attacks. There are many other
attacks which use DNS, but they go beyond the scope of this paper. For further

information see [74] [75] [76] [77] [78].

Network capture field identification

In this thesis we use the most common traffic analysis tool used today;
Tcpdump . A number of tools have been developed using Tcpdump as their
foundation, such as ETHEREAL [36], SNORT (which doubles as an intrusion
detection system and a sniffer) [37] and SHADOW, an intrusion detection system
developed by the Naval Surface Warfare Center [38].

Tcpdump was created by the Network Research Group at Lawrence
Berkeley National Lab [12]. It offers various options that enable the user to display
or save network traffic with various levels of verbosity. The following Tcpdump

capture represents an http packet;

00:49:55.884455 10.0.0.100.80 > 10.0.0.200.4156: S [tcp sum ok]
584753221:584753221(0) ack 3121073003 win 1460 <mss

1460, nop,nop,sackOK> (DF) (ttl 108, id 32064, len 48)

Figure 2.6: Tcpdump capture of http packet

Each field represents the following;

35

00:49:55.884455 Time of capture
10.0.0.100.80 Source IP.[Source port]
> Traffic direction
10.0.0.200.4156 Destination IP.[Destination Port]
S SYN Flag set
[tcp sum oK] Checksum validility
584753221:584753221(0) Sequence Number (Bytes in packet)
Ack 3121073003 ACK number
win 1460 Window size
<mss 1460,nop,nop,sackOK> Options
(DF) Don’'t Fragment
(ttl 108, id 32064, len 48) Time to Live,I Pacl;et ID, Packet
engt

Table 2.3 Traffic Dump field descriptions
Tcpdump is covered further in chapter 4. More information on field definitions

please refer to Appendix B.

36

2.3 Network reconnaissance Overview

Detecting network reconnaissance accurately and promptly is a delicate and
daunting task. Trying to identify packets that do not follow the rules set forth by
protocols corresponding to Request for Comments (RFC) is very difficult. An even
greater task is identifying properly formatted packets with malicious intent. For the
rest of this section we provide some of the basic fundamentals needed to
understand network reconnaissance and be able to identify the anomalies that can
lead to detection of such activity.

An RFC is a set of specifications which developers must use when
implementing a network protocol (e.g. The specification for TCP is RFC793).
Some RFCs have design flaws that allow hackers to develop tools without breaking
any of the rules defined in the protocol’s RFC. The design flaws provide a
camouflage that allows hackers to perform network reconnaissance without being
detected. Furthermore, many of the flaws are with required functions that a protocol
must execute in order to establish communication. For example, tools called
scanners have been developed to take advantage of the TCP/IP handshake. Notice
that in the description of TCP/IP handshake mentioned in Section 2.2, there is no
authentication mechanism in place to verify that the requesting client is allowed to
connect to the server. Scanners are designed to scan target systems for open ports,

available services and even vulnerabilities.

37

As mentioned earlier, ICMP contains some inherit implementation
problems [72]. There are tools, which will be discussed in Chapter3, that use the
ICMP protocol to fingerprint almost any device on a network. Some tools can
produce fingerprints by sending different types of ICMP packets to the target and
matching the responses to a pre-determined set of signatures. Because the TCP/IP
protocol stack has been implemented in many different ways, every operating
system has a unique fingerprint. This unique fingerprint provides an attacker with
the information needed to execute other attacks.

There are protocols, such as address resolution protocol (ARP) that allow
information to be given to whoever requests it and allow dynamic modification of
critical data. The operating system maintains a local table that provides a mapping
of MAC addresses to their corresponding IP addresses for communicating with
systems within a local net. Three tools developed to scan and/or modify ARP tables
are Arpscanner, Ettercap and Dsniff [Appendix A]. Arpscanner generates a
significant amount of traffic when scanning a subnet to build a list of MAC and IP

addresses. The output from Arpscanner appears as follows:

10.0.0.100 isat00:0d:61:02:b5:3a
10.0.0.253 isat 00:01:02:9a:be:6b
10.0.1.20 is at 00:01:80:2b:71:2d
10.0.1.22 is at 00:01:02:9a:be: 70

Figure 2.7: Arpscanner output

38

Armed with this information, the hacker now knows the organization’s IP structure
and which IP addresses are in use (or at least should be in use). Ettercap and Dsniff
take the capabilities of Arpscanner to a higher level. In addition to scanning ARP
tables, they also have sniffing capabilities and use a technique called ARP
poisoning. ARP poisoning is when an attacker replaces all the MAC address entries
on a target machine’s ARP table with addresses of his/her systems - essentially
executing a man-in-the-middle attack.

The number of security flaws found within protocols is astounding, not to
mention flaws found in software and hardware that use these protocols to
communicate with other devices [56] [62] [64] [65] [66] [75]. However, there is
light at the end of the tunnel. Since the hackers need the gathered information, the
source address can not be faked when performing a reconnaissance; therefore, the
traffic is traceable. There are a number of things a hacker can do to cover his tracks,
like performing scans from multiple hops (aka: nodes), but nonetheless it is still

traceable, as we will demonstrate in Chapter 5.

39

Chapter 3

Black Box Network Traffic Analysis:
the Hacker’s Perspective

Black box is a term used in software development that refers to a testing
method in which the tester has no knowledge of the inner workings of the program
being tested. Keeping that basic concept in mind, when a hacker performs a
reconnaissance on a network, he or she knows nothing about the network. For all
practical purposes, we consider network reconnaissance a sort of black box
approach to network analysis, hence the hacker’s perspective.

Network Reconnaissance

Reconnaissance, according to Merriam-Webster, is a preliminary survey to
gain information or an exploratory military survey of enemy territory. Network
reconnaissance however, is the inspection and exploratory survey of a series of
nodes interconnected by communication paths, also referred to as a Network. Like
a soldier, before an attack is carried out, a hacker studies his target to learn as much
as he can about the defenses and weaknesses [27] [28] [29] [30] [31] [33]. In
addition to using specific tools to obtain the information they need to complete a
reconnaissance, hackers also use what is known as social engineering. Although
social engineering is beyond the scope of this thesis, it is certainly a topic worth

mentioning. Social engineering is to people what hacking is to computer systems

40

and networks; it is the art of getting people to do things they wouldn’t ordinarily do
for a stranger [79].

As mentioned earlier, information gathering is crucial to planning a targeted
attack. Depending on the tenacity of the attacker, multiple, if not all techniques can
be used against the target network or system. The following table lists some
common types of network reconnaissance techniques used and the type of

information each one can gather;

REHAAEIETEE Information Gathered Category
Technique
Who is hosting the systems?
Are systems maintained internally or Passi
. ; - assive
Site Survey is the maintenance outsourced? .
i : and Active
How is the network configured?
What types of defenses are in place?
IP Scanning What is the IP range? Which IP's are in use? Active
What ports are open on the live systems?
i i ?
Port Scanning What services are running on those open ports® Active
What versions of the services are in use?
What exploits are the systems susceptible to?
i i ?
OS Detection What ope_zratlng systems are being u_sed. Active/Passive
What exploits are the systems susceptible to?
What IP addresses are in use? .
DNS Traversal What are the names of the registered systems? Active
. What are the available shares, user accounts, .
Host Enumeration . Active
groups, etc on a Windows system?
Sniffing Gather user account information Passive

Table 3.1: Reconnaissance Techniques

There are two categories of network reconnaissance, passive and active.

Each one has advantages and disadvantages but the end result is the same,

41

information gathering. The numbers of tools readily available on the Internet that
allow hackers to perform these reconnaissance techniques with very little effort are
astounding. Some of the tools do not even need to be installed to a local system in
order to be used. Also, much of the initial information on a company’s
infrastructure can be obtained by searching publicly available databases and
websites. Most of the tools and methods used by hackers can also be used by
security analysts to harden their network security.
In this chapter we analyze each reconnaissance technique listed in Table
3.1, the tools used, and the information each tool generates. This chapter is
organized as follows;
e Passive Reconnaissance
o Definition
O Scenario Part 1: Site Survey
1. Tools and Techniques
e Active Reconnaissance
o Definition
0 Scenario Part 2: Filling in the Gaps
1. DNS Traversal
2. IP Scanning/Host Enumeration
3. Port Scanning

4. OS Detection

42

5. Sniffing
e Summary
3.1 Passive Network Reconnaissance

Passive Network Reconnaissance is the method by which an attacker
obtains information on a network without generating suspicious traffic [81]. There
are two ways to accomplish this; the first is by using public databases, services and
tools readily available on the Internet. The second is using a program, called a
sniffer which displays network traffic in real time. Sniffing, however, requires
administrative access to the network, which means that a hacker would have to
compromise a system within the network and gain administrative access to the
main switch or router for this technique to be of any use. Sniffing traffic, however,
is usually more of an insider threat than an external one.

Publicly available databases, or database like systems (such as DNS
servers), provide a lot of the fundamental information about an organization and its
network. Acquiring this information is as simple as querying these public systems
with tools such as WHOIS, NSLOOKUP, HOST or DIG, which are available
throughout the Internet and are packaged with many of today’s operating systems.
Table 3.2 lists some of the information that can be obtained using passive
reconnaissance. Tables 3.3 and 3.4 show some of the organizations and
independent websites that provide information and tools needed for performing a

passive reconnaissance. The independent websites do come and go, those listed in

43

Table 3.3 were still active as of June 16, 2004 [83] [84] [85] [86] [87] [88] [89]
[90] [91] [92] [93]. The sites listed in Table 3.3 represent a small sample of what is
readily available on the Internet. This list illustrates how easy it is to gain access to
reconnaissance tools without having to download and install any programs to a
local system. Some of the tools listed fall under active reconnaissance and will be
discussed later in this chapter.

In addition to the information that can be obtained using public databases,
an Internet search engine, such as Google, can prove to be a priceless tool. Some
companies have poor data management and network configuration practices,
resulting in the advertisement of proprietary company information. Many
companies have adverted financial documents, secret information, personal
information such as social security numbers and much more [124].

To illustrate the simplicity of passive reconnaissance we perform a
complete site survey on organization. Since this experiment requires a live
registered network, we decided to use Florida Tech as the target. However, for the

experiments in this chapter we use the isolated network mentioned in Chapter 1.

44

Information obtainable using Public sources

Does the company have a web presence?

What is the assigned IP range?

Who owns the IP range?

Who is hosting the company’s website?

Does the company run a mail server?

What are the DNS servers used?

Are the DNS servers managed in-house or outsourced?

Administrative and technical contact information?

Company Address?

Table 3.2: Information which can be obtained using passive reconnaissance

Site Source Tools Provided
Central Various DNS tools, graphical trace routes,
[90]
Ops much more
BlackCode [91] Host Information and Host Connectivity tools
adHOC .
Tools [92] Multiple IP, DNS, and lookup tools
Analog [93] DNS lookup tool

Table 3.3: Websites containing Reconnaissance tools

45

UOIELADIUI JIE0Y)
unijeua Auedwo

RO EU T GEN T

dnyja awlep) wewoq S sallien Uiewap Jajslbiay O —
Salllep| Uewaq
s8a/ppy Aty
SI04AR d bl i — (TN Ja0a7) BOREUHOT] J30321] IR
: abiuer 4y o Jaung) BUIAGUINTE J2ULR210T] 31 2BEURI 0 B00G _ _ _
safivey 4|
s5a/ppy Auediuo)
" SJaNATSALE adoIng 307 320033 (90N
i dl abiues 4 jo suang) BmIaquuts s At sadetp] AT 34047 VOREURIO0T) Y0 FATT
safiuey 4|
s5a/ppy Aueduio) R30I
N) P BIL n__ i os 52010537 (OINDYD ey ey
HiMd alied g 0 JaunQ i— SERApDE T Medtqued DR TRLWF WA
safiley 4 BULAQUITIF I3 Aty Sadetrep] : N
$53/0py Audln)
" SIaNAgSALEN TR BIY 0] Sa3Mm0sal (INE)
i dl abiues 4 jo suang) BmIa QU JaUIAT] S sadep] 30 VORI Ji0Aa] Jaeg ey
safiuey 4|
s5a/ppy Aueduio) ! e
si0yi SJaNaz Al [EHOEN3-GUs PUE “TR3QQIRE;) 41 10 a
BI04 abiues 4 1o suag) Hotod B BIURIRY G0N Jo] S30im0sal T e e e ey ey
saliey B QUITIE IR AUy} SadeEy

papuDIg 02

papwaid uoneusop 1o adhy Launs g

uondsa

STOMRIIEI)

Public Databases

Table 3.4

46

Scenario Part 1: Site survey of Florida Tech’s Network

Now that the methods and tools have been identified, we demonstrate how
simple it is for a hacker to obtain information on an organization’s network using
public databases and web-based tools. The first step that a hacker could take is to
determine if the target has a web presence. This can easily be done by using
NSLOOKUP, HOST or DIG to perform a DNS query on the target, which in this
case is www.fit.edu. If this technique fails, the hacker can use two other techniques,

1. Perform a WHOIS query using one of the domain registrars or one of
the websites which provide the WHOIS service, see Table 3.4.

2. Use Google to search for the company name. This could result in
multiple hits, so it is usually the most time consuming. However, as
mentioned earlier, it can also provide a gold mine of information.

NSLOOKUP is the most common tool used to query DNS servers for
forward and reverse look-ups, and it is native to the Windows, UNIX and Linux
operating systems. DIG and HOST are tools more commonly found in Linux
operating systems. However, as mentioned earlier, web-based versions of these
tools are available throughout the Internet. The two sites we chose for this
experiment are http://msv.dk, which is hosted in Denmark by domainteam.dk and
http://www.registerar.com. The following table illustrates multiple tools that the

website, http://msv.dk, has to offers:

47

Whois .dk
Whois .com
Whois IP
IP <-> Hostname
DNS Investigate
Visual Tracert
Ping
Port Scanner
Http Header Revea
E-mail Validate
Connection Speed
Type of Browser
Send E-mail
Open Mail Relay
Check

Table 3.5: Tools available at http://msv.dk

The main page looks like this,

BE
yE2TE z

Tii

NS

Figure 3.1: IP Tools Website main page

48

After just a few searches we were able to find answers to all the questions in

Table 3.2 as follows:

Information obtained by

X Answer Info Tool Used
Public sources
Does the company Yes
have web presence? www.fit.edu nslookup
Server: Apache
Does the company
) Http Header
operate their own webserver? If so Yes .
) IP appears to be in Reveal
what kind? .
designated IP range
IP range 63.18.0.0 to whois
g 63.18.255.255
Does the company own the IP Yes Elorida Tech whois
range
Is the_ company h(_)stlng Yes Florida Tech whois
their own website?
mail exchanger =
www.fit.edu
Does the company operate www.fitedu MX
:) Yes _ nslookup
their own mail server preference = 20,
mail exchanger =
fit.edu
nsl.fit.edu/ns2.fit.edu .
What DNS servers are used Yes 63.18.1.7/63.18.1.8 Whois/nslookup
Are the DNS servers managed Yes | Appears to be in-house | nslookup/whois

in-house or outsourced

Administrative and technical
contact information

Eric T. Kledzik
Network Manager
(407) XXX-XXXX

XXXXXXXX@xxX.fit.edu

whois

Company Address

Florida Tech
150 West University
Blvd.
Melbourne, FL

32901

whois

Table 3.6: Information gathered using Passive Reconnaissance techniques

49

With this information a hacker can take the planned attack a step further and

perform targeted active reconnaissance.
3.2 Active Network Reconnaissance

Active network reconnaissance is the process of collecting information
about an intended target by probing the target network or system [124]. Active
reconnaissance typically involves some, if not all the reconnaissance techniques
mentioned in Table 3.1, i.e.: port scanning, IP scanning, OS fingerprinting etc.
Once the necessary information has been gathered, the main process of exploiting
the system can then be carried out, once a way to access the network or system has
been found. It is imperative to understand these how these techniques are used by
hackers and the information each technique generates, in order to be able to detect

and prevent the reconnaissance from becoming an attack.
Scenario Part 2: Filling in the gaps

We completed a general site survey of the intended target which gave us a
vague idea of the organizations overall infrastructure. We now know the targets
website, IP range, DNS, web server type and mail exchanger. However, there are is

still a lot of unanswered questions, such as;

Which IPs are in use?

What ports are open on the live systems?

What services are running on those open ports?

Which operating systems are being used and what versions?
What are the names of the registered systems?

QB (WIN|F-

Table 3.7: Remaining questions to answer

50

In order to fill in these gaps in our experiment we need to run several tools which
will end up generating traffic that might be detectable. The web-based tools used
earlier generate traffic that looks “normal”. We define normal network traffic as
traffic that does not disturb bandwidth/use thresholds, and does not contain traffic
that misuses network protocols. Bandwidth and use thresholds are highly dependant
on protocols used and network configuration, etc: number of nodes connected to
the network.

There are a number of commercial tools available that can provide the
answers to the questions in Table 3.7. These tools use a technique called auto-
discovery to detect nodes in a network. This technique uses various protocols, such
as the Simple Network Management Protocol (SNMP), TCP, ICMP and generally
are accompanied by a pretty sophisticated graphical user interfaces (GUI).
Although these are commercial tools and generally expensive, it does not mean that

a potential attacker can not obtain them. Some of these tools are shown below in

Table 3.8,
Product Description
Discovers and manages up to 1,500 IP
3Com Network Supervisor devices
AdRem NetCrunch 2.1 Network discovery and mapping

HP Toptools is a hardware management tool
that provides inventory, fault, asset,
performance, and security management of HP
devices from anywhere in the network using a

HP Toptools Web browser

Table 3.8: Commercial Auto discovery tools

51

Product Description

It provides an intelligent network mapping
feature while providing a robust monitoring
system for network service levels and
applications

Ipswitch WhatsUp Gold

NetViz uses Microsoft LanManager APIs

NetViz fornetwork discovery

this utility will discover TCP/IP nodes and
routes using DNS, SNMP, and ports; get MAC
NetworkView addresses and NIC manufacturer names;
monitor nodes and receive alerts; and
document with printed maps and reports

OptiView Inspector Console gives a visibility
into the networks by showing the devices and
local sub networks on the network

OptiView Inspector
Console

Table 3.8: Commercial Auto discovery tools cont ...

Attackers generally choose to either write their own tools or use tools available on
the Internet. Most tools available on the Internet can perform as well, if not better,
than the commercial tools.

To complete the reconnaissance we demonstrate the rest of the
reconnaissance techniques in Table 3.1. Since these tools generate traffic which
will fire up Florida Techs defenses and can cause undesired results in a production
environment, we finish our illustration of these tools and techniques using a portion

of the isolated network mentioned in Chapter 1,

52

IDS/FW

Hub

Accounting
192 168.2.110

-

Attacker

Sales Marketing
192168.2.210 192.168.2.102

Figure 3.2: Isolated Network
Nevertheless, if these techniques were used against the Florida Tech network the
end result would be somewhat the same. The only difference would be the targeted

ip addresses.

DNS Traversal

For simplicity we used a tool we wrote to perform DNS traversal, which is
similar to a zone transfer but without the configuration details required by DNS
servers. A zone transfer is a method used to transfer DNS records from one system

to another. Zone transfers have been known to be used by attackers to gather ip and

53

system information. Network administrators now restrict zone transfers to specific
systems in order to mitigate such reconnaissance tactics. Nevertheless, small “zone
transfers”, called forward and reverse lookups, are performed every day by nodes
accessing websites throughout the Internet. This loop hole in usability is
exploitable by using a recursive lookups; therefore traversing the DNS.

Our tool, called DNS-slurp, is a simple UNIX type shell script which
recursively queries a DNS server for forward and reverse lookups using a
command available with the Linux operation system, called host. In addition, the
number of subnets and hosts to be queried can be specified and the output is
organized in directories by subnet. For example, in our site survey we discovered
that Florida Tech has been allocated an ip range (for reasons mentioned earlier we
will substitute the IP range with that of our isolated network). With DNS-slurp, all

we will need to do is the following,

-*./dnz-slurp.sh
Enter oct 1: 1892
Enter oct 2: lad
S3tart of subnets: 2
End of subnets: 2
mtart of hosts: 1
End of hosts: 254

Figure 3.3: DNS-slurp interface
1) execute the script
2) Enter the 1% octet

3) Enter the 2% octet

54

4) Enter the start of the subnets to slurp. This value would be 0 — 255

5) Enter the end of the subnets to slurp. This value would be 0 - 255

6) Enter the start of the hosts to slurp. This value would be 0 — 255

7) Enter the end of the hosts to slurp. This value would be 0 - 255
The end result is a set of directories with subnets as the names with 2 files in each
directory. One file contains all DNS entries for that subnet and the second contains

all the registered IP addresses for that subnet. For example,

192.168.2.xxx <€ directory name
<subnet>.dnsnames &file with DNS names

<subnet>.hostips <file with registered IP addresses.

The <subnet>.hostips file can be fed into a program called NMAP, which will be
discussed later. DNS-Slurp accomplishes the following;

1) Obtains all DNS names. Sometimes it is possible to figure out the
purpose of a particular system by their name. Etc: NS1.fit.edu = most
likely is a DNS server.

2) All registered IP addresses are revealed, therefore no IP scanning is
necessary

3) All active subnets are revealed

55

4) DNS, mail exchangers and possibly web servers are revealed. Now that

servers and the services they offer have been identified, banner grabbing

techniques can be used to retrieve software versions [126].

The core of our script is shown below,

mkdir dns-slurp

Get host DNS names
for ((subnet = $startsubnet; subnet < ($endsubnet + 1); subnet++)) # Subnet loop
do
subnetdir=${oct1}.${oct2}.${subnet}.xxx
mkdir dns-slurp/$subnetdir
for ((host = $starthost; host < ($endhost + 1); ++host)) # host loop
do
host ${oct1}.${oct2}.${subnet}.${host} >> dns-slurp/$subnetdir/${subnet}.temp # lookup dns name
done

#Cleans files
parse out period at end of each line
sed '/Host/d;s/[.]*$//' dns-slurp/$subnetdir/${subnet}.temp > dns-slurp/$subnetdir/${subnet}.cleaned
Parse out DNS names only to file
cat dns-slurp/$subnetdir/${subnet}.cleaned | awk ‘{printf "%s\n",$5}' > dns-slurp/$subnetdir/${subnet}.dnsnames
rm -rf dns-slurp/$subnetdir/*.temp # delete temp file
rm -rf dns-slurp/$subnetdir/*.cleaned # delete cleaned file

#Get host ips, parse out the ip addresses and write them to a seperate file
while read line
do
host $line >> dns-slurp/$subnetdir/${subnet}.temp
cat dns-slurp/$subnetdir/${subnet}.temp | awk ‘{printf "%s\n",$4}" | sed 's/found://g;/*$/d' > dns-
slurp/$subnetdir/${subnet}.hostips
done < dns-slurp/$subnetdir/${subnet}.dnsnames
rm -rf dns-slurp/$subnetdir/*.temp
done

Figure3.4: dns-slurp source code
IP scanning/Host Enumeration

The DNS traversal provided a list of registered IP addresses and DNS

names; however this doesn’t necessarily mean that the IP addresses are in use. In

addition to verifying whether or not an IP is in use, a hacker also wants to know

what ports are open and possibly shares and user account information as well. All

of this can be accomplished by using a multifunctional IP scanner. Most IP

56

scanners can also save the scanning results to a file for later use. Some of the

available IP scanners are,

IP Scanning Tools Creator
SuperScan FoundStone
AngryScanner Angryziber Software
IP-Tools KS-Soft

Table 3.9: IP scanners
For our purposes we chose to use SuperScan by FoundStone. It provides the
multiple scanning techniques we need for our experiment and it is free. Some of the

functions that SuperScan offers are,

Host Detection

TCP SYN scanning

UDP scanning (two methods)

IP address import supporting ranges and CIDR formats
Simple HTML report generation

Source port scanning

Fast hostname resolving

Extensive banner grabbing

Massive built-in port list description database

IP and port scan order randomization

A selection of useful tools (ping, traceroute, Whois etc)
Extensive Windows host enumeration capability

Table 3.10: features
Although SuperScan offers many features, we will concentrate on its IP scanning
and host enumeration capabilities. Figures 3.4, 3.5, 3.6-A and 3.6-B illustrate the

type of information it can gather.

57

Scan |Hosl and Service Discweryl Scan Dptionsl Toals | WindowsEnumerationl Ahout |

~IPs

End P ﬂ| 19 168 2 .24

Read |Ps from file j

HasthamesIP | j Start P |End|F' | Clear Selected

116821 1921682254
sl X|[1% 8. 2 |
3

Clear Al

Liwe hosts this batch: &

197 168.2.1
Hostname: [Unknowm]
ICP ports (1) 80
UDP ports (1) &3

T
£
3
-
z

197 168.2.2
Hostname: [Unknowm]
ICP ports (1) 80
UDPF ports (1) 69

| »

Host discovery ICMP (Echol scan (254 hosts)_ ..

2 new machines discovered with ICMP (Echao)

TCP zerwvice scan (5YN) pass 1 of 1 (8 hosts x 179 ports)...
UDF service scan pass 1 of 1 (% hosts x 88 ports)...
Beporting scan results...

-------- Scan done --------

Discovery scan finished: 10/06/04 Z0:Z5:16

3 | l| ||| iew HTML iesuls

0039 savedlog il Live: 8 TCPopen:19 | DPopenid 254/254 done

Figure 3.4: SuperScan results

58

IP scanning output look like this,

Live hosts this batch: 8
192.168.2.1

Hostname: [Unknown]

TCP ports (1) 80

UDP ports (1) 53

192.168.2.2
Hostname: [Unknown]
TCP ports (1) 80
UDP ports (1) 69

192.168.2.100

Hostname: [Unknown]

TCP ports (11) 25,80,135,139,443,445,1025,1026,3389,5000,8000
UDP ports (2) 123,137

192.168.2.104
Hostname: [Unknown]
TCP ports (4) 22,80,111,3306

Total live hosts discovered 8
Total open TCP ports 19
Total open UDP ports 2

Figure 3.5: Superscan IP scan and host detection results

Host enumeration output look like this,

NetBIOS information on 192.168.2.100
6 names in table

MINI-SURGE 00 UNIQUE Workstation service name
MINI-SURGE 20 UNIQUE Server services name

HOMEIP 00 GROUP Workstation service name
HOMEIP 1E GROUP Group name
HOMEIP 1D UNIQUE Master browser name

__ MSBROWSE__ 01 GROUP

MAC address 1: 00:02:2D:24:D4:D5

Attempting a NULL session connection on 192.168.2.100
NULL session successful to \\192.168.2.100\IPC$

MAC addresses on 192.168.2.100

Figure 3.6-A: SuperScan Enumeration Results

59

MAC address 0: 00:00:00:00:00:00
\Device\NetbiosSmb

MAC address 1: 00:60:73:EA:DF:48
\Device\NetBT_Tcpip_{1F26F1AB-4A2F-48B7-8264-503D48C03728}

MAC address 2: 00:02:2D:24:D4:D5
\Device\NetBT_Tcpip_{2A9F3EF9-F241-4CE5-A251-24910149D708}

Workstation/server type on 192.168.2.100
Users on 192.168.2.100

Groups on 192.168.2.100

RPC endpoints on 192.168.2.100

Entry O
Interface: "906b0ce0-c70b-1067-b317-00dd010662da" ver 1.0
Binding: "ncacn_ip_tcp:192.168.2.100[3105]"
Object Id: "b09bd3d8-4fc3-4eee-9b71-02d2b6c431be”
Annotation: "

Entry 1
Interface: "1ff70682-0a51-30e8-076d-740be8cee98h" ver 1.0
Binding: "ncalrpc:[Infrared Transfer Send]"
Object Id: "00000000-0000-0000-0000-000000000000"
Annotation: "

Entry 2
Interface: "1ff70682-0a51-30e8-076d-740be8cee98b" ver 1.0
Binding: "ncalrpc:[Wireless Link Notification]"
Object Id: "00000000-0000-0000-0000-000000000000"
Annotation: "

Figure 3.6-B: SuperScan Enumeration Results cont...

An interesting characteristic about IP scanners like Superscan is that the
methods used to obtain the results presented in Figures 3.5 and 3.6 are practically
the same, therefore generating similar traffic. Some scanners generate more traffic
than others in order to accomplish the same result. To demonstrate this similarity
we scanned a single host with Superscan and another scanner called Angry IP
scanner. Both of these scanners have multiple options; however we only enabled
the IP/Host detection features in each one. The traffic that Superscan generates

looks like this,

13:14:22.380668 192.168.2.210 > 192.168.2.2: icmp: echo request
13:14:22.380788 192.168.2.2 > 192.168.2.210: icmp: echo reply

60

It only sends out one ICMP request. However, the results from Angry IP scanner
are slightly different,

13:20:50.920717 192.168.2.210 > 192.168.2.2: icmp: echo request
13:20:50.920948 192.168.2.2 > 192.168.2.210: icmp: echo reply
13:20:50.921536 192.168.2.210 > 192.168.2.2: icmp: echo request
13:20:50.921713 192.168.2.2 > 192.168.2.210: icmp: echo reply
13:20:50.922276 192.168.2.210 > 192.168.2.2: icmp: echo request
13:20:50.922401 192.168.2.2 > 192.168.2.210: icmp: echo reply

Angry IP scanner uses 3 ICMP echo requests to determine whether or not the target
is online. Although the packet count is slightly different the scanning method is the

same. There for a fingerprint can be developed to detect this kind of activity.

Port Scanning

Although SuperScan displayed the open ports in its final scanning results,
we did not discuss this technique because there is another tool favored by hackers
for port scanning. The tool is called NMAP, and it is considered to be the Swiss
Army Knife of all scanners. It supports dozens of advanced techniques for mapping
out networks filled with IP filters, firewalls, routers, and other obstacles. This
includes many port scanning mechanisms (both TCP & UDP), OS detection,
version detection, ping sweeps, and more. We will only take a look at its port
scanning capability in this section.

NMAP supports all forms of port scanning techniques in existence today.
These techniques include Vanilla TCP connect() scanning, TCP SYN (half open)

scanning, TCP FIN (stealth) scanning, TCP ftp proxy (bounce attack) scanning,

61

SYN/FIN scanning using IP fragments (bypasses packet filters), UDP recvfrom()
scanning, UDP raw ICMP port unreachable scanning, ICMP scanning (ping-
sweep), and Reverse-ident scanning [127] [128]. Most operating systems are
supported, including Linux, Microsoft Windows, FreeBSD, OpenBSD, Solaris,
IRIX, Mac OS X, HP-UX, NetBSD, Sun OS, Amiga, and more. [127]. It is
available in GUI version and in command line version, which makes it even more
powerful because it can be scripted.

To illustrate ease of use, we scanned two of the systems in our isolated
network with the command, nmap -sS -P0 -T 3 192.168.2.100 192.168.2.102.

The output is shown in Figure 3.7 .

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-10-06 21:41 EDT
Interesting ports on 192.168.2.100:

(The 1647 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

25/tcp open smtp

80/tcp open http

135/tcp open msrpc

139/tcp open netbios-ssn

443/tcp open https

445/tcp open microsoft-ds

1025/tcp open NFS-or-11S

1026/tcp open LSA-or-nterm

3389/tcp open ms-term-serv

5000/tcp open UPNnP

8000/tcp open http-alt

8443/tcp open https-alt

Interesting ports on 192.168.2.102:

(The 1655 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

3306/tcp open mysql

PANN A ~man /11

Figure 3.7: NMAP output

62

In less than a minute we were able to determine that the two hosts are up, what
ports are open and what services are running on each port. Nmap, like many of the
tools we cover in this thesis, is scriptable. This gives the hacker the ability to fully
automate the process and collect the information later. A good example of this
would be passing a file with a list of IP address, very much like the one DNS-slurp

generates, as an argument to nmap then piping the results to a file.

63

OS Detection
So far we have been able to answer four questions from Table 3.7,
1) Which IP's are in use?
2) What are the names of the registered systems?
3) What ports are open on the live systems?
4) What services are running on those open ports?
The answers to the remaining question can be obtained using a technique known as
operating system detection or OS detection.

There are several techniques that can be used to detect operating systems on
remote systems. A classic technique is to telnet into a system (if the system has the
service enabled) which might return a login prompt with a banner revealing all
sorts of information about the system. Or telnet into a specific port on a machine
which typically would reveal the version of the service that is running on that port,
and then from this information an educated guess can be made at determining the
OS type. Another classic technique is using DNS information records to determine
what type of service the system provides via the DNS name of the system.
However, some system and network administrators have caught on and have started
to disable banners and started using naming conventions which eliminates
OS/Service guessing through DNS records. Due to the proactive efforts of system
and network administrators, OS detecting techniques have become more

sophisticated through the use of protocols such as the Simple Network

64

Management Protocol (SNMP), Internet Control Message Protocol (ICMP),
Transport Control Protocol (TCP) and fingerprinting networking stacks [68] [70]
[71] [72] [129] [130].

The tools that we found to be the most effective at OS detection are NMAP
and Xprobe?2 [68] [70] [71] [72]. We have already introduced NMAP as a port
scanning tool. As mentioned earlier, NMAP is a Swiss Army Knife type scanner
[127] [128]. The main difference in the methods used by NMAP and Xproe2 for
OS detection is, NMAP uses TCP/IP and Xprobe2 uses ICMP.

To perform an OS detect using NMAP we run the following command,

Nmap —O <target ip(s)>

which generates the following:

C:\Documents and Settings\Irivera>nmap -P0O -O 192.168.2.100

Starting nmap V. 3.00 (www.insecure.org/nmap)

Interesting ports on MINI-SURGE (192.168.2.100):

(The 1591 ports scanned but not shown below are in state: closed)
Port State Service

25/tcp open smtp

80/tcp open http

135/tcp open loc-srv

139/tcp open netbios-ssn

443/tcp open https

445/tcp open microsoft-ds

1025/tcp open NFS-or-1IS

1026/tcp open LSA-or-nterm

3389/tcp open ms-term-serv

5000/tcp open UPnP

Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or Win
XP

Nmap run completed -- 1 IP address (1 host up) scanned in 33 seconds

Figure 3.8: NMAP OS Detect Results

65

In addition to the OS detection, NMAP also returns the status of the scanned host,
its open ports, services running on each port and time it took to complete the scan.

Running an Xprobe2 scan on the same system would yield the following,

[+] Target is 192.168.2.100

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[x] [2] ping:tcp_ping - TCP-based ping discovery module

[X] [3] ping:udp_ping - UDP-based ping discovery module

[X] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[X] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[X] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module

[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting module

[X] [9] fingerprint:icmp_info - ICMP Information request fingerprinting module

[x] [10] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting module

[x] [11] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[+] 11 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 192.168.2.100. Module test failed
[-] ping:udp_ping module: no closed/open UDP ports known on 192.168.2.100. Module test failed
[+] No distance calculation. 192.168.2.100 appears to be dead or no ports known

[+] Host: 192.168.2.100 is up (Guess probability: 25%)

[+] Target: 192.168.2.100 is alive. Round-Trip Time: 0.01753 sec

[+] Selected safe Round-Trip Time value is: 0.03507 sec

[+] Primary guess:

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server" (Guess probability: 52%)
[+] Other guesses:

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Workstation SP4" (Guess probability:
52%)

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Workstation SP3" (Guess probability:
52%)

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 1" (Guess
probability: 52%)

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 2" (Guess
probability: 52%)

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 3" (Guess
probability: 52%)

[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 4" (Guess
probability: 52%)

[+] Host 192.168.2.100 Running OS: "Microsoft Windows XP" (Guess probability: 52%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+1 Execution completed.

Figure 3.9: Xprobe2 OS Detect Results

66

A few more characteristics worth mentioning about these two tools is that
both of them use a predetermined set of OS fingerprints. For example, the

predefined Windows Xprobe2 fingerprint looks like the following:

#Microsoft

fingerprint {
OS_ID = "Microsoft Windows 2003 Server Enterprise Edition"
#Entry inserted to the database by: Ofir Arkin (ofir@sys-security.com)
#Entry contributed by: Ofir Arkin (ofir@sys-security.com)
#Date: 14 July 2003
#Modified: 14 July 2003
#Module A
icmp_echo_code =0
icmp_echo_ip_id =10
icmp_echo_tos_bits =0
icmp_echo_df bit=1
icmp_echo_reply_ttl = <128
#Module B
icmp_timestamp_reply =y
icmp_timestamp_reply_ttl = <128
icmp_timestamp_reply_ip_id =10
#Original_data_echoed_with_the UDP_Port_Unreachable_error_message
icmp_unreach_echoed_udp_cksum = OK
icmp_unreach_echoed_ip_cksum = OK
icmp_unreach_echoed_ip_id = OK
icmp_unreach_echoed_total_len = OK
icmp_unreach_echoed_3bit_flags = OK
#Module F [TCP SYN | ACK Module]
#IP header of the TCP SYN | ACK
tcp_syn_ack_tos =0
tcp_syn_ack_df =1
tcp_syn_ack_ip_id =10
tcp_syn_ack_ttl = <128
#Information from the TCP header
tcp_syn_ack_ack =1
tcp_syn_ack_window_size = 65535
tcp_syn_ack_options_order = "MSS NOP WSCALE NOP NOP TIMESTAMP NOP NOP SACK"
tcp_syn_ack_wscale = 0
tcp_syn_ack_tsval =0
tcp_syn_ack_tsecr =0

Figure 3.10: Windows Xprobe2 fingerprint

67

The predefined NMAP Windows fingerprint looks like this,

Fingerprint Axent Raptor Firewall running on Windows NT

Class Axent | Windows | NT/2K/XP | firewall

TSeq(Class=TR)
T1(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%0ps=M)
T2(Resp=N)
T3(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%O0ps=M)
T4(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T7(Resp=N)

PU(Resp=N)

Figure 3.11: NMAP Windows fingerprint

These two scans illustrate how simple it is for a hacker to gather OS type
information. Chapter 4 provides more information on the functions available in
these two tools along with analysis of the traffic that the tools generate. We also
take a closer look at the predefined fingerprints Xprobe2 uses and the fingerprint

generation feature.

68

Sniffing

Sniffing is the act of intercepting and inspecting data packets using a
software program called a sniffer, which places the network card in what is known
as promiscuous mode. There are two forms of sniffing, one that works only on non-
switched networks and another that works on both switched and non-switched
networks. The first functions directly without any modification to the network
(such as enabling a mirrored port). Port mirroring, also known as a roving analysis
port, is a method of monitoring network traffic that forwards a copy of each
incoming and outgoing packet from one port of a network switch to another port,
where the packet can be studied [134]. This form of sniffing is typically used by
network administrators for troubleshooting network problems. The second form of
sniffing exploits a protocol called ARP, which is the only way to sniff a switched
network without needing access to a mirrored port. This form of sniffing is
discussed in detail later in this section.

The concept of a sniffer has evolved throughout the years. There are
software and hardware devices today that can do much more, than just put a
network card in promiscuous mode and display raw network traffic. This kind of
sniffer can display packets in great detail (such as the values in each field of each
packet) and provide statistical data in addition to logging for future analysis. These

types of sniffers are also referred to as protocol analyzers, and are generally used

69

by network and network security analysts. Some of the commercial and open

source software protocol analyzers available are listed in tables 3.11 and 3.12.

Commercial Protocol
Analyzers Company/Developer(s) Type
Sniffer PRO Network General Software
McATfee Security Forensics Network Assocaites Software
NetAsyst Network Network Assocaites
Analyzer
Iris Nzr\:\;?;l;;rafﬁc eEye Digital Security Software
EtherPeek NX WildPackets Software
OptiView Protocol Expert Fluke Hardware
Observer Network Instruments Software
LanHound Sunbelt Software Software
Table 3.11: Commercial protocol analyzers
OpenSource Protocol
Analyzers
Tcpdump tcpdump.org Software
Ethereal ethereal.com Software
Paolo Politano, Loris Degioanni,
Analyzer etal Software
http://analyzer.polito.it/
Snort Martin Roesch Software
Aldebaran sniffer Rogala Software Software

Table 3.12: Open Source protocol analyzers

Hackers use sniffers for a totally different purpose. They are typically interested in

capturing traffic and instantly extracting certain information, such as user account

(passwords/usernames), personal information or anything they can use to either

break into a system or profit from stolen information. Therefore, hackers usually

70

use sniffers designed specifically for extracting targeted information from network

packets. Some of these specialized sniffer tools are listed in Table 3.13.

Specialized sniffers
Sniffit [135]
Dsniff [137]

Ettercap [138]
Hunt [139]

Table 3.13: Specialized Sniffers
The specialized sniffers listed in Table 3.13 are discussed in this chapter. Those
listed in Tables 3.11 and 3.12 are covered in Chapters 4 and 5.

Before we continue, we would like to point out that sniffers/protocol
analyzers are also known as Packet sniffers, Network Analyzers or Ethernet
Sniffers.

Sniffit

Sniffit, created by Brecht Claerhout [135], is one of the first sniffers used by
hackers in the late 1990’s. Sniffit can listen in on any tcp stream without
interrupting the connection in a non-switched network. For example, a hacker can
selectively tap into a telnet or ftp session, as shown in figure 3.12, and capture the
user name and password in plain text. Some of the sniffers hackers use are passive
(do not generate traffic) and others are semi-active (generates some initial traffic).
Sniffit is a passive sniffing tool. Although we mentioned earlier that Sniffit can
only work on a non-switched network, it can however, work on a mirrored port on

a switched network.

71

qaA04 *aSad-bd Q404 20AN0C-—£d 4T "As8=(-Td 4@ 20IN0C-Td- fSHSER
[EEEEEEBEDEEEEDEEDEEEEDREEEEELDEEEEEELEEEEEEEDEEEEEEEEREEEEREEEEEEEREEREEREREERERREREDLm

_.HH_H_H_H_H_H_H_H_H_H_H_H_H S hhhhhEhEhEhEhEEEELELEEEEELEEEDEELEEEEEEERIm

H- - ---ﬂ.--
aixla)a)a) i) a)ada)n BEBEBEE

2 IHI0T OTZ"2°89T "26T 2 88T "Z6T

Sniffit capturing password

Figure 3.12

72

Dsniff
Dsniff is a suite of tools which includes 6 different specialized sniffers, 3

interception tools and 2 man-in-the-middle attack tools, listed in Table 3.14.

Sniffers tools

Dsniff
Filesnarf _ _
Mailsnarf Passively r'non|torla network for
interesting
Msgsnarf data (passwords, e-mail, files, etc.).
Urlsnarf
Webspy
Interception tools
Arpspoof facilitate the interception of network
Dnsspoof traffic normally unavailable to an

Macof attacker (e.g, due to layer-2 switching)

Man-in-the-middle tools

. implement active man-in-the-middle

Sshmitm attacks against redirected SSH and

HTTPS sessions by exploiting weak
bindings in ad-hoc PKI

Webmitm

Table 3.14: Dsniff sniffing tools [137]
The 6 sniffers shown in Table 3.14 are designed to extract specific data. Dsniff is a
password sniffer which handles over 30 different protocols. Filesnarf extracts files
from NFS traffic. Mailsnarf can output sniffed email messages from POP and
SMTP. Urlsnarf outputs all of the requested URL addresses from HTTP traffic.
Webspy can send sniffed URLSs to a locally installed Netscape client for display. As

a victim surfs, the url is updated in real-time on the hackers system. Msgsnarf can

73

extract selected messages from most instant messaging clients available today,
including AOL, ICQ, MSN, and Yahoo messengers. Before we continue, it is
important to point out that msgsnarf is especially dangerous in environments such
as Florida Tech. Users have the tendency of sharing student information such as
social security numbers, financial information, or reminding each other how to use
commands for internal database systems using instant, messenger services..
Revisiting the scenario introduced at the beginning of this chapter, if a
hacker wanted to steal sensitive information such as passwords, confidential emails
or account information, it would be very easy to do so with the sniffers just
described. Figure 3.13 illustrates how dangerous the Dsniff suite can be. In this
research, we sniffed the MSN conversation between two users in our mock FIT
network, using Msgsnarf. Here we were able to capture what seemed to be two
secretaries exchanging commands to some internal system called CANNER and

sending the SSN number for a student named Jennifer Brown.

74

% Shell - Konsole <2>

on eth2

ge
f -1 eth2

: listening on eth2

14 10:56:5
grades in

CANNER

157:05 MSN
EE

0 MSN

unknown

N unknown >

0 MSN unknown >

Session Edit View Bookmarks Seftings Help

hey

(null):
> unkn

.com >

> unknown:

: btw

9 MSN unknown >

g stud

sure in the main window when CANNER start si

ats Jennifer Browns SSN
309
eat thanks...

00

Figure 3.13:

Msgsnarf capture of an MSN conversation

As mentioned earlier, Msgsnarf and the other 5 sniffers are passive tools; therefore

they are not effective on a switched network by themselves. However, with the

assistance of the three interception tools, Arpspoof, Dnsspoof and Macof, the 6

sniffers are lethal.

Interception tools modify data on the target nodes. Arpspoof, for example,

redirects packets on a LAN to overcome the host-isolating behavior of switched

networks by poisoning its victims ARP tables [137]. It is important to point out that

75

Arpspoof by itself would cause a denial of service attack if the packets are not
rerouted by using either IP forwarding or using fragroute [140]. To illustrate the
capabilities of Dsniff we ran two experiments using Arpspoof and Dsniff. In the
first experiment, our objective was to capture the user name and account of a user
logging into their mail account and in the second we want to capture the username
and password of a user logging into a password protected website. Figure 3.14
illustrates the configuration we used in the two experiments and provide an
explanation of the arpspoofing process. Figures 3.15 and 3.16 illustrate the results

of the two experiments.

Intermet

ol

pateway

Switch thinks 192.168.2.102 is
192.168.2.104 and sends the
packets to 192.168.2.102

192 168.2.104
Al AAAAAAAAAR

N\
AN
~,
b
= /
“h ¥
1_ -
192.168.2.102 Hacker
BE:BE:BB:BB:BR:BE Arpspoof user 1 and IP forwarding

enabled. Redirecting all packets to
itself then forwarding them to
192.168.2.104
AbAA AR AA:AA: AR

Figure 3.14: Configuration used for dsniff and msgsnarf experiment

Joodsdry pue s i pamided promssed pue auwey w50 3593y, (9T ¢ aANBL]

=HTa2TH: CONMETONUASZD JTSET UOTIEZTIOLITLY

Joodsdae daab
T"Z6T TU2? I- Joodsdie

ﬁﬂﬂﬁw : < 1828 0Ue € 891 &6l 42l

= = =

(]

77

In this experiment we used Arpspoof to poison the targets ARP tables which
redirects all traffic between them through the attacking machine. Then we ran
msgsnarf to capture the conversation.

DNS spoofing does to a DNS server cache what Arpspoof does to an ARP
table cache. It poisons the information in the cache entries, then a hacker can forge
replies to DNS queries [137] [141]. Macof causes a switch to “fail open”, forcing
the switch into a hub state which then broadcasts traffic to all hosts. Once the hub is
in this state any sniffer can be used to gather information.

The final set of tools, Sshmitm and Webmitm, allows the hacker to proxy
and sniff SSH, HTTP and HTTPS traffic redirected by Dnsspoof, creating a man-
in-the-middle attack. In this case, passwords, logins, SSL encrypted logins and
form submissions can be captured.

EtterCap

Ettercap is a multi-featured, specialized sniffer that has several capabilities other
than just sniffing traffic. Ettercap is considered a network sniffer, interceptor and
logger for Ethernet LANS. It supports active and passive analysis of many protocols
including some ciphers like SSH and HTTPS. Ettercap also supports data injection
and an established connection and instant filtering without breaking the connection.

Features included in EtterCap are listed in Table 3.15,

78

Unified sniffing

Characters Injection

Bridged sniffing

SSH man-in-the-middle

ARP poisoning

Decipher SSH1, HTTPS

ICMP Redirection

Passive OS Fingerprint

DHCP Spoofing

Port Scanning

Port Stealing

Kill connections

Remote traffic through GRE Tunnel
from a remote cisco router

Passive scanning of a LAN

Man-in-the-middle attacks against PPTP

Check for other poisoners

tunnels

Bind Sniffed data to a local
port
Port stealing

Password collector for over 30 protocols.

Packet filtering/Packet Dropping

Table 3.15: Ettercap features
Ettercap can also detect if it is being used on a switched network, it can detect
operating systems actively, passively, and execute several types of attacks such as
Denial of Service, Man-in-the-middle and Mac flooding.

In the beginning of this section we mentioned a form of sniffing which
involves the exploitation of a protocol called ARP, or address resolution protocol
[136]. Because network switches work by sending packets only to the intended
host, passive sniffing is not possible from a hacker’s perspective. As a result, an
attack method called ARP poisoning was developed and is described in Chapter 2.
Ettercap uses ARP poisoning to redirect traffic between two nodes, to pass through
its host system by modifying the ARP tables in each target. In order to do this, it

generates a list of Mac addresses from the hosts in the subnet it is plugged into by

79

sending out a burst of ARP requests. The interesting thing about ARP poisoning is
that it has no effect beyond the subnet it is running on.

Once this list is created, a source and destination can be selected which triggers the
ARP poisoning, and traffic between these two points can be sniffed. Figure 3.17

illustrates the Mac address list and a target being selected.

lEIEIl'_Il'_IEIEIl'_Il'_IEIEIl'_Il'_IEIlZIl'_Il'_I|:I|:I|'_I|'_I|:I|:I|'_I|'_I|:I|:I|'_I|:IEIlel'_IEIlZIlZII‘_IEIEI Bt.t.El.‘Cﬂ]_] 0.6.b l'_II'_IIZIIZ[I'_II'_II:IEIl'_Il'_IEIlZIl'_Il'_I|:I|:I|'_I|'_I|:I|:I|'_I|'_I|:I|:I|'_I|:I|:I|:I|'_I|:IEIlel'_IEIEIIZ[I‘_IEﬂ-I

DO A o Y Y I I Y I Y Y Y A Y g gy o
Loogegaqaogqaogoaggggy 6 hosts in this LAH (192.168.2.102 : 255,255.259.0) qoooooooqqaoaooqaogk
b 1) 19:.168 02 1y 192,16

IO epr o ey e P e e A T T A Y A P I A I L A e e I g]
lggaogaggggy Your IP: 192.168.2.102 MAC: 00:20:ED 18:B9 Iface: eth0 Link: HUB cqqoqqqoqoogk
% Host: Unknovm host (192.168.2.102) : 00:20:ED:94:18:B9

(s s L s o s pupupnpu(ufulefs g

Figure 3.17: Ettercap interface and list of Mac addresses in subnet.
To illustrate the capabilities of Ettercap, we ran it against two machines in
our mock Florida Tech network. For this experiment we chose to use the hosts

192.168.2.102 and 192.168.2.104. Before targets are selected in Ettercap, the target

80

ARP tables contain the appropriate Mac address as illustrated in Figures 3.18-A

and 3.18-B,

Lddress Hiltype HWladdreszs Flags Mazk
192,168, 2, 10: gether 00:10: 2:0B:62 C

I—-

gther 00

192,168, 2. 210 gther Q0:04:75:71:00: 8 [

Figure 3.18-A: Target 192.168.2.102 ARP table before ARP Poisoning

Address Hiltype HWaddrezs Flags Nazk Iface
. ether 00:04:EZ:4B:90:D& C ethi
192, 168.2.210 ether 00:04:75:71:D0:8F C ethl
192, 168.2.102 ether 00:20:ED:94:18:B% C ethl

Figure 3.18-B: Target 192.168.2.104 ARP table before ARP Poisoning

Once targets have been selected, the ARP Poisoning takes place and the Mac
addresses in each of the targeted ARP tables are changed to reflect that of our

attacking machine 192.168.2.200 (00:02:A5:03:E5:53),

address Hitype HUaddress Flags Mazk
192,168.2.104 ether 00:02:A5:03:E5 53 C

ether 00:04:E2:4B:90:D4 °C

Figure 3.19-A: Target 192.168.2.102 ARP table after ARP Poisoning

81

Lddress Hiitype HWaddress Flags Mask Iface

: ether 00:04:EZ:4B:90:D& C ethi
182,168, 2,210 ether 00:04:75:71:D0:8F C ethl
192,168, 2,102 ether 00:02:45:03:E5:53 C ethl

Figure 3.19-B: Target 192.168.2.104 ARP table after ARP Poisoning
The entries in each target ARP table now show the same Mac address for both
hosts 192.168.2.102 and 192.168.2.104. Now we can read all the traffic between
our two victims using Ettercap’s sniffing features or any sniffer of choice. Figure
3.20 shows a captured username and password, and Figure 3.21 illustrates the flow

of events during this experiment.

CECEERREERRREEER R R G CE S S G

Username and password

Figure 3.20: Ettercap capturing a website username and password

82

201289k el

i

(e 1 SOSE0NTI000 Teme 2012991 "261
(e 1 IG00TLSLR000 Tame 0702897261
(933 1 YO06 R ZTh0:00 28U i
M| yeoy sbeyy ssammegy adig STy
YOL'ZBILTEL \
dl ___
Bununoomy .__
mE_u.mA._:.NE r _Emnww;m_
Bunesep| ﬁ s
_

. EssE0ey e/
3 O0E £991L 761/
e BpEN

SRR RO RO RO

ENVED EVENEENT E0L 2 691 261
5081 -5-03:00.000 201 2891 261
BOADELO- A0 MO0) VOE T a3 TEL
| ol
a3inns

JaLa|

ion

igurat

Ettercap Experiment Confi
83

Figure 3.21

Summary
In this chapter we have illustrated reconnaissance techniques and tools that
hackers can use to gather network information. Tables 3.16 and 3.17 summarize the

type of information passive and active reconnaissance can provide for a hacker.

Information obtainable using
passive reconnaissance

Does the company
have web presence?

Does the company
operate their own web server? If so what
kind?

IP range

Does the company own the IP range?

Is the company hosting
their own website?

Does the company operate
their own mail server?

What DNS servers are used?

Are the DNS servers managed
in-house or outsourced?

Administrative and technical contact
information

Company Address

Table 3.16: Information obtainable using passive reconnaissance

84

Information obtainable using
active reconnaissance
Which IP's are in use?
What ports are open on the live systems?

What services are running on those open ports?

Which operating systems are being used and what
versions?

What are the names of the registered systems?

Table 3.17: Information obtainable using active reconnaissance

We have illustrated how the techniques and tools work and the type of information
each reconnaissance can gather. In the next chapter, we will take a closer look at
how these tools work by analyzing the traffic they generate and dissecting packets
to extract key identifiers that can then be used to help detect when a reconnaissance
is being performed. However, not all of the techniques demonstrated in this chapter
can be detected. Nonetheless, it is important to know that such techniques are in
practice, what tools are used to carry out these techniques, and how they work.
This knowledge can serve as a means for the development of better

countermeasures and security practices.

85

Chapter 4

Network traffic analysis:
A Security Analyst’s Perspective

We have discussed network reconnaissance techniques used by hackers,
types of network reconnaissance tools that are available to hackers and the
information that can be gathered on a target network. Now, we will discuss how to
identify network reconnaissance traffic and the tools available to accomplish this.
This chapter is organized as follows,

1) Tools for traffic analysis

2) ICMP reconnaissance analysis: XPROBE2

3) ARP reconnaissance analysis: ETTERCAP

4) TCP/UDP reconnaissance analysis: NMAP

4.1 Tools for traffic analysis

In Chapter 3 we introduced several protocol analyzers in Tables 3.11 and
3.12. All of them are great products and offer many features. However, for the
experiments presented in this chapter we chose to use 2 of the open source protocol
analyzers, Tcpdump and Ethereal. We chose these two protocol analyzers, not only
because they are freely available, but because each one offers unique characteristics

and they happen to be the most widely used today.

86

We will first provide an overview of Tcpdump and Ethereal, and then go
into network reconnaissance traffic analysis using these both tools.
TCPDump

Tcpdump is the foundation behind Ethereal and Snort. It is very flexible in
that it allows for customizing capture filters for in-depth data analysis [40] [143].
Tcpdump was also ported to the windows environment as Windump. Figure 4.1

illustrates what a Tcpdump capture looks like.

17:19:27.922891 10.0.0.211.2428 > host203-32.fit.edu.ftp: S 2706634669:2706634669(0) win 65535
<mss 1460,nop,nop,sackOK> (DF)

17:19:27.923732 host203-32.fit.edu.ftp > 10.0.0.211.2428: S 1919315226:1919315226(0) ack
2706634670 win 65535 <mss 1460,nop,nop,sackOK> (DF)

17:19:27.923784 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 1 win 65535 (DF)
17:19:27.924286 host203-32.fit.edu.ftp > 10.0.0.211.2428: P 1:54(53) ack 1 win 65535 (DF)
17:19:28.112749 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 54 win 65482 (DF)

17:19:29.812895 208.172.13.222 http > 10.0.0.211.2427: F 1211869087:1211869087(0) ack
246534951 win 6432

17:19:29.812995 10.0.0.211.2427 > 208.172.13.222.http: . ack 1 win 65535 (DF)
17:19:33.752912 10.0.0.211.2428 > host203-32.fit.edu.ftp: P 1:16(15) ack 54 win 65482 (DF)
17:19:33.753354 host203-32.fit.edu.ftp > 10.0.0.211.2428: P 54:91(37) ack 16 win 65520 (DF)
17:19:33.943038 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 91 win 65445 (DF)
17:19:39.912679 10.0.0.211.2428 > host203-32.fit.edu.ftp: P 16:28(12) ack 91 win 65445 (DF)
17:19:39.913644 host203-32.fit.edu.ftp > 10.0.0.211.2428: P 91:121(30) ack 28 win 65508 (DF)

17:19:40.072904 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 121 win 65415 (DF)

Figure 4.1: Tcpdump Capture.

87

If we want to extract only the SYN packet(s) from the above capture we use the
following filter,
Tcpdump -v -r ftp-login.cap 'tcp[tcpflags] & tcp-syn =0

the output looks like this,

17:22:31.082908 10.0.0.211.venus-se > host203-32.fit.edu.ftp: S [tcp sum ok]
3307829625:3307829625(0) win 65535 <mss 1460,nop,nop,sackOK> (DF) (ttl
128, id 11068, len 48)

17:22:31.083279 host203-32.fit.edu.ftp > 10.0.0.211.venus-se: S [tcp sum ok]
1965082975:1965082975(0) ack 3307829626 win 65535 <mss
1460,nop,nop,sackOK> (DF) (ttl 126, id 51903, len 48)

Figure 4.2: TCP SYN packets filtered from Capture in Figure 4.1
TCPdump is a very powerful and flexible tool for network data analysis. For
further details please refer to [40] and [143].

Ethereal

Ethereal was created by Gerald Combs, but since its birth hundreds of
programmers have contributed to its evolution [36]. It offers everything Tcpdump
has to offers but with a detailed graphical view of network traffic, in real time or
not, making it a little easier to analyze. What makes Ethereal even more appealing
is that it accepts Tcpdump formatted filters. For example, if we wanted to extract
the SYN packets from the capture in Figure 4.1 as we did with Tcpdump, the out

put would look like this,

88

@ (Untitled) - Ethereal !E[E3

File Edit Yew Go Capture Analyze Statistics Help

RO xs 3 Re> 278 QAQAQAIPHEH X8

| Eilter: Htcp.ﬂags.syn =0 " I Expression. .. | gearl applyl

Protocol

Destination

3. 20

21l TCP ftp > 24

________ 5. 1]
0.0.0

2 0.000440 163.118.203.32 1

4] |

[SYN, ACK]

= Frame 1 (62 bytes on wire, 62 bytes captured)
Arrival Time: oct 20, 2004 18:47:33.173926000
Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Mumber: 1
Packet Length: 62 bytes
Capture Length: 62 hytes

= Ethernet II, src: 00:0b:dh:77:16:91, Dst: 00:01:02:48:85:a0
Destination: 00:01:02:48:85:a0 (10.0.0.1)
source: 00:0b:db:77:16:91 (10.0.0.211)
Type: IP (0x0800)

= Thternet Protocnl. sec adde: 10.0.0.217 (10.0.0.211%. pst addr: 1A3.118.203.32 (M&3.118. 203 =]

— Y

4] | i
0000 00 01 02 48 85 a0 00 0b db 77 16 91 08 00 45 00 c..Hooo.o uw.. L. E.

0010 00 30 35 &7 40 00 80 06 4b 77 0a 00 00 d3 a3 7é LOSLE. L. Kwe.... W

0020 ch 20 09 83 00 15 6b 20 27 ee 00 00 00 00 70 02 D L —— n.

0030 ff ff 6d of 00 00 02 04 05 b4 01 01 04 02 SEMETELE BRLLEE

File: {Untitled) 1466 byte: IP: 1Bmz2Mmo

Figure 4.3: Ethereal Filter of Capture in Figure 4.1

Unlike Tcpdump, Ethereal also offers a clean way to analyze raw data packets and

its payload at the same time as illustrated in Figure 4.4. One other advantage

Ethereal has over Tcpdump is its ability to follow a TCP stream and display it in

ASCII, EBCDIC, HEX dump and in C arrays. Figure 4.5 displays the complete

login of the FTP capture in Figure 4.1. For further details on how to use Ethereal

and the many options and features it offers please refer to [36].

89

@ (Untitled) - Ethereal)] B

File Edit Yiew Go Capture Analyze Statistics Help

B OIxes Res 2FL QQAQ I PHEXE Selected
| Eilter: Itcp.ﬂags.syn =0 " I Expression. .. | gearl applyl packet
Mo, Time - Source Diestination Protocol Info
i TTp =
2 0.000449 163,118, 203.32 10.0.0.211 TCP ftp > 2435 [5¥N, ACK]
4] | |

H Frame 1 (62 bytes on wire, 62 bytes captured)
H Ethernet II, Src: 00:0b:dh:77:16:91, Dst: 00:01:02:48:85:a0
H Internet Protocol, src Addr: 10.0.0.211 DsT Addr:
Transmission Control Pri 1
Source port: 2435 (2435)
pestination port: ftp (210
Sequence number: 1797269486

Header Tlength: 28 hytes —
@ Flags: 0x0002 (SYN) TCP/IP packet
window size: 65333

Checksum: 0x6d0f (correct) Informatlon
= options: (8 bytes)
Maximum segment size: 1460 hytes
] =} :I
4 | i
o000 00 01 02 48 85 a0 00 0ob db 77 16 08 00 45 00

0010 00 30 35 e7 40 00 B0 06 4b Oa 00 d3 a3 76
0020 ch 20 [EREERNVEEN) 27 ee 00 00 00 00 7D 02
0030 of Q0 0o 05 b4 01

Payload data

[Transmission Contral Prote l PriGDnEM: 0

Figure 4.4: Detailed view of a packet

{@ Follow TCP stream

=] §3

[5tream Conkent

220 Router-webh Microsoft FTP Service (version §5.00).
LISER ftpimage

331 Password reguired for ftpimage.

PASS image

230 User Ttpimage Togged dn.

QuIT

221

Save ﬁsl Erintl Entire conversation {160 bytes) [- |ﬁ ASCIT {7 EBCDIC () Hex Dump © 0 C Arrays

Close |

Filker out this stream

Figure 4.5: Complete FTP login stream from Capture in Figure 4.1

90

4.2 ICMP Reconnaissance Analysis: XPROBE?2

Xprobe2 was developed by Ofir Arkin, founder of Sys-Security Group. He
uses ICMP, or Internet Control Message Protocol, as a means to identify network
devices using a number of methods [69] [70] [71] [72].

Our goal is to analyze traffic and identify when this tool is being used.
Because this is the first tool analyzed, it will serve to illustrate the methodology. As
we analyze other tools, steps may be added or deleted based on tool characteristics.
Primarily, the analysis of a tool includes the following:

1. Understanding the protocol the tool exploits, in this case it is ICMP

(Please refer to Appendix B for more information on this protocol)
2. Use of a sniffer, or protocol analyzer, to analyze tool capabilities
a. Examine the available parameters.
b. Document the effects of changing parameter values.
c. Characterize traffic generated by the various option
permutations.
Using this information, we then extract a fingerprint for the tool that can
subsequently be used to develop a rule for an intrusion detection system like snort,
as we will demonstrate in Chapter 5.
Xprobe2 is a modular program. It contains a total of eleven modules, each

with a specific purpose. Depending on what a hacker wants to accomplish, he/she

91

can customize Xprobe2 by disabling modules that are not needed. The available

modules are listed in Table 4.1.

- {1t fial2305 8J400| 0] IndInG Ay aleg X
(8)1 & 0 8hes 0} 0- sn) aanjeubis ajeiaua i- |oa) Buiblingap Ayoads ATANgED: B-
{100 1) 8wy du-punos paxy a1} 3 spunaasyw) Aejap Duipugs jeyoed jag| <AeTap puags ¢-
Ueds o} (sjuod Jop Awosag| coadeazad - | "BUN] UIPURDI A0 JNOBLLI} BNI338 (B BT {098 AW 3-
0LV ES'E-(7]- 3dmexg ‘Buiyihians hoy ag 8 b 8sp) (3R 0-
1z 0} (Sjuod 47| Ayoadg| <oadsazeds [- 0jBY Juild -
‘anpaL buwueas Jod gqeug i ‘aen o &) yuod aeds| <eTTafTaued: o-
e o) say2ieus o saquiny Jpaads| <saqovemgomie: w-] 3807065 4qn Vadugz o) aduekg
“S3npou Aejdsig I- BlE)s pue joaojid aquinuyod Ayoada| <aoelemmaed:ojaady d-
“elnUpaw: Jaquinu ginpow ajgeug| <mumoms g- (Bnossaeaiefiie) of anod mayg I
“<IINUPOL JagInY 3npow ajgesig| cmupow (- 8300484 89 i
banduasa] apmg loyauasaq] yapmg
suondq
ajnpaw Bunuudiabuy axeyspued 491 Juncliahul 4 aypuey 4o M
ajnpow bunuudiabuy 8jqeuaeann pod Jip)| OLELT yoeazm y10d duag 0l
a|npaL Buuudsabul j3anbal LoeLap) Jp| Junciatiu oJur duag i
a|npoLy Euuuciaiul J5antia) ysew SSaIppy di| st HERME dma] 0
ajnpaul Buipuudialiuy jsanbal duegsaun] dp| undiafiur | fe7 dna]
8|npou Buundiabuy jsankial o433 Jp| Junciatiul RN i
JAUUEIZOS 40N PUe 401 et TRIEI0{ G
UaIlEn2[22 8aUELSIp L1 PRSE] 4N FUe 0L ayjehop 1780 T4 ﬁ_
a|paw Mlakaasip Bui paseg-4an fuig Futd dpn r
a|npow Meaaastp buid paseq-49) fuig Futd da 7
8|npau Ligeaasip 0y3a 4y buig Furd g |
uol|osag asouing auiey ajpoy 1aquinu afnpojy

1ons

Xprobe2 modules and opt

Table 4.1

92

Since there so many permutations with the available options, it is
impractical to go through each one. Instead we will analyze four of Xprobe2 key

roles, Host Detection; Port Scanning; Fingerprint Generation and OS

Fingerprinting. Each role generates different types of traffic, which provide us with

the information we need to be able to generate a fingerprint for the tool.

Host Detection:

If a hacker only wants to check if a machine is reachable over the network,

we only need to use module 1. This can be accomplished as follows:
xprobe2 —-M 1 <target>
This command sequence will only enable module 1, ICMP echo discovery, and

only generate the necessary packets. User output looks like this:

[+] Target is 10.0.0.25

[+] Loading modules.

[x] Multiple open sections on line 20

[+] Following modules are loaded:

[X] [1] ping:icmp_ping - ICMP echo discovery module
[+] 1 modules registered

[+] Initializing scan engine

[+] Running scan engine

[+] Host: 10.0.0.25 is up (Guess probability: 100%)

[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.01132 sec
[+] Selected safe Round-Trip Time value is: 0.02263 sec
[+] All fingerprinting modules were disabled

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

Figure 4.6: Traffic generated by the command xprobe2 —M 1 <target>

93

The section in bold face in Figure 4.6 illustrates that the target is online. This scan

generates a total of 2 packets. Using Tcpdump, the traffic looks like this;

Command:
tcpdump:

12:14:13.
84)
0x0000
0x0010
0x0020
0x0030
0x0040
0x0050

12:14:13.
0x0000
0x0010
0x0020
0x0030
0x0040
0x0050

-> tcpdump -vvv -xX host -nnn 10.0.0.25

listening
942236 10

4500 0054
0a00 0019
000e 3407
1415 1617
2425 2627
3435

942423 10
4500 0054
0a00 00c8
000e 3407
1415 1617
2425 2627
3435

on ethO
.0.0.200 > 10.0.0.25: icmp: echo request (ttl 64, id 7450, len
1dla 0000 4001 48af 0a00 00c8 E..T....@-H.....
0800 80la l1ldla 0000 404d fb65 @M.e
0809 0aOb OcOd 0eOf 1011 1213 A ..
1819 lalb 1cld 1lelf 2021 2223 R R4
2829 2a2b 2c2d 2e2f 3031 3233 & (O*+,-./0123

45
.0.0.25 > 10.0.0.200: icmp: echo reply (ttl 64, id 39119, len 84)
98cf 0000 4001 ccf9 0a00 0019 E..T....@-----..
0000 88la 1dla 0000 404d fb65 @M.e
0809 0aOb 0OcOd 0eOf 1011 1213 A ..
1819 lalb 1cld 1lelf 2021 2223 R R 4
2829 2a2b 2c2d 2e2f 3031 3233 & (O*+,-./0123

45

Figure 4.7: Tcpdump capture of xprobe2 —M 1 <target>

An analysis of Figure 4.7 yields the following,

Protocol: ICMP echo request and echo reply, ICMP types 8 and
0 respectively.

TTL.: 64 bytes, typically this would indicate some type of UNIX
like OS.

Len: 84 bytes= 20 bytes for IP header, 8 bytes for ICMP header,
56 ICMP data, this also gives an indication that it is some type

of UNIX box.

At first glance an 84 byte ICMP request may appear as a good identifier for this

tool. Unfortunately, when Xprobe2 is used in this manner, the traffic generated is

94

practically identical to that of a ping request using the PING tool from a Linux box.

If we were to run the same Tcpdump command, as shown in Figure 4.7, and

capture traffic generated by the PING tool, the results would be as shown in Figure

4.8.

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050

Command: ->tcpdump -vvv -Xx host 10.0.0.25
tcpdump: listening on ethO

12:18:03.940579 blackwidow.se.fit.edu > war-room.netsec: icmp: echo request
(DF) (ttl 64, id 0, len 84)

4500 0054 0000 4000 4001 25c9 0a00 00c8 E.T.@.@.%...

0a00 0019 0800 2126 a942 0001 37f8 fb40 ... 1&B..7.@
015a 0e00 0809 0a0b 0cOd 0e0f 1011 1213 Lo,
14151617 1819 1alb 1cld 1elf 2021 2223 I"#

2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
3435 45

12:18:03.940788 war-room.netsec > blackwidow.se.fit.edu: icmp: echo reply
(ttl 64, id 16333, len 84)

4500 0054 3fcd 0000 4001 25fc 0a00 0019 E.T?.@.%.....

0a00 00c8 0000 2926 a942 0001 37f8 fb40 ...)&.B..7.@
015a 0e00 0809 0a0b 0cOd 0e0f 1011 1213 ARy
14151617 1819 1alb 1cld 1elf 2021 2223 I"#

2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
3435 45

Figure 4.8: Tcpdump capture of a ping

If the ping is sent from a windows box, there would be differences in the TTL,

packet LEN and the payload due to a different TCP/IP implementation. Figure 4.9

shows the traffic generated when ping is used from a Windows box as follows:

95

Command: ->tcpdump -vvv -Xx host 10.0.0.25
tcpdump: listening on eth0

12:42:03.341047 10.0.0.210 > war-room.netsec: icmp: echo request (ttl 128, id
14995, len 60)
0x0000 4500 003c 3a93 0000 8001 eb43 0a00 00d2 E.<...C..

0x0010 0a00 0019 0800 495c 0200 0200 6162 6364 I\....abcd
0x0020 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqgrst
0x0030 7576 7761 6263 6465 6667 6869 uvwabcdefghi

12:42:03.341193 war-room.netsec > 10.0.0.210: icmp: echo reply (ttl 64, id
41824, len 60)
0x0000 4500 003c a360 0000 4001 c276 0a00 0019 E.<'.@..v...

0x0010 0a00 00d2 0000 515¢ 0200 0200 6162 6364 ... Q\....abcd
0x0020 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijkimnopqrst
0x0030 7576 7761 6263 6465 6667 6869 uvwabcdefghi

Figure 4.9: Tcpdump of a ping from a Windows box
An analysis of this packet stream yields the same results as that of Figure 4.7, with

the exception of a LEN size of 60 bytes which translates to,

Bytes Designation
20 IP header
8 ICMP header
32 ICMP data

Table 4.2: Breakdown of LEN size from packet 1 in Figure 4.9
Because of the similarity with common diagnostic tools such as Ping, the ICMP
echo request feature in Xprobe2 is not a good characteristic to use for detection.
However, often the TTL value is used as a means for detecting operating systems.

Without the assistance of other characteristics found in target replies (which will be

96

covered later), using the TTL values alone to detect operating systems has proven

at times to be inaccurate. Although not a common practice, TTL values can be

modified to mask the true identity of operating systems. Some common operating

system TTLs are listed in Table 4.11.

TCP- UDP- TCP- | UDP-
Operating System TTL TTL Operating System TTL | TTL
AlX 60 30 Solaris 2.x 255 255
DEC Pathworks V5 30 30 Sun0S 4.1.3/4.1.4 60 60
FreeBSD 2.1R 64 64 Ultrix V4.1/V4.2A 60 30
HP/UX 9.0x 30 30 VVMS/Multinet 64 64
HP/UX 10.01 64 64 VMS/TCPware 60 64
VMS/Wollongong
Irix 5.3 60 60 1.1.1.1 128 30
VMS/UCX (latest
Irix 6.x 60 60 rel.) 128 128
Linux 64 64 MS WFW 32 32
MacOS/MacTCP
2.0.X 60 60 MS Windows 95 32 32
MS Windows NT
OS/2 TCP/IP 3.0 64 64 3.51 32 32
OSF/1 V3.2A 60 30 MS Windows NT 4.0 | 128 128

Table 4.3: Default TTL Values in TCP/IP [101]

Another observation worth mentioning is the difference with the data in the

echo reply. Although RFC 792 states that the data sent in an echo request must be

returned in the echo reply, we found that this does not hold true with any of the

operating systems we used in our experiments.

Port scanning:

To determine what ports are listening on the target with Xprobe2, we used

xprobe2 -M 5 —P —T <port/port range> <host>

97

This command sequence loads module 5, puts Xprobe2 in port scanning mode and
tells Xprobe2 to scan the ports specified. As we mentioned earlier, the output for
these options is quit different from that of host scanning. User output looks like

this:

[+] Target is 10.0.0.25

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] infogather:portscan - TCP and UDP PortScanner
[+] 1 modules registered

[+] Initializing scan engine

[+] Running scan engine

[+] All alive tests disabled

[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.00000 sec
[+] Selected safe Round-Trip Time value is: 10.00000 sec
[+] Portscan results for 10.0.0.25:

[+] Stats:

[+] TCP:1-open,O0 -closed, O - filtered

[+] UDP: 0 - open, 0 - closed, O - filtered

[+] Portscan took 0.02 seconds.

[+] Details:
[+] Proto Port Num. State Serv. Name
[+] TCP 22 open ssh

[+] All fingerprinting modules were disabled
[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

Figure 4.10: User output from xprobe2 —M 5 —P —T <port/port range> <host>

98

A lot of information that is displayed in Figure 5 is for the benefit of the user. It

does, however, display the information we wanted,

Portscan results for 10.0.0.25:

[+] Stats:

[+] TCP: 1 - open, O - closed, 0 - filtered

[+] UDP: O - open, O - closed, 0 - filtered

[+]1 Portscan took 0.02 seconds.

[+] Details:

[+] Proto Port Num. State Serv. Name
[+] TCP 22 open ssh

Figure 4.11: Port scan results from Figure 10
which indicates that the system we scanned does in fact have port 22 open and
listening for connections. Using TCPDUMP, traffic generated by this scan looks

like the following:

tcpdump: listening on ethO

14:00:29.092330 10.0.0.200.23483 > 10.0.0.25.22: S [tcp sum ok]
1838072069:1838072069(0) win 5840 (ttl 64, id 30470, len 40)

14:00:29.092495 10.0.0.25.22 > 10.0.0.200.23483: S [tcp sum ok]
881428885:881428885(0) ack 1838072070 win 5840 <mss 1460> (DF)
(ttl 64, id 0, len 44)

14:00:29.092537 10.0.0.200.23483 > 10.0.0.25.22: R [tcp sum ok]
1838072070:1838072070(0) win 0 (DF) (ttl 64, id O, len 40)

Figure 4.12: Tcpdump of scan from Figure 4.10
We scanned only one port in Figure 4.12 for simplicity. Scanning more than one

port would generate a greater number of packets without any advantage to what we

99

are presenting. If 50 ports would have been scanned, the traffic generated for each
scan would have the same characteristics. At first glance this traffic might look like
a normal TCP SYN packet, but close examination will prove otherwise.

Analyzing the first packet,

14:00:29.092330 10.0.0.200.23483 > 10.0.0.25.22: S [tcp sum ok]

1838072069:1838072069(0) win 5840 (ttl 64, id 30470, len 40)

Figure 4.13: First packet from Figure 4.12

we conclude that the protocol being used is TCP, the SYN flag is initiated, the
source system might be using a Unix type operating system because of the size of
the TTL, and this is the initial packet in a TCP handshake

An observation that merits the most attention about the packet in Figure
4.13, is that it is an initial TCP SYN packet, and is only 40 bytes in length. Almost
all the operating systems use at least one TCP option in the SYN packet. Normally
this would be the MSS, or Maximum Segment Size, an option which is 4 bytes in
length [102]. The minimum size for a SYN packet should be 44 bytes; 20 bytes for
the IP header, 20 bytes for the TCP header and 4 bytes for the MSS option.
Absence of the MSS option in a SYN packet makes the total length only 40 bytes,
which indicates that the SYN packet is crafted. A crafted packet means that the
packet was generated by something other than a network device. Typically, a 40

byte SYN packet is a characteristic of a SYN scanner. There are a number of tools

100

that perform this type of scan, and because of the commonality with other such
tools we can not use this characteristic as a means for detecting Xprobe2. However,
if this type of activity is detected, it can be concluded that a scanning tool is being
used against the network.
Generate Fingerprint

This feature allows one to build fingerprints of the devices on a network.
This can be extremely useful when building an overall fingerprint of an
infrastructure. Custom fingerprints can also assist in network audits. This feature

can be executed with the following command,
xprobe2 -F -M 6 -M 7 -M 8 -M 9 -M 10 -M 11 10.0.0.26

It is important to know that these commands can be scripted for simplicity. For

example,

#!/bin/sh
Name: fprint
Description: generate a fingerprint of the target device

echo —n “Enter Target:
read target

xprobe2 -F -M 6 -M 7 -M 8 -M 9 -M 10 -M 11 $target

Figure 4.14: Shell script using xprobe command

User output for the command in Figure 4.14 is as follows,

101

command: ->./fprint
Enter Target: 10.0.0.25

Xprobe2 v.0.2 Copyright (c) 2002-2003 fygrave@tigerteam.net, ofir@sys-
security.com, meder@areopag.net

[+] Target is 10.0.0.25

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] fingerprint:icmp_echo - ICMP Echo request fingerprinting module
[X] [2] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting
module

[x] [3] fingerprint:icmp_amask - ICMP Address mask request fingerprinting
module

[X] [4] fingerprint:icmp_info - ICMP Information request fingerprinting
module

[x] [5] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting
module

[x] [6] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[+] 6 modules registered

[+] Initializing scan engine

[+] Running scan engine

[+] All alive tests disabled

[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.00000 sec

[+] Selected safe Round-Trip Time value is: 10.00000 sec

Figure 4.15: User output from the xprobe scan indicated in Figure 4.14

As in previous scans, Figure 4.15 includes the target host, modules used, and the

system status. What distinguishes this scan from the others is the fingerprint

generated for the scanned target;

102

[+] Signature looks like:

[+] "Linux Kernel 2.4.19" (100%)

[+] Generated signature for 10.0.0.25:

fingerprint {
OS_ID =
#Entry inserted to the database by:
#Entry contributed by:
#Date:
#Modified:
icmp_addrmask_reply =n
icmp_addrmask_reply_ip_id =10
icmp_addrmask_reply_ttl = <255
icmp_echo_code =10
icmp_echo_df bit=0
icmp_echo_ip_id=10
icmp_echo_reply_ttl = <64
icmp_echo_tos_bits =10
icmp_info_reply =n
icmp_info_reply_ip_id =10
icmp_info_reply_ttl = <255
icmp_timestamp_reply =y
icmp_timestamp_reply_ip_id =10
icmp_timestamp_reply_ttl = <64
icmp_unreach_df bit=0
icmp_unreach_echoed_3bit_flags = OK
icmp_unreach_echoed_dtsize = >64
icmp_unreach_echoed_ip_cksum = OK
icmp_unreach_echoed ip_id = OK
icmp_unreach_echoed_total_len = OK
icmp_unreach_echoed _udp_cksum = OK
icmp_unreach_ip_id =10
icmp_unreach_precedence_bits = 0xcO
icmp_unreach_reply_ttl = <64

}

[+] GENERATED FINGERPRINT IS INCOMPLETE!
[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

Figure 4.16: Generated Fingerprint
Xprobe2 builds signatures based on the replies to several ICMP packets it receives

from the target. The signature generated in Figure 4.16 is for a Linux system

103

running Kernel 2.4.19. The signature may vary with different kernel versions. Now,
Xprobe2 uses a configuration file called Xprobe2.conf, which contains predefined
signatures. The following is a partial example of a predefined signature, from the

xprobe2.conf file, for detecting FreeBSD 5.1,

fingerprint {

OS_ID ="FreeBSD 5.1"

#Entry inserted to the database by: Ofir Arkin (ofir@sys-security.com)
#Entry contributed by: Ofir Arkin (ofir@sys-security.com)

#Date: 25 June 2003

#Modified: 25 June 2003

#Module A [ICMP ECHO Probe]
icmp_echo_code =10

icmp_echo_ip_id=10

icmp_echo_tos_bits =10

icmp_echo_df bit=1

icmp_echo_reply_ttl = <64

#Module B [ICMP Timestamp Probe]
icmp_timestamp_reply =y
icmp_timestamp_reply_ttl = <64
icmp_timestamp_reply_ip_id =10

#Module C [ICMP Address Mask Request Probe]
icmp_addrmask_reply =n
icmp_addrmask_reply_ttl = <64
icmp_addrmask_reply _ip_id =10

#Module D [ICMP Information Request Probe]
icmp_info_reply =n

icmp_info_reply_ttl = <64
icmp_info_reply ip_id =10

#Module E [UDP -> ICMP Unreachable probe]
#IP_Header_of the UDP_Port_Unreachable_error_message
icmp_unreach_echoed_dtsize = 8
icmp_unreach_reply_ttl = <64
icmp_unreach_precedence_bits =0
icmp_unreach_df bit=1

icmp_unreach_ip_id =10

}

Figure 4.17: Predefined fingerprint from xprobe2.conf

104

The generated signatures can be added to this file or a new file can be created and
customized for a specific network, maximizing scan efficiency. Also, separate
configuration files can be created for specific network device fingerprints, and then
automated probes can be configured to monitor any unwanted changes on a

network. Traffic generated by the probe in Figure 4.16 looks like this;

15:09:14.662394 10.0.0.200 > 10.0.0.25: icmp: echo request

(DF) [tos 0x6,ECT(0)] (ttl 64, id 38056, len 84)

15:09:14.662526 10.0.0.25 > 10.0.0.200: icmp: echo reply

[tos Ox6,ECT(0)] (ttl 64, id 58982, len 84)

15:09:14.664599 10.0.0.200 > 10.0.0.25: icmp: time stamp query

id 50733 seq O (ttl 64, id 50733, len 40)

15:09:14.672253 10.0.0.200 > 10.0.0.25: icmp: time stamp query

id 50733 seq O (ttl 64, id 50733, len 40)

15:09:14.682216 10.0.0.200 > 10.0.0.25: icmp: time stamp query

id 50733 seq O (ttl 64, id 50733, len 40)

15:09:14.682336 10.0.0.25 > 10.0.0.200: icmp: time stamp reply

id 50733 seq O : org 0xa23f5 recv 0x45dfb86 xmit 0x45dfb86 (ttl 64, id 58983, len 40)
15:09:14.693801 10.0.0.200 > 10.0.0.25: icmp: address mask request

(ttl 64, id 50733, len 32)

15:09:14.702250 10.0.0.200 > 10.0.0.25: icmp: address mask request

(ttl 64, id 50733, len 32)

15:09:14.712219 10.0.0.200 > 10.0.0.25: icmp: address mask request

(ttl 64, id 50733, len 32)

15:09:24.713731 10.0.0.200 > 10.0.0.25: icmp: information request

(ttl 64, id 47676, len 28)

15:09:24.722251 10.0.0.200 > 10.0.0.25: icmp: information request

(ttl 64, id 47676, len 28)

15:09:24.732219 10.0.0.200 > 10.0.0.25: icmp: information request

(ttl 64, id 47676, len 28)

15:09:34.802049 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:09:34.802249 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:09:34.812221 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

Figure 4.18: Traffic generated by scan in Figure 4.16

105

15:09:34.812446 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for 10.0.0.200.53
>10.0.0.25.65535: 8639% q:[|[domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0] (ttl 64, id 58984, len 132)

15:09:34.814894 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.822251 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.832219 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.832416 10.0.0.25.65535 > 10.0.0.200.3876: R
[tcp sum ok] 0:0(0) ack 781794797 win 0 (DF) [tos 0x10] (ttl 64, id O, len 40)

Figure 4.18: continued
A close analysis of Figure 4.18 using Ethereal reveals a few interesting
things. For example, let’s take a look at the first packet, an echo request, featured

below,

Internet Protocol, Src Addr: 10.0.0.200 (10.0.0.200), Dst Addr: 10.0.0.25 (10.0.0.25)
Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x06 (DSCP 0x01: Unknown DSCP; ECN: 0x02)
0000 01.. = Differentiated Services Codepoint: Unknown (0x01)
.... ..1. = ECN-Capable Transport (ECT): 1
....... 0=ECN-CE: 0
Total Length: 84
Identification: 0x94a8 (38056)
Flags: 0x04
.1.. = Don't fragment: Set
..0. = More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: ICMP (0x01)
Header checksum: 0x911a (correct)
Source: 10.0.0.200 (10.0.0.200)
Destination: 10.0.0.25 (10.0.0.25)

Figure 4.19: Ethereal view of packet 1 from Figure 4.18

106

Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: 123
Checksum: Oxcfc3
Identifier: Oxc62d
Sequence number: 00:01
Data (56 bytes)

0000 0008 74 29 18 51 00 02 a5 03 €553 08 00 45 06 ..t).Q.....S..E.

0010 0054 94a840004001911a0a0000c80a00 .T.@.@.........

0020 001908 7b cfc3c62d 00 01 4057 5eea 0009 ...{...-.@WA...

0030 d7 44 08 09 0a 0b Oc 0d 0Oe 0f 10 11 12131415 .D..............

0040 16171819 1alb1c1d 1e1f202122232425 ... 1"#$%

0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 3233 34 35 &'()*+,-./0123450050 26 27 28 29 2a 2b 2c 2d 2e 2f
303132333435 &'()*+,-./012345

Figure 4.19: continued
In this case, the total packet size is 84 bytes, which breaks down as follows,
- 8 bytes for the ICMP header
- 56 bytes for the Data
- 20 bytes for the IP header
which is correct according to RFC 792. An ICMP type 8 echo request should use
code 0, not 123 and the type of service should also be 0, not 6. For the valid codes
for ICMP type 8 please refer to appendix B.
Further inspection of Capture 14 reveals a few more unique identifiers that
can assist in detecting Xprobe2,
- ICMP information request, type 15
- ICMP address mask request, type 17

- DNS responses to port 65535

107

The first two request types are intended for diskless workstations at boot time, so if
there are no such systems on a network then this is certainly a good indicator of
possible malicious intent.

Another interesting characteristic about the capture in Figure 4.18 are the
DNS packets. We’ve isolated the DNS packets in Figure 4.20 for easier analysis.
The field “q: A2” in the first packet indicates that the packet is a response to a DNS
query by an authoritative name server. Also, the alleged query was for the
“www.securityfocus.com” website and the response was sent to port 65535 on the
target system. The first three packets in Figure 4.20 all have the identical

characteristics.

15:09:34.802049 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:09:34.802249 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:09:34.812221 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:09:34.812446 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for
10.0.0.200.53 > 10.0.0.25.65535: 8639% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0]
(ttl 64, id 58984, len 132)

Figure 4.20: DNS packets from Figure 4.18
To verify that this was not some error in the program we ran the same scan on three
other systems and obtained the same results. Therefore Xprobe2 sends out

responses to unsolicited DNS queries using the same website in the DNS response

108

to a port, which is beyond what is normally used, port 65535. Breaking down the

first packet for a closer analysis reveals a few more interesting characteristics,

Field Description
15:09:34.802049 time stamp
10.0.0.200.53 > 10.0.0.25.65535 src and dst

query type A to domain

q: A? www.securityfocus.com :
www.securityfocus.com

1 Resource record
1/0/0 www.securityfo[|domain] | 0 Authority Resource Records
0 Additional Resource Records

length of the DNS packet

DNS packet len 104 header and response data

Table 4.4: DNS Packet Decoding

At first glance this packet appears normal. However, further inspection reveals
additional characteristics that make the packets in Figure 15 suspicious,

- They are all type A query responses to queries that were never made

- The query type is always the same

- The resource record responses, 1/0/0, are always the same

- The responses to the alleged DNS query is always

www.securityfocus.com

Taking the analysis a step further, we perform a DNS look up on

www.securityfocus.com,

109

15:21:55.383795 10.0.0.200.33609 > 10.0.0.1.53: [udp sum ok] 24418+ A?
www.securityfocus.com. (39) (DF) (ttl 64, id O, len 67)

15:21:55.384087 10.0.0.1.53 > 10.0.0.200.33609: 24418 q: A? www.securityfocus.com. 3/0/0
www.securityfocus.com. A[jdomain] (ttl 128, id 41268, len 115)

Figure 4.21: Tcpdump of DNS query traffic for www.securityfocus.com

and discover that the resource record response is 3/0/0 instead of 1/0/0. Although
the resource record response can change with DNS modifications, data in the
Xprobe2 scan is always the same. This indicates that the alleged DNS responses are
crafted.

An analysis of the last four packets in Figure 4.18,

15:09:34.814894 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.822251 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK ,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.832219 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOKtimestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.832416 10.0.0.25.65535 > 10.0.0.200.3876: R
[tcp sum ok] 0:0(0) ack 781794797 win 0 (DF) [tos 0x101 (ttl 64, id 0, len 40)

Figure 4.22: Last four packets of Figure 4.18
reveals that they are 3 SYN scans to port 65535 on the target machine and 1 Reset
response from the target machine, indicating that the port is closed. Although this is

typical behavior of other scanning tools, it is an indication that something is not

110

right, especially if it is known that there are no services running on port 65535 of
the target system.

The fingerprinting scan provides 4 identifiers that can be used to identify
Xprobe2. They are,

1) DSS and ICMP Code value for echo request.

Packet Fields Xprobe2 correct value
DSS 6 0
Code 123 0

Table 4.5: DSS and ICMP Code value for Xprobe2 echo request

2) ICMP Type 15 and 17 requests.

ICMP Description
15 support of self configuring systems such as diskless stations
17 assists diskless systems to obtain its subnet mask at boot time

Table 4.6: ICMP Types in Xprobe2 scan
3) The DNS responses to queries that were never made with
www.securityfocus.com in the data.
4) SYN scan to port 65535. Although this is typical of other scanning
tools, the fact that this scan targets port 65535 can help re-enforce the

conclusion when searching for the use of this tool on a network.

111

OS finger printing

OS fingerprinting is the main premise behind Xprobe2. To determine what
type of operating system is running on a target we would execute Xprobe2 as
follows,

xprobe2 -M 6 -M 7 -M 8 -M 9 -M 10 -M 11 $target

Options used here are essentially the same as when generating a fingerprint, except
for omitting the —F option. Also, the data generated is nearly identical,

- Crafted type 8 ICMP packets.

- ICMP Address mask and information request packets.

- DNS responses to requests never made to port 65535.

- SYN scan to port 65535.
Complete Xprobe2 scan analysis:

Let us now take a look at a complete scan of Xprobe2 using all of the

available modules. The output generated is as follows,

112

[+] Target is 10.0.0.25

[+] Loading modules.

[+] Following modules are loaded:

[x] [1] ping:icmp_ping - ICMP echo discovery module

[X] [2] ping:tcp_ping - TCP-based ping discovery module

[X] [3] ping:udp_ping - UDP-based ping discovery module

[X] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation

[x] [5] infogather:portscan - TCP and UDP PortScanner

[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module

[X] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module
[X] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting module
[X] [9] fingerprint:icmp_info - ICMP Information request fingerprinting module

[x] [10] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting module
[x] [11] fingerprint:tcp_hshake - TCP Handshake fingerprinting module

[+] 11 modules registered

[+] Initializing scan engine

[+] Running scan engine

[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.25. Module test failed
[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.25. Module test
failed

[+] No distance calculation. 10.0.0.25 appears to be dead or no ports known

[+] Host: 10.0.0.25 is up (Guess probability: 25%)

[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.01707 sec

[+] Selected safe Round-Trip Time value is: 0.03414 sec

[+] Primary guess:

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.4.19" (Guess probability: 70%)

[+] Other guesses:

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.4.20" (Guess probability: 70%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.4.21" (Guess probability: 70%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.0.36" (Guess probability: 70%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.0.34" (Guess probability: 70%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.0.30" (Guess probability: 70%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.5" (Guess probability: 61%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.6" (Guess probability: 61%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.7" (Guess probability: 61%)

[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.8" (Guess probability: 61%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

Figure 4.23-A: Complete Xprobe2 scan user output

113

15:50:15.622447 10.0.0.200 > 10.0.0.25: icmp: echo request (ttl 64, id 45014, len 84)

15:50:15.622585 10.0.0.25 > 10.0.0.200: icmp: echo reply (ttl 64, id 51858, len 84)

15:50:15.642245 10.0.0.200 > 10.0.0.25: icmp: echo request (DF) [tos 0x6,ECT(0)] (ttl 64, id 16862, len
84)

15:50:15.642389 10.0.0.25 > 10.0.0.200: icmp: echo reply [tos 0x6,ECT(0)] (ttl 64, id 51859, len 84)

15:50:15.644622 10.0.0.200 > 10.0.0.25: icmp: time stamp query id 45014 seq O (ttl 64, id 45014, len 40)
15:50:15.652248 10.0.0.200 > 10.0.0.25: icmp: time stamp query id 45014 seq O (ttl 64, id 45014, len 40)
15:50:15.662216 10.0.0.200 > 10.0.0.25: icmp: time stamp query id 45014 seq O (ttl 64, id 45014, len 40)
15:50:15.662374 10.0.0.25 > 10.0.0.200: icmp: time stamp reply id 45014 seq O : org 0x9d5ef recv
0x4838916 xmit 0x4838916 (ttl 64, id 51860, len 40)

15:50:15.663757 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.672248 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.682217 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.723497 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.732246 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.742216 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)

15:50:15.844855 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:50:15.852249 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:50:15.862218 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|[domain] (DF) (ttl 255, id 1, len 104)

15:50:15.862381 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for 10.0.0.200.53
>10.0.0.25.65535: 38420% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0] (ttl 64, id 51861, len
132)

15:50:15.864840 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win
5840 <mss 1460,sackOK timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)
15:50:15.872248 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win
5840 <mss 1460,sackOK timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)

15:50:15.882217 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0)
win 5840 <mss 1460,sackOK timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len
60)

15:50:15.882367 10.0.0.25.65535 > 10.0.0.200.54959: R [tcp sum ok] 0:0(0) ack 387072479 win 0 (DF)
[tos 0x10] (ttl 64, id O, len 40)

Figure 4.23-B: Tcpdump of Figure 4.23-B
A close look at the scan in Figure 4.23-A and the Tcpdump capture in Figure 4.23-

B will reveal that the information corresponds with the scans and captures

114

presented previously. This confirms that the Xprobe2 characteristics that we have
identified are in fact characteristics of the tool.

Figure 4.24 shows the key identifiers which we have found in our
experiments along with the corresponding packets. These identifiers can now be

used to develop a snort rule to identify this tool, which is discussed in Chapter 5.

Crafted type 8 ICMP packets

15:50:15.622447 10.0.0.200 > 10.0.0.25: icmp: echo request (ttl 64, id 45014, len 84)

15:50:15.622585 10.0.0.25 > 10.0.0.200: icmp: echo reply (ttl 64, id 51858, len 84)

15:50:15.642245 10.0.0.200 > 10.0.0.25: icmp: echo request (DF) [tos 0x6,ECT(0)] (ttl 64, id 16862, len
84)

15:50:15.642389 10.0.0.25 > 10.0.0.200: icmp: echo reply [tos 0x6,ECT(0)] (ttl 64, id 51859, len 84)

ICMP Address mask and information request packets

15:50:15.663757 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.672248 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.682217 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.723497 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.732246 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.742216 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)

DNS responses to requests never made to port 65535

15:50:15.844855 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|[domain] (DF) (ttl 255, id 1, len 104)

15:50:15.852249 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|[domain] (DF) (ttl 255, id 1, len 104)

15:50:15.862218 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|[domain] (DF) (ttl 255, id 1, len 104)

15:50:15.862381 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for 10.0.0.200.53 >
10.0.0.25.65535: 38420% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos Oxc0] (ttl 64, id 51861, len 132)

SYN scan to port 65535

15:50:15.864840 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win 5840
<mss 1460,sackOK timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)
15:50:15.872248 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win 5840
<mss 1460,sackOK timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)
15:50:15.882217 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0)

win 5840 <mss 1460,sackOK timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len
60)

15:50:15.882367 10.0.0.25.65535 > 10.0.0.200.54959: R [tcp sum ok] 0:0(0) ack 387072479 win 0 (DF)
[tos 0x10] (ttl 64, id O, len 40)

Figure 4.24: Xprobe2 identifiers

115

Summary

Although our process for network traffic analysis appears to be straight
forward so far, the analysis becomes more difficult as we start to diagnose
reconnaissance methods which use more complicated protocols like TCP, IP and
UDP as we will discuss in the next few sections. Additional steps will be added, or
modified, as we go through the analysis of the reconnaissance technique that use
these protocols. Table 4.7 summarizes the initial steps for network reconnaissance

traffic analysis discussed in this section.

Method for Analyzing Network Reconnaissance traffic

Setup mock network with at minimum three systems 1
running linux, 1 running winxp and 1 running win2k.
Having both a switch and a hub handy would be helpful
install/configure the tool to be analized in appropriate
environment
Install sniffer on one of the systems. Preferrably all
three.
capture traffic to a file or standard output
decode each packet using sniffer
Analyze and verify packet field

Table 4.7: Initial steps for the method described in Section 4.2

116

4.3 TCP, IP and UDP reconnaissance: NMAP

Methods mentioned in the previous section can also be applied when
analyzing TCP, IP and UDP network reconnaissance. However, ICMP does not use
ports like TCP and UDP. ICMP does not require the complexity of having to
perform handshaking to setup an end-to-end connection to communicate like TCP.
With these additional characteristics, there is a lot more that a hacker can do to hide
his intent while doing a network reconnaissance. With a tool like NMAP, the
number of option combinations and methods a hacker can use to perform
reconnaissance is extensive; therefore we only look at option combinations which
apply to the protocols we analyze in this section. Also, since scans produce over
1000 packets, we use a sample of each scan in our illustrations. Tables 4.8 and 4.9

list the Nmap options based on the protocols analyzed:

TCP _
ithese switches are preceded with -5 Description
g TCP SY M stealth por

SCan

T TCP connect]) part scan
F Fin scan
H

Hmas Tree, turns on the
FIM, URG PLSH flags

Hull scan turns off all

. flags
A ACHK scan
ithese awitches are preceded with -
T TCP ping, sends out
ACKs
g TCP ping, sends out
S s

Table 4.8: NMAP TCP Options

117

IP
{these switches are preceded with -s)

IP protocol scan,
determines which P
pratocals are supported by
Scan

o

UDRF
these switches are preceded with -5

LIDP scan, send O byte
Ll size packets to detemine
open ports

Table 4.9: NMAP IP and UDP Options
TCP Scan Options
We ran separate experiments for each of the options to analyze NMAP and
find characteristics we can use to identify it to generate a fingerprint. To analyze
Nmap traffic, in addition to the methods we used for Xprobe2, we also looked for
patterns and protocol violations in the packets generated. For example, Nmap —sS

<target> generates the following traffic:

231 1:57.379%46 10.0.0.104.51801 = 100025675 § [top surn ok] 21066 5483321096 S48 33(0) win
4098 (1 43, id 54525, len 400)
23:11:57.379658 10.0.0.25 675 = 10.0.0. TIr-<5H0); B [bep sum ok] 0:000) ack 2109654834 win 0 (DF)
(ttl 64, id 0, len 40)
7311:57. 579763 10
4098 [t 43, id 37705, kn40)
Z311:57.380017 10.0.0.25 734 = 10,
il 64, id 0, len 40)
Z3:11:57.320149 10.0.0.104.5
4098 (] 43, id 24641, len 400)
Z311:57. 380487 10.0.0.25 243 = 10.0.0.104
[t 64, id 0, len 40)
75%:11:57. 380592 10.0.0.104.51801 = 10.0.0.25 505 §
4096 1t 43, id 54835, kn40)

23%:11:57.380953 10.0.0.25 205 = 10.0.0.104.51801: R fep surn ok] 0
(ttl &4, id 0, len 40)

73:11:57.321006 10.0.0.104.51801 = 100025 1442:5 [top sum ok
4096 1t 43, id 18757, kn40)

23:11:57381310 10.0.0.251442 = 100010451801 - . [tep
(ttl 64, id 0, len 40)
23:11:57.321441 10.0.0.104.51801 = 10002513715 [top sum ok] 2109654853 21096548330) win
4096 ttl 43, id 35532, kn 4

AL F: fep som ok] 0:000) ack 2109654534 vrin 0 (DF)

s ok] 210968 34853 2 1056 348350 win

ol 0:000) ack 2109654834 win 0 (DF)

Figure 4.25: Nmap SYN scan capture

118

Figure 4.25 illustrates typical characteristics of a SYN scan. Source IP and port are
the same in every packet, all the packets have the SYN flag set and they all have a
packet size of 40 bytes (20 for IP header and 20 for TCP header) which is classic

for a crafted SYN packet.

23:55:48.279776 10.0.0.104 = 10.0.0.25; icrp: echo wquest (1145, id 55567, len 28)

235548 280025 10.0.0.104 47254 = 10.0.0.2580; . ftep 7
21257, len 40
73,53:48. 280216 10.0.0.25 > 1000 104: icnp: echo 12

ke 25816 16536 win 3072 (# 42, id

(H164, id 6649,

255548280722 10.0.0.25 80 = 10.0.0.104 43254: R [tep
(il &4, id 0, Lex 40)

F3R16] 636238161 636(0) win 0 (DF)
23.53:48 585400 10.0.0.104.43234 = 10.0.0.2522: 5 [top sum.ok]
il 42, id 48912, len 400)

23,5545, 589930 10.0.0.2522 = 10.0.0.104 43234: § [tep sum ok] 994 798361 994 PE261(0) ack
2763534 win 5940 <mss 1460= (DF) (] 64, id 0, len 44)

£3:53:46.550057 10.0.0.104.43234 = 10.0.0.25 22 K [top ;om ok] 3275463554 3275463554 0 wrin 0
(DF) (1 64, 3d 0, len 400)

Figure 4.26: Nmap SYN Scan Capture 2

Another interesting characteristic about this type of scan is that for the first sets of
packets of the SYN scan, NMAP always sends one ICMP packet to the target and
an ACK packet to port 80, as illustrated in Figure 4.26 above, even when scanning
just one port. The NMAP SYN scan generates SYN and ICMP packets, which are
identical to those generated by Xprobe2; therefore the method we used for
analyzing Xprobe2 also applied here.

The TCP connect scan, Nmap —sT <target>, generates packets which use
the TCP IP handshake. In this experiment, we scanned port 22 on one of the targets

in our mock FIT network, which generated the traffic illustrated in Figure 4.27.

119

00:25:45 569623 10.0.0.104 = 10.0.0.2% ierp: echo mquest (# 53 id 43800, len 25)
00:25:48. 559896 10.0.0.104.53422 = 10,0.0.25 20; ::mrﬁaa_
57706, len 40

O0:25:46, 569276 10.0.0.25 = 1000 104; icxp: echo wply (H164, id 4

025040, 56581 2 1000025 80 = 10,000,104 53422 F [top sum ok] 37955
(D) (41 &4, 34 0, len 400)

i IS [hop mmek] 3051214412 3051214419(0) ack
i =165 lm;mkﬂﬂhﬂest&tﬂp 245443558 075885 ropowscale (= (DF) (H &4, 14

1 wrin 5840 =nop, nop Himestang
P [hep samok] 1 260257 ack 1 wrin 5792
£.5075585> ('DFJ (tl e, 1d 5345, len 77

26 win 5840 =nop, o, Hives tanp

00:25:46. 820220 10.0.0.104.4250 = 10.0.0.25. 2. [top samok] 1:100) ack 26 vwin 5840
=nep nop, Hmestanp 3075885 M544355 = (DF) (1 64, id 15450, lan 57)

Figure 4.27: NMAP TCP Connect Scan

Interestingly, we found that the TCP connect scan also sends out an ICMP request
and an ACK packet to port 80. NMAP does have a switch —PO, which turns off the
ICMP request and the ACK packet. However, we should not ignore this similarity
with the SYN scan. Because both scanning techniques send out identical packets in

the beginning of the scanning process, we can use this characteristic as an indicator

for determining if a scan is being done.

Also, as mentioned earlier, TCP connect uses the TCP handshake. In this

technique, once the tool determines that port is listening on the target, an RST-

ACK packet is sent to terminate the connection. The following packet sequence

illustrates the process:

120

SYN - Connection is initiated
00:25:46.878241 10.0.0.104.4250 > 10.0.0.25.22: S [tcp sum ok]
1620463576:1620463576(0) win 5840 <mss 1460,sackOK ,timestamp 5075885
0,nop,wscale 0> (DF) (ttl 64, id 15477, len 60)

SYN-ACK -acknowledgment of connection initiation
00:25:46.878750 10.0.0.25.22 > 10.0.0.104.4250: S [tcp sum 0k]
3031214419:3031214419(0) ack 1620463577 win 5792 <mss 1460,sackOK timestamp
245443556 5075885,nop,wscale 0> (DF) (ttl 64, id 0, len 60)

ACK - acknowledgement that the initiation attempt was acknowledged, handshake
completed

00:25:46.878906 10.0.0.104.4250 > 10.0.0.25.22: . [tcp sum ok] ack 1 win 5840
<nop,nop,timestamp 5075885 245443556> (DF) (ttl 64, id 15478, len 52)

PUSH-ACK - target sends the service banner, in this case it was SSH-1.99-
OpenSSH_3.7.1p2

00:25:46.879786 10.0.0.25.22 > 10.0.0.104.4250: P [tcp sum ok] 1:26(25) ack 1 win 5792
<nop,nop,timestamp 245443556 5075885> (DF) (ttl 64, id 33456, len 77)

ACK - acknowledgement that the data was received

00:25:46.879883 10.0.0.104.4250 > 10.0.0.25.22: . [tcp sum ok] ack 26 win 5840
<nop,nop,timestamp 5075885 245443556> (DF) (ttl 64, id 15479, len 52)

RST-ACK - connection is closed

00:25:46.880220 10.0.0.104.4250 > 10.0.0.25.22: R [tcp sum ok] 1:1(0) ack 26 win 5840
<nop,nop,timestamp 5075885 245443556> (DF) (ttl 64, id 15480, len 52)

Once the scan process sends out RST-ACK, the tool moves on to the next port,
choosing a random source port and starts the process all over again. Another
interesting characteristic about the TCP connect scan is that the packet ID from the
source IP increments by one, as shown in Figure 4.28, unlike the SYN scan where

the packet IDs are random.

121

(02546 870241 1000104 4250 = 1000025 22: 5 fep ;arnok] LE20485 576 1820455 506500 1 win S840
=nts 1460,72ck OF firves taxrp S075585 Onopaarscale 0= (DF) ([t 642801 5477, len &0

2546878750 100,025 22 = 10000104 4250: 5 fleesimok] 3031214412 303121441200 ack
hypeetimg 245443555 S075085 nopowscale 0= (DF) (] &4, 1d

0.0.2522 = 10.0.0.104 4290: P frep sumok] 1 2625) ack 1 wein 5792
MS447556 SO7588 5 (DF) (L 64, id T34, 1en 77)

o LORL o T |:||:|1
SU738E5 24544355 (DF) (] 64, 2

100025252 | [fep suw ok] ack 26 win 5840 =nop, nop, s tanp
W79, len 52

00:25:46, 880220 10.0.0.104.4250 = 10.0.0.25.22: F. [tep suzmck] 1:1(0) ack 26 win 5840
=nep nop, Hivestap 9075885 544355 (DF) (# 64, id 15480, 1 57)

Figure 4.28: TCP Connect Scan Packet ID increment by 1
The FIN, ACK and NULL scans show the same pattern as SYN and TCP
scan, except that TCP flags set in the source packets for the FIN/ACK scans are the
FIN or ACK respectively, as illustrated in Figure 4.29 and 4.30. The NULL scan,
shown in Figures 4.31, as no flags set. Another similarity is that the packet length

in all these scans is 40 bytes, just like the SYN and the TCP connect scans.

01:15:49.050634 10.0.0.104.62445 = 10,0.0.2522: FP [tep summ ok] 0:000) win 2045 urg 0 (t 57, id
52885, len 40)

01:13:55.059459 10.0.0.104.82446 = 1070.25 22 FP [hep swm okl win 2048wz 0 (1 57, i
15145, lew 40)

Figure 4.29: XMAS Scan Results

122

01:15:01.020174 10.0.0.104 45768 = 10002522 F [tep summ ok] 0:0)wrin 4096 (# 55, id 9012, kn
4m
01:15:07. 026461 10.0.0.104 45769 = 10002522 F [tep summ ok] 00 vrin 4096 (55, id 21248, len

Figure 4.30: FIN Scan Results

01:15:19.342078 10.0.0.104.51655 = 10.0.0.2522: . [tep sumok] ack 177301718 vwin 2045 (#1149, id
58714, len 40)

01:15:19.343153 10.0.0.25 22 = 10.0.0.104 51655 F [top swm cle] 177301 718:177300 718(0) win 0 (DF)
(il &4, id 0, Ler 40)

Figure 4.31: ACK Scan Results
The —PT and —PS options and the TCP Ping options send out ACK and

SYN packets, respectively.

IP Scan Options

The command Nmap —sO <target> is used to determine which IP protocols
the target supports. Nmap sends out raw IP packets without any protocol header
information. Traffic generated by the command Nmap —sO <target>, looks like

this:

123

01:35:11.234055 10.0.0.104 = 10.0.0.

0l 00104100024
015511 5611871000104 = 10.00.2:
01:55:11.865211 10.0.0.104 = 10.0.0.25:
013511871527 10,0.0.104 = 10.0.0.25:
015511873637 10.0.0.104 = 10.0.0.45:
01:55:11 28074 10.0.0.104 = 10,0025
015511832161 10.0.0.104 = 10.00.25:
01:55:11.534176 10.0.0.104 = 10.0.0.25:
015511885122 10.0.0.104 = 10.0.0.45:
015511887065 10.0.0.104 = 10,0025
015511539261 10.0.0.104 = 10.00.25:
015511881263 10.0.0.104 = 10.0.0.25:
015512199342 10.0.0.104 = 10.00.45:
015512201263 1000104 = 10,0025
015512203531 10.0.0.104 = 10.00.25:
015512405550 10.0.0.104 = 10.0.0.25:
015512207600 10.0.0.104 = 10.0.0.45:
015512210576 10.0.0.104 = 10,0025
0155:12212415100.0.104 = 10.00.25:
015512214687 10,0.0.104 = 10.0.0.25:
01:55:12218850 10.0.0.104 = 10.0.0.45:

5 tarrie L 0(t 40, 3d 0647, Jn 2

: ippioto-248 0 (140, 14 62029 len 20)
B ip-peoto-249 0 (1140, 4 25040 len 200

+ ippioto- 165 0 (140, i 33647, len 200
: ippoto- 1570 (140, 14 43110, len 20)
: ippioto-248 0 (140, 4 3554 len 20)

pOittl 40, id 15706, En200)

= ip-puote-201 0 (#1140, 1d 3325, len 20

e ((1140, 34 39459, Jan 20)

Larp 0 (11 40, id 4301, e 20)
[ospf] (# 40, id 30279, len 20)
cbap 0 (tl 40, id 22199 Jen 20)
ip-puoto-201 0 (HL4D, id 54135, len 20)
ipve-ieap 0 (1140, id 406553, len 20)
tmale1 0t 40, id 14214, T 200
Larp 0 (11 40, id 53440, e 20)

Jospf] (] 40, id 2407, ln 201

ttpl0 (t] 40, id B4, e 20

ip puoto- 222 0 (40, i3 1283, len 20)
ippe 0111 40, id 31121, Jen 20)

ip puoto- 181 0 (HLAD, id 47968, len 20)
ttpl0 (1 40, i 47753, en 200
ippuot- 222 0 (HL40, i 41571, len 20)
ippe 01 (1] 40, id 52861, len 20)
ippuoto- 181 0 (HLAD, id 29578, len 20)
ip puoto- 152 0 (HLAD, id 458536, len 200
zretp 0 (4140, id 27908, Len 20)
ip-puot-229 0 (140, 13 2014, len 20)
ptp 0 (] 40, i 37796, len 20)

ip puoto- 1420 (HL40, 1 50570, len 200

015512219636 10.0.0.104 = 10.00.45: ans 00t 40, 1d 4705, len 200)

Figure 4.32: IP Protocol Scan
The first characteristic about this capture is that all the packets are only 20 bytes in
size, as shown in Figure 4.32. The second characteristic we noticed is that packets
do not have the protocol headers for the protocol set in the IP protocol field, as

illustrated in the ethereal capture in Figure 4.33.

124

Internet Protocol, 3rc Addr: 10.0.0.104 (10.0.0.104), D=t Addr:
10,0,0.25 (10.0,0.25)

Version: 4

Header length: Z0 bytes

Differentiated Zerwvices Field: 0x00 [(D3CP Ox00: Defanlt;

ECN: 0=00)
oo Qo.,. = Differentiated Services Codepoint: Default
[Ox00)
.0. = ECN-Capable Transport (ECT): 0
0 = ECN-CE: O

Total Length: Z0
Identification: 0x491b [13715)

Flags: 0Ox00
0... = Reserwed bit: Not 3set
.0.. = Don't fragment: Not set
..0. = More fragments: Hot set

Fragment offset: 0O

Time to liwve: 37

Protocal: IP in IP (OxEe)

Header checksum: 0x37f£l [correct)
SJource: 10,0,0.104 (10.0.0.104)
Desztination: 10.0.0.25 (10.0.0.25)

Figure 4.33: IP packet with no protocol header for protocol set in the protocol field

A packet without a header for the protocol set in the protocol field of the IP header,
is not normal behavior for IP protocol. Header information associated with the
protocol set in the protocol field of the IP header should be right after the IP header.
Figure 4.34 illustrates what a properly formatted packet looks like. Therefore, the
key indicator that an IP reconnaissance is in process, is the missing protocol header
information associated with the protocol set in the IP protocol header field. This is

why the packets are only 20 bytes in size.

125

Dterret Protoool, S Addy 1000211 (10.0.002117, Dst Adds: 1000.0.1 (10000.1)
Vewsion 4
Header langth 0 hyvtes
Differentiated 5 ervices Field: Cedd0 (D03 CF Chd00: Definlt, EC N Crd00)
W00 M., = Differartiated Services Codepoint Defanlt (000
v o= BCH-Capahle Trarsport (ECT): O
...... [=ECH-CE:0
Total Length: 48
Tdexhification: Dxffaa (244704
Flags: (¥ (Don't Frazment)
0...= Feserved bat: Hotset
1. = Dot fragment: Set
0. =More fiagmernts : Mot set
Frazment offfet: 0
Tirve to live: 128
Frotocal: TCF (Chd0e)
Header checkaume theSfa (coorect]
Somee: 10.0.0.211 (100002117
Destivaticer 10001 (1000.0.1)
Transnussion Coptrel Prodoeol, 530 Port: 3653 (3833, Dst Port: 589 (35389, Seq: ZE2 1624520, Ack: O,
Lern 0
Sowmee port: 3633 (3633)
Destmation pot: 35389 (335385
Sequence nuvber 30216247320
Healer length 28 bytes
Flags: 0T (ST
0. = Conges ton Windoar Reduced (CWE): Mot set
0. ... = BECH-Echo: Het set
A= Urzent: Mot set
0= Ackmoarled smert: Mot set
... 0. = Push: Mot set
... .. = Reset: Hot set
o lo= By Set
...... = Fin: Hotset
Whndoar 51 B5555
Checkswn kel e (oomect]
Optons: (8 hytes)
Maanum segment size: 14805 whes
HOP
HOP

Figure 4.34: Illustrates what a properly formatted IP packet looks like.

126

UDP Scan Options
The UDP scan option essentially is used to determine which UDP ports are

open. Figure 4.35 below illustrates what the UDP scan traffic looks like.

2:09:02 549520 10.0.0.104 61995 = 100025 175 fadp sumok]udp 0 (tl S8, id 61899, len 28)

0.0.25 676: fadp sumok]udp O (Hl 58, id 6534, len 26)

CE05:02 965195 10.0.0.104.61954 = 10.00.25175 fadp sumek]udp Ot 52, id 55620, len 25)
020502 70575 10.0.0.104.61954 = 10.0.0.25 676; fadp sumak]udp Ot 58, id 3719, len 28)
020502 971396 10.0.0.104.61954 = 10.00.25 625 fadp sumek]udp 0t 52, id 49792, len 28)
020502 972622 10.0.0.104.61954 = 10.00.25 813 fadp sumek]udp 0t 52, id 63630, len 28)
O0%02 7364 7 10.0.0.104.61955 = 10.00.25 220 fadp suemek]udp Ot 35, id 51395, len 25)
OE0R02 974857 10.0.0.104.61955 = 10.0,0.25 700: fadp surmek]wdp Ot 55, id 47523, len 25)
0502 976101 10.0.0.104.61955 = 10.00.25 554: fdp sumek]udp Ot 55, id 35279, len 25)
002 977157 10.0.0.104 61955 = 10.0.0.25 47 [ndp sum ck]udp 0 ¢t 55, id 50290, ln 28)
O0502 F77557 10.0.0.104.61955 = 10.0.0.25 1016 fadp swm ok] udp 0 (] 58, id 55599, len 28)

02:09:02 978502 10.0.0.104 61995 = 10.0.0.25 752 fadp sumok]udp 0t 58, id 11729, len 28)

Figure 4.35: UDP Scan Results
UDP packets generated by the UDP scan are only 28 bytes in size. Since the
minimum value for the IP header is 20 bytes [147] and the minimum value UDP
header is 8 bytes [150], this indicates that the UDP packets have a 0 byte payload
which is not normal. Figure 4.36 illustrates an ethereal dump of a UDP packet

generated by the UDP scan.

127

Internst Protocol, 3rc Addr: 10.0.0.104 (10.0.0.104), Dst Addr: 10.0.0.25

(la.0.0. 25}
Wersiomn: 4 .
Header lemgth: 20 bytes™
Differentiaced Services Field: 0Ox00 (DSCP O0x00: Defanlt; T Ox

o000 Q0. . = Differentiated Services Codepoint: Default (0x00)
..0. = ECH-Capahle Tramsport (ECT): 0O
= ECH-CE: 0

[m]
|

Total Length: E8
Tdentification: O0x%bda (33535)
Flags: O0xz00
o... Beserved bit: Mot set
oo . Don't framment: Mot set
_.o. More framments: Mot set
Fragment offset: 0O
Time to liwe: &7
Protocol: TDEP (Oxll)
Header check=um: Oxdl7& (correct)
Bource: 10.0.0.104 (10O_0.0_104)
Destination: 10.0_0.Z5 (l0.0.0_.Z5)
User Datagram Protocol, Src Port: 46358 (46358), Dst Port: 3937 (3997)
Source port: 46358 (483580
Destination port: 3997 (3937)
Length: &
Checksum: 0OxZ&aa [Correct) _

[Malformed Packet: SHNMP])

Figure 4.36: Ethereal capture of a UDP packet generated by the UDP scan

The other characteristic of this scan is that it tends to send out malformed packets.

Figure 4.37 is a closer look at the malformed packet warning shown in the bottom

of Figure 4.36.

User Datagram Protocol, 5rc Port: 46358 (46353), Dst Port: 3997 (3957
Source port: 46358 (46358)
Destination port: 3997 (3997)
Length: &

Checksam: 0x26asa (correct)

[Malformed Packet: SHMP]

Figure 4.37: Malformed SNMP packet warning from Figure 4.36

128

When analyzing traffic for this type of tool we want to look for the
following,
1) Patterns
i. Multiple SYN, FIN, or ACK packets
ii. Multiple FIN-PUSH-URG packets
iii. Multiple RST-ACK connections from same source
iv. Packets with no protocol headers for protocol set in IP
header protocol field
2) Crafted Packets
I. SYN Packets with a packet length of 40 bytes
ii. IP packets with the length of 20 bytes

iii. UDP Packet with 0 byte payloads

129

4.4 ARP Reconnaissance: ETTERCAP

Ettercap is more complicated to detect than Xprobe2 and Nmap because it
does not send any crafted packets. Instead of sending crafted packets, Ettercap
exploits the lack of authentication in the ARP protocol. It sends out 255 ARP
request packets when the program is started, that are no different than an ARP
request packet sent by any system on a network. Figure 4.38 illustrates what an
ARP packet looks like using Ethereal, and Table 4.7 explains what each field
stands for. After gathering all the ARP request information, Ettercap builds a list of
the hosts that replied, as mentioned in Chapter 3. After the list is completed,
Ettercap goes completely silent. It doesn’t even go into promiscuous mode until it
is enabled by the user.

Since Ettercap does not inject crafted packets into the network like Xprobe2
and Nmap, but rather manipulates traffic stream by modifying the target’s ARP
table, it can not be fingerprinted with methods we have demonstrated so far. We
use a different method which involves analyzing network behavior, monitoring
network traffic, scanning techniques, setting traffic specific thresholds and using a
set of detection tools. These techniques and tools however are discussed in Chapter

5.

130

Frame 1 (80 bytes on wire, 60 bytes captured)

Artiwal Tirme: Oct 20, 2004 05:29:20.075060000

Time delta from presious packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
FrameMNumber: 1

Packet Length: 60 bytes

Ethemet [1, Src: 00:20 ed:84:15:00, Dat: £ T IR ‘_-
Destination: ff £ ff ff {f ff (B roadcast)
Source; 00:20:ed: 94180102 165.2.110)

Type: ARP (0=03806)
Trailer. O000000000000000000000000000A000. ..

Address Besolution Protocol (requesty I 3
Hardware type: Ethernet (0200013
Protocol type: IP (0=05007%

Hardware size: 6

Protocol size: 4

Opcode: request (0z0001%

sender WAC address: 00:200ed: 941509102, 168 2.1 10)
Sender [P address: 192 168 2.110(192.1658.2.110)
Target WA C address: 00:00:00:00:00:00 ¢00:00:00_00:00:00%
Target [P address: 19216821 (192.148.2.1)

nooo fEEFFFFFFFSEO0 20 ed 34 15 0O 05 060001
0010 050006040001 0020 ed 34 18000230262 .40
0020 000000000000 a8 0201 000000000000

0030 000000000000 000000000000

Figure 4.25: ARP Packet decoded in Ethereal

The definitions of each field in the ARP packet shown in Figure 4.25 are as

follows:

131

|-Fratne

Arrival Time

This is the titme which the packet was receved by the MIC

Time delta from
previous packet
Time since reference
ot first frame

Framme Muamber

Time which has passed since the prvious packet

Time which has passed since previods frame

Total packet Length = B0 bytes

Packet Length 32 bytes for Ethernet Frame
28 tytes for the Arp packet
2-Ethernet
Drestination Destination Mac address
S OTE Source Mac address
Type This liststhe ethern_et frame type. ARP = 0x0806
Please refer to Appendix B for other ethernet frame type
Ttailer
3- Address

Eesolution Protocol

Hardware type

Specifies the [P Hardware type. In this case its Ethernet=1.
Flease refer to Appendi B for other |P hardware types

Protocol type
Hardware size:
Protocol size: 4

Type of pratocol address being mapped
Size of the hard ware address
Size of the Protocol address

Type of operation:
ARF Request =1

Cpcaode ARF Reply =2
FRARP Feguest = 3
RARP Reply =4
S mender MAC address
address
mender [P address aender [P address
Target MAC address Target MAC address
Target [P address Target [P address

Table 4.7: Field definitions for ARP packet shown in Figure 4.25

132

Chapter 5

Techniques for Detecting and Countering
Network Reconnaissance

Network traffic analysis is not trivial, especially when identifying specific
activity such as network reconnaissance. Hackers are becoming more cunning with
their techniques and tools everyday, which adds to the difficulty of analysis and
detection. The only way to counter this dangerous adversary is to think like them,
read what they read, experiment with the technology as they do, and challenge
ourselves with “what if” scenarios. Therefore, deployment and management of
security solutions is not enough to maintain a secure information infrastructure
today. As security professionals, not only do we need to understand how to deploy
and configure a solid security solution, we also need to understand how hackers
obtain information about networks in order to anticipate and mitigate network
attacks.

We have analyzed the network traffic generated by several reconnaissance
tools and extracted key characteristics from the traffic which can subsequently be
used to detect these tools. In this chapter, we complete our methodology for
identifying and detecting network reconnaissance by discussing how to use the
information gathered in the previous chapter to develop filters that will assist in
detecting and countering network reconnaissance. This chapter is organized as

follows,

133

0 Network Reconnaissance Detection Tools and Techniques
= Snort: Intrusion Detection System
= Acid: Analysis Console for Intrusion Databases
o Oinker: A graphical user interface for developing Snort rules
o0 Developing rules for detecting network reconnaissance
= Snort rules for detecting ICMP reconnaissance
e Countering ICMP reconnaissance
= Snort rules for detecting TCP/IP reconnaissance
e Countering TCP/IP reconnaissance
= Snort rules for detecting ARP reconnaissance
e Countering ARP reconnaissance

o0 Applying Snort Rules: Experimental Results

5.1 Network Reconnaissance Detection tools and Techniques

As mentioned in Chapter 2, there are a number of tools today that can be
used to assist with network reconnaissance detection. However, we decided to use
Snort with a PHP-based web front-end called Acid, Analysis Console for Intrusion
Databases. Both Snort and ACID offer features that will not be covered in this
paper. This section will serve as a brief overview of these two tools. Please refer to

[37] [39] [119] [152] for more detalils.

134

Snort: Intrusion detection system
Snort uses signature based detection to identify anomalies in network
traffic. It also doubles as a network sniffer, Figure 5.1 illustrates what a network

traffic capture looks like using Snort in sniffer mode.

===t =t=t=t=F=t=Ft=Ft=H=F=t=t=F=F+=t=t=F=F=H=H=H=F=F=F=F=t=t=F+=+ ==+ =H=+=+=

1Qr27F-22:51:18.280359 0:4:75:71:D0: 8F -= 0:1:2: 94 BD:F O type: 0x200 len:0x3C

192168 2. 21110680 -= 192168, 210222 TCP TTL1 28 TOS:0x0 ID:3268 lplen:20 Dogmblen:40
DF

FTEATT Seql 0xZ28A0D61 Ack: ODxC45F3B03 Win: OxFFFF Tcplen: 20

Ox0000: 00 01 02 94 BD FO OO O4 75 71 DO SF O8 00 45 00ug....E.

Ox0010: 00 28 OF 1< 40 00 280 06 65 258 0 A2 02 D3 SO A8 @ e*

Ox0020: 02 66 04 24 0016 02 84 0D 61 C4 5F 2B 02 5010 %a_;.F

0x0020: FF FF 15 C2 00 00 00 00 00 OO0 00 oo -

===t =t=t=t=F=t=Ft=Ft=H=F=t=t=F=F+=t=t=F=F=H=H=H=F=F=F=F=t=t=F+=+ ==+ =H=+=+=

1Qr2TF-2251:18.2805282 0:4:75:71:D0: 8F -= 0:1:2:94.BD:F 0 type: 0200 len:0x3C
192168 2. 21110680 -= 192168, 210222 TCP TTL1 28 TOS:0x0 ID:3269 lplen:20 Dgmblen:40
DF

FEATTE Seql Ox253A0D61 Ack: OxC45F3F63 WWin: 0kFB9F Tocplen: 20

Ox0000: 00 01 02 95 BD FO OO0 04 75 71 DO 8F 02 00 45 00 qu
Ox0010: 00 22 0OF 1D 40 00 20 06 65 29 CO A2 02 D2 CO A2 (. @&...ed .
Ox0020: 02 66 04 24 0016 02 24 0D 61 4 5F 2F 62 5010 % . a._7?ck.

Ox0030: FB 9F 15 C32 00 00 00 00 00 00 00 oo

===t =t=t=t=H=t=F+=Ft=F=Ft=t=t=F=F+=t=t=F=F=H=Ht=H=F=F=Ft=Ft=t= == +=+= === +=

1Qr2F-2251:18.281932332 0:4:75:71:D0: 8F -= 0:1:2:94.BD:F O type: 0200 len:0x3C
192162 2. 2111060 -= 192162, 2.102: 22 TCP TTL128 TOS:0x0 ID:2279 Iplen:20 Dgrmlen:40

DF
FEATTT Segr Ox28A0061 Ack: OxC45F4EF2 WWin: OxFAFF TcocplLen: 20
Ox0000: 00 01 02 94 BD FO OO O4 75 71 DO SF O8 00 45 00ug....E.

Ox0010: 00 22 0OF 27 4000 20 06 65 1F CO A2 02 D2 O A2 (e
Ox0020: 02 66 04 24 0016 02 24 0D 61 C4 SF 4EF2 5010 % . a_rP.
Ox0030: F& FF 06 D32 00 00 00 00 00 00 o oo .

B R R R e R R R R e e b b R R s R

1Qr2F-2251:128.2821321 0:4:75:71:D0:8F -= 0:1:2:94.BD:F 0 type: 0200 len:0x3C
192162 2. 2111060 -= 192 162.2.102: 22 TCP TTL128 TOS:0x0 1ID:2220 Iplen:20 Dogrmblen:40

DF
FEATTT Segr Ox28A0061 Ack: OxC45F4FESZ Win: OxFFFF TcocpLen: 20
Ox0000: 00 01 02 9~ BD FO OO O4 75 71 DO SF O2 00 45 00ug....E.

Ox0010: 00 22 0F 22 4000 280 06 65 1E CO A2 02 D32 CO A2 (& .e... ...
Ox0020: 02 66 04 24 0016 02 24 0D 61 C4 5F 4F E2 010 % . a._0
Ox0030: FF FF 00 EZ 00 OO0 OO0 OO0 00 o0 oo oo .

B e R R R e R R R e R R R b B e

Figure 5.1: Snorts sniffer output
The capture format isn’t very different than Tcpdump, as we illustrated in Chapter
4,
The intrusion detection features Snort offers are very extensive. It uses

filters, also known as rules, to analyze and log traffic. Once a filter is triggered it is

135

labeled and categorized, as we will demonstrate later in Section 5.4. A typical Snort

rule would look like this;

alert tocp FEETERMAL MNET any <> $HOME_MNET O

(msSg: "BEAD-TRAFFIC top port O traffic”: classtype:misc—

Activity: Sid:524; rev:iea:)

Figure 5.2: Components of a Snort rule

Snort rules contain two key components; a rule header and rule options, as

illustrated in Figure 5.2 above. The rule header consists of the following;

e Action
o0 alert - generate an alert using the selected alert method, and then
log the packet
o0 log - log the packet
O pass - ignore the packet

O activate - alert and then turn on another dynamic rule

136

o dynamic - remain idle until activated by an activate rule , then
act as a log rule
e Protocol: TCP, UDP, ICMP or IP
e Source IP address
e Source Port
e Direction of traffic: -> or <>
e Destination IP address

e Destination Port

There are four categories of rule options: Metadata, Payload, Non-payload and
Port-detection. Tables 5.1, 5.2, 5.3 and 5.4 list the required keywords for each

category, the descriptions and format.

Meta-Data Rule Options

Keyword Description Farmat
The msg rule option tells the logging and
msg alerting engine the message to print along msQ: "<message text>";

with & packet durnp orto an alert

The reference keywaord allows rules to

reference include references to external attack reference: <id system: <id=; [reference: <id system: <id=;]
identification systems
. The sid keyword is used to uniguely sidh <snort rules id>;

identify Snort rules

The sid keyword is used to uniguely

rev identify revisions of Snort rules

rev: <revision integer=

The classtype keyword categorizes

lasst
rlasstype alerts to be attack classes

classtype: <class names;

priority The priarity tag assigns a severity level to rules priority: <priority integers;

Table 5.1: Metadata Rule Options

The Meta-data rules are used for readability and organization of rules.

137

Payload Detection Bule Option

Keywords Description Faormat
allows the user to set rules that search
content for specific content in the packet payload content: [I] "<content string=";

and trigger response based on that data

The uricontent parameter in the snort rule
language searches the NORMALIZED
request URI field. This means that if you

i L. . . i = ing=;
uricontent are witing rules that include things that uricontent:[l]<content string:;
are normalized, such as %2f or directory
traversals, these rules will not alert
Yerify that the payload has data
isdataat RN Gt e T O isdataat: <int=[relative);

looking for data relative to the
end of the previous content match

The pcre keyword allows rules
pcre to be written using perl compatible regular
expressions

pore:[1]"(f<regex=/m<delim><regax=
<delim=)[ismxAEGRUB]",

Test a byte field against a specific value

(with operatar). Capable of testing binary

byte_test values or converting representative byte

strings to their binary equivalent and
testing them

byte_test: <bytes to corwert>, [||<operators, <value=, <offset> 1\
[.relative] [,<endian=] [,<number type=, string]

The byte_jump option allows rules to be
byte_jurmp written for length encoded protocols
trivially

byte_jump: <bytes_to_convert=, <offset=
[, [relative] [big],[little] [string] [hex] [dec] [oct] [align]]

Table 5.2-A: Payload Rule Options

The Payload rule options (Table 5.2-A above) are used for analyzing packet
payloads. The keywords shown below in Table 5.2-B are used for determining how
the content keyword value should be analyzed. The Non-Payload rule options, in

Table 5.3-A and 5.3-B, are used for verifying packet header field information.

138

Content behavior modifiers

Keyword

Description

Faormat

depth

offset

The depth keyword allows the rule writer
to specify how far into a packet snort
should search for the specified pattern

The offset keyword allows the rule

depth: <numbers;

writer to specify where to start
searching for a pattern within a packet
The distance keyword allows the rule

offzet: <numbers;

distance

witer to specify how far into a packet
snort should search for the specified
pattern relative to the end of the previous
pattern match

distance: <byte counts;

within

The within keyword is a content
madifier that makes sure that at most
M bytes are between pattern matches

using the Content

within: <byte counts;

nocase

The nocase keyword allows the rule writer

to specify that the snort should look for
the specific pattern, ignoring case

nocase,

rawbytes

The rawbytes keyword allows rules to look

decoding that was done by preprocessors

at the raw packet data, ignoring any

rawbytes;

Table 5.2-B: Content behavior modifiers. These options are used with keyword

Mon-payload Detection Rule Options

Keywords

content in Table 5.2-A.

Description

fragoffset

The fragoffset keyword allows one

ttl

to compare the IP fragment offset
field against a decirmal value.

The ttl keyword is used to check

fragoffset:[<|=]<number=

tos

the IP time-to-live value.
The tos keyword is used to check

tth[[<number=-]=<=]<numbers>;

the IP TOS field for a specific value

tos:[l]<number=;

The id keyword is used to check the
IP 1D field for a specific value. Some
tools (exploits, scanners and other
odd programs) set this field
specifically for various purposes
The ipopts keyword is used to

id:=number:=;

ipopts

check if a specific IP option is

present.
WARMING: only & single ipopts may
be specified per rule

ipopts: <rrlecl|inopltslsec|lsrrlssrrlsatidlany =;

fraghits

dsize

The fragbits keyword is used to
check if fragmentation and reserved
bits are set in the |IP header

fragbits: [+*]<[MDR]>

flags

The dsize keyword is used to
test the packet payload size
The flags keywaord is used to

dsize: [€x]<number=[<=<number=];

check if specific TGP flag
bits are present

flags: [I[Fl+]<FSRPAUI 20=[,<F SRPALU120=];

The flow rule option is used in
conjunction with TCP stream
reassembly

floww: [(established|stateless)]
[.to_clientlto_serverlfrorm_clientifrom_sermer)]

[.no_streamlonly_stream)]

Table 5.3-A: Non-payload Rule Options

139

Mon-payload Detection Rule Options

Keywords Description Format
q 5 The ﬂ'.jWhit.S rule_ option is us_ed L flowhits: [setlunset|togglelisset reset noalert]
owhits conjunction with conversation X
X [<STATE_MNAME=];
tracking from the Flow preprocessor
The seq keyword is used to check - s
=Eq for a specific TCP sequence number Seq-<number=,
The ack keyword is used to check
ack for a specific TCP acknowledge ack: <numbers;
nurmber
The ack keyword is used to check . . .
e — for a specific TCP window size LT D e et
. The itype keyword is used to check 5 i i
itype for & specific ICMP type valus. itype:[=l=]<number=[<=<number=];
. The itype keyword is used to check . . i
icode for a specific ICMP cods valus icode: [<|=]<number=[<>=<number=];
. . The itype keyword is used to check . . .
e for a specific ICKWIP 1D value e
The itype keyword is used ta check
Icmp_seq for a Icmp_seq: <numbers;
specific ICMP sequence value
The rpc keyword is used to check i <apnlication numbars
rpc for a RPC application, version, and [<verpsi-0n nziﬂbewl*] [<procecllure
procedure numbers in SUNRPC number>|*l]>'
CALL requests '
. . The ip_proto keywoard allows checks . sl < bars-
'p_proto against the IP protacal header ip_proto:[I=<] <name or number>;
The sameip keyword allows rules to
sarmeip check if the source ip is sarmeip,;
the sarme as the destination 1P,
Table 5.3-B: Non-payload Rule Options
Post-Detection Rule Options
Keywork Descrigtion Farmat
The logto aption tells Snart to log all
logto packets that trigger this rule to a special logto:"filename”,
output log file
S— The session keyward is built to extract session; [prirtablelal
uger data fram TCP Sessions ' '
e The resp keyword is used attempt to resp: <resp_rnechanism] <resp_mechanisms \
f close sessions when an alert is triggered [,<resp_mechanism:]];
The react keyward based on flexible
respanse (Flex Resp) implements flaxible . . ” .
React pon: (P) mp react: <react_basic_modifier], react_additional_modifier]=;
reaction ta traffic that matches a Snort - - - -
rule
The tag keyward allow rules to lag mare
tay than just the single packet that triggered tag: <types, <counts, <metric, [direction]
the rule

Table 5.4: Post Detection Rule Options

140

Another feature we would like to mention is event threshold. Thresholding
can limit the number of times an event is logged during a specific period. There are
three types of thresholding parameters: limit, threshold and both. Table 5.5 shows

the threshold options and formatting.

Thrashold Options
“arighle descriptor Keyword Description
i alert an the first M events during
imit Lo
the time interval
Threshald alert every.N times_ we see this
type event during the time interval
alert once per time interval after seeing M
bath occurances of the event, then ignore any
additional events during the time interval
track by _src track by source IP address
by dst track by destination IP address
count <number of events> nurnber of packets before rules is triggered
seconds <time in gseconds> time period which count is accrued
Farmat
threshold: type <limitithresholdlboth=, track <by_srclby dst= b
count <nz, seconds <m:;

Table 5.5: Threshold Options and Format

Snort can be configured several ways [37] [39] [119]. We configure it to log
events to a MySQL [151] [152] database and we used ACID to analyze those

events [153] (the analysis is described below).

Acid: Analysis Console for Intrusion Databases
The data collected by Snort is difficult to analyze manually. Therefore, a
number of tools have been developed to help with the analysis of Snort logs and

databases. Table 5.6 lists some of the front-end available to use with Snort.

141

Marne Description
acid A php based snort log analizer
aris Extractor for the Securityfocus DeepSight Analizer Service
pigsentry |Snort Alert trending tool
shortalog |perl based Snort log analyser
snorthot |A halflife bot that reads snort logs for you
snortsnarf | Silicon Defense's perl based snort log analizer
idscenter |IDScenter is a php based front-end for Snort intrusion detection systemns

Table 5.6: Available front-ends for Snort
ACID, developed by Roman Danyliw [153, is an analysis engine that helps
with the searching and processing of security incident databases generated by
security-related software such as intrusion detection systems and firewalls (e.g.
Snort, iptables, Cisco Pix). Figures 5.3, 5.4, 5.5 illustrate ACIDs main monitoring

page, a query result and a detailed alert respectively.

Analysis Console for Intrusion Databases

Added 0 alert(s) to the Alert cache

Queried on : Thu Octoher 28, 2004 02:11:29
Database: snort@192.168.2.102 (schema version: 106)
Time window: [2004-10-05 08:17:36] - [2004-10-21 07:01:54]

Sensors: 7 Traffic Profile hy Protocol
Unique Alerts: 6 (1 categories) TCP 81%)
Al e T]

* Source IP addresses: 2 OB (H)
+ Dest. [P addresses: 10
+ Unigue IP links 11 ICMP [0%)

* Source Ports: 27

© TCP (12) UDP (15) Partscan Traffic (0%)
Dest, Ports: 2

O TCP (1) UDP (1)

Search
® Graph Alert data

* Snapshot

Most recent Alerts: any protocol, TCP, UDP, ICMP & Most frequent 5 Alerts
* Today's: aleds unigue, listing; 1P src/ dst

Last 24 Hours: alerts unique, listing; IP src/ dst
Last 72 Hours: alerts unique, listing; IP src/ dst
Most recent 15 Unigue Alerts

& Most Frequent Source Ports: any , TCP | UDP
* Maost Frequent Destination Ports: any , TCP, UDP

& Most frequent 15 addresses: source, destination
® Last Source Ports: any , TCP, UDP

® Last Destination Ports: any , TCP | UDP
® Graph alert detection time

& Alert Group {AG) maintenance
® Application cache and status

Figure 5.3: ACIDs main monitoring page

142

| Back]

(Added O alert(s) to the Alert cache
Successful DELETE - 13 alert(s)

Queried DB on : Thu October 28, 2004 02:18:21

Summary Statistics

Sensors

Unique Alerts [classifications)
Unigue addresses: source | destination
Unique IP links

Source Port: TCP | UDP

Destination Port: TCP | UDP

Time profile of alerts

Meta Criteria
IP Criteria
TGP Criteria

Payload Criteria

Displaying alerts 1-12 of 12 total

. ” Source Dest. Layer4
I Slgnature Timestarmp Address Address Proto
] #0-{2-4) [snort] (httpd_inspect) IS UNICODE CODEPOINT ENCODING 2004-10-21 07:01:54 192.168.2.211:2959 66.132.214.10:80 TCP
(] #1-2-3) [snort] thttpt_inspect) IS UNICODE CODEPQINT ENCODING 2004-10-21 07:01:54 192.168.2.211:2939 66.132.214.10:80 TCP
] #2-22) [snort] (httpd_inspect) NON-RFC HTTP DELIMITER 2004-10-21 02:45:24 192.168.2.211:2141 163.118.134.11:80 TCP
(] #3-2-1) [snort] thttpt_ingpect) NON-RFC HTTP DELIMITER 2004-10-21 02:45:24 192.168.2.211:2141 163.118.134.11:80 TCP
] #4.(1-75) [snort] (httpd_inspect) NON-RFC HTTP DELIMITER 2004-10-07 05:22:52 192.168.2.210:3162 163.118.134.11:80 TCP
O #5-(1-74) [snort] thitpt_ingpect) NON-RFC HTTP DELIMITER 2004-10407 03:19:05 192.168.2.210:2913 163.118.134.11:80 TCP
] #6-{1-73) [snort] (httpd_inspect) NON-RFC HTTP DELIMITER 2004-10-07 03:19:05 192.168.2.210:2913 163.118.134.11:80 TCP
O #7-(1-70) [snort] thitph_inspect) NON-RFC HTTP DELIMITER 2004-10-06 09:25:14 192.166.2.210:4993 163.118.134.11:80 TCR
] #8-(1-71) [snort] (https_inspect) NON-RFC HTTP DELIMITER 2004-10-06 09:25:14 192.168.2.210:4993 163.118.134.11:80 TCP
O #9-(1-72) [snort] thitph_inspect) NON-RFC HTTP DELIMITER 2004-10-06 09:25:14 192.168.2.210:4993 163.118.134.11:80 TCR
‘W #10-{1.68) [snort] (https_inspect) NON-RFC HTTP DELIMITER 2004-10-08 08:09:17 192.168.2.210:4808 163.118.134.11:80 TCP
O #1-(11) [snort] thitph_inspect) NON-RFC DEFINED CHAR 2004-10-05 08:17:36 192.166.2.210:1330 207.166.24.150:80 TCR
| Action
|| Delete alert(s) j | Selected ALL on Screen Entire Query

[Loaded in 0 seconds]

- Roman Danyliw

Figure 5.4: ACID query result

|1 - 66 |QDD4—1D—DE; 04:25:06 |[snort] spph_bo: Back Orifice Traffic detected {key: 31337)

[rameJmterrace] nter

|192.168.2.102 | etho | none

Source adar] dest saar Jver]Har Len] Tosiengtn] 1D [nags]omset] TTL]chksur

[192.168.2.210 [192.168.2200 [4 [5 | 0o | 46 (=10 o [o [[12e8 4z00e

- T T
FOQDM

| Unable to resolve address | Unable to resolve address

‘ Options noneg
[Source port]dest port]iength|

| 3736 | 31337 || =28

length = 18

GETALTY:| (000 @ CE 63 D1 D2 1 E7 13 CF 39 AR AL 26 4D 24 B4 66 e et e | e &
o010 ;- AA 32 .2

Figure 5.5 : Detailed ACID alert

For further information on ACID please see [153].

143

5.2 Oinker: A graphical user interface for creating Snort Rules

During the course of our experiments we found that one of the tasks that
took the most time was developing snort rules. Having to reference the Snort
manual constantly to verify formatting and definitions of fields was very time
consuming. We decided that we needed a tool that put all of the Snort rule options
in one location, took care of formatting and allowed us to work on multiple files.
With these requirements in mind, Oinker was developed. Due to time constraints
we decided to prototype Oinker in Microsoft Visual Basic .Net, therefore it will

only work under the Microsoft Windows operating system.

Oinker
Oinker is a graphical user interface program for writing Snort rules. It

provides the user with the flexibility for:

e Easily creating new Snort rule files

e Easily editing existing files

e Cutting and pasting rules between Snort rule files

e Instantly duplicating rules

e Working with multiple Snort rule files

e Instantly customizable to environments using Snort configuration

files, such as: Snort.conf, Classification.config and

References.config

144

Figures 5.6 below illustrates Oinker’s main window.

¥ oinker 0.95

File ‘Window Help

Mew Rules File Ctrl-+M

Exit Syttt
(el sshinatian, . .

Helerente, .

Figure 5.6: Oinkers main window
In the main menu the user can create a new Rules file, open an existing rule file, or

edit the configuration files Snort.conf, Classification.config or References.config.

145

M ginker 0.95 100 x|

File ‘Window Help

Figure 5.7: Creating a new Snort Rules file
When a new file is created, a window will appear, as illustrated in Figure 5.7. Here,
a user can proceed to start adding new rules. Figure 5.8 below illustrates the main

rule window.

146

BT =10|=]
e Booeds | Dadifue Robuicor [FEdAue X DeerAue RaCoyTo.

[Fizodi]| i =

ﬂ Aokore | Ml

T
has o

oy Lit_| Vol

i | v

Figure 5.8: Adding a new rule
In the window shown in Figure 5.8, the user can start creating a new rule. The
initial options shown are those for creating the rule header. The rule header fields
are listed and described in section 5.1. Figure 5.9 illustrates the selection window

for all the rule options, which are also listed and described in section 5.1.

147

Figure 5.9: Rule options selection window

For more information please refer to Appendix C.

148

5.3 Developing Snort Rules for detecting network reconnaissance

In this section we will illustrate how we developed Snort rules using the
information we gathered on Xprobe2, Nmap and Ettercap. Then we will present our

results after testing the rules on two live network environments.

Detecting ICMP reconnaissance: Xprobe2
As we mentioned in Chapter 4, Xprobe2 sends out a total of 7 packets as

shown in the Tcpdump capture in Figure 5.10 below.

16:13:35.381684 192.168.2.191 = 192.168.2.210: icmp: echo request
16:13:35.385233 192.168.2.191 = 192.168.2.210: icmp: echo request
16:13:35.394434 192.168.2.191 > 192.168.2.210: icmp: echo request (DF) [tos OXB‘ECT(D}F
16:13:35.400552 192.168.2.191 > 192.168.2.210: icmp: echo request (DF) [tos 0x6,ECT(0)]
16:13:35.407087 192.168.2.191 > 192.168.2.210; icmp; time stamp query id 35246 seq 0 +
16:13:35.409081 192.168.2.191 = 192.168.2.210: icmp: time stamp query id 35246 seq 0
16:13:35.413083 192.168.2.191 > 192.168.2.210: icmp: address mask request «
16:13:35.415071 192.168.2.191 > 192.168.2.210: icmp: address mask request
16:13:35.432537 192.168.2.191 > 192.168.2.210: icmp: information request «
16:13:35.434525 192.168.2.191 > 192.168.2.210: icmp: information request
16:13:35.499669 192.168.2.191.domain > 192.168.2.210.65535: 64425% 1/0/0 (76) (DF) <
16:13:35.502473 192.168.2.191.domain > 192.168.2.210.65535: 64425% 1/0/0 (76) (DF)
16:13:35.510438 192.168.2.191 44681 > 192.168.2.210.65535: 5 971747911:971747911(0) win 5840 <mss
1460,sackOK, timestamp 510304 0,nop wscale 0> (DF) [tos 0x10]

16:13:35.512493 192.168.2.191.44681 > 192.168.2.210.65535: S 971747911:971747911(0) win 5840 <mss
1460,sackOK timestamp 510304 0,nop,wscale 0= (DF) [tos 0x10]

;@@EEI [~ [=]

Figure 5.10: Xprobe2 7 key packets
Packet 1:
This is a normal ICMP echo request; but as mentioned in Chapter 4, it can be used
to identify the type of operating system it came from. Apparently 46 bytes of a
default unmodified ICMP Request payload, from a UNIX type system, remain the

same. Table 5.7 below illustrates this similarity,

149

Operations System Total Length|Payload Size | Payload offset Depth Data

3d39 0100 0502 Oalb 0cOd 0=0f 1011 1213
84 bytes 56 Bytes B 46 1415 1617 1812 1alb Told 1e1f 2021 2223
2426 2627 2529 2a2b 2c2d 2e2f 3031 3233
Solaris 9 (Sun03S 5.9) 3435

Redhat 9 linux - 2.4.20-31.9

Table 5.7: Ping Payload similarity between Linux and SunOS 5.9
The first ICMP echo request generated by Xprobe2 is no exception to this, as it is

illustrated in Figure 5.11 below:

Frame 1 {98 bytes on wire, 98 bytes capturaed)
Arrival Time: Mow &, 2004 17:24:24.427 563000
Time delta from previous packel: 0000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame MNumber: 1
Packet Length: 98 bytes
Capture Length: 98 byles
Ethermet Il Src: 00001 fd ed: - 3eced, Dst: 00:0d:61:02:b5:3a
Destination: O0:0d:61:02:b5:3a (192.168.2.210)
Source: O0:01:f4 aed:3e-ed (192 168.2.191)
Twpea: IP (0xO800)
Intemeaet Protocol, Src Addr: 192.168.2.191 (192.168.2.191), Dst Addr: 192.168.2.210 (192.168.2.210)
Wersion: 4
Header length: 20 bytes
Differentiated Services Field: Ox00 (DSCP Ox00: Default: ECMN: Oxx00)
o000 00, = Differentiated Sarvices Codepoint: Default (0x00)
e DL = ECMN-Capable Transport (ECT): O
e 0D = ECMN-CE:- O
Total Laength: 84
Identification: OxdS519 (54553)
Flags: OxO00
0. = Reserved bit: Not seit

L0, = Don't fragment: Mot set

- -0 = Maore fl’E!QI'TI-eI’II.S: Mot set 46 bytes are the same
ragment offset: O " A
Time to live: 64 imn all ping packets

FProtocol: ISP (0x01) coming from <xMNIX type

Header checksum: Oxl1eaese (correct)

Source: 192 168.2.191 (192_168.2.191)

Destunation: 192.168.2.210 (192.168.2.210)
Intermet Controd Message Protocol

Type: 8 (Echo (ping) regueast)

Codea:

Checksum: Oxafd4Z {(correct)

Identifier: OxdS519

Seqguence NnumMbDer: Ox000O0

Data (568 byles)

systems

Qo000 00 Od &1 02 bS 3a 00 01 74 ed 32 a4 08 00 45 O

QOO10 00 5S4 dS 19 00 00 40 01 1e ase o0 a8 02 e

Qo220 02 dZ 08 00 af 42 dS 19 00 00 41 8d 37 Lo}

0030 OF S7F¥ 08 09 0a Ob Oc Od O OF 10 11 12 13 14 15 L
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 ..., 1S %0
DOoSO 26 27V 28 29 ZPa Z2b 2c 2d Z2e 2 30 31 32 33 34 35 &))"+ .- 012345
Qo650 3I& 3T [=rg

Figure 5.11: Ethereal view of first ICMP echo request packet from Xprobe2 scan

Therefore the Snort Rule for detecting this packet would look like this:

alert icmp any any ->any any (msg:"ICMP Echo Request from a Unix Type box";
content:"|20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35]|";
itype:8; icode:0; offset:32; sid:1000008; rev:1;)

This rule states: Alert if an ICMP packet is detected from any source IP and port to
any destination IP and port in the private network (alert icmp any any ->any any)

with type 8 code 0 (itype:8; icode:0) and contains the data "|20 21 22 23 24 25 26

150

27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35/|" in the payload starting at byte 32
(offset:32). If this rule is activated, it will display “ICMP Echo Request from a
Unix Type box” in ACID, as it will be demonstrated in section 5.4.
Packet 2:

Although the packet displays as an echo request in Figure 5.10, when we

took a closer look with Ethereal this is what we found,

Frame Z (98 bytaes on wire. 98 bytaes capturaed)
Acrrival Time: Noy 6. 2004 23:13:58. 708037 000
Time delta from praevious packet: 0115058000 seconds
Time since reference or first frame: 0.1 15058000 seconds
Frame MNumber: 2
Packet Length: 98 bytas
Capture Length: S8 bytes

Ethermet Il Src: 0010 at ae2:0b62,. Dst: 00:0d-61:-:02:' b5 3a
Destinaticon: O0:0d:61:02:b5: 3a (192, 168.2.210)
Sowurce: 0010 ad- e 0bG2 (Xircom_e2Z:-0b: G2
T e 1P (OxO&00)

Intermme=et F'r\ol.ocol Sroc Addr: 1822.168.2.191 (122.168.2.191), Dst Addr: 182.158.2.210 {(122.158.2.210)
Wersion:
Header lerlgll’l 20 bytes

Differentiated Services Field: 0x06 (DSCP Ox01: Unknown DSCP: ECh: OxO2)
OO0 3. = Differentiated Se Codepoint: Unknowmwn (001}
ciee w1l = ECHN-Capable Transport A

Inwvalid DS Field
“walue
A TOS,
Twpe of
Servcies

Total Length: 84

Identification: Oxa3c1 (41921)

Flags OxO4 (Don't Fragrent)

.. = Reserved bit: Not sel 2 =

% ZSomn fragrment: Set Inwalid OCRAP
.0, = More fragments: Mot set Code for Tyw»wpe

Fragment offset: O

Tinme to live: 643

Protocol: ISP (001)

Header checksum: Ox 1000

Frect) 45 bytes are the same

Source: 192.168.2_191 1ea.2 191) 5 .
Destinaticon: 192 16 S0 (192 168_2_ 210) |n.all Ping packets
INntermet Controd kA Gge Protocol cominmng from <xMNIX type

Pingl request) systerms

Checksurm: Ox880a (cormect)
Identifier: OxO0cd1

Seqguence Nnumber: Oxoo0o1
Data (56 bytaes)

Qo000 00 Od &1 02 bS 3a 00 10 a4 a2 O 62 08 00 45 o6
OO1O 00 S4 a3 c1 40 OO0 40 01 10 OO0 cO a8 02 of o as
Qo220 02 dZ 08 7 98 O0a Oc di1 00 01 41 &d 91 a6 00 O
QO30 949 69 08 09 Oa Ob Oc Od O OF 10 11 12 13 14 15
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25
0OS0 26 27 28 29 Za 2b 2o 2d 2e 2F 30 371 32 33 34 35
OO0 36 37T 67

Figure 5.12: Ethereal view of second ICMP echo request packet from an Xprobe2
scan
This packet contains an invalid DS Field (aka: TOS) value and the ICMP type 8 has

an invalid code of 123. The Snort rule to detect this packet would be as follows,

alert icmp any any -> any any (msg:"ICMP TYPE 8 with invalid CODE 123 and
invalid TOS"; itype:8; icode:123; t0s:6; sid:1000000123; rev:1;)

151

This rule states: Alert on any ICMP packet received from any IP and port to any IP
and port of the internal network (alert icmp any any -> any any) with type 8/ code
123 and a TOS of 6. If this rule is activated, it will display “ICMP TYPE 8 with
invalid CODE 123 and invalid TOS” in ACID.
Packet 3:

The third packet is an ICMP Timestamp request. As mentioned in Chapter
4, hackers can identify the different Microsoft IP stacks and identify whether a
system is running a Windows or a UNIX-type OS using the ICMP Timestamp

request. Taking a closer look using Ethereal, the packet looks like this:

Frame 3 {60 bytes on wire, 60 bytes captured)
Acrrival Time: NMow 6, 2004 23:13:58. 71139684000
Time delta from previous packet: 0003927000 seconds
Time since referance or first frame: 0.118985000 seconds
Frame MNumber: 3
FPacket Length: 60 bytes
Caplture Length: 60 bytes
Ethermet Il Src: 00: 10-a4:22:0b:62 . Dst: 00:0d:61:02:65:3a
Destination: O0:0d:161:02:b5:3a (12922.168.2.210)
Source: 0010 a4 e2:0b:62 (Xircom_eZ:0b:&62)
Type: IFP (OxO200)
Trailer: Q0000000000
Intermet Protocol, Src Aaddr: 192,168 2191 (192 168.2 191), Dst Addr: 192 .1688.2.210 (192.168_2 . 210)
Wersion: 4
Header length: 20 byles
Differentiated Services Field: 0x00 (DSCFP Ox00: Default; ECMN: Ox00)
OO0 00.. = Differentiated Services Codepoinl: Default (0x00)
el DL = ECN-Capable Transport (ECT): O
e 22 D= ECHMNCE: O
Total Length: 40
Identfication: OxOcd1 (3281)
Flags: Ox0O0 - —
O... = Reserved bit: Not set ICMP Type 13
Lo Dontt fragment: Mot sat Time Stamp

..0. = More fragments: Mot set Request
Fragment offset: O
Time to live: 64
Protocol: HERMP (Ox01)
Header checksum: Oxa7, (correct)
Source: 192.168.2_1 (192.168.2.191)
Desunation: 192 82.2.210 (1292.168.2.2140)
Intemeaet CTontr essage Proloocol
Type: 13 (Timestamp request)
Code: O
Checksum: Ox424c {correct)
Identifier: OxOcd1
Saguaence numbeaer: OxoOo00
Originate timestamp: S66234
Receive timestamp: O
Transmit timestamp: 0

Qo000 00 Od 61 02 bS 3a 00 10 a4 e2 0b 62 08 00 45 00 e[et b E.
Qo010 00 28 Oc d1 00D OO0 40 01 &7 22 c0 a8 02 ofcD a8 (.. @@ " ...

Q020 02 d2 Od 00 42 4c Oc d1 00 OO0 00 08 a2 da 00 00 BL..........

QO30 00 00 00 00 00 00 00 OO 00 00 OO o0 Ll

Figure 5.13: Time Stamp Request

152

The snort rule for packet 3 would look as such:

alert icmp any any -> any any (msg:"ICMP TimeStamp Request”; itype:13; icode:0;
sid:100000013; rev:1;)

This rule states: Alert on any ICMP packet received from any IP and port to any IP
and port of the internal network (alert icmp any any -> any any) with type 13 code
0. If this rule is activated, it will display “ICMP Timestamp Request” in ACID.
Packet 4 and 5:

Packets 4 and 5, ICMP Types 15 (Information Request) and 17 (Address
Mask Request) are typically used for diskless operating systems. So if these ICMP

types are detected, the source IP should be investigated. The packets look like this:

Intemet Protocol, Src Addr: 192.168.2.191 (192.168.2.191), Dst Addr: 192.168.2.210 {192.168.2.210)
Version: 4
Header length: 20 bytes
Differantiated Services Field: Ox00 (DSCP Ox00: Default; ECM: O=00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
wee. 0L = ECN-Capable Transport (ECT): 0
....... 0 =ECN-CE: 0
Total Length: 32

Identification: OxOcd1 (3281} . —
Flags: 0x00 ICMP Type 17
0... = Resarved bit: Not set Address Mask
0. = Don't fragment: Mot set 5
0. = More fragments: Not set SEquESE

Fragmeant offsat: O

Time to live: 64

Protocol: ICMP (0x01)

Header checksum: Oxe72a (correct)

Source: 192.168.2.191 (192.168.2.191)

Deastination: 192.168.2.210 (192.168.2.2
Intemet Control Message Protocol

Type: 17 (Address mask requast

Code: O

Checksum: Oxe22e (comect)

Identifier: Ox0cd1

Seqguence number: Ox0000

Address mask: 0.0.0.0 {Ox00000000)

Figure 5.14: ICMP Type 17 Address Mask Request

153

Intemet Protocol, Src Addr: 192,168.2.191 (192.168.2.181), Dst Addr, 192.168.2.210 (192,168.2.210)
Wersion: 4
Header length: 20 byles
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
woe 0. = ECN-Capable Transport (ECT): 0
....... 0=ECN-CE:0
Total Length: 28
Identification: 0x0cd1 (3281)
Flags: 0x00 ICMP Type 15
0... = Reserved bit: Mot set formrati
{0.. = Don't fragment: Mot set Infomration
-.0. = More fragments: Not set Request
Fragment offset: 0
Time to live: 64
Protocol: 1CMP {(0x01)
Header checksum: Oxe72e (correct)
Source: 192.168.2.191 (192.168.2.19
Destination: 192.168.2.210 (192 16872.210)
Intermet Control Message Protoc
Type: 15 (Information request)
Code: 0
Checksum: Oxed42e (comect)
Identifier: OxDcd1
Sequence number: 0x0000

Figure 5.15: ICMP Type 15 Information Request

The Snort Rules for packets 4 and 5 would look like this:

alert icmp any any -> any any (msg:"ICMP Address mask request”; itype:17; icode:0;
sid:100000017; rev:1;)

alert icmp any any ->any any (msg:"ICMP Information Request - used for diskless
workstations"; itype:15; sid:100000015; rev:1;)

ICMP Type 17 rule states: Alert if an ICMP packet is receive from any source IP
and port to any IP and port of the local network (alert icmp any any -> any any)

with type 17 code 0. If the rule is activated the message “ICMP Address mask

154

request™ will be displayed in ACID. The same would apply for the ICMP Type 15

rule, except that it will display “ICMP Information Request”.

Packet 6:

Packet 6 is a DNS query response to port 65536 for a query that was not

made. The packet details are extensive so we have left out the frame and Ethernet

information.

Wearsion: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP Ox00: Default; ECHN: OxxDO)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
wree 0L = ECH-Capable Transport (ECTI: O
im0 = ECN-CE: O

Total Length: 104

Identification: OxO001 (1)

Flags: 0x04 {Don't Fragment)

Intermet Protocol, Src Addr: 192.168.2.121 (192.168.2.191), Dst Addr: 122.163.2.210 {122.168.2.210)

Reserved bit: Not set
Don™t fragment: Set

.0, = More fragmeants: Mot sat
Fragment offset: O

Protocol we
need to write
the rule for

Time Lo live: 255
Protocol: LDP (0x11)
Header checksum: Oxfd4al {correct)

Source: 192.168.2.191 (192.16

Port DMNS
responsc was
scnt o

1
Destination: 192.168. 92 168.2.210)
User Datagram Protocol. Src Port: domain (53). Dst Poct: S
Source port: domain (53)
Destination port: 65535 (65535)

Length: 84
Checksum: OxdShi (correct)

Domain Mamese System (response) -i—

Transaction 1D: Ox4085

Flags: Ox81f0 (Standard query response,. No error)
.- = Responsa: Massage is a responsea

Indication
thart it is a
DINS responsec

.. = Opcode:; Standard query (0)

= Authoritative: Server is not an authority for domain

= Truncated: Message is not truncated

= Recursion desired: Do query recursively

= Recursion available: Server can do recursive queries
= Z: reserved - incorrect!

Cuestions: 1
Answear RRs: 1
Authority RERs: O
Additional RRs: O

= Reply code: Mo error (0)

Queries
wnre_securityfocus. com: type A, class inet
Mame: www . securityfocus.com =

= Answer authenticated: Answear/authority portion was authenticated by the server

Type: Host address
Class: inet
ANSwWers
wnne securityfocus.com: type AL class inet. addr 205.206.231.15
Mame: www securityfocus.com
Type: Host address
Class: inet
Time to live: 49710 days, 2 hours, 54 minutes, 6 seconds
Data length: 1024
Addr: 205 206 231 15

o000 00 O0d 61 02 bS 3a 00 01 f4 ed 3a a4 08 00 45 00
Q210 00 &8 00 01 40 00 ff 11 T4 al1 <0 a8 02 bf P

Q020 02 d2 00 35 ff ff 00 54 d5 bO 40 8 o001 LS. T.&E.. ...
0030 0001 0000000003 77 FP 7F7rO0d F3ES 63 7S 72 ... WMWY SEC LT
Q040 69 74 F9 66 6f 63 75 73 03 63 &7 6d 00 00 01 00 ityfocus.com....
0S50 0103 F7 77 77 0d 73 B85 683 75 72 689 74 79 66 6f _www. securityfo

Adlleged DINS
query”

Payload data
of interest

Figure 5.16: Ethereal view of DNS query response from Xprobe2 Scan

155

The snort rule for this packet is a little more involved than the others we have
presented so far. We have to search for data sent to port 65535 starting and

stopping at a specific location in the payload as illustrated in the rule below.

alert udp any any ->any 65535 (msg:"UDP - Unsolicited DNS response”; \

content:"|03 77 77 77 0d 73 65 63 75 72 69 74 79 66 6f 63 75 73 03 63 6f 6d 00["; \
offset:7; \

depth:56; \
sid:1000053; \
rev:1;)

This rule states: Alert on any UDP packet received from any location and port to
any location and port 65535 in the internal network (alert udp any any ->any
65535) with the content :"|03 77 77 77 0d 73 65 63 75 72 69 74 79 66 6f 63 75 73
03 63 6f 6d 00|" in the payload at an offset of 7 bytes (offset:7) and depth of 56

bytes (depth:56). If this rule is activated it will show the message “UDP -

Unsolicited DNS response” in ACID.

156

Packet 7:
This isa TCP SYN packet sent to port 65535. The packet looks like the

following:

Intermet Protocol, Src Addr: 192.168.2.191 (192.168.2.191), Dst Addr: 192 168.2.210 {(192.168.2.210)
Wersion: 4
Header length: 20 byles
Differentiated Services Field: Ox10 (DSCF OxO4: Unknown DSOCP; ECH: OxO00)
2001 00.. = Differentiated Services Codepoint: Unkmown (Ox0d)
e DL = ECN—Capable Transport (ECT): O
0= ECM-CE: O
Total Length: 60
Identification: Ox89%9a (I52268)
Flags OO (Dron't Fragrment)
--. = Reserved bit: Not set
.1.. = Don't fragment: Set Protocol we
.0, = More fragments: Mot set need to write
Fragment offset: O T
Time to live: 64 thelsulsHo,
Protocol: TCP (OxO6)
Header checksum: OxZ2a30 (correct)

Source: 192.188.2.191 (192.1688.2.191

Destination: 192.168.2.210 (19
Transmission Control Protocol,
Len: O

Source port: 39561 (39561)

Destination port: 65535 (65535 pa—

—= =10
rc Port: 38561 (39561), Dst Port: 655356 (65535). Saeq: O, Ack: O,

Suspicious

Saeqguance Nnumber: O (relative sequence NnuMmbar) destination
Header length: 40 byles port
Flags: 0x0002 (SYM)

D... = Congestion
ECMN-Echo: Mol set
Urgent: MNot sat
Acknowledgmeant: Mot set
FPush: Not set
Resat: Mot set TCP SN
. = Syn: Set Flag enabled
-0 = Fin: Mot set
Wlndorw size: 5840
Checksum: OxabZ4 (comect)
Options: (20 byies)
Maximum segment size: 1460 bytas
SACK parmitted
Time stamp: tsval 649450, tsecr O
MNOP
WWindow scale: O (mulfiply by 1)

Reduced (CWR): Mot set

Figure 5.17: Ethereal view of TCP SYN to port 65535 from Xprobe2 Scan

The rule for detecting this packet would be:

alert tcp any any -> any 65535 (Msg:"TCP SYN to port 65535"; flags:S,12; sid:1000053,;
rev:1;)

This rule states: Alert on any TCP packet received from any location and port to
any IP and port 65535 in the internal network (alert tcp any any ->any 65535)
with the SYN flag set (flag:S,12) and ignore reserved bits 1 and 2. If this rule is

activated it will show the message “TCP SYN to port 65535 in ACID.

157

This completes our rule set for Xprobe2. Table 5.8 below lists all the rules with the

corresponding packet number.

Packet #

snott Rules

alert icmp any any -= any any - (msg:"ICMP Echo Request fram a Unix Type box"; &
content:"[2021 222324 2826 27 2829 23 2h 20 2d 20 230 31 32 33 34 34",
itype:B; icode:; offset:32; =id: 1000008; rew.1;)

alert icmp any any -= any any (msg;"ICMP TYPE 8 with invalid CODE 123

2 and invalid TOS", itype:B; icode:123; tog:b, sid: 1000000123 rev.1;)
3 |alerticmp any any -= any any (msg:"ICMP TimeStamp Request”; itype:13; icode:D; sid: 100000013 rew1;)
5 alert icmp any any -= any any (msg:"ICMP Address mask request”; \
itype:17; icode:0; sid: 100000017 rev:1;)
6 alert icmp any any -+ any any (msg:"ICMP Information Request - 4
used for diskless warkstations”, itype:15; sid: 100000015; rev1;)
alert udp any any -= any 65535 (msg:"UDP - Unsolicited DNS response”;
content:"|03 77 77 77 0d 736563 757263 74 79 BB 663 75 73 03 B3 664 00"
offset:7:
7 depth:ah; 4
sid: 1000053;
rev. ;)
8 |alert tep any any -> any 65635 (Meg:"TCP SYN to port B5635" flags: 3 12; sid 1000063; rew.1;)

Table 5.8: Complete Rule Set for detecting Xprobe2

Detecting TCP/IP/UDP reconnaissance: NMAP version 3.0

As mentioned in Chapter 4, NMAP has a lot of options and the

combinations of those options are extensive, so we decided to analyze only a few as

listed in Table 4.9. In addition to the extensive option combinations, each scan type

sends out over 1600 packets. Therefore, for practicality and simplicity we sampled

traffic of each scan technique and extracted key characteristics which we will use to

develop the Snort rules.

158

SYN Scan: nmap —sS <target>
As illustrated in Figure 4.25, many of the fields are random which

correlates with Table 5.9 below,

nmap -5 <target>
Field “alues
Window Size | Random
arc Port Fandom
Dst Port Random

ACK 0
mEeq 1
Len 1
set Flags S

Table 5.9: Nmap SYN Scan Characteristics
The 2 fields in red shown in Table 5.8 are the key characteristics for developing a
Snort rule for this type of Scan. Since there are so many tools out there that can do
a SYN scan, we developed the rules to be as generic as possible. The rule for a this

type of scan looks like the following,

alerttcp any any ->any any (msg:"SYN Scan is occuring”; flags:S,12; ack:0; flow:stateless;
threshold: type limit, track by _src, count 10, seconds 60; sid:10000001155; rev:1;)

This rule states; Alert on TCP packets coming from any source IP and port to any
destination IP and port (alert tcp any any -> any any) of the internal network with
the SYN flag set ignoring reserve bits 1 and 2 and with an ACK of 0. Also, log

only ten packets after the initial 60 seconds of detection from the same source IP

159

(threshold: type limit, track by_src, count 10 , seconds 60). This rule will also
detect a TCP ping using SYN packets.
TCP Connect () Scan: nmap —sT <target>

The rule created for the SYN scan will also detect the TCP Connect because
TCP connect contains the same characteristics.
FIN Scan: nmap —sF <target>

The scan characteristics are almost the same as the SYN scan with the
exception that the flag set is the FIN flag instead of the SYN flag. Therefore the

rule for detecting a FIN scan would be the following,

alerttcp any any ->any any (msg:"FIN Scan is occuring"; flags:S,12; ack:0; flow:stateless;
threshold: type limit, track by _src, count 10, seconds 60; sid:10000001156; rev:1;)

This rule states the same thing as the TCP SYN rule explained earlier with the
exception that this time it’s a FIN scan.

The overall process is the same for the rest of the scans. The only difference
between them is the TCP flags for the XMAS, ACK and Null scans and protocols
for the IP and UDP scans. Therefore we will only show the scan characteristics

table for each scan and the corresponding rule.

160

XMAS Scan: nmap —sX <target>

nmap -s4 <targets
Field “Yalues
Window Size | Randormn
i Port Random
Ost Port Random

ACK 0
el 0
Len 1

Set Flags FPU

Table 5.10: Nmap XMAS Scan Characteristics

alert tcp any any -> any any (msg:"XMAS Scan is occuring”; flags:FPU,12; ack:0; \
flow:stateless; sid:10000000156; rev:1;)

Null scan: nmap —sN <target>

nrmap -shl <target>
Field “alues
YWindow Size | Random
=ro Port Fandorm
Dst Port Fandorm

ACK

=eq

Len
Set Flags

== o] fum]]

Table 5.11: Nmap Null Scan Characteristics

alert tcp any any -> any any (msg:"NULL Scan is occuring"; flags:0; ack:0; \
flow:stateless; sid:10000000158; rev:1;)

161

ACK Scan: nmap —sA <target>

nmap -sA <target>
Field “alues
YWindow Size | Fandom
Sre Port Randorn
Ost Port Fandom

ACH 1]
=El 0
Len 1
Set Flags A

Table 5.12: Nmap ACK Scan Characteristics

alert tcp any any -> any any (msg:"ACK Scan is occurring”; \
flags: A, 12; ack:0; \
flow: stateless; \
sid:10000000158; rev:1;)

IP Protocol Scan: nmap —sO <target>

The technique to detect this kind of scan is a little different. ACID is limited
to displaying TCP, UDP and ICMP traffic only. Also, Snort rules are limited to
monitoring only a subset of all fields. Therefore, we needed to develop what are
known as Berkeley Packet Filters (BPF) [39] [40] [142] [158]. Using BPF filters
we can look at any fields of incoming packets and can be used with either Snort or

tcpdump. The BPF filter for this type of scan would look like the following;

Snort -v “(ip[3] = 20)’ -L ip_protocol_scan.cap

162

The filter above will log all IP packets with a total header length to the file
ip_protocol_scan.cap. When we ran this scan against this rule the results were as

follows,

—=snort -weaeX "(ip[3) = 20)
Funning in packet dump mode
Log directory = fSwarflogdsnort

Initializing Network Interface ethO

——== Initializing Snart =——
Inmitializimg Cutput Plugins!
DCecoding Ethernet on interface ethD

——== Initialization Comglete =——

== Snort! =<"-

Wersion 2_1.0 (Build 9)

By Martin Roesch (roeschi@sourcefire. com, www. snort.org)

11/09-00:57:1 5052191 -10:BS5:ES-ASC0D - C:FOSEB:97:-TE typeae-0x800 laa 023
10,000,104 -> 1000210 CRTP TTL:46 TOS:0x0 ID:6622 |plLen:20 Doymben:20
D=0000:- 00 C0 FD 5B 97 FTEOD 10 BS ES AS CO Q2 00D 45 00 __ [E.
Ox0010:- 00 14 154 24 00 00 2E 7E SD OF 05 00 00 &8 0w 00 .57~ ___h..
Q=0020: 00 D2 oo

DHGDZD: oo D2

=t=4=+=4=+=4=

D=0020: 00 2

===t =+ =t + =+ t=+ =+ =t

0000 DO C—Cl FO 5B o7 TE 00 10 B5 ES A5 CO 08 00 45 00
D=0010: 00 14 3F VE 00 O ZE 95 37 9E O0A 00 00 62 08, DD
0=x0020: 00 D2

[—— PR P ' PR PR b= P—— " = PR ' " PR PR—

11/089-00:57:15.054138 - 10:BSES-ASCO -> ICO:FO-SB:97V-TE t© p
100000104 = 10.0.0.210 FC TTL:46 TOS:0x0 ID:44917 lplen:20 Domlen:20
Ox0000: 00 CO FO 5B 97 TE 0D 10 BS ES AS CO 08 00 45 00 [-__ -E.
Ox0010: 00 14 AF 7S 00 00 Z2E 85 C7V BG 0A QD OO 68 00 00 ___w_____ .
DOx0020: 00 D2 ..

Figure 5.18: BPF filter IP protocol scan results
Although we will be presenting results in the next section, we thought it would be
better to present the results for this particular scan because the results can not be

displayed with the current version of ACID.

163

UDP Protocol Scan: nmap —sU <target>

nmap -sl) <target
Field Yalues
src part | Random
dst port | Random
dsize 1
hlen 28

Table 5.13: Nmap UDP Scan Characteristics

alert udp any any -> any any (msg:"UDP Scan is occuring"; dsize:0; threshold: type \
limit, track by_src, count 3, seconds 60; sid:10000000157; rev:1;)

This Snort rule can also be writing using BPF, it would look like this;

Snort —v “(ip[9] = 0x11 && ip [3] = 28)’

This completes our Nmap ruleset, Table 5.14 below summarizes all the

rules with the corresponding scan type.

Scan Type Short Rules
SYN alert tcp any any -> any any (msg:"SYN Scan is occuring”; flags:3,12; ack:0; flow: stateless; threshold: type
limit, track by src, count 10, seconds B0; sid:10000001155; rew:1;)
TCP Connect() Sarme as SYN
FIN alert tcp any any -» any any (msg "FIN Scan is occuring”; flags:5,12; ack:0; flow: stateless;
threshold: type limit, track by _src, count 10, seconds B0; sid: 10000001155, rev:1;)
alert tep any any -> any any (msg"*MAS Scan is occuring”; flags:FPUZ; ack:D;
whAS flow:stateless, sid: 10000000156; rev.1;)
alert top any any -> any any (msg:"MULL Scan is occuring”; flags:0; ack:d; \
MLILL flow: stateless, sid:10000000155; rev:1;)
alert tcp any any -> any any (msg:"ACK Scan is occurring”; A
flags: A, 12; ack:0; %
ACK flow: stateless; \

sid: 10000000155; rev.1;)

IP Protocol Scan

Snort —v (ip[3] = 200 L ip_protocol_scan.cap

UDPF

alert udp any any -= any any (msg:"UDP Scan is occuring”; dsize:D; threshold: type
limit, track by_src, count 3, seconds 60; sid: 10000000157, rev:1;)

Table 5.14: Complete rules set for detecting Different scan types

164

Detecting ARP reconnaissance: ARP Poisoning (Ettercap)

ARP poisoning, Ettercap’s reconnaissance method, can not be detected
using ACID and Snort because they do not operate in layer 2. However, Ettercap
can be used to detect other ARP poisoners running on the local net. We ran

Ettercap on a Windows XP box and poisoned one of our mock FIT systems. Then

we ran Ettercap on a Linux box and scanned the network for other ARP poisoners.

Figures 5.19 (the attacker) and 5.20 (Ettercap as an ARP poisoning detection tool)

illustrate our experiment.

S ettercap NG-0.7.1 9 [= 3

Start Targets Hosts Wiew Mitm Filkers Logging Plugins

Statistics X

Cornections X Host List X |

P Addressl MAC Address | Description

i0.0.0.1 00:01:02:48:85:A0 netsec
10,0025 00:08:74:29:18:51 war-room.netsec
10,0026 00:0 5178 POULSEN
10.0,0,104 00:10:BS:ES:AS:C0
10.0,0,252 00:05:5E:DE:11:40

Delete Host Add ta Target 1 Add ko Target 2

Fosts added Fo the hasts s,
WRP poisoning vickins:
GROUP 1 : ANY (all the hosts in the list)
GROUP 2 @ AMNY (all the hosts in the list)

Lnified sniffing is not running. ..
(karting Unified sniffing...

£

Figure 5.19: Attacker

165

"8 2:10.0.0.104 - black-pit - S5H Secure Shell

Ele EdR Vew Wndow He |
H SR 82 DRAE A IO D &K
| £ Quickconnect -_'tmﬂas|

r ettercap 0.6.b |
|

T § hosts in this LAN (10.0.0.104 : 255,255.255.0) 1
10.0.0.104
2) 10.0.0.1 z) 10.0.0.1
3) 10.0.0.25 3) 10.0.0.28
4 10.0.0.26 4) 10.0.0.26
5) 10.0.0,36 5) 10.0.0.36
&) 10.0.0.210] 10.0.0.210
ARP Paoisoning Activity
Detected
|
10.0.0.210 is replying for 'HI.iI_n.I.I

T Your IPF: 10.0.0.104 MAC: 00:10:B5:E5:RA5:C0 Iface: eth0 Link: HUB
I Host: Unknown host (10.0.0.104) : 00:10:B5:E5:R5:C0

y

I

l:l
Connectadtto 10.0.0.104 55HZ - aes12B-cbe - hmac-mdS -none. [141x39 | [[oM

Figure 5.20: Detecting ARP poisoning with Ettercap

ARP poisoning is rather simple to counter. Since ARP poisoning relies on the
ability to dynamically modify ARP tables, the only thing that needs to be done to

defeat this type of reconnaissance is setting static ARP entries in the systems ARP

table.

166

5.4 Applying the new Snort Rules: Experiment results

Now that we developed the necessary rules for detecting Xprobe, Nmap and
Ettercap type reconnaissance, we will now discuss how we tested the rule sets in
two distinct live environments and our end results. The configuration of our live

environments is illustrated in Figures 5.20 and 5.21.

Internet
Outhound= —————— === = ——
Traffic i_ ________ IDS System
| | i
|
|
| \
| Inbound
| Traffic
| I
| r===]
! —m SMC Router
| |
| |
EtherTAP | |
P
o
P
I I I I B

Internal Network

Figure 5.20: Test Site one configuration

167

Internet

IDS System)|

| Tratfic

I

: |

Outhound |

|

Fiber |

Inbound

Traffic

HP Managed
Switch

EtherTAP

Internal Network

Figure 5.21: Test Site two configuration
The network environments in Figures 5.20 and 5.21 are composed of four major
parts:
1) The Internet
2) The internal network
3) IDS system running Snort

4) Passive Ethernet TAP

168

All the components listed above are typical in most infrastructures with the
exception of the passive Ethernet TAP [154]. An Ethernet TAP is a device which
can be used to monitor traffic stealthily. The system connected to either of the Taps
can only read network traffic; therefore it makes the system connected to it
completely immune to any type of targeted attack or reconnaissance. Figure 5.22
illustrates the wiring for an Ethernet cable, Figure 5.23 illustrates how the ether
TAP is wired and Figure 5.24 illustrates a closer look at the wiring of the two TAP

ports.

RJ4A5 Pin# | Wire Color || Wire Diagram | 10Base-T/100Base-TX Signal | 1000Base-T Signal
1 White/Orange | EE——— Transmit+ Bl DA+
2 Orange —— Transmit- Bl DA-
3 White/Green || E—Z2 Receive+ Bl DE+
4 Blue — Unused Bl DC+
5 White/Blue || EE—= Unused Bl DC-
§ (oreen E— Receive- El DB-
7 White/Brown || EE—a Unused Bl DD+
8 Erown — Unused Bl DD-

Figure 5.22: Cat 5 wiring pin out for 10baseT [155]

169

1iins
54

I_I

|

(anfnujjnn
5468721

- eepe——

Il

r
|

Figure 5.23: Ethernet TAP wiring [154]

Host \

PIN #3
PIN #6

PIN # 1
PIN # 2

TAP A TAPB Host
— —
L — L —
PIN #3
PIN #6
PIN # 3
PIN # 6

PIN #3
PIN #6

PIN # 1
PIN # 2

Figure 5.24: Close up of TAP port wiring

The reason why the system is stealthy when plugged into the TAP ports of the

Ethernet TAP is because the only pins that are used are the Receive+ (Pin #3) and

the Receive- (Pin#6) of the RJ45 Ethernet connection, as illustrated in Figure 5.23.

170

Because of this configuration the traffic can only be read in half-duplex. Meaning
that Tap A only reads the traffic going from the private network to the internet and
Tap B reads in the traffic that comes in from the internet to the private network.

Tap B is the Tap we used for connecting our Snort system.
Applying Xprobe2 Rules:
After we completed the rules, we enabled them on our IDS in each of our

live networks. First we cleared all detected attacks from the ACID console so we

can easily read the results, as illustrated below in Figure 5.25.

Added 0 alert(s) to the Alert cache

Queried on @ Wed Novermber 03, 2004 02:31:04
Database: snort@192.168.2.102 (schema version: 108)
Time window: no alerts detectad

Sensors: [Traffic Profile by Protocol
Unique Alerts: 0 (0 categories) TCP (0%)
Total Humber of Alerts: 0

+ Source |P addresses: 0 UDP [0%)

+ Dest. IP addregses: 0

+ Unigue I links 0 ICMP {D%)

+ Source Ports: 0
< TCP (D) UDP (D
+ Dest pms(n) (0 Portscan Traffic 0%)

s TCP (0} UDP (0}

* Search
* Graph Alert data

+ Snapshot
+ Maost recent Alerts: any protocol, TCP, UDP, ICMP + Most frequent d Alerts
+ Today's: alerts unique, listing; IP src/ dst
+ Last 24 Hours: alerts unique, listing; IP src / dst + Most Freguent Source Ports: any , TCP, UDP
+ Last 72 Hours: alets unique, listing; 1P sre / dst + Most Frequent Destination Ports: any , TCP , UDP

+ Most recent 15 Unique Alerts
a + Most frequent 15 addresses: source, destination

+ Last Source Ports: any , TCP |, UDP
+ Last Destination Ports: any , TCP |, UDP

¢ Graph alert detection time

+ Alert Group (AG) maintenance
+ Application cache and status

[Loaded in 0 seconds]

Roman Danyliw AIrCERT

Figure 5.25: Clear ACID console
Once we made sure that ACID was not showing any attack alerts, we then scanned

the target system with Xprobe2 from a remote location. Figure 5.26 illustrates that

171

Snort has detected some illegitimate activity based on the enabled rule set. When
we take a closer look at what was detected we find that all the rules we have

enabled have been activated

i Analysis Console for Intrusion Databases

& TCP 1) UDe (1)
+ Dwst Pors: §
= TCP (1) VOF (1)

[+ Swarch
s Graph Alen data

 Smapshat

iddad & alenis) to the Alerd cache
Qweriod on Wes Nevmber 03 2004 02 36 51 Inappropriate
PO bl e R0t 190 168 2 V00 (wchaama versian: 106) - L.
Tiene window: [2004. 1100 03 3639 - (20041703 02 35 405] Activities
Semsorszi ” Traffie Profile by Protocol detected

e Alerts § 1 categories | TCP (17%
Total Mambue of Al : TCP

* Source IP addresses 1 WDE {177%) T

+ Dl & addradsas 1 l_l DP

» Unique B° Bnks 3 ICMP #6577%) ICMP

+ Source Ports 2 e

Portscan Trafc %)

* Most resant Alaie any
= Today's: slerts usigun, q
® Lagt 24 Hours: alens wnigue, stisg; 1P s § dst
Last 72 Hours: alens anique, lksting, P soc § dst
* Mgt swcent 15 Unigue Aless

- Mol froguost S Alerts

® Mol Fraquent Source Pods any , TCP , LDP
* Mgt Fraquent Destisatan Pots amy , TOP | LIDP

= Mol requent 15 addresies sourc

o_ destination

* Lagl Source Pods: any , TCP |, LDP
& La#t Destinateon Pads amy TCP UDP

[+ Graph alert delection Hme

s Alort Group (AG) malnionance
e Application cacho and sanes

[Loaded in 0 secands]

H Aounam Danylbe ATERT

Figure 5.26: Detection of suspicious packets

ACID

Query Results

Added O alert(s) to the Alert cache

Queried DB on : Wed November 03, 2004 02:37:57

TCP Rule for
detecting SYN
packets to port

Home

Search ~ AG Maintenance

[Back |

p (355 ha .
any been activited * Unigue Alerts (classifications)
+ Unique addresses: source | destination
— it + Unique IP links
Payload Criteria il + Source Port: TCP | UDP
* Destination Port: TCP | UDP
+ Time profile of alerts
Displaying alerts 1-1 of 1 total
0 D
D gha P -
dd dd oto
I #0-(36) [snort] TCP SYN to port 65535 2004-11-03 02:36:40 163.118.233.1:2323 24.170.171.110:68535 TCP
‘ Action

I { action }

=l

Selected | ALL on Screen | Entire Query |

[Loaded in0 seconds]

Roman Danyliw AirCERT

Figure 5.27: TCP rule for detection SYN packets to port 65535 is activated

172

Figure 5.27 illustrates the activation of the TCP rule we developed for packet 7. We
take a look at the detail packet and detection information to verify that it is our rule,

this is what we found,

5 - 6] 2004-11-03 02:53:43 [[snort) TCP SYN ta part 65535 || | Triggered Rule

|2D.2D.2D.20 | ethz | none

none
Group

CETE e e 2 M 2 e G

[163.118.233.1 |[24.170.171.010] & || s [16 | s0 |[a77sa o 41 || 18035

Source Name Dest. Name
FQDM
| Unable to resolve address | user-Ocalare,.cable.mindspring.com

none

source| dest UIAIPIRIS
ort ort RICIS|S|Y chksum
P P GKHTN

2343 6‘5535‘l 1243568 |3131580513 | 10 5240 12175
MSS 2 ose4 TCP SYN
Flag enable
onti SACKOK u}
ptions
TS =] |DDDABDQIDDDDD‘D§B\\ Destination
NOP u} port in
stion
WS 1 | oo questio

Payload none

Figure 5.28: Detailed view of TCP SYN Packet

Under “Triggered Signature”, in Figure 5.28, we can see the rule message we gave

our rule. Also, in the TCP section we can see the TCP flag and destination port we

were monitoring with our rule.

173

We then viewed the UDP activity illustrated in Figure 5.26 as we did for the
TCP traffic. We found that the rule we developed for detecting packet 6 was

triggered, as shown in Figure 5.29.

ery Results =

Search | AG Maintenance

[Back]

Added O alert(s) to the Aler cache

Queried DB on - Wed November 03, 2004 023314

any Triggered Rule * Sensors
ay # Unique Alerts { classifications)
. + Unique addresses: source | destination
& + Unique IP links

any ¢ Source Port: TCP | UDP

¢ Destination Port: TCP | IDP

+ Time profile of alerts

Displaying alerts 1-1 of 1 fofal

oUrce L
L gnature amp -
adre Ude L0
#0435 [snor] UDP - Unsolicited DNS response 20041103 02:36:40 163.116.233.1:2322 ATAT1I0655% UpP
Action
|{acliun| jl Selected | AL on Screen | Enfire Query |
[Loaded in 0 seconds) Pl S
question

Roman Danyliw AirCERT

Figure 5.29: Rule for Packet 6 triggered
Here we can see that our UDP rule set was activated. If we take a closer look at the

triggering packet as we did for the TCP packet in 5.27, we find the following;

174

5 SRS ‘2004 11-03 02:53:43 |[snurt] UDP - UnSDIlQ_tE‘E_J‘DNS response

‘20.20.20.20 | ethz ‘ none

none
Group

R T 0 P |]) A

[163.118.233.1 |[24.170.471.110[4 |[s 0 [104 [1[o [o [e3z2] 1essa

FQDMN

Una.b!e to resolve address ‘user Ocalare.cable.mindspring.com

— ’_ Payload
ptions none data in

Destination ques(i(}n
source portjdest port L= portin
| 22 | 69535 24 question
length = 76
000 @ 06 C4 81 FO 00 01 00 01 00 00 OO0 00 03 77 77 77 / vovviniianas W
BEOET| (010 @ 0D 73 65 63 75 72 69 74 79 66 6F 63 75 73 03 6 Zecurityfocus.c

0zZ0 : &6F 6D 00 OO 01 00 Dlr_DS e 7 7T DEdTE es 63 75 Tom...... W . Sec
030 52 69 74 79 66 6F 638#5 '?3 I:IS 63 EF ED DI:IJ 0o o1 rityfocus.com. ..

040 DD 01 FF FF CIr CE 04 00 CIr CE E7 OC i i ea

Figure 5.30: Unsolicited DNS response
The triggered rule has the message we assigned to the rule, the destination port
(65535) in question is the same as we designated in our rule and the payload we are
looking for is also displayed. All this confirms that our rule is working properly.
We then analyzed the ICMP traffic, and again we found rules with our

messages in the signature column, as illustrated in Figure 5.31.

175

Added 0 alet(s) to the Aled cache

Querigd DB on : Wed Nowerrber 03, 2004 025354

Summary Statistics

Meta Criteria [EGY + Sensors
P Criteria any . X + Unique Alerts (classifications)
, Al C'_r our ICMP Rules + Unique addresses: source | destination
' i are triggered, except for | |¢ Unique IP inks
F'aylnad Criteria | th ot + Source Port: TCP | UDP
g Information Request
g + [Destination Port; TCP | UDP
+ Time profile of ales

Displaying alerts 14 of 4 total

] Signature Timestamp Sauce Dest Layerd
Address Address Proto

[#044) [snor] ICMP Addrass mask request 2041103 025343 163.116.233.1 HATATL0

[#1452 [snort) CMP TYPE S wih inlid CODE 123 and invaid TOS DML BB M0 P

T 263 [snor] P TimeStamp Request MUNOI0E GLBZN WANATAD WP

[#3454 [snort] ICMP Echo Request fom a Unix Type box 2041103 26342 163.118.233.1 HANANM0 ICMP

Action
[acton) E| Selcted | ALLon Sreen | Ertie Ouery |

[Loaded in 0 seconds]

Figure 5.31: ICMP Rules triggered

All of the rules were triggered except for one, the ICMP Type 15
Information Request packet. We tested the rule in several environments but were
not successful at getting it to trigger when Xprobe2 was used. It seems that Snort
simply drops this kind of ICMP packet. Figures 5.32, 5.33, 5.34 and 5.35 illustrate
the details of the packets that were detected and the key identifiers that triggered

the rule.

176

|5 - 10 |EDD4—11—03 06:11:49 |[sn|:|rt] ICMP Address mask request

==

Meta

[rame [neorace] ter

|20.20.20.20 |

ethz

| nohe

Alert
nong
Grl:lup

M~ Rule message we

assigned

source o sesisier [voTuar erfroslengo] 0 Tregelorsa Tloncour

163.118.233.1 |[24.170.171.110][4 ||

5 | o || 32 |[4ss27] o

[o |41 | s3vzs

FQDMN

| Unahle to resolve address |user Ocalare.cable. mindspring.c

Optluns nowne

ICMP TYPE in
question

ICMP

type

codechecksum mm

|(1T-’) Address Mask Request |(D) u] |

G067 1

Payload

ooo

length = &

0z 00 00 0O o0 00 OO oo

Figure 5.32: ICMP Type 17 (Address Mask Request)

C —T—

Triggered Signature

5 -8 |QDD4 11-03 05:11:48 |[sn|:|rt] ICMP TYPE 8 with invalid CODE 123 and invalid TOS

rame Jircertace er]

|20.20.20.20 |

ethz

| nohe

Alert
Group

none

Rule message we
assigned

CEC I) e Ut

163.118.233.1 [[24.170.171.110] 4 ||

5 84 |[3m403] o

[o |41 z7ma7

FQDN

Unable to resolve address |user Ocalare,cable.mindspring.com

ICMP

mmmw I

[c2) Echo Request|[f123) 123 24see— ||

ICMP TYPE and Code
in question

Payload

length
ooo 41
o10 10
oz0 20
[npcyn] 30

= 586

SE ALE
11 1z

Il 3z

=i
17
27
37

05 09 0A OF OC OD OE OF
i 19 1a 1F 1< 1D 1E 1F
28 29 ZA 2B 2C zZD EZE ZF

PTHES S () R, LS
01234567

Figure 5.33: ICMP Type 8 with invalid Code 123

177

Meta

|5 -a |2DD4—11—03 0g5:11:48 |[snurt] ICMP TimeStamp RequeiE

m interface | filter
Sensor

|2D 20.20.20 | ethz | Hoke

Alert
nong
Group

Rule message we
assigned

TR T e 2 G

[163.118.233.1 [24.70.071.110 4 [& o | 40 [ams27| o | o [a1 [3@y

FQDN

Unaba’e to resolve address |user—DcaIare.cable.mmdsprmg.com

IDI'I 5 nohe

ICMP TYPE in

ICMP

o
o
=
o
o
o

question

length = 16

ooo @ 02 00 00 00 00 00 EA 52 00 00 00 00 00 oo oo oo

Figure 5.34: ICMP Type 13 (Timestamp)

rMeta

|5 -7 |2EID4—11—D3 05:11:48 |[snort] ICHMP Echo Reque%\from a Unix Type box

|20.20.2D.2EI | ethz | none

[rame [inortace iter | N

Rule message we
assigned

none
Group

MEM@M

[163.118.233.1 |[24.170.471.110] 4 g4 |[z1770] o | o || 41 [eo430
Source Name Dest. Name
FQDN P—
Linable to resolve address |user—DcaIare.ca 1CMP ing.com
TYPE in
question Data of
interest
romp [seq #
(El) Echo Regques 39554
length = 56
SN 000 ;41 SE AR 11 00 OC 84 snmﬁ'ﬁé:h}::dﬁ'ﬁf;:h_p_dﬁ'ﬁh Boo.o... J
b 010 : T0TTTYE TETYR WS TETIV A4S 180 1K 18 I8 I LE TF |i.ie.........
020 : 20 21 22 23 _24 25 26 27 28 29_2ZA 2B 2C_2D 2E 2F_| !"H#$%&' (1 %+,-./
030 & ED 31737 3% 54 35 ?é"a'? """"""""""""""" T D1z34E87

Figure 5.35: ICMP Type 8

178

With the exception of the ICMP Type 15 packet, the experiment results were

positive. Figure 5.36 below illustrates the scans and the rules which apply to them.

Applying Nmap Rules:
We cleared the ACID console again and ran Nmap against our test
environments. Our results were as conclusive as those for Xprobe2. Figures 5.36-

5.41 illustrate our results.

6 -3 |EDD4711705 02:10:24 |[snort] ACK Scan is occuring

+——_ | Rule message we

assigned
ST e g

1D 10.10.10 | ethi | none

Alert Src IP is the same
Group |G | __—| inallpackets

Sensor

Source edar] destedar [verliar Len]Tos|lengi] 1D |nags]oftseq TTL]chkeum
[163.118.233.1 [*ZdA10073 [4 | 5 [o | 40 |sioes| o | o [=21 [14612
FQDN
|Unab.fe to resolve address |user—Dc:E;sDZQ.cable.mindspring.com — Dség’:;tosﬁ?re

[oreor: TN

source| dest |R

port port |1

2852 731 [% . [5omeo1408 [7onDE9EE0 | & o [4096 | o [4=o06

‘m nons ‘ TCP Flag in

question
Payload
nohe

Figure 5.36: ACK Scan Detected

179

[ramo [imtorrace] rer |

|20.20.20.20 | ethz | none

aAlert
nones
Group

|5 - 6o |2004—11—05 005242 |[sn|:|rt] FIN Scan is occuring ‘-/ assigned

] in all packets

Rule message we

Src IP is the same

163.118.233.1 | 24.1100.73 || 4 || 40 [1187| 0o o |32 | 51714J

Dest. Name

Dst Ports are
Random

Source Name
FQDN

Unable o resolve address |user OcEs029, caleng.cam |

\Wone |

TCP Flag in
question

Figure 5.37: FIN Scan Detected

I

[rame [intorrace] riter |

|2D.2D.2D.2D | ethz | none

Alert
nong
Group

|5 - 54 |2EID4—11—D4 23:57:08 |[snort] MULL Scan is occuring g / assigned

Rule message we

Src IP is the same

|] in all packets

| 163.118.233.1 241100?3| [= 4n 3o

i o [o |15 | 63323

Dst Ports are
Random

FQDMN

1
| Unable to resofve address |user—DcﬁSDZQ.cathng.cam |

oo

2048 61369

No TCP Flags set

Figure 5.38: Null Scan Detected

180

|5 - E7 |2004—11—05 o0:19: 57 |[snort] S¥M Scan is occuring

oo Jirtorrace] rier]

|20.20.20.20 | eth2 | none

Alert
none
Group

O NPT 0 e N) D

| 163.118.233.1 || 24.110.0.73 | 5 40 |[vezo| o o | 13 | szzas

Source Name Dest. Name
FQD
| unabliz to resolve address |user—Dc§sD29 cable.mindspring. com
\@Ww |

source] dest 3 'I:
port port N N

[z604 [%] [z928861704] o 1024 | o [s=200s

Figure 5.39: SYN Scan Detected

5 - 42 |2004-11-04 23:53:04 |[snort] UDP Scan is occuring "x Rule message we

assigned
[name | interface | fiter |

Sensor
20.20.20.20 ethz none

Meta

Src IP is the same

Alert in all packets
nong
Group

source addrl destaddr Ver Iength m flags

[163.118.233.1 | 24.110.0.73 4 28 24159 0

FQDMN k

Unable to resolve address

Dst Ports are
Random

user—DcﬁsD g-table.mindspring.com

Optluns nane
dest port Iength
1045 385 | Payload is Zero
’ bytes
Payload
nong

Figure 5.40: UDP Scan Detected

181

|5 - 63 |2DD4—11—DS 00:22: 44 |[snort] ®MAS Scan is Dccuring‘

i Rule message we

[_name _]interface | filter | assigned

|ZD.ZD.2EI.2EI | ethz | none

Src IP is the same
none _—"| in all packets
Group

T 2 T D P M

163.118.233.1 4 24.110.0.73 | 4+ | 40 (13016 O Dst Ports are
Random
FQDMN
| Unable o resolve address user Dl:EnSDEQ [mlndsprmg com

[orom- S

2072 62611

Optiuns none ‘ \
TCP flags in

— ;
payload question
nohe

Figure 5.41: XMAS Scan Detected

182

Conclusions and Future work

Diverse network protocols and complex infrastructures make network
traffic analysis an extremely difficult task. However, the whole approach to
network traffic analysis is redefined when the burden of having to stay ahead of
hackers is added to the mix because now we have the added problem of intrusion
detection and prevention. The security industry as a whole has done a good job at
developing tools that react to attacks either as they are occurring or shortly after
they have occurred. However, one could argue that an attack which is detected
shortly after it has occurred, in essence, is a successful attack.

As we explained in Chapter 2, very little work has been done in the area of
network reconnaissance analysis and detection. Current tools and techniques focus
on the attacks themselves rather than what comes before the attack. They lack the
ability to analyze network traffic to detect hostile network reconnaissance to
anticipate and mitigate network attacks. However, if network reconnaissance
detection is performed in a methodical way, such as the four step technique we
have presented in this thesis, detection of malicious network reconnaissance is a

little easier and false positives can be kept at a minimum.

183

The four steps of our technique are as follows;
Step 1: Build an isolated network environment

As illustrated in Chapter 1 and 5, this involves setting up a group of
machines with various operating systems. It is recommended to setup the
environment to be as dynamic as possible so that it can be changed around to meet
the requirements of different experiments. This is necessary so that the production

environment will not be affected by the tools that are run during the experiments.

Step 2: Capture network traffic generated by the hacker tool
In this step we capture the traffic to a file using a protocol analyzer such as

Ethereal or tcpdump

Step 3: Analyzing the captured traffic

This is where most of the work is done and knowledge of the network
protocol the tool uses to do network reconnaissance is required. Using this
knowledge we identified key elements that can subsequently be used to detect the
tool being analyzed. It is important to understand that, although we used Snort in
our experiments, our technique can be applied to develop filters/rules for any

intrusion detection system, intrusion prevention system or firewall.

184

Step 4: Creating and testing the filters against a live environment for validation.

Using key elements we identified from the captured packets, we developed
filters/rules for Snort. This final step also involves setting up the chosen anomaly
detection system (IDS, IPS or firewall) on a live network with our new filters/rules.
We recommend that an ethertap be used to connect the system to the live network,
as illustrated in Figures 5.20 and 5.21, so that it can not be detected.

Once everything was properly set up and tested we ran the reconnaissance
tools against the live network to see if the new filters/rules will detect them. As we
demonstrated in results in Chapter 5, our rules did detect the tools every time. An
important thing to keep in mind is that all environments are different; therefore the
level of false positives will vary. It might be required to use features offered by
Snort, which weren’t covered in this thesis or development of BPF rules in order to
get the level of detection accuracy desired.

Also, during our research we found that creating Snort rules was extremely
time consuming; thus, we developed Oinker, a tool that makes it easier to write
Snort rules. Oinker also facilitates working with multiple files simultaneously.
Future work

Although we have proven that our technique has worked, we feel that it can
certainly be improved. The process of analyzing the traffic generated by the tools
can be time consuming, and in some environments, impractical. Since we know

how network protocols should behave based on the standards set forth by the

185

RFC’s, we believe the analysis of reconnaissance traffic and rule creation can be
automated. However, the work to automate the kind of analysis done for this thesis

may well be suitable for doctoral-level research.

186

References

[1] The Atlas of Cyberspaces, Historical Maps of Computer Networks
http://www.cybergeography.org/atlas/historical.html

[2] Internet Software Consortium (2003), “Internet Domain Survey”
http://www.isc.org/index.pl?/ops/ds/

[3] CERT (2003), “CERT/CC Statistics 1988-2003”
http://www.cert.org/stats/cert stats.html

[4] CSI/FBI (2003), “Computer Crime and Security Survey”, Computer
Security Institute,
http://www.gocsi.com/forms/fbi/pdf.jhtml

[5] S. Corcoran (2001), Peiter “Mudge” Zatko From the LOpht to the West
Wing
http://infosecuritymag.techtarget.com/articles/november01/people mudge
.shtml

[6] E.H. Spafford (1991), “The Internet Worm Incident”,
http://citeseer.nj.nec.com/spafford9linternet.html

[7] S. M. Bellovin (1989), “Security Problems in the TCP/IP Protocol Suite”,
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzS
ZCERTzSzJANET-CERTZzSz..zSzBellovinzSzTCP-

IP_Security Problems.pdf/bellovin89security.pdf

[8] J. Viega (2003), “Secure Programming Cookbook for C and C++”, Orielly

[9] S. M. Bellovin (1992), “Packets Found on an Internet”,
http://www.research.att.com/~smb/papers/packets.ps.

[10] V. Jayaswal, W. Yurcik, D. Doss (2002), “Internet Hack Back: Counter
Attacks as Self-Defense or Vigilantism?”, IEEE 2002 Technology and
Society International Symposium

[11] Recourse Technologies (2002), “The Evolution of Deception Technologies
as a Means for Network Defense”, SANS Reading Room
http://www.sans.org/rr/wp/recourse.pdf

187

http://www.cybergeography.org/atlas/historical.html
http://www.isc.org/index.pl?/ops/ds/
http://www.cert.org/stats/cert_stats.html
http://www.gocsi.com/forms/fbi/pdf.jhtml
http://infosecuritymag.techtarget.com/articles/november01/people_mudge.shtml
http://infosecuritymag.techtarget.com/articles/november01/people_mudge.shtml
http://citeseer.nj.nec.com/spafford91internet.html
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzSzCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-IP_Security_Problems.pdf/bellovin89security.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzSzCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-IP_Security_Problems.pdf/bellovin89security.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzSzCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-IP_Security_Problems.pdf/bellovin89security.pdf
http://www.research.att.com/~smb/papers/packets.ps
http://www.sans.org/rr/wp/recourse.pdf

[12] S. Northcutt, M. Cooper, M. Fearnow, K. Frederick (2001), “Intrusion
Signature and analysis”, 1% Edition, New Riders Publishing

[13] L. Spitzner (2003), “Honeypots: Tracking Hackers”, Addison Wesley
[14] Juels, J. Brainard (1999), “Client Puzzles: A cryptographic Countermeasure

Against Connection Depletion Attacks”, RSA Security
http://www.rsasecurity.com/rsalabs/node.asp?id=2050

[15] C. Castaldi (2004), “Behavioral network Security: Is it right for your
company”, Computerworld,
http://www.computerworld.com/printthis/2004/0,4814,93096,00.html

[16] Mazu Networks (2004), “Mazu Enforcer, an overview”, Mazu Netowrks,
http://www.mazunetworks.com/

[17] F. Cohen (1999), “A mathematical structure of simple defensive network
deceptions”, Fred Cohen and Associates,
http://www.all.net/journal/deception/mathdeception/mathdeception.html

[18] L. Liebmann (2002), “Counterespionage for networks”, Comnews.com,
http://www.comnews.com/stories/articles/c0702bottom.htm

[19] D. B. Moran (2000), “Trapping and Tracking Hackers: Collective security
for survival in the internet”, CERT,
http://www.cert.org/research/isw/isw2000/papers/15.pdf

[20] ForeScout Technologies (2002), “Beyond Detection: Neutralizing Attacks
Before They Reach the Firewall”, eSecure Live,
http://www.esecurelive.com/whitepapers/BeyondDetectionWhitePaper.pd
f

[21] C. C. Zou, L. Gao, W. Gong, D. Towsley (2003), “Monitoring and Early
Warning for Internet Worms”, Proceedings of the 10th ACM conference
on Computer and communication security

[22] Happy Trails Computer Club (2004), “Scanning Worms”, CyberCoyote.org,
http://cybercoyote.org/security/av-worms.htm

[23] N. Weaver, V. Paxson, S. Staniford, R. Cunningham (2003), “Taxonomy of
Computer Worms”, ACM Workshop on Rapid Code.

188

http://www.rsasecurity.com/rsalabs/node.asp?id=2050
http://www.computerworld.com/printthis/2004/0,4814,93096,00.html
http://www.mazunetworks.com/
http://www.all.net/journal/deception/mathdeception/mathdeception.html
http://www.comnews.com/stories/articles/c0702bottom.htm
http://www.cert.org/research/isw/isw2000/papers/15.pdf
http://www.esecurelive.com/whitepapers/BeyondDetectionWhitePaper.pdf
http://www.esecurelive.com/whitepapers/BeyondDetectionWhitePaper.pdf
http://cybercoyote.org/security/av-worms.htm

[24] P. Barford, J. Kline, D. Plonka, A. Ron (2002),”A Signal Analysis of
Network Traffic Anomalies”, Internet Measurement Workshop 2002
http://www.icir.org/vern/imw-2002/imw2002-papers/173.pdf

[25] M. Handley, V. Paxson (2001), “Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-End Protocol Semantics”, ICIR (The
ICSI Center for Internet Research),
http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf

[26] M. Bykova, S. Ostermann (2002), “Statistical Analysis of Malformed
Packets and their Origins in the Modern Internet”, CiteSeer,
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.org
zSzvernzSzimw-2002zSzimw?2002-
paperszSz129.pdf/bykova02statistical.pdf

[27] S. Staniford, J. Hoagland, J. McAlerney (2002), “Practical Automated
Detection of Stealthy Portscans”. ACM Journal of Computer Security

[28] C. Lee, C. Roedel, E. Silenok (2003), “Detection and Characterization of
Port Scan Attacks”, Univeristy of California, Department of Computer
Science and Engineering,
http://www.cs.ucsd.edu/users/clbailey/PortScans.pdf

[29] Millican (2003), “Network Reconnaissance — Detection and Prevention”,
SANS Institute,
http://www.qgiac.org/practical/GSEC/Andy Millican_GSEC.pdf

[30] J.Jung, V. Paxson. A. Berger, H Balakrishnan (2004), “Fast Portscan
Detection Using Sequential Hypothesis Testing”, Proceedings IEEE
Symposium on security and Privacy.

[31] Recourse Technologies (2001), “Attacks and Countermeasures: A study of
Network Attack”,
SecurityTechNet.com,http://cnscenter.future.co.kr/resource/rsc-
center/vendor-wp/recourse/Attacks.pdf

[32] P. Anderson (2001), “Deception: a healthy part of any defense in-depth
strategy”, SANS Institute,http://www.sans.org/rr/papers/50/506.pdf

189

http://www.icir.org/vern/imw-2002/imw2002-papers/173.pdf
http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.orgzSzvernzSzimw-2002zSzimw2002-paperszSz129.pdf/bykova02statistical.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.orgzSzvernzSzimw-2002zSzimw2002-paperszSz129.pdf/bykova02statistical.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.orgzSzvernzSzimw-2002zSzimw2002-paperszSz129.pdf/bykova02statistical.pdf
http://www.cs.ucsd.edu/users/clbailey/PortScans.pdf
http://www.giac.org/practical/GSEC/Andy_Millican_GSEC.pdf
http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/recourse/Attacks.pdf
http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/recourse/Attacks.pdf
http://www.sans.org/rr/papers/50/506.pdf

[33] Yasinsac, Y. Manzano (2002), “Honeytraps, A Network Forensic Tool”,
Florida State University
http://www.cs.fsu.edu/~yasinsac/Papers/YMO02.pdf

[34] N. Gupta (2003), “Improving the effectiveness of deception honeynets
through an empirical learning approach. ”, Securitytechnet.com,
http://cnscenter.future.co.kr/resource/security/ids/Gupta_Honeynets.pdf

[35] X. Geng, A. Whinston (2000), “Defeating Distributed Denial of Service
Attacks”, IEEE IT Pro

[36] Ethereal, The world's most popular network protocol analyzer
http://www.ethereal.com/

[37] Snort.org, The Open Source Network Intrusion Detection System,
http://www.snort.org/

[38] Naval Surface Warfare Center (NSWC), NSWC Shadow Index, NSWC
http://www.nswc.navy.mil/ISSEC/CID/

[39] J. Koziol (2003), “ Intrusion Detection with Snort”, SAMS Publishing

[40] S.Northcutt (2003), “Network Intrusion Detection”, 3rd Edition, New
Riders Publishing

[41] W. R. Stevens (1994), “TCP/IP Illustrated, Volume 1 The Protocols”,
Addison-Wesley Publishing

[42] S. Carl-Mitchell, J. S. Quarterman (1993), “Practical Internetworking with
TCP/IP and UNIX”, Addison-Wesley Publishing

[43] S. M. Bellovin (1989), “Security problems in the TCP/IP Protocol Suite”,
Computer Communications Review 2:19, pp. 32-48

[44] Unix Insider (2001), “Using TCP/IP against itself”, ITWorld.com,
http://security.itworld.com/4339/UIR010410tcpipl/pfindex.html

[45] Cryptonomicon (2004), “Vulnerability in TCP/IP Exposed”,
Cryptonomicon.net,
http://www.cryptonomicon.net/modules.php?name=News&file=print&si

d=746

190

http://www.cs.fsu.edu/~yasinsac/Papers/YM02.pdf
http://cnscenter.future.co.kr/resource/security/ids/Gupta_Honeynets.pdf
http://www.ethereal.com/
http://www.snort.org/
http://www.nswc.navy.mil/ISSEC/CID/
http://security.itworld.com/4339/UIR010410tcpip1/pfindex.html
http://www.cryptonomicon.net/modules.php?name=News&file=print&sid=746
http://www.cryptonomicon.net/modules.php?name=News&file=print&sid=746

[46] NISCC (2004), “Vulnerabilities Issues in TCP”, NISCC Vulnerability
Advisory,http://www.uniras.gov.uk/vuls/2004/236929/index.htm

[47] Chambers, J. Dolske, J. lyer (1998), “TCP/IP Security”,
LinuxSecurity.com,
http://www.linuxsecurity.com/resource files/documentation/tcpip-

security.html

[48] CERT (2002), “Information Security for Technical Staff Module 5: TCP/IP
Security”, Networked Systems

[49] CERT Advisory (1996), "TCP SYN Flooding and IP Spoofing
Attacks" ,CERT Coordination Center, http://www.cert.org/advisories/CA-
1996-21.html

[50] CERT® Advisory (1998), "Vulnerability in Certain TCP/IP
Implementations”,CERT Coordination Center,
http://www.cert.org/advisories/CA-1998-13.html#AppendixA

[51] CERT Advisory (2000), "Denial-of-Service Vulnerabilities in TCP/IP
Stacks", CERT Coordination Center, http://www.cert.org/advisories/CA-
2000-21.html

[52] BindView (2001), "Strange Attractors and TCP/IP Sequence Number
Analysis", BindView,
http://www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm

[53] M.Zalewski (), "Strange Attractors and TCP/IP Sequence Number Analysis
- One Year Later", BindView Razor Team,
http://lcamtuf.coredump.cx/newtcp/

[54] Request for Comments (1981), “Transmission Control Protocol DARPA
Internet Program Protocol SPECIFICATION”, FAQS.com,
http://www.faqgs.org/rfcs/rfc793.html

[55] J. S. Havrilla (2001), "Multiple TCP/IP implementations may use
statistically predictable initial sequence numbers”, US-CERT,
http://www.kb.cert.org/vuls/id/498440

[56] US-CERT (2004) "Vulnerabilities in TCP", US-CERT, http://www.us-
cert.gov/cas/techalerts/TA04-111A.html

191

http://www.uniras.gov.uk/vuls/2004/236929/index.htm
http://www.linuxsecurity.com/resource_files/documentation/tcpip-security.html
http://www.linuxsecurity.com/resource_files/documentation/tcpip-security.html
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-2000-21.html
http://www.cert.org/advisories/CA-2000-21.html
http://www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm
http://lcamtuf.coredump.cx/newtcp/
http://www.faqs.org/rfcs/rfc793.html
http://www.kb.cert.org/vuls/id/498440
http://www.us-cert.gov/cas/techalerts/TA04-111A.html
http://www.us-cert.gov/cas/techalerts/TA04-111A.html

[57] Osborne (1999), "NAI-Sep201999: Windows IP Source Routing
Vulnerability"”, Network Associates,
http://www.securityfocus.com/advisories/1761

[58] Microsoft (), “Chapter 5 - Security Design Reference Architecture Guide”,
Version 1.5, Revision 1, Microsoft Corp.,
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/
en-us/rag/ragc05.mspx

[59] Freesoft.org, “RIP Protocol Overview”,
http://www.freesoft.org/CIE/Topics/90.htm

[60] K. Downes, M. Ford, H. K. Lew, S. Spanier, T. Stevenson (1998),
Internetworking Technologies Handbook”, 2™ Edition, Cisco Press

[61] NIUNet, http://cs.baylor.edu/~donahoo/NIUNet/hijack.html

[62] CERT Advisory (2001), “CA-2001-09 Statistical Weaknesses in TCP/IP
Initial Sequence Numbers”, http://www.cert.org/advisories/CA-2001-
09.html

[63] E. Hines (2002), “ Non blind IP Spoofing and session Hijacking: A Diary
from the garden of good and evil”, Fatelabs.com,
http://www.fatelabs.com/library/non-blind-hijacking.pdf

[64] Paul A. Watson (2003), “Slipping in the Window: TCP Reset attacks”,
OSVDB.net,
http://www.osvdb.org/reference/SlippingInTheWindow v1.0.doc

[65] Jeremy (2004), “Feature: Understanding TCP Reset Attacks, Part 17,
http://kerneltrap.org/node/view/3072

[66] SANS (2001), “ICMP Attacks Illustrated”, SANS Institute,
http://www.sans.org/rr/papers/60/477.pdf

[67] C. Huegen (2000), “The latest in denial of servers attacks: “Smurfing”
Description and Information to minimize effect”,
http://www.pentics.net/denial-of-service/white-papers/smurf.cqi

[68] O. Arkin (2002), “remote Active fingerprinting tool using ICMP”, Sys-
Security http://www.sys-security.com/archive/articles/login.pdf

192

http://www.securityfocus.com/advisories/1761
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.freesoft.org/CIE/Topics/90.htm
http://cs.baylor.edu/~donahoo/NIUNet/hijack.html
http://www.cert.org/advisories/CA-2001-09.html
http://www.cert.org/advisories/CA-2001-09.html
http://www.fatelabs.com/library/non-blind-hijacking.pdf
http://www.osvdb.org/reference/SlippingInTheWindow_v1.0.doc
http://kerneltrap.org/node/view/3072
http://www.sans.org/rr/papers/60/477.pdf
http://www.pentics.net/denial-of-service/white-papers/smurf.cgi
http://www.sys-security.com/archive/articles/login.pdf

[69] O. Arkin, F. Yarochkin, M. Kydyraliev (2003), “The Present and Future of
Xprobe2 - The Next Generation of Active Operating System
Fingerprinting”, Sys-Security, http://www.sys-
security.com/archive/papers/Present_and_Future Xprobe2-v1.0.pdf

[70] O. Arkin, F. Yarochkin (2002), “XProbe2 - A 'Fuzzy' Approach to Remote
Active Operating System Fingerprinting”, http://www.sys-
security.com/archive/papers/Xprobe2.pdf

[71] O. Arkin (2001), “X remote ICMP based OS fingerprinting tool
techniques”, Sys-Security, http://www.sys-
security.com/archive/papers/X_v1.0.pdf

[72] O. Arkin (2001) , “ICMP Usage In Scanning”, Sys-Security,
http://www.sys-security.com/archive/papers/ICMP_Scanning v3.0.pdf

[73] B. B. Bhansali (2001), “Man-In-the-Middle-Attack — A Brief”, SANS
Institute, http://www.giac.org/practical/gsec/Bhavin Bhansali GSEC.pdf

[74] Kimble Consultancy Services, “DNS Attacks”,
http://mapage.noos.fr/kimble/papers/security/img42.html

[75] CERT (2001), “Denial of Service Attacks using Name servers”, CERT
Coordination Center, http://www.cert.org/incident notes/IN-2000-
04.html

[76] Network Sorcery, “DNS, Domain Name System”,
http://www.networksorcery.com/enp/protocol/dns.htm

[77] Network Sorcery, RFC830,
http://www.networksorcery.com/enp/rfc/rfc830.txt

[78] J. Mirkovic, J. Martin, P. Reiher (2001), “A Taxonomy of DDoS Attacks
and DDoS Defense Mechanisms ”,
http://lasr.cs.ucla.edu/ddos/ucla tech report 020018.pdf

[79] K. Mitnick (2002), “The Art of Deception”, Indiana: Wiley Publishing

[80] D. Parker (2004), “TCP/IP Skills Required for Security Analysts”, Security
Focus, http://www.securityfocus.com/infocus/1779

193

http://www.sys-security.com/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://www.sys-security.com/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://www.sys-security.com/archive/papers/Xprobe2.pdf
http://www.sys-security.com/archive/papers/Xprobe2.pdf
http://www.sys-security.com/archive/papers/X_v1.0.pdf
http://www.sys-security.com/archive/papers/X_v1.0.pdf
http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf
http://www.giac.org/practical/gsec/Bhavin_Bhansali_GSEC.pdf
http://mapage.noos.fr/kimble/papers/security/img42.html
http://www.cert.org/incident_notes/IN-2000-04.html
http://www.cert.org/incident_notes/IN-2000-04.html
http://www.networksorcery.com/enp/protocol/dns.htm
http://www.networksorcery.com/enp/rfc/rfc830.txt
http://lasr.cs.ucla.edu/ddos/ucla_tech_report_020018.pdf
http://www.securityfocus.com/infocus/1779

[81] Truncode (2003), “Passive Network Reconnaissance: Syn packet
Analysis”, http://64.233.161.104/search?qg=cache:JGVvmp8KEHAJ:trunco
de.org/files/papers/PNR-
SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet
+Analysis&hl=en

[82] S. Northcutt (2003), “Network Perimeter Security”, New Riders Publishing

[83] American Registry for Internet Numbers (ARIN),
http://www.arin.net

[84] Asia Pacific Network Information Centre (APNIC),
http://www.apnic.org

[85] Latin American and Caribbean IP address Regional Registry (LACNIC),
http://www.lacnic.org

[86] RIPE Network Coordination Centre (RIPE NCC),
http://www.ripencc.org

[87] African Network Information Center (AfriNIC)
http://wwwe.afrinic.org

[88] Register,
http://www.reqgister.com

[89] Network Solutions,
http://www.networksolutions.com

[90] Central Ops,
http://centralops.net/co/

[91] BlackCode,
http://centralops.net/co/

[92] adHOC Tools,
http://tatumweb.com/iptools.htm

[93] Analog,
http://www.analogx.com/contents/dnsdig.htm

194

http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://www.arin.net/
http://www.apnic.org/
http://www.lacnic.org/
http://www.ripencc.org/
http://www.afrinic.org/
http://www.register.com/
http://www.networksolutions.com/
http://centralops.net/co/
http://centralops.net/co/
http://tatumweb.com/iptools.htm
http://www.analogx.com/contents/dnsdig.htm

[94] Jargon File (2001), “JARGON FILE Version:4.3.1”
http://www.elsewhere.org/jargon/jargon.html

[95] Microsoft Internet Data Center Resources,
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/
en-us/rag/ragc05.mspx

[96] S. McClure, J. Scambray, G. Kurtz (2001), “ Hacking Exposed: Third
Edition”, McGraw-Hill Companies

[97] S. Litt (1999), “IP Forwarding”, Troubleshooters.com,
http://www.troubleshooters.com/linux/ip fwd.htm

[98] B. B. Bhansali (2001),”Man-in-the-middle Attack Brief”, SANS
http://ouah.kernsh.org/mitmbrief.htm

[99] ISS, “SYN Flood”, Internet Security Systems,
http://www.iss.net/security center/advice/Exploits/TCP/SYN flood/defa
ult.htm

[100] Defcon 9, “Routing & Tunneling Protocol Attacks”,
http://www.geektown.de/doc/routing.pdf

[101] Switch (1999), “Default TTL Values in TCP/IP”,
http://secfr.nerim.net/docs/fingerprint/en/ttl default.html

[102] Toby Miller (2001), “Passive OS fingerprinting: Details and Techniques”,
http://www.incidents.org/papers/OSfingerprinting.php

[103] Guy Burneau (2001), “The History and Evolution of Intrusion Detection”
http://www.sans.org/rr/papers/index.php?id=344

[104] L.R. Halme, R. K. Bauer (2002), “AINT Misbehaving: A Taxonomy of
Anti-Intrusion Techniques”
http://www.sans.org/resources/idfag/aint.php

[105] M. Bykova, S. Ostermann, B. Tjaden (2001), “Detecting Network
Intrusions via a Statistical Analysis of Network Packet Characteristics”,
33" Southeastern Symposium on System Theory

[106] M. Phung (2000), “Data Mining in Intrusion Detection”,
http://www.sans.org/resources/idfag/data_mining.php

195

http://www.elsewhere.org/jargon/jargon.html
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.troubleshooters.com/linux/ip_fwd.htm
http://ouah.kernsh.org/mitmbrief.htm
http://www.iss.net/security_center/advice/Exploits/TCP/SYN_flood/default.htm
http://www.iss.net/security_center/advice/Exploits/TCP/SYN_flood/default.htm
http://www.geektown.de/doc/routing.pdf
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html
http://www.incidents.org/papers/OSfingerprinting.php
http://www.sans.org/rr/papers/index.php?id=344
http://www.sans.org/resources/idfaq/aint.php
http://www.sans.org/resources/idfaq/data_mining.php

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

SPIKE (2003), “A Comparison of Anomaly detection techniques”,
http://users.ox.ac.uk/~exet1386/pdf/

T. Abraham (2001), “ IDDM: Intrusion Detection using Data Mining
Techniques”,
http://www.dsto.defence.gov.au/corporate/reports/DSTO-GD-0286.pdf

W. Lee, S. J. Stolfo (1998), “Data Mining Approaches for Intrusion
Detection”, 7th USENIX Security Symposium, 1998,
http://www.usenix.org/publications/library/proceedings/sec98/full _papers

[lee/lee.pdf

G. Smitth (2000), “A Brief Taxonomy of Firewalls- Great Walls of Fire”,
http://www.qgiac.org/practical/gsec/Gary _Smith_GSEC.pdf

P. Kazienko, P. Dorosz (2003), “Intrusion Detection Systems (IDS) Part |
- (network intrusions; attack symptoms; IDS tasks; and IDS
architecture)”,
http://www.windowsecurity.com/pages/article_p.asp?id=1147

P. Kazienko, P. Dorosz (2004), “Intrusion Detection Systems (IDS) Part 2
- Classification; methods; techniques”,
http://www.windowsecurity.com/pages/article_p.asp?id=1335

E. Eskin, Et Al (2001), “Adaptive Model Generation for Intrusion
Detection Systems”

http://philby.ucsd.edu/~cse291 IDVA/papers/eskin,miller,zhong,yi,lee,st
olfo.adaptive_model generation for_intrusion detection systems.pdf

C. Boeckman (2000), “Getting Closer to Policy-Based Intrusion
Detection Systems, Security Bulletin May 2000

http://www.chi-
publishing.com/portal/backissues/pdfs/ISB_2000/1SB0504/ISB0504CB.p
df

E. E. Schultz (2000), “Policy-based Intrusion Detection (Finally)”,
Security Bulletin May 2000

E. Sekar, Et. Al (2002), “Specification-based anomaly detection: a new

approach for detecting network intrusions”, Proceedings of the 9th ACM
conference on Computer and communications security November 2002

196

http://users.ox.ac.uk/~exet1386/pdf/
http://www.dsto.defence.gov.au/corporate/reports/DSTO-GD-0286.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/lee/lee.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/lee/lee.pdf
http://www.giac.org/practical/gsec/Gary_Smith_GSEC.pdf
http://www.windowsecurity.com/pages/article_p.asp?id=1147
http://www.windowsecurity.com/pages/article_p.asp?id=1335
http://philby.ucsd.edu/~cse291_IDVA/papers/eskin,miller,zhong,yi,lee,stolfo.adaptive_model_generation_for_intrusion_detection_systems.pdf
http://philby.ucsd.edu/~cse291_IDVA/papers/eskin,miller,zhong,yi,lee,stolfo.adaptive_model_generation_for_intrusion_detection_systems.pdf
http://www.chi-publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.pdf
http://www.chi-publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.pdf
http://www.chi-publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.pdf

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Bro: A System for Detecting Network Intruders in Real-Time,
http://www.icir.org/vern/bro-info.html

Shadow Version 1.8 Installation Manual,
http://www.nswc.navy.mil/ISSEC/CID/SHADOW-1.8-Install.pdf

B. Caswell, Et Al (2003), “Snort 2.0 Intrusion Detection”, Syngress
Publishing

Yoann Vandoorselaere, “Prelude: an Open Source, Hybrid Intrusion
Detection System”,
http://www.prelude-ids.org/article.php3?id_article=66

R. Magalhaes (2003), “Host-Based IDS vs Network-Based IDS (Part 1)”,
http://www.windowsecurity.com/articles/Hids _vs Nids Partl.html

P. Innella, et al (2001), “ The Evolution of Intrusion Detection Systems”,
http://www.securityfocus.com/infocus/1514

N. Desai (2003), “Intrusion Prevention Systems: the Next Step in the
Evolution of IDS”,
http://www.securityfocus.com/infocus/1670

R. Ford, H. Ray (2004), “Googling for Gold: Web Crawlers, Hacking and
Defense Explained”, Network Security, January 2004, vol. 2004, iss. 1,
pp. 10-13(4) Elsevier Science

Webopedia (2004), Online dictionary for computer and Internet
technology definitions,
http://networking.webopedia.com/TERM/A/active_reconnaissance.html

H. So (2002), GIAC Intrusion Detection In Depth,
http://www.sans.org/rr/papers/23/836.pdf

NMAP, Insecure.org
http://www.insecure.org/nmap/nmap documentation.html

Nmap network security scanner man page,
http://www.insecure.org/nmap/data/nmap _manpage.html
SNMPWALK,
http://www.mkssoftware.com/docs/manl/snmpwalk.1.asp

197

http://www.icir.org/vern/bro-info.html
http://www.nswc.navy.mil/ISSEC/CID/SHADOW-1.8-Install.pdf
http://www.prelude-ids.org/article.php3?id_article=66
http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html
http://www.securityfocus.com/infocus/1514
http://www.securityfocus.com/infocus/1670
http://networking.webopedia.com/TERM/A/active_reconnaissance.html
http://www.sans.org/rr/papers/23/836.pdf
http://www.insecure.org/nmap/nmap_documentation.html
http://www.insecure.org/nmap/data/nmap_manpage.html
http://www.mkssoftware.com/docs/man1/snmpwalk.1.asp

[130] Fyodor (1998), Remote OS detection via TCP/IP Stack fingerprinting
http://www.insecure.org

[131] L. Spitzner (2000), “Passive Fingerprinting: IDing remote hosts, without
them knowing”, Honey Pot Project,
http://www.honeynet.org

[132] L. Spitzner (2002), “Know Your Enemy: Passive Fingerprinting”, Honey
Pot Project,
http://www.honeynet.org

[133] P. Zatko (2004), “Inside the insider threat”, Computer World June 14,
2004,
http://www.computerworld.com/

[134] SearchNetworking.com,
http://searchnetworking.techtarget.com/sDefinition/0,,sid7 gci511650,00.
html

[135] Sniffit,
http://reptile.rug.ac.be/~coder/sniffit/sniffit.html

[136] RFC 826, Ethernet Address Resolution Protocol
http://www.fags.org/rfcs/

[137] Dsniff,
http://www.monkey.org/~dugsong/dsniff/

[138] Ettercap,
http://ettercap.sourceforge.net/

[139] Hunt,
http://lin.fsid.cvut.cz/~kra/index.html

[140] Fragroute,
http://www.monkey.org/~dugsong/fragroute/

[141] C. Russel(2001), “Penetration Testing with dsniff”,SANS,
http://www.sans.org

[142] TCPDump man page,
http://www.tcpdump.org

198

http://www.insecure.org/
http://www.honeynet.org/
http://www.honeynet.org/
http://www.computerworld.com/
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci511650,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci511650,00.html
http://reptile.rug.ac.be/~coder/sniffit/sniffit.html
http://www.faqs.org/rfcs/
http://www.monkey.org/~dugsong/dsniff/
http://ettercap.sourceforge.net/
http://lin.fsid.cvut.cz/~kra/index.html
http://www.monkey.org/~dugsong/fragroute/
http://www.sans.org/
http://www.tcpdump.org/

[143]

[144]

[145]

[146]

[147]
[148]
[149]
[150]

[151]

[152]

[153]

[154]

[155]

[156]

LOpht Heavy Industries (1999), “AntiSniff — User Guide.”,
http://www.atstake.com/antisniff/tech-paper.html

R. Spangler (2003), “Packet Sniffer Detection with AntiSniff”,
http://www.packetwatch.net/

R. Spangler (2003), “Packet Sniff on Layer 2 Switched Local Area
Networks”,
http://www.packetwatch.net/

ARPWatch, LBNL's Network Research Group,
http://www-nrg.ee.lbl.gov/

RFC 791, Internet Protocol Specification
RFC 792, Internet Message Control Protocol
RFC 790, Assign Protocols

RFC 768, User Datagram Protocol

P. Dubois (2003), “MySQL, The definitive guide to using, programming,
and administering MySQL 4”, 2" Edition, Sams

MySQL, The world's most popular open source database,
http://www.mysgl.com

Analysis Console for Intrusion Databases,
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html

M. Peters, “Construction and Use of a Passive Ethernet Tap”, Snort
http://www.snort.org/docs/tap/

How-TO-Ethernet Cables,
http://www.ertyu.org/~steven nikkel/ethernetcables.html

Security Space, icmp timestamp request
http://www.securityspace.com/smysecure/catid.html?viewsrc=1&id=101
14

199

http://www.atstake.com/antisniff/tech-paper.html
http://www.packetwatch.net/
http://www.packetwatch.net/
http://www-nrg.ee.lbl.gov/
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
http://www.snort.org/docs/tap/
http://www.ertyu.org/~steven_nikkel/ethernetcables.html
http://www.securityspace.com/smysecure/catid.html?viewsrc=1&id=10114
http://www.securityspace.com/smysecure/catid.html?viewsrc=1&id=10114

[157]

[158]

[159]

[160]

[161]

ICMP types, Fags.org,
http://www.fags.org/docs/iptables/icmptypes.html

Manual Reference Pages for BPF,
http://www.gsp.com/cgi-bin/man.cgi?section=4&topic=bpf#2

IP Protocol Suite, Network Sorcery,
http://www.networksorcery.com/enp/topic/ipsuite.htm

ICMP Type Numbers, Internet Assigned Numbers Authority
http://www.iana.org/assignments/icmp-parameters

Curt Wilson (2000), “Protecting Network Infrastructure at the Protocol
Level”, SANS

200

http://www.faqs.org/docs/iptables/icmptypes.html
http://www.networksorcery.com/enp/topic/ipsuite.htm
http://www.iana.org/assignments/icmp-parameters

Appendix A
The information in this appendix was taken from the man pages developed by the

respective programmer of each tool.

ETTERCAP MAN PAGE

USAGE: ettercap [OPTIONS] [HOST:PORT] [HOST:PORT] [MAC] [MAC]

Five sniffing methods:

+ IPBASED, the packets are filtered matching IP:PORT source and IP:PORT dest
+ MACBASED, packets filtered matching the source and dest MAC address.
(useful to sniff connections through gateway)

+ ARPBASED, uses arp poisoning to sniff in switched LAN between two hosts
(full-duplex m-i-t-m).

+ SMARTARP, uses arp poisoning to sniff in switched LAN from a victim host to
all other hosts knowing the entire list of the hosts (full-duplex m-i-t-m).

+ PUBLICARRP, uses arp poison to sniff in switched LAN from a victim host to all
other hosts (half-duplex).

With this method the ARP replies are sent in broadcast, but if ettercap has the
complete host list (on start up it has scanned the LAN) SMARTARP method is
automatically selected, and the arp replies are sent to all the hosts but the victim,

avoiding conflicting MAC addresses as reported by win2K.

201

The most relevant ettercap features are:

Characters injection in an established connection: you can inject character to
server (emulating commands) or to client (emulating replies) maintaining the

connection alive !l

SSH1 support: you can sniff User and Pass, and even the data of an SSH1
connection. ettercap is the first software capable to sniff an SSH connection in

FULL-DUPLEX

HTTPS support: you can sniff http SSL secured data... and even if the connection

is made through a PROXY

Remote traffic sniffing through GRE tunnel: you can sniff remote traffic

through a GRE tunnel from a remote cisco router and make mitm attack on it

Plug-ins support: You can create your own plugin using the ettercap's API.

Password collector for: TELNET, FTP, POP, RLOGIN, SSH1, ICQ, SMB,
MySQL, HTTP, NNTP, X11, NAPSTER, IRC, RIP, BGP, SOCKS 5, IMAP 4,
VNC, LDAP, NFS, SNMP, HALF LIFE, QUAKE 3, MSN, YMSG (other

protocols coming soon...)

202

Packet filtering/dropping: You can set up a filter chain that search for a particular
string (even hex) in the TCP or UDP payload and replace it with yours or drop the

entire packet.

Passive OS fingerprint: you scan passively the lan (without sending any packet)
and gather detailed info about the hosts in the LAN: Operating System, running

services, open ports, IP, mac address and network adapter vendor.

OS fingerprint: you can fingerprint the OS of the victim host and even its network

adapter (it uses the nmap (c) Fyodor database)

Kill a connection: from the connections list you can kill all the connections you

want

Packet factory: You can create and sent packet forged on the fly. The factory let

you to forge from Ethernet header to application level.

Bind sniffed data to a local port:You can connect to that port with a client and

decode unknown protocols or inject data to it (only in arp based mode)

Options

Options that make sense together can generally be combined. ettercap will warn the

user about unsupported option combinations.

203

Sniffing Methods

-a, --arpsniff
ARP BASED sniffing
This is THE sniffing method for switched LAN, and if you want to use the
man-in-the-middle technique you have to use it. In conjunction with the
silent mode (-z option) you must specify two IP and two MAC for
ARPBASED (full-duplex) or one IP and one MAC for PUBLICARP (half-
duplex). in PUBLICARP the ARP replies are sent in broadcast, but if
ettercap has the complete host list (on start up it has scanned the LAN)
SMARTARP method is automatically selected, and the arp replies are sent
to all the hosts but the victim, and an hash table is created to re-route back
the packet form victim to client obtaining in this way a full-duplex man in
the middle attack.
NOTE: if you manage to poison a client with the smart arp sniffing,
remember to set the gateway's IP in the conf file (GWIP option) and load it
with the -e option, otherwise that client will not be able to connect to remote
hosts.
Filters that have as action a replacement or a drop, can be used only with
ARPBASED sniffing because it is necessary to re-adjust the sequence

number in full-duplex in order to maintain the connection alive.

204

-S, --sniff
IP BASED sniffing
This is the good old style sniffing method. It rocks on "hubbed” LAN, but
useless on switched ones. You can choose the target specifying only source,
only dest, with or without port, or nothing (to sniff all connections). A
special ip "ANY" means from or to every host.

-m, --macsniff
MAC BASED sniffing
Very useful to sniff TCP traffic with remote hosts. On hubbed LANS if you
want to sniff a connection through a gateway is useless to specify the
victim's ip and the gateway's ip, because the packet are for an external host,
not for the gateway. So you can use this method. Simply specify the victim's
MAC and the gateway's MAC and you will see all the connections from and
to the Internet.

Off Line Sniffing

-T, --readpcapfile <FILE>
OFF LINE sniffing
With this option enabled, ettercap will sniff packets from a pcap compatible
file instead of capturing from the wire.
This is useful if you have a file dumped from tcpdump or ethereal and you

want to make an analysis (search for passwords or passive fingerprint) on it.

205

-Y, --writepcapfile <FILE>
DUMP packet to a pcap file
This is useful if you have to use active-sniffing (arp poison) on a switched
LAN but you want to analyze the packets with tcpdump or ethereal. You
can use this option to dump the packets to a file and then load it into your
favourite application.

General Options

-N, --simple
NON interactive mode (without ncurses)
This method is useful if you want to launch ettercap from a script or if you
already know some informations of your target or if you want to launch
ettercap in background collecting data or password for you (in combination
with the --quiet option).
Some features are not available in this method, obviously the ones which
requires interaction with the user, such as characters injection. But others
(for example filtering) are fully supported, so you can set up ettercap to
poison two host (a victim and its gateway) and to filter all its connection on
the port 80 and replace some string with others, all its traffic to the Internet

will be changed as you wish.

206

-z, --silent
start in silent mode (no arp storm on start up)
If you want to launch ettercap with a non invasive method (some NIDS may
raise a warn if they detects too much arp request). You have to know all the
requested data of the target in order to use this options. For example if you
want to poison two host, you need the two IP and the two MAC addresses
of the victims. If you select ipsniff or macsniff this method is automatically
selected, because you don't need to know the list of the host in the LAN.
To know the entire list of the hosts use "ettercap -NI", but remember that it
IS a invasive method.

-0, --passive
Collect infos in passive mode. This method WILL NOT SEND ANY packet
on the wire. It will put the interface in promiscuous mode and look for
packets passing through it. every interesting packet (SYN or SYN+ACK) is
analyzed and used to make a complete map of the LAN.
The infos collected are: IP and MAC of the hosts, type of Operating System
(passive OS fingerprint), network adapter vendor and running services. (for
a technical description refer to README) In the list are show even other
infos: "GW" if the host is a GateWay, "NL" if the IP is not belonging to the
LAN and "RT" if the host act as a router.

Useful if you want to make a start up host list in complete passive mode,

207

when you are satisfied of the collected infos, you can convert it to the
startup host list by simply press 'C', and then work as usual.
The description of its functionality in simple mode is explained in the next
section.
-b, --broadping
use a broadcast ping instead of arp storm on start up.
this method is less intrusive, but even less accurate. some hosts will not
respond at the broadcast ping (es. Windows) so they remain invisible to this
method. Useful if you want to scan a LAN with Linux hosts. As usual you
can combine this option with --list to have a list of the hosts "ettercap -NIb"
-D, --delay <n sec>
the delay in seconds between the arp replies if you have selected an ARP
poison sniffing method. This is useful if you want to be less aggressive in
the poisoning. On many OS the default validity interval of the arp cache is
more than a minute (on FreeBSD is 1200 sec).
The default delay value is 30 sec.
-Z, --stormdelay <n usec>
the delay in micro-seconds between the arp request on arp storm at start up.
This is useful if you want to be less aggressive in the scanning. Many IDS

will report massive arp request, but if you send them in a slower rate, they

208

will not report any strange behavior.
The default delay value is 1500 usec.
-, --refresh <n sec>
ettercap will refresh its internal connection list after n seconds. Set a low
value if you have huge traffic load.
The default delay value is 300 sec.
-B, --bufferlen <n pck>
the lenght of each connection buffer. O will disable connection buffers. Last
n packets of each connection will be saved for visualization and logging
from ncurses interface.
The default value is 3.
-S, --spoof <IP>
If you want to elude some IDS, you can specify a spoofed IP used to scan
the LAN with arp request. The source MAC can't be spoofed because a well
configured switch will block your request.
-H, --hosts <IP1[;1P2][;IP3][;...]>
on start up, scan only these hosts.
this is useful if you want to use an ARP scanning of the LAN but only on
certain IPs. so you can benefit from a ARP scan but remaining less invasive.
Useful even if you want to do PUBLIC ARP but you want to poison only

specific hosts. since with a list PUBLIC ARP is automatically converted to

209

SMARTARP, only these host will be poisoned and you can leave
untouched the arp caches of the other hosts.

the IP list must be in dotted notation and separated by semi-colon (without
blank spaces between them), you can use range ip (use the hyphen) or
single ip list (use the comma).

EXAMPLES:

192.168.0.2-25 -->from 2 to 25

192.168.0.1,3,5 -->host 1, 3and 5

192.168.0-3.1-10;192.168.4.5,7 --
> will scan from 1 to 10 in the 192.168.0, 192.168.1, 192.168.2, 192.168.3

subnet and hosts 5 and 7 in the 192.168.4

-d, --dontresolve
don't resolve IPs on start up. this is useful if you experience an insane
"Resolving n hostnames..." message on start up. This is due to a very slow

DNS in your environment.

210

-1, --iface <IFACE>
network interface to be used for all the operation. you can even specify
network aliases in order to scan a subnet with different ip form your current
one.

-n, --netmask <NETMASK>
the netmask used to scan the LAN. (in dotted notation). the default is your
current ifconfig netmask. but your netmask is for example 255.255.0.0 |
encourage you to specify a more restrictive one, if you managed to do an
ARP scanning on start up.

-e, --etterconf <FILENAME>
use the config file instead of command line options
etter.conf example file is packaged in the tarball, refer to it to know how to
write a config file. all the instruction are written in this example. via the
conf file you can disable selectively one protocol dissector or move it on
one other port.
command line options and config file can be mixed for much flexibility, but
remember that the options in the config file override the command line, so
if in etter.conf you have specified IFACE: eth0O, and you launch "ettercap -i
ethl -e etter.conf” the selected iface will be ethO.

NOTE: the "-e etter.conf" options has to be specified after all other options.

211

-g, --linktype
this flag has two complementary function. so mind it !
if used in interactive mode it DOESN'T check for lan type. On the other
hand, if used in conjunction with command line mode (-N) it DOES a check
to discover if you are on a switched LAN or not... Sometimes if there are
only 2 hosts in the lan this discovery method can fail.

-j, --loadhosts <FILENAME>
it is used to load an hosts list from a file created by the -k option. (see
below)

-k, --savehosts
saves the hosts list to a file. useful when you have many hosts and you don't
want to do an arp storm at startup any time you use ettercap. simply use this
options and dump the list to a file, then to load the information from it use
the -j <filename> option.
the file is in the form "netaddress_netmask.ehl"

-X, --forceip
disable the spoofed ICMP packet before poisoning.

-V, --version
check for the latest ettercap version.
All operation are under your control. Every step requires a user

confirmation. With this option ettercap will connect to the

212

http://ettercap.sourceforge.net:80 web site and ask for the page /latest.php.
then the result are parsed and compared with your current version. If there is
a newer version available, ettercap will ask you if you want to wget it.
(wget must be in the path).
If you want to automatically answer yes at all the question add the option -y
-h, --help
prints the help screen with a short summary of the available options.
Silent Mode Options (only combined with -N)
-t, --proto <PROTO>
sniff only PROTO packets (default is TCP + UDP). This option is only
useful in "simple™ mode, if you start ettercap in interactive mode both TCP
and UDP are sniffed.
PROTO can be "tcp", "udp” or "all" for both.
-J, --onlypoison
With this option ettercap wont sniff anything, but it only poison the victims.
This can be useful if you want to poison with ettercap and sniff with

ethereal or tcpdump. (remember in this case to enable IP_forwarding).

Another use is for multitarget sniffing.
As you know, with ettercap you can sniff connection between two target

(ARP BASED) or to and from a single target (SMART ARP). With this

213

option you can sniff from couples of target at a time (as you have launched

many instance together).

Launch the first instance in SMART ARP, and use the -H options to
limitate the smart feature to the hosts you want to poison (remember that if
you want to involve the Gateway in the poisoning, you MUST select it from

the smart arp instance). Then launch the other "ettercap -J".

-R, --reverse
sniff all the connection but the selected one. This option is useful if you are
using ettercap on a remote machine and you want to sniff all the traffic but
you connection from local to remote, because including it will sniff even the
ettercap output and it will be screwed up...

-0, --passive
Collect infos in passive mode as described in the previous section. In simple
mode we can use this option in many mode.
"ettercap -NO" will start ettercap in semi-interactive mode, hit 'h' for help.
You can view or log to a file a detailed report of the collected infos, or
simply view each alert of analyzed packet.
"ettercap -NOL" as above but it log automatically the data into a file every 5
min.

"ettercap -NOLq" deminizes ettercap and log to a file every 5 minutes. Go

214

away and smoke your cigarette... return and a complete report of the lan is
there waiting for you... ;)

-p, --plugin <NAME>
run the external plugin "NAME".
most plugins need a destination host. simply specify it after plugin name, in
fact hosts are parsed on command line as first the DEST and so the
SOURCE.
To have a list of the available external plugins use "list" (without quotes) as

plugin name.

Since ettercap 0.6.2 hooking plugins system is provided, so some plugins
are not executed as a separated program, they can interact with ettercap and

can be enabled or disabled via the interface or conf file.

More detailed info about plugins and about how to write your own are

found in the README.PLUGINS file.

-I, --list
lists all the hosts in the LAN, reporting each MAC address.
Commonly combined options are -b (for broadcast ping) and -d (don't

resolve hostname).

215

-C, --collect
collect all users and password from the hosts specified on command line.
Password collector are configured in the config file (etter.conf), if you want
you can disable them selectively or move them on other port. This is useful
if you don't want to sniff SSH connection (the key change alert will raise
suspects) but want to sniff all other supported protocols. Or even if you
know that a host has the telnet service on port 4567, simply move the telnet
dissector on 4567/tcp

-f, --fingerprint <HOST>
do OS fingerprinting on HOST.
This option activates remote host identification via TCP/IP fingerprinting.
In other words, it uses a bunch of techniques to detect subtleties in the
underlying operating system network stack of the computers you are
scanning. It uses this information to create a ‘fingerprint’ which it compares
with its database of known OS fingerprints (the nmap-os-fingerprints file)

to decide what type of system you are scanning.

the -f options even provides you the vendor of the network adapter of the

scanned host. the info are stored in the mac-fingerprints database.

216

-1, --hexview
to dump data in hex mode.
TIP: while sniffing you can change the visualization mode by hitting 'a' for
ascii or 'x' for hex. on line help is recalled by 'h'.

-2, --textview
to dump data in text mode.

-3, --ebcdicview
to dump data in ebcdic mode.

-L, --logtofile
if used alone logs all data to specific file(s). it crates a separate file for each
connection in the form "YYYYMMDD-P-IP:PORT-IP:PORT.log" (under
unix) and "P-IP[PORT]-IP[PORT].log" under windows due to filename
limitations.
if used with -C (collector) it creates a file with all the password sniffed in
the session in the form "YYYYMMDD-collected-pass.log”

-g, --quiet
"demonize" ettercap.
useful if you want to log all data in background. this options will detach
ettercap from the current tty and set it as a demon collecting data to files. it

must be combined with -NL (or -NLC) otherwise it has no effects.

217

Obviously the sniffing method is required, so you have to combine it with
this option.

-w, --newcert
create a new cert file for HTTPS man-in-the-middle.
useful if you want to create a certfile with social engineered information...
the new file is created in the current working directory. to permanently
substitute the default cert file (etter.sll.crt) you have to overwrite
lusr/share/ettercap/etter.ssl.crt

-F, --filter <FILENAME>
load the filters chains from FILENAME
the Filtering chains file is written in pseudo XML format. You can write by
hand this file or (better) use the ncurses interface to let ettercap create it
(press 'F' in the connection list interface). If you are skilled in XML parsing,

you can write your own program to make a filter chain file.

the rules are simple:

If the proto <proto> AND the source port <source> AND the dest port
<dest> AND the payload <search> match the rules, after the filter as done
its action <action>, it jumps in the chain to the filter id specified in the

<goto> field, else it jumps to <elsegoto>. If these field are left blank the

218

chain is interrupted. Source and dest port equal to 0 (zero) means ANY port.

You can use wildcards in the search string (see README for detail)

NOTE: with this options filter are enabled by default, if you want to disable

them on the fly, press "S" (for source) or "D" (for dest) while sniffing

NOTE: on command line the hosts are parsed as "ettercap -F etter.filter
DEST SOURCE", so the first host is bound to the dest chain and the second

to the source chain.

VERY IMPORTANT: the source chain is applied to data COMING FROM
source and NOT GOING TO source. keep this in mind !! the same is for

dest...

-c, --check

check if you were poisoned by other poisoners in the LAN

219

ETHEREAL MAN PAGE

Options
-B

Sets the initial height of the byte view (bottom) pane.

-C
Sets the default number of packets to read when capturing live data.

-f
Sets the capture filter expression.

-h
Prints the version and options and exits.

-i
Sets the name of the network interface or pipe to use for live packet capture.
Network interface names should match one of the names listed in ""netstat -
i" or “ifconfig -a". Pipe names should be either the name of a FIFO (named
pipe) or -" to read data from the standard input. Data read from pipes must
be in libpcap format.

-k

Starts the capture session immediately. If the -i flag was specified, the
capture uses the specified interface. Otherwise, Ethereal searches the list of
interfaces, choosing the first non-loopback interface if there are any non-

loopback interfaces, and choosing the first loopback interface if there are no

220

non-loopback interfaces; if there are no interfaces, Ethereal reports an error

and doesn't start the capture.

Sets the name of the font used by Ethereal for most text. Ethereal will
construct the name of the bold font used for the data in the byte view pane
that corresponds to the field selected in the protocol tree pane from the

name of the main text font.

Disables network object name resolution (such as hostname, TCP and UDP

port names).

Sets a preference value, overriding the default value and any value read
from a preference file. The argument to the flag is a string of the form
prefname:value, where prefname is the name of the preference (which is the
same name that would appear in the preference file), and value is the value

to which it should be set.

Don't put the interface into promiscuous mode. Note that the interface might

be in promiscuous mode for some other reason; hence, -p cannot be used to

ensure that the only traffic that is captured is traffic sent to or from the

221

machine on which Ethereal is running, broadcast traffic, and multicast

traffic to addresses received by that machine.

Sets the initial height of the packet list (top) pane.

Causes Ethereal to exit after the end of capture session (useful in batch
mode with -c option for instance); this option requires the -i and -w

parameters.

Reads packet data from file.

When reading a capture file specified with the -r flag, causes the specified
filter (which uses the syntax of display filters, rather than that of capture
filters) to be applied to all packets read from the capture file; packets not

matching the filter are discarded.

Specifies that the live packet capture will be performed in a separate

process, and that the packet display will automatically be updated as

packets are seen.

222

Sets the default snapshot length to use when capturing live data. No more
than snaplen bytes of each network packet will be read into memory, or

saved to disk.

Sets the initial height of the tree view (middle) pane.

Sets the format of the packet timestamp displayed in the packet list window.
The format can be one of 'r' (relative), "a' (absolute), "ad' (absolute with
date), or "d' (delta). The relative time is the time elapsed between the first
packet and the current packet. The absolute time is the actual time the
packet was captured, with no date displayed; the absolute date and time is
the actual time and date the packet was captured. The delta time is the time

since the previous packet was captured. The default is relative.

Prints the version and exits.

Sets the default capture file name.

223

INTERFACE

Menu Items

File:Open, File:Close, File:Reload
Open, close, or reload a capture file. The File:Open dialog box allows a
filter to be specified; when the capture file is read, the filter is applied to all
packets read from the file, and packets not matching the filter are discarded.

File:Save, File:Save As
Save the current capture, or the packets currently displayed from that
capture, to a file. Check boxes let you select whether to save all packets, or
just those that have passed the current display filter and/or those that are
currently marked, and an option menu lets you select (from a list of file
formats in which at particular capture, or the packets currently displayed
from that capture, can be saved), a file format in which to save it.

File:Print
Prints, for all the packets in the current capture, either the summary line for
the packet or the protocol tree view of the packet; when printing the
protocol tree view, the hex dump of the packet can be printed as well.
Printing options can be set with the Edit:Preferences menu item, or in the
dialog box popped up by this item.

File:Print Packet

224

Print a fully-expanded protocol tree view of the currently-selected packet.
Printing options can be set with the Edit:Preferences menu item.
File:Quit
Exits the application.
Edit:Find Frame
Allows you to search forward or backward, starting with the currently
selected packet (or the most recently selected packet, if no packet is
selected), for a packet matching a given display filter.
Edit:Go To Frame
Allows you to go to a particular numbered packet.
Edit:Mark Frame
Allows you to mark (or unmark if currently marked) the selected packet.
Edit:Mark All Frames
Allows you to mark all packets that are currently displayed.
Edit:Unmark All Frames
Allows you to unmark all packets that are currently displayed.
Edit:Preferences
Sets the packet printing, column display, TCP stream coloring, and GUI
options (see the section on Preferences below).

Edit:Filters

225

Edits the saved list of filters, allowing filters to be added, changed, or
deleted, and lets a selected filter be applied to the current capture, if any.

Edit:Protocols
Edits the list of protocols, allowing protocol dissection to be enabled or
disabled.

Capture:Start
Initiates a live packet capture (see the section on Capture Preferences
below). A temporary file will be created to hold the capture. The location of
the file can be chosen by setting your TMPDIR environment variable before
starting Ethereal. Otherwise, the default TMPDIR location is system-
dependent, but is likely either /var/tmp or /tmp.

Capture:Stop
In a capture that updates the packet display as packets arrive (so that
Ethereal responds to user input other than pressing the ~"Stop" button in the
capture packet statistics dialog box), stops the capture.

Display:Options
Allows you to sets the format of the packet timestamp displayed in the
packet list window to relative, absolute, absolute date and time, or delta, to
enable or disable the automatic scrolling of the packet list while a live
capture is in progress or to enable or disable translation of addresses to

names in the display.

226

Display:Match Selected
Creates and applies a display filter based on the data that is currently
highlighted in the protocol tree. If that data is a field that can be tested in a
display filter expression, the display filter will test that field; otherwise, the
display filter will be based on absolute offset within the packet, and so
could be unreliable if the packet contains protocols with variable-length
headers, such as a source-routed token-ring packet.

Display:Colorize Display
Allows you to change the foreground and background colors of the packet
information in the list of packets, based upon display filters. The list of
display filters is applied to each packet sequentially. After the first display
filter matches a packet, any additional display filters in the list are ignored.
Therefore, if you are filtering on the existence of protocols, you should list
the higher-level protocols first, and the lower-level protocols last.

Display:Collapse All
Collapses the protocol tree branches.

Display:Expand All
Expands all branches of the protocol tree.

Display:Expand All
Expands all branches of the protocol tree.

Display:Show Packet In New Window

227

Creates a new window containing a protocol tree view and a hex dump
window of the currently selected packet; this window will continue to
display that packet's protocol tree and data even if another packet is
selected.

Tools:Plugins
Allows you to use and configure dynamically loadable modules (see the
section on Plugins below).

Tools:Follow TCP Stream
If you have a TCP packet selected, it will display the contents of the data
stream for the TCP connection to which that packet belongs, as text, in a
separate window, and will leave the list of packets in a filtered state, with
only those packets that are part of that TCP connection being displayed. You
can revert to your old view by pressing ENTER in the display filter text box,
thereby invoking your old display filter (or resetting it back to no display

filter).

The window in which the data stream is displayed lets you select whether to

display:

whether to display the entire conversation, or one or the other side of it;
whether the data being displayed is to be treated as ASCII or EBCDIC text or

as raw hex data;

228

and lets you print what's currently being displayed, using the same print
options that are used for the File:Print Packet menu item, or save it as text

to a file.

WINDOWS

Main Window
The main window is split into three panes. You can resize each pane using a
“"thumb™ at the right end of each divider line. Below the panes is a strip that
shows the current filter and informational text.

Top Pane
The top pane contains the list of network packets that you can scroll through
and select. By default, the packet number, packet timestamp, source and
destination addresses, protocol, and description are displayed for each
packet; the Columns page in the dialog box popped up by Edit:Preferences
lets you change this (although, unfortunately, you currently have to save the

preferences, and exit and restart Ethereal, for those changes to take effect).

If you click on the heading for a column, the display will be sorted by that
column; clicking on the heading again will reverse the sort order for that

column.

229

An effort is made to display information as high up the protocol stack as
possible, e.g. IP addresses are displayed for IP packets, but the MAC layer

address is displayed for unknown packet types.

The right mouse button can be used to pop up a menu of operations.

The middle mouse button can be used to mark a packet.

Middle Pane
The middle pane contains a protocol tree for the currently-selected packet.
The tree displays each field and its value in each protocol header in the
stack. The right mouse button can be used to pop up a menu of operations.
Bottom Pane
The lowest pane contains a hex dump of the actual packet data. Selecting a

field in the protocol tree highlights the corresponding bytes in this section.

The right mouse button can be used to pop up a menu of operations.

Current Filter
A display filter can be entered into the strip at the bottom. A filter for HTTP,

HTTPS, and DNS traffic might look like this:

tcp.port == 80 || tep.port == 443 || tcp.port == 53

230

Selecting the Filter: button lets you choose from a list of named filters that
you can optionally save. Pressing the Return or Enter keys will cause the
filter to be applied to the current list of packets. Selecting the Reset button
clears the display filter so that all packets are displayed.

Preferences
The Preferences dialog lets you control various personal preferences for the
behavior of Ethereal.

Printing Preferences
The radio buttons at the top of the Printing page allow you choose between
printing packets with the File:Print Packet menu item as text or PostScript,
and sending the output directly to a command or saving it to a file. The
Command: text entry box is the command to send files to (usually Ipr), and
the File: entry box lets you enter the name of the file you wish to save to.
Additionally, you can select the File: button to browse the file system for a
particular save file.

Column Preferences
The Columns page lets you specify the number, title, and format of each

column in the packet list.

The Column title entry is used to specify the title of the column displayed at

the top of the packet list. The type of data that the column displays can be

231

specified using the Column format option menu. The row of buttons on the

left perform the following actions:

New

Adds a new column to the list.
Change

Modifies the currently selected list item.
Delete

Deletes the currently selected list item.
Up / Down

Moves the selected list item up or down one position.
OK

Currently has no effect.
Save

Saves the current column format as the default.
Cancel

Closes the dialog without making any changes.

TCP Stream Preferences
The TCP Streams page can be used to change the color of the text displayed
in the TCP stream window. To change a color, simply select an attribute
from the ~"Set:" menu and use the color selector to get the desired color.

The new text colors are displayed in a sample window.

232

GUI Preferences
The GUI page is used to modify small aspects of the GUI to your own
personal taste:

Scrollbars
The vertical scrollbars in the three panes can be set to be either on the left or
the right.

Selection Bars
The selection bar in the packet list and protocol tree can have either a
““browse" or ““select" behavior. If the selection bar has a *browse"
behavior, the arrow keys will move an outline of the selection bar, allowing
you to browse the rest of the list or tree without changing the selection until
you press the space bar. If the selection bar has a ~“select” behavior, the
arrow keys will move the selection bar and change the selection to the new
item in the packet list or protocol tree. The highlight method in the hex
dump display for the selected protocol item can be set to use either inverse
video, or bold characters.

Fonts
The “"Font..." button lets you select the font to be used for most text.

Colors
The “"Colors..." button lets you select the colors to be used for instance for

the marked frames.

233

Protocol Preferences
There are also pages for various protocols that Ethereal dissects, controlling
the way Ethereal handles those protocols.

Filters
The Filters dialog lets you create and modify filters, and set the default

filter to use when capturing data or opening a capture file.

The Filter name entry specifies a descriptive name for a filter, e.g. Web
and DNS traffic. The Filter string entry is the text that actually describes
the filtering action to take, as described above.The dialog buttons perform

the following actions:

New

If there is text in the two entry boxes, it creates a new associated list item.
Change

Modifies the currently selected list item to match what's in the entry boxes.
Copy

Makes a copy of the currently selected list item.
Delete

Deletes the currently selected list item.

Apply

234

OK

Save

Cancel

Sets the currently selected list item as the active filter, and applies it to the
current capture, if any. (The currently selected list item must be a display

filter, not a capture filter.) If nothing is selected, turns filtering off.

Sets the currently selected list item as the active filter. If nothing is selected,

turns filtering off.

Saves the current filter list in $SHOME/ .ethereal/filters.

Closes the dialog without making any changes.

Capture Preferences

The Capture Preferences dialog lets you specify various parameters for

capturing live packet data.

The Interface: combo box lets you specify the interface from which to
capture packet data, or the name of a FIFO from which to get the packet
data. The Count: entry specifies the number of packets to capture. Entering
0 will capture packets indefinitely. The Filter: entry lets you specify the
capture filter using a tcpdump-style filter string as described above. The
File: entry specifies the file to save to, as in the Printer Options dialog
above. You can specify the maximum number of bytes to capture per packet

with the Capture length entry, can specify whether the interface is to be put

235

in promiscuous mode or not with the Capture packets in promiscuous mode
check box, can specify that the display should be updated as packets are
captured with the Update list of packets in real time check box, can specify
whether in such a capture the packet list pane should scroll to show the
most recently captured packets with the Automatic scrolling in live capture
check box, and can specify whether addresses should be translated to names

in the display with the Enable name resolution check box.

Display Options
The Display Options dialog lets you specify the format of the time stamp in
the packet list. You can select “"Time of day" for absolute time stamps,
““Date and time of day" for absolute time stamps with the date, ~~Seconds
since beginning of capture” for relative time stamps, or ~"Seconds since
previous frame" for delta time stamps. You can also specify whether, when
the display is updated as packets are captured, the list should automatically
scroll to show the most recently captured packets or not and whether
addresses should be translated to names in the display.

Plugins
The Plugins dialog lets you view and configure the plugins available on

your system.

236

The Plugins List shows the name, description, version and state (enabled or
not) of each plugin found on your system. The plugins are searched in the
following directories: /usr/share/ethereal/plugins,

lusr/local/share/ethereal/plugins and ~/.ethereal/plugins

A plugin must be activated using the Enable button in order to use it to

dissect packets. It can also be deactivated with the Disable button.

The Filter button shows the filter used to select packets which should be
dissected by a plugin (see the section on DISPLAY FILTER SYNTAX below).

This filter can be modified.

Capture Filter Syntax

Please refer to the TCPDUMP man page in this Appendix.

Display Filter Syntax

Display filters help you remove the noise from a packet trace and let you see only
the packets that interest you. If a packet meets the requirements expressed in your
display filter, then it is displayed in the list of packets. Display filters let you
compare the fields within a protocol against a specific value, compare fields against

fields, and to check the existence of specified fields or protocols.

237

The simplest display filter allows you to check for the existence of a protocol or
field. If you want to see all packets which contain the IPX protocol, the filter would
be “ipx". (Without the quotation marks) To see all packets that contain a Token-

Ring RIF field, use “tr.rif".

Fields can also be compared against values. The comparison operators can be

expressed either through C-like symbols, or through English-like abbreviations:

eq, == Equal

ne, !I= Not equal

gt,> Greater than

It, < Less Than

ge, >= Greater than or Equal to

le, <= Less than or Equal to

Furthermore, each protocol field is typed. The types are:
Unsigned integer (either 8-bit, 16-bit, 24-bit, or 32-bit)
Signed integer (either 8-bit, 16-bit, 24-bit, or 32-bit)
Boolean
Ethernet address (6 bytes)
Byte string (n-number of bytes)
IPv4 address
IPv6 address

IPX network number

238

String (text)

Double-precision floating point number

An integer may be expressed in decimal, octal, or hexadecimal notation. The

following three display filters are equivalent:

frame.pkt_len > 10
frame.pkt_len > 012

frame.pkt_len > Oxa

Boolean values are either true or false. However, a boolean field is present in a
protocol decode only if its value is true. If the value is false, the field is not
presence. You can therefore check the truth value of a boolean field by simply
checking for its existence, that is, by naming the field. For example, a token-ring
packet's source route field is boolean. To find any source-routed packets, the
display filter is simply:

tr.sr
Non source-routed packets can be found with the negation of that filter:

Ltr.sr

Ethernet addresses, as well as a string of bytes, are represented in hex digits. The

hex digits may be separated by colons, periods, or hyphens:

fddi.dst eq ff.ff.ff.ff.ff.ff

ipx.srcnode == 0.0.0.0.0.1

239

eth.src == aa-aa-aa-aa-aa-aa

If a string of bytes contains only one byte, then it is represented as an unsigned
integer. That is, if you are testing for hex value “ff' in a one-byte byte-string, you

must compare it agains "Oxff' and not “ff'.

IPv4 addresses can be represented in either dotted decimal notation, or by using the

hostname:

ip.dst eq www.mit.edu

ip.src ==192.168.1.1

IPv4 address can be compared with the same logical relations as numbers: eq, ne,
gt, ge, It, and le. The IPv4 address is stored in host order, so you do not have to

worry about how the endianness of an IPv4 address when using it in a display filter.

Classless InterDomain Routing (CIDR) notation can be used to test if an IPv4
address is in a certain subnet. For example, this display filter will find all packets in

the 129.111 Class-B network:

ip.addr ==129.111.0.0/16

240

http://www.mit.edu/

Remember, the number after the slash represents the number of bits used to
represent the network. CIDR notation can also be used with hostnames, in this

example of finding IP addresses on the same Class C network as “sneezy"

ip.addr eq sneezy/24

The CIDR notation can only be used on IP addresses or hostnames, not in variable
names. So, a display filter like “ip.src/24 == ip.dst/24" is not valid. (yet) IPX
networks are represented by unsigned 32-bit integers. Most likely you will be using

hexadecimal when testing for IPX network values:

ipx.srcnet == 0xc0a82c00

A substring operator also exists. You can check the substring (byte-string) of any
protocol or field. For example, you can filter on the vendor portion of an ethernet

address (the first three bytes) like this:

eth.src[0:3] == 00:00:83

Or more simply, since the number of bytes is inherent in the byte-string you
provide, you can provide just the offset. The previous example can be stated like
this:

eth.src[0] == 00:00:83

In fact, the only time you need to explicitly provide a length is when you don't

provide a byte-string, and are comparing fields against fields:

241

fddi.src[0:3] == fddi.dst[0:3]

If the length of your byte-string is only one byte, then it must be represented in the

same way as an unsigned 8-bit integer:

lic[3] == Oxaa

You can use the substring operator on a protocol name, too. And remember, the
““frame" protocol encompasses the entire packet, allowing you to look at the nth

byte of a packet regardless of its frame type (Ethernet, token-ring, etc.).

token[0:5] ne 0.0.0.1.1
ipx[0:2] == ff:ff

lic[3:1] eq Oxaa

Offsets for byte-strings can also be negative, in which case the negative number
indicates the number of bytes from the end of the field or protocol that you are

testing. Here's how to check the last 4 bytes of a frame:
frame[-4] == 0.1.2.3
or

frame[-4:4] ==0.1.2.3

All the above tests can be combined together with logical expressions. These too

are expressable in C-like syntax or with English-like abbreviations:

and, && Logical AND

242

or,|| Logical OR
xor, M Logical XOR

not,! Logical NOT

Expressions can be grouped by parentheses as well. The following are all valid
display filter expression:

tcp.port == 80 and ip.src == 192.168.2.1
not llc
(ipx.srcnet == Oxbad && ipx.srnode == 0.0.0.0.0.1) || ip

tr.dst[0:3] == 0.6.29 xor tr.src[0:3] == 0.6.29

A special caveat must be given regarding fields that occur more than once per
packet. “ip.addr" occurs twice per IP packet, once for the source address, and once
for the destination address. Likewise, tr.rif.ring fields can occur more than once per

packet. The following two expressions are not equivalent:

ip.addr ne 192.168.4.1

not ip.addr eq 192.168.4.1

The first filter says ~“show me all packets where an ip.addr exists that does not
equal 192.168.4.1". That is, as long as one ip.addr in the packet does not equal
192.168.44.1, the packet passes the display filter. The second filter ““don't show me

any packets that have at least one ip.addr field equal to 192.168.4.1". If one ip.addr

243

15 192.168.4.1, the packet does not pass. If neither ip.addr fields is 192.168.4.1,

then the packet passes.

It is easy to think of the "ne’ and “eq’ operators as having an implict ~exists"
modifier when dealing with multiply-recurring fields. ““ip.addr ne 192.168.4.1" can

be thought of as "“there exists an ip.addr that does not equal 192.168.4.1".

Be careful with multiply-recurring fields; they can be confusing.

The following is a table of protocol and protocol fields that are filterable in
Ethereal. The abbreviation of the protocol or field is given. This abbreviation is

what you use in the display filter. The type of the field is also given.

244

SNORT MAN PAGE

USAGE

snort [-abCdDeNopgsvVx?] [-A alert-mode] [-c rules-file] [-F bpf-file] [-h
home-net] [-i interface] [-] log-dir] [-M smb-hosts-file] [-n packet-count] [-r

tcpdump-file] [-S n=v] expression

OPTIONS

-A alert-mode
Alert using the specified alert-mode. Valid alert modes include fast, full,
none, and unsock. Fast writes alerts to the default "alert” file in a single-
line, syslog style alert message. Full writes the alert to the "alert” file with
the full decoded header as well as the alert message. None turns off alerting.
Unsock is an experimental mode that sends the alert information out over a

UNIX socket to another process that attaches to that socket.

Display ARP packets when decoding packets.

Log packets in a tcpdump(1) formatted file. All packets are logged in their

native binary state to a tcpdump formatted log file called "snort.log". This

option results in much faster operation of the program since it doesn't have

245

http://cgi-bin/man2html?tcpdump+1

to spend time in the packet binary->text converters. Snort can keep up
pretty well with 100Mbps networks in "-b" mode.
-C rules-file

Use the rules located in file rules-file.

-C
Print the character data from the packet payload only (no hex).

-d
Dump the application layer data when displaying packets.

-D
Run Snort in daemon mode. Alerts are sent to /var/log/snort.alert unless
otherwise specified.

-e
Display/log the Ethernet packet headers.

-F bpf-file
Read BPF filters from bpf-file. This is handy for people running Snort as a
SHADOW replacement or with a love of super complex BPF filters. See the
documentation for more information on writing BPF filters.

-h home-net

Set the "home network" to home-net. The format of this address variable is
a network prefix plus a CIDR block, such as 192.168.1.0/24. Once this

variable is set, all decoded packet logging will be done relative to the home

246

network address space. This is useful because of the way that Snort formats
its ASCII log data. With this value set to the local network, all decoded
output will be logged into decode directories with the address of the foreign
computer as the directory name, which is very useful during traffic analysis.

-1 interface
Listen on interface.

-1 log-dir
Set the output logging directory to log-dir. All alerts and packet traffic go
into this directory. If this option is not specified, the default logging
directory is set to /var/log/snort.

-M smb-hosts-file
Send WinPopup messages to the list of workstations contained in the smb-
hosts-file . This option requires Samba to be resident and in the path of the
machine running Snort. The workstation file is simple: each line of the file
contains the SMB name of the box to send the message to.

-n packet-count

Process packet-count packets and exit.

Turn off packet logging. The program still generates alerts normally.

247

Change the order in which the rules are applied to packets. Instead of being
applied in the standard Alert->Pass->Log order, this will apply them in

Pass->Alert->Log order.

Turn off promiscuous mode sniffing.

Quiet operation. Don't display banner and initialization informations.

-r tcpdump-file

Read the tcpdump-formatted file tcpdump-file. This will cause Snort to
read and process the file fed to it. This is useful if, for instance, you've got a
bunch of SHADOW files that you want to process for content, or even if
you've got a bunch of reassembled packet fragments which have been

written into a tcpdump formatted file.

Send alert messages to syslog. On linux boxen, they will appear in

Ivar/log/secure, /var/log/messages on many other platforms.

248

-S n=v

Set variable name "n" to value "v". This is useful for setting the value of a
defined variable name in a Snort rules file to a command line specified
value. For instance, if you define a HOME_NET variable name inside of a
Snort rules file, you can set this value from it's predefined value at the

command line.

-V
Be verbose. Prints packets out to the console. There is one big problem with
verbose mode: it's slow. If you are doing IDS work with Snort, don't use the
-v switch, you WILL drop packets.

-V
Show the version number and exit.

-?

Show the program usage statement and exit.
expression

selects which packets will be dumped. If no expression is given, all packets
on the net will be dumped. Otherwise, only packets for which expression is

“true’ will be dumped.

The expression consists of one or more primitives. Primitives usually
consist of an id (name or number) preceded by one or more qualifiers. There

are three different kinds of qualifier:

249

type

qualifiers say what kind of thing the id name or number refers to. Possible
types are host, net and port. E.g., "host foo', "net 128.3', "port 20". If there is
no type qualifier, host is assumed.

dir

qualifiers specify a particular transfer direction to and/or from id. Possible
directions are src, dst, src or dst and src and dst. E.g., “src foo', “dst net
128.3', “src or dst port ftp-data’. If there is no dir qualifier, src or dst is
assumed. For "null’ link layers (i.e. point to point protocols such as slip) the
inbound and outbound qualifiers can be used to specify a desired
direction.

proto

qualifiers restrict the match to a particular protocol. Possible protos are:
ether, fddi, ip, arp, rarp, decnet, lat, sca, moprc, mopdl, tcp and udp.
E.g., “ether src foo', "arp net 128.3", "tcp port 21". If there is no proto
qualifier, all protocols consistent with the type are assumed. E.g., “src foo'
means “(ip or arp or rarp) src foo' (except the latter is not legal syntax), "net
bar' means “(ip or arp or rarp) net bar' and “port 53' means “(tcp or udp) port

53"

[fddi' is actually an alias for “ether'; the parser treats them identically as

meaning the data link level used on the specified network interface."

250

FDDI headers contain Ethernet-like source and destination addresses, and
often contain Ethernet-like packet types, so you can filter on these FDDI
fields just as with the analogous Ethernet fields. FDDI headers also contain

other fields, but you cannot name them explicitly in a filter expression.]

In addition to the above, there are some special “primitive' keywords that
don't follow the pattern: gateway, broadcast, less, greater and arithmetic

expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or
and not to combine primitives. E.g., "host foo and not port ftp and not port
ftp-data'. To save typing, identical qualifier lists can be omitted. E.g., "tcp
dst port ftp or ftp-data or domain' is exactly the same as "tcp dst port ftp or

tcp dst port ftp-data or tcp dst port domain'.

Allowable primitives are:

dst host host

True if the IP destination field of the packet is host, which may be either an
address or a name.

src host host

True if the IP source field of the packet is host.

251

host host

True if either the IP source or destination of the packet is host. Any of the
above host expressions can be prepended with the keywords, ip, arp, or
rarp as in:

ip host host

which is equivalent to:

ether proto \ip and host host

If host is a name with multiple IP addresses, each address will be checked
for a match.

ether dst ehost

True if the ethernet destination address is ehost. Ehost may be either a name
from /etc/ethers or a number (see ethers(3N) for numeric format).

ether src ehost

True if the ethernet source address is ehost.

ether host ehost

True if either the ethernet source or destination address is ehost.

gateway host

True if the packet used host as a gateway. I.e., the ethernet source or
destination address was host but neither the IP source nor the IP destination
was host. Host must be a name and must be found in both /etc/hosts and

[etc/ethers. (An equivalent expression is

ether host ehost and not host host

252

http://cgi-bin/man2html?ethers+3n

which can be used with either names or numbers for host / ehost.)

dst net net

True if the IP destination address of the packet has a network number of net.
Net may be either a name from /etc/networks or a network number (see
networks(4) for details).

src net net

True if the IP source address of the packet has a network number of net.

net net

True if either the IP source or destination address of the packet has a
network number of net.

net net mask mask

True if the IP address matches net with the specific netmask. May be
qualified with src or dst.

net net/len

True if the IP address matches net a netmask len bits wide. May be qualified
with src or dst.

dst port port

True if the packet is ip/tcp or ip/udp and has a destination port value of port.
The port can be a number or a name used in /etc/services (see tcp(4P) and
udp(4P)). If a name is used, both the port number and protocol are checked.

If a number or ambiguous name is used, only the port number is checked

253

http://cgi-bin/man2html?networks+4
http://cgi-bin/man2html?tcp+4p
http://cgi-bin/man2html?udp+4p

(e.g., dst port 513 will print both tcp/login traffic and udp/who traffic, and
port domain will print both tcp/domain and udp/domain traffic).

src port port

True if the packet has a source port value of port.

port port

True if either the source or destination port of the packet is port. Any of the
above port expressions can be prepended with the keywords, tcp or udp, as
in:

tcp src port port

which matches only tcp packets whose source port is port.

less length

True if the packet has a length less than or equal to length. This is

equivalent to:
len <= length.

greater length
True if the packet has a length greater than or equal to length. This is

equivalent to:
len >= length.

ip proto protocol
True if the packet is an ip packet (see ip(4P)) of protocol type protocol.

Protocol can be a number or one of the names icmp, igrp, udp, nd, or tcp.

254

http://cgi-bin/man2html?ip+4p

Note that the identifiers tcp, udp, and icmp are also keywords and must be
escaped via backslash (\), which is \\ in the C-shell.

ether broadcast

True if the packet is an ethernet broadcast packet. The ether keyword is
optional.

ip broadcast

True if the packet is an IP broadcast packet. It checks for both the all-zeroes
and all-ones broadcast conventions, and looks up the local subnet mask.
ether multicast

True if the packet is an ethernet multicast packet. The ether keyword is
optional. This is shorthand for “ether[0] & 1 1= 0"

ip multicast

True if the packet is an IP multicast packet.

ether proto protocol

True if the packet is of ether type protocol. Protocol can be a number or a
name like ip, arp, or rarp. Note these identifiers are also keywords and
must be escaped via backslash (\). [In the case of FDDI (e.g., fddi protocol
arp"), the protocol identification comes from the 802.2 Logical Link
Control (LLC) header, which is usually layered on top of the FDDI header.

Tcpdump assumes, when filtering on the protocol identifier, that all FDDI

255

packets include an LLC header, and that the LLC header is in so-called
SNAP format.]

decnet src host

True if the DECNET source address is host, which may be an address of the
form "710.123", or a DECNET host name. [DECNET host name support is
only available on Ultrix systems that are configured to run DECNET.]
decnet dst host

True if the DECNET destination address is host.

decnet host host

True if either the DECNET source or destination address is host.

ip, arp, rarp, decnet

Abbreviations for:

ether proto p

where p is one of the above protocols.
lat, moprc, mopdl
Abbreviations for:

ether proto p

where p is one of the above protocols. Note that Snort does not currently
know how to parse these protocols.
tcp, udp, icmp

Abbreviations for:

256

ip proto p

where p is one of the above protocols.

expr relop expr

True if the relation holds, where relop is one of >, <, >=, <=, =, 1= and expr
is an arithmetic expression composed of integer constants (expressed in
standard C syntax), the normal binary operators [+, -, *, /, &, [], a length
operator, and special packet data accessors. To access data inside the
packet, use the following syntax:

proto [expr : size]

Proto is one of ether, fddi, ip, arp, rarp, tcp, udp, or icmp, and indicates
the protocol layer for the index operation. The byte offset, relative to the
indicated protocol layer, is given by expr. Size is optional and indicates the
number of bytes in the field of interest; it can be either one, two, or four,
and defaults to one. The length operator, indicated by the keyword len,

gives the length of the packet.

For example, “ether[0] & 1 !'=0' catches all multicast traffic. The
expression "ip[0] & Oxf !'=5' catches all IP packets with options. The
expression "ip[6:2] & 0x1fff = 0' catches only unfragmented datagrams and
frag zero of fragmented datagrams. This check is implicitly applied to the

tcp and udp index operations. For instance, tcp[0] always means the first

257

byte of the TCP header, and never means the first byte of an intervening

fragment.

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special
to the Shell and must be escaped).

Negation ("!" or "not’).

Concatenation (‘&&' or "and’).

Alternation ('||' or “or").

Negation has highest precedence. Alternation and concatenation have equal
precedence and associate left to right. Note that explicit and tokens, not

juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is

assumed. For example,

not host vs and ace

is short for

not host vs and host ace

which should not be confused with

not (host vs or ace)

258

Expression arguments can be passed to Snort as either a single argument or
as multiple arguments, whichever is more convenient. Generally, if the
expression contains Shell metacharacters, it is easier to pass it as a single,
quoted argument. Multiple arguments are concatenated with spaces before

being parsed.

259

TCPDUMP MAN PAGE

USAGE

tcpdump [-adefInNOpgRStuvxX] [-c count]
[-C file_size] [-Ffile]
[-i interface] [-m module] [-r file]
[-ssnaplen][-T type][-w file]

[-E algo:secret] [expression]

OPTIONS

Attempt to convert network and broadcast addresses to names.

Exit after receiving count packets.

Before writing a raw packet to a savefile, check whether the file is currently

larger than file_size and, if so, close the current savefile and open a new

one. Savefiles after the first savefile will have the name specified with the -

w flag, with a number after it, starting at 2 and continuing upward. The

260

-dd

-ddd

units of file_size are millions of bytes (1,000,000 bytes, not 1,048,576

bytes).

Dump the compiled packet-matching code in a human readable form to

standard output and stop.

Dump packet-matching code as a C program fragment.

Dump packet-matching code as decimal numbers (preceded with a count).

Print the link-level header on each dump line.

Use algo:secret for decrypting IPsec ESP packets. Algorithms may be des-
cbc, 3des-cbc, blowfish-cbc, rc3-cbe, cast128-cbc, or none. The default is
des-cbc. The ability to decrypt packets is only present if tcpdump was
compiled with cryptography enabled. secret the ascii text for ESP secret
key. We cannot take arbitrary binary value at this moment. The option
assumes RFC2406 ESP, not RFC1827 ESP. The option is only for
debugging purposes, and the use of this option with truly “secret' key is
discouraged. By presenting IPsec secret key onto command line you make it

visible to others, via ps(1) and other occasions.

261

http://annys.eines.info/cgi-bin/man/man2html?1+ps

Print “foreign' internet addresses numerically rather than symbolically (this
option is intended to get around serious brain damage in Sun's yp server ---

usually it hangs forever translating non-local internet numbers).

Use file as input for the filter expression. An additional expression given on

the command line is ignored.

Listen on interface. If unspecified, tcpdump searches the system interface
list for the lowest numbered, configured up interface (excluding loopback).
Ties are broken by choosing the earliest match.

On Linux systems with 2.2 or later kernels, an interface argument of ““any"
can be used to capture packets from all interfaces. Note that captures on the

““any" device will not be done in promiscuous mode.

Make stdout line buffered. Useful if you want to see the data while
capturing it. E.g.,

“tcpdump -l | tee dat” or “tcpdump -1 >dat & tail -f dat".

Load SMI MIB module definitions from file module. This option can be

used several times to load several MIB modules into tcpdump.

262

Don't convert addresses (i.e., host addresses, port numbers, etc.) to names.

Don't print domain name qualification of host names. E.g., if you give this

flag then tcpdump will print “"nic" instead of “"nic.ddn.mil".

Do not run the packet-matching code optimizer. This is useful only if you

suspect a bug in the optimizer.

Don't put the interface into promiscuous mode. Note that the interface might
be in promiscuous mode for some other reason; hence, "-p' cannot be used

as an abbreviation for “ether host {local-hw-addr} or ether broadcast'.

Quick (quiet?) output. Print less protocol information so output lines are

shorter.

Assume ESP/AH packets to be based on old specification (RFC1825 to
RFC1829). If specified, tcpdump will not print replay prevention field.
Since there is no protocol version field in ESP/AH specification, tcpdump

cannot deduce the version of ESP/AH protocol.

263

Read packets from file (which was created with the -w option). Standard

input is used if file is ~-".

Print absolute, rather than relative, TCP sequence numbers.

Snarf snaplen bytes of data from each packet rather than the default of 68
(with SunOS's NIT, the minimum is actually 96). 68 bytes is adequate for
IP, ICMP, TCP and UDP but may truncate protocol information from name
server and NFS packets (see below). Packets truncated because of a limited
snapshot are indicated in the output with ““[|proto]”, where proto is the
name of the protocol level at which the truncation has occurred. Note that
taking larger snapshots both increases the amount of time it takes to process
packets and, effectively, decreases the amount of packet buffering. This
may cause packets to be lost. You should limit snaplen to the smallest
number that will capture the protocol information you're interested in.

Setting snaplen to 0 means use the required length to catch whole packets.

Force packets selected by "expression” to be interpreted the specified type.
Currently known types are cnfp (Cisco NetFlow protocol), rpc (Remote

Procedure Call), rtp (Real-Time Applications protocol), rtcp (Real-Time

264

-ttt

-tttt

Applications control protocol), snmp (Simple Network Management

Protocol), vat (Visual Audio Tool), and wb (distributed White Board).

Don't print a timestamp on each dump line.

Print an unformatted timestamp on each dump line.

Print a delta (in micro-seconds) between current and previous line on each

dump line.

Print a timestamp in default format proceeded by date on each dump line.

Print undecoded NFS handles.

(Slightly more) verbose output. For example, the time to live, identification,
total length and options in an IP packet are printed. Also enables additional
packet integrity checks such as verifying the IP and ICMP header

checksum.

Even more verbose output. For example, additional fields are printed from

NFS reply packets, and SMB packets are fully decoded.

265

VW

Even more verbose output. For example, telnet SB ... SE options are printed

in full. With -X telnet options are printed in hex as well.

Write the raw packets to file rather than parsing and printing them out. They

can later be printed with the -r option. Standard output is used if file is -".

Print each packet (minus its link level header) in hex. The smaller of the
entire packet or snaplen bytes will be printed. Note that this is the entire
link-layer packet, so for link layers that pad (e.g. Ethernet), the padding
bytes will also be printed when the higher layer packet is shorter than the

required padding.

When printing hex, print ascii too. Thus if -x is also set, the packet is
printed in hex/ascii. This is very handy for analysing new protocols. Even if

-X is not also set, some parts of some packets may be printed in hex/ascii.

expression

selects which packets will be dumped. If no expression is given, all packets
on the net will be dumped. Otherwise, only packets for which expression is

“true’ will be dumped.

266

The expression consists of one or more primitives. Primitives usually
consist of an id (name or number) preceded by one or more qualifiers. There

are three different kinds of qualifier:

type

qualifiers say what kind of thing the id name or number refers to. Possible
types are host, net and port. E.g., “host foo', "net 128.3', "port 20". If there is
no type qualifier, host is assumed.

dir

qualifiers specify a particular transfer direction to and/or from id. Possible
directions are src, dst, src or dst and src and dst. E.g., “src foo', “dst net
128.3', “src or dst port ftp-data'. If there is no dir qualifier, src or dst is
assumed. For “null' link layers (i.e. point to point protocols such as slip) the
inbound and outbound qualifiers can be used to specify a desired
direction.

proto

qualifiers restrict the match to a particular protocol. Possible protos are:
ether, fddi, tr, ip, ip6, arp, rarp, decnet, tcp and udp. E.g., “ether src foo',
“arp net 128.3', “tcp port 21'. If there is no proto qualifier, all protocols
consistent with the type are assumed. E.g., “src foo' means “(ip or arp or
rarp) src foo' (except the latter is not legal syntax), "net bar' means “(ip or

arp or rarp) net bar' and “port 53' means “(tcp or udp) port 53'.

267

[fddi' is actually an alias for “ether'; the parser treats them identically as
meaning " the data link level used on the specified network interface."
FDDI headers contain Ethernet-like source and destination addresses, and
often contain Ethernet-like packet types, so you can filter on these FDDI
fields just as with the analogous Ethernet fields. FDDI headers also contain

other fields, but you cannot name them explicitly in a filter expression.

Similarly, “tr' is an alias for “ether’; the previous paragraph's statements

about FDDI headers also apply to Token Ring headers.]

In addition to the above, there are some special “primitive’ keywords that
don't follow the pattern: gateway, broadcast, less, greater and arithmetic

expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or
and not to combine primitives. E.g., "host foo and not port ftp and not port
ftp-data'. To save typing, identical qualifier lists can be omitted. E.g., "tcp
dst port ftp or ftp-data or domain' is exactly the same as "tcp dst port ftp or

tcp dst port ftp-data or tcp dst port domain'.

Allowable primitives are:

268

dst host host

True if the IPv4/v6 destination field of the packet is host, which may be
either an address or a name.

src host host

True if the IPv4/v6 source field of the packet is host.

host host

True if either the IPv4/v6 source or destination of the packet is host. Any of
the above host expressions can be prepended with the keywords, ip, arp,
rarp, or ip6 as in:

ip host host

which is equivalent to:

ether proto \ip and host host

If host is a name with multiple IP addresses, each address will be checked
for a match.

ether dst ehost

True if the ethernet destination address is ehost. Ehost may be either a name
from /etc/ethers or a number (see ethers(5) for numeric format).

ether src ehost

True if the ethernet source address is ehost.

ether host ehost

True if either the ethernet source or destination address is ehost.

269

http://annys.eines.info/cgi-bin/man/man2html?5+ethers

gateway host

True if the packet used host as a gateway. l.e., the ethernet source or
destination address was host but neither the IP source nor the IP destination
was host. Host must be a name and must be found both by the machine's
host-name-to-1P-address resolution mechanisms (host name file, DNS, NIS,
etc.) and by the machine's host-name-to-Ethernet-address resolution

mechanism (/etc/ethers, etc.). (An equivalent expression is
ether host ehost and not host host

which can be used with either names or numbers for host / ehost.) This
syntax does not work in IPv6-enabled configuration at this moment.

dst net net

True if the IPv4/v6 destination address of the packet has a network number
of net. Net may be either a name from /etc/networks or a network number
(see networks(5) for details).

src net net

True if the IPv4/v6 source address of the packet has a network number of
net.

net net

True if either the 1Pv4/v6 source or destination address of the packet has a

network number of net.

270

http://annys.eines.info/cgi-bin/man/man2html?5+networks

net net mask netmask

True if the IP address matches net with the specific netmask. May be
qualified with src or dst. Note that this syntax is not valid for IPv6 net.

net net/len

True if the IPv4/v6 address matches net with a netmask len bits wide. May
be qualified with src or dst.

dst port port

True if the packet is ip/tcp, ip/udp, ip6/tcp or ip6/udp and has a destination
port value of port. The port can be a number or a name used in /etc/services
(see tcp(4P) and udp(4P)). If a name is used, both the port number and
protocol are checked. If a number or ambiguous name is used, only the port
number is checked (e.g., dst port 513 will print both tcp/login traffic and
udp/who traffic, and port domain will print both tcp/domain and
udp/domain traffic).

src port port

True if the packet has a source port value of port.

port port

True if either the source or destination port of the packet is port. Any of the
above port expressions can be prepended with the keywords, tcp or udp, as
in:

tcp src port port

which matches only tcp packets whose source port is port.

271

http://annys.eines.info/cgi-bin/man/man2html?4P+tcp
http://annys.eines.info/cgi-bin/man/man2html?4P+udp

less length
True if the packet has a length less than or equal to length. This is

equivalent to:
len <= length.

greater length
True if the packet has a length greater than or equal to length. This is

equivalent to:
len >= length.

ip proto protocol

True if the packet is an IP packet (see ip(4P)) of protocol type protocol.
Protocol can be a number or one of the names icmp, icmp6, igmp, igrp, pim,
ah, esp, vrrp, udp, or tcp. Note that the identifiers tcp, udp, and icmp are
also keywords and must be escaped via backslash (\), which is \\'in the C-
shell. Note that this primitive does not chase the protocol header chain.

ip6 proto protocol

True if the packet is an IPv6 packet of protocol type protocol. Note that this
primitive does not chase the protocol header chain.

ip6 protochain protocol

True if the packet is IPv6 packet, and contains protocol header with type

protocol in its protocol header chain. For example,

272

http://annys.eines.info/cgi-bin/man/man2html?4P+ip

ip6 protochain 6

matches any IPv6 packet with TCP protocol header in the protocol header
chain. The packet may contain, for example, authentication header, routing
header, or hop-by-hop option header, between IPv6 header and TCP header.
The BPF code emitted by this primitive is complex and cannot be optimized
by BPF optimizer code in tcpdump, so this can be somewhat slow.

ip protochain protocol

Equivalent to ip6 protochain protocol, but this is for IPv4.

ether broadcast

True if the packet is an ethernet broadcast packet. The ether keyword is
optional.

ip broadcast

True if the packet is an IP broadcast packet. It checks for both the all-zeroes
and all-ones broadcast conventions, and looks up the local subnet mask.
ether multicast

True if the packet is an ethernet multicast packet. The ether keyword is
optional. This is shorthand for “ether[0] & 1 !'=0'.

ip multicast

True if the packet is an IP multicast packet.

ip6 multicast

True if the packet is an IPv6 multicast packet.

273

ether proto protocol

True if the packet is of ether type protocol. Protocol can be a number or one
of the names ip, ip6, arp, rarp, atalk, aarp, decnet, sca, lat, mopdl, moprc,
IS0, Stp, ipx, or netbeui. Note these identifiers are also keywords and must
be escaped via backslash (\).

[In the case of FDDI (e.g., fddi protocol arp') and Token Ring (e.g., ‘tr
protocol arp'), for most of those protocols, the protocol identification
comes from the 802.2 Logical Link Control (LLC) header, which is usually
layered on top of the FDDI or Token Ring header.

When filtering for most protocol identifiers on FDDI or Token Ring,
tcpdump checks only the protocol ID field of an LLC header in so-called
SNAP format with an Organizational Unit Identifier (OUI) of 0x000000, for
encapsulated Ethernet; it doesn't check whether the packet is in SNAP
format with an OUI of 0x000000.

The exceptions are iso, for which it checks the DSAP (Destination Service
Access Point) and SSAP (Source Service Access Point) fields of the LLC
header, stp and netbeui, where it checks the DSAP of the LLC header, and
atalk, where it checks for a SNAP-format packet with an OUI of 0x080007
and the Appletalk etype.

In the case of Ethernet, tcpdump checks the Ethernet type field for most of

those protocols; the exceptions are iso, sap, and netbeui, for which it checks

274

for an 802.3 frame and then checks the LLC header as it does for FDDI and
Token Ring, atalk, where it checks both for the Appletalk etype in an
Ethernet frame and for a SNAP-format packet as it does for FDDI and
Token Ring, aarp, where it checks for the Appletalk ARP etype in either an
Ethernet frame or an 802.2 SNAP frame with an OUI of 0x000000, and ipx,
where it checks for the IPX etype in an Ethernet frame, the IPX DSAP in
the LLC header, the 802.3 with no LLC header encapsulation of IPX, and
the IPX etype in a SNAP frame.]

decnet src host

True if the DECNET source address is host, which may be an address of the
form 7710.123", or a DECNET host name. [DECNET host name support is
only available on Ultrix systems that are configured to run DECNET.]
decnet dst host

True if the DECNET destination address is host.

decnet host host

True if either the DECNET source or destination address is host.

ip, ip6, arp, rarp, atalk, aarp, decnet, iso, stp, ipx, netbeui

Abbreviations for:

ether proto p

where p is one of the above protocols.
lat, moprc, mopdl

Abbreviations for:

275

ether proto p

where p is one of the above protocols. Note that tcpdump does not currently
know how to parse these protocols.

vlan [vlan_id]

True if the packet is an IEEE 802.1Q VLAN packet. If [vlan_id] is
specified, only true is the packet has the specified vlan_id. Note that the
first vlan keyword encountered in expression changes the decoding offsets
for the remainder of expression on the assumption that the packet is a
VLAN packet.

tcp, udp, icmp

Abbreviations for:

ip proto p or ip6 proto p

where p is one of the above protocols.

iso proto protocol

True if the packet is an OSI packet of protocol type protocol. Protocol can
be a number or one of the names clnp, esis, or isis.

clnp, esis, isis

Abbreviations for:

iso proto p

where p is one of the above protocols. Note that tcpdump does an

incomplete job of parsing these protocols.

276

expr relop expr

True if the relation holds, where relop is one of >, <, >=, <=, =, I= and expr
is an arithmetic expression composed of integer constants (expressed in
standard C syntax), the normal binary operators [+, -, *, /, &, [], a length
operator, and special packet data accessors. To access data inside the
packet, use the following syntax:

proto [expr : size]

Proto is one of ether, fddi, tr, ppp, slip, link, ip, arp, rarp, tcp, udp,
icmp or ip6, and indicates the protocol layer for the index operation. (ether,
fddi, tr, ppp, slip and link all refer to the link layer.) Note that tcp, udp and
other upper-layer protocol types only apply to IPv4, not IPv6 (this will be
fixed in the future). The byte offset, relative to the indicated protocol layer,
is given by expr. Size is optional and indicates the number of bytes in the
field of interest; it can be either one, two, or four, and defaults to one. The
length operator, indicated by the keyword len, gives the length of the

packet.

For example, “ether[0] & 1 !'=0' catches all multicast traffic. The
expression "ip[0] & Oxf !=5' catches all IP packets with options. The
expression "ip[6:2] & 0x1fff = 0' catches only unfragmented datagrams and
frag zero of fragmented datagrams. This check is implicitly applied to the

tcp and udp index operations. For instance, tcp[0] always means the first

277

byte of the TCP header, and never means the first byte of an intervening

fragment.

Some offsets and field values may be expressed as names rather than as
numeric values. The following protocol header field offsets are available:
icmptype (ICMP type field), icmpcode (ICMP code field), and tcpflags

(TCP flags field).

The following ICMP type field values are available: icmp-echoreply,
icmp-unreach, icmp-sourcequench, icmp-redirect, icmp-echo, icmp-
routeradvert, icmp-routersolicit, icmp-timxceed, icmp-paramprob,
icmp-tstamp, icmp-tstampreply, icmp-ireq, icmp-ireqreply, icmp-

maskreq, icmp-maskreply.

The following TCP flags field values are available: tcp-fin, tcp-syn, tcp-

rst, tcp-push, tcp-push, tep-ack, tcp-urg.

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special
to the Shell and must be escaped).

Negation ("!" or "not’).

Concatenation (‘&&' or "and’).

Alternation ('||' or “or").

278

Negation has highest precedence. Alternation and concatenation have equal
precedence and associate left to right. Note that explicit and tokens, not

juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is

assumed. For example,

not host vs and ace
is short for

not host vs and host ace
which should not be confused with

not (host vs or ace)

Expression arguments can be passed to tcpdump as either a single argument
or as multiple arguments, whichever is more convenient. Generally, if the
expression contains Shell metacharacters, it is easier to pass it as a single,
quoted argument. Multiple arguments are concatenated with spaces before

being parsed.

279

XPROBE2 MAN PAGE

USAGE

xprobe2 [-v][-r] [-p proto:portnum:state] [-c configfile] [-0

logfile] [-p port] [-t receive_timeout] [-m numberofmatches] [

-D modnum] [-F][-X] host

OPTIONS

-v be verbose.

-r display route to target (traceroute-like output).

-c use configfile to read the configuration file, xprobe2.conf,

from a non-default location.

-D disable module number modnum.

-m set number of results to display to numofmatches.

-0 use logfile to log everything (default output is stderr).

-p specify port number (portnum), protocol (proto) and it’s state

280

for xprobe2 to use during rechability/fingerprinting tests of

remote host. Possible values for proto are tcp or udp, portnum

can only take values from 1 to 65535, state can be either

closed (for tcp that means that remote host replies with RST

packet, for udp that means that remote host replies with ICMP

Port Unreachable packet) or open (for tcp that means that

remote host replies with SYN ACK packet and for udp that means

that remote host doesn’t send any packet back).

-t set receive timeout to receive_timeout in seconds (the default

is set to 10 seconds).

-F generate signature for specified target (use -0 to save finger-

print into file)

-X write XML output to logfile specified with —o

281

Appendix B:

Transmission Control Protocol/Internet
Protocol (TCP/IP)

Transmission Control Protocol (TCP)

TCP is a Transport layer protocol that provides connection-oriented
communication. This protocol is typically used by applications that require
guaranteed delivery. It is a sliding window protocol that provides handling for both
timeouts and retransmissions. TCP establishes a full duplex virtual connection
between two endpoints. Each endpoint is defined by an IP address and a TCP port
number [41]. The byte stream is transferred in segments. The window size
determines the number of bytes of data that can be sent before an acknowledgement

from the receiver is necessary.

TCP Header
ZSource Port Destinstion Port
Sequences Mumber
Acknoweledogment Humber
CE?f?ts?et rEEsT EC F'zg ainconay
Checksum Urgent pointer
Cptions FPadding
dat=

Figure B-1: TCP Header

282

Source Port

Port number which the packet left from the senders machine

Destination Port

Port number on the receiver’s machine

Sequence Number
The sequence number of the first data byte in this segment. If the SYN bit is set, the
sequence number is the initial sequence number and the first data byte is initial

sequence number + 1.

Acknowledgment Number
If the ACK bit is set, this field contains the value of the next sequence number the
sender of the segment is expecting to receive. Once a connection is established this

is always sent.

Data Offset
The number of 32-bit words in the TCP header. This indicates where the data

begins. The length of the TCP header is always a multiple of 32 bits.

Reserved

Must be set to zero.

283

ECN, Explicit Congestion Notification (RFC 3168)

oo |[o1 |
lc| e |
C,CWR

Congestion Window Reduced (CWR) flag in the TCP header is use by the data

sender to inform the data receiver that the congestion window has been reduced

E, ECE
Explicit Congestion Echo (ECE) flag in the TCP header is used by the data receiver
to inform the data sender when a Congestion Experience (CE) packet has been

received.

Flags.

NRARREE

U, URG: Urgent pointer valid flag.

A, ACK: Acknowledgment number valid flag.
P, PSH: Push flag.

R, RST: Reset connection flag.

S, SYN: Synchronize sequence numbers flag.

F, FIN: End of data flag.

284

Window

The number of data bytes beginning with the one indicated in the acknowledgment
field, which the sender of this segment is willing to accept. RFC 793, the
document that defines TCP, mandates use of this field in the TCP header of every
packet sent across a TCP connection. It provides a 16-bit integer that advertises the
number of bytes available in a recipient's receive buffer. This information is used
by the sending system's flow-control service to slow down and speed up the amount
of data being transferred according to the recipient's capabilities. It defines the
maximum number of bytes that can be sent without requiring the sender to stop
transmitting and wait for an acknowledgment.

Checksum

This is computed as the 16-bit one's complement of the one's complement sum of a
pseudo header of information from the IP header, the TCP header, and the data,
padded as needed with zero bytes at the end to make a multiple of two bytes. The

pseudo header contains the following fields:

[0z [03]j04][0s] 0] jo7][08] 09 [10[12][12 [13] 14][15][16][17 [18]19] 20][21][22] 23 [24] 25][26][27) (28 [29][30][31]

Souree [P address
Destirva tion IF address
o I IF Protocol Il Total length |

Figure B2: Checksum Contents
Urgent Pointer
If the URG bit is set, this field points to the sequence number of the last byte in a

sequence of urgent data.

285

Options.
Options occupy space at the end of the TCP header. All options are included in the
checksum. An option may begin on any byte boundary. The TCP header must be

padded with zeros to make the header length a multiple of 32 bits.

Kind | Lenzih Descripton References
1] 1 End of opton list BEFC 793
1 1 Mo operaton RFZ 795
2 <1 InTaxirmur S egrment Size RFZ 793
F = Window =cale factor BFFC 1072, FEFC 1223
4 =] S LK permmitted BEFC 201%
£ Fariable |5 L ED BFFC 201E, FFC 2EES
L] =] Echo FEFC 1072
T & Echo re plsr BEFC 1072
i) 10 Timestarp FEFC 1323
o 2 Fartial Order Conre ction Perrod thed BEFC 16923
10 = Fartial Order Service Profile FEFC 1623
11 (=] T Clonte cHon Crotunt FEFC 164
1z & OO HE W BEFC 1&54d
13 =] I ECHO BEFC 154
14 3 TZF Alternate Theclksurmn Feguest BEFZ 1144
15 |Warable. | TCF Alternate Checksurn Data BFEFC 1146
16 Skeeter.
17 Bubiba.
18 = Trailer Che cksurn Ophon.
10 1= IvIDS signatae . BEFC 2325
20 SCFPS Capmbilibe s.
21 Selective Megative Sckrnowledgerne nts.
22 Fecorl Poundaries.
2F Corruphon expernenced.
24 SHLeP.
25
26 TCF Corapression Filter.

Figure B3: TCP Options

Data Variable length. This is users data, payload.

286

Internet Protocol (1P)

The Internet Protocol is the heart of the TCP/IP stack, shown below

Snpliestion Authenication, compression, and end user services.
transport Handles the flow: of data between systems and
provides access to the netwark for applications
Metwark Packet routing
Link Kernel OSidevice driver interface to the network
irterface on the computer

Figure B4: TCP/IP Protocol Stack

IP is a network-layer protocol that contains addressing information and some
control information that enables packets to be routed. Therefore, it is responsible
for providing connectionless, best-effort delivery of datagram’s through an
internetwork and provides fragmentation and reassembly of datagram’s to support
data links with different maximum-transmission unit (MTU) sizes based on a four
byte (32 bit) destination address.

In order for IP to move packets of data from node to node, the data has to
go through a series of steps called encapsulation. This is the process that user data
goes through before it is routed to its destination. As the data goes through the

protocol stack, headers are added to the packet being sent. This process goes as

follows;

287

F
Datagiam

Ethernet
Frame

hJ

TCP Segment

o
¥

T
¥

Lser data

—

¥

Application Header

Lser data

h |

e
I

TCP heacer

Application Header

IP header

TCP header

Anplication Header

User cata

1

1

1

1

Ethernet header

P hieacler

TCP header

Application Header

User data

Ethernet traier

Ethernetframe - 46 to 1500 bytes

Application

TCR

MR SR SR PR SRS N
¥ '

——

Figure B5: Encapsulation of data as it goes down the protocol stack

Now that we understand how a packet is prepared for transmission to its

destination, let’s take a look at how IP deals with fragmentation and reassembly of
datagrams to support data links with different maximum-transmission unit (MTU)
sizes. The maximum transmission unit is the largest amount of encapsulated data a
network interface can transmit. Whenever the IP layer receives an IP datagram to
send, it determine which interface the datagram is being sent on and queries that

interface to obtain its MTU. IP then compares the MTU with the datagram size and

performs fragmentation if it is necessary. In the fragmentation process the

following IP header fields are used,

288

- ldentification field: contains a unique value for each IP datagram that
the sender transmits. This number is copied into each fragment of a
particular datagram.

- Flags field: this field uses one bit to identify that there are “more
fragments” and is turned on for every fragment except for the final
fragment.

- Fragment offset field: contains the offset of this fragment from the
begging of the datagram.

- Total length field: this is reset to reflect its size.

When an IP datagram is fragmented, each fragment becomes its own packet with its
own IP header and routed independently. This makes it possible for the packets to
arrive at their destination out of order, but there is enough information in the IP
header to allow reassembly by the receiver. If at any point during the transmission
one fragment is lost, the entire datagram must be retransmitted.

Packet Header Field descriptions

u]] 7 15
= TYpe of
IP wersion | Internet Header Length | Service Total Lencgth
Identification Flags (2,0 k) Fragment Off=zet
Time to Live | Protocal Header Checksum

Source Address

Destination Address

Ciption + Padding

Data

Figure B6: 32 bit IP header

289

IP version number

This field is used to identify the version of IP being used. This field currently has
currently has no influence on the probability of intrusion. We say currently because
the only version currently in use is IPv4. Until IPv6 is in wide use, this field has no

influence on the probability of intrusion in the IDS model/algorithm.

Version Description

0 Reserved.

1

2

3

4 IP, Internet Protocol.

5 ST, ST Datagram Mode.

6 SIP, Simple Internet Protocol.
SIPP, Simple Internet Protocol Plus.
IPv6, Internet Protocol.

7 |TP/IX, The Next Internet.

8 PIP, The P Internet Protocol.

9 |TUBA

10

14

15 |Reserved.

Figure B7: IP versions
Internet Header Length (IHL)
This is the length of the internet header in 32 bit words. Minimum value for a
correct header is 5 which would be a 20 byte header.
Type of Service
This is a one-byte field used to indicate parameters regarding the quality of service

required and may be used by gateways to select routing and queuing algorithms.

290

|Bits ‘Meaning

Precedence; possible values are:
111 --- Network Control
110 --- Internetwork Control
101 --- CRITIC/ECP

0-2 100 --- Flash Override

011 --- Flash

010 --- Immediate
001 --- Priority
000 --- Routine

| 3 ‘Delay. 0 =Normal, 1 = Low

4 Throughput. 0 = Normal, 1 = High
5 |Reliability. 0 = Normal, 1 = High

| 6-7 ‘ Reserved.

Figure B8: IP Header Type of Service Field
Total Length
This is the length of the datagram in bytes, including the Internet header and data

(payload)

Identification

Used to identify the fragments of one datagram from those of another. The
originating protocol module of an internet datagram sets the identification field to a
value that must be unique for that source-destination pair and protocol for the time
the datagram will be active in the internet system. The originating protocol module
of a complete datagram sets the MF bit to zero and the Fragment Offset field to

Zero.

291

Flags (R,D,M)

Consists of a 3-bit field of which the two low order bits control fragmentation. The
lo order bit specifies whether the packet can be fragmented. The middle bit
specifies whether the packet is the last fragment in a series of fragmented packet.

The third or high order bit is reserved.

00 |01 02‘

R [DF MF‘

R, Reserved: Should be set to 0.

DF, Don't fragment: Controls the fragmentation of the datagram.

Value Description
0 |Fragment if necessary.
1 |Do not fragment.

MF, More fragments: Indicates if the datagram contains additional fragments.

Value Description
0 |This is the last fragment.
1 |More fragments follow this fragment.

292

Fragment Offset
Fragment offset indicates the position of the fragment’s data relative to the
beginning of the data in the original datagram, which allows the destination IP

process to reconstruct the original packet.

Time to Live

Time to live (TTL) is the maximum amount of time a packet may exist. This filed
is decremented by at least 1 each time the IP header is processed by a router or a
host. Unless the packet is queued in a buffer for a long period of time, this filed
actually indicates the maximum number of intermediate routers a packet may cross

before it gets dropped. This is done to prevent packets from looping endlessly.

Protocol
This field indicates the type of protocol message is encapsulated with in the IP
Packet. The assigned internet protocol field values are as follows [Reynolds &

Postel 1992],

293

[Decirnal K eyword Protocol References |
o Fesened [JEF]
1 ICHMF Intarnet Control Message [27.JBF]
z |G P Imternet Sroup Managemernt [43.JBF]
3 Lelcl o % ateway-to- G ateway [S0.mMB]
4 1 IP inIP (encasulation) [MEP]
5 ST Stream [49.JF]
[=1 TCP Transmission Cortrol [M10G5.JB8F]
7 ucL ucL [FH]
2 EGP Exderior Gateway Protocol [12=2.0LMA1]
9 1P any private interior gateway BF1
10 BBMN-RCC-MOM BBN RCC Maonitoring [E5C]
11 MYF -1 Metwork Woice P rotocol [22.5C3]
12 FUF FUF [BXEROX]
13 ARGUS ARGUS [RuwvS4]
14 EMCON EMCON BMN7]
15 KNET Cross Met Debugger [56.JFHZ]
16 CHADS Chaos [MT3]
17 UDF User Datagram [104,JBF]
15 ML Multiplesxing [23.JBF]
19 DCM-ME AS DCH Measurement Subsystems [OLMA]
z0 HWF Host Monitoring [59.RHBE]
21 PRI P acket R adio Measurament =]
prars HME-IDFP MEROX NS IDP ME2EXEROX]
Z3 TRUMK-1 Trunk-1 (=X =1}
24 TRUMK-2 Trunk2 [BwvBE]
25 LEAF-1 Leat1 [BwvBEG]
Z6 LEAF-Z Leat-z (=X =1}
27 ROP Reliable Data P rotocol [132.RHE]
pri=] IRTF Intarnet Reliable Transaction [72.TM]
29 IS2-TP 4 1S Transport P rotocol Class 4 [B3RCTFT]
=0 NETBLT Bulk Data Transfer P rotocol [z0.DDCA]
kel MFE -MEP MFE Metwork Services P rotocol [124BCTHZ]
3z MERIT-INF MERIT Irmternodal P rotocol [HWWB]
=5 SEF Sequertial E xchange P rotocal [Jo1z0]
24 2FC Third P arty Connect P rotocaol [EAF3]
=5 IDFR Inter-Domain Palicy Rauting P ratocol M3 S]
peia) XTP XKTF [S=C]
a7 ChP Datagram Delivery P rotocol [
38 IDPFR-CMTF IDF R Contral Message Transport P roto [MxE1]
j<=] TP++ TP ++ Transport P rotocal [DXF]
40 L IL Transport F rotocol [D=F 2]
44.60 Unassigned [EF]
&1 anv host imernal protocol [WBF]
Gz CFTF CFTF [0 HCFZ]
] ary local netwark WEF]
2] SAT-EXPAK. SATHET and Badiroom EXPAK [SHBE]
65 KRYP TOLAM Kryptalan [FxL1]
[=1=) RWD MIT Remote wirtual Disk Protocol MBES]
67T IFFLC Internet Pluribus Padiet Caore [EHB]
[=1=) any distributed file system BF]1
=] SAT-MOMN SATHNET Monitoring [EHB]
TO WISA WIS A P rotocal [E=T1]
KAl 1P CW Internet Packet Core Lility [SHB]
Tz CPHX Computer Frotocol Metwork E xecutive DM Z]
Tz CFPHB Computer P rotocol Heart Beat [DxMZ]
74 WS H Wiang Span Metwork [D]
75 FWF F acket Video P rotocol [5C3]
TG BR-SAT-MOM Backroom SATHET Monitoring [EHB]
77 SUN-ND SUM ND PROTOCOL-Temporany [2]
Ts WB-hACIH WIDEBAND haonitoring [EHB]
7a WWB-EXP Ak WIDEBAND EXPAK [SHB]
=0 150-1F IS Internet P rotocol [MTR]
E=3 WMTF WMTP [DRC3]
SZ SECURE-%MTF SECURE-YMTF [DRC3]
22 WINES WINES [BxH]
a4 TTF TTF [==]
S5 MNSFHRET-IGF NSFHNET-I3F [HwvB]
1= DaP Dissimilar Sateway P rotocol [74.ML109]
ar TCF TCF [GaLa]
S5 IGRF IZRF [18.G=5]

Figure B9: IP Protocol Numbers

Header Checksum

Since some header fields change (e.g., time to live), this is recomputed and verified

at each point that the internet header is processed. This is done to ensure IP header

integrity.

294

Source Internet Address

This is where the packet originates from.

Destination Internet Address

This is where the packet should be delivered to.

Options

These are the options the IP header may contain. Although an IP header may

contain options, most don’t. Field format is as follows;

100/0102 0304 05|06 |07

'c/[Class| Option |

C, Copy flag.

Indicates if the option is to be copied into all fragments.

Value| Description
0 |Do not copy.

1 |Copy.
Class..
Value Description
0 |Control.
1 |Reserved.
2 |Debugging and measurement.
3 |Reserved.

295

Options.

Bpﬁnn|ﬂnp}f |Class|Vah1e|ngth| Descrip tion | RF C References
] 0 0 1 End of options list. RFC 791
1 1 1 1 WOF. RFC 791
: RFC 701, RFC
2 1 o | 130 11 Secuity. llﬂé
3 1 0 | 131 |watighle Loose 3owce Route. RFC 791
4 a 2 | BE |warighle Titme stamp. RFC 781, RFC 791
5 1 o133 13,3 Extended Security. RFC 110%
] 1 o |134 Commercial Secwity.
7 0 0 T |wariahle RecordBodte. RFC 791
8 1 o |13 4 Stream Iderdifier. REC fflzlé RHC
0 1 0 | 137 |watighle Strict 3owce Route. RFZ 791
10 0 0 1a Expetitertal Meamirement.
11 a o1l 4 LT Prote. RFC 1063
12 0 o |12 4 LITU Regly. RFC 1063
13 1 2205 Expetimental Flow Cortrol
14 1 o | 142 Expetitnentd Access Control.
15 a a | 15
16 1 0 | 144 IMI Traffic Descriptor.
17 1 0|14 Extendedntetnet Proto
18 1 2 £ 12 Traceroute. RFC 1393
19 1 o | 147 | 10 Address Extension. RFC 1475
20 1 o |14 4 Router Alett. RFZ 2113
21 1 0 |1ae |6 33 Selective Directed Broadeast RFC 1770
Llade.
22 1 150 HEAP Addesses.
23 | 151 Diytamic Packet State.
24 1 152 Upstream Multicast Packet.
25
31

Table B1: IP Options

296

Padding

The internet header padding is used to ensure that the internet header ends on a 32
bit (4 byte) boundary. This is occasionally needed because not all IP options are
even multiples of 32 bits.

Data

This field contains upper-layer information.

297

Internet Message Protocol (ICMP) [159]

ICMP header:

00 01j02 03/04/0 0607 08 09 10 11 12/15 14 15 1617 1819 20 21 2225 a[as 26 2728 29 B0
| Type | Code | ICMP header checksum

| Drata o

Type. 8 bits.

Specifies the format of the ICMP message.
Code. 8 hits.

Further qualifies the ICMP message.

ICMP Header Checksum. 16 bits.
Checksum that covers the ICMP message. This is the 16-bit one's complement of
the one's complement sum of the ICMP message starting with the Type field. The

checksum field should be set to zero before generating the checksum.

Data. Variable length.
This filed contains the data specific to the message type indicated by the Type and

Code fields. The Tables B2-A, B2-B, B2-C and B2-D list all the ICMP types and

corresponding codes [160].

298

Mame
Echo Beply

Caodes
0 Mo Cade

Unassigred

Unassigred

Destiration Unreachahle

Codes
1 Met Unreac hahle

1 Host Ureeachahle

2 Protocol Unreachahle
3 Port Unreachahle

4 Fragmerdation Meeded and Don't Fragrae nt was Set

5 Sowree Foute Failed
A Destination Metwork Unknown

T Deatination Host Unknown

Souree Host Tsolated
9 Comraunication with Destination Hetwork iz
Ludod vistra tive Iy Prohakited

10 Coraroardeation with Destination Host is
Lydred vi stra tve Iy Probiki ted
11 Destination Hetwork Unreachable for Type of Service

12 Destination Host Unreac hable for Type of Service
13 Corermrdcation Adwinistrative Iy Prolibited
14 Host Precedence Violation

15 Precedence ciutoffin effect

Soree Quench
Codes
0 Mo Code

Table B2-A: ICMP Types and Codes

299

Hame
Fedirect

Codes
0 Bedirect Datagram for the Network {or subnet)

| Redirect Datagrarn for the Host

2 Bedirect Datagrar for the Type of Service and Hetwork:
3 Bedirect Datagram for the Type of Service and Host

Alfermate Host Sddress

Codes

0 Alternate Address for Host

Uriasgigred

Echo

Codes
0 Mo Code

Fouter Adveertizement

Codes

0 Mormal router advertize ment
16 Does not route common traffic

10

Fomter Selection

Caodes

0 Mo Caode

11

Titre Exceeded

Codes

0 Tiroe to Live exceeded in Transit

1 Fragrnent Reasserably Tirne Exceeded

Table B2-B: ICMP Types and Codes

300

T
12

Mame
Pararneter Problem

Caodes
1 Pointer mdicates the error

1 Mlissing a Beguired Option

2 Bad Length

13

Tirnestarap

Codes

0 Mo Code

14

Tirestarp Feply

Codes

0 Mo Code

15

Irfiormation Reguest

Codes
0 Mo Code

la

Irformation Beply

Caodes

0 Hao Cade

17

Lddress Ilask Beguest

Codes
0 Mo Cade

12

Lddress Mask Reply

Codes

0 Mo Code

19

Peserved (for Security)

Table B2-C: ICMP Types and Codes

301

20-
29

Harne

RFeserved (for Robustness Eipe riment)

30

31

Tracerote

Datagrarn Corsersion Frror

32

Iviohile Host Fedire ot

33

[Pt Where-Are-You

34

[Pt [-farn-Here

35

36

Iiohile Registration Re guest

Iiohile Registration Be ply

30

SKIP

Photoriz

Codes

0=Bad 5FI

1 = fothentication Failed
2= Decorapression Failed

3= Decryphion Failed

4= Meed &uthentication
5= Meed &thonzation

Table B2-D: ICMP Types and Codes

302

Appendix C

Oinker: A Graphical User Interface for
writing Snort rules

Features:
e Easily creating new Snort rule files
e Easily editing existing files
e Cutting and pasting rules between Snort rule files
e Instantly duplicating rules
e Working with multiple Snort rule files
¢ Instantly customizable to environments using Snort configuration
files, such as: Snort.conf, Classification.config and
References.config
For definitions of the fields please refer back to tables 5.1, 5.2A, 5.2B, 5-3A, 5-3B

and 5.4.

Creating a new Snort Rule

To create a new Snort Rule the following files will be needed,
- Snort.conf
- classification.config

- reference.config

303

Step 1: Start the program and click on the File menu then click on “New Rule

File” or simply press ctrl-N. The following screen should appear;

Figure C1: New Rule Window

Step 2: Click on the Add Rule button. The following window will pop up,

Loak in: IE}oinker j €] |} 2 [n-

|==) config-file
I.7) executable
| new-rules
_7) screen-shiots

Open I
Cancel |

File name: I

Lef Lo

Files of type: Isnort.conf

304

Figure C2: Window requesting location of Snort.conf File

Provide the location of the snort.conf file.
Step 3: Once the location of the Snort.conf file has been provided, a new rule

can be created. The following screen should come up,

|

Action: I alert - I

Protocol: |tcp hd

~ Source |Ps r— Destination |Ps

IAn}l | List | Y ariable | IAn_l,l | List | ariable |

B
~ Source Ports i~ Destination Ports
IAn}l | List | Y ariable | IAn_l,l | List | ariable |
;I Freview |

1 _;lﬂ Cancel |

Figure C3: Beginning a new snort rule

This is the first of two tabs for creating a new rule. This window shows the

following,

Header:

Action: This tells snort how to react if this Rule is activated. There are 5 different

actions;

305

1. alert
2. log

3. pass
4. active

5. dynamic

Protocol: Tells Snort which protocol to analyze. Currently there are only 4
supported protocols, TCP, UDP, IP and ICMP.

Source IP/Ports and Destination IP/Ports: IP addresses can be a single IP
address, a group of IP addresses or a variable name from the Snort.conf designated

in Step 2. The same concept applies to the source and destination ports.
Step 4: Once the options have been selected and/or filled in click on preview.

This will provide a preview of how the rule will look when inserted in the new file,

as follows;

alert Tcp any amy —> amy any

Okay |
i _pILI Cancel |

Figure C4: Preview of first half of new rule

Step 5: Click on the Options tab. This will show the windows in Figure C5.

306

Rule B

Header Options |

i Categony: I j
Kewward: I j Mew
r— Option Settings

Delete | ﬂﬂ Edit > |

alert tcop any any —»= amy any ~l Preview |

Figure C5: Options window
This is the last window for creating a new rule. This window displays the

following;

Category: There are five categories and each category has several options;
1. Meta-data:
a. msg
b. reference
c. sid
d. rev

e. classtype

307

f.

priority

2. Payload:

e.

f.

content
uricontent
isdataat
pcre

byte jump

byte_test

3. Non-Payload

a.

b.

C.

flag
flow
flowbits
seq

ack
window
rpc

dsize

4. Post-detection

a.

b.

C.

logto
session

resp

308

d. react
e. tag
5. Other

a. threshold
Step 6: Once all the options are selected press preview and then ok. This ends

the rule creation. The following screen should look like the on in Step one except

that there is now a new rule in it, as shown below;

Mew nule

All that is needed is the header information and then simply save the file.

309

Editing an Existing Snort rule file

To edit an existing file simply press ctrl + O or use the File menu. Once the file is

open, double click on the desired rule for editing.

Duplicating a rule

Select a rule and click on the Duplicate button.

Copy rule between files

Open the two files in question. Click on the file where the rule that is going to be
duplicated resides. Click on the duplicate key select the file to duplicate to when

prompted.

310

	Chapter 1
	Introduction
	1.1 Problem Overview
	1.2 Approach
	1.3 Thesis Organization
	Related work
	Network Traffic Analysis Fundamentals
	Network capture field identification

	Chapter 3
	Black Box Network Traffic Analysis: the Hacker’s
	Chapter 5
	Appendix A
	The information in this appendix was taken from the man page
	ETTERCAP MAN PAGE
	USAGE: ettercap [OPTIONS] [HOST:PORT] [HOST:PORT] [MAC] [MAC
	Options
	INTERFACE
	WINDOWS
	Capture Filter Syntax
	Display Filter Syntax

	SNORT MAN PAGE
	USAGE
	OPTIONS

	TCP Header

