

Analysis of Hostile Network Reconnaissance to

Anticipate and Mitigate Network Attacks

by

Luis Angel Rivera

A thesis submitted to the College of Engineering at
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Master of Science

in

Computer Science

Melbourne, Florida

December, 2004

Technical Report

CS-2005-06

©Copyright 2004 Luis Angel Rivera
All Rights Reserved

The author grants permission to make single copies__________________________

The undersigned committee,
having examined the attached thesis,

”Analysis of Hostile Network Reconnaissance to
Anticipate and Mitigate Network Attacks”, by

Luis Angel Rivera
hereby indicates its unanimous approval.

Gerald A. Marin, Ph.D
Professor, Computer Sciences
Major Advisor

William H. Allen, Ph.D
Assistant Professor, Computer Sciences
Thesis Advisor

Mohammad Shahsavari, Ph.D
Associate Professor, Computer Sciences
Thesis Advisor

William Shoaff, Ph.D
Associate Professor and Department Head, Computer Sciences
Department Head

 ii

Abstract

Title:

Analysis of Hostile Network Reconnaissance to
Anticipate and Mitigate Network Attacks

Author:

Luis Angel Rivera

Principal Advisor:

Gerald Marin, Ph.D.

 Network security systems today such as current intrusion detection systems,

intrusion prevention systems and firewalls are good at reacting to attacks as they

occur or shortly after they occur. Current security systems lack the ability to

identify and detect the activity that usually precedes an attack. This activity is

known as network reconnaissance. In this thesis we have developed a technique

that can assist current security systems to detect hostile network reconnaissance to

anticipate and mitigate network attacks.

 iii

Acknowledgement

First and foremost I would like to thank Dr. Gerald Marin and Dr. William Allen.

Without your advice, guidance and encouragement I could have not been able to

complete this thesis. I would also like to thank, Nicole Hoier for taking the time to

proof read my work and for advising me; Eric Kledzik for reviewing the technical

accuracy of my work; Christopher Nucci for his assistance with the programming,

thank you Chris, I could not have completed Oinker on time without your

assistance; Dr. Herbert Thompson for taking the time to read my work and for

providing valuable input; Daniel Simpson for his encouragement and advice; Chin

Dou for being my thesis mate and providing me with encouragement, I wish you

the best with your thesis and defense and Stevan Thomas and Jeff Tabatabai for

their technical input.

 iv

Dedication

I would like to dedicate this thesis to my better half, my soul mate and

friend, Magdalena Indira Fernandez, my wife. Thank you for your tender loving

care, encouragement and support.

 v

Table of Contents

Chapter 1: Introduction ..1

1.1.Problem Overview ...3
1.2.Approach..4
1.3.Thesis Organization ...9

Chapter 2: Related work and Network Traffic Analysis
 Fundamentals ...10

2.1 Related work ..11
2.2 Network Traffic Analysis Fundamentals ...19

Brief TCP/IP overview...19
TCP/IP Security Flaws...23
Network capture field identification ..35

2.3 Network Reconnaissance Overview ..37

Chapter3: Black box network traffic analysis: A Hackers
 Perspective ..40

3.1 Passive Reconnaissance ...43
Scenario Part 1: Site survey of Florida Techs Network..................47

3.2 Active Reconnaissance...50
Scenario Part 2: Filling in the gaps ...50

Chapter 4: Network traffic analysis: Security Analyst Perspective......86

4.1 Tools for traffic analysis ..86
4.2 ICMP reconnaissance analysis: XPROBE2.....................................91
4.3 TCP/UDP reconnaissance: NMAP ..117
4.4 ARP reconnaissance analysis: ETTERCAP...................................130

Chapter 5: Techniques for Detecting and Countering Network
 Reconnaissance...133

5.1 Network Reconnaissance Detection tools and Techniques............134
Snort: Intrusion detection system...135
Acid: Analysis Console for Intrusion Databases141

5.2 Oinker: Graphical User Interface to writing Snort rules................144
5.3 Developing rules for detecting network reconnaissance...............149

Snort rule for detecting ICMP reconnaissance...............................149
Snort rule for detecting TCP, IP and UDP reconnaissance............158
Snort rule for detecting ARP reconnaissance.................................165

5.4 Applying Snort rules: Experiment Results.....................................167

 vi

Conclusions ..183
References ..195
Appendix A ..209
Appendix B ..282
Appendix C ..311

 vii

Chapter 1

Introduction

The Internet came into existence in the 1970’s through what was known as

ARPANET, the Advanced Research Project Agency Network [1]. According to the

Internet Software Consortium, the Internet has grown from a mere 1.3 million hosts

in 1993 to over 285 million in 2004, [2]. This rapid growth has brought about giant

world-wide interwoven complex networks. Requirements have encouraged the

development of new network protocols, which has made communication possible

between software and hardware introduced into the market. This advancement in

technology has given birth to endless information security issues. The risk of cyber

attacks continues to grow year after year [3]. Even organizations that have

deployed a wide range of security technologies can fall victim to significant losses

[4].

 Computer Security and Network Security are both areas that deal with

information security, but are quit different. This paper discusses methods, ideas and

concepts that can be applied to computer security, but are intended for networked

systems. A computer that is not networked is not vulnerable to attacks that require

the use of protocols such as TCP/IP. Such a computer can only be compromised if

an attacker has physical access to the system.

 1

It must be understood that information security is more than just deploying

the latest and greatest technology or having unlimited network monitoring.

Information security is a process. Effective information security requires

management support, enforcing information security

policies/procedures/guidelines, and educating employees (making them aware of

social engineering and how it can be used against the organization) so they

understand and support the information security program being implemented. An

understanding of the technology is imperative in order to effectively apply it to the

organization. In addition, a well-educated and managed technical staff is a must.

This is merely a foundation to start from; every organization has unique

information security requirements. Peiter Zatko said it best during an interview

with Information Security magazine, “No matter what security tool is put on the

market, security still must be specifically modeled and personalized to individual

environments” [5].

By no means is the information presented in this paper a total solution to

information security. Rather, it presents ways to help detect network anomalies and

identify when certain tools are being used against a network by understanding how

to analyze and effectively interpret network traffic. It must be noted that network

vulnerabilities can be the result of misconfiguration of a network device, or a flaw

in hardware or software.

 2

1.1 Problem Overview

 The concept of information/computer security was present for many years

before creation of the Internet, but those concepts were not applied during

development of the Internet. Convenient collaboration between universities and

government agencies was the driving force behind development of the Internet.

Today, this design flaw has become a nightmare for universities, government

agencies and private organizations alike. Flaws in the key protocol used, TCP/IP,

can now be easily exploited by tools readily available on the Internet. Tools

currently exist that allow attackers to exploit protocol weaknesses remotely and at

great speeds and efficiency with very little knowledge of how it all works. Denial

of service attacks, defacing of web sites, and even scanning a network for known

vulnerabilities can now be done by anyone with access to the Internet. These types

of attackers, known as script kiddies, are novice to mid-level users who know just

enough to be dangerous. Script kiddies typically attack private and public systems

to make their Internet name known among other hackers. However, there exists a

more skillful group of attackers, the most dangerous kind, that attack and break into

systems for profit, revenge or for political reasons. These attackers know how to

cover their tracks and are very difficult to detect and hunt down.

Vulnerabilities of the Internet were demonstrated by Robert Morris’s worm

in 1988 [6], and many more were identified by Steven M. Bellovin in 1989 [7].

Rapid advancements in technology, growth of systems using the TCP/IP protocol,

 3

and poorly trained system administrators have made it very difficult to detect

security holes before they are exploited. There are many other contributors to the

endless security issues we now face with networks, such as poorly written

applications, inherit problems in key programming languages (like C and C++ [8]),

and poor application security maintenance schedules.

 How do we defend against these adversaries? The key word here is defend

against. No system is safe once it is connected to the Internet. Once a system is

configured to access the outside world via a Local Area Network (LAN), Wide

Area Network (WAN), Metropolitan Area Network (MAN), Broadband (etc: Cable

Modem, Digital Subscriber Line (DSL), Wireless, or a dial-up connection, it is

vulnerable to weaknesses found in operating systems in addition to network

hardware and software flaws. No matter what defenses are put in place, the system

will always be open to some exploit, whether it is caused by a hardware/software

flaw, misconfiguration or poor maintenance. A key defense to this is identifying

anomalies in network traffic, such as network scans and denial of service attacks

which cause abnormal increases in bandwidth usage, and taking appropriate action

to prevent compromise [9].

1.2 Approach

With so many different protocols and networking devices being developed

today, the analysis of network traffic has become exponentially difficult. Because

of this complexity, network attacks have also become difficult to detect and in

 4

some cases prevent. Current network security solutions, such as network intrusion

detection systems and firewalls, have done a reasonable job at assisting in the

detection and mitigation of attacks. However, whether it is matching signatures,

detecting anomalies based on some statistical profile or regulating access based on

some predefined policies, current network security solutions rely on some event to

trigger a defined threshold in order to take action and hopefully assist in preserving

network confidentiality, integrity and availability.

Our approach in this thesis does not concentrate on detecting attacks,

but rather the activity which precedes most attacks. This activity is referred to

as network reconnaissance; reconnaissance in the literal meaning is an

exploratory survey or examination of an area. In this case the “area” being

surveyed would be a network or a computer system. In order to detect network

reconnaissance, an analysis of inbound network traffic is required. However, in

order to perform an analysis on inbound network traffic to identify network

reconnaissance, an understanding of what network reconnaissance traffic looks

like is important.

To generate network reconnaissance traffic for analysis, we built an

environment, Figure 1, where we were not bound to any rules and would not

interfere with production systems. This laboratory was designed to be dynamic so

that it could be easily reconfigured to meet experimental needs. Tables 1, 2 and 3

 5

provide an explanation of system roles and descriptions for the base configuration

used for this thesis.

 6

Figure 1.1: Dynamic Laboratory Configuration

 7

External Network
Host Identification Role Description
Windows Attack

Station and
Repository Attacker

This system is configured with
analyzers, scanners and a set of

attack tools

Linux Attack Station
and Repository Attacker

This system is configured with
analyzers, scanners and a set of

attack tools

Analysis Station Data analysis
This system is used to analyze

raw network data

IDS
Intrusion

detection system Generate logs for analysis

Table 1.1: External Network

Internal Network
Host Identification Role Description

Test Server 1 Target
Windows 2k target -

configured
with a set of services

Test Server 2 Target Windows 2003
Test Server 3 Target Windows 2k target
Workstation 1 Target Windows 2k target
Workstation 2 Windows NT target
Workstation 3 Windows XP target
Workstation 4 RedHat Linux

Analysis Station data analysis
This system is used to

analyze the raw network
data

IDS Intrusion detection
system generate logs for analysis

Table 1.2: Internal Network

Demilitarized
Zone (DMZ)

Host Identification Role Description

Honey Pot Hacker Trap Designed to lure hackers
and records all activity

Table 1.3: Demilitarized Zone

 8

1.3 Thesis Organization

 The remainder of this thesis is organized as follows. Chapter 2 discusses

fundamentals necessary to perform the types of analysis discussed in later chapters

and related works in network traffic analysis. Chapter 3 presents the black box

hackers’ perspective in analyzing a network, what a hacker does to gain

information on a network, how to analyze the raw data collected, some of the tools

used to collect this information, and finally an analysis and comparison of the tools.

Chapter 4 discusses a security analyst perspective to analyzing network traffic,

some of the traffic analysis tools available, reconnaissance detection and analysis,

and building a stealth network analysis station. Chapter 5 presents experimental

traffic analysis results and discusses how to identify the hacker tools presented in

Chapter 3. Chapter 6 presents conclusions and limitations to the methods discussed

in previous chapters. Cited works and appendices are featured next. Appendix A

covers detail information on various tools used throughout the thesis, Appendix B

contains detailed information with regard to the protocols discussed.

 9

Chapter 2

Related work and Network Traffic Analysis
Fundamentals

Computer systems today are under an unprecedented threat from Internet

attacks initiated by “hackers.”1 The poor state of Internet security calls for more

effective ways to protect networked systems. Attacks can be launched from

practically anywhere in the world and the economic losses from attacks have

become extensive [10]. Over the past several years, networked systems have grown

considerably in size, complexity, and the tools and techniques available to attackers

have grown proportionally. Current security technologies are reaching their

limitations, and more innovative solutions are required to deal with current and

future threats [11].

In this chapter, we discuss related work and network traffic analysis

fundamentals. Our goal is to learn to distinguish malicious network traffic from

normal traffic, through detailed analysis of reconnaissance tools used by hackers

and the traffic generated by these tools. While there are times when a network

attack pattern is obvious, one must often search for events of interest. Whenever

attackers write software for denial of service, software exploits, or scanning

1 It is only fair to acknowledge the distinction between the original term hacking to referring to
someone who is a clever programmer and the term “cracker” referring to someone who breaks into
systems, bypassing any security measures put in place. Due to media treatment today there is no
difference between the two. In this paper we use the term hacker or hackers as in common usage
which is unfortunately the definition used for a cracker [94].

 10

networks, the software tends to leave a signature that is the result of a crafted

packet. This signature is an example of a network traffic property that makes

traffic analysis feasible. In some respects this is similar to the way a bullet is

marked by the barrel of the gun that fired it. These marks make it possible for

experts to identify the gun that fired the bullet [12].

The analysis of network traffic requires an understanding of network

protocols and reconnaissance techniques, as well as the ability to read and interpret

traffic captures using protocol analyzers [29] [31]. It also requires the ability to

identify “normal” network traffic, which depends on protocols being used by the

organization. In this thesis, normal network traffic is defined as network traffic

which does not exceed the bandwidth and protocol thresholds identified as normal

for a particular network infrastructure.

2.1 Related work

 Currently, two widely-used tools for blocking or detecting attacks as they

occur are firewalls and network intrusion detection systems (NIDS). A firewall is a

device with a set of rules specifying what traffic it will allow or deny [83] [110].

Conceptually, there are two types of firewalls: Network Layer and Application

Layer firewalls. Network layer firewalls make decisions based on the source,

destination IP addresses, and port numbers in individual IP packets. A simple

router is the ``traditional'' network layer firewall, since it is not able to make

particularly sophisticated decisions about what a packet is actually communicating

 11

or where it originated. Modern network layer firewalls have become increasingly

sophisticated, and now maintain internal information about the state of connections

passing through them, the contents of some of the data streams, etc. Application

layer firewalls are hosts running proxy servers that permit no direct traffic to the

systems being protected and perform elaborate logging and auditing of traffic

passing through them.

 A NIDS is like a burglar system for a network, which is used to detect and

alert on suspicious events [37]. The concept of intrusion detection is often credited

to James P. Anderson, who published a paper “Computer Security Threat Modeling

and Surveillance” in 1980, which outlined ways to improve computer security

auditing and surveillance [103]. However, Dorothy Denning first proposed

anomaly detection as an approach for IDS in 1987 [107]. Denning helped to

develop the first model for intrusion detection, the Intrusion Detection Expert

System (IDES), which provided the foundation for IDS technology techniques,

Table 2.1, used for network intrusion detection today [122] .

Technique Description Resources

Anomaly
detection

Anomaly Detection compares observed activity against
expected normal usage profiles which may be
developed for users, groups of users, applications, or
system resource usage

[103] [104]
[105] [107]

Data Mining
detection

Data mining refers to the process of extracting
descriptive models from large stores of data. These
models are then used to discover consistent and useful
patterns in the data to compute classifiers that can
recognize anomalies and known intrusions

[103] [106]
[108] [109]

Table 2.1-A: Intrusion Detection Techniques

 12

Signature
detection

Signature-based ID systems detect intrusions by
observing events and identifying patterns which match
the signatures of known attacks. These attack
signatures are stored in some form of database and
need to be updated frequently. If a match is found an
alert is triggered

[103] [104]
[111] [112]

Table 2.1-B: Intrusion Detection Techniques

These three techniques have laid the foundation for the development of other

ID techniques such as policy base detection [114] [115], adaptive model generation

[113], user intent identification [112], and specification-based anomaly detection

[116]. In many cases existing research tools have been applied to intrusion

detection, including expert systems, neural nets and colored Petri nets [112]. For

the most part, however, intrusion detection systems are based on one, if not all, of

the techniques in Table 2.1-A and 2.1-B.

Three of the more popular open source intrusion detection systems are listed

in Table 2.2.

IDS Detection technique Resource
Snort signature [37] [39] [119]

Bro packet filtering and policies [117]

Shadow policy and signature [38] [118]

Table 2.2: Popular Intrusion Detection Systems

There are also a number of commercial NIDS systems such as Dragon IDS,

Network Flight recorder, and Cisco IDS (there are many more commercial ID

 13

systems, but their discussion goes beyond the scope of this paper). In addition to

NIDS, there are also host-based and Hybrid IDS systems [121] [120].

Subsequently, a “new system” has been developed which is intended to make

intrusion detection systems obsolete. This new system is called an IPS, or Intrusion

Prevention System [123]. Interestingly enough, IDS techniques all have the same

thing in common; they rely on some event to trigger some predefined threshold

before any action is taken. As we will discuss in the rest of this chapter, this

limitation is not unique to intrusion detection systems.

Although firewalls and IDSs have important roles to play in defending

networks, their limitations are many, including the following:

• Firewalls actively block certain traffic in or out of a network, but only if

rules have been defined that anticipate characteristics of a particular attack.

Normal traffic may also match those rules.

• IDSs simply raise alerts that network operators must evaluate to determine

whether an attack is truly present, and if so, how it can it be mitigated.

Limitations of these tools have given birth to advanced tools and techniques

that network security professionals can use to complement firewalls and IDSs. One

such tool is called a Honeypot, also referred to as a deception technology because it

is designed to fool the attacker by providing false information [11] [32] [33] [34].

Lance Spitzner [13] states that a Honeypot is a resource whose value lies in being

probed, attacked or compromised. While an attacker is hacking away at a

 14

Honeypot, the security professional is able to log all events. This distracts the

hacker from attacking production systems and develops a log that can be used to

identify the attack’s characteristics (perhaps including its source).

Another set of tools has been developed to help minimize and eventually

eliminate what are known as denial of service (DoS) attacks [78]. For example,

RSA laboratories are developing a technique that uses client puzzles as a

countermeasure against connection depletion attacks [14] [35]. In order to receive

the requested service, the client must submit (to the server) a correct solution to the

puzzle within a time-out period [10]. As a second example, Muza Networks

(Boston) has developed auto detection software that stops DoS at the Internet

Service Provider (ISP) [15] [16]. This approach detects and contains a DoS attack

before it leaves the ISP and impacts a destination victim [17].

The University of Massachusetts at Amherst has developed a set of

algorithms for monitoring and warning of Internet worms. These algorithms could

help with the detection of scanning worms, one of the reconnaissance techniques

hackers use today. Scanning worms can act like automated hackers and gather

information on networked systems [22]. There are several options that can be

included in scanning worms. For example, a worm can be modified to scan the

entire local network and send the information back to its creator after exploiting

some vulnerability in the firewall [23].

 15

At the University of Wisconsin, a technique is being developed to

characterize important classes of anomalies rapidly and accurately. [24]. A similar

technique is being developed by the AT&T Center for Internet Research at ICSI.

This technique provides intrusion detection systems with the ability to detect a

skilled hacker attempting to exploit ambiguities in the traffic stream to evade

detection. Hacker detection is accomplished by placing an appliance called a

normalizer directly in the path of traffic going into a network. As traffic flows

through the appliance, it removes evasion opportunities by modifying the packet

stream to eliminate potential ambiguities before the traffic is seen by the intrusion

detection system [25].

 There are a number of tools and techniques available to security analysts

today that have solved problems which go beyond the capabilities of firewalls and

network intrusion detection systems. Nevertheless, these new techniques, referred

to as countermeasures, all have one thing in common; they are reactive and not

proactive. A reactive countermeasure is one that does not take any action until after

an attack is in progress, for example, an intrusion detection system. A proactive

countermeasure is one that takes steps to prevent the attack from occurring in the

first place. A successful countermeasure would substantially delay the attacker

while giving the defender enough information about his enemy to prevent the

attack from causing damage [11] [19].Alternatively, detecting attack precursors can

lead to preventative measures that may be much more effective.

 16

 Forescout Technologies has developed a relatively new type of network

defense that augments existing countermeasures by attempting to determine (and

react to) malicious intent [18]. Their tool, Active Scout, leverages the fact that

nearly every attack is preceded by network reconnaissance [20] [29]. The tool

identifies apparent network reconnaissance activity, and supplies a suspected

attacker with false information. If the attacker attempts to use the supplied

information, Active Scout concludes that the intent is malicious. Further traffic

from that particular source (or perhaps subnet) can be blocked, and an attack may

thus be preempted making this tool an effective proactive countermeasure. Instead

of reacting after an attack occurs, Active Scout takes the necessary steps to stop an

attack before it affects the network.

Hackers who want to target a particular network follow a consistent pattern.

To launch a directed attack they need knowledge about a network’s resources [20].

Thus, network reconnaissance is an integral and essential part of any directed

attack. Launching a successful attack requires information about the target’s

network topology, accessible network services, software versions, valid

user/password credentials and any other exploitable information. The tools and

methods hackers use increase in sophistication almost everyday. In addition to an

increase in sophistication, tools have become easier to use and increasingly

available through the Internet.

 17

Although solutions such as ActiveScout have been developed and many

more are on their way, exploits and attack methods are emerging at a much faster

pace, rendering these solutions obsolete almost immediately. Therefore, not only is

it imperative that the development and maintenance of countermeasures continue to

evolve, it is equally important for security professionals to understand how to use

available tools such as protocol analyzers to interpret network traffic and be able to

identify possible anomalies that can lead to an attack [26] [27] [28] [29]. In

Chapters 3 and 4 we cover various tools and techniques hackers use to gather

intelligence on networks, and tools and techniques security analysts can use to

counter them.

 18

2.2 Network Traffic Analysis Fundamentals

The ability to accurately read and interpret network traffic demands an

understanding of how network protocols work (especially the TCP/IP protocol) and

how to read network traffic using available analysis tools [Appendix B] [80]. We

summarize the necessary background information in this section, which is

organized as follows,

- Brief TCP/IP Overview

- TCP/IP Security Flaws

- Network Capture Field Identification

Brief TCP/IP overview

The acronym TCP/IP is commonly used to describe an entire suite of

protocols, including the Internet Protocol (IP); Transmission Control Protocol

(TCP); User Datagram Protocol (UDP); Internet Control Message Protocol

(ICMP); Address Resolution Protocol (ARP) and Reverse ARP. For the purpose of

this paper, only the TCP and IP protocols are covered. For an in-depth explanation

of these two protocols and their header fields refer to Appendix B and [54].

TCP and IP were developed by a Department of Defense (DOD) research

project in the early 1980’s to connect a number of different networks designed by

different vendors into a network of networks, known today as the “Internet” [41]

[42]. These protocols have succeeded because they deliver a few basic services that

everyone needs across a very large number of client and server systems. Several

 19

systems in a small organization can use TCP/IP on a single LAN. The IP

component provides routing from the department to the enterprise network, then to

regional networks, and finally to the global Internet.

Under TCP/IP, data transmission is accomplished by packaging the data in

what is referred to as a packet [42]. One can think of a packet as consisting of

nested envelopes – each with its own header and contents. An envelope contains

the sender’s (source) address, destination address, and payload (the letter) to be

delivered. The payload may include additional nested envelopes. A packet contains

a payload (letter contents), source IP (sender’s) address, and destination IP

address., The following diagrams show the delivery process of a letter compared to

that of a data packet;

Figure 2.1: Delivery of Package/Letter

1. Letter is created by sender.

 20

2. Post office determines the route of the letter.

3. The letter is transported to the next post office station.

4. Post office determines the route of the letter.

5. Letter is delivered.

A packet gets delivered as follows,

Figure 2.2: Delivery of a Data Packet

1. Packet gets created goes though the encapsulation process and gets

created

2. The router determines route of packet based on destination address

 21

3. The packet gets transported through the Internet

4. The router determines route of packet based on destination address

5. Packet gets delivered

For further information please refer to [41].

In order to establish a connection between two systems, TCP/IP performs

what is known as a TCP/IP handshake, which is described below;

Figure 2.3: TCP/IP Handshake

1. The requesting system (client) sends a connection request specifying a

port to connect on the remote system, also known as a server.

2. The server responds with both an acknowledgment and a queue for a

connection.

3. The client returns an acknowledgment and the connection is established.

 22

Security was not part of the design process for the TCP/IP communication

mechanism. As mentioned earlier, TCP/IP was designed to facilitate

communication between institutions collaborating in research, not to prevent

misuse. In the following section we take a look at some of the outcomes due to this

lack of security.

TCP/IP Security Flaws

 Although the envelope analogy used earlier to describe TCP/IP is rather

elementary, TCP/IP protocols are complex. This complexity introduces

vulnerabilities that can be (and are) exploited. To detect and defend against attacks

that exploit protocol vulnerabilities, we must have a detailed understanding of how

the protocols work. Only then are we able to identify network traffic with malicious

intent, and reduce the probability of attacks.

 In 1989, Steven M. Bellovin, an AT & T Bell Laboratories researcher

pointed out several security holes in the TCP/IP protocol suite [43]. This lack of

security in the TCP/IP protocol suite has become a serious problem. The

widespread use and availability of the TCP/IP protocol suite has exposed its

weaknesses. To provide an idea of what we are up against, a number of well-known

vulnerabilities are presented for TCP/IP and some protocols commonly used along

with TCP/IP (such as DNS) [43] [44] [45] [46] [47].

 23

TCP SYN Attack

TCP SYN attacks (also known as SYN Flooding) take advantage of a flaw

in how most hosts implement the three-way handshake discussed earlier. When

host B receives a SYN request from host A, host B must keep track of the partially

opened connection in a "listen queue" for at least 75 seconds. This is to allow

successful connections even with long network delays [44] [47].

The SYN flood attack sends TCP connection requests faster than a machine

can process them. According to Internet Security Systems [99], the attack would be

executed as follows,

1. Attacker creates a random source address for each packet.

2. A SYN flag set in each packet is a request to open a new connection to the

server from the spoofed IP address.

3. Victim responds to spoofed IP address, then waits for confirmation that

never arrives (waits about 3 minutes).

4. Victim's connection table fills up waiting for replies.

5. After table fills up, all new connections are ignored.

6. Legitimate users are ignored as well, and cannot access the server.

7. Once attacker stops flooding server, it usually goes back to normal state

(SYN floods rarely crash servers).

Newer operating systems manage resources better, making it more difficult to

overflow tables, but they are still vulnerable. TCP SYN flood can be used as part of

 24

other attacks, such as disabling one side of a connection in TCP hijacking, or by

preventing authentication or logging between servers.

The RSA technique mentioned earlier, Client Puzzles, is supposed to resolve

the TCP SYN flood DoS attack problem. This technique can be classified as both

defensive and offensive in response to this well-known class of DoS attack [14]

[35]. The server sends each client that requests a connection a unique client puzzle

based upon time, server secret, and client request information. In order to receive

the requested service, a client must submit a correct solution to the puzzle to the

server within a time-out period [10].

IP Spoofing Attack

In IP Spoofing, an attacker uses a forged IP address and the victim accepts

this address without verification [44] [47] [49]. There are two types of IP Spoofing,

Blind IP Spoofing and Non-Blind IP Spoofing. Blind IP Spoofing is when the

sequence numbers of a TCP connection are predicted and sent to an unsuspecting

host in order to establish a connection which appears as if it came from the

originating host. Prediction of the sequence numbers is necessary because the

attacker is unable to sniff the traffic. Robert T. Morris was first to notice that

security of a TCP/IP connection rested in the sequence numbers and that it was

possible to predict them. Non-Blind IP Spoofing has the same effect as Blind IP

Spoofing; however, instead of predicting the sequence numbers an attacker has

 25

access to the network and is able to sniff traffic between the two systems [43] [46]

[49] [52] [53] [58] [62].

IP Spoofing allows hackers to perform what is known as a man-in-the-

middle attack. For example, as illustrated in Figure 2.4, suppose that John is a

hacker, and Warren and Tom are valid users, as shown in [95]. To spoof, John

takes the following steps:

1. John connects to Warren's computer over an open port to view the Initial

Sequence Numbers (ISNs) on Warren's computer and to analyze how they

are changing.

2. With the ISN information, John performs a DoS attack against Warren to

shut down Warren's session.

3. John then sends a message to Tom using Warren's address.

4. Tom responds to Warren with the second part of the three-way handshake.

5. John simulates Warren by sending the last part of the three-way handshake

with the acknowledgement (ACK) and the incremented ISNs discovered

earlier.

6. IP spoof is completed.

 26

Figure 2.4: IP Spoofing [95]

Source Routing Attack

 A variant of IP Spoofing makes use of a rarely used IP option, "Source

Routing". In a source-routing attack, packets are sent to a system with the source-

routing bit set. If the target system responds to this directive, it accepts whatever

path is designated in the connection request and responds to the client using this

path instead of its normal routing-table entries [44] [47] [56] [57]. Using source

routing, a hacker can perform any of the following attacks,

1. Man-in-the-middle attack

2. Traffic recording for off-line attack, such as attempting to crack ciphers

3. Session hijacking (discussed above) attack

4. Denial of Service attack

 27

RIP Attack

Initially built to distribute routing information that facilitates flexible and

efficient routing, Routing Information Protocol (RIP) is easily abused. RIP attacks

provide the foundation for a form of connection hijacking or denial of service. RIP

is probably the most widely used of all the Internet interior routing protocols. It was

added to the Internet suite of protocols when LANs first appeared in the early

1980s [59] [60].

There are currently two versions of RIP,

1. RIPv1 –has no authentication as to whether the route information that it

provides is correct or from a reputable source.

2. RIPv2 – has a rudimentary form of authentication allowing a clear text

password that can be sniffed.

By using RIP to redirect a route, a hacker can "steal" any number of connections or

cause a denial-of-service attack. A hacker would execute a RIP attack as follows:

1. Identify the RIP router by scanning UDP port 520.

2. Determine the routing table:

a. If hacker has local access to the same physical segment that the

router is on, he/she will sniff the traffic for RIP broadcasts that

advertise route entries in the case of an active RIP router. If the

router is inactive, an attacker requests the routes to be sent out.

 28

b. If the hacker doesn’t have local access to the same physical

segment that the router is on, he/she can use programs such as

RPROBE [161] to extract the routes from the remote router.

3. Determine the best course of attack. For example, if a hacker wanted to

redirect traffic to a particular system so it can be analyzed to gather

some sensitive information (like passwords) the attack would proceed as

follows [96] [97] [98] [100],

a. Add a route to the RIP router that would initiate a redirect of

routes to a system owned by the attacker, which is done by

Spoofing a RIPv1 or RIPv2 packet using a tool called SRIP.

b. At this point all traffic destined to the RIP router will now be

redirected for further forwarding through the attacker’s system.

Before any forwarding can take place, however, the attacker will

use either a tool called FRAGROUTER or kernel-level IP

forwarding to send traffic off normally.

c. Sniff traffic for usernames and passwords.

TCP Session hijacking attack

 TCP hijacking is the spoofing of TCP packets in order to disconnect a

system from a TCP connection. This can be done easily in a couple of ways due to

the inherent flaws of TCP protocol. TCP hijacking takes advantage of the way

 29

packets are sequenced. By closing a connection that is not fully established and

then starting another or by inserting innocuous packets into the communications

and pushing the sequence numbers beyond the acceptable range, the attacker leaves

the target and the third system unable to communicate, while retaining proper

communications with the target [52] [53] [61] [62].

In order for a TCP/IP session hijack to be successful, the victim must be

using a non-encrypted TCP/IP utility such as telnet, rlogin or ftp. The use of a

SecurID card, for example, or other token-based second factor authentication is

useless for protection against hijacking [98]. All the attacker has to do is simply

wait until after the user authenticates, then hijack the session. A TCP session hijack

involves 3 systems [98],

1. Attacker - the system used by the attacker for the hijack

2. Victim - the system used to make a connection to the target system

3. The target - the system the attacker wants to compromise

 30

A TCP/IP session hijack attack scenario would go as follows,

Figure 2.5: TCP/IP Session Hijacking [73]

 31

1. The attacker spends some time determining IP addresses of target and

victim systems.

2. Attacker runs a program called HUNT as root on attacking host [63] and

waits for it to indicate a session has been detected.

3. Victim logs in to target using telnet.

4. Attacker sees new connection; lists active connections to see if this one

is potentially "interesting.", decides to hijack.

5. Victim no longer has access to the target system.

6. Attacker starts a new session with target host and installs a backdoor.

7. Attacker now has complete control over the target even after the victim

reboots the target system.

TCP Connection Reset Attack

 The primary idea behind a TCP reset attack is to terminate an established

TCP connection maliciously. Applications and protocols that require lengthy

sustained connections are most vulnerable to this attack [51] [56] [64] [65].

 According to Tim Newsham [62], if a sequence number within the receive

window is known, an attacker can inject data into the session stream or terminate

the connection. If the ISN value is known and number of bytes already sent is

known, an attacker can send a simple packet to inject data or kill the session. If

these values are not known exactly, but an attacker can guess a suitable range of

 32

values, he can send out a number of packets with different sequence numbers in the

range until one is accepted. The attacker doesn’t need to send a packet for every

sequence number, but can send packets with the sequence numbers separated by no

more than a window size. If the appropriate range of sequence numbers is covered,

one of these packets will be accepted. The total number of packets that needs to be

sent is then given by the range to be covered divided by the fraction of the window

size that is used as an increment.

ICMP Attack

 Internet Control Message Protocol (ICMP), is an integral part of any IP

implementation. Goals and features as outlined in RFC 792 are to provide a means

to send error messages for non-transient error conditions, and to provide a way to

probe the network in order to determine general characteristics about the network.

These same features are currently being used by attackers to perform network

reconnaissance for determining which exploits can be used against it. Xprobe2 ,

developed by Ofir Arkin, is one of the most complete ICMP scanners available [68]

[69] [70] [71] [72]. This comprehensive tool is discussed in Chapters 3 and 4.

 In addition to its network reconnaissance properties, ICMP has also been

used to develop several DoS attacks. Two well-known ICMP type DoS attacks are

Smurf and Fraggle. In a Smurf attack, the hacker sends a large number of ICMP

echo request packets to the broadcast address of a particular network. The IP

 33

packets have spoofed source addresses - the address of the targeted machine. In

this way, hundreds of echo replies may be sent to the target. This attack involves

three systems; an attacker, an amplifying network and a victim. The attack is

executed by an attacker sending a spoofed ICMP echo request to the broadcast

address of the amplifying network. The source address of the packet is forged to

make it appear as if the victim initiated the request. Because this request was sent

to the network’s broadcast address, all systems on the amplifying network respond

to the victim. This amplified response renders the victim connectionless for the

duration of the attack. The effectiveness of this attack depends on the number of

systems on the network. The Fraggle attack does the same thing as a Smurf attack,

except that it uses UDP packets [67].

DNS Attack

 Domain Name System (DNS), is the application that locates Internet

domain names and translates them into IP addresses. A domain name is a

meaningful and easy-to-remember "handle" for an Internet address. Clients and

servers are configured to trust the information provided by a DNS server. DNS can

normally be trusted; however, on some implementations it is possible to load the

DNS cache with misleading or invalid entries. These entries are then used instead

of valid entries provided by the server. Of course the DNS server should ignore any

information that it hasn’t specifically requested, but the DNS protocol doesn’t have

 34

any security to prevent this. This is why intruders have been able to use naming

servers to execute packet flooding denial of service attacks. There are many other

attacks which use DNS, but they go beyond the scope of this paper. For further

information see [74] [75] [76] [77] [78].

Network capture field identification

In this thesis we use the most common traffic analysis tool used today;

Tcpdump. A number of tools have been developed using Tcpdump as their

foundation, such as ETHEREAL [36], SNORT (which doubles as an intrusion

detection system and a sniffer) [37] and SHADOW, an intrusion detection system

developed by the Naval Surface Warfare Center [38].

Tcpdump was created by the Network Research Group at Lawrence

Berkeley National Lab [12]. It offers various options that enable the user to display

or save network traffic with various levels of verbosity. The following Tcpdump

capture represents an http packet;

00:49:55.884455 10.0.0.100.80 > 10.0.0.200.4156: S [tcp sum ok]

584753221:584753221(0) ack 3121073003 win 1460 <mss

1460,nop,nop,sackOK> (DF) (ttl 108, id 32064, len 48)

Figure 2.6: Tcpdump capture of http packet

Each field represents the following;

 35

00:49:55.884455 Time of capture

10.0.0.100.80 Source IP.[Source port]

> Traffic direction

10.0.0.200.4156 Destination IP.[Destination Port]

S SYN Flag set

[tcp sum ok] Checksum validility

584753221:584753221(0) Sequence Number (Bytes in packet)

Ack 3121073003 ACK number

win 1460 Window size

<mss 1460,nop,nop,sackOK> Options

(DF) Don’t Fragment

(ttl 108, id 32064, len 48) Time to Live, Packet ID, Packet
length

Table 2.3 Traffic Dump field descriptions

Tcpdump is covered further in chapter 4. More information on field definitions

please refer to Appendix B.

 36

2.3 Network reconnaissance Overview

Detecting network reconnaissance accurately and promptly is a delicate and

daunting task. Trying to identify packets that do not follow the rules set forth by

protocols corresponding to Request for Comments (RFC) is very difficult. An even

greater task is identifying properly formatted packets with malicious intent. For the

rest of this section we provide some of the basic fundamentals needed to

understand network reconnaissance and be able to identify the anomalies that can

lead to detection of such activity.

An RFC is a set of specifications which developers must use when

implementing a network protocol (e.g. The specification for TCP is RFC793).

Some RFCs have design flaws that allow hackers to develop tools without breaking

any of the rules defined in the protocol’s RFC. The design flaws provide a

camouflage that allows hackers to perform network reconnaissance without being

detected. Furthermore, many of the flaws are with required functions that a protocol

must execute in order to establish communication. For example, tools called

scanners have been developed to take advantage of the TCP/IP handshake. Notice

that in the description of TCP/IP handshake mentioned in Section 2.2, there is no

authentication mechanism in place to verify that the requesting client is allowed to

connect to the server. Scanners are designed to scan target systems for open ports,

available services and even vulnerabilities.

 37

As mentioned earlier, ICMP contains some inherit implementation

problems [72]. There are tools, which will be discussed in Chapter3, that use the

ICMP protocol to fingerprint almost any device on a network. Some tools can

produce fingerprints by sending different types of ICMP packets to the target and

matching the responses to a pre-determined set of signatures. Because the TCP/IP

protocol stack has been implemented in many different ways, every operating

system has a unique fingerprint. This unique fingerprint provides an attacker with

the information needed to execute other attacks.

 There are protocols, such as address resolution protocol (ARP) that allow

information to be given to whoever requests it and allow dynamic modification of

critical data. The operating system maintains a local table that provides a mapping

of MAC addresses to their corresponding IP addresses for communicating with

systems within a local net. Three tools developed to scan and/or modify ARP tables

are Arpscanner, Ettercap and Dsniff [Appendix A]. Arpscanner generates a

significant amount of traffic when scanning a subnet to build a list of MAC and IP

addresses. The output from Arpscanner appears as follows:

10.0.0.100 is at 00:0d:61:02:b5:3a
10.0.0.253 is at 00:01:02:9a:be:6b
10.0.1.20 is at 00:01:80:2b:71:2d
10.0.1.22 is at 00:01:02:9a:be:70
Figure 2.7: Arpscanner output

38

Armed with this information, the hacker now knows the organization’s IP structure

and which IP addresses are in use (or at least should be in use). Ettercap and Dsniff

take the capabilities of Arpscanner to a higher level. In addition to scanning ARP

tables, they also have sniffing capabilities and use a technique called ARP

poisoning. ARP poisoning is when an attacker replaces all the MAC address entries

on a target machine’s ARP table with addresses of his/her systems - essentially

executing a man-in-the-middle attack.

The number of security flaws found within protocols is astounding, not to

mention flaws found in software and hardware that use these protocols to

communicate with other devices [56] [62] [64] [65] [66] [75]. However, there is

light at the end of the tunnel. Since the hackers need the gathered information, the

source address can not be faked when performing a reconnaissance; therefore, the

traffic is traceable. There are a number of things a hacker can do to cover his tracks,

like performing scans from multiple hops (aka: nodes), but nonetheless it is still

traceable, as we will demonstrate in Chapter 5.

 39

Chapter 3

Black Box Network Traffic Analysis:
the Hacker’s Perspective

Black box is a term used in software development that refers to a testing

method in which the tester has no knowledge of the inner workings of the program

being tested. Keeping that basic concept in mind, when a hacker performs a

reconnaissance on a network, he or she knows nothing about the network. For all

practical purposes, we consider network reconnaissance a sort of black box

approach to network analysis, hence the hacker’s perspective.

Network Reconnaissance

Reconnaissance, according to Merriam-Webster, is a preliminary survey to

gain information or an exploratory military survey of enemy territory. Network

reconnaissance however, is the inspection and exploratory survey of a series of

nodes interconnected by communication paths, also referred to as a Network. Like

a soldier, before an attack is carried out, a hacker studies his target to learn as much

as he can about the defenses and weaknesses [27] [28] [29] [30] [31] [33]. In

addition to using specific tools to obtain the information they need to complete a

reconnaissance, hackers also use what is known as social engineering. Although

social engineering is beyond the scope of this thesis, it is certainly a topic worth

mentioning. Social engineering is to people what hacking is to computer systems

 40

and networks; it is the art of getting people to do things they wouldn’t ordinarily do

for a stranger [79].

As mentioned earlier, information gathering is crucial to planning a targeted

attack. Depending on the tenacity of the attacker, multiple, if not all techniques can

be used against the target network or system. The following table lists some

common types of network reconnaissance techniques used and the type of

information each one can gather;

Reconnaissance
Technique Information Gathered Category

Site Survey

Who is hosting the systems?
Are systems maintained internally or

 is the maintenance outsourced?
How is the network configured?

What types of defenses are in place?

Passive
and Active

IP Scanning What is the IP range? Which IP's are in use? Active

Port Scanning

What ports are open on the live systems?
What services are running on those open ports?

What versions of the services are in use?
What exploits are the systems susceptible to?

Active

OS Detection What operating systems are being used?
What exploits are the systems susceptible to? Active/Passive

DNS Traversal What IP addresses are in use?
What are the names of the registered systems? Active

Host Enumeration What are the available shares, user accounts,
groups, etc on a Windows system? Active

Sniffing Gather user account information Passive

Table 3.1: Reconnaissance Techniques

There are two categories of network reconnaissance, passive and active.

Each one has advantages and disadvantages but the end result is the same,

 41

information gathering. The numbers of tools readily available on the Internet that

allow hackers to perform these reconnaissance techniques with very little effort are

astounding. Some of the tools do not even need to be installed to a local system in

order to be used. Also, much of the initial information on a company’s

infrastructure can be obtained by searching publicly available databases and

websites. Most of the tools and methods used by hackers can also be used by

security analysts to harden their network security.

 In this chapter we analyze each reconnaissance technique listed in Table

3.1, the tools used, and the information each tool generates. This chapter is

organized as follows;

• Passive Reconnaissance

o Definition

o Scenario Part 1: Site Survey

1. Tools and Techniques

• Active Reconnaissance

o Definition

o Scenario Part 2: Filling in the Gaps

1. DNS Traversal

2. IP Scanning/Host Enumeration

3. Port Scanning

4. OS Detection

 42

5. Sniffing

• Summary

3.1 Passive Network Reconnaissance

 Passive Network Reconnaissance is the method by which an attacker

obtains information on a network without generating suspicious traffic [81]. There

are two ways to accomplish this; the first is by using public databases, services and

tools readily available on the Internet. The second is using a program, called a

sniffer which displays network traffic in real time. Sniffing, however, requires

administrative access to the network, which means that a hacker would have to

compromise a system within the network and gain administrative access to the

main switch or router for this technique to be of any use. Sniffing traffic, however,

is usually more of an insider threat than an external one.

Publicly available databases, or database like systems (such as DNS

servers), provide a lot of the fundamental information about an organization and its

network. Acquiring this information is as simple as querying these public systems

with tools such as WHOIS, NSLOOKUP, HOST or DIG, which are available

throughout the Internet and are packaged with many of today’s operating systems.

Table 3.2 lists some of the information that can be obtained using passive

reconnaissance. Tables 3.3 and 3.4 show some of the organizations and

independent websites that provide information and tools needed for performing a

passive reconnaissance. The independent websites do come and go, those listed in

 43

Table 3.3 were still active as of June 16, 2004 [83] [84] [85] [86] [87] [88] [89]

[90] [91] [92] [93]. The sites listed in Table 3.3 represent a small sample of what is

readily available on the Internet. This list illustrates how easy it is to gain access to

reconnaissance tools without having to download and install any programs to a

local system. Some of the tools listed fall under active reconnaissance and will be

discussed later in this chapter.

In addition to the information that can be obtained using public databases,

an Internet search engine, such as Google, can prove to be a priceless tool. Some

companies have poor data management and network configuration practices,

resulting in the advertisement of proprietary company information. Many

companies have adverted financial documents, secret information, personal

information such as social security numbers and much more [124].

To illustrate the simplicity of passive reconnaissance we perform a

complete site survey on organization. Since this experiment requires a live

registered network, we decided to use Florida Tech as the target. However, for the

experiments in this chapter we use the isolated network mentioned in Chapter 1.

 44

Information obtainable using Public sources

Does the company have a web presence?

What is the assigned IP range?

Who owns the IP range?

Who is hosting the company’s website?

Does the company run a mail server?

What are the DNS servers used?

Are the DNS servers managed in-house or outsourced?

Administrative and technical contact information?

Company Address?

Table 3.2: Information which can be obtained using passive reconnaissance

Site Source Tools Provided

Central
Ops [90] Various DNS tools, graphical trace routes,

much more

BlackCode [91] Host Information and Host Connectivity tools
adHOC
Tools [92] Multiple IP, DNS, and lookup tools

Analog [93] DNS lookup tool

Table 3.3: Websites containing Reconnaissance tools

 45

Table 3.4: Public Databases

 46

Scenario Part 1: Site survey of Florida Tech’s Network

Now that the methods and tools have been identified, we demonstrate how

simple it is for a hacker to obtain information on an organization’s network using

public databases and web-based tools. The first step that a hacker could take is to

determine if the target has a web presence. This can easily be done by using

NSLOOKUP, HOST or DIG to perform a DNS query on the target, which in this

case is www.fit.edu. If this technique fails, the hacker can use two other techniques,

1. Perform a WHOIS query using one of the domain registrars or one of

the websites which provide the WHOIS service, see Table 3.4.

2. Use Google to search for the company name. This could result in

multiple hits, so it is usually the most time consuming. However, as

mentioned earlier, it can also provide a gold mine of information.

NSLOOKUP is the most common tool used to query DNS servers for

forward and reverse look-ups, and it is native to the Windows, UNIX and Linux

operating systems. DIG and HOST are tools more commonly found in Linux

operating systems. However, as mentioned earlier, web-based versions of these

tools are available throughout the Internet. The two sites we chose for this

experiment are http://msv.dk, which is hosted in Denmark by domainteam.dk and

http://www.registerar.com. The following table illustrates multiple tools that the

website, http://msv.dk, has to offers:

 47

MSV.DK IP Tools
Whois .dk

Whois .com
Whois IP

IP <-> Hostname
DNS Investigate
Visual Tracert

Ping
Port Scanner

Http Header Reveal
E-mail Validate

Connection Speed
Type of Browser

Send E-mail
Open Mail Relay

Check

Table 3.5: Tools available at http://msv.dk

The main page looks like this,

Figure 3.1: IP Tools Website main page

 48

After just a few searches we were able to find answers to all the questions in

Table 3.2 as follows:

Information obtained by
 Public sources Answer Info Tool Used

Does the company
have web presence? Yes www.fit.edu nslookup

Does the company
operate their own webserver? If so

what kind?
Yes

Server: Apache

IP appears to be in
designated IP range

Http Header
 Reveal

IP range 63.18.0.0 to
 63.18.255.255 whois

Does the company own the IP
range Yes Florida Tech whois

Is the company hosting
their own website? Yes Florida Tech whois

Does the company operate
their own mail server Yes

mail exchanger =
www.fit.edu

www.fit.edu MX
preference = 20,
mail exchanger =

fit.edu

nslookup

What DNS servers are used Yes ns1.fit.edu/ns2.fit.edu
63.18.1.7/63.18.1.8 Whois/nslookup

Are the DNS servers managed
 in-house or outsourced Yes Appears to be in-house nslookup/whois

Administrative and technical
contact information

Eric T. Kledzik
 Network Manager

 (407) xxx-xxxx

xxxxxxxx@xxx.fit.edu

whois

Company Address

Florida Tech
150 West University

Blvd.
 Melbourne, FL

32901

whois

Table 3.6: Information gathered using Passive Reconnaissance techniques

 49

 With this information a hacker can take the planned attack a step further and

perform targeted active reconnaissance.

3.2 Active Network Reconnaissance

 Active network reconnaissance is the process of collecting information

about an intended target by probing the target network or system [124]. Active

reconnaissance typically involves some, if not all the reconnaissance techniques

mentioned in Table 3.1, i.e.: port scanning, IP scanning, OS fingerprinting etc.

Once the necessary information has been gathered, the main process of exploiting

the system can then be carried out, once a way to access the network or system has

been found. It is imperative to understand these how these techniques are used by

hackers and the information each technique generates, in order to be able to detect

and prevent the reconnaissance from becoming an attack.

Scenario Part 2: Filling in the gaps

 We completed a general site survey of the intended target which gave us a

vague idea of the organizations overall infrastructure. We now know the targets

website, IP range, DNS, web server type and mail exchanger. However, there are is

still a lot of unanswered questions, such as;

1 Which IPs are in use?
2 What ports are open on the live systems?
3 What services are running on those open ports?
4 Which operating systems are being used and what versions?
5 What are the names of the registered systems?

Table 3.7: Remaining questions to answer

 50

In order to fill in these gaps in our experiment we need to run several tools which

will end up generating traffic that might be detectable. The web-based tools used

earlier generate traffic that looks “normal”. We define normal network traffic as

traffic that does not disturb bandwidth/use thresholds, and does not contain traffic

that misuses network protocols. Bandwidth and use thresholds are highly dependant

on protocols used and network configuration, etc: number of nodes connected to

the network.

There are a number of commercial tools available that can provide the

answers to the questions in Table 3.7. These tools use a technique called auto-

discovery to detect nodes in a network. This technique uses various protocols, such

as the Simple Network Management Protocol (SNMP), TCP, ICMP and generally

are accompanied by a pretty sophisticated graphical user interfaces (GUI).

Although these are commercial tools and generally expensive, it does not mean that

a potential attacker can not obtain them. Some of these tools are shown below in

Table 3.8,

Product Description

3Com Network Supervisor
Discovers and manages up to 1,500 IP

devices
AdRem NetCrunch 2.1 Network discovery and mapping

HP Toptools

HP Toptools is a hardware management tool
that provides inventory, fault, asset,

performance, and security management of HP
devices from anywhere in the network using a

Web browser

Table 3.8: Commercial Auto discovery tools

 51

Product Description

Ipswitch WhatsUp Gold

It provides an intelligent network mapping
feature while providing a robust monitoring

system for network service levels and
applications

NetViz NetViz uses Microsoft LanManager APIs
fornetwork discovery

NetworkView

this utility will discover TCP/IP nodes and
routes using DNS, SNMP, and ports; get MAC

addresses and NIC manufacturer names;
monitor nodes and receive alerts; and

document with printed maps and reports

OptiView Inspector
Console

OptiView Inspector Console gives a visibility
into the networks by showing the devices and

local sub networks on the network

.

Table 3.8: Commercial Auto discovery tools cont …

Attackers generally choose to either write their own tools or use tools available on

the Internet. Most tools available on the Internet can perform as well, if not better,

than the commercial tools.

 To complete the reconnaissance we demonstrate the rest of the

reconnaissance techniques in Table 3.1. Since these tools generate traffic which

will fire up Florida Techs defenses and can cause undesired results in a production

environment, we finish our illustration of these tools and techniques using a portion

of the isolated network mentioned in Chapter 1,

 52

Figure 3.2: Isolated Network

Nevertheless, if these techniques were used against the Florida Tech network the

end result would be somewhat the same. The only difference would be the targeted

ip addresses.

DNS Traversal

For simplicity we used a tool we wrote to perform DNS traversal, which is

similar to a zone transfer but without the configuration details required by DNS

servers. A zone transfer is a method used to transfer DNS records from one system

to another. Zone transfers have been known to be used by attackers to gather ip and

 53

system information. Network administrators now restrict zone transfers to specific

systems in order to mitigate such reconnaissance tactics. Nevertheless, small “zone

transfers”, called forward and reverse lookups, are performed every day by nodes

accessing websites throughout the Internet. This loop hole in usability is

exploitable by using a recursive lookups; therefore traversing the DNS.

 Our tool, called DNS-slurp, is a simple UNIX type shell script which

recursively queries a DNS server for forward and reverse lookups using a

command available with the Linux operation system, called host. In addition, the

number of subnets and hosts to be queried can be specified and the output is

organized in directories by subnet. For example, in our site survey we discovered

that Florida Tech has been allocated an ip range (for reasons mentioned earlier we

will substitute the IP range with that of our isolated network). With DNS-slurp, all

we will need to do is the following,

Figure 3.3: DNS-slurp interface

1) execute the script

2) Enter the 1st octet

3) Enter the 2st octet

 54

4) Enter the start of the subnets to slurp. This value would be 0 – 255

5) Enter the end of the subnets to slurp. This value would be 0 - 255

6) Enter the start of the hosts to slurp. This value would be 0 – 255

7) Enter the end of the hosts to slurp. This value would be 0 - 255

The end result is a set of directories with subnets as the names with 2 files in each

directory. One file contains all DNS entries for that subnet and the second contains

all the registered IP addresses for that subnet. For example,

192.168.2.xxx directory name

<subnet>.dnsnames file with DNS names

<subnet>.hostips file with registered IP addresses.

The <subnet>.hostips file can be fed into a program called NMAP, which will be

discussed later. DNS-Slurp accomplishes the following;

1) Obtains all DNS names. Sometimes it is possible to figure out the

purpose of a particular system by their name. Etc: NS1.fit.edu = most

likely is a DNS server.

2) All registered IP addresses are revealed, therefore no IP scanning is

necessary

3) All active subnets are revealed

 55

4) DNS, mail exchangers and possibly web servers are revealed. Now that

servers and the services they offer have been identified, banner grabbing

techniques can be used to retrieve software versions [126].

The core of our script is shown below,

mkdir dns-slurp

Get host DNS names
for ((subnet = $startsubnet; subnet < ($endsubnet + 1); subnet++)) # Subnet loop
do
 subnetdir=${oct1}.${oct2}.${subnet}.xxx
 mkdir dns-slurp/$subnetdir
 for ((host = $starthost; host < ($endhost + 1); ++host)) # host loop
 do
 host ${oct1}.${oct2}.${subnet}.${host} >> dns-slurp/$subnetdir/${subnet}.temp # lookup dns name
 done

#Cleans files
parse out period at end of each line
 sed '/Host/d;s/[.]*$//' dns-slurp/$subnetdir/${subnet}.temp > dns-slurp/$subnetdir/${subnet}.cleaned
Parse out DNS names only to file
 cat dns-slurp/$subnetdir/${subnet}.cleaned | awk '{printf "%s\n",$5}' > dns-slurp/$subnetdir/${subnet}.dnsnames
 rm -rf dns-slurp/$subnetdir/*.temp # delete temp file
 rm -rf dns-slurp/$subnetdir/*.cleaned # delete cleaned file

#Get host ips, parse out the ip addresses and write them to a seperate file
 while read line
 do
 host $line >> dns-slurp/$subnetdir/${subnet}.temp
 cat dns-slurp/$subnetdir/${subnet}.temp | awk '{printf "%s\n",$4}' | sed 's/found://g;/^$/d' > dns-
slurp/$subnetdir/${subnet}.hostips
 done < dns-slurp/$subnetdir/${subnet}.dnsnames
 rm -rf dns-slurp/$subnetdir/*.temp
done

Figure3.4: dns-slurp source code

IP scanning/Host Enumeration

 The DNS traversal provided a list of registered IP addresses and DNS

names; however this doesn’t necessarily mean that the IP addresses are in use. In

addition to verifying whether or not an IP is in use, a hacker also wants to know

what ports are open and possibly shares and user account information as well. All

of this can be accomplished by using a multifunctional IP scanner. Most IP

 56

scanners can also save the scanning results to a file for later use. Some of the

available IP scanners are,

IP Scanning Tools Creator
SuperScan FoundStone

AngryScanner Angryziber Software
IP-Tools KS-Soft

Table 3.9: IP scanners

For our purposes we chose to use SuperScan by FoundStone. It provides the

multiple scanning techniques we need for our experiment and it is free. Some of the

functions that SuperScan offers are,

Host Detection
TCP SYN scanning
UDP scanning (two methods)
IP address import supporting ranges and CIDR formats
Simple HTML report generation
Source port scanning
Fast hostname resolving
Extensive banner grabbing
Massive built-in port list description database
IP and port scan order randomization
A selection of useful tools (ping, traceroute, Whois etc)
Extensive Windows host enumeration capability

Table 3.10: features

Although SuperScan offers many features, we will concentrate on its IP scanning

and host enumeration capabilities. Figures 3.4, 3.5, 3.6-A and 3.6-B illustrate the

type of information it can gather.

 57

Figure 3.4: SuperScan results

 58

IP scanning output look like this,

Host

Live hosts this batch: 8
192.168.2.1
Hostname: [Unknown]
TCP ports (1) 80
UDP ports (1) 53

192.168.2.2
Hostname: [Unknown]
TCP ports (1) 80
UDP ports (1) 69

192.168.2.100
Hostname: [Unknown]
TCP ports (11) 25,80,135,139,443,445,1025,1026,3389,5000,8000
UDP ports (2) 123,137

192.168.2.104
Hostname: [Unknown]
TCP ports (4) 22,80,111,3306
__
Total live hosts discovered 8
Total open TCP ports 19
Total open UDP ports 2
Figure 3.5: Superscan IP scan and host detection results

 enumeration output look like this,

NetBIOS information on 192.168.2.100

6 names in table

 MINI-SURGE 00 UNIQUE Workstation service name
 MINI-SURGE 20 UNIQUE Server services name
 HOMEIP 00 GROUP Workstation service name
 HOMEIP 1E GROUP Group name
 HOMEIP 1D UNIQUE Master browser name
 ____MSBROWSE__ 01 GROUP

MAC address 1: 00:02:2D:24:D4:D5

Attempting a NULL session connection on 192.168.2.100

NULL session successful to \\192.168.2.100\IPC$

MAC addresses on 192.168.2.100

Figure 3.6-A: SuperScan Enumeration Results

59

me

the

tha

we

sc

the

loo

1
1

MAC address 0: 00:00:00:00:00:00
 \Device\NetbiosSmb
MAC address 1: 00:60:73:EA:DF:48
 \Device\NetBT_Tcpip_{1F26F1AB-4A2F-48B7-8264-503D48C03728}
MAC address 2: 00:02:2D:24:D4:D5
 \Device\NetBT_Tcpip_{2A9F3EF9-F241-4CE5-A251-24910149D708}

Workstation/server type on 192.168.2.100
Users on 192.168.2.100
Groups on 192.168.2.100
RPC endpoints on 192.168.2.100

Entry 0
 Interface: "906b0ce0-c70b-1067-b317-00dd010662da" ver 1.0
 Binding: "ncacn_ip_tcp:192.168.2.100[3105]"
 Object Id: "b09bd3d8-4fc3-4eee-9b71-02d2b6c431be"
 Annotation: ""
Entry 1
 Interface: "1ff70682-0a51-30e8-076d-740be8cee98b" ver 1.0
 Binding: "ncalrpc:[Infrared Transfer Send]"
 Object Id: "00000000-0000-0000-0000-000000000000"
 Annotation: ""
Entry 2
 Interface: "1ff70682-0a51-30e8-076d-740be8cee98b" ver 1.0
 Binding: "ncalrpc:[Wireless Link Notification]"
 Object Id: "00000000-0000-0000-0000-000000000000"
 Annotation: ""

Figure 3.6-B: SuperScan Enumeration Results cont...

An interesting characteristic about IP scanners like Superscan is that the

thods used to obtain the results presented in Figures 3.5 and 3.6 are practically

 same, therefore generating similar traffic. Some scanners generate more traffic

n others in order to accomplish the same result. To demonstrate this similarity

 scanned a single host with Superscan and another scanner called Angry IP

anner. Both of these scanners have multiple options; however we only enabled

 IP/Host detection features in each one. The traffic that Superscan generates

ks like this,

3:14:22.380668 192.168.2.210 > 192.168.2.2: icmp: echo request
3:14:22.380788 192.168.2.2 > 192.168.2.210: icmp: echo reply

60

It only sends out one ICMP request. However, the results from Angry IP scanner

are slightly different,

13:20:50.920717 192.168.2.210 > 192.168.2.2: icmp: echo request
13:20:50.920948 192.168.2.2 > 192.168.2.210: icmp: echo reply
13:20:50.921536 192.168.2.210 > 192.168.2.2: icmp: echo request
13:20:50.921713 192.168.2.2 > 192.168.2.210: icmp: echo reply
13:20:50.922276 192.168.2.210 > 192.168.2.2: icmp: echo request
13:20:50.922401 192.168.2.2 > 192.168.2.210: icmp: echo reply
Angry IP scanner uses 3 ICMP echo requests to determine whether or not the target

is online. Although the packet count is slightly different the scanning method is the

same. There for a fingerprint can be developed to detect this kind of activity.

Port Scanning

Although SuperScan displayed the open ports in its final scanning results,

we did not discuss this technique because there is another tool favored by hackers

for port scanning. The tool is called NMAP, and it is considered to be the Swiss

Army Knife of all scanners. It supports dozens of advanced techniques for mapping

out networks filled with IP filters, firewalls, routers, and other obstacles. This

includes many port scanning mechanisms (both TCP & UDP), OS detection,

version detection, ping sweeps, and more. We will only take a look at its port

scanning capability in this section.

NMAP supports all forms of port scanning techniques in existence today.

These techniques include Vanilla TCP connect() scanning, TCP SYN (half open)

scanning, TCP FIN (stealth) scanning, TCP ftp proxy (bounce attack) scanning,

 61

SYN/FIN scanning using IP fragments (bypasses packet filters), UDP recvfrom()

scanning, UDP raw ICMP port unreachable scanning, ICMP scanning (ping-

sweep), and Reverse-ident scanning [127] [128]. Most operating systems are

supported, including Linux, Microsoft Windows, FreeBSD, OpenBSD, Solaris,

IRIX, Mac OS X, HP-UX, NetBSD, Sun OS, Amiga, and more. [127]. It is

available in GUI version and in command line version, which makes it even more

powerful because it can be scripted.

To illustrate ease of use, we scanned two of the systems in our isolated

network with the command, nmap -sS -P0 -T 3 192.168.2.100 192.168.2.102.

The output is shown in Figure 3.7 .

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-10-06 21:41 EDT
Interesting ports on 192.168.2.100:
(The 1647 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
25/tcp open smtp
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
3389/tcp open ms-term-serv
5000/tcp open UPnP
8000/tcp open http-alt
8443/tcp open https-alt

Interesting ports on 192.168.2.102:
(The 1655 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
3306/tcp open mysql
6000/tcp open X11
Figure 3.7: NMAP output

62

In less than a minute we were able to determine that the two hosts are up, what

ports are open and what services are running on each port. Nmap, like many of the

tools we cover in this thesis, is scriptable. This gives the hacker the ability to fully

automate the process and collect the information later. A good example of this

would be passing a file with a list of IP address, very much like the one DNS-slurp

generates, as an argument to nmap then piping the results to a file.

 63

OS Detection

 So far we have been able to answer four questions from Table 3.7,

1) Which IP's are in use?

2) What are the names of the registered systems?

3) What ports are open on the live systems?

4) What services are running on those open ports?

The answers to the remaining question can be obtained using a technique known as

operating system detection or OS detection.

There are several techniques that can be used to detect operating systems on

remote systems. A classic technique is to telnet into a system (if the system has the

service enabled) which might return a login prompt with a banner revealing all

sorts of information about the system. Or telnet into a specific port on a machine

which typically would reveal the version of the service that is running on that port,

and then from this information an educated guess can be made at determining the

OS type. Another classic technique is using DNS information records to determine

what type of service the system provides via the DNS name of the system.

However, some system and network administrators have caught on and have started

to disable banners and started using naming conventions which eliminates

OS/Service guessing through DNS records. Due to the proactive efforts of system

and network administrators, OS detecting techniques have become more

sophisticated through the use of protocols such as the Simple Network

 64

Management Protocol (SNMP), Internet Control Message Protocol (ICMP),

Transport Control Protocol (TCP) and fingerprinting networking stacks [68] [70]

[71] [72] [129] [130].

The tools that we found to be the most effective at OS detection are NMAP

and Xprobe2 [68] [70] [71] [72]. We have already introduced NMAP as a port

scanning tool. As mentioned earlier, NMAP is a Swiss Army Knife type scanner

[127] [128]. The main difference in the methods used by NMAP and Xproe2 for

OS detection is, NMAP uses TCP/IP and Xprobe2 uses ICMP.

To perform an OS detect using NMAP we run the following command,

 Nmap –O <target ip(s)>

which generates the following:

C:\Documents and Settings\lrivera>nmap -P0 -O 192.168.2.100

Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on MINI-SURGE (192.168.2.100):
(The 1591 ports scanned but not shown below are in state: closed)
Port State Service
25/tcp open smtp
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
3389/tcp open ms-term-serv
5000/tcp open UPnP
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or Win
XP

Nmap run completed -- 1 IP address (1 host up) scanned in 33 seconds

Figure 3.8: NMAP OS Detect Results

 65

In addition to the OS detection, NMAP also returns the status of the scanned host,

its open ports, services running on each port and time it took to complete the scan.

Running an Xprobe2 scan on the same system would yield the following,

[+] Target is 192.168.2.100
[+] Loading modules.
[+] Following modules are loaded:
[x] [1] ping:icmp_ping - ICMP echo discovery module
[x] [2] ping:tcp_ping - TCP-based ping discovery module
[x] [3] ping:udp_ping - UDP-based ping discovery module
[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation
[x] [5] infogather:portscan - TCP and UDP PortScanner
[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module
[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module
[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting module
[x] [9] fingerprint:icmp_info - ICMP Information request fingerprinting module
[x] [10] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting module
[x] [11] fingerprint:tcp_hshake - TCP Handshake fingerprinting module
[+] 11 modules registered
[+] Initializing scan engine
[+] Running scan engine
[-] ping:tcp_ping module: no closed/open TCP ports known on 192.168.2.100. Module test failed
[-] ping:udp_ping module: no closed/open UDP ports known on 192.168.2.100. Module test failed
[+] No distance calculation. 192.168.2.100 appears to be dead or no ports known
[+] Host: 192.168.2.100 is up (Guess probability: 25%)
[+] Target: 192.168.2.100 is alive. Round-Trip Time: 0.01753 sec
[+] Selected safe Round-Trip Time value is: 0.03507 sec
[+] Primary guess:
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server" (Guess probability: 52%)
[+] Other guesses:
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Workstation SP4" (Guess probability:
52%)
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Workstation SP3" (Guess probability:
52%)
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 1" (Guess
probability: 52%)
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 2" (Guess
probability: 52%)
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 3" (Guess
probability: 52%)
[+] Host 192.168.2.100 Running OS: "Microsoft Windows 2000 Server Service Pack 4" (Guess
probability: 52%)
[+] Host 192.168.2.100 Running OS: "Microsoft Windows XP" (Guess probability: 52%)
 [+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.
Figure 3.9: Xprobe2 OS Detect Results

66

A few more characteristics worth mentioning about these two tools is that

both of them use a predetermined set of OS fingerprints. For example, the

predefined Windows Xprobe2 fingerprint looks like the following:

#Microsoft

fingerprint {
 OS_ID = "Microsoft Windows 2003 Server Enterprise Edition"
 #Entry inserted to the database by: Ofir Arkin (ofir@sys-security.com)
 #Entry contributed by: Ofir Arkin (ofir@sys-security.com)
 #Date: 14 July 2003
 #Modified: 14 July 2003
 #Module A
 icmp_echo_code = 0
 icmp_echo_ip_id = !0
 icmp_echo_tos_bits = 0
 icmp_echo_df_bit = 1
 icmp_echo_reply_ttl = < 128
 #Module B
 icmp_timestamp_reply = y
 icmp_timestamp_reply_ttl = <128
 icmp_timestamp_reply_ip_id = !0
 #Original_data_echoed_with_the_UDP_Port_Unreachable_error_message
 icmp_unreach_echoed_udp_cksum = OK
 icmp_unreach_echoed_ip_cksum = OK
 icmp_unreach_echoed_ip_id = OK
 icmp_unreach_echoed_total_len = OK
 icmp_unreach_echoed_3bit_flags = OK
 #Module F [TCP SYN | ACK Module]
 #IP header of the TCP SYN | ACK
 tcp_syn_ack_tos = 0
 tcp_syn_ack_df = 1
 tcp_syn_ack_ip_id = !0
 tcp_syn_ack_ttl = <128
 #Information from the TCP header
 tcp_syn_ack_ack = 1
 tcp_syn_ack_window_size = 65535
 tcp_syn_ack_options_order = "MSS NOP WSCALE NOP NOP TIMESTAMP NOP NOP SACK"
 tcp_syn_ack_wscale = 0
 tcp_syn_ack_tsval = 0
 tcp_syn_ack_tsecr = 0
}

Figure 3.10: Windows Xprobe2 fingerprint

 67

The predefined NMAP Windows fingerprint looks like this,

 Fingerprint Axent Raptor Firewall running on Windows NT
Class Axent | Windows | NT/2K/XP | firewall
TSeq(Class=TR)
T1(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%Ops=M)
T2(Resp=N)
T3(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%Ops=M)
T4(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T7(Resp=N)
PU(Resp=N)

Figure 3.11: NMAP Windows fingerprint

These two scans illustrate how simple it is for a hacker to gather OS type

information. Chapter 4 provides more information on the functions available in

these two tools along with analysis of the traffic that the tools generate. We also

take a closer look at the predefined fingerprints Xprobe2 uses and the fingerprint

generation feature.

 68

Sniffing

 Sniffing is the act of intercepting and inspecting data packets using a

software program called a sniffer, which places the network card in what is known

as promiscuous mode. There are two forms of sniffing, one that works only on non-

switched networks and another that works on both switched and non-switched

networks. The first functions directly without any modification to the network

(such as enabling a mirrored port). Port mirroring, also known as a roving analysis

port, is a method of monitoring network traffic that forwards a copy of each

incoming and outgoing packet from one port of a network switch to another port,

where the packet can be studied [134]. This form of sniffing is typically used by

network administrators for troubleshooting network problems. The second form of

sniffing exploits a protocol called ARP, which is the only way to sniff a switched

network without needing access to a mirrored port. This form of sniffing is

discussed in detail later in this section.

The concept of a sniffer has evolved throughout the years. There are

software and hardware devices today that can do much more, than just put a

network card in promiscuous mode and display raw network traffic. This kind of

sniffer can display packets in great detail (such as the values in each field of each

packet) and provide statistical data in addition to logging for future analysis. These

types of sniffers are also referred to as protocol analyzers, and are generally used

 69

by network and network security analysts. Some of the commercial and open

source software protocol analyzers available are listed in tables 3.11 and 3.12.

Commercial Protocol
Analyzers Company/Developer(s) Type

Sniffer PRO Network General Software
McAfee Security Forensics Network Assocaites Software

NetAsyst Network
Analyzer Network Assocaites

Iris Network Traffic
Analyzer eEye Digital Security Software

EtherPeek NX WildPackets Software
OptiView Protocol Expert Fluke Hardware

Observer Network Instruments Software
LanHound Sunbelt Software Software

Table 3.11: Commercial protocol analyzers

OpenSource Protocol
Analyzers
Tcpdump tcpdump.org Software
Ethereal ethereal.com Software

Analyzer
Paolo Politano, Loris Degioanni,

et al
http://analyzer.polito.it/

Software

Snort Martin Roesch Software
Aldebaran sniffer Rogala Software Software

Table 3.12: Open Source protocol analyzers

Hackers use sniffers for a totally different purpose. They are typically interested in

capturing traffic and instantly extracting certain information, such as user account

(passwords/usernames), personal information or anything they can use to either

break into a system or profit from stolen information. Therefore, hackers usually

 70

use sniffers designed specifically for extracting targeted information from network

packets. Some of these specialized sniffer tools are listed in Table 3.13.

Specialized sniffers
Sniffit [135]
Dsniff [137]

Ettercap [138]
Hunt [139]

Table 3.13: Specialized Sniffers

The specialized sniffers listed in Table 3.13 are discussed in this chapter. Those

listed in Tables 3.11 and 3.12 are covered in Chapters 4 and 5.

Before we continue, we would like to point out that sniffers/protocol

analyzers are also known as Packet sniffers, Network Analyzers or Ethernet

Sniffers.

Sniffit

Sniffit, created by Brecht Claerhout [135], is one of the first sniffers used by

hackers in the late 1990’s. Sniffit can listen in on any tcp stream without

interrupting the connection in a non-switched network. For example, a hacker can

selectively tap into a telnet or ftp session, as shown in figure 3.12, and capture the

user name and password in plain text. Some of the sniffers hackers use are passive

(do not generate traffic) and others are semi-active (generates some initial traffic).

Sniffit is a passive sniffing tool. Although we mentioned earlier that Sniffit can

only work on a non-switched network, it can however, work on a mirrored port on

a switched network.

 71

Figure 3.12: Sniffit capturing password

 72

Dsniff

 Dsniff is a suite of tools which includes 6 different specialized sniffers, 3

interception tools and 2 man-in-the-middle attack tools, listed in Table 3.14.

Sniffers tools
Dsniff

Filesnarf
Mailsnarf
Msgsnarf
Urlsnarf
Webspy

Passively monitor a network for
interesting

 data (passwords, e-mail, files, etc.).

Interception tools
Arpspoof
Dnsspoof

Macof

facilitate the interception of network
traffic normally unavailable to an

attacker (e.g, due to layer-2 switching)

Man-in-the-middle tools

Sshmitm

Webmitm

implement active man-in-the-middle
attacks against redirected SSH and
HTTPS sessions by exploiting weak

bindings in ad-hoc PKI

Table 3.14: Dsniff sniffing tools [137]

The 6 sniffers shown in Table 3.14 are designed to extract specific data. Dsniff is a

password sniffer which handles over 30 different protocols. Filesnarf extracts files

from NFS traffic. Mailsnarf can output sniffed email messages from POP and

SMTP. Urlsnarf outputs all of the requested URL addresses from HTTP traffic.

Webspy can send sniffed URLs to a locally installed Netscape client for display. As

a victim surfs, the url is updated in real-time on the hackers system. Msgsnarf can

 73

extract selected messages from most instant messaging clients available today,

including AOL, ICQ, MSN, and Yahoo messengers. Before we continue, it is

important to point out that msgsnarf is especially dangerous in environments such

as Florida Tech. Users have the tendency of sharing student information such as

social security numbers, financial information, or reminding each other how to use

commands for internal database systems using instant, messenger services..

 Revisiting the scenario introduced at the beginning of this chapter, if a

hacker wanted to steal sensitive information such as passwords, confidential emails

or account information, it would be very easy to do so with the sniffers just

described. Figure 3.13 illustrates how dangerous the Dsniff suite can be. In this

research, we sniffed the MSN conversation between two users in our mock FIT

network, using Msgsnarf. Here we were able to capture what seemed to be two

secretaries exchanging commands to some internal system called CANNER and

sending the SSN number for a student named Jennifer Brown.

 74

Figure 3.13: Msgsnarf capture of an MSN conversation

As mentioned earlier, Msgsnarf and the other 5 sniffers are passive tools; therefore

they are not effective on a switched network by themselves. However, with the

assistance of the three interception tools, Arpspoof, Dnsspoof and Macof, the 6

sniffers are lethal.

 Interception tools modify data on the target nodes. Arpspoof, for example,

redirects packets on a LAN to overcome the host-isolating behavior of switched

networks by poisoning its victims ARP tables [137]. It is important to point out that

 75

Arpspoof by itself would cause a denial of service attack if the packets are not

rerouted by using either IP forwarding or using fragroute [140]. To illustrate the

capabilities of Dsniff we ran two experiments using Arpspoof and Dsniff. In the

first experiment, our objective was to capture the user name and account of a user

logging into their mail account and in the second we want to capture the username

and password of a user logging into a password protected website. Figure 3.14

illustrates the configuration we used in the two experiments and provide an

explanation of the arpspoofing process. Figures 3.15 and 3.16 illustrate the results

of the two experiments.

Figure 3.14: Configuration used for dsniff and msgsnarf experiment

 76

 77

In this experiment we used Arpspoof to poison the targets ARP tables which

redirects all traffic between them through the attacking machine. Then we ran

msgsnarf to capture the conversation.

DNS spoofing does to a DNS server cache what Arpspoof does to an ARP

table cache. It poisons the information in the cache entries, then a hacker can forge

replies to DNS queries [137] [141]. Macof causes a switch to “fail open”, forcing

the switch into a hub state which then broadcasts traffic to all hosts. Once the hub is

in this state any sniffer can be used to gather information.

 The final set of tools, Sshmitm and Webmitm, allows the hacker to proxy

and sniff SSH, HTTP and HTTPS traffic redirected by Dnsspoof, creating a man-

in-the-middle attack. In this case, passwords, logins, SSL encrypted logins and

form submissions can be captured.

EtterCap

Ettercap is a multi-featured, specialized sniffer that has several capabilities other

than just sniffing traffic. Ettercap is considered a network sniffer, interceptor and

logger for Ethernet LANs. It supports active and passive analysis of many protocols

including some ciphers like SSH and HTTPS. Ettercap also supports data injection

and an established connection and instant filtering without breaking the connection.

Features included in EtterCap are listed in Table 3.15,

 78

Unified sniffing Characters Injection
Bridged sniffing SSH man-in-the-middle
ARP poisoning Decipher SSH1, HTTPS

ICMP Redirection Passive OS Fingerprint
DHCP Spoofing Port Scanning

Port Stealing Kill connections
Remote traffic through GRE Tunnel

from a remote cisco router Passive scanning of a LAN

Man-in-the-middle attacks against PPTP
tunnels Check for other poisoners

Password collector for over 30 protocols. Bind Sniffed data to a local
port

Packet filtering/Packet Dropping Port stealing

Table 3.15: Ettercap features

Ettercap can also detect if it is being used on a switched network, it can detect

operating systems actively, passively, and execute several types of attacks such as

Denial of Service, Man-in-the-middle and Mac flooding.

 In the beginning of this section we mentioned a form of sniffing which

involves the exploitation of a protocol called ARP, or address resolution protocol

[136]. Because network switches work by sending packets only to the intended

host, passive sniffing is not possible from a hacker’s perspective. As a result, an

attack method called ARP poisoning was developed and is described in Chapter 2.

Ettercap uses ARP poisoning to redirect traffic between two nodes, to pass through

its host system by modifying the ARP tables in each target. In order to do this, it

generates a list of Mac addresses from the hosts in the subnet it is plugged into by

 79

sending out a burst of ARP requests. The interesting thing about ARP poisoning is

that it has no effect beyond the subnet it is running on.

Once this list is created, a source and destination can be selected which triggers the

ARP poisoning, and traffic between these two points can be sniffed. Figure 3.17

illustrates the Mac address list and a target being selected.

Figure 3.17: Ettercap interface and list of Mac addresses in subnet.

To illustrate the capabilities of Ettercap, we ran it against two machines in

our mock Florida Tech network. For this experiment we chose to use the hosts

192.168.2.102 and 192.168.2.104. Before targets are selected in Ettercap, the target

 80

ARP tables contain the appropriate Mac address as illustrated in Figures 3.18-A

and 3.18-B,

Figure 3.18-A: Target 192.168.2.102 ARP table before ARP Poisoning

Figure 3.18-B: Target 192.168.2.104 ARP table before ARP Poisoning

Once targets have been selected, the ARP Poisoning takes place and the Mac

addresses in each of the targeted ARP tables are changed to reflect that of our

attacking machine 192.168.2.200 (00:02:A5:03:E5:53),

Figure 3.19-A: Target 192.168.2.102 ARP table after ARP Poisoning

 81

Figure 3.19-B: Target 192.168.2.104 ARP table after ARP Poisoning

The entries in each target ARP table now show the same Mac address for both

hosts 192.168.2.102 and 192.168.2.104. Now we can read all the traffic between

our two victims using Ettercap’s sniffing features or any sniffer of choice. Figure

3.20 shows a captured username and password, and Figure 3.21 illustrates the flow

of events during this experiment.

Username and password

Figure 3.20: Ettercap capturing a website username and password

 82

Figure 3.21: Ettercap Experiment Configuration

 83

Summary

 In this chapter we have illustrated reconnaissance techniques and tools that

hackers can use to gather network information. Tables 3.16 and 3.17 summarize the

type of information passive and active reconnaissance can provide for a hacker.

Information obtainable using
passive reconnaissance

Does the company
have web presence?

Does the company
operate their own web server? If so what

kind?

IP range

Does the company own the IP range?
Is the company hosting

their own website?

Does the company operate
their own mail server?

What DNS servers are used?

Are the DNS servers managed
 in-house or outsourced?

Administrative and technical contact
information

Company Address

Table 3.16: Information obtainable using passive reconnaissance

 84

Information obtainable using
active reconnaissance
Which IP's are in use?

What ports are open on the live systems?

What services are running on those open ports?

Which operating systems are being used and what
versions?

What are the names of the registered systems?

Table 3.17: Information obtainable using active reconnaissance

We have illustrated how the techniques and tools work and the type of information

each reconnaissance can gather. In the next chapter, we will take a closer look at

how these tools work by analyzing the traffic they generate and dissecting packets

to extract key identifiers that can then be used to help detect when a reconnaissance

is being performed. However, not all of the techniques demonstrated in this chapter

can be detected. Nonetheless, it is important to know that such techniques are in

practice, what tools are used to carry out these techniques, and how they work.

This knowledge can serve as a means for the development of better

countermeasures and security practices.

 85

Chapter 4

Network traffic analysis:
A Security Analyst’s Perspective

 We have discussed network reconnaissance techniques used by hackers,

types of network reconnaissance tools that are available to hackers and the

information that can be gathered on a target network. Now, we will discuss how to

identify network reconnaissance traffic and the tools available to accomplish this.

This chapter is organized as follows,

 1) Tools for traffic analysis

 2) ICMP reconnaissance analysis: XPROBE2

 3) ARP reconnaissance analysis: ETTERCAP

 4) TCP/UDP reconnaissance analysis: NMAP

4.1 Tools for traffic analysis

 In Chapter 3 we introduced several protocol analyzers in Tables 3.11 and

3.12. All of them are great products and offer many features. However, for the

experiments presented in this chapter we chose to use 2 of the open source protocol

analyzers, Tcpdump and Ethereal. We chose these two protocol analyzers, not only

because they are freely available, but because each one offers unique characteristics

and they happen to be the most widely used today.

 86

We will first provide an overview of Tcpdump and Ethereal, and then go

into network reconnaissance traffic analysis using these both tools.

TCPDump

Tcpdump is the foundation behind Ethereal and Snort. It is very flexible in

that it allows for customizing capture filters for in-depth data analysis [40] [143].

Tcpdump was also ported to the windows environment as Windump. Figure 4.1

illustrates what a Tcpdump capture looks like.

17:19:27.922891 10.0.0.211.2428 > host203-32.fit.edu.ftp: S 2706634669:2706634669(0) win 65535
<mss 1460,nop,nop,sackOK> (DF)

17:19:27.923732 host203-32.fit.edu.ftp > 10.0.0.211.2428: S 1919315226:1919315226(0) ack
2706634670 win 65535 <mss 1460,nop,nop,sackOK> (DF)

17:19:27.923784 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 1 win 65535 (DF)

17:19:27.924286 host203-32.fit.edu.ftp > 10.0.0.211.2428: P 1:54(53) ack 1 win 65535 (DF)

17:19:28.112749 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 54 win 65482 (DF)

17:19:29.812895 208.172.13.222.http > 10.0.0.211.2427: F 1211869087:1211869087(0) ack
246534951 win 6432

17:19:29.812995 10.0.0.211.2427 > 208.172.13.222.http: . ack 1 win 65535 (DF)

17:19:33.752912 10.0.0.211.2428 > host203-32.fit.edu.ftp: P 1:16(15) ack 54 win 65482 (DF)

17:19:33.753354 host203-32.fit.edu.ftp > 10.0.0.211.2428: P 54:91(37) ack 16 win 65520 (DF)

17:19:33.943038 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 91 win 65445 (DF)

17:19:39.912679 10.0.0.211.2428 > host203-32.fit.edu.ftp: P 16:28(12) ack 91 win 65445 (DF)

17:19:39.913644 host203-32.fit.edu.ftp > 10.0.0.211.2428: P 91:121(30) ack 28 win 65508 (DF)

17:19:40.072904 10.0.0.211.2428 > host203-32.fit.edu.ftp: . ack 121 win 65415 (DF)

Figure 4.1: Tcpdump Capture.

 87

If we want to extract only the SYN packet(s) from the above capture we use the

following filter,

Tcpdump -v -r ftp-login.cap 'tcp[tcpflags] & tcp-syn != 0 '

the output looks like this,

17:22:31.082908 10.0.0.211.venus-se > host203-32.fit.edu.ftp: S [tcp sum ok]
3307829625:3307829625(0) win 65535 <mss 1460,nop,nop,sackOK> (DF) (ttl
128, id 11068, len 48)

17:22:31.083279 host203-32.fit.edu.ftp > 10.0.0.211.venus-se: S [tcp sum ok]
1965082975:1965082975(0) ack 3307829626 win 65535 <mss
1460,nop,nop,sackOK> (DF) (ttl 126, id 51903, len 48)

Figure 4.2: TCP SYN packets filtered from Capture in Figure 4.1

TCPdump is a very powerful and flexible tool for network data analysis. For

further details please refer to [40] and [143].

 Ethereal

 Ethereal was created by Gerald Combs, but since its birth hundreds of

programmers have contributed to its evolution [36]. It offers everything Tcpdump

has to offers but with a detailed graphical view of network traffic, in real time or

not, making it a little easier to analyze. What makes Ethereal even more appealing

is that it accepts Tcpdump formatted filters. For example, if we wanted to extract

the SYN packets from the capture in Figure 4.1 as we did with Tcpdump, the out

put would look like this,

 88

Figure 4.3: Ethereal Filter of Capture in Figure 4.1

Unlike Tcpdump, Ethereal also offers a clean way to analyze raw data packets and

its payload at the same time as illustrated in Figure 4.4. One other advantage

Ethereal has over Tcpdump is its ability to follow a TCP stream and display it in

ASCII, EBCDIC, HEX dump and in C arrays. Figure 4.5 displays the complete

login of the FTP capture in Figure 4.1. For further details on how to use Ethereal

and the many options and features it offers please refer to [36].

 89

Selected
packet

TCP/IP packet
information

Payload data

Figure 4.4: Detailed view of a packet

Figure 4.5: Complete FTP login stream from Capture in Figure 4.1

 90

4.2 ICMP Reconnaissance Analysis: XPROBE2

Xprobe2 was developed by Ofir Arkin, founder of Sys-Security Group. He

uses ICMP, or Internet Control Message Protocol, as a means to identify network

devices using a number of methods [69] [70] [71] [72].

Our goal is to analyze traffic and identify when this tool is being used.

Because this is the first tool analyzed, it will serve to illustrate the methodology. As

we analyze other tools, steps may be added or deleted based on tool characteristics.

Primarily, the analysis of a tool includes the following:

1. Understanding the protocol the tool exploits, in this case it is ICMP

(Please refer to Appendix B for more information on this protocol)

2. Use of a sniffer, or protocol analyzer, to analyze tool capabilities

a. Examine the available parameters.

b. Document the effects of changing parameter values.

c. Characterize traffic generated by the various option

permutations.

Using this information, we then extract a fingerprint for the tool that can

subsequently be used to develop a rule for an intrusion detection system like snort,

as we will demonstrate in Chapter 5.

Xprobe2 is a modular program. It contains a total of eleven modules, each

with a specific purpose. Depending on what a hacker wants to accomplish, he/she

 91

can customize Xprobe2 by disabling modules that are not needed. The available

modules are listed in Table 4.1.

Table 4.1: Xprobe2 modules and options

 92

Since there so many permutations with the available options, it is

impractical to go through each one. Instead we will analyze four of Xprobe2 key

roles, Host Detection; Port Scanning; Fingerprint Generation and OS

Fingerprinting. Each role generates different types of traffic, which provide us with

the information we need to be able to generate a fingerprint for the tool.

Host Detection:

If a hacker only wants to check if a machine is reachable over the network,

we only need to use module 1. This can be accomplished as follows:

xprobe2 –M 1 <target>

This command sequence will only enable module 1, ICMP echo discovery, and

only generate the necessary packets. User output looks like this:

[+] Target is 10.0.0.25
[+] Loading modules.
[x] Multiple open sections on line 20
[+] Following modules are loaded:
[x] [1] ping:icmp_ping - ICMP echo discovery module
[+] 1 modules registered
[+] Initializing scan engine
[+] Running scan engine
[+] Host: 10.0.0.25 is up (Guess probability: 100%)
[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.01132 sec
[+] Selected safe Round-Trip Time value is: 0.02263 sec
[+] All fingerprinting modules were disabled
[+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.

Figure 4.6: Traffic generated by the command xprobe2 –M 1 <target>

 93

The section in bold face in Figure 4.6 illustrates that the target is online. This scan

generates a total of 2 packets. Using Tcpdump, the traffic looks like this;

Command: -> tcpdump -vvv -xX host -nnn 10.0.0.25
tcpdump: listening on eth0

12:14:13.942236 10.0.0.200 > 10.0.0.25: icmp: echo request (ttl 64, id 7450, len
84)
0x0000 4500 0054 1d1a 0000 4001 48af 0a00 00c8 E..T....@.H.....
0x0010 0a00 0019 0800 801a 1d1a 0000 404d fb65 @M.e
0x0020 000e 3407 0809 0a0b 0c0d 0e0f 1011 1213 ..4.............
0x0030 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
0x0040 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050 3435 45

12:14:13.942423 10.0.0.25 > 10.0.0.200: icmp: echo reply (ttl 64, id 39119, len 84)
0x0000 4500 0054 98cf 0000 4001 ccf9 0a00 0019 E..T....@.......
0x0010 0a00 00c8 0000 881a 1d1a 0000 404d fb65 @M.e
0x0020 000e 3407 0809 0a0b 0c0d 0e0f 1011 1213 ..4.............
0x0030 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
0x0040 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050 3435 45

Figure 4.7: Tcpdump capture of xprobe2 –M 1 <target>

An analysis of Figure 4.7 yields the following,

- Protocol: ICMP echo request and echo reply, ICMP types 8 and

0 respectively.

- TTL: 64 bytes, typically this would indicate some type of UNIX

like OS.

- Len: 84 bytes= 20 bytes for IP header, 8 bytes for ICMP header,

56 ICMP data, this also gives an indication that it is some type

of UNIX box.

At first glance an 84 byte ICMP request may appear as a good identifier for this

tool. Unfortunately, when Xprobe2 is used in this manner, the traffic generated is

 94

practically identical to that of a ping request using the PING tool from a Linux box.

If we were to run the same Tcpdump command, as shown in Figure 4.7, and

capture traffic generated by the PING tool, the results would be as shown in Figure

4.8.

I

p

s

Command: ->tcpdump -vvv -Xx host 10.0.0.25

tcpdump: listening on eth0

12:18:03.940579 blackwidow.se.fit.edu > war-room.netsec: icmp: echo request
(DF) (ttl 64, id 0, len 84)

0x0000 4500 0054 0000 4000 4001 25c9 0a00 00c8 E..T..@.@.%.....
0x0010 0a00 0019 0800 2126 a942 0001 37f8 fb40 !&.B..7..@
0x0020 015a 0e00 0809 0a0b 0c0d 0e0f 1011 1213 .Z..............
0x0030 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
0x0040 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050 3435 45

12:18:03.940788 war-room.netsec > blackwidow.se.fit.edu: icmp: echo reply
(ttl 64, id 16333, len 84)

0x0000 4500 0054 3fcd 0000 4001 25fc 0a00 0019 E..T?...@.%.....
0x0010 0a00 00c8 0000 2926 a942 0001 37f8 fb40 )&.B..7..@
0x0020 015a 0e00 0809 0a0b 0c0d 0e0f 1011 1213 .Z..............
0x0030 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
0x0040 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050 3435 45
Figure 4.8: Tcpdump capture of a ping

f the ping is sent from a windows box, there would be differences in the TTL,

acket LEN and the payload due to a different TCP/IP implementation. Figure 4.9

hows the traffic generated when ping is used from a Windows box as follows:

95

Command: ->tcpdump -vvv -Xx host 10.0.0.25
tcpdump: listening on eth0

12:42:03.341047 10.0.0.210 > war-room.netsec: icmp: echo request (ttl 128, id
14995, len 60)
0x0000 4500 003c 3a93 0000 8001 eb43 0a00 00d2 E..<:......C....
0x0010 0a00 0019 0800 495c 0200 0200 6162 6364 I\....abcd
0x0020 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqrst
0x0030 7576 7761 6263 6465 6667 6869 uvwabcdefghi

12:42:03.341193 war-room.netsec > 10.0.0.210: icmp: echo reply (ttl 64, id
41824, len 60)
0x0000 4500 003c a360 0000 4001 c276 0a00 0019 E..<.`..@..v....
0x0010 0a00 00d2 0000 515c 0200 0200 6162 6364 Q\....abcd
0x0020 6566 6768 696a 6b6c 6d6e 6f70 7172 7374 efghijklmnopqrst
0x0030 7576 7761 6263 6465 6667 6869 uvwabcdefghi

Figure 4.9: Tcpdump of a ping from a Windows box

An analysis of this packet stream yields the same results as that of Figure 4.7, with

the exception of a LEN size of 60 bytes which translates to,

Bytes Designation
20 IP header
8 ICMP header
32 ICMP data

Table 4.2: Breakdown of LEN size from packet 1 in Figure 4.9

Because of the similarity with common diagnostic tools such as Ping, the ICMP

echo request feature in Xprobe2 is not a good characteristic to use for detection.

However, often the TTL value is used as a means for detecting operating systems.

Without the assistance of other characteristics found in target replies (which will be

 96

covered later), using the TTL values alone to detect operating systems has proven

at times to be inaccurate. Although not a common practice, TTL values can be

modified to mask the true identity of operating systems. Some common operating

system TTLs are listed in Table 4.11.

Operating System
TCP-
TTL

UDP-
TTL Operating System

TCP-
TTL

UDP-
TTL

AIX 60 30 Solaris 2.x 255 255
DEC Pathworks V5 30 30 SunOS 4.1.3/4.1.4 60 60

FreeBSD 2.1R 64 64 Ultrix V4.1/V4.2A 60 30
HP/UX 9.0x 30 30 VMS/Multinet 64 64
HP/UX 10.01 64 64 VMS/TCPware 60 64

Irix 5.3 60 60
VMS/Wollongong

1.1.1.1 128 30

Irix 6.x 60 60
VMS/UCX (latest

rel.) 128 128
Linux 64 64 MS WfW 32 32

MacOS/MacTCP
2.0.x 60 60 MS Windows 95 32 32

OS/2 TCP/IP 3.0 64 64
MS Windows NT

3.51 32 32
OSF/1 V3.2A 60 30 MS Windows NT 4.0 128 128

Table 4.3: Default TTL Values in TCP/IP [101]

Another observation worth mentioning is the difference with the data in the

echo reply. Although RFC 792 states that the data sent in an echo request must be

returned in the echo reply, we found that this does not hold true with any of the

operating systems we used in our experiments.

Port scanning:

 To determine what ports are listening on the target with Xprobe2, we used

 xprobe2 –M 5 –P –T <port/port range> <host>

 97

This command sequence loads module 5, puts Xprobe2 in port scanning mode and

tells Xprobe2 to scan the ports specified. As we mentioned earlier, the output for

these options is quit different from that of host scanning. User output looks like

this:

[+] Target is 10.0.0.25
[+] Loading modules.
[+] Following modules are loaded:
[x] [1] infogather:portscan - TCP and UDP PortScanner
[+] 1 modules registered
[+] Initializing scan engine
[+] Running scan engine
[+] All alive tests disabled
[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.00000 sec
[+] Selected safe Round-Trip Time value is: 10.00000 sec
[+] Portscan results for 10.0.0.25:
[+] Stats:
[+] TCP: 1 - open, 0 - closed, 0 - filtered
[+] UDP: 0 - open, 0 - closed, 0 - filtered
[+] Portscan took 0.02 seconds.
[+] Details:
[+] Proto Port Num. State Serv. Name
[+] TCP 22 open ssh
[+] All fingerprinting modules were disabled
[+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.

Figure 4.10: User output from xprobe2 –M 5 –P –T <port/port range> <host>

 98

A lot of information that is displayed in Figure 5 is for the benefit of the user. It

does, however, display the information we wanted,

which indi

listening fo

like the fol

tc

1
1

1
8
(t

1
1

We scanne

port would

Portscan results for 10.0.0.25:

[+] Stats:
[+] TCP: 1 - open, 0 - closed, 0 - filtered
[+] UDP: 0 - open, 0 - closed, 0 - filtered
[+] Portscan took 0.02 seconds.
[+] Details:
[+] Proto Port Num. State Serv. Name
[+] TCP 22 open ssh

Figure 4.11: Port scan results from Figure 10

cates that the system we scanned does in fact have port 22 open and

r connections. Using TCPDUMP, traffic generated by this scan looks

lowing:

pdump: listening on eth0

4:00:29.092330 10.0.0.200.23483 > 10.0.0.25.22: S [tcp sum ok]
838072069:1838072069(0) win 5840 (ttl 64, id 30470, len 40)

4:00:29.092495 10.0.0.25.22 > 10.0.0.200.23483: S [tcp sum ok]
81428885:881428885(0) ack 1838072070 win 5840 <mss 1460> (DF)
tl 64, id 0, len 44)

4:00:29.092537 10.0.0.200.23483 > 10.0.0.25.22: R [tcp sum ok]
838072070:1838072070(0) win 0 (DF) (ttl 64, id 0, len 40)

Figure 4.12: Tcpdump of scan from Figure 4.10

d only one port in Figure 4.12 for simplicity. Scanning more than one

 generate a greater number of packets without any advantage to what we

99

are presenting. If 50 ports would have been scanned, the traffic generated for each

scan would have the same characteristics. At first glance this traffic might look like

a normal TCP SYN packet, but close examination will prove otherwise.

Analyzing the first packet,

14:00:29.092330 10.0.0.200.23483 > 10.0.0.25.22: S [tcp sum ok]

1838072069:1838072069(0) win 5840 (ttl 64, id 30470, len 40)

Figure 4.13: First packet from Figure 4.12

we conclude that the protocol being used is TCP, the SYN flag is initiated, the

source system might be using a Unix type operating system because of the size of

the TTL, and this is the initial packet in a TCP handshake

An observation that merits the most attention about the packet in Figure

4.13, is that it is an initial TCP SYN packet, and is only 40 bytes in length. Almost

all the operating systems use at least one TCP option in the SYN packet. Normally

this would be the MSS, or Maximum Segment Size, an option which is 4 bytes in

length [102]. The minimum size for a SYN packet should be 44 bytes; 20 bytes for

the IP header, 20 bytes for the TCP header and 4 bytes for the MSS option.

Absence of the MSS option in a SYN packet makes the total length only 40 bytes,

which indicates that the SYN packet is crafted. A crafted packet means that the

packet was generated by something other than a network device. Typically, a 40

byte SYN packet is a characteristic of a SYN scanner. There are a number of tools

 100

that perform this type of scan, and because of the commonality with other such

tools we can not use this characteristic as a means for detecting Xprobe2. However,

if this type of activity is detected, it can be concluded that a scanning tool is being

used against the network.

Generate Fingerprint

This feature allows one to build fingerprints of the devices on a network.

This can be extremely useful when building an overall fingerprint of an

infrastructure. Custom fingerprints can also assist in network audits. This feature

can be executed with the following command,

 xprobe2 -F -M 6 -M 7 -M 8 -M 9 -M 10 -M 11 10.0.0.26

It is important to know that these commands can be scripted for simplicity. For

example,

#!/bin/sh
Name: fprint
Description: generate a fingerprint of the target device

echo –n “Enter Target: “
read target

xprobe2 -F -M 6 -M 7 -M 8 -M 9 -M 10 –M 11 $target

Figure 4.14: Shell script using xprobe command

 User output for the command in Figure 4.14 is as follows,

 101

A

s

g

command: ->./fprint

Enter Target: 10.0.0.25

Xprobe2 v.0.2 Copyright (c) 2002-2003 fygrave@tigerteam.net, ofir@sys-
security.com, meder@areopag.net

[+] Target is 10.0.0.25
[+] Loading modules.
[+] Following modules are loaded:
[x] [1] fingerprint:icmp_echo - ICMP Echo request fingerprinting module
[x] [2] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting
module
[x] [3] fingerprint:icmp_amask - ICMP Address mask request fingerprinting
module
[x] [4] fingerprint:icmp_info - ICMP Information request fingerprinting
module
[x] [5] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting
module
[x] [6] fingerprint:tcp_hshake - TCP Handshake fingerprinting module
[+] 6 modules registered
[+] Initializing scan engine
[+] Running scan engine
[+] All alive tests disabled
[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.00000 sec
[+] Selected safe Round-Trip Time value is: 10.00000 sec

Figure 4.15: User output from the xprobe scan indicated in Figure 4.14

s in previous scans, Figure 4.15 includes the target host, modules used, and the

ystem status. What distinguishes this scan from the others is the fingerprint

enerated for the scanned target;

102

[+] Signature looks like:
[+] "Linux Kernel 2.4.19" (100%)
[+] Generated signature for 10.0.0.25:
fingerprint {
 OS_ID =
 #Entry inserted to the database by:
 #Entry contributed by:
 #Date:
 #Modified:
 icmp_addrmask_reply = n
 icmp_addrmask_reply_ip_id = !0
 icmp_addrmask_reply_ttl = <255
 icmp_echo_code = !0
 icmp_echo_df_bit = 0
 icmp_echo_ip_id = !0
 icmp_echo_reply_ttl = <64
 icmp_echo_tos_bits = !0
 icmp_info_reply = n
 icmp_info_reply_ip_id = !0
 icmp_info_reply_ttl = <255
 icmp_timestamp_reply = y
 icmp_timestamp_reply_ip_id = !0
 icmp_timestamp_reply_ttl = <64
 icmp_unreach_df_bit = 0
 icmp_unreach_echoed_3bit_flags = OK
 icmp_unreach_echoed_dtsize = >64
 icmp_unreach_echoed_ip_cksum = OK
 icmp_unreach_echoed_ip_id = OK
 icmp_unreach_echoed_total_len = OK
 icmp_unreach_echoed_udp_cksum = OK
 icmp_unreach_ip_id = !0
 icmp_unreach_precedence_bits = 0xc0
 icmp_unreach_reply_ttl = <64
}
[+] GENERATED FINGERPRINT IS INCOMPLETE!
 [+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.

Figure 4.16: Generated Fingerprint

Xprobe2 builds signatures based on the replies to several ICMP packets it receives

from the target. The signature generated in Figure 4.16 is for a Linux system

 103

running Kernel 2.4.19. The signature may vary with different kernel versions. Now,

Xprobe2 uses a configuration file called Xprobe2.conf, which contains predefined

signatures. The following is a partial example of a predefined signature, from the

xprobe2.conf file, for detecting FreeBSD 5.1,

fingerprint {
OS_ID = "FreeBSD 5.1"
#Entry inserted to the database by: Ofir Arkin (ofir@sys-security.com)
#Entry contributed by: Ofir Arkin (ofir@sys-security.com)
#Date: 25 June 2003
#Modified: 25 June 2003

#Module A [ICMP ECHO Probe]
icmp_echo_code = !0
icmp_echo_ip_id = !0
icmp_echo_tos_bits = !0
icmp_echo_df_bit = 1
icmp_echo_reply_ttl = <64
#Module B [ICMP Timestamp Probe]
icmp_timestamp_reply = y
icmp_timestamp_reply_ttl = <64
icmp_timestamp_reply_ip_id = !0
#Module C [ICMP Address Mask Request Probe]
icmp_addrmask_reply = n
icmp_addrmask_reply_ttl = <64
icmp_addrmask_reply_ip_id = !0
#Module D [ICMP Information Request Probe]
icmp_info_reply = n
icmp_info_reply_ttl = <64
icmp_info_reply_ip_id = !0
#Module E [UDP -> ICMP Unreachable probe]
#IP_Header_of_the_UDP_Port_Unreachable_error_message
icmp_unreach_echoed_dtsize = 8
icmp_unreach_reply_ttl = <64
icmp_unreach_precedence_bits = 0
icmp_unreach_df_bit = 1
icmp_unreach_ip_id = !0
}

Figure 4.17: Predefined fingerprint from xprobe2.conf

 104

The generated signatures can be added to this file or a new file can be created and

customized for a specific network, maximizing scan efficiency. Also, separate

configuration files can be created for specific network device fingerprints, and then

automated probes can be configured to monitor any unwanted changes on a

network. Traffic generated by the probe in Figure 4.16 looks like this;

15:09:14.662394 10.0.0.200 > 10.0.0.25: icmp: echo request
(DF) [tos 0x6,ECT(0)] (ttl 64, id 38056, len 84)
15:09:14.662526 10.0.0.25 > 10.0.0.200: icmp: echo reply
[tos 0x6,ECT(0)] (ttl 64, id 58982, len 84)
15:09:14.664599 10.0.0.200 > 10.0.0.25: icmp: time stamp query
id 50733 seq 0 (ttl 64, id 50733, len 40)
15:09:14.672253 10.0.0.200 > 10.0.0.25: icmp: time stamp query
id 50733 seq 0 (ttl 64, id 50733, len 40)
15:09:14.682216 10.0.0.200 > 10.0.0.25: icmp: time stamp query
id 50733 seq 0 (ttl 64, id 50733, len 40)
15:09:14.682336 10.0.0.25 > 10.0.0.200: icmp: time stamp reply
id 50733 seq 0 : org 0xa23f5 recv 0x45dfb86 xmit 0x45dfb86 (ttl 64, id 58983, len 40)
15:09:14.693801 10.0.0.200 > 10.0.0.25: icmp: address mask request
(ttl 64, id 50733, len 32)
15:09:14.702250 10.0.0.200 > 10.0.0.25: icmp: address mask request
(ttl 64, id 50733, len 32)
15:09:14.712219 10.0.0.200 > 10.0.0.25: icmp: address mask request
(ttl 64, id 50733, len 32)
15:09:24.713731 10.0.0.200 > 10.0.0.25: icmp: information request
(ttl 64, id 47676, len 28)
15:09:24.722251 10.0.0.200 > 10.0.0.25: icmp: information request
(ttl 64, id 47676, len 28)
15:09:24.732219 10.0.0.200 > 10.0.0.25: icmp: information request
(ttl 64, id 47676, len 28)
15:09:34.802049 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:09:34.802249 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:09:34.812221 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

Figure 4.18: Traffic generated by scan in Figure 4.16

 105

Figure 4.18: continued

A close analysis of Figure 4.18 using Ethereal reveals a few interesting

things. For example, let’s take a look at the first packet, an echo request, featured

below,
Internet Protocol, Src Addr: 10.0.0.200 (10.0.0.200), Dst Addr: 10.0.0.25 (10.0.0.25)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x06 (DSCP 0x01: Unknown DSCP; ECN: 0x02)
 0000 01.. = Differentiated Services Codepoint: Unknown (0x01)
 1. = ECN-Capable Transport (ECT): 1
 0 = ECN-CE: 0
 Total Length: 84
 Identification: 0x94a8 (38056)
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: ICMP (0x01)
 Header checksum: 0x911a (correct)
 Source: 10.0.0.200 (10.0.0.200)
 Destination: 10.0.0.25 (10.0.0.25)

15:09:34.812446 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for 10.0.0.200.53
> 10.0.0.25.65535: 8639% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0] (ttl 64, id 58984, len 132)

15:09:34.814894 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.822251 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.832219 10.0.0.200.3876 > 10.0.0.25.65535: S
[tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
(DF) [tos 0x10] (ttl 64, id 9231, len 60)

15:09:34.832416 10.0.0.25.65535 > 10.0.0.200.3876: R
[tcp sum ok] 0:0(0) ack 781794797 win 0 (DF) [tos 0x10] (ttl 64, id 0, len 40)

Figure 4.19: Ethereal view of packet 1 from Figure 4.18

106

Internet Control Message Protocol
 Type: 8 (Echo (ping) request)
 Code: 123
 Checksum: 0xcfc3
 Identifier: 0xc62d
 Sequence number: 00:01
 Data (56 bytes)

0000 00 08 74 29 18 51 00 02 a5 03 e5 53 08 00 45 06 ..t).Q.....S..E.
0010 00 54 94 a8 40 00 40 01 91 1a 0a 00 00 c8 0a 00 .T..@.@.........
0020 00 19 08 7b cf c3 c6 2d 00 01 40 57 5e ea 00 09 ...{...-..@W^...
0030 d7 44 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 .D..............
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./0123450050 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 &'()*+,-./012345

Figure 4.19: continued

In this case, the total packet size is 84 bytes, which breaks down as follows,

- 8 bytes for the ICMP header

- 56 bytes for the Data

- 20 bytes for the IP header

which is correct according to RFC 792. An ICMP type 8 echo request should use

code 0, not 123 and the type of service should also be 0, not 6. For the valid codes

for ICMP type 8 please refer to appendix B.

Further inspection of Capture 14 reveals a few more unique identifiers that

can assist in detecting Xprobe2,

- ICMP information request, type 15

- ICMP address mask request, type 17

- DNS responses to port 65535

 107

The first two request types are intended for diskless workstations at boot time, so if

there are no such systems on a network then this is certainly a good indicator of

possible malicious intent.

Another interesting characteristic about the capture in Figure 4.18 are the

DNS packets. We’ve isolated the DNS packets in Figure 4.20 for easier analysis.

The field “q: A?” in the first packet indicates that the packet is a response to a DNS

query by an authoritative name server. Also, the alleged query was for the

“www.securityfocus.com” website and the response was sent to port 65535 on the

target system. The first three packets in Figure 4.20 all have the identical

characteristics.

15:09:34.802049 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:09:34.802249 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:09:34.812221 10.0.0.200.53 > 10.0.0.25.65535: 8639% q: A?
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)

15:09:34.812446 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for
10.0.0.200.53 > 10.0.0.25.65535: 8639% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0]
(ttl 64, id 58984, len 132)

Figure 4.20: DNS packets from Figure 4.18

To verify that this was not some error in the program we ran the same scan on three

other systems and obtained the same results. Therefore Xprobe2 sends out

responses to unsolicited DNS queries using the same website in the DNS response

 108

to a port, which is beyond what is normally used, port 65535. Breaking down the

first packet for a closer analysis reveals a few more interesting characteristics,

Field Description

15:09:34.802049 time stamp

10.0.0.200.53 > 10.0.0.25.65535 src and dst

q: A? www.securityfocus.com query type A to domain
www.securityfocus.com

1/0/0 www.securityfo[|domain]
1 Resource record

0 Authority Resource Records
0 Additional Resource Records

DNS packet len 104 length of the DNS packet
header and response data

Table 4.4: DNS Packet Decoding

At first glance this packet appears normal. However, further inspection reveals

additional characteristics that make the packets in Figure 15 suspicious,

- They are all type A query responses to queries that were never made

- The query type is always the same

- The resource record responses, 1/0/0, are always the same

- The responses to the alleged DNS query is always

www.securityfocus.com

Taking the analysis a step further, we perform a DNS look up on

www.securityfocus.com,

 109

an

the

Xp

cra

1
[
(

1
[
(

1
[
(

1
[

rev

res

typ

15:21:55.383795 10.0.0.200.33609 > 10.0.0.1.53: [udp sum ok] 24418+ A?
www.securityfocus.com. (39) (DF) (ttl 64, id 0, len 67)

15:21:55.384087 10.0.0.1.53 > 10.0.0.200.33609: 24418 q: A? www.securityfocus.com. 3/0/0
www.securityfocus.com. A[|domain] (ttl 128, id 41268, len 115)
Figure 4.21: Tcpdump of DNS query traffic for www.securityfocus.com

d discover that the resource record response is 3/0/0 instead of 1/0/0. Although

 resource record response can change with DNS modifications, data in the

robe2 scan is always the same. This indicates that the alleged DNS responses are

fted.

An analysis of the last four packets in Figure 4.18,

5:09:34.814894 10.0.0.200.3876 > 10.0.0.25.65535: S
tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
DF) [tos 0x10] (ttl 64, id 9231, len 60)

5:09:34.822251 10.0.0.200.3876 > 10.0.0.25.65535: S
tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
DF) [tos 0x10] (ttl 64, id 9231, len 60)

5:09:34.832219 10.0.0.200.3876 > 10.0.0.25.65535: S
tcp sum ok] 781794796:781794796(0) win 5840 <mss 1460,sackOK,timestamp 814820 0,nop,wscale 0>
DF) [tos 0x10] (ttl 64, id 9231, len 60)

5:09:34.832416 10.0.0.25.65535 > 10.0.0.200.3876: R
tcp sum ok] 0:0(0) ack 781794797 win 0 (DF) [tos 0x10] (ttl 64, id 0, len 40)

Figure 4.22: Last four packets of Figure 4.18

eals that they are 3 SYN scans to port 65535 on the target machine and 1 Reset

ponse from the target machine, indicating that the port is closed. Although this is

ical behavior of other scanning tools, it is an indication that something is not

110

right, especially if it is known that there are no services running on port 65535 of

the target system.

The fingerprinting scan provides 4 identifiers that can be used to identify

Xprobe2. They are,

1) DSS and ICMP Code value for echo request.

Packet Fields Xprobe2 correct value
DSS 6 0
Code 123 0

Table 4.5: DSS and ICMP Code value for Xprobe2 echo request

2) ICMP Type 15 and 17 requests.

ICMP Description
15 support of self configuring systems such as diskless stations
17 assists diskless systems to obtain its subnet mask at boot time

Table 4.6: ICMP Types in Xprobe2 scan

3) The DNS responses to queries that were never made with

www.securityfocus.com in the data.

4) SYN scan to port 65535. Although this is typical of other scanning

tools, the fact that this scan targets port 65535 can help re-enforce the

conclusion when searching for the use of this tool on a network.

 111

OS finger printing

OS fingerprinting is the main premise behind Xprobe2. To determine what

type of operating system is running on a target we would execute Xprobe2 as

follows,

xprobe2 -M 6 -M 7 -M 8 -M 9 -M 10 –M 11 $target

Options used here are essentially the same as when generating a fingerprint, except

for omitting the –F option. Also, the data generated is nearly identical,

- Crafted type 8 ICMP packets.

- ICMP Address mask and information request packets.

- DNS responses to requests never made to port 65535.

- SYN scan to port 65535.

Complete Xprobe2 scan analysis:

Let us now take a look at a complete scan of Xprobe2 using all of the

available modules. The output generated is as follows,

 112

[+] Target is 10.0.0.25
[+] Loading modules.
[+] Following modules are loaded:
[x] [1] ping:icmp_ping - ICMP echo discovery module
[x] [2] ping:tcp_ping - TCP-based ping discovery module
[x] [3] ping:udp_ping - UDP-based ping discovery module
[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation
[x] [5] infogather:portscan - TCP and UDP PortScanner
[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module
[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module
[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting module
[x] [9] fingerprint:icmp_info - ICMP Information request fingerprinting module
[x] [10] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting module
[x] [11] fingerprint:tcp_hshake - TCP Handshake fingerprinting module
[+] 11 modules registered
[+] Initializing scan engine
[+] Running scan engine
[-] ping:tcp_ping module: no closed/open TCP ports known on 10.0.0.25. Module test failed
[-] ping:udp_ping module: no closed/open UDP ports known on 10.0.0.25. Module test
failed
[+] No distance calculation. 10.0.0.25 appears to be dead or no ports known
[+] Host: 10.0.0.25 is up (Guess probability: 25%)
[+] Target: 10.0.0.25 is alive. Round-Trip Time: 0.01707 sec
[+] Selected safe Round-Trip Time value is: 0.03414 sec
[+] Primary guess:
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.4.19" (Guess probability: 70%)
[+] Other guesses:
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.4.20" (Guess probability: 70%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.4.21" (Guess probability: 70%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.0.36" (Guess probability: 70%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.0.34" (Guess probability: 70%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.0.30" (Guess probability: 70%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.5" (Guess probability: 61%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.6" (Guess probability: 61%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.7" (Guess probability: 61%)
[+] Host 10.0.0.25 Running OS: "Linux Kernel 2.2.8" (Guess probability: 61%)
[+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.

Figure 4.23-A: Complete Xprobe2 scan user output

113

15:50:15.622447 10.0.0.200 > 10.0.0.25: icmp: echo request (ttl 64, id 45014, len 84)
15:50:15.622585 10.0.0.25 > 10.0.0.200: icmp: echo reply (ttl 64, id 51858, len 84)
15:50:15.642245 10.0.0.200 > 10.0.0.25: icmp: echo request (DF) [tos 0x6,ECT(0)] (ttl 64, id 16862, len
84)
15:50:15.642389 10.0.0.25 > 10.0.0.200: icmp: echo reply [tos 0x6,ECT(0)] (ttl 64, id 51859, len 84)

15:50:15.644622 10.0.0.200 > 10.0.0.25: icmp: time stamp query id 45014 seq 0 (ttl 64, id 45014, len 40)
15:50:15.652248 10.0.0.200 > 10.0.0.25: icmp: time stamp query id 45014 seq 0 (ttl 64, id 45014, len 40)
15:50:15.662216 10.0.0.200 > 10.0.0.25: icmp: time stamp query id 45014 seq 0 (ttl 64, id 45014, len 40)
15:50:15.662374 10.0.0.25 > 10.0.0.200: icmp: time stamp reply id 45014 seq 0 : org 0x9d5ef recv
0x4838916 xmit 0x4838916 (ttl 64, id 51860, len 40)

15:50:15.663757 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.672248 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.682217 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.723497 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.732246 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.742216 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)

15:50:15.844855 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:50:15.852249 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:50:15.862218 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:50:15.862381 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for 10.0.0.200.53
> 10.0.0.25.65535: 38420% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0] (ttl 64, id 51861, len
132)

15:50:15.864840 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win
5840 <mss 1460,sackOK,timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)
15:50:15.872248 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win
5840 <mss 1460,sackOK,timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)

15:50:15.882217 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0)
win 5840 <mss 1460,sackOK,timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len
60)

15:50:15.882367 10.0.0.25.65535 > 10.0.0.200.54959: R [tcp sum ok] 0:0(0) ack 387072479 win 0 (DF)
[tos 0x10] (ttl 64, id 0, len 40)

Figure 4.23-B: Tcpdump of Figure 4.23-B

A close look at the scan in Figure 4.23-A and the Tcpdump capture in Figure 4.23-

B will reveal that the information corresponds with the scans and captures

 114

presented previously. This confirms that the Xprobe2 characteristics that we have

identified are in fact characteristics of the tool.

Figure 4.24 shows the key identifiers which we have found in our

experiments along with the corresponding packets. These identifiers can now be

used to develop a snort rule to identify this tool, which is discussed in Chapter 5.

Crafted type 8 ICMP packets
15:50:15.622447 10.0.0.200 > 10.0.0.25: icmp: echo request (ttl 64, id 45014, len 84)
15:50:15.622585 10.0.0.25 > 10.0.0.200: icmp: echo reply (ttl 64, id 51858, len 84)
15:50:15.642245 10.0.0.200 > 10.0.0.25: icmp: echo request (DF) [tos 0x6,ECT(0)] (ttl 64, id 16862, len
84)
15:50:15.642389 10.0.0.25 > 10.0.0.200: icmp: echo reply [tos 0x6,ECT(0)] (ttl 64, id 51859, len 84)

ICMP Address mask and information request packets
15:50:15.663757 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.672248 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.682217 10.0.0.200 > 10.0.0.25: icmp: address mask request (ttl 64, id 45014, len 32)
15:50:15.723497 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.732246 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)
15:50:15.742216 10.0.0.200 > 10.0.0.25: icmp: information request (ttl 64, id 45014, len 28)

DNS responses to requests never made to port 65535
15:50:15.844855 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:50:15.852249 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:50:15.862218 10.0.0.200.53 > 10.0.0.25.65535: 38420% q: A? www.securityfocus.com. 1/0/0
www.securityfo[|domain] (DF) (ttl 255, id 1, len 104)
15:50:15.862381 10.0.0.25 > 10.0.0.200: icmp: 10.0.0.25 udp port 65535 unreachable for 10.0.0.200.53 >
10.0.0.25.65535: 38420% q:[|domain] (DF) (ttl 255, id 1, len 104) [tos 0xc0] (ttl 64, id 51861, len 132)

SYN scan to port 65535
15:50:15.864840 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win 5840
<mss 1460,sackOK,timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)
15:50:15.872248 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0) win 5840
<mss 1460,sackOK,timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len 60)
15:50:15.882217 10.0.0.200.54959 > 10.0.0.25.65535: S [tcp sum ok] 387072478:387072478(0)
win 5840 <mss 1460,sackOK,timestamp 864765 0,nop,wscale 0> (DF) [tos 0x10] (ttl 64, id 45014, len
60)
15:50:15.882367 10.0.0.25.65535 > 10.0.0.200.54959: R [tcp sum ok] 0:0(0) ack 387072479 win 0 (DF)
[tos 0x10] (ttl 64, id 0, len 40)

Figure 4.24: Xprobe2 identifiers

115

Summary

 Although our process for network traffic analysis appears to be straight

forward so far, the analysis becomes more difficult as we start to diagnose

reconnaissance methods which use more complicated protocols like TCP, IP and

UDP as we will discuss in the next few sections. Additional steps will be added, or

modified, as we go through the analysis of the reconnaissance technique that use

these protocols. Table 4.7 summarizes the initial steps for network reconnaissance

traffic analysis discussed in this section.

 Method for Analyzing Network Reconnaissance traffic
Setup mock network with at minimum three systems 1

running linux, 1 running winxp and 1 running win2k.
Having both a switch and a hub handy would be helpful
install/configure the tool to be analized in appropriate

environment
Install sniffer on one of the systems. Preferrably all

three.
capture traffic to a file or standard output

decode each packet using sniffer
Analyze and verify packet field

Table 4.7: Initial steps for the method described in Section 4.2

 116

4.3 TCP, IP and UDP reconnaissance: NMAP

 Methods mentioned in the previous section can also be applied when

analyzing TCP, IP and UDP network reconnaissance. However, ICMP does not use

ports like TCP and UDP. ICMP does not require the complexity of having to

perform handshaking to setup an end-to-end connection to communicate like TCP.

With these additional characteristics, there is a lot more that a hacker can do to hide

his intent while doing a network reconnaissance. With a tool like NMAP, the

number of option combinations and methods a hacker can use to perform

reconnaissance is extensive; therefore we only look at option combinations which

apply to the protocols we analyze in this section. Also, since scans produce over

1000 packets, we use a sample of each scan in our illustrations. Tables 4.8 and 4.9

list the Nmap options based on the protocols analyzed:

Table 4.8: NMAP TCP Options

 117

Table 4.9: NMAP IP and UDP Options

TCP Scan Options

We ran separate experiments for each of the options to analyze NMAP and

find characteristics we can use to identify it to generate a fingerprint. To analyze

Nmap traffic, in addition to the methods we used for Xprobe2, we also looked for

patterns and protocol violations in the packets generated. For example, Nmap –sS

<target> generates the following traffic:

Figure 4.25: Nmap SYN scan capture

 118

Figure 4.25 illustrates typical characteristics of a SYN scan. Source IP and port are

the same in every packet, all the packets have the SYN flag set and they all have a

packet size of 40 bytes (20 for IP header and 20 for TCP header) which is classic

for a crafted SYN packet.

Figure 4.26: Nmap SYN Scan Capture 2

Another interesting characteristic about this type of scan is that for the first sets of

packets of the SYN scan, NMAP always sends one ICMP packet to the target and

an ACK packet to port 80, as illustrated in Figure 4.26 above, even when scanning

just one port. The NMAP SYN scan generates SYN and ICMP packets, which are

identical to those generated by Xprobe2; therefore the method we used for

analyzing Xprobe2 also applied here.

 The TCP connect scan, Nmap –sT <target>, generates packets which use

the TCP IP handshake. In this experiment, we scanned port 22 on one of the targets

in our mock FIT network, which generated the traffic illustrated in Figure 4.27.

 119

Figure 4.27: NMAP TCP Connect Scan

Interestingly, we found that the TCP connect scan also sends out an ICMP request

and an ACK packet to port 80. NMAP does have a switch –PO, which turns off the

ICMP request and the ACK packet. However, we should not ignore this similarity

with the SYN scan. Because both scanning techniques send out identical packets in

the beginning of the scanning process, we can use this characteristic as an indicator

for determining if a scan is being done.

Also, as mentioned earlier, TCP connect uses the TCP handshake. In this

technique, once the tool determines that port is listening on the target, an RST-

ACK packet is sent to terminate the connection. The following packet sequence

illustrates the process:

 120

SYN – Connection is initiated

00:25:46.878241 10.0.0.104.4250 > 10.0.0.25.22: S [tcp sum ok]
1620463576:1620463576(0) win 5840 <mss 1460,sackOK,timestamp 5075885
0,nop,wscale 0> (DF) (ttl 64, id 15477, len 60)

SYN-ACK –acknowledgment of connection initiation

00:25:46.878750 10.0.0.25.22 > 10.0.0.104.4250: S [tcp sum ok]
3031214419:3031214419(0) ack 1620463577 win 5792 <mss 1460,sackOK,timestamp
245443556 5075885,nop,wscale 0> (DF) (ttl 64, id 0, len 60)

ACK – acknowledgement that the initiation attempt was acknowledged, handshake
completed

00:25:46.878906 10.0.0.104.4250 > 10.0.0.25.22: . [tcp sum ok] ack 1 win 5840
<nop,nop,timestamp 5075885 245443556> (DF) (ttl 64, id 15478, len 52)

PUSH-ACK – target sends the service banner, in this case it was SSH-1.99-
OpenSSH_3.7.1p2

00:25:46.879786 10.0.0.25.22 > 10.0.0.104.4250: P [tcp sum ok] 1:26(25) ack 1 win 5792
<nop,nop,timestamp 245443556 5075885> (DF) (ttl 64, id 33456, len 77)

ACK – acknowledgement that the data was received

00:25:46.879883 10.0.0.104.4250 > 10.0.0.25.22: . [tcp sum ok] ack 26 win 5840
<nop,nop,timestamp 5075885 245443556> (DF) (ttl 64, id 15479, len 52)

RST-ACK – connection is closed

00:25:46.880220 10.0.0.104.4250 > 10.0.0.25.22: R [tcp sum ok] 1:1(0) ack 26 win 5840
<nop,nop,timestamp 5075885 245443556> (DF) (ttl 64, id 15480, len 52)

Once the scan process sends out RST-ACK, the tool moves on to the next port,

choosing a random source port and starts the process all over again. Another

interesting characteristic about the TCP connect scan is that the packet ID from the

source IP increments by one, as shown in Figure 4.28, unlike the SYN scan where

the packet IDs are random.

 121

Figure 4.28: TCP Connect Scan Packet ID increment by 1

 The FIN, ACK and NULL scans show the same pattern as SYN and TCP

scan, except that TCP flags set in the source packets for the FIN/ACK scans are the

FIN or ACK respectively, as illustrated in Figure 4.29 and 4.30. The NULL scan,

shown in Figures 4.31, as no flags set. Another similarity is that the packet length

in all these scans is 40 bytes, just like the SYN and the TCP connect scans.

Figure 4.29: XMAS Scan Results

 122

Figure 4.30: FIN Scan Results

Figure 4.31: ACK Scan Results

 The –PT and –PS options and the TCP Ping options send out ACK and

SYN packets, respectively.

IP Scan Options

The command Nmap –sO <target> is used to determine which IP protocols

the target supports. Nmap sends out raw IP packets without any protocol header

information. Traffic generated by the command Nmap –sO <target>, looks like

this:

 123

Figure 4.32: IP Protocol Scan

The first characteristic about this capture is that all the packets are only 20 bytes in

size, as shown in Figure 4.32. The second characteristic we noticed is that packets

do not have the protocol headers for the protocol set in the IP protocol field, as

illustrated in the ethereal capture in Figure 4.33.

 124

Figure 4.33: IP packet with no protocol header for protocol set in the protocol field

A packet without a header for the protocol set in the protocol field of the IP header,

is not normal behavior for IP protocol. Header information associated with the

protocol set in the protocol field of the IP header should be right after the IP header.

Figure 4.34 illustrates what a properly formatted packet looks like. Therefore, the

key indicator that an IP reconnaissance is in process, is the missing protocol header

information associated with the protocol set in the IP protocol header field. This is

why the packets are only 20 bytes in size.

 125

Figure 4.34: Illustrates what a properly formatted IP packet looks like.

 126

UDP Scan Options

 The UDP scan option essentially is used to determine which UDP ports are

open. Figure 4.35 below illustrates what the UDP scan traffic looks like.

Figure 4.35: UDP Scan Results

UDP packets generated by the UDP scan are only 28 bytes in size. Since the

minimum value for the IP header is 20 bytes [147] and the minimum value UDP

header is 8 bytes [150], this indicates that the UDP packets have a 0 byte payload

which is not normal. Figure 4.36 illustrates an ethereal dump of a UDP packet

generated by the UDP scan.

 127

Figure 4.36: Ethereal capture of a UDP packet generated by the UDP scan

The other characteristic of this scan is that it tends to send out malformed packets.

Figure 4.37 is a closer look at the malformed packet warning shown in the bottom

of Figure 4.36.

Figure 4.37: Malformed SNMP packet warning from Figure 4.36

 128

When analyzing traffic for this type of tool we want to look for the

following,

1) Patterns

i. Multiple SYN, FIN, or ACK packets

ii. Multiple FIN-PUSH-URG packets

iii. Multiple RST-ACK connections from same source

iv. Packets with no protocol headers for protocol set in IP

header protocol field

2) Crafted Packets

i. SYN Packets with a packet length of 40 bytes

ii. IP packets with the length of 20 bytes

iii. UDP Packet with 0 byte payloads

 129

4.4 ARP Reconnaissance: ETTERCAP

Ettercap is more complicated to detect than Xprobe2 and Nmap because it

does not send any crafted packets. Instead of sending crafted packets, Ettercap

exploits the lack of authentication in the ARP protocol. It sends out 255 ARP

request packets when the program is started, that are no different than an ARP

request packet sent by any system on a network. Figure 4.38 illustrates what an

ARP packet looks like using Ethereal, and Table 4.7 explains what each field

stands for. After gathering all the ARP request information, Ettercap builds a list of

the hosts that replied, as mentioned in Chapter 3. After the list is completed,

Ettercap goes completely silent. It doesn’t even go into promiscuous mode until it

is enabled by the user.

Since Ettercap does not inject crafted packets into the network like Xprobe2

and Nmap, but rather manipulates traffic stream by modifying the target’s ARP

table, it can not be fingerprinted with methods we have demonstrated so far. We

use a different method which involves analyzing network behavior, monitoring

network traffic, scanning techniques, setting traffic specific thresholds and using a

set of detection tools. These techniques and tools however are discussed in Chapter

5.

 130

Figure 4.25: ARP Packet decoded in Ethereal

The definitions of each field in the ARP packet shown in Figure 4.25 are as

follows:

 131

Table 4.7: Field definitions for ARP packet shown in Figure 4.25

 132

Chapter 5
Techniques for Detecting and Countering

Network Reconnaissance

 Network traffic analysis is not trivial, especially when identifying specific

activity such as network reconnaissance. Hackers are becoming more cunning with

their techniques and tools everyday, which adds to the difficulty of analysis and

detection. The only way to counter this dangerous adversary is to think like them,

read what they read, experiment with the technology as they do, and challenge

ourselves with “what if” scenarios. Therefore, deployment and management of

security solutions is not enough to maintain a secure information infrastructure

today. As security professionals, not only do we need to understand how to deploy

and configure a solid security solution, we also need to understand how hackers

obtain information about networks in order to anticipate and mitigate network

attacks.

 We have analyzed the network traffic generated by several reconnaissance

tools and extracted key characteristics from the traffic which can subsequently be

used to detect these tools. In this chapter, we complete our methodology for

identifying and detecting network reconnaissance by discussing how to use the

information gathered in the previous chapter to develop filters that will assist in

detecting and countering network reconnaissance. This chapter is organized as

follows,

 133

o Network Reconnaissance Detection Tools and Techniques

 Snort: Intrusion Detection System

 Acid: Analysis Console for Intrusion Databases

o Oinker: A graphical user interface for developing Snort rules

o Developing rules for detecting network reconnaissance

 Snort rules for detecting ICMP reconnaissance

• Countering ICMP reconnaissance

 Snort rules for detecting TCP/IP reconnaissance

• Countering TCP/IP reconnaissance

 Snort rules for detecting ARP reconnaissance

• Countering ARP reconnaissance

o Applying Snort Rules: Experimental Results

5.1 Network Reconnaissance Detection tools and Techniques

As mentioned in Chapter 2, there are a number of tools today that can be

used to assist with network reconnaissance detection. However, we decided to use

Snort with a PHP-based web front-end called Acid, Analysis Console for Intrusion

Databases. Both Snort and ACID offer features that will not be covered in this

paper. This section will serve as a brief overview of these two tools. Please refer to

[37] [39] [119] [152] for more details.

 134

Snort: Intrusion detection system

 Snort uses signature based detection to identify anomalies in network

traffic. It also doubles as a network sniffer, Figure 5.1 illustrates what a network

traffic capture looks like using Snort in sniffer mode.

Figure 5.1: Snorts sniffer output

The capture format isn’t very different than Tcpdump, as we illustrated in Chapter

4.

 The intrusion detection features Snort offers are very extensive. It uses

filters, also known as rules, to analyze and log traffic. Once a filter is triggered it is

 135

labeled and categorized, as we will demonstrate later in Section 5.4. A typical Snort

rule would look like this;

Figure 5.2: Components of a Snort rule

Snort rules contain two key components; a rule header and rule options, as

illustrated in Figure 5.2 above. The rule header consists of the following;

• Action

o alert - generate an alert using the selected alert method, and then

log the packet

o log - log the packet

o pass - ignore the packet

o activate - alert and then turn on another dynamic rule

 136

o dynamic - remain idle until activated by an activate rule , then

act as a log rule

• Protocol: TCP, UDP, ICMP or IP

• Source IP address

• Source Port

• Direction of traffic: -> or <>

• Destination IP address

• Destination Port

There are four categories of rule options: Metadata, Payload, Non-payload and

Port-detection. Tables 5.1, 5.2, 5.3 and 5.4 list the required keywords for each

category, the descriptions and format.

Table 5.1: Metadata Rule Options

The Meta-data rules are used for readability and organization of rules.

 137

Table 5.2-A: Payload Rule Options

The Payload rule options (Table 5.2-A above) are used for analyzing packet

payloads. The keywords shown below in Table 5.2-B are used for determining how

the content keyword value should be analyzed. The Non-Payload rule options, in

Table 5.3-A and 5.3-B, are used for verifying packet header field information.

 138

Table 5.2-B: Content behavior modifiers. These options are used with keyword

content in Table 5.2-A.

Table 5.3-A: Non-payload Rule Options

 139

Table 5.3-B: Non-payload Rule Options

Table 5.4: Post Detection Rule Options

 140

 Another feature we would like to mention is event threshold. Thresholding

can limit the number of times an event is logged during a specific period. There are

three types of thresholding parameters: limit, threshold and both. Table 5.5 shows

the threshold options and formatting.

Table 5.5: Threshold Options and Format

 Snort can be configured several ways [37] [39] [119]. We configure it to log

events to a MySQL [151] [152] database and we used ACID to analyze those

events [153] (the analysis is described below).

Acid: Analysis Console for Intrusion Databases

 The data collected by Snort is difficult to analyze manually. Therefore, a

number of tools have been developed to help with the analysis of Snort logs and

databases. Table 5.6 lists some of the front-end available to use with Snort.

 141

Table 5.6: Available front-ends for Snort

ACID, developed by Roman Danyliw [153, is an analysis engine that helps

with the searching and processing of security incident databases generated by

security-related software such as intrusion detection systems and firewalls (e.g.

Snort, iptables, Cisco Pix). Figures 5.3, 5.4, 5.5 illustrate ACIDs main monitoring

page, a query result and a detailed alert respectively.

Figure 5.3: ACIDs main monitoring page

 142

Figure 5.4: ACID query result

Figure 5.5 : Detailed ACID alert

For further information on ACID please see [153].

 143

5.2 Oinker: A graphical user interface for creating Snort Rules

During the course of our experiments we found that one of the tasks that

took the most time was developing snort rules. Having to reference the Snort

manual constantly to verify formatting and definitions of fields was very time

consuming. We decided that we needed a tool that put all of the Snort rule options

in one location, took care of formatting and allowed us to work on multiple files.

With these requirements in mind, Oinker was developed. Due to time constraints

we decided to prototype Oinker in Microsoft Visual Basic .Net, therefore it will

only work under the Microsoft Windows operating system.

Oinker

Oinker is a graphical user interface program for writing Snort rules. It

provides the user with the flexibility for:

• Easily creating new Snort rule files

• Easily editing existing files

• Cutting and pasting rules between Snort rule files

• Instantly duplicating rules

• Working with multiple Snort rule files

• Instantly customizable to environments using Snort configuration

files, such as: Snort.conf, Classification.config and

References.config

 144

Figures 5.6 below illustrates Oinker’s main window.

Figure 5.6: Oinkers main window

In the main menu the user can create a new Rules file, open an existing rule file, or

edit the configuration files Snort.conf, Classification.config or References.config.

 145

File Header

Options
Save
Save AS
Add Rule
Edit Rule
Delete Rule
Copy To

Rules Window

Figure 5.7: Creating a new Snort Rules file

When a new file is created, a window will appear, as illustrated in Figure 5.7. Here,

a user can proceed to start adding new rules. Figure 5.8 below illustrates the main

rule window.

 146

Figure 5.8: Adding a new rule

In the window shown in Figure 5.8, the user can start creating a new rule. The

initial options shown are those for creating the rule header. The rule header fields

are listed and described in section 5.1. Figure 5.9 illustrates the selection window

for all the rule options, which are also listed and described in section 5.1.

 147

Figure 5.9: Rule options selection window

For more information please refer to Appendix C.

 148

5.3 Developing Snort Rules for detecting network reconnaissance

In this section we will illustrate how we developed Snort rules using the

information we gathered on Xprobe2, Nmap and Ettercap. Then we will present our

results after testing the rules on two live network environments.

Detecting ICMP reconnaissance: Xprobe2

 As we mentioned in Chapter 4, Xprobe2 sends out a total of 7 packets as

shown in the Tcpdump capture in Figure 5.10 below.

Figure 5.10: Xprobe2 7 key packets

Packet 1:

This is a normal ICMP echo request; but as mentioned in Chapter 4, it can be used

to identify the type of operating system it came from. Apparently 46 bytes of a

default unmodified ICMP Request payload, from a UNIX type system, remain the

same. Table 5.7 below illustrates this similarity,

 149

Table 5.7: Ping Payload similarity between Linux and SunOS 5.9

The first ICMP echo request generated by Xprobe2 is no exception to this, as it is

illustrated in Figure 5.11 below:

Figure 5.11: Ethereal view of first ICMP echo request packet from Xprobe2 scan

Therefore the Snort Rule for detecting this packet would look like this:

alert icmp any any -> any any (msg:"ICMP Echo Request from a Unix Type box";
content:"|20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35|";

itype:8; icode:0; offset:32; sid:1000008; rev:1;)

This rule states: Alert if an ICMP packet is detected from any source IP and port to

any destination IP and port in the private network (alert icmp any any -> any any)

with type 8 code 0 (itype:8; icode:0) and contains the data "|20 21 22 23 24 25 26

 150

27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35|" in the payload starting at byte 32

(offset:32). If this rule is activated, it will display “ICMP Echo Request from a

Unix Type box” in ACID, as it will be demonstrated in section 5.4.

Packet 2:

 Although the packet displays as an echo request in Figure 5.10, when we

took a closer look with Ethereal this is what we found,

Figure 5.12: Ethereal view of second ICMP echo request packet from an Xprobe2

scan

This packet contains an invalid DS Field (aka: TOS) value and the ICMP type 8 has

an invalid code of 123. The Snort rule to detect this packet would be as follows,

alert icmp any any -> any any (msg:"ICMP TYPE 8 with invalid CODE 123 and
invalid TOS"; itype:8; icode:123; tos:6; sid:1000000123; rev:1;)

 151

This rule states: Alert on any ICMP packet received from any IP and port to any IP

and port of the internal network (alert icmp any any -> any any) with type 8/ code

123 and a TOS of 6. If this rule is activated, it will display “ICMP TYPE 8 with

invalid CODE 123 and invalid TOS” in ACID.

Packet 3:

 The third packet is an ICMP Timestamp request. As mentioned in Chapter

4, hackers can identify the different Microsoft IP stacks and identify whether a

system is running a Windows or a UNIX-type OS using the ICMP Timestamp

request. Taking a closer look using Ethereal, the packet looks like this:

Figure 5.13: Time Stamp Request

 152

The snort rule for packet 3 would look as such:

alert icmp any any -> any any (msg:"ICMP TimeStamp Request"; itype:13; icode:0;
sid:100000013; rev:1;)

This rule states: Alert on any ICMP packet received from any IP and port to any IP

and port of the internal network (alert icmp any any -> any any) with type 13 code

0. If this rule is activated, it will display “ICMP Timestamp Request“ in ACID.

Packet 4 and 5:

 Packets 4 and 5, ICMP Types 15 (Information Request) and 17 (Address

Mask Request) are typically used for diskless operating systems. So if these ICMP

types are detected, the source IP should be investigated. The packets look like this:

Figure 5.14: ICMP Type 17 Address Mask Request

 153

Figure 5.15: ICMP Type 15 Information Request

The Snort Rules for packets 4 and 5 would look like this:

alert icmp any any -> any any (msg:"ICMP Address mask request"; itype:17; icode:0;

sid:100000017; rev:1;)

alert icmp any any -> any any (msg:"ICMP Information Request - used for diskless
workstations"; itype:15; sid:100000015; rev:1;)

ICMP Type 17 rule states: Alert if an ICMP packet is receive from any source IP

and port to any IP and port of the local network (alert icmp any any -> any any)

with type 17 code 0. If the rule is activated the message “ICMP Address mask

 154

request" will be displayed in ACID. The same would apply for the ICMP Type 15

rule, except that it will display “ICMP Information Request”.

Packet 6:

Packet 6 is a DNS query response to port 65536 for a query that was not

made. The packet details are extensive so we have left out the frame and Ethernet

information.

Figure 5.16: Ethereal view of DNS query response from Xprobe2 Scan

 155

The snort rule for this packet is a little more involved than the others we have

presented so far. We have to search for data sent to port 65535 starting and

stopping at a specific location in the payload as illustrated in the rule below.

alert udp any any -> any 65535 (msg:"UDP - Unsolicited DNS response"; \
content:"|03 77 77 77 0d 73 65 63 75 72 69 74 79 66 6f 63 75 73 03 63 6f 6d 00|"; \

 offset:7; \
 depth:56; \
 sid:1000053; \
 rev:1;)

This rule states: Alert on any UDP packet received from any location and port to

any location and port 65535 in the internal network (alert udp any any -> any

65535) with the content :"|03 77 77 77 0d 73 65 63 75 72 69 74 79 66 6f 63 75 73

03 63 6f 6d 00|" in the payload at an offset of 7 bytes (offset:7) and depth of 56

bytes (depth:56). If this rule is activated it will show the message “UDP -

Unsolicited DNS response” in ACID.

 156

Packet 7:

 This is a TCP SYN packet sent to port 65535. The packet looks like the

following:

Figure 5.17: Ethereal view of TCP SYN to port 65535 from Xprobe2 Scan

The rule for detecting this packet would be:

alert tcp any any -> any 65535 (Msg:"TCP SYN to port 65535"; flags:S,12; sid:1000053;
rev:1;)

This rule states: Alert on any TCP packet received from any location and port to

any IP and port 65535 in the internal network (alert tcp any any -> any 65535)

with the SYN flag set (flag:S,12) and ignore reserved bits 1 and 2. If this rule is

activated it will show the message “TCP SYN to port 65535” in ACID.

 157

This completes our rule set for Xprobe2. Table 5.8 below lists all the rules with the

corresponding packet number.

Table 5.8: Complete Rule Set for detecting Xprobe2

Detecting TCP/IP/UDP reconnaissance: NMAP version 3.0

 As mentioned in Chapter 4, NMAP has a lot of options and the

combinations of those options are extensive, so we decided to analyze only a few as

listed in Table 4.9. In addition to the extensive option combinations, each scan type

sends out over 1600 packets. Therefore, for practicality and simplicity we sampled

traffic of each scan technique and extracted key characteristics which we will use to

develop the Snort rules.

 158

SYN Scan: nmap –sS <target>

As illustrated in Figure 4.25, many of the fields are random which

correlates with Table 5.9 below,

Table 5.9: Nmap SYN Scan Characteristics

The 2 fields in red shown in Table 5.8 are the key characteristics for developing a

Snort rule for this type of Scan. Since there are so many tools out there that can do

a SYN scan, we developed the rules to be as generic as possible. The rule for a this

type of scan looks like the following,

alert tcp any any -> any any (msg:"SYN Scan is occuring"; flags:S,12; ack:0; flow:stateless;

threshold: type limit, track by_src, count 10 , seconds 60; sid:10000001155; rev:1;)

This rule states; Alert on TCP packets coming from any source IP and port to any

destination IP and port (alert tcp any any -> any any) of the internal network with

the SYN flag set ignoring reserve bits 1 and 2 and with an ACK of 0. Also, log

only ten packets after the initial 60 seconds of detection from the same source IP

 159

(threshold: type limit, track by_src, count 10 , seconds 60). This rule will also

detect a TCP ping using SYN packets.

TCP Connect () Scan: nmap –sT <target>

 The rule created for the SYN scan will also detect the TCP Connect because

TCP connect contains the same characteristics.

FIN Scan: nmap –sF <target>

 The scan characteristics are almost the same as the SYN scan with the

exception that the flag set is the FIN flag instead of the SYN flag. Therefore the

rule for detecting a FIN scan would be the following,

alert tcp any any -> any any (msg:"FIN Scan is occuring"; flags:S,12; ack:0; flow:stateless;

threshold: type limit, track by_src, count 10 , seconds 60; sid:10000001156; rev:1;)

This rule states the same thing as the TCP SYN rule explained earlier with the

exception that this time it’s a FIN scan.

 The overall process is the same for the rest of the scans. The only difference

between them is the TCP flags for the XMAS, ACK and Null scans and protocols

for the IP and UDP scans. Therefore we will only show the scan characteristics

table for each scan and the corresponding rule.

 160

XMAS Scan: nmap –sX <target>

Table 5.10: Nmap XMAS Scan Characteristics

alert tcp any any -> any any (msg:"XMAS Scan is occuring"; flags:FPU,12; ack:0; \
flow:stateless; sid:10000000156; rev:1;)

Null scan: nmap –sN <target>

Table 5.11: Nmap Null Scan Characteristics

>

alert tcp any any -> any any (msg:"NULL Scan is occuring"; flags:0; ack:0; \
flow:stateless; sid:10000000158; rev:1;)

 161

ACK Scan: nmap –sA <target>

Table 5.12: Nmap ACK Scan Characteristics

alert tcp any any -> any any (msg:"ACK Scan is occurring"; \
 flags: A, 12; ack:0; \
 flow: stateless; \
 sid:10000000158; rev:1;)

IP Protocol Scan: nmap –sO <target>

The technique to detect this kind of scan is a little different. ACID is limited

to displaying TCP, UDP and ICMP traffic only. Also, Snort rules are limited to

monitoring only a subset of all fields. Therefore, we needed to develop what are

known as Berkeley Packet Filters (BPF) [39] [40] [142] [158]. Using BPF filters

we can look at any fields of incoming packets and can be used with either Snort or

tcpdump. The BPF filter for this type of scan would look like the following;

Snort –v ‘(ip[3] = 20)’ –L ip_protocol_scan.cap

 162

The filter above will log all IP packets with a total header length to the file

ip_protocol_scan.cap. When we ran this scan against this rule the results were as

follows,

Figure 5.18: BPF filter IP protocol scan results

Although we will be presenting results in the next section, we thought it would be

better to present the results for this particular scan because the results can not be

displayed with the current version of ACID.

 163

UDP Protocol Scan: nmap –sU <target>

Table 5.13: Nmap UDP Scan Characteristics

alert udp any any -> any any (msg:"UDP Scan is occuring"; dsize:0; threshold: type \
limit, track by_src, count 3, seconds 60; sid:10000000157; rev:1;)

This Snort rule can also be writing using BPF, it would look like this;

Snort –v ‘(ip[9] = 0x11 && ip [3] = 28)’

This completes our Nmap ruleset, Table 5.14 below summarizes all the

rules with the corresponding scan type.

Table 5.14: Complete rules set for detecting Different scan types

 164

Detecting ARP reconnaissance: ARP Poisoning (Ettercap)

not be detected

using A p

Then

ARP poisoning, Ettercap’s reconnaissance method, can

CID and Snort because they do not operate in layer 2. However, Etterca

can be used to detect other ARP poisoners running on the local net. We ran

Ettercap on a Windows XP box and poisoned one of our mock FIT systems.

we ran Ettercap on a Linux box and scanned the network for other ARP poisoners.

Figures 5.19 (the attacker) and 5.20 (Ettercap as an ARP poisoning detection tool)

illustrate our experiment.

Figure 5.19: Attacker

 165

Figure 5.20: Detecting ARP poisoning with Ettercap

ARP poisoning is rather simple to counter. Since ARP poisoning relies on the

to

ability to dynamically modify ARP tables, the only thing that needs to be done

defeat this type of reconnaissance is setting static ARP entries in the systems ARP

table.

 166

 5.4 Applying the new Snort Rules: Experiment results

be, Nmap and

Etterca

Now that we developed the necessary rules for detecting Xpro

p type reconnaissance, we will now discuss how we tested the rule sets in

two distinct live environments and our end results. The configuration of our live

environments is illustrated in Figures 5.20 and 5.21.

Figure 5.20: Test Site one configuration

 167

Figure 5.21: Test Site two configuration

The network environ ed of four major

1) The Internet

etwork

ort

ments in Figures 5.20 and 5.21 are compos

parts:

2) The internal n

3) IDS system running Sn

4) Passive Ethernet TAP

 168

All the components listed above are typical in most infrastructures with the

exception of the passive Ethernet TAP [154]. An Ethernet TAP is a device which

can be used to monitor traffic stealthily. The system connected to either of the Taps

can only read network traffic; therefore it makes the system connected to it

completely immune to any type of targeted attack or reconnaissance. Figure 5.22

illustrates the wiring for an Ethernet cable, Figure 5.23 illustrates how the ether

TAP is wired and Figure 5.24 illustrates a closer look at the wiring of the two TAP

ports.

Figure 5.22: Cat 5 wiring pin out for 10baseT [155]

 169

Figure 5.23: Ethernet TAP wiring [154]

Figure 5.24: Close up of TAP port wiring

The reason why the system is stealthy when plugged into the TAP ports of the

Ethernet TAP is because the only pins that are used are the Receive+ (Pin #3) and

the Receive- (Pin#6) of the RJ45 Ethernet connection, as illustrated in Figure 5.23.

 170

Because of this configuration the traffic can only be read in half-duplex. Meaning

that Tap A only reads the traffic going from the private network to the internet and

Tap B reads in the traffic that comes in from the internet to the private network.

Tap B is the Tap we used for connecting our Snort system.

Applying Xprobe2 Rules:

After we completed the rules, we enabled them on our IDS in each of our

live networks. First we cleared all detected attacks from the ACID console so we

can easily read the results, as illustrated below in Figure 5.25.

Figure 5.25: Clear ACID console

Once we made sure that ACID was not showing any attack alerts, we then scanned

the target system with Xprobe2 from a remote location. Figure 5.26 illustrates that

 171

Snort has detected some illegitimate activity based on the enabled rule set. When

we take a closer look at what was detected we find that all the rules we have

enabled have been activated

Figure 5.26: Detection of suspicious packets

Figure 5.27: TCP rule for detection SYN packets to port 65535 is activated

 172

Figure 5.27 illustrates the activation of the TCP rule we developed for packet 7. We

take a look at the detail packet and detection information to verify that it is our rule,

this is what we found,

Figure 5.28: Detailed view of TCP SYN Packet

Under “Triggered Signature”, in Figure 5.28, we can see the rule message we gave

our rule. Also, in the TCP section we can see the TCP flag and destination port we

were monitoring with our rule.

 173

 We then viewed the UDP activity illustrated in Figure 5.26 as we did for the

TCP traffic. We found that the rule we developed for detecting packet 6 was

triggered, as shown in Figure 5.29.

Figure 5.29: Rule for Packet 6 triggered

Here we can see that our UDP rule set was activated. If we take a closer look at the

triggering packet as we did for the TCP packet in 5.27, we find the following;

 174

Figure 5.30: Unsolicited DNS response

The triggered rule has the message we assigned to the rule, the destination port

(65535) in question is the same as we designated in our rule and the payload we are

looking for is also displayed. All this confirms that our rule is working properly.

 We then analyzed the ICMP traffic, and again we found rules with our

messages in the signature column, as illustrated in Figure 5.31.

 175

Figure 5.31: ICMP Rules triggered

 All of the rules were triggered except for one, the ICMP Type 15

Information Request packet. We tested the rule in several environments but were

not successful at getting it to trigger when Xprobe2 was used. It seems that Snort

simply drops this kind of ICMP packet. Figures 5.32, 5.33, 5.34 and 5.35 illustrate

the details of the packets that were detected and the key identifiers that triggered

the rule.

 176

Figure 5.32: ICMP Type 17 (Address Mask Request)

Figure 5.33: ICMP Type 8 with invalid Code 123

 177

Figure 5.34: ICMP Type 13 (Timestamp)

Figure 5.35: ICMP Type 8

 178

With the exception of the ICMP Type 15 packet, the experiment results were

positive. Figure 5.36 below illustrates the scans and the rules which apply to them.

Applying Nmap Rules:

 We cleared the ACID console again and ran Nmap against our test

environments. Our results were as conclusive as those for Xprobe2. Figures 5.36-

5.41 illustrate our results.

Figure 5.36: ACK Scan Detected

 179

Figure 5.37: FIN Scan Detected

Figure 5.38: Null Scan Detected

 180

Figure 5.39: SYN Scan Detected

Figure 5.40: UDP Scan Detected

 181

Figure 5.41: XMAS Scan Detected

 182

Conclusions and Future work

 Diverse network protocols and complex infrastructures make network

traffic analysis an extremely difficult task. However, the whole approach to

network traffic analysis is redefined when the burden of having to stay ahead of

hackers is added to the mix because now we have the added problem of intrusion

detection and prevention. The security industry as a whole has done a good job at

developing tools that react to attacks either as they are occurring or shortly after

they have occurred. However, one could argue that an attack which is detected

shortly after it has occurred, in essence, is a successful attack.

As we explained in Chapter 2, very little work has been done in the area of

network reconnaissance analysis and detection. Current tools and techniques focus

on the attacks themselves rather than what comes before the attack. They lack the

ability to analyze network traffic to detect hostile network reconnaissance to

anticipate and mitigate network attacks. However, if network reconnaissance

detection is performed in a methodical way, such as the four step technique we

have presented in this thesis, detection of malicious network reconnaissance is a

little easier and false positives can be kept at a minimum.

 183

The four steps of our technique are as follows;

Step 1: Build an isolated network environment

 As illustrated in Chapter 1 and 5, this involves setting up a group of

machines with various operating systems. It is recommended to setup the

environment to be as dynamic as possible so that it can be changed around to meet

the requirements of different experiments. This is necessary so that the production

environment will not be affected by the tools that are run during the experiments.

Step 2: Capture network traffic generated by the hacker tool

In this step we capture the traffic to a file using a protocol analyzer such as

Ethereal or tcpdump

Step 3: Analyzing the captured traffic

This is where most of the work is done and knowledge of the network

protocol the tool uses to do network reconnaissance is required. Using this

knowledge we identified key elements that can subsequently be used to detect the

tool being analyzed. It is important to understand that, although we used Snort in

our experiments, our technique can be applied to develop filters/rules for any

intrusion detection system, intrusion prevention system or firewall.

 184

Step 4: Creating and testing the filters against a live environment for validation.

 Using key elements we identified from the captured packets, we developed

filters/rules for Snort. This final step also involves setting up the chosen anomaly

detection system (IDS, IPS or firewall) on a live network with our new filters/rules.

We recommend that an ethertap be used to connect the system to the live network,

as illustrated in Figures 5.20 and 5.21, so that it can not be detected.

 Once everything was properly set up and tested we ran the reconnaissance

tools against the live network to see if the new filters/rules will detect them. As we

demonstrated in results in Chapter 5, our rules did detect the tools every time. An

important thing to keep in mind is that all environments are different; therefore the

level of false positives will vary. It might be required to use features offered by

Snort, which weren’t covered in this thesis or development of BPF rules in order to

get the level of detection accuracy desired.

 Also, during our research we found that creating Snort rules was extremely

time consuming; thus, we developed Oinker, a tool that makes it easier to write

Snort rules. Oinker also facilitates working with multiple files simultaneously.

Future work

 Although we have proven that our technique has worked, we feel that it can

certainly be improved. The process of analyzing the traffic generated by the tools

can be time consuming, and in some environments, impractical. Since we know

how network protocols should behave based on the standards set forth by the

 185

RFC’s, we believe the analysis of reconnaissance traffic and rule creation can be

automated. However, the work to automate the kind of analysis done for this thesis

may well be suitable for doctoral-level research.

 186

References

[1] The Atlas of Cyberspaces, Historical Maps of Computer Networks

http://www.cybergeography.org/atlas/historical.html

[2] Internet Software Consortium (2003), “Internet Domain Survey”
http://www.isc.org/index.pl?/ops/ds/

[3] CERT (2003), “CERT/CC Statistics 1988-2003”

http://www.cert.org/stats/cert_stats.html

[4] CSI/FBI (2003), “Computer Crime and Security Survey”, Computer
Security Institute,
http://www.gocsi.com/forms/fbi/pdf.jhtml

[5] S. Corcoran (2001), Peiter “Mudge” Zatko From the L0pht to the West

Wing
http://infosecuritymag.techtarget.com/articles/november01/people_mudge
.shtml

[6] E. H. Spafford (1991), “The Internet Worm Incident”,

http://citeseer.nj.nec.com/spafford91internet.html

[7] S. M. Bellovin (1989), “Security Problems in the TCP/IP Protocol Suite”,
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzS
zCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-
IP_Security_Problems.pdf/bellovin89security.pdf

[8] J. Viega (2003), “Secure Programming Cookbook for C and C++”, Orielly

[9] S. M. Bellovin (1992), “Packets Found on an Internet”,

http://www.research.att.com/~smb/papers/packets.ps.

[10] V. Jayaswal, W. Yurcik, D. Doss (2002), “Internet Hack Back: Counter
Attacks as Self-Defense or Vigilantism?”, IEEE 2002 Technology and
Society International Symposium

[11] Recourse Technologies (2002), “The Evolution of Deception Technologies

as a Means for Network Defense”, SANS Reading Room
http://www.sans.org/rr/wp/recourse.pdf

 187

http://www.cybergeography.org/atlas/historical.html
http://www.isc.org/index.pl?/ops/ds/
http://www.cert.org/stats/cert_stats.html
http://www.gocsi.com/forms/fbi/pdf.jhtml
http://infosecuritymag.techtarget.com/articles/november01/people_mudge.shtml
http://infosecuritymag.techtarget.com/articles/november01/people_mudge.shtml
http://citeseer.nj.nec.com/spafford91internet.html
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzSzCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-IP_Security_Problems.pdf/bellovin89security.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzSzCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-IP_Security_Problems.pdf/bellovin89security.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/5603/http:zSzzSzwww.ja.netzSzCERTzSzJANET-CERTzSz..zSzBellovinzSzTCP-IP_Security_Problems.pdf/bellovin89security.pdf
http://www.research.att.com/~smb/papers/packets.ps
http://www.sans.org/rr/wp/recourse.pdf

[12] S. Northcutt, M. Cooper, M. Fearnow, K. Frederick (2001), “Intrusion

Signature and analysis”, 1st Edition, New Riders Publishing

[13] L. Spitzner (2003), “Honeypots: Tracking Hackers”, Addison Wesley

[14] Juels, J. Brainard (1999), “Client Puzzles: A cryptographic Countermeasure
Against Connection Depletion Attacks”, RSA Security
http://www.rsasecurity.com/rsalabs/node.asp?id=2050

[15] C. Castaldi (2004), “Behavioral network Security: Is it right for your

company”, Computerworld,
http://www.computerworld.com/printthis/2004/0,4814,93096,00.html

[16] Mazu Networks (2004), “Mazu Enforcer, an overview”, Mazu Netowrks,

http://www.mazunetworks.com/

[17] F. Cohen (1999), “A mathematical structure of simple defensive network
deceptions”, Fred Cohen and Associates,
http://www.all.net/journal/deception/mathdeception/mathdeception.html

[18] L. Liebmann (2002), “Counterespionage for networks”, Comnews.com,

http://www.comnews.com/stories/articles/c0702bottom.htm

[19] D. B. Moran (2000), “Trapping and Tracking Hackers: Collective security
for survival in the internet”, CERT,
http://www.cert.org/research/isw/isw2000/papers/15.pdf

[20] ForeScout Technologies (2002), “Beyond Detection: Neutralizing Attacks

Before They Reach the Firewall”, eSecure Live,
http://www.esecurelive.com/whitepapers/BeyondDetectionWhitePaper.pd
f

[21] C. C. Zou, L. Gao, W. Gong, D. Towsley (2003), “Monitoring and Early

Warning for Internet Worms”, Proceedings of the 10th ACM conference
on Computer and communication security

[22] Happy Trails Computer Club (2004), “Scanning Worms”, CyberCoyote.org,

http://cybercoyote.org/security/av-worms.htm

[23] N. Weaver, V. Paxson, S. Staniford, R. Cunningham (2003), “Taxonomy of
Computer Worms”, ACM Workshop on Rapid Code.

 188

http://www.rsasecurity.com/rsalabs/node.asp?id=2050
http://www.computerworld.com/printthis/2004/0,4814,93096,00.html
http://www.mazunetworks.com/
http://www.all.net/journal/deception/mathdeception/mathdeception.html
http://www.comnews.com/stories/articles/c0702bottom.htm
http://www.cert.org/research/isw/isw2000/papers/15.pdf
http://www.esecurelive.com/whitepapers/BeyondDetectionWhitePaper.pdf
http://www.esecurelive.com/whitepapers/BeyondDetectionWhitePaper.pdf
http://cybercoyote.org/security/av-worms.htm

[24] P. Barford, J. Kline, D. Plonka, A. Ron (2002),”A Signal Analysis of

Network Traffic Anomalies”, Internet Measurement Workshop 2002
http://www.icir.org/vern/imw-2002/imw2002-papers/173.pdf

[25] M. Handley, V. Paxson (2001), “Network Intrusion Detection: Evasion,

Traffic Normalization, and End-to-End Protocol Semantics”, ICIR (The
ICSI Center for Internet Research),
http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf

[26] M. Bykova, S. Ostermann (2002), “Statistical Analysis of Malformed

Packets and their Origins in the Modern Internet”, CiteSeer,
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.org
zSzvernzSzimw-2002zSzimw2002-
paperszSz129.pdf/bykova02statistical.pdf

[27] S. Staniford, J. Hoagland, J. McAlerney (2002), “Practical Automated

Detection of Stealthy Portscans”. ACM Journal of Computer Security

[28] C. Lee, C. Roedel, E. Silenok (2003), “Detection and Characterization of
Port Scan Attacks”, Univeristy of California, Department of Computer
Science and Engineering,
http://www.cs.ucsd.edu/users/clbailey/PortScans.pdf

[29] Millican (2003), “Network Reconnaissance – Detection and Prevention”,

SANS Institute,
http://www.giac.org/practical/GSEC/Andy_Millican_GSEC.pdf

[30] J.Jung, V. Paxson. A. Berger, H Balakrishnan (2004), “Fast Portscan

Detection Using Sequential Hypothesis Testing”, Proceedings IEEE
Symposium on security and Privacy.

[31] Recourse Technologies (2001), “Attacks and Countermeasures: A study of

Network Attack”,
SecurityTechNet.com,http://cnscenter.future.co.kr/resource/rsc-
center/vendor-wp/recourse/Attacks.pdf

[32] P. Anderson (2001), “Deception: a healthy part of any defense in-depth

strategy”, SANS Institute,http://www.sans.org/rr/papers/50/506.pdf

 189

http://www.icir.org/vern/imw-2002/imw2002-papers/173.pdf
http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.orgzSzvernzSzimw-2002zSzimw2002-paperszSz129.pdf/bykova02statistical.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.orgzSzvernzSzimw-2002zSzimw2002-paperszSz129.pdf/bykova02statistical.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/26755/http:zSzzSzwww.icir.orgzSzvernzSzimw-2002zSzimw2002-paperszSz129.pdf/bykova02statistical.pdf
http://www.cs.ucsd.edu/users/clbailey/PortScans.pdf
http://www.giac.org/practical/GSEC/Andy_Millican_GSEC.pdf
http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/recourse/Attacks.pdf
http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/recourse/Attacks.pdf
http://www.sans.org/rr/papers/50/506.pdf

[33] Yasinsac, Y. Manzano (2002), “Honeytraps, A Network Forensic Tool”,
Florida State University
http://www.cs.fsu.edu/~yasinsac/Papers/YM02.pdf

[34] N. Gupta (2003), “Improving the effectiveness of deception honeynets

through an empirical learning approach. ”, Securitytechnet.com,
http://cnscenter.future.co.kr/resource/security/ids/Gupta_Honeynets.pdf

[35] X. Geng, A. Whinston (2000), “Defeating Distributed Denial of Service

Attacks”, IEEE IT Pro

[36] Ethereal, The world's most popular network protocol analyzer
http://www.ethereal.com/

[37] Snort.org, The Open Source Network Intrusion Detection System,

http://www.snort.org/

[38] Naval Surface Warfare Center (NSWC), NSWC Shadow Index, NSWC
http://www.nswc.navy.mil/ISSEC/CID/

[39] J. Koziol (2003), “ Intrusion Detection with Snort”, SAMS Publishing

[40] S.Northcutt (2003), “Network Intrusion Detection”, 3rd Edition, New

Riders Publishing

[41] W. R. Stevens (1994), “TCP/IP Illustrated, Volume 1 The Protocols”,
Addison-Wesley Publishing

[42] S. Carl-Mitchell, J. S. Quarterman (1993), “Practical Internetworking with

TCP/IP and UNIX”, Addison-Wesley Publishing

[43] S. M. Bellovin (1989), “Security problems in the TCP/IP Protocol Suite”,
Computer Communications Review 2:19, pp. 32-48

[44] Unix Insider (2001), “Using TCP/IP against itself”, ITWorld.com,

http://security.itworld.com/4339/UIR010410tcpip1/pfindex.html

[45] Cryptonomicon (2004), “Vulnerability in TCP/IP Exposed”,
Cryptonomicon.net,
http://www.cryptonomicon.net/modules.php?name=News&file=print&si
d=746

 190

http://www.cs.fsu.edu/~yasinsac/Papers/YM02.pdf
http://cnscenter.future.co.kr/resource/security/ids/Gupta_Honeynets.pdf
http://www.ethereal.com/
http://www.snort.org/
http://www.nswc.navy.mil/ISSEC/CID/
http://security.itworld.com/4339/UIR010410tcpip1/pfindex.html
http://www.cryptonomicon.net/modules.php?name=News&file=print&sid=746
http://www.cryptonomicon.net/modules.php?name=News&file=print&sid=746

[46] NISCC (2004), “Vulnerabilities Issues in TCP”, NISCC Vulnerability
Advisory,http://www.uniras.gov.uk/vuls/2004/236929/index.htm

[47] Chambers, J. Dolske, J. Iyer (1998), “TCP/IP Security”,

LinuxSecurity.com,
http://www.linuxsecurity.com/resource_files/documentation/tcpip-
security.html

[48] CERT (2002), “Information Security for Technical Staff Module 5: TCP/IP

Security”, Networked Systems

[49] CERT Advisory (1996), "TCP SYN Flooding and IP Spoofing
Attacks",CERT Coordination Center, http://www.cert.org/advisories/CA-
1996-21.html

[50] CERT® Advisory (1998), "Vulnerability in Certain TCP/IP

Implementations",CERT Coordination Center,
http://www.cert.org/advisories/CA-1998-13.html#AppendixA

[51] CERT Advisory (2000), "Denial-of-Service Vulnerabilities in TCP/IP

Stacks", CERT Coordination Center, http://www.cert.org/advisories/CA-
2000-21.html

[52] BindView (2001), "Strange Attractors and TCP/IP Sequence Number

Analysis", BindView,
http://www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm

[53] M.Zalewski (), "Strange Attractors and TCP/IP Sequence Number Analysis

- One Year Later", BindView Razor Team,
http://lcamtuf.coredump.cx/newtcp/

[54] Request for Comments (1981), “Transmission Control Protocol DARPA

Internet Program Protocol SPECIFICATION”, FAQS.com,
http://www.faqs.org/rfcs/rfc793.html

[55] J. S. Havrilla (2001), "Multiple TCP/IP implementations may use

statistically predictable initial sequence numbers", US-CERT,
http://www.kb.cert.org/vuls/id/498440

[56] US-CERT (2004) "Vulnerabilities in TCP", US-CERT, http://www.us-

cert.gov/cas/techalerts/TA04-111A.html

 191

http://www.uniras.gov.uk/vuls/2004/236929/index.htm
http://www.linuxsecurity.com/resource_files/documentation/tcpip-security.html
http://www.linuxsecurity.com/resource_files/documentation/tcpip-security.html
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-2000-21.html
http://www.cert.org/advisories/CA-2000-21.html
http://www.bindview.com/Support/RAZOR/Papers/2001/tcpseq.cfm
http://lcamtuf.coredump.cx/newtcp/
http://www.faqs.org/rfcs/rfc793.html
http://www.kb.cert.org/vuls/id/498440
http://www.us-cert.gov/cas/techalerts/TA04-111A.html
http://www.us-cert.gov/cas/techalerts/TA04-111A.html

[57] Osborne (1999), "NAI-Sep201999: Windows IP Source Routing
Vulnerability", Network Associates,
http://www.securityfocus.com/advisories/1761

[58] Microsoft (), “Chapter 5 - Security Design Reference Architecture Guide”,

Version 1.5, Revision 1, Microsoft Corp.,
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/
en-us/rag/ragc05.mspx

[59] Freesoft.org, “RIP Protocol Overview”,

http://www.freesoft.org/CIE/Topics/90.htm

[60] K. Downes, M. Ford, H. K. Lew, S. Spanier, T. Stevenson (1998), “
Internetworking Technologies Handbook”, 2nd Edition, Cisco Press

[61] NIUNet, http://cs.baylor.edu/~donahoo/NIUNet/hijack.html

[62] CERT Advisory (2001), “CA-2001-09 Statistical Weaknesses in TCP/IP

Initial Sequence Numbers”, http://www.cert.org/advisories/CA-2001-
09.html

[63] E. Hines (2002), “ Non blind IP Spoofing and session Hijacking: A Diary

from the garden of good and evil”, Fatelabs.com,
http://www.fatelabs.com/library/non-blind-hijacking.pdf

[64] Paul A. Watson (2003), “Slipping in the Window: TCP Reset attacks”,

OSVDB.net,
http://www.osvdb.org/reference/SlippingInTheWindow_v1.0.doc

[65] Jeremy (2004), “Feature: Understanding TCP Reset Attacks, Part I”,

http://kerneltrap.org/node/view/3072

[66] SANS (2001), “ICMP Attacks Illustrated”, SANS Institute,
http://www.sans.org/rr/papers/60/477.pdf

[67] C. Huegen (2000), “The latest in denial of servers attacks: “Smurfing”

Description and Information to minimize effect”,
http://www.pentics.net/denial-of-service/white-papers/smurf.cgi

[68] O. Arkin (2002), “remote Active fingerprinting tool using ICMP”, Sys-

Security http://www.sys-security.com/archive/articles/login.pdf

 192

http://www.securityfocus.com/advisories/1761
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.freesoft.org/CIE/Topics/90.htm
http://cs.baylor.edu/~donahoo/NIUNet/hijack.html
http://www.cert.org/advisories/CA-2001-09.html
http://www.cert.org/advisories/CA-2001-09.html
http://www.fatelabs.com/library/non-blind-hijacking.pdf
http://www.osvdb.org/reference/SlippingInTheWindow_v1.0.doc
http://kerneltrap.org/node/view/3072
http://www.sans.org/rr/papers/60/477.pdf
http://www.pentics.net/denial-of-service/white-papers/smurf.cgi
http://www.sys-security.com/archive/articles/login.pdf

[69] O. Arkin, F. Yarochkin, M. Kydyraliev (2003), “The Present and Future of
Xprobe2 - The Next Generation of Active Operating System
Fingerprinting”, Sys-Security, http://www.sys-
security.com/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf

[70] O. Arkin, F. Yarochkin (2002), “XProbe2 - A 'Fuzzy' Approach to Remote

Active Operating System Fingerprinting”, http://www.sys-
security.com/archive/papers/Xprobe2.pdf

[71] O. Arkin (2001), “X remote ICMP based OS fingerprinting tool

techniques”, Sys-Security, http://www.sys-
security.com/archive/papers/X_v1.0.pdf

[72] O. Arkin (2001) , “ICMP Usage In Scanning”, Sys-Security,

http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf

[73] B. B. Bhansali (2001), “Man-In-the-Middle-Attack – A Brief”, SANS
Institute, http://www.giac.org/practical/gsec/Bhavin_Bhansali_GSEC.pdf

[74] Kimble Consultancy Services, “DNS Attacks”,

http://mapage.noos.fr/kimble/papers/security/img42.html

[75] CERT (2001), “Denial of Service Attacks using Name servers”, CERT
Coordination Center, http://www.cert.org/incident_notes/IN-2000-
04.html

[76] Network Sorcery, “DNS, Domain Name System”,

http://www.networksorcery.com/enp/protocol/dns.htm

[77] Network Sorcery, RFC830,
http://www.networksorcery.com/enp/rfc/rfc830.txt

[78] J. Mirkovic, J. Martin, P. Reiher (2001), “A Taxonomy of DDoS Attacks

and DDoS Defense Mechanisms ”,
http://lasr.cs.ucla.edu/ddos/ucla_tech_report_020018.pdf

[79] K. Mitnick (2002), “The Art of Deception”, Indiana: Wiley Publishing

[80] D. Parker (2004), “TCP/IP Skills Required for Security Analysts”, Security

Focus, http://www.securityfocus.com/infocus/1779

 193

http://www.sys-security.com/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://www.sys-security.com/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
http://www.sys-security.com/archive/papers/Xprobe2.pdf
http://www.sys-security.com/archive/papers/Xprobe2.pdf
http://www.sys-security.com/archive/papers/X_v1.0.pdf
http://www.sys-security.com/archive/papers/X_v1.0.pdf
http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf
http://www.giac.org/practical/gsec/Bhavin_Bhansali_GSEC.pdf
http://mapage.noos.fr/kimble/papers/security/img42.html
http://www.cert.org/incident_notes/IN-2000-04.html
http://www.cert.org/incident_notes/IN-2000-04.html
http://www.networksorcery.com/enp/protocol/dns.htm
http://www.networksorcery.com/enp/rfc/rfc830.txt
http://lasr.cs.ucla.edu/ddos/ucla_tech_report_020018.pdf
http://www.securityfocus.com/infocus/1779

[81] Truncode (2003), “Passive Network Reconnaissance: Syn packet
Analysis”,http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:trunco
de.org/files/papers/PNR-
SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet
+Analysis&hl=en

[82] S. Northcutt (2003), “Network Perimeter Security”, New Riders Publishing

[83] American Registry for Internet Numbers (ARIN),

http://www.arin.net

[84] Asia Pacific Network Information Centre (APNIC),
http://www.apnic.org

[85] Latin American and Caribbean IP address Regional Registry (LACNIC),
http://www.lacnic.org

[86] RIPE Network Coordination Centre (RIPE NCC),
http://www.ripencc.org

[87] African Network Information Center (AfriNIC)
http://www.afrinic.org

[88] Register,
http://www.register.com

[89] Network Solutions,
http://www.networksolutions.com

[90] Central Ops,
http://centralops.net/co/

[91] BlackCode,
http://centralops.net/co/

[92] adHOC Tools,

http://tatumweb.com/iptools.htm

[93] Analog,
http://www.analogx.com/contents/dnsdig.htm

 194

http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://64.233.161.104/search?q=cache:JGVvmp8kEHAJ:truncode.org/files/papers/PNR-SYNPacketAnalysis.txt+Passive+Network+Reconnaissance:+Syn+packet+Analysis&hl=en
http://www.arin.net/
http://www.apnic.org/
http://www.lacnic.org/
http://www.ripencc.org/
http://www.afrinic.org/
http://www.register.com/
http://www.networksolutions.com/
http://centralops.net/co/
http://centralops.net/co/
http://tatumweb.com/iptools.htm
http://www.analogx.com/contents/dnsdig.htm

[94] Jargon File (2001), “JARGON FILE Version:4.3.1”
http://www.elsewhere.org/jargon/jargon.html

[95] Microsoft Internet Data Center Resources,

http://www.microsoft.com/resources/documentation/msa/idc/all/solution/
en-us/rag/ragc05.mspx

[96] S. McClure, J. Scambray, G. Kurtz (2001), “ Hacking Exposed: Third
Edition”, McGraw-Hill Companies

[97] S. Litt (1999), “IP Forwarding”, Troubleshooters.com,

http://www.troubleshooters.com/linux/ip_fwd.htm

[98] B. B. Bhansali (2001),”Man-in-the-middle Attack Brief”, SANS
http://ouah.kernsh.org/mitmbrief.htm

[99] ISS, “SYN Flood”, Internet Security Systems,

http://www.iss.net/security_center/advice/Exploits/TCP/SYN_flood/defa
ult.htm

[100] Defcon 9, “Routing & Tunneling Protocol Attacks”,

http://www.geektown.de/doc/routing.pdf

[101] Switch (1999), “Default TTL Values in TCP/IP”,
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html

[102] Toby Miller (2001), “Passive OS fingerprinting: Details and Techniques”,
http://www.incidents.org/papers/OSfingerprinting.php

[103] Guy Burneau (2001), “The History and Evolution of Intrusion Detection”

http://www.sans.org/rr/papers/index.php?id=344

[104] L. R. Halme, R. K. Bauer (2002), “AINT Misbehaving: A Taxonomy of
Anti-Intrusion Techniques”
http://www.sans.org/resources/idfaq/aint.php

[105] M. Bykova, S. Ostermann, B. Tjaden (2001), “Detecting Network
Intrusions via a Statistical Analysis of Network Packet Characteristics”,
33rd Southeastern Symposium on System Theory

[106] M. Phung (2000), “Data Mining in Intrusion Detection”,

http://www.sans.org/resources/idfaq/data_mining.php

 195

http://www.elsewhere.org/jargon/jargon.html
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.microsoft.com/resources/documentation/msa/idc/all/solution/en-us/rag/ragc05.mspx
http://www.troubleshooters.com/linux/ip_fwd.htm
http://ouah.kernsh.org/mitmbrief.htm
http://www.iss.net/security_center/advice/Exploits/TCP/SYN_flood/default.htm
http://www.iss.net/security_center/advice/Exploits/TCP/SYN_flood/default.htm
http://www.geektown.de/doc/routing.pdf
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html
http://www.incidents.org/papers/OSfingerprinting.php
http://www.sans.org/rr/papers/index.php?id=344
http://www.sans.org/resources/idfaq/aint.php
http://www.sans.org/resources/idfaq/data_mining.php

[107] SPIKE (2003), “A Comparison of Anomaly detection techniques”,

http://users.ox.ac.uk/~exet1386/pdf/

[108] T. Abraham (2001), “ IDDM: Intrusion Detection using Data Mining
Techniques”,
http://www.dsto.defence.gov.au/corporate/reports/DSTO-GD-0286.pdf

[109] W. Lee, S. J. Stolfo (1998), “Data Mining Approaches for Intrusion

Detection”, 7th USENIX Security Symposium, 1998,
http://www.usenix.org/publications/library/proceedings/sec98/full_papers
/lee/lee.pdf

[110] G. Smitth (2000), “A Brief Taxonomy of Firewalls- Great Walls of Fire”,

http://www.giac.org/practical/gsec/Gary_Smith_GSEC.pdf

[111] P. Kazienko, P. Dorosz (2003), “Intrusion Detection Systems (IDS) Part I
- (network intrusions; attack symptoms; IDS tasks; and IDS
architecture)”,
http://www.windowsecurity.com/pages/article_p.asp?id=1147

[112] P. Kazienko, P. Dorosz (2004), “Intrusion Detection Systems (IDS) Part 2

- Classification; methods; techniques”,
http://www.windowsecurity.com/pages/article_p.asp?id=1335

[113] E. Eskin, Et Al (2001), “Adaptive Model Generation for Intrusion
Detection Systems”
http://philby.ucsd.edu/~cse291_IDVA/papers/eskin,miller,zhong,yi,lee,st
olfo.adaptive_model_generation_for_intrusion_detection_systems.pdf

[114] C. Boeckman (2000), “Getting Closer to Policy-Based Intrusion

Detection Systems, Security Bulletin May 2000
http://www.chi-
publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.p
df

[115] E. E. Schultz (2000), “Policy-based Intrusion Detection (Finally)”,

Security Bulletin May 2000

[116] E. Sekar, Et. Al (2002), “Specification-based anomaly detection: a new
approach for detecting network intrusions”, Proceedings of the 9th ACM
conference on Computer and communications security November 2002

 196

http://users.ox.ac.uk/~exet1386/pdf/
http://www.dsto.defence.gov.au/corporate/reports/DSTO-GD-0286.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/lee/lee.pdf
http://www.usenix.org/publications/library/proceedings/sec98/full_papers/lee/lee.pdf
http://www.giac.org/practical/gsec/Gary_Smith_GSEC.pdf
http://www.windowsecurity.com/pages/article_p.asp?id=1147
http://www.windowsecurity.com/pages/article_p.asp?id=1335
http://philby.ucsd.edu/~cse291_IDVA/papers/eskin,miller,zhong,yi,lee,stolfo.adaptive_model_generation_for_intrusion_detection_systems.pdf
http://philby.ucsd.edu/~cse291_IDVA/papers/eskin,miller,zhong,yi,lee,stolfo.adaptive_model_generation_for_intrusion_detection_systems.pdf
http://www.chi-publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.pdf
http://www.chi-publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.pdf
http://www.chi-publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504CB.pdf

[117] Bro: A System for Detecting Network Intruders in Real-Time,

http://www.icir.org/vern/bro-info.html

[118] Shadow Version 1.8 Installation Manual,
http://www.nswc.navy.mil/ISSEC/CID/SHADOW-1.8-Install.pdf

[119] B. Caswell, Et Al (2003), “Snort 2.0 Intrusion Detection”, Syngress

Publishing

[120] Yoann Vandoorselaere, “Prelude: an Open Source, Hybrid Intrusion

Detection System”,
http://www.prelude-ids.org/article.php3?id_article=66

[121] R. Magalhaes (2003), “Host-Based IDS vs Network-Based IDS (Part 1)”,

http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html

[122] P. Innella, et al (2001), “ The Evolution of Intrusion Detection Systems”,
http://www.securityfocus.com/infocus/1514

[123] N. Desai (2003), “Intrusion Prevention Systems: the Next Step in the

Evolution of IDS”,

http://www.securityfocus.com/infocus/1670

[124] R. Ford, H. Ray (2004), “Googling for Gold: Web Crawlers, Hacking and
Defense Explained”, Network Security, January 2004, vol. 2004, iss. 1,
pp. 10-13(4) Elsevier Science

[125] Webopedia (2004), Online dictionary for computer and Internet

technology definitions,
http://networking.webopedia.com/TERM/A/active_reconnaissance.html

[126] H. So (2002), GIAC Intrusion Detection In Depth,
http://www.sans.org/rr/papers/23/836.pdf

[127] NMAP, Insecure.org
http://www.insecure.org/nmap/nmap_documentation.html

[128] Nmap network security scanner man page,
http://www.insecure.org/nmap/data/nmap_manpage.html

[129] SNMPWALK,
http://www.mkssoftware.com/docs/man1/snmpwalk.1.asp

 197

http://www.icir.org/vern/bro-info.html
http://www.nswc.navy.mil/ISSEC/CID/SHADOW-1.8-Install.pdf
http://www.prelude-ids.org/article.php3?id_article=66
http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html
http://www.securityfocus.com/infocus/1514
http://www.securityfocus.com/infocus/1670
http://networking.webopedia.com/TERM/A/active_reconnaissance.html
http://www.sans.org/rr/papers/23/836.pdf
http://www.insecure.org/nmap/nmap_documentation.html
http://www.insecure.org/nmap/data/nmap_manpage.html
http://www.mkssoftware.com/docs/man1/snmpwalk.1.asp

[130] Fyodor (1998), Remote OS detection via TCP/IP Stack fingerprinting
http://www.insecure.org

[131] L. Spitzner (2000), “Passive Fingerprinting: IDing remote hosts, without

them knowing”, Honey Pot Project,
http://www.honeynet.org

[132] L. Spitzner (2002), “Know Your Enemy: Passive Fingerprinting”, Honey
Pot Project,
http://www.honeynet.org

[133] P. Zatko (2004), “Inside the insider threat”, Computer World June 14,

2004,
http://www.computerworld.com/

[134] SearchNetworking.com,

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci511650,00.
html

[135] Sniffit,

http://reptile.rug.ac.be/~coder/sniffit/sniffit.html

[136] RFC 826, Ethernet Address Resolution Protocol
http://www.faqs.org/rfcs/

[137] Dsniff,

http://www.monkey.org/~dugsong/dsniff/

[138] Ettercap,
http://ettercap.sourceforge.net/

[139] Hunt,
http://lin.fsid.cvut.cz/~kra/index.html

[140] Fragroute,

http://www.monkey.org/~dugsong/fragroute/

[141] C. Russel(2001), “Penetration Testing with dsniff”,SANS,
http://www.sans.org

[142] TCPDump man page,

http://www.tcpdump.org

 198

http://www.insecure.org/
http://www.honeynet.org/
http://www.honeynet.org/
http://www.computerworld.com/
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci511650,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci511650,00.html
http://reptile.rug.ac.be/~coder/sniffit/sniffit.html
http://www.faqs.org/rfcs/
http://www.monkey.org/~dugsong/dsniff/
http://ettercap.sourceforge.net/
http://lin.fsid.cvut.cz/~kra/index.html
http://www.monkey.org/~dugsong/fragroute/
http://www.sans.org/
http://www.tcpdump.org/

[143] L0pht Heavy Industries (1999), “AntiSniff – User Guide.”,

http://www.atstake.com/antisniff/tech-paper.html

[144] R. Spangler (2003), “Packet Sniffer Detection with AntiSniff”,
http://www.packetwatch.net/

[145] R. Spangler (2003), “Packet Sniff on Layer 2 Switched Local Area

Networks”,
http://www.packetwatch.net/

[146] ARPWatch, LBNL's Network Research Group,

http://www-nrg.ee.lbl.gov/

[147] RFC 791, Internet Protocol Specification

[148] RFC 792, Internet Message Control Protocol

[149] RFC 790, Assign Protocols

[150] RFC 768, User Datagram Protocol

[151] P. Dubois (2003), “MySQL, The definitive guide to using, programming,

and administering MySQL 4”, 2nd Edition, Sams

[152] MySQL, The world's most popular open source database,
http://www.mysql.com

[153] Analysis Console for Intrusion Databases,

http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html

[154] M. Peters, “Construction and Use of a Passive Ethernet Tap”, Snort
http://www.snort.org/docs/tap/

[155] How-TO-Ethernet Cables,

http://www.ertyu.org/~steven_nikkel/ethernetcables.html

[156] Security Space, icmp timestamp request
http://www.securityspace.com/smysecure/catid.html?viewsrc=1&id=101
14

 199

http://www.atstake.com/antisniff/tech-paper.html
http://www.packetwatch.net/
http://www.packetwatch.net/
http://www-nrg.ee.lbl.gov/
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
http://www.snort.org/docs/tap/
http://www.ertyu.org/~steven_nikkel/ethernetcables.html
http://www.securityspace.com/smysecure/catid.html?viewsrc=1&id=10114
http://www.securityspace.com/smysecure/catid.html?viewsrc=1&id=10114

[157] ICMP types, Faqs.org,
http://www.faqs.org/docs/iptables/icmptypes.html

[158] Manual Reference Pages for BPF,

http://www.gsp.com/cgi-bin/man.cgi?section=4&topic=bpf#2

[159] IP Protocol Suite, Network Sorcery,
http://www.networksorcery.com/enp/topic/ipsuite.htm

[160] ICMP Type Numbers, Internet Assigned Numbers Authority
http://www.iana.org/assignments/icmp-parameters

[161] Curt Wilson (2000), “Protecting Network Infrastructure at the Protocol
Level”, SANS

 200

http://www.faqs.org/docs/iptables/icmptypes.html
http://www.networksorcery.com/enp/topic/ipsuite.htm
http://www.iana.org/assignments/icmp-parameters

Appendix A
The information in this appendix was taken from the man pages developed by the

respective programmer of each tool.

ETTERCAP MAN PAGE

USAGE: ettercap [OPTIONS] [HOST:PORT] [HOST:PORT] [MAC] [MAC]

Five sniffing methods:

+ IPBASED, the packets are filtered matching IP:PORT source and IP:PORT dest

+ MACBASED, packets filtered matching the source and dest MAC address.

(useful to sniff connections through gateway)

+ ARPBASED, uses arp poisoning to sniff in switched LAN between two hosts

(full-duplex m-i-t-m).

+ SMARTARP, uses arp poisoning to sniff in switched LAN from a victim host to

all other hosts knowing the entire list of the hosts (full-duplex m-i-t-m).

+ PUBLICARP, uses arp poison to sniff in switched LAN from a victim host to all

other hosts (half-duplex).

With this method the ARP replies are sent in broadcast, but if ettercap has the

complete host list (on start up it has scanned the LAN) SMARTARP method is

automatically selected, and the arp replies are sent to all the hosts but the victim,

avoiding conflicting MAC addresses as reported by win2K.

 201

The most relevant ettercap features are:

Characters injection in an established connection: you can inject character to

server (emulating commands) or to client (emulating replies) maintaining the

connection alive !!

SSH1 support: you can sniff User and Pass, and even the data of an SSH1

connection. ettercap is the first software capable to sniff an SSH connection in

FULL-DUPLEX

HTTPS support: you can sniff http SSL secured data... and even if the connection

is made through a PROXY

Remote traffic sniffing through GRE tunnel: you can sniff remote traffic

through a GRE tunnel from a remote cisco router and make mitm attack on it

Plug-ins support: You can create your own plugin using the ettercap's API.

Password collector for: TELNET, FTP, POP, RLOGIN, SSH1, ICQ, SMB,

MySQL, HTTP, NNTP, X11, NAPSTER, IRC, RIP, BGP, SOCKS 5, IMAP 4,

VNC, LDAP, NFS, SNMP, HALF LIFE, QUAKE 3, MSN, YMSG (other

protocols coming soon...)

 202

Packet filtering/dropping: You can set up a filter chain that search for a particular

string (even hex) in the TCP or UDP payload and replace it with yours or drop the

entire packet.

Passive OS fingerprint: you scan passively the lan (without sending any packet)

and gather detailed info about the hosts in the LAN: Operating System, running

services, open ports, IP, mac address and network adapter vendor.

OS fingerprint: you can fingerprint the OS of the victim host and even its network

adapter (it uses the nmap (c) Fyodor database)

Kill a connection: from the connections list you can kill all the connections you

want

Packet factory: You can create and sent packet forged on the fly. The factory let

you to forge from Ethernet header to application level.

Bind sniffed data to a local port:You can connect to that port with a client and

decode unknown protocols or inject data to it (only in arp based mode)

 Options

Options that make sense together can generally be combined. ettercap will warn the

user about unsupported option combinations.

 203

Sniffing Methods

-a, --arpsniff

ARP BASED sniffing

This is THE sniffing method for switched LAN, and if you want to use the

man-in-the-middle technique you have to use it. In conjunction with the

silent mode (-z option) you must specify two IP and two MAC for

ARPBASED (full-duplex) or one IP and one MAC for PUBLICARP (half-

duplex). in PUBLICARP the ARP replies are sent in broadcast, but if

ettercap has the complete host list (on start up it has scanned the LAN)

SMARTARP method is automatically selected, and the arp replies are sent

to all the hosts but the victim, and an hash table is created to re-route back

the packet form victim to client obtaining in this way a full-duplex man in

the middle attack.

NOTE: if you manage to poison a client with the smart arp sniffing,

remember to set the gateway's IP in the conf file (GWIP option) and load it

with the -e option, otherwise that client will not be able to connect to remote

hosts.

Filters that have as action a replacement or a drop, can be used only with

ARPBASED sniffing because it is necessary to re-adjust the sequence

number in full-duplex in order to maintain the connection alive.

 204

-s, --sniff

IP BASED sniffing

This is the good old style sniffing method. It rocks on "hubbed" LAN, but

useless on switched ones. You can choose the target specifying only source,

only dest, with or without port, or nothing (to sniff all connections). A

special ip "ANY" means from or to every host.

-m, --macsniff

MAC BASED sniffing

Very useful to sniff TCP traffic with remote hosts. On hubbed LANs if you

want to sniff a connection through a gateway is useless to specify the

victim's ip and the gateway's ip, because the packet are for an external host,

not for the gateway. So you can use this method. Simply specify the victim's

MAC and the gateway's MAC and you will see all the connections from and

to the Internet.

Off Line Sniffing

-T, --readpcapfile <FILE>

OFF LINE sniffing

With this option enabled, ettercap will sniff packets from a pcap compatible

file instead of capturing from the wire.

This is useful if you have a file dumped from tcpdump or ethereal and you

want to make an analysis (search for passwords or passive fingerprint) on it.

 205

-Y, --writepcapfile <FILE>

DUMP packet to a pcap file

This is useful if you have to use active-sniffing (arp poison) on a switched

LAN but you want to analyze the packets with tcpdump or ethereal. You

can use this option to dump the packets to a file and then load it into your

favourite application.

General Options

-N, --simple

NON interactive mode (without ncurses)

This method is useful if you want to launch ettercap from a script or if you

already know some informations of your target or if you want to launch

ettercap in background collecting data or password for you (in combination

with the --quiet option).

Some features are not available in this method, obviously the ones which

requires interaction with the user, such as characters injection. But others

(for example filtering) are fully supported, so you can set up ettercap to

poison two host (a victim and its gateway) and to filter all its connection on

the port 80 and replace some string with others, all its traffic to the Internet

will be changed as you wish.

 206

-z, --silent

start in silent mode (no arp storm on start up)

If you want to launch ettercap with a non invasive method (some NIDS may

raise a warn if they detects too much arp request). You have to know all the

requested data of the target in order to use this options. For example if you

want to poison two host, you need the two IP and the two MAC addresses

of the victims. If you select ipsniff or macsniff this method is automatically

selected, because you don't need to know the list of the host in the LAN.

To know the entire list of the hosts use "ettercap -Nl", but remember that it

is a invasive method.

-O, --passive

Collect infos in passive mode. This method WILL NOT SEND ANY packet

on the wire. It will put the interface in promiscuous mode and look for

packets passing through it. every interesting packet (SYN or SYN+ACK) is

analyzed and used to make a complete map of the LAN.

The infos collected are: IP and MAC of the hosts, type of Operating System

(passive OS fingerprint), network adapter vendor and running services. (for

a technical description refer to README) In the list are show even other

infos: "GW" if the host is a GateWay, "NL" if the IP is not belonging to the

LAN and "RT" if the host act as a router.

Useful if you want to make a start up host list in complete passive mode,

 207

when you are satisfied of the collected infos, you can convert it to the

startup host list by simply press 'C', and then work as usual.

The description of its functionality in simple mode is explained in the next

section.

-b, --broadping

use a broadcast ping instead of arp storm on start up.

this method is less intrusive, but even less accurate. some hosts will not

respond at the broadcast ping (es. Windows) so they remain invisible to this

method. Useful if you want to scan a LAN with Linux hosts. As usual you

can combine this option with --list to have a list of the hosts "ettercap -Nlb"

-D, --delay <n sec>

the delay in seconds between the arp replies if you have selected an ARP

poison sniffing method. This is useful if you want to be less aggressive in

the poisoning. On many OS the default validity interval of the arp cache is

more than a minute (on FreeBSD is 1200 sec).

The default delay value is 30 sec.

-Z, --stormdelay <n usec>

the delay in micro-seconds between the arp request on arp storm at start up.

This is useful if you want to be less aggressive in the scanning. Many IDS

will report massive arp request, but if you send them in a slower rate, they

 208

will not report any strange behavior.

The default delay value is 1500 usec.

-r, --refresh <n sec>

ettercap will refresh its internal connection list after n seconds. Set a low

value if you have huge traffic load.

The default delay value is 300 sec.

-B, --bufferlen <n pck>

the lenght of each connection buffer. 0 will disable connection buffers. Last

n packets of each connection will be saved for visualization and logging

from ncurses interface.

The default value is 3.

-S, --spoof <IP>

If you want to elude some IDS, you can specify a spoofed IP used to scan

the LAN with arp request. The source MAC can't be spoofed because a well

configured switch will block your request.

-H, --hosts <IP1[;IP2][;IP3][;...]>

on start up, scan only these hosts.

this is useful if you want to use an ARP scanning of the LAN but only on

certain IPs. so you can benefit from a ARP scan but remaining less invasive.

Useful even if you want to do PUBLIC ARP but you want to poison only

specific hosts. since with a list PUBLIC ARP is automatically converted to

 209

SMARTARP, only these host will be poisoned and you can leave

untouched the arp caches of the other hosts.

the IP list must be in dotted notation and separated by semi-colon (without

blank spaces between them), you can use range ip (use the hyphen) or

single ip list (use the comma).

EXAMPLES:

 192.168.0.2-25 --> from 2 to 25

 192.168.0.1,3,5 --> host 1, 3 and 5

 192.168.0-3.1-10;192.168.4.5,7 --

> will scan from 1 to 10 in the 192.168.0, 192.168.1, 192.168.2, 192.168.3

subnet and hosts 5 and 7 in the 192.168.4

-d, --dontresolve

don't resolve IPs on start up. this is useful if you experience an insane

"Resolving n hostnames..." message on start up. This is due to a very slow

DNS in your environment.

 210

-i, --iface <IFACE>

network interface to be used for all the operation. you can even specify

network aliases in order to scan a subnet with different ip form your current

one.

-n, --netmask <NETMASK>

the netmask used to scan the LAN. (in dotted notation). the default is your

current ifconfig netmask. but your netmask is for example 255.255.0.0 I

encourage you to specify a more restrictive one, if you managed to do an

ARP scanning on start up.

-e, --etterconf <FILENAME>

use the config file instead of command line options

etter.conf example file is packaged in the tarball, refer to it to know how to

write a config file. all the instruction are written in this example. via the

conf file you can disable selectively one protocol dissector or move it on

one other port.

command line options and config file can be mixed for much flexibility, but

remember that the options in the config file override the command line, so

if in etter.conf you have specified IFACE: eth0, and you launch "ettercap -i

eth1 -e etter.conf" the selected iface will be eth0.

NOTE: the "-e etter.conf" options has to be specified after all other options.

 211

-g, --linktype

this flag has two complementary function. so mind it !

if used in interactive mode it DOESN'T check for lan type. On the other

hand, if used in conjunction with command line mode (-N) it DOES a check

to discover if you are on a switched LAN or not... Sometimes if there are

only 2 hosts in the lan this discovery method can fail.

-j, --loadhosts <FILENAME>

it is used to load an hosts list from a file created by the -k option. (see

below)

-k, --savehosts

saves the hosts list to a file. useful when you have many hosts and you don't

want to do an arp storm at startup any time you use ettercap. simply use this

options and dump the list to a file, then to load the information from it use

the -j <filename> option.

the file is in the form "netaddress_netmask.ehl"

-X, --forceip

disable the spoofed ICMP packet before poisoning.

-v, --version

check for the latest ettercap version.

All operation are under your control. Every step requires a user

confirmation. With this option ettercap will connect to the

 212

http://ettercap.sourceforge.net:80 web site and ask for the page /latest.php.

then the result are parsed and compared with your current version. If there is

a newer version available, ettercap will ask you if you want to wget it.

(wget must be in the path).

If you want to automatically answer yes at all the question add the option -y

-h, --help

prints the help screen with a short summary of the available options.

Silent Mode Options (only combined with -N)

-t, --proto <PROTO>

sniff only PROTO packets (default is TCP + UDP). This option is only

useful in "simple" mode, if you start ettercap in interactive mode both TCP

and UDP are sniffed.

PROTO can be "tcp", "udp" or "all" for both.

-J, --onlypoison

With this option ettercap wont sniff anything, but it only poison the victims.

This can be useful if you want to poison with ettercap and sniff with

ethereal or tcpdump. (remember in this case to enable IP_forwarding).

Another use is for multitarget sniffing.

As you know, with ettercap you can sniff connection between two target

(ARP BASED) or to and from a single target (SMART ARP). With this

 213

option you can sniff from couples of target at a time (as you have launched

many instance together).

Launch the first instance in SMART ARP, and use the -H options to

limitate the smart feature to the hosts you want to poison (remember that if

you want to involve the Gateway in the poisoning, you MUST select it from

the smart arp instance). Then launch the other "ettercap -J".

-R, --reverse

sniff all the connection but the selected one. This option is useful if you are

using ettercap on a remote machine and you want to sniff all the traffic but

you connection from local to remote, because including it will sniff even the

ettercap output and it will be screwed up...

-O, --passive

Collect infos in passive mode as described in the previous section. In simple

mode we can use this option in many mode.

"ettercap -NO" will start ettercap in semi-interactive mode, hit 'h' for help.

You can view or log to a file a detailed report of the collected infos, or

simply view each alert of analyzed packet.

"ettercap -NOL" as above but it log automatically the data into a file every 5

min.

"ettercap -NOLq" deminizes ettercap and log to a file every 5 minutes. Go

 214

away and smoke your cigarette... return and a complete report of the lan is

there waiting for you... ;)

-p, --plugin <NAME>

run the external plugin "NAME".

most plugins need a destination host. simply specify it after plugin name, in

fact hosts are parsed on command line as first the DEST and so the

SOURCE.

To have a list of the available external plugins use "list" (without quotes) as

plugin name.

Since ettercap 0.6.2 hooking plugins system is provided, so some plugins

are not executed as a separated program, they can interact with ettercap and

can be enabled or disabled via the interface or conf file.

More detailed info about plugins and about how to write your own are

found in the README.PLUGINS file.

-l, --list

lists all the hosts in the LAN, reporting each MAC address.

Commonly combined options are -b (for broadcast ping) and -d (don't

resolve hostname).

 215

-C, --collect

collect all users and password from the hosts specified on command line.

Password collector are configured in the config file (etter.conf), if you want

you can disable them selectively or move them on other port. This is useful

if you don't want to sniff SSH connection (the key change alert will raise

suspects) but want to sniff all other supported protocols. Or even if you

know that a host has the telnet service on port 4567, simply move the telnet

dissector on 4567/tcp

-f, --fingerprint <HOST>

do OS fingerprinting on HOST.

This option activates remote host identification via TCP/IP fingerprinting.

In other words, it uses a bunch of techniques to detect subtleties in the

underlying operating system network stack of the computers you are

scanning. It uses this information to create a 'fingerprint' which it compares

with its database of known OS fingerprints (the nmap-os-fingerprints file)

to decide what type of system you are scanning.

the -f options even provides you the vendor of the network adapter of the

scanned host. the info are stored in the mac-fingerprints database.

 216

-1, --hexview

to dump data in hex mode.

TIP: while sniffing you can change the visualization mode by hitting 'a' for

ascii or 'x' for hex. on line help is recalled by 'h'.

-2, --textview

to dump data in text mode.

-3, --ebcdicview

to dump data in ebcdic mode.

-L, --logtofile

if used alone logs all data to specific file(s). it crates a separate file for each

connection in the form "YYYYMMDD-P-IP:PORT-IP:PORT.log" (under

unix) and "P-IP[PORT]-IP[PORT].log" under windows due to filename

limitations.

if used with -C (collector) it creates a file with all the password sniffed in

the session in the form "YYYYMMDD-collected-pass.log"

-q, --quiet

"demonize" ettercap.

useful if you want to log all data in background. this options will detach

ettercap from the current tty and set it as a demon collecting data to files. it

must be combined with -NL (or -NLC) otherwise it has no effects.

 217

Obviously the sniffing method is required, so you have to combine it with

this option.

-w, --newcert

create a new cert file for HTTPS man-in-the-middle.

useful if you want to create a certfile with social engineered information...

the new file is created in the current working directory. to permanently

substitute the default cert file (etter.sll.crt) you have to overwrite

/usr/share/ettercap/etter.ssl.crt

-F, --filter <FILENAME>

load the filters chains from FILENAME

the Filtering chains file is written in pseudo XML format. You can write by

hand this file or (better) use the ncurses interface to let ettercap create it

(press 'F' in the connection list interface). If you are skilled in XML parsing,

you can write your own program to make a filter chain file.

the rules are simple:

If the proto <proto> AND the source port <source> AND the dest port

<dest> AND the payload <search> match the rules, after the filter as done

its action <action>, it jumps in the chain to the filter id specified in the

<goto> field, else it jumps to <elsegoto>. If these field are left blank the

 218

chain is interrupted. Source and dest port equal to 0 (zero) means ANY port.

You can use wildcards in the search string (see README for detail)

NOTE: with this options filter are enabled by default, if you want to disable

them on the fly, press "S" (for source) or "D" (for dest) while sniffing

NOTE: on command line the hosts are parsed as "ettercap -F etter.filter

DEST SOURCE", so the first host is bound to the dest chain and the second

to the source chain.

VERY IMPORTANT: the source chain is applied to data COMING FROM

source and NOT GOING TO source. keep this in mind !! the same is for

dest...

-c, --check

check if you were poisoned by other poisoners in the LAN

 219

ETHEREAL MAN PAGE

Options

-B

Sets the initial height of the byte view (bottom) pane.

-c

Sets the default number of packets to read when capturing live data.

-f

Sets the capture filter expression.

-h

Prints the version and options and exits.

-i

Sets the name of the network interface or pipe to use for live packet capture.

Network interface names should match one of the names listed in ``netstat -

i'' or ``ifconfig -a''. Pipe names should be either the name of a FIFO (named

pipe) or ``-'' to read data from the standard input. Data read from pipes must

be in libpcap format.

-k

Starts the capture session immediately. If the -i flag was specified, the

capture uses the specified interface. Otherwise, Ethereal searches the list of

interfaces, choosing the first non-loopback interface if there are any non-

loopback interfaces, and choosing the first loopback interface if there are no

 220

non-loopback interfaces; if there are no interfaces, Ethereal reports an error

and doesn't start the capture.

-m

Sets the name of the font used by Ethereal for most text. Ethereal will

construct the name of the bold font used for the data in the byte view pane

that corresponds to the field selected in the protocol tree pane from the

name of the main text font.

-n

Disables network object name resolution (such as hostname, TCP and UDP

port names).

-o

Sets a preference value, overriding the default value and any value read

from a preference file. The argument to the flag is a string of the form

prefname:value, where prefname is the name of the preference (which is the

same name that would appear in the preference file), and value is the value

to which it should be set.

-p

Don't put the interface into promiscuous mode. Note that the interface might

be in promiscuous mode for some other reason; hence, -p cannot be used to

ensure that the only traffic that is captured is traffic sent to or from the

 221

machine on which Ethereal is running, broadcast traffic, and multicast

traffic to addresses received by that machine.

-P

Sets the initial height of the packet list (top) pane.

-Q

Causes Ethereal to exit after the end of capture session (useful in batch

mode with -c option for instance); this option requires the -i and -w

parameters.

-r

Reads packet data from file.

-R

When reading a capture file specified with the -r flag, causes the specified

filter (which uses the syntax of display filters, rather than that of capture

filters) to be applied to all packets read from the capture file; packets not

matching the filter are discarded.

-S

Specifies that the live packet capture will be performed in a separate

process, and that the packet display will automatically be updated as

packets are seen.

-s

 222

Sets the default snapshot length to use when capturing live data. No more

than snaplen bytes of each network packet will be read into memory, or

saved to disk.

-T

Sets the initial height of the tree view (middle) pane.

-t

Sets the format of the packet timestamp displayed in the packet list window.

The format can be one of `r' (relative), `a' (absolute), `ad' (absolute with

date), or `d' (delta). The relative time is the time elapsed between the first

packet and the current packet. The absolute time is the actual time the

packet was captured, with no date displayed; the absolute date and time is

the actual time and date the packet was captured. The delta time is the time

since the previous packet was captured. The default is relative.

-v

Prints the version and exits.

-w

Sets the default capture file name.

 223

INTERFACE

Menu Items

File:Open, File:Close, File:Reload

Open, close, or reload a capture file. The File:Open dialog box allows a

filter to be specified; when the capture file is read, the filter is applied to all

packets read from the file, and packets not matching the filter are discarded.

File:Save, File:Save As

Save the current capture, or the packets currently displayed from that

capture, to a file. Check boxes let you select whether to save all packets, or

just those that have passed the current display filter and/or those that are

currently marked, and an option menu lets you select (from a list of file

formats in which at particular capture, or the packets currently displayed

from that capture, can be saved), a file format in which to save it.

File:Print

Prints, for all the packets in the current capture, either the summary line for

the packet or the protocol tree view of the packet; when printing the

protocol tree view, the hex dump of the packet can be printed as well.

Printing options can be set with the Edit:Preferences menu item, or in the

dialog box popped up by this item.

File:Print Packet

 224

Print a fully-expanded protocol tree view of the currently-selected packet.

Printing options can be set with the Edit:Preferences menu item.

File:Quit

Exits the application.

Edit:Find Frame

Allows you to search forward or backward, starting with the currently

selected packet (or the most recently selected packet, if no packet is

selected), for a packet matching a given display filter.

Edit:Go To Frame

Allows you to go to a particular numbered packet.

Edit:Mark Frame

Allows you to mark (or unmark if currently marked) the selected packet.

Edit:Mark All Frames

Allows you to mark all packets that are currently displayed.

Edit:Unmark All Frames

Allows you to unmark all packets that are currently displayed.

Edit:Preferences

Sets the packet printing, column display, TCP stream coloring, and GUI

options (see the section on Preferences below).

Edit:Filters

 225

Edits the saved list of filters, allowing filters to be added, changed, or

deleted, and lets a selected filter be applied to the current capture, if any.

Edit:Protocols

Edits the list of protocols, allowing protocol dissection to be enabled or

disabled.

Capture:Start

Initiates a live packet capture (see the section on Capture Preferences

below). A temporary file will be created to hold the capture. The location of

the file can be chosen by setting your TMPDIR environment variable before

starting Ethereal. Otherwise, the default TMPDIR location is system-

dependent, but is likely either /var/tmp or /tmp.

Capture:Stop

In a capture that updates the packet display as packets arrive (so that

Ethereal responds to user input other than pressing the ``Stop'' button in the

capture packet statistics dialog box), stops the capture.

Display:Options

Allows you to sets the format of the packet timestamp displayed in the

packet list window to relative, absolute, absolute date and time, or delta, to

enable or disable the automatic scrolling of the packet list while a live

capture is in progress or to enable or disable translation of addresses to

names in the display.

 226

Display:Match Selected

Creates and applies a display filter based on the data that is currently

highlighted in the protocol tree. If that data is a field that can be tested in a

display filter expression, the display filter will test that field; otherwise, the

display filter will be based on absolute offset within the packet, and so

could be unreliable if the packet contains protocols with variable-length

headers, such as a source-routed token-ring packet.

Display:Colorize Display

Allows you to change the foreground and background colors of the packet

information in the list of packets, based upon display filters. The list of

display filters is applied to each packet sequentially. After the first display

filter matches a packet, any additional display filters in the list are ignored.

Therefore, if you are filtering on the existence of protocols, you should list

the higher-level protocols first, and the lower-level protocols last.

Display:Collapse All

Collapses the protocol tree branches.

Display:Expand All

Expands all branches of the protocol tree.

Display:Expand All

Expands all branches of the protocol tree.

Display:Show Packet In New Window

 227

Creates a new window containing a protocol tree view and a hex dump

window of the currently selected packet; this window will continue to

display that packet's protocol tree and data even if another packet is

selected.

Tools:Plugins

Allows you to use and configure dynamically loadable modules (see the

section on Plugins below).

Tools:Follow TCP Stream

If you have a TCP packet selected, it will display the contents of the data

stream for the TCP connection to which that packet belongs, as text, in a

separate window, and will leave the list of packets in a filtered state, with

only those packets that are part of that TCP connection being displayed. You

can revert to your old view by pressing ENTER in the display filter text box,

thereby invoking your old display filter (or resetting it back to no display

filter).

The window in which the data stream is displayed lets you select whether to

display:

whether to display the entire conversation, or one or the other side of it;

whether the data being displayed is to be treated as ASCII or EBCDIC text or

as raw hex data;

 228

and lets you print what's currently being displayed, using the same print

options that are used for the File:Print Packet menu item, or save it as text

to a file.

WINDOWS

Main Window

The main window is split into three panes. You can resize each pane using a

``thumb'' at the right end of each divider line. Below the panes is a strip that

shows the current filter and informational text.

Top Pane

The top pane contains the list of network packets that you can scroll through

and select. By default, the packet number, packet timestamp, source and

destination addresses, protocol, and description are displayed for each

packet; the Columns page in the dialog box popped up by Edit:Preferences

lets you change this (although, unfortunately, you currently have to save the

preferences, and exit and restart Ethereal, for those changes to take effect).

If you click on the heading for a column, the display will be sorted by that

column; clicking on the heading again will reverse the sort order for that

column.

 229

An effort is made to display information as high up the protocol stack as

possible, e.g. IP addresses are displayed for IP packets, but the MAC layer

address is displayed for unknown packet types.

The right mouse button can be used to pop up a menu of operations.

The middle mouse button can be used to mark a packet.

Middle Pane

The middle pane contains a protocol tree for the currently-selected packet.

The tree displays each field and its value in each protocol header in the

stack. The right mouse button can be used to pop up a menu of operations.

Bottom Pane

The lowest pane contains a hex dump of the actual packet data. Selecting a

field in the protocol tree highlights the corresponding bytes in this section.

The right mouse button can be used to pop up a menu of operations.

Current Filter

A display filter can be entered into the strip at the bottom. A filter for HTTP,

HTTPS, and DNS traffic might look like this:

 tcp.port == 80 || tcp.port == 443 || tcp.port == 53

 230

Selecting the Filter: button lets you choose from a list of named filters that

you can optionally save. Pressing the Return or Enter keys will cause the

filter to be applied to the current list of packets. Selecting the Reset button

clears the display filter so that all packets are displayed.

Preferences

The Preferences dialog lets you control various personal preferences for the

behavior of Ethereal.

Printing Preferences

The radio buttons at the top of the Printing page allow you choose between

printing packets with the File:Print Packet menu item as text or PostScript,

and sending the output directly to a command or saving it to a file. The

Command: text entry box is the command to send files to (usually lpr), and

the File: entry box lets you enter the name of the file you wish to save to.

Additionally, you can select the File: button to browse the file system for a

particular save file.

Column Preferences

The Columns page lets you specify the number, title, and format of each

column in the packet list.

The Column title entry is used to specify the title of the column displayed at

the top of the packet list. The type of data that the column displays can be

 231

specified using the Column format option menu. The row of buttons on the

left perform the following actions:

New

Adds a new column to the list.

Change

Modifies the currently selected list item.

Delete

Deletes the currently selected list item.

Up / Down

Moves the selected list item up or down one position.

OK

Currently has no effect.

Save

Saves the current column format as the default.

Cancel

Closes the dialog without making any changes.

TCP Stream Preferences

The TCP Streams page can be used to change the color of the text displayed

in the TCP stream window. To change a color, simply select an attribute

from the ``Set:'' menu and use the color selector to get the desired color.

The new text colors are displayed in a sample window.

 232

GUI Preferences

The GUI page is used to modify small aspects of the GUI to your own

personal taste:

Scrollbars

The vertical scrollbars in the three panes can be set to be either on the left or

the right.

Selection Bars

The selection bar in the packet list and protocol tree can have either a

``browse'' or ``select'' behavior. If the selection bar has a ``browse''

behavior, the arrow keys will move an outline of the selection bar, allowing

you to browse the rest of the list or tree without changing the selection until

you press the space bar. If the selection bar has a ``select'' behavior, the

arrow keys will move the selection bar and change the selection to the new

item in the packet list or protocol tree. The highlight method in the hex

dump display for the selected protocol item can be set to use either inverse

video, or bold characters.

Fonts

The ``Font...'' button lets you select the font to be used for most text.

Colors

The ``Colors...'' button lets you select the colors to be used for instance for

the marked frames.

 233

Protocol Preferences

There are also pages for various protocols that Ethereal dissects, controlling

the way Ethereal handles those protocols.

Filters

The Filters dialog lets you create and modify filters, and set the default

filter to use when capturing data or opening a capture file.

The Filter name entry specifies a descriptive name for a filter, e.g. Web

and DNS traffic. The Filter string entry is the text that actually describes

the filtering action to take, as described above.The dialog buttons perform

the following actions:

New

If there is text in the two entry boxes, it creates a new associated list item.

Change

Modifies the currently selected list item to match what's in the entry boxes.

Copy

Makes a copy of the currently selected list item.

Delete

Deletes the currently selected list item.

Apply

 234

Sets the currently selected list item as the active filter, and applies it to the

current capture, if any. (The currently selected list item must be a display

filter, not a capture filter.) If nothing is selected, turns filtering off.

OK

Sets the currently selected list item as the active filter. If nothing is selected,

turns filtering off.

Save

Saves the current filter list in $HOME/.ethereal/filters.

Cancel

Closes the dialog without making any changes.

Capture Preferences

The Capture Preferences dialog lets you specify various parameters for

capturing live packet data.

The Interface: combo box lets you specify the interface from which to

capture packet data, or the name of a FIFO from which to get the packet

data. The Count: entry specifies the number of packets to capture. Entering

0 will capture packets indefinitely. The Filter: entry lets you specify the

capture filter using a tcpdump-style filter string as described above. The

File: entry specifies the file to save to, as in the Printer Options dialog

above. You can specify the maximum number of bytes to capture per packet

with the Capture length entry, can specify whether the interface is to be put

 235

in promiscuous mode or not with the Capture packets in promiscuous mode

check box, can specify that the display should be updated as packets are

captured with the Update list of packets in real time check box, can specify

whether in such a capture the packet list pane should scroll to show the

most recently captured packets with the Automatic scrolling in live capture

check box, and can specify whether addresses should be translated to names

in the display with the Enable name resolution check box.

Display Options

The Display Options dialog lets you specify the format of the time stamp in

the packet list. You can select ``Time of day'' for absolute time stamps,

``Date and time of day'' for absolute time stamps with the date, ``Seconds

since beginning of capture'' for relative time stamps, or ``Seconds since

previous frame'' for delta time stamps. You can also specify whether, when

the display is updated as packets are captured, the list should automatically

scroll to show the most recently captured packets or not and whether

addresses should be translated to names in the display.

Plugins

The Plugins dialog lets you view and configure the plugins available on

your system.

 236

The Plugins List shows the name, description, version and state (enabled or

not) of each plugin found on your system. The plugins are searched in the

following directories: /usr/share/ethereal/plugins,

/usr/local/share/ethereal/plugins and ~/.ethereal/plugins

A plugin must be activated using the Enable button in order to use it to

dissect packets. It can also be deactivated with the Disable button.

The Filter button shows the filter used to select packets which should be

dissected by a plugin (see the section on DISPLAY FILTER SYNTAX below).

This filter can be modified.

Capture Filter Syntax

Please refer to the TCPDUMP man page in this Appendix.

Display Filter Syntax

Display filters help you remove the noise from a packet trace and let you see only

the packets that interest you. If a packet meets the requirements expressed in your

display filter, then it is displayed in the list of packets. Display filters let you

compare the fields within a protocol against a specific value, compare fields against

fields, and to check the existence of specified fields or protocols.

 237

The simplest display filter allows you to check for the existence of a protocol or

field. If you want to see all packets which contain the IPX protocol, the filter would

be ``ipx''. (Without the quotation marks) To see all packets that contain a Token-

Ring RIF field, use ``tr.rif''.

Fields can also be compared against values. The comparison operators can be

expressed either through C-like symbols, or through English-like abbreviations:

 eq, == Equal

 ne, != Not equal

 gt, > Greater than

 lt, < Less Than

 ge, >= Greater than or Equal to

 le, <= Less than or Equal to

Furthermore, each protocol field is typed. The types are:

 Unsigned integer (either 8-bit, 16-bit, 24-bit, or 32-bit)

 Signed integer (either 8-bit, 16-bit, 24-bit, or 32-bit)

 Boolean

 Ethernet address (6 bytes)

 Byte string (n-number of bytes)

 IPv4 address

 IPv6 address

 IPX network number

 238

 String (text)

 Double-precision floating point number

An integer may be expressed in decimal, octal, or hexadecimal notation. The

following three display filters are equivalent:

 frame.pkt_len > 10

 frame.pkt_len > 012

 frame.pkt_len > 0xa

Boolean values are either true or false. However, a boolean field is present in a

protocol decode only if its value is true. If the value is false, the field is not

presence. You can therefore check the truth value of a boolean field by simply

checking for its existence, that is, by naming the field. For example, a token-ring

packet's source route field is boolean. To find any source-routed packets, the

display filter is simply:

 tr.sr

Non source-routed packets can be found with the negation of that filter:

 ! tr.sr

Ethernet addresses, as well as a string of bytes, are represented in hex digits. The

hex digits may be separated by colons, periods, or hyphens:

 fddi.dst eq ff:ff:ff:ff:ff:ff

 ipx.srcnode == 0.0.0.0.0.1

 239

 eth.src == aa-aa-aa-aa-aa-aa

If a string of bytes contains only one byte, then it is represented as an unsigned

integer. That is, if you are testing for hex value `ff' in a one-byte byte-string, you

must compare it agains `0xff' and not `ff'.

IPv4 addresses can be represented in either dotted decimal notation, or by using the

hostname:

 ip.dst eq www.mit.edu

 ip.src == 192.168.1.1

IPv4 address can be compared with the same logical relations as numbers: eq, ne,

gt, ge, lt, and le. The IPv4 address is stored in host order, so you do not have to

worry about how the endianness of an IPv4 address when using it in a display filter.

Classless InterDomain Routing (CIDR) notation can be used to test if an IPv4

address is in a certain subnet. For example, this display filter will find all packets in

the 129.111 Class-B network:

 ip.addr == 129.111.0.0/16

 240

http://www.mit.edu/

Remember, the number after the slash represents the number of bits used to

represent the network. CIDR notation can also be used with hostnames, in this

example of finding IP addresses on the same Class C network as `sneezy':

 ip.addr eq sneezy/24

The CIDR notation can only be used on IP addresses or hostnames, not in variable

names. So, a display filter like ``ip.src/24 == ip.dst/24'' is not valid. (yet) IPX

networks are represented by unsigned 32-bit integers. Most likely you will be using

hexadecimal when testing for IPX network values:

 ipx.srcnet == 0xc0a82c00

A substring operator also exists. You can check the substring (byte-string) of any

protocol or field. For example, you can filter on the vendor portion of an ethernet

address (the first three bytes) like this:

 eth.src[0:3] == 00:00:83

Or more simply, since the number of bytes is inherent in the byte-string you

provide, you can provide just the offset. The previous example can be stated like

this:

 eth.src[0] == 00:00:83

In fact, the only time you need to explicitly provide a length is when you don't

provide a byte-string, and are comparing fields against fields:

 241

 fddi.src[0:3] == fddi.dst[0:3]

If the length of your byte-string is only one byte, then it must be represented in the

same way as an unsigned 8-bit integer:

 llc[3] == 0xaa

You can use the substring operator on a protocol name, too. And remember, the

``frame'' protocol encompasses the entire packet, allowing you to look at the nth

byte of a packet regardless of its frame type (Ethernet, token-ring, etc.).

 token[0:5] ne 0.0.0.1.1

 ipx[0:2] == ff:ff

 llc[3:1] eq 0xaa

Offsets for byte-strings can also be negative, in which case the negative number

indicates the number of bytes from the end of the field or protocol that you are

testing. Here's how to check the last 4 bytes of a frame:

 frame[-4] == 0.1.2.3

or

 frame[-4:4] == 0.1.2.3

All the above tests can be combined together with logical expressions. These too

are expressable in C-like syntax or with English-like abbreviations:

 and, && Logical AND

 242

 or, || Logical OR

 xor, ^^ Logical XOR

 not, ! Logical NOT

Expressions can be grouped by parentheses as well. The following are all valid

display filter expression:

 tcp.port == 80 and ip.src == 192.168.2.1

 not llc

 (ipx.srcnet == 0xbad && ipx.srnode == 0.0.0.0.0.1) || ip

 tr.dst[0:3] == 0.6.29 xor tr.src[0:3] == 0.6.29

A special caveat must be given regarding fields that occur more than once per

packet. ``ip.addr'' occurs twice per IP packet, once for the source address, and once

for the destination address. Likewise, tr.rif.ring fields can occur more than once per

packet. The following two expressions are not equivalent:

 ip.addr ne 192.168.4.1

 not ip.addr eq 192.168.4.1

The first filter says ``show me all packets where an ip.addr exists that does not

equal 192.168.4.1''. That is, as long as one ip.addr in the packet does not equal

192.168.44.1, the packet passes the display filter. The second filter ``don't show me

any packets that have at least one ip.addr field equal to 192.168.4.1''. If one ip.addr

 243

is 192.168.4.1, the packet does not pass. If neither ip.addr fields is 192.168.4.1,

then the packet passes.

It is easy to think of the `ne' and `eq' operators as having an implict ``exists''

modifier when dealing with multiply-recurring fields. ``ip.addr ne 192.168.4.1'' can

be thought of as ``there exists an ip.addr that does not equal 192.168.4.1''.

Be careful with multiply-recurring fields; they can be confusing.

The following is a table of protocol and protocol fields that are filterable in

Ethereal. The abbreviation of the protocol or field is given. This abbreviation is

what you use in the display filter. The type of the field is also given.

 244

SNORT MAN PAGE

USAGE

snort [-abCdDeNopqsvVx?] [-A alert-mode] [-c rules-file] [-F bpf-file] [-h

home-net] [-i interface] [-l log-dir] [-M smb-hosts-file] [-n packet-count] [-r

tcpdump-file] [-S n=v] expression

OPTIONS

-A alert-mode

Alert using the specified alert-mode. Valid alert modes include fast, full,

none, and unsock. Fast writes alerts to the default "alert" file in a single-

line, syslog style alert message. Full writes the alert to the "alert" file with

the full decoded header as well as the alert message. None turns off alerting.

Unsock is an experimental mode that sends the alert information out over a

UNIX socket to another process that attaches to that socket.

-a

Display ARP packets when decoding packets.

-b

Log packets in a tcpdump(1) formatted file. All packets are logged in their

native binary state to a tcpdump formatted log file called "snort.log". This

option results in much faster operation of the program since it doesn't have

 245

http://cgi-bin/man2html?tcpdump+1

to spend time in the packet binary->text converters. Snort can keep up

pretty well with 100Mbps networks in "-b" mode.

-c rules-file

Use the rules located in file rules-file.

-C

Print the character data from the packet payload only (no hex).

-d

Dump the application layer data when displaying packets.

-D

Run Snort in daemon mode. Alerts are sent to /var/log/snort.alert unless

otherwise specified.

-e

Display/log the Ethernet packet headers.

-F bpf-file

Read BPF filters from bpf-file. This is handy for people running Snort as a

SHADOW replacement or with a love of super complex BPF filters. See the

documentation for more information on writing BPF filters.

-h home-net

Set the "home network" to home-net. The format of this address variable is

a network prefix plus a CIDR block, such as 192.168.1.0/24. Once this

variable is set, all decoded packet logging will be done relative to the home

 246

network address space. This is useful because of the way that Snort formats

its ASCII log data. With this value set to the local network, all decoded

output will be logged into decode directories with the address of the foreign

computer as the directory name, which is very useful during traffic analysis.

-i interface

Listen on interface.

-l log-dir

Set the output logging directory to log-dir. All alerts and packet traffic go

into this directory. If this option is not specified, the default logging

directory is set to /var/log/snort.

-M smb-hosts-file

Send WinPopup messages to the list of workstations contained in the smb-

hosts-file . This option requires Samba to be resident and in the path of the

machine running Snort. The workstation file is simple: each line of the file

contains the SMB name of the box to send the message to.

-n packet-count

Process packet-count packets and exit.

-N

Turn off packet logging. The program still generates alerts normally.

 247

-o

Change the order in which the rules are applied to packets. Instead of being

applied in the standard Alert->Pass->Log order, this will apply them in

Pass->Alert->Log order.

-p

Turn off promiscuous mode sniffing.

-q

 Quiet operation. Don't display banner and initialization informations.

-r tcpdump-file

 Read the tcpdump-formatted file tcpdump-file. This will cause Snort to

read and process the file fed to it. This is useful if, for instance, you've got a

bunch of SHADOW files that you want to process for content, or even if

you've got a bunch of reassembled packet fragments which have been

written into a tcpdump formatted file.

-s

Send alert messages to syslog. On linux boxen, they will appear in

/var/log/secure, /var/log/messages on many other platforms.

 248

-S n=v

Set variable name "n" to value "v". This is useful for setting the value of a

defined variable name in a Snort rules file to a command line specified

value. For instance, if you define a HOME_NET variable name inside of a

Snort rules file, you can set this value from it's predefined value at the

command line.

-v

Be verbose. Prints packets out to the console. There is one big problem with

verbose mode: it's slow. If you are doing IDS work with Snort, don't use the

-v switch, you WILL drop packets.

-V

Show the version number and exit.

-?

Show the program usage statement and exit.

expression

selects which packets will be dumped. If no expression is given, all packets

on the net will be dumped. Otherwise, only packets for which expression is

`true' will be dumped.

The expression consists of one or more primitives. Primitives usually

consist of an id (name or number) preceded by one or more qualifiers. There

are three different kinds of qualifier:

 249

type

qualifiers say what kind of thing the id name or number refers to. Possible

types are host, net and port. E.g., `host foo', `net 128.3', `port 20'. If there is

no type qualifier, host is assumed.

dir

qualifiers specify a particular transfer direction to and/or from id. Possible

directions are src, dst, src or dst and src and dst. E.g., `src foo', `dst net

128.3', `src or dst port ftp-data'. If there is no dir qualifier, src or dst is

assumed. For `null' link layers (i.e. point to point protocols such as slip) the

inbound and outbound qualifiers can be used to specify a desired

direction.

proto

qualifiers restrict the match to a particular protocol. Possible protos are:

ether, fddi, ip, arp, rarp, decnet, lat, sca, moprc, mopdl, tcp and udp.

E.g., `ether src foo', `arp net 128.3', `tcp port 21'. If there is no proto

qualifier, all protocols consistent with the type are assumed. E.g., `src foo'

means `(ip or arp or rarp) src foo' (except the latter is not legal syntax), `net

bar' means `(ip or arp or rarp) net bar' and `port 53' means `(tcp or udp) port

53'.

[`fddi' is actually an alias for `ether'; the parser treats them identically as

meaning ``the data link level used on the specified network interface.''

 250

FDDI headers contain Ethernet-like source and destination addresses, and

often contain Ethernet-like packet types, so you can filter on these FDDI

fields just as with the analogous Ethernet fields. FDDI headers also contain

other fields, but you cannot name them explicitly in a filter expression.]

In addition to the above, there are some special `primitive' keywords that

don't follow the pattern: gateway, broadcast, less, greater and arithmetic

expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or

and not to combine primitives. E.g., `host foo and not port ftp and not port

ftp-data'. To save typing, identical qualifier lists can be omitted. E.g., `tcp

dst port ftp or ftp-data or domain' is exactly the same as `tcp dst port ftp or

tcp dst port ftp-data or tcp dst port domain'.

Allowable primitives are:

dst host host

True if the IP destination field of the packet is host, which may be either an

address or a name.

src host host

True if the IP source field of the packet is host.

 251

host host

True if either the IP source or destination of the packet is host. Any of the

above host expressions can be prepended with the keywords, ip, arp, or

rarp as in:

ip host host

which is equivalent to:

ether proto \ip and host host

If host is a name with multiple IP addresses, each address will be checked

for a match.

ether dst ehost

True if the ethernet destination address is ehost. Ehost may be either a name

from /etc/ethers or a number (see ethers(3N) for numeric format).

ether src ehost

True if the ethernet source address is ehost.

ether host ehost

True if either the ethernet source or destination address is ehost.

gateway host

True if the packet used host as a gateway. I.e., the ethernet source or

destination address was host but neither the IP source nor the IP destination

was host. Host must be a name and must be found in both /etc/hosts and

/etc/ethers. (An equivalent expression is

ether host ehost and not host host

 252

http://cgi-bin/man2html?ethers+3n

which can be used with either names or numbers for host / ehost.)

dst net net

True if the IP destination address of the packet has a network number of net.

Net may be either a name from /etc/networks or a network number (see

networks(4) for details).

src net net

True if the IP source address of the packet has a network number of net.

net net

True if either the IP source or destination address of the packet has a

network number of net.

net net mask mask

True if the IP address matches net with the specific netmask. May be

qualified with src or dst.

net net/len

True if the IP address matches net a netmask len bits wide. May be qualified

with src or dst.

dst port port

True if the packet is ip/tcp or ip/udp and has a destination port value of port.

The port can be a number or a name used in /etc/services (see tcp(4P) and

udp(4P)). If a name is used, both the port number and protocol are checked.

If a number or ambiguous name is used, only the port number is checked

 253

http://cgi-bin/man2html?networks+4
http://cgi-bin/man2html?tcp+4p
http://cgi-bin/man2html?udp+4p

(e.g., dst port 513 will print both tcp/login traffic and udp/who traffic, and

port domain will print both tcp/domain and udp/domain traffic).

src port port

True if the packet has a source port value of port.

port port

True if either the source or destination port of the packet is port. Any of the

above port expressions can be prepended with the keywords, tcp or udp, as

in:

tcp src port port

which matches only tcp packets whose source port is port.

less length

True if the packet has a length less than or equal to length. This is

equivalent to:

len <= length.

greater length

True if the packet has a length greater than or equal to length. This is

equivalent to:

len >= length.

ip proto protocol

True if the packet is an ip packet (see ip(4P)) of protocol type protocol.

Protocol can be a number or one of the names icmp, igrp, udp, nd, or tcp.

 254

http://cgi-bin/man2html?ip+4p

Note that the identifiers tcp, udp, and icmp are also keywords and must be

escaped via backslash (\), which is \\ in the C-shell.

ether broadcast

True if the packet is an ethernet broadcast packet. The ether keyword is

optional.

ip broadcast

True if the packet is an IP broadcast packet. It checks for both the all-zeroes

and all-ones broadcast conventions, and looks up the local subnet mask.

ether multicast

True if the packet is an ethernet multicast packet. The ether keyword is

optional. This is shorthand for `ether[0] & 1 != 0'.

ip multicast

True if the packet is an IP multicast packet.

ether proto protocol

True if the packet is of ether type protocol. Protocol can be a number or a

name like ip, arp, or rarp. Note these identifiers are also keywords and

must be escaped via backslash (\). [In the case of FDDI (e.g., `fddi protocol

arp'), the protocol identification comes from the 802.2 Logical Link

Control (LLC) header, which is usually layered on top of the FDDI header.

Tcpdump assumes, when filtering on the protocol identifier, that all FDDI

 255

packets include an LLC header, and that the LLC header is in so-called

SNAP format.]

decnet src host

True if the DECNET source address is host, which may be an address of the

form ``10.123'', or a DECNET host name. [DECNET host name support is

only available on Ultrix systems that are configured to run DECNET.]

decnet dst host

True if the DECNET destination address is host.

decnet host host

True if either the DECNET source or destination address is host.

ip, arp, rarp, decnet

Abbreviations for:

ether proto p

where p is one of the above protocols.

lat, moprc, mopdl

Abbreviations for:

ether proto p

where p is one of the above protocols. Note that Snort does not currently

know how to parse these protocols.

tcp, udp, icmp

Abbreviations for:

 256

ip proto p

where p is one of the above protocols.

expr relop expr

True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr

is an arithmetic expression composed of integer constants (expressed in

standard C syntax), the normal binary operators [+, -, *, /, &, |], a length

operator, and special packet data accessors. To access data inside the

packet, use the following syntax:

proto [expr : size]

Proto is one of ether, fddi, ip, arp, rarp, tcp, udp, or icmp, and indicates

the protocol layer for the index operation. The byte offset, relative to the

indicated protocol layer, is given by expr. Size is optional and indicates the

number of bytes in the field of interest; it can be either one, two, or four,

and defaults to one. The length operator, indicated by the keyword len,

gives the length of the packet.

For example, `ether[0] & 1 != 0' catches all multicast traffic. The

expression `ip[0] & 0xf != 5' catches all IP packets with options. The

expression `ip[6:2] & 0x1fff = 0' catches only unfragmented datagrams and

frag zero of fragmented datagrams. This check is implicitly applied to the

tcp and udp index operations. For instance, tcp[0] always means the first

 257

byte of the TCP header, and never means the first byte of an intervening

fragment.

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special

to the Shell and must be escaped).

Negation (`!' or `not').

Concatenation (`&&' or `and').

Alternation (`||' or `or').

Negation has highest precedence. Alternation and concatenation have equal

precedence and associate left to right. Note that explicit and tokens, not

juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is

assumed. For example,

not host vs and ace

is short for

not host vs and host ace

which should not be confused with

not (host vs or ace)

 258

Expression arguments can be passed to Snort as either a single argument or

as multiple arguments, whichever is more convenient. Generally, if the

expression contains Shell metacharacters, it is easier to pass it as a single,

quoted argument. Multiple arguments are concatenated with spaces before

being parsed.

 259

TCPDUMP MAN PAGE

USAGE

tcpdump [-adeflnNOpqRStuvxX] [-c count]

 [-C file_size] [-F file]

 [-i interface] [-m module] [-r file]

 [-s snaplen] [-T type] [-w file]

 [-E algo:secret] [expression]

OPTIONS

-a

Attempt to convert network and broadcast addresses to names.

-c

Exit after receiving count packets.

-C

Before writing a raw packet to a savefile, check whether the file is currently

larger than file_size and, if so, close the current savefile and open a new

one. Savefiles after the first savefile will have the name specified with the -

w flag, with a number after it, starting at 2 and continuing upward. The

 260

units of file_size are millions of bytes (1,000,000 bytes, not 1,048,576

bytes).

-d

Dump the compiled packet-matching code in a human readable form to

standard output and stop.

-dd

Dump packet-matching code as a C program fragment.

-ddd

Dump packet-matching code as decimal numbers (preceded with a count).

-e

Print the link-level header on each dump line.

-E

Use algo:secret for decrypting IPsec ESP packets. Algorithms may be des-

cbc, 3des-cbc, blowfish-cbc, rc3-cbc, cast128-cbc, or none. The default is

des-cbc. The ability to decrypt packets is only present if tcpdump was

compiled with cryptography enabled. secret the ascii text for ESP secret

key. We cannot take arbitrary binary value at this moment. The option

assumes RFC2406 ESP, not RFC1827 ESP. The option is only for

debugging purposes, and the use of this option with truly `secret' key is

discouraged. By presenting IPsec secret key onto command line you make it

visible to others, via ps(1) and other occasions.

 261

http://annys.eines.info/cgi-bin/man/man2html?1+ps

-f

Print `foreign' internet addresses numerically rather than symbolically (this

option is intended to get around serious brain damage in Sun's yp server ---

usually it hangs forever translating non-local internet numbers).

-F

Use file as input for the filter expression. An additional expression given on

the command line is ignored.

-i

Listen on interface. If unspecified, tcpdump searches the system interface

list for the lowest numbered, configured up interface (excluding loopback).

Ties are broken by choosing the earliest match.

On Linux systems with 2.2 or later kernels, an interface argument of ``any''

can be used to capture packets from all interfaces. Note that captures on the

``any'' device will not be done in promiscuous mode.

-l

Make stdout line buffered. Useful if you want to see the data while

capturing it. E.g.,

``tcpdump -l | tee dat'' or ``tcpdump -l > dat & tail -f dat''.

-m

Load SMI MIB module definitions from file module. This option can be

used several times to load several MIB modules into tcpdump.

 262

-n

Don't convert addresses (i.e., host addresses, port numbers, etc.) to names.

-N

Don't print domain name qualification of host names. E.g., if you give this

flag then tcpdump will print ``nic'' instead of ``nic.ddn.mil''.

-O

Do not run the packet-matching code optimizer. This is useful only if you

suspect a bug in the optimizer.

-p

Don't put the interface into promiscuous mode. Note that the interface might

be in promiscuous mode for some other reason; hence, `-p' cannot be used

as an abbreviation for `ether host {local-hw-addr} or ether broadcast'.

-q

Quick (quiet?) output. Print less protocol information so output lines are

shorter.

-R

Assume ESP/AH packets to be based on old specification (RFC1825 to

RFC1829). If specified, tcpdump will not print replay prevention field.

Since there is no protocol version field in ESP/AH specification, tcpdump

cannot deduce the version of ESP/AH protocol.

 263

-r

Read packets from file (which was created with the -w option). Standard

input is used if file is ``-''.

-S

Print absolute, rather than relative, TCP sequence numbers.

-s

Snarf snaplen bytes of data from each packet rather than the default of 68

(with SunOS's NIT, the minimum is actually 96). 68 bytes is adequate for

IP, ICMP, TCP and UDP but may truncate protocol information from name

server and NFS packets (see below). Packets truncated because of a limited

snapshot are indicated in the output with ``[|proto]'', where proto is the

name of the protocol level at which the truncation has occurred. Note that

taking larger snapshots both increases the amount of time it takes to process

packets and, effectively, decreases the amount of packet buffering. This

may cause packets to be lost. You should limit snaplen to the smallest

number that will capture the protocol information you're interested in.

Setting snaplen to 0 means use the required length to catch whole packets.

-T

Force packets selected by "expression" to be interpreted the specified type.

Currently known types are cnfp (Cisco NetFlow protocol), rpc (Remote

Procedure Call), rtp (Real-Time Applications protocol), rtcp (Real-Time

 264

Applications control protocol), snmp (Simple Network Management

Protocol), vat (Visual Audio Tool), and wb (distributed White Board).

-t

Don't print a timestamp on each dump line.

-tt

Print an unformatted timestamp on each dump line.

-ttt

Print a delta (in micro-seconds) between current and previous line on each

dump line.

-tttt

Print a timestamp in default format proceeded by date on each dump line.

-u

Print undecoded NFS handles.

-v

(Slightly more) verbose output. For example, the time to live, identification,

total length and options in an IP packet are printed. Also enables additional

packet integrity checks such as verifying the IP and ICMP header

checksum.

-vv

Even more verbose output. For example, additional fields are printed from

NFS reply packets, and SMB packets are fully decoded.

 265

-vvv

Even more verbose output. For example, telnet SB ... SE options are printed

in full. With -X telnet options are printed in hex as well.

-w

Write the raw packets to file rather than parsing and printing them out. They

can later be printed with the -r option. Standard output is used if file is ``-''.

-x

Print each packet (minus its link level header) in hex. The smaller of the

entire packet or snaplen bytes will be printed. Note that this is the entire

link-layer packet, so for link layers that pad (e.g. Ethernet), the padding

bytes will also be printed when the higher layer packet is shorter than the

required padding.

-X

When printing hex, print ascii too. Thus if -x is also set, the packet is

printed in hex/ascii. This is very handy for analysing new protocols. Even if

-x is not also set, some parts of some packets may be printed in hex/ascii.

expression

selects which packets will be dumped. If no expression is given, all packets

on the net will be dumped. Otherwise, only packets for which expression is

`true' will be dumped.

 266

The expression consists of one or more primitives. Primitives usually

consist of an id (name or number) preceded by one or more qualifiers. There

are three different kinds of qualifier:

type

qualifiers say what kind of thing the id name or number refers to. Possible

types are host, net and port. E.g., `host foo', `net 128.3', `port 20'. If there is

no type qualifier, host is assumed.

dir

qualifiers specify a particular transfer direction to and/or from id. Possible

directions are src, dst, src or dst and src and dst. E.g., `src foo', `dst net

128.3', `src or dst port ftp-data'. If there is no dir qualifier, src or dst is

assumed. For `null' link layers (i.e. point to point protocols such as slip) the

inbound and outbound qualifiers can be used to specify a desired

direction.

proto

qualifiers restrict the match to a particular protocol. Possible protos are:

ether, fddi, tr, ip, ip6, arp, rarp, decnet, tcp and udp. E.g., `ether src foo',

`arp net 128.3', `tcp port 21'. If there is no proto qualifier, all protocols

consistent with the type are assumed. E.g., `src foo' means `(ip or arp or

rarp) src foo' (except the latter is not legal syntax), `net bar' means `(ip or

arp or rarp) net bar' and `port 53' means `(tcp or udp) port 53'.

 267

[`fddi' is actually an alias for `ether'; the parser treats them identically as

meaning ``the data link level used on the specified network interface.''

FDDI headers contain Ethernet-like source and destination addresses, and

often contain Ethernet-like packet types, so you can filter on these FDDI

fields just as with the analogous Ethernet fields. FDDI headers also contain

other fields, but you cannot name them explicitly in a filter expression.

Similarly, `tr' is an alias for `ether'; the previous paragraph's statements

about FDDI headers also apply to Token Ring headers.]

In addition to the above, there are some special `primitive' keywords that

don't follow the pattern: gateway, broadcast, less, greater and arithmetic

expressions. All of these are described below.

More complex filter expressions are built up by using the words and, or

and not to combine primitives. E.g., `host foo and not port ftp and not port

ftp-data'. To save typing, identical qualifier lists can be omitted. E.g., `tcp

dst port ftp or ftp-data or domain' is exactly the same as `tcp dst port ftp or

tcp dst port ftp-data or tcp dst port domain'.

Allowable primitives are:

 268

dst host host

True if the IPv4/v6 destination field of the packet is host, which may be

either an address or a name.

src host host

True if the IPv4/v6 source field of the packet is host.

host host

True if either the IPv4/v6 source or destination of the packet is host. Any of

the above host expressions can be prepended with the keywords, ip, arp,

rarp, or ip6 as in:

ip host host

which is equivalent to:

ether proto \ip and host host

If host is a name with multiple IP addresses, each address will be checked

for a match.

ether dst ehost

True if the ethernet destination address is ehost. Ehost may be either a name

from /etc/ethers or a number (see ethers(5) for numeric format).

ether src ehost

True if the ethernet source address is ehost.

ether host ehost

True if either the ethernet source or destination address is ehost.

 269

http://annys.eines.info/cgi-bin/man/man2html?5+ethers

gateway host

True if the packet used host as a gateway. I.e., the ethernet source or

destination address was host but neither the IP source nor the IP destination

was host. Host must be a name and must be found both by the machine's

host-name-to-IP-address resolution mechanisms (host name file, DNS, NIS,

etc.) and by the machine's host-name-to-Ethernet-address resolution

mechanism (/etc/ethers, etc.). (An equivalent expression is

ether host ehost and not host host

which can be used with either names or numbers for host / ehost.) This

syntax does not work in IPv6-enabled configuration at this moment.

dst net net

True if the IPv4/v6 destination address of the packet has a network number

of net. Net may be either a name from /etc/networks or a network number

(see networks(5) for details).

src net net

True if the IPv4/v6 source address of the packet has a network number of

net.

net net

True if either the IPv4/v6 source or destination address of the packet has a

network number of net.

 270

http://annys.eines.info/cgi-bin/man/man2html?5+networks

net net mask netmask

True if the IP address matches net with the specific netmask. May be

qualified with src or dst. Note that this syntax is not valid for IPv6 net.

net net/len

True if the IPv4/v6 address matches net with a netmask len bits wide. May

be qualified with src or dst.

dst port port

True if the packet is ip/tcp, ip/udp, ip6/tcp or ip6/udp and has a destination

port value of port. The port can be a number or a name used in /etc/services

(see tcp(4P) and udp(4P)). If a name is used, both the port number and

protocol are checked. If a number or ambiguous name is used, only the port

number is checked (e.g., dst port 513 will print both tcp/login traffic and

udp/who traffic, and port domain will print both tcp/domain and

udp/domain traffic).

src port port

True if the packet has a source port value of port.

port port

True if either the source or destination port of the packet is port. Any of the

above port expressions can be prepended with the keywords, tcp or udp, as

in:

tcp src port port

which matches only tcp packets whose source port is port.

 271

http://annys.eines.info/cgi-bin/man/man2html?4P+tcp
http://annys.eines.info/cgi-bin/man/man2html?4P+udp

less length

True if the packet has a length less than or equal to length. This is

equivalent to:

len <= length.

greater length

True if the packet has a length greater than or equal to length. This is

equivalent to:

len >= length.

ip proto protocol

True if the packet is an IP packet (see ip(4P)) of protocol type protocol.

Protocol can be a number or one of the names icmp, icmp6, igmp, igrp, pim,

ah, esp, vrrp, udp, or tcp. Note that the identifiers tcp, udp, and icmp are

also keywords and must be escaped via backslash (\), which is \\ in the C-

shell. Note that this primitive does not chase the protocol header chain.

ip6 proto protocol

True if the packet is an IPv6 packet of protocol type protocol. Note that this

primitive does not chase the protocol header chain.

ip6 protochain protocol

True if the packet is IPv6 packet, and contains protocol header with type

protocol in its protocol header chain. For example,

 272

http://annys.eines.info/cgi-bin/man/man2html?4P+ip

ip6 protochain 6

matches any IPv6 packet with TCP protocol header in the protocol header

chain. The packet may contain, for example, authentication header, routing

header, or hop-by-hop option header, between IPv6 header and TCP header.

The BPF code emitted by this primitive is complex and cannot be optimized

by BPF optimizer code in tcpdump, so this can be somewhat slow.

ip protochain protocol

Equivalent to ip6 protochain protocol, but this is for IPv4.

ether broadcast

True if the packet is an ethernet broadcast packet. The ether keyword is

optional.

ip broadcast

True if the packet is an IP broadcast packet. It checks for both the all-zeroes

and all-ones broadcast conventions, and looks up the local subnet mask.

ether multicast

True if the packet is an ethernet multicast packet. The ether keyword is

optional. This is shorthand for `ether[0] & 1 != 0'.

ip multicast

True if the packet is an IP multicast packet.

ip6 multicast

True if the packet is an IPv6 multicast packet.

 273

ether proto protocol

True if the packet is of ether type protocol. Protocol can be a number or one

of the names ip, ip6, arp, rarp, atalk, aarp, decnet, sca, lat, mopdl, moprc,

iso, stp, ipx, or netbeui. Note these identifiers are also keywords and must

be escaped via backslash (\).

[In the case of FDDI (e.g., `fddi protocol arp') and Token Ring (e.g., `tr

protocol arp'), for most of those protocols, the protocol identification

comes from the 802.2 Logical Link Control (LLC) header, which is usually

layered on top of the FDDI or Token Ring header.

When filtering for most protocol identifiers on FDDI or Token Ring,

tcpdump checks only the protocol ID field of an LLC header in so-called

SNAP format with an Organizational Unit Identifier (OUI) of 0x000000, for

encapsulated Ethernet; it doesn't check whether the packet is in SNAP

format with an OUI of 0x000000.

The exceptions are iso, for which it checks the DSAP (Destination Service

Access Point) and SSAP (Source Service Access Point) fields of the LLC

header, stp and netbeui, where it checks the DSAP of the LLC header, and

atalk, where it checks for a SNAP-format packet with an OUI of 0x080007

and the Appletalk etype.

In the case of Ethernet, tcpdump checks the Ethernet type field for most of

those protocols; the exceptions are iso, sap, and netbeui, for which it checks

 274

for an 802.3 frame and then checks the LLC header as it does for FDDI and

Token Ring, atalk, where it checks both for the Appletalk etype in an

Ethernet frame and for a SNAP-format packet as it does for FDDI and

Token Ring, aarp, where it checks for the Appletalk ARP etype in either an

Ethernet frame or an 802.2 SNAP frame with an OUI of 0x000000, and ipx,

where it checks for the IPX etype in an Ethernet frame, the IPX DSAP in

the LLC header, the 802.3 with no LLC header encapsulation of IPX, and

the IPX etype in a SNAP frame.]

decnet src host

True if the DECNET source address is host, which may be an address of the

form ``10.123'', or a DECNET host name. [DECNET host name support is

only available on Ultrix systems that are configured to run DECNET.]

decnet dst host

True if the DECNET destination address is host.

decnet host host

True if either the DECNET source or destination address is host.

ip, ip6, arp, rarp, atalk, aarp, decnet, iso, stp, ipx, netbeui

Abbreviations for:

ether proto p

where p is one of the above protocols.

lat, moprc, mopdl

Abbreviations for:

 275

ether proto p

where p is one of the above protocols. Note that tcpdump does not currently

know how to parse these protocols.

vlan [vlan_id]

True if the packet is an IEEE 802.1Q VLAN packet. If [vlan_id] is

specified, only true is the packet has the specified vlan_id. Note that the

first vlan keyword encountered in expression changes the decoding offsets

for the remainder of expression on the assumption that the packet is a

VLAN packet.

tcp, udp, icmp

Abbreviations for:

ip proto p or ip6 proto p

where p is one of the above protocols.

iso proto protocol

True if the packet is an OSI packet of protocol type protocol. Protocol can

be a number or one of the names clnp, esis, or isis.

clnp, esis, isis

Abbreviations for:

iso proto p

where p is one of the above protocols. Note that tcpdump does an

incomplete job of parsing these protocols.

 276

expr relop expr

True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr

is an arithmetic expression composed of integer constants (expressed in

standard C syntax), the normal binary operators [+, -, *, /, &, |], a length

operator, and special packet data accessors. To access data inside the

packet, use the following syntax:

proto [expr : size]

Proto is one of ether, fddi, tr, ppp, slip, link, ip, arp, rarp, tcp, udp,

icmp or ip6, and indicates the protocol layer for the index operation. (ether,

fddi, tr, ppp, slip and link all refer to the link layer.) Note that tcp, udp and

other upper-layer protocol types only apply to IPv4, not IPv6 (this will be

fixed in the future). The byte offset, relative to the indicated protocol layer,

is given by expr. Size is optional and indicates the number of bytes in the

field of interest; it can be either one, two, or four, and defaults to one. The

length operator, indicated by the keyword len, gives the length of the

packet.

For example, `ether[0] & 1 != 0' catches all multicast traffic. The

expression `ip[0] & 0xf != 5' catches all IP packets with options. The

expression `ip[6:2] & 0x1fff = 0' catches only unfragmented datagrams and

frag zero of fragmented datagrams. This check is implicitly applied to the

tcp and udp index operations. For instance, tcp[0] always means the first

 277

byte of the TCP header, and never means the first byte of an intervening

fragment.

Some offsets and field values may be expressed as names rather than as

numeric values. The following protocol header field offsets are available:

icmptype (ICMP type field), icmpcode (ICMP code field), and tcpflags

(TCP flags field).

The following ICMP type field values are available: icmp-echoreply,

icmp-unreach, icmp-sourcequench, icmp-redirect, icmp-echo, icmp-

routeradvert, icmp-routersolicit, icmp-timxceed, icmp-paramprob,

icmp-tstamp, icmp-tstampreply, icmp-ireq, icmp-ireqreply, icmp-

maskreq, icmp-maskreply.

The following TCP flags field values are available: tcp-fin, tcp-syn, tcp-

rst, tcp-push, tcp-push, tcp-ack, tcp-urg.

Primitives may be combined using:

A parenthesized group of primitives and operators (parentheses are special

to the Shell and must be escaped).

Negation (`!' or `not').

Concatenation (`&&' or `and').

Alternation (`||' or `or').

 278

Negation has highest precedence. Alternation and concatenation have equal

precedence and associate left to right. Note that explicit and tokens, not

juxtaposition, are now required for concatenation.

If an identifier is given without a keyword, the most recent keyword is

assumed. For example,

not host vs and ace

is short for

not host vs and host ace

which should not be confused with

not (host vs or ace)

Expression arguments can be passed to tcpdump as either a single argument

or as multiple arguments, whichever is more convenient. Generally, if the

expression contains Shell metacharacters, it is easier to pass it as a single,

quoted argument. Multiple arguments are concatenated with spaces before

being parsed.

 279

XPROBE2 MAN PAGE

USAGE

 xprobe2 [-v] [-r] [-p proto:portnum:state] [-c configfile] [-o

 logfile] [-p port] [-t receive_timeout] [-m numberofmatches] [

 -D modnum] [-F] [-X] host

OPTIONS

 -v be verbose.

 -r display route to target (traceroute-like output).

 -c use configfile to read the configuration file, xprobe2.conf,

 from a non-default location.

 -D disable module number modnum.

 -m set number of results to display to numofmatches.

 -o use logfile to log everything (default output is stderr).

 -p specify port number (portnum), protocol (proto) and it’s state

 280

 for xprobe2 to use during rechability/fingerprinting tests of

 remote host. Possible values for proto are tcp or udp, portnum

 can only take values from 1 to 65535, state can be either

 closed (for tcp that means that remote host replies with RST

 packet, for udp that means that remote host replies with ICMP

 Port Unreachable packet) or open (for tcp that means that

 remote host replies with SYN ACK packet and for udp that means

 that remote host doesn’t send any packet back).

 -t set receive timeout to receive_timeout in seconds (the default

 is set to 10 seconds).

 -F generate signature for specified target (use -o to save finger-

 print into file)

 -X write XML output to logfile specified with –o

 281

Appendix B:

Transmission Control Protocol/Internet
Protocol (TCP/IP)

Transmission Control Protocol (TCP)

TCP is a Transport layer protocol that provides connection-oriented

communication. This protocol is typically used by applications that require

guaranteed delivery. It is a sliding window protocol that provides handling for both

timeouts and retransmissions. TCP establishes a full duplex virtual connection

between two endpoints. Each endpoint is defined by an IP address and a TCP port

number [41]. The byte stream is transferred in segments. The window size

determines the number of bytes of data that can be sent before an acknowledgement

from the receiver is necessary.

TCP Header

Figure B-1: TCP Header

 282

Source Port

Port number which the packet left from the senders machine

Destination Port

Port number on the receiver’s machine

Sequence Number

The sequence number of the first data byte in this segment. If the SYN bit is set, the

sequence number is the initial sequence number and the first data byte is initial

sequence number + 1.

Acknowledgment Number

If the ACK bit is set, this field contains the value of the next sequence number the

sender of the segment is expecting to receive. Once a connection is established this

is always sent.

Data Offset

The number of 32-bit words in the TCP header. This indicates where the data

begins. The length of the TCP header is always a multiple of 32 bits.

Reserved

Must be set to zero.

 283

ECN, Explicit Congestion Notification (RFC 3168)

00 01
C E

C, CWR

Congestion Window Reduced (CWR) flag in the TCP header is use by the data

sender to inform the data receiver that the congestion window has been reduced

E, ECE

Explicit Congestion Echo (ECE) flag in the TCP header is used by the data receiver

to inform the data sender when a Congestion Experience (CE) packet has been

received.

Flags.

00 01 02 03 04 05
U A P R S F

U, URG: Urgent pointer valid flag.

A, ACK: Acknowledgment number valid flag.

P, PSH: Push flag.

R, RST: Reset connection flag.

S, SYN: Synchronize sequence numbers flag.

F, FIN: End of data flag.

 284

Window

The number of data bytes beginning with the one indicated in the acknowledgment

field, which the sender of this segment is willing to accept. RFC 793, the

document that defines TCP, mandates use of this field in the TCP header of every

packet sent across a TCP connection. It provides a 16-bit integer that advertises the

number of bytes available in a recipient's receive buffer. This information is used

by the sending system's flow-control service to slow down and speed up the amount

of data being transferred according to the recipient's capabilities. It defines the

maximum number of bytes that can be sent without requiring the sender to stop

transmitting and wait for an acknowledgment.

Checksum

This is computed as the 16-bit one's complement of the one's complement sum of a

pseudo header of information from the IP header, the TCP header, and the data,

padded as needed with zero bytes at the end to make a multiple of two bytes. The

pseudo header contains the following fields:

Figure B2: Checksum Contents

Urgent Pointer

If the URG bit is set, this field points to the sequence number of the last byte in a

sequence of urgent data.

 285

Options.

Options occupy space at the end of the TCP header. All options are included in the

checksum. An option may begin on any byte boundary. The TCP header must be

padded with zeros to make the header length a multiple of 32 bits.

Figure B3: TCP Options

Data Variable length. This is users data, payload.

 286

Internet Protocol (IP)

The Internet Protocol is the heart of the TCP/IP stack, shown below

Figure B4: TCP/IP Protocol Stack

 IP is a network-layer protocol that contains addressing information and some

control information that enables packets to be routed. Therefore, it is responsible

for providing connectionless, best-effort delivery of datagram’s through an

internetwork and provides fragmentation and reassembly of datagram’s to support

data links with different maximum-transmission unit (MTU) sizes based on a four

byte (32 bit) destination address.

In order for IP to move packets of data from node to node, the data has to

go through a series of steps called encapsulation. This is the process that user data

goes through before it is routed to its destination. As the data goes through the

protocol stack, headers are added to the packet being sent. This process goes as

follows;

 287

Figure B5: Encapsulation of data as it goes down the protocol stack

Now that we understand how a packet is prepared for transmission to its

destination, let’s take a look at how IP deals with fragmentation and reassembly of

datagrams to support data links with different maximum-transmission unit (MTU)

sizes. The maximum transmission unit is the largest amount of encapsulated data a

network interface can transmit. Whenever the IP layer receives an IP datagram to

send, it determine which interface the datagram is being sent on and queries that

interface to obtain its MTU. IP then compares the MTU with the datagram size and

performs fragmentation if it is necessary. In the fragmentation process the

following IP header fields are used,

 288

- Identification field: contains a unique value for each IP datagram that

the sender transmits. This number is copied into each fragment of a

particular datagram.

- Flags field: this field uses one bit to identify that there are “more

fragments” and is turned on for every fragment except for the final

fragment.

- Fragment offset field: contains the offset of this fragment from the

begging of the datagram.

- Total length field: this is reset to reflect its size.

When an IP datagram is fragmented, each fragment becomes its own packet with its

own IP header and routed independently. This makes it possible for the packets to

arrive at their destination out of order, but there is enough information in the IP

header to allow reassembly by the receiver. If at any point during the transmission

one fragment is lost, the entire datagram must be retransmitted.

Packet Header Field descriptions

Figure B6: 32 bit IP header

 289

IP version number

This field is used to identify the version of IP being used. This field currently has

currently has no influence on the probability of intrusion. We say currently because

the only version currently in use is IPv4. Until IPv6 is in wide use, this field has no

influence on the probability of intrusion in the IDS model/algorithm.

Version Description
0 Reserved.
1
2
3

4 IP, Internet Protocol.
5 ST, ST Datagram Mode.
6 SIP, Simple Internet Protocol.

SIPP, Simple Internet Protocol Plus.
IPv6, Internet Protocol.

7 TP/IX, The Next Internet.
8 PIP, The P Internet Protocol.
9 TUBA

10
-

14

15 Reserved.

Figure B7: IP versions

Internet Header Length (IHL)

This is the length of the internet header in 32 bit words. Minimum value for a

correct header is 5 which would be a 20 byte header.

Type of Service

This is a one-byte field used to indicate parameters regarding the quality of service

required and may be used by gateways to select routing and queuing algorithms.

 290

Bits Meaning

0 - 2

Precedence; possible values are:
 111 --- Network Control
 110 --- Internetwork Control
 101 --- CRITIC/ECP
 100 --- Flash Override
 011 --- Flash
 010 --- Immediate
 001 --- Priority
 000 --- Routine

3 Delay. 0 = Normal, 1 = Low

4 Throughput. 0 = Normal, 1 = High

5 Reliability. 0 = Normal, 1 = High

6 - 7 Reserved.

Figure B8: IP Header Type of Service Field

Total Length

This is the length of the datagram in bytes, including the Internet header and data

(payload)

Identification

Used to identify the fragments of one datagram from those of another. The

originating protocol module of an internet datagram sets the identification field to a

value that must be unique for that source-destination pair and protocol for the time

the datagram will be active in the internet system. The originating protocol module

of a complete datagram sets the MF bit to zero and the Fragment Offset field to

zero.

 291

Flags (R,D,M)

Consists of a 3-bit field of which the two low order bits control fragmentation. The

lo order bit specifies whether the packet can be fragmented. The middle bit

specifies whether the packet is the last fragment in a series of fragmented packet.

The third or high order bit is reserved.

00 01 02

R DF MF

R, Reserved: Should be set to 0.

DF, Don't fragment: Controls the fragmentation of the datagram.

Value Description
0 Fragment if necessary.
1 Do not fragment.

MF, More fragments: Indicates if the datagram contains additional fragments.

Value Description
0 This is the last fragment.
1 More fragments follow this fragment.

 292

Fragment Offset

Fragment offset indicates the position of the fragment’s data relative to the

beginning of the data in the original datagram, which allows the destination IP

process to reconstruct the original packet.

Time to Live

Time to live (TTL) is the maximum amount of time a packet may exist. This filed

is decremented by at least 1 each time the IP header is processed by a router or a

host. Unless the packet is queued in a buffer for a long period of time, this filed

actually indicates the maximum number of intermediate routers a packet may cross

before it gets dropped. This is done to prevent packets from looping endlessly.

Protocol

This field indicates the type of protocol message is encapsulated with in the IP

Packet. The assigned internet protocol field values are as follows [Reynolds &

Postel 1992],

 293

Figure B9: IP Protocol Numbers

Header Checksum

Since some header fields change (e.g., time to live), this is recomputed and verified

at each point that the internet header is processed. This is done to ensure IP header

integrity.

 294

Source Internet Address

This is where the packet originates from.

Destination Internet Address

This is where the packet should be delivered to.

Options

These are the options the IP header may contain. Although an IP header may

contain options, most don’t. Field format is as follows;

00 01 02 03 04 05 06 07
C Class Option

C, Copy flag.

Indicates if the option is to be copied into all fragments.

Value Description
0 Do not copy.
1 Copy.

Class..

Value Description
0 Control.
1 Reserved.
2 Debugging and measurement.
3 Reserved.

 295

Options.

Table B1: IP Options

 296

Padding

The internet header padding is used to ensure that the internet header ends on a 32

bit (4 byte) boundary. This is occasionally needed because not all IP options are

even multiples of 32 bits.

Data

This field contains upper-layer information.

 297

Internet Message Protocol (ICMP) [159]

ICMP header:

Type. 8 bits.
Specifies the format of the ICMP message.

Code. 8 bits.

Further qualifies the ICMP message.

ICMP Header Checksum. 16 bits.

Checksum that covers the ICMP message. This is the 16-bit one's complement of

the one's complement sum of the ICMP message starting with the Type field. The

checksum field should be set to zero before generating the checksum.

Data. Variable length.

This filed contains the data specific to the message type indicated by the Type and

Code fields. The Tables B2-A, B2-B, B2-C and B2-D list all the ICMP types and

corresponding codes [160].

 298

Table B2-A: ICMP Types and Codes

 299

Table B2-B: ICMP Types and Codes

 300

Table B2-C: ICMP Types and Codes

 301

Table B2-D: ICMP Types and Codes

 302

Appendix C

Oinker: A Graphical User Interface for
writing Snort rules

Features:

• Easily creating new Snort rule files

• Easily editing existing files

• Cutting and pasting rules between Snort rule files

• Instantly duplicating rules

• Working with multiple Snort rule files

• Instantly customizable to environments using Snort configuration

files, such as: Snort.conf, Classification.config and

References.config

For definitions of the fields please refer back to tables 5.1, 5.2A, 5.2B, 5-3A, 5-3B

and 5.4.

Creating a new Snort Rule

To create a new Snort Rule the following files will be needed,

- Snort.conf

- classification.config

- reference.config

 303

Step 1: Start the program and click on the File menu then click on “New Rule

File” or simply press ctrl-N. The following screen should appear;

Figure C1: New Rule Window

Step 2: Click on the Add Rule button. The following window will pop up,

 304

Figure C2: Window requesting location of Snort.conf File

Provide the location of the snort.conf file.

Step 3: Once the location of the Snort.conf file has been provided, a new rule

can be created. The following screen should come up,

Figure C3: Beginning a new snort rule

This is the first of two tabs for creating a new rule. This window shows the

following,

Header:

Action: This tells snort how to react if this Rule is activated. There are 5 different

actions;

 305

1. alert

2. log

3. pass

4. active

5. dynamic

Protocol: Tells Snort which protocol to analyze. Currently there are only 4

supported protocols, TCP, UDP, IP and ICMP.

Source IP/Ports and Destination IP/Ports: IP addresses can be a single IP

address, a group of IP addresses or a variable name from the Snort.conf designated

in Step 2. The same concept applies to the source and destination ports.

Step 4: Once the options have been selected and/or filled in click on preview.

This will provide a preview of how the rule will look when inserted in the new file,

as follows;

Figure C4: Preview of first half of new rule

Step 5: Click on the Options tab. This will show the windows in Figure C5.

 306

Figure C5: Options window

This is the last window for creating a new rule. This window displays the

following;

Category: There are five categories and each category has several options;

1. Meta-data:

a. msg

b. reference

c. sid

d. rev

e. classtype

 307

f. priority

2. Payload:

a. content

b. uricontent

c. isdataat

d. pcre

e. byte_jump

f. byte_test

3. Non-Payload

a. flag

b. flow

c. flowbits

d. seq

e. ack

f. window

g. rpc

h. dsize

4. Post-detection

a. logto

b. session

c. resp

 308

d. react

e. tag

5. Other

a. threshold

Step 6: Once all the options are selected press preview and then ok. This ends

the rule creation. The following screen should look like the on in Step one except

that there is now a new rule in it, as shown below;

All that is needed is the header information and then simply save the file.

 309

Editing an Existing Snort rule file

To edit an existing file simply press ctrl + O or use the File menu. Once the file is

open, double click on the desired rule for editing.

Duplicating a rule

Select a rule and click on the Duplicate button.

Copy rule between files

Open the two files in question. Click on the file where the rule that is going to be

duplicated resides. Click on the duplicate key select the file to duplicate to when

prompted.

 310

	Chapter 1
	Introduction
	1.1 Problem Overview
	1.2 Approach
	1.3 Thesis Organization
	Related work
	Network Traffic Analysis Fundamentals
	Network capture field identification

	Chapter 3
	Black Box Network Traffic Analysis: the Hacker’s
	Chapter 5
	Appendix A
	The information in this appendix was taken from the man page
	ETTERCAP MAN PAGE
	USAGE: ettercap [OPTIONS] [HOST:PORT] [HOST:PORT] [MAC] [MAC
	Options
	INTERFACE
	WINDOWS
	Capture Filter Syntax
	Display Filter Syntax

	SNORT MAN PAGE
	USAGE
	OPTIONS

	TCP Header

