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ABSTRACT 
We address the problem of online detection of unanticipated 
modes of mechanical failure given a small set of time series under 
normal conditions, with the requirement that the anomaly 
detection model be manually verifiable and modifiable.  We 
specify a set of time series features, which are linear combinations 
of the current and past values, and model the allowed feature 
values by a sequence of minimal bounding boxes containing all of 
the training trajectories.  The model can be constructed in O(n log 
n) time.  If there are at most three features, the model can be 
displayed graphically for verification, otherwise a table is used.  
Test time is O(n) with a guaranteed upper bound on computation 
time for each test point.  The model compares favorably with 
anomaly detection algorithms based on Euclidean distance and 
dynamic time warping on the Space Shuttle Marrotta fuel control 
valve data set. 

Keywords 
Time series anomaly detection, Machine health monitoring, Path 
model, Box model, Rule Learning, NASA. 

1. INTRODUCTION 
In 1996 an Ariane 5 rocket self destructed during launch because 
the primary and backup flight control units had identical software 
errors. In each processor, a 64 bit floating point number was 
assigned to a 16 bit integer, raising an unhandled Ada overflow 
exception and halting it [1].  In 1999 the Mars Climate Orbiter 
was lost when engineers sent navigation commands using English 
units, while the spacecraft was expecting metric units [2].  In 
2004, half of the data sent by the Huygens probe to Titan was lost 
because one of two receiver channels on the Cassini mother craft 
orbiting Saturn was not turned on due to a software error [14]. 

We are given the task of automating the detection of mechanical 
failures in the Marrotta fuel control valves used in the space 
shuttle.  Because not all failure modes can be anticipated, this is 
an ideal task for time series anomaly detection: train a model on 

 

 

 

 

 

 

known good data, estimate the probability distribution, and assign 
a likelihood-based score to new sensor data.  However, NASA is 
keenly aware of the consequences of software errors on a manned 
spacecraft.  Therefore a requirement of our project is that the 
model be transparent.  It is not enough that we demonstrate the 
ability to detect anomalies caused by simulated failures in the lab.  
Engineers also want to know what the modeler learned, and if 
necessary, manually update the model using domain specific 
knowledge.  Unfortunately, many good time series anomaly 
detection algorithms produce opaque models that are difficult to 
analyze. 

Our goal is to produce an anomaly detection system whose model 
is transparent.  In addition, testing must be online, fast, and 
generalize when given more than one training series.  By online, 
we mean that each test point receives an anomaly score, with an 
upper bound on computation time.  We accept that there is no 
"best" anomaly detection algorithm for all data, and that many 
algorithms have ad-hoc parameters which are tuned to specific 
data sets.  Therefore our subgoal is to provide tools to make this 
tuning easier on a given data set.  The software that allows this 
capability is not directly discussed in this paper. 

Our approach is to offer a set of models based on feature 
trajectory paths, because these models can be visualized in two or 
three dimensions, or coded as rules which can be edited in higher 
dimensions.  A feature is defined as a linear combination of 
present and past values (a digital filter), for example, a time 
lagged copy, a derivative, or a smoothed signal.  Thus, a feature is 
also a time series.  Given d features, a signal traces a path or 
trajectory through d-dimensional feature space.  The idea is that a 
test series should follow a similar trajectory to that of a known 
good training signal, or at least be near the training trajectory at 
all times.  An engineer may choose to approximate the trajectory 
using straight line segments or a sequence of boxes for 
performance reasons.  There may also be more than one training 
series, in which case we can construct a model which encloses all 
of the trajectories. 

Our main contributions include: 

- we propose two anomaly detection methods based on 
models that are transparent/editable, generalizable from 
multiple training time series, efficient during testing, and 
provide online scoring during testing; 

- our empirical results from the NASA shuttle valve data 
indicate that our methods can detect similar or more 
abnormal time series than three existing methods. 



The rest of the paper is organized as follows.  In Section 2 we 
discuss related work.  In Sections 3 and 4 we introduce path and 
box modeling respectively, along with efficient algorithms for 
generating approximations.  In Section 5 we present experimental 
results with the NASA valve data set.  In Section 6, we conclude. 

2.  RELATED WORK 
One view of time series anomaly detection is that of a machine 
learning or modeling task.  Given a training set X of time series 
with an unknown probability distribution P, the task is to estimate 
P.  Then given a new time series y, we assign an anomaly score 
inversely related to P(y).  Ypma [15] surveys some important 
techniques, such as Bayesian models, neural networks, and 
support vector machines, and applications to the detection of 
failures in rotating machinery using vibration sensors 

Dasgupta and Forrest [4] uses an immunological approach.  A 
time series is quantized and chopped into fixed length strings of 
several symbols.  A random set of strings is generated.  Any 
strings which match the training data are removed.  The remaining 
strings form an anomaly model.  If a test signal matches any 
strings in the model, then an alarm is signaled.  This technique 
was shown to detect simulated failures in a milling machine. 

Keogh approaches the problem as that of finding a dissimilarity 
function D(x, y) between a (normal or good) training series x and 
a test series y [7]. Viewed this way, we avail ourselves of the vast 
body of research in related data mining topics such as 
classification, clustering, and search.  The simplest measure is 
Euclidean distance: 
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where both series have length N and x1, x2, ..., xN are the N values 
of x.  In some applications, we normalize x and y to have zero 
mean and unit standard deviation.  Two disadvantages of this 
measure are that the series must have equal length and it is 
sensitive to shifts in time.  Dynamic time warping (DTW) 
overcomes these problems by finding the minimum Euclidean 
distance when the data points of both series may be shifted 
arbitrarily in time (but maintained in order).  DTW is defined 
recursively as follows: 

 ),(),( 11
nm yxDyxDTW =   (2) 

where 

)],(),,(),,(min[

)(),(
1

1
1

1
1

111
1

1

2
11

−−−−+

−=
jijiji

ji
ji

yxDyxDyxD

yxyxD
 

and 
ix1 means the sequence x1, x2, ..., xi and D(x, y) is infinite if 

either x or y is empty.  A warp path is the set of (i,j) from (1,1) to 
(m,n) such that if all xi are aligned with yj by shifting them in time, 
then DTW(x, y) = DEUCLID(x, y). 

A disadvantage of DTW is that computation time is O(mn).  
Various fast approximations have been proposed.  For example, 
Salvador [10] describes FastDTW, an approximation to DTW in 
which the warp path is estimated as successively higher 

resolutions and the search is constrained within a radius of the 
previous estimate. 

Many other distance measures have been proposed.  In an 
exhaustive test, Keogh and others at UCR implemented about 50 
proposed distance measures published over a 10 year period and 
evaluated them on a variety of data mining tasks on a large corpus 
of time series from diverse domains [7].  The rather surprising 
finding is that while many of the proposed measures improve over 
existing techniques on the specific data sets on which they were 
tested, none did better than normalized Euclidean distance over 
the entire data set. 

Keogh also proposes a very general method which does 
outperform Euclidean distance on this diverse set: a compression 
dissimilarity measure, or CDM [8], defined as: 
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where C(x) is the compressed size of a symbolic (SAX) 
representation of x, saved as a file and compressed with an off-
the-shelf compressor such as gzip.  The idea is that CDM 
estimates the information shared by x and y.  If the two series are 
identical, then a compressor can store y as a reference to x, so 
C(xy) � C(x) and CDM(x, y) ����� ���	��
 x and y are unrelated, then 
the compressor cannot use knowledge from x to model y, so C(xy) � C(x) + C(y) and CDM(x, y) ��
��  
2.1 Feature Trajectory Models 
Some proven and broadly applicable techniques such as CDM and 
neural networks suffer from opacity.  It is not at all clear from the 
state of a data compression program or the trained weights of a 
neural network exactly what has been learned.  Our work is based 
on trajectory modeling in feature space as described by Povinelli  
et. al. [9].  Povinelli  extracted d features of a time series, which 
are simply time-lagged copies of the data delayed by t, 2t, 3t, ... 
dt, and d and t are parameters.  The density in d-dimensional 
feature space is modeled by clustering the training points and 
using a Gaussian mixture model to approximate the clusters.  A 
test point is evaluated by its distance (in standard deviations) from 
the nearest cluster.  The model was shown to classify phonemes in 
speech, detect arrhythmias in ECG traces, and detect mechanical 
failures in a motor simulation. 

Generating a Gaussian mixture model requires a slow, iterative 
process.  Vlachos et. al. [13] describe a minimum bounding 
rectangle (MBR) clustering algorithm that runs in O(n log n) time 
that is nearly identical to the one used in our system.  A sequence 
of n points in feature space is first approximated by a sequence of 
n – 1 boxes, each enclosing a pair of adjacent points.  Then pairs 
of adjacent boxes are merged by greedily selecting the pair that 
minimizes the increase in volume after merging.  The algorithm 
for modeling the sequence of n points x1, x2, ..., xn using k boxes is 
as follows: 

 

 

 

 

 

 



 MBR(x1...n, k) 

   For each i in [1, n-1] do 

     xi := merge(xi, xi+1) 

   Delete xn 

   While n > k do 

     Find i minimizing � ���   

  V(i, i+1) – V(i) – V(i+1)  

  (minimize increase in volume)  

     x i  : = merge(x i , x i+1 )  

     Delete x i+1  

   Return x = x 1...k  

 

Fig. 1.  MBR Algorithm. 

In the MBR algorithm, merge( x, y)  means to replace points 
or boxes x and y with the smallest box that encloses both, V(i)  
means the volume of xi, and V(i, i+1)  means the volume of 
merge(x i , x i+1 ) . � V is the increase in volume that would 
result from merging.  Deleting an element xi implicitly decrements 
n. 

 
 

Fig. 2.  Merging boxes B and C in the MBR algorithm. 

MBR can run in O(n log n) time by storing the boxes in a heap ������������� ��! " V, the increase in volume that would result from 
merging it with the next box.  In a heap, the elements are stored in 
a balanced binary tree such that at each node the parent is smaller 
than the two children.  Each node xi also stores pointers to xi-1 and 
xi+1 to form a doubly linked list.  When the box at the root of the 
heap is merged with its neighbor, the two old boxes are removed 
from the heap, the merg #�$&%�'�( ) *+) ,-*.#�/�0 #�$�132�,�$&4 V of the two 
neighbors of the new box are updated, requiring them to be sifted 
up or down the heap.  Each of the heap operations takes O(log n) 
time. 

2.2 Gecko 
In our earlier work on the NASA valve data [5], we used the 
Gecko algorithm [11] to create a bounded rectangle model.  The 
Gecko model is more complex and less eff icient than MBR in the 
training phase, but our interest is in the correctness of the model 
and eff iciency in the testing phase.  Gecko uses 3 dimensions of 
feature space: the original signal and the first and second 
derivatives, each of which is smoothed by a low pass filter.  The 
trajectory is then segmented in feature space using a bottom-up 
clustering algorithm.  Next, RIPPER [3] is used to generate a 
minimal rule set which separates the clusters.  Each rule 

corresponds to one surface of one box, for example "if segment = 
3 then feature2 < 2.5".  It is possible to define one segment by 
several boxes, and some boxes may be open on some sides.  
Gecko, li ke MBR, satisfies our criteria that the model be 
comprehensible.  The feature space can either be visualized in 
three dimensions, or expressed as a set of if...then rules. 

During testing, a state machine is constructed such that each state 
corresponds to one trajectory segment, plus one error state.  A 
transition to the next state occurs if the number of consecutive 
points satisfying the rules for the new state (falli ng within one of 
the bounding boxes) exceeds a threshold.  An error occurs if the 
number of consecutive points satisfying neither the current nor 
next state exceeds a second threshold.  Both thresholds are user 
defined parameters. 

Gecko has been extended to handle multiple training series.  First, 
the series are aligned by DTW or FastDTW.  Next, the aligned 
series are averaged.  Then the averaged series is segmented as 
before.  Finally RIPPER is applied to separate the points in the 
original series that align with different segments in the merged 
series. 

3. PATH MODELING 
Our work in time series modeling falls between two extremes.  At 
one end, we have a single training series, and we compute the 
distance from it using some function.  At the other extreme, we 
have a large set of training sequences (or a single series with 
thousands of cycles) which we model using a probabilit y 
distribution in a feature space and then estimate the probabilit y of 
the test series.  The NASA valve data set is one example of a data 
set that falls in the middle.  We have one to four "normal" training 
series from which we generalize to a model.  Our approach is to 
construct a model that encloses all of the training trajectories and 
the space "between" them. 

We describe two representations that approximate this space, path 
modeling and box modeling.  For path modeling, we store the 
training trajectories and test whether the sensor data falls between 
or near these paths.  For box modeling, we construct a sequence 
of boxes enclosing all of the training paths, and test whether a test 
point falls within or near these boxes.  We describe path modeling 
in this section, and box modeling in Section 4. 

For the case of a single training path x in d-dimensional feature 
space, and a point yi in a test series y, we could assign an anomaly 
score D(x, yj) equal to the square of the Euclidean distance 
between yj and the nearest point in x. 
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where xik denotes the value of the k'th feature of the i 'th point in x.  
This measure would have two problems.  First it is ineff icient 
because the testing time would be O(dn) per test point (or O(n) 
best case if we test the nearest points first).  Second, the score 
would be nonzero even for the case of a test path following the 
training path exactly, because x is sampled and yi could fall 
between the sample points in x.  Addressing the latter problem by 
increasing the number of samples would make the first problem 
worse. 

Our approach is to model x using a piecewise linear 
approximation of k – 1 straight line segments defined by k 
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vertices, where k is a parameter.  Then we define D(x, yj) to be the 
square of the Euclidean distance between yj and the nearest point 
in the approximation of x.  The computation time is now O(kd), 
where k << n.  Computing the distance between a point and a line 
segment is more complex than computing the distance between 
two points, but is still O(d). 

Depending on the domain, we might require that the test signal 
follow the same trajectory as the training data in the same order.  
This restriction, which we call sequential testing, is used by 
Gecko and is appropriate when we require the training and test 
series to have the same overall shape, while still  allowing time 
shifts.  Suppose that the line segment (xi, xi+1) is the closest 
segment to test point yj.  Then it is only necessary to test the next 
point, yj+1 by computing the distance to the current and next 
segments, (xi, xi+1) and (xi+1, xi+1).  We maintain i as a state 
variable and set it to the index of the closest segment.  The time to 
compute D(x, yj) is now O(d).  Other variations are possible, such 
as also testing the previous segment to allow backwards 
movement. 

Path modeling can be extended to multiple training series in a 
number of ways.  For example, we could use 1-nearest neighbor 
modeling, in which the anomaly score is the square of the distance 
to the nearest path.  If our training set is limited, it may be 
desirable to test whether a point lies "between" the training paths.  
Depending on how we define "between", this can lead to diff icult 
calculations.  We use the following definition, which is an easy to 
compute approximation.  Given p paths and a test point yj, we find 
the nearest point on each path, and then find the smallest box that 
will enclose all p nearest points.  If yj is inside this box, its 
anomaly score is zero.  Otherwise its score is the square of the 
Euclidean distance to the box (Fig. 3).  For a single path, this 
reduces to finding the minimum Euclidean distance from the test 
point to the path. 

 

Fig. 3.  Computing distance to multiple paths.  Point A is 
inside the box enclosing the three points nearest to it, so its 
score is 0.  Point B is outside the box enclosing the three points 
nearest to it, so its score is the distance squared to that box. 

The test time complexity of multiple path modeling is O(pkd) 
given p paths, k segments per path, d dimensions and stateless 
modeling (testing all path segments).  Run time improves to O(pd) 
using sequential testing and maintaining a nearest segment state 
for each path.  Later in Section 4, we will eliminate the O(p) 
penalty by approximating the training paths with a sequence of 
boxes that enclose them. 

3.1 Path Model Generation 
To approximate x with k – 1 line segments defined by k vertices, 
we use a greedy bottom-up approach.   The vertex removal 
algorithm removes n – k vertices.  Referring to Figure 4, the effect 
of removing vertex B in the sequence ABC is to replace the two 
line segments AB and BC with the line segment AC.  This induces 
an error, which we define to be |AC||BB'|2, where |AC| is the 
length of segment AC, and |BB'| is the distance from B to B', the 
nearest point on segment AC.  The justification for this definition 
is that if we were to test the training data on itself, then the 
measured anomaly score would be proportional to our proposed 
measure, while the true anomaly score should be zero. 

 

Fig. 4.  Removing vertex B induces an error approximated by 
|AC||BB'|2 

An improvement to vertex removal is path fitting, in which, after 
removing B, we shift A and C a distance of |BB'|/4 in the direction 
from B' to B (Fig. 4).  If the path is smooth with a gradual curve, 
then this has the effect of reducing the error because the new 
segment A'C' is a better fit to ABC than the original AC in the 
vertex removal algorithm.  An optimal shift for AC alone would 
be |BB'|/2, but this would induce too much error in the segments 
adjacent to A'C'. 

 
 

Fig. 5.  Path fitt ing.  After removing vertex B, A and C are 
shifted 1/4 the distance from B' to B to reduce the induced 
error . 

The algorithm for path fitting is given in Fig. 6.  The input is the 
sequence of n vectors xi...xn in d-dimensional feature space and 
the desired number of vertices, k.  The algorithm runs in O(n log 
n) time by storing the vertices in a doubly linked heap, as in the 
MBR algorithm.  The vertices are sorted by error with the smallest 
at the root.  When a vertex is removed, the stored errors of the two 
nearest neighbors on each side are updated, and they are sifted up 
or down to restore the heap property.  The vertex removal 
algorithm is identical to path fitting except that the shift is zero 
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and only one neighbor on each side of the removed vertex needs 
to be updated. 

 

 path_fit( x1... xn , k)  

   while n > k do  

     find i minimizing error( xi)  

     b := point on ( xi-1,xi+1)  nearest xi 

     shift := ( xi – b)/4  

     xi-1 := xi-1 + shift 

     xi+1 := xi+1 + shift 

     ( xi... xn-1) := ( xi+1... xn)  

     n : = n – 1  

   return ( x1... xk)  

 

Fig. 6.  Path fitting algorithm 

4. BOX MODELING 
Building a box model follows the MBR algorithm described in 
Section 2 with two modifications.  First, instead of merging two 
boxes into one, we merge three boxes into two.  Second, we 
model multiple paths by first constructing a box model of one 
path, then expanding the boxes to enclose the other paths.  In 
addition, testing differs from MBR in that the test series is not 
also converted to a box model.  This allows us to assign an 
anomaly score to each test point online. 

Box merging is shown in Fig. 7.  We first find the box whose 
removal results in the smallest increase in volume (ignoring 
overlap between nonadjacent boxes).  Then to remove the box, we 
expand the two neighboring boxes just enough to include the 
center of the removed box.  We call this algorithm MBR3. 

 

Fig. 7.  When box B is removed in MBR3, boxes A and C are 
grown to enclose the center of B. 

The intent of MBR3 is to produce a more uniform distribution of 
box sizes than MBR.  (However we did not test this, nor claim 
that we succeeded).  However MBR3 has the disadvantage that 
the original path is no longer guaranteed to be enclosed by the 
new boxes.  This occurs when the original path does not pass 
exactly through the center of the removed box. 

The second modification is to expand the k boxes that 
approximate the first training path to contain all of the remaining 
p - 1 paths.  This is done in two passes for each path.  First, we 

label each point in the path with the box that is closest to it.  In 
the second pass we expand the boxes to enclose the points with 
matching labels.  We do this one path at a time to reduce the space 
complexity between passes from O(pk) to O(k).  Two passes are 
required because consecutive points in a path tend to be close 
together, which could result in a pathological model in which a 
single box grows in small steps to enclose the entire data set.  The 
algorithm is given in Fig. 8.. 

 box_expand(x 1...x k, y 1...y n)  

     (x: sequence of k boxes)  

     (y: sequence of n points)  

     (output: x expanded to enclose y)  

   for each y j  

     l j  = i: x i  is closest box to y j  

   for each y j  

     expand x lj  to enclose y i  

 

Fig. 8.  Expanding box sequence x to enclose path y. 

We recommended that the first path (the input to MBR3) be 
included in the box expansion step, even if it is the only path.  
This solves the problem mentioned earlier in which the path may 
lie slightly outside the box model. 

Note that the box model depends on the order in which the paths 
are presented.  We recommend that the most "average" path be 
used as the initial input to MBR3, and to present the outlier cases 
last 

5. EXPERIMENTAL RESULTS 
In this section, we compare path and box modeling with 
Euclidean distance, DTW and Gecko on the NASA valve data set.  
The purpose of the experiments is to show that it is possible to 
construct working anomaly detection systems based on path or 
box modeling for this data set. 

5.1 NASA Valve Data Set 
The NASA valve data set [5] consists of solenoid current 
measurements recorded on Marrotta series MPV-41 valves as they 
are remotely opened and closed in a laboratory.  These small 
valves are used to actuate larger, hydraulic valves that control the 
flow of fuel to the space shuttle engines.  Sensor readings were 
recorded using either a shunt resistor or a Hall effect sensor under 
varying conditions of voltage, temperature, or blockage or forced 
movement of the poppet to simulate fault conditions. 

There are several data subsets, of which two are suitable for 
testing anomaly detection systems.  These are the TEK and VT1 
(voltage test 1) sets.  The TEK set contains 4 normal and 8 
abnormal time series.  The four normal traces are labeled TEK 0 
through TEK 3, and vary slightly in the degree of background 
noise, duration of the "on" cycle, and average current during both 
the "on" and "off" portions.  The abnormal series (TEK 10 
through 17) were generated by restricting or forcing the 
movement of the poppet, which has the effect of changing the 
shape of the rising and falling edges of the waveform.  All of the 
waveforms consist of 1000 samples at a rate of 1 ms per sample.  
The trace begins at time -0.1s.  The valve is actuated at time 0, 
and deactivated at various times, typically around time 0.2s to 
0.3s.  The "on" current is approximately 4 in unspecified units.  
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The "off" current is approximately 0.  Measurements are 
quantized with a resolution of 0.04.  In our experiments we do not 
use TEK 4 through TEK 9 because these are partial waveforms 
with different sampling rates. 

Figure 9 shows three typical waveforms, TEK 0, 10, and 16.  TEK 
0 is normal.  The spikes on the rising and falling edges of the 
waveform are due to induced voltage caused by movement of the 
solenoid magnet during opening and closing of the poppet.  In 
TEK 10, the poppet is blocked, so these spikes are absent.  In 
TEK 16, the poppet is initially blocked, then released during the 
middle of the "on" cycle, causing a temporary dip in the current.  
It lacks a spike on the rising edge, but has a normal spike on the 
falling edge. 

 

Fig. 9.  Concatenation of TEK 0, 10, and 16. 

In addition to these differences, there are also differences 
unrelated to valve failure.  TEK 0, 1, and 15 have a 500 Hz signal 
with amplitude 0.24 as a background signal, visible in the first 
waveform as a double line.  TEK 0 also has a large 2 ms 
alternating current spike at the start of the falling edge (not visible 
at this scale) that is absent in the other traces. 

The second data set is the VT1 set.  This consists of 27 time series 
recorded under varying conditions of voltage, temperature, and 
poppet blockage.  Each series is 20,000 samples over a period of 2 
seconds.  In all cases the valve is actuated at time 0.5 sec. and 
deactivated at time 1.3 sec.  For each series there are two 
readings, the first with a shunt resistor and the second with a Hall 
effect sensor.  In our experiments we use the Hall effect 
measurement because it is less noisy but otherwise identical.  The 
"off" current is approximately 0 A.  The "on" current ranges from 
0.42 to 1.08 A, increasing with voltage and decreasing with 
temperature (due to increased resistance of the solenoid coil).  The 
voltage ranges from 14 V to 32 V in steps of 2 V at room 
temperature (21C or 22C).  At 4 V steps (16, 20, 24, 28, 32) there 
is an additional recording for high temperature (69C to 71C) and 
one recording each for a poppet impedance of 4.5 and 9 mils.  
There are three runs under normal conditions at 32 V, but only 
one run for all other test conditions.  The poppet fails to open at 
14 V and at 16 V at high temperature. 

In this paper we use the following notation to refer to VT1 traces: 
V for voltage, T for high temperature, i45 or i90 for 4.5 or 9.0 mil 
impedance.  For example, V24i45 denotes 24 V and 4.5 mil 
impedance.  V32T denotes 32 V and high temperature. 

5.2 Experimental Procedures and Evaluation 
Criteria 
We test each proposed anomaly detection algorithm on the TEK 
and data sets.  In each case we train the model on a proper subset 
of the training data, assign anomaly scores to all of the traces, and 
compare the normal and abnormal scores. 

We say that an abnormal trace is detected if it has a higher score 
than all of the normal traces, whether those traces were included 

in the training set or not.  We evaluate an anomaly detection 
system by the number of detections. 

We evaluate the following algorithms. 

• Euclidean model (equation (1)), with and without 
normalization. 

• DTW (equation (2)), with and without normalization. 

• Gecko with default parameters (tuned to TEK 0-1). 

• Path modeling with parameters tuned for best results. 

• Box modeling with parameters tuned for best results. 

The VT1 set does not label the data as normal or abnormal.  In 
our experiments we define "normal" to be the set of traces at low 
temperature with no impedance in the range 18 V to 30 V.  Thus, 
there are 7 normal traces: V18, V20, V22, V24, V26, V28 and 
V30.  We use the VT1 set to test the capability of Gecko, path and 
box modeling to generalize to unseen voltages given a subset of 
the normal voltages, and to detect temperature and impedance 
anomalies at unseen voltages.  This test arrangement is not 
suitable for testing Euclidean distance or DTW because they 
cannot generalize. 

By adjusting the threshold on the anomaly scores, different   
detection and false alarms rates can be obtained.  For this study, 
we choose a threshold that yields no false alarms.  That is, the 
threshold is set to be higher than the anomaly scores obtained 
from the normal traces (including those that are not used in 
training).  In practice this is reasonable because normal traces are 
readily available for tuning the threshold and unforeseen bad 
traces are not available. 

5.2.1 Euclidean Distance and DTW 
Euclidean modeling requires that the time series be aligned.  
Recall that only the rising edge of the TEK waveforms are 
aligned.  We test two solutions to the TEK alignment problem. 

• Test the rising edge only. 

• Manually align the falling edge. 

To test the rising edge only, the series are truncated at time 0.1s, 
at which point the "on" current has stabilized.  To align the falling 
edge, we insert copies of or remove samples at time 0.1s to align 
the falling edge to 0.2s and then truncate at time 0.78s. 

5.2.2 Gecko 
We used the default Gecko parameters, which were previously 
tuned for training on TEK 0 and TEK 1: a consecutive error 
threshold of 8, a consecutive next state threshold of 4, a 
smoothing window of size 2, and a derivative window of size 11 
(5 before and 5 after).  Although a Gecko model can be edited, we 
did not do so.   

Gecko is designed to give a pass/fail result.  The test data 
determines the transitions in a sequential state machine, which 
either goes to an accepting state or an error state.  However, the 
current version will also produce an anomaly score using a rather 
complex algorithm which we outline here; see [12] for details.  
The modification is to run as a "nondeterministic" state machine, 
in which the state is the set of segments for which the test point 
satisfies the rules.  When a point fails to satisfy the rules of either 
the current or next segment, that segment is removed from the set.  
When the set is empty, Gecko goes into a recovery mode in which 



it tests segments in an exponentially growing window starting at 
the last known matching segment.  Gecko outputs an anomaly 
score as a time series which increases by 1 at each step when the 
set is empty and decreases by 1/3 otherwise.  The final score is the 
sum of these outputs. 

5.2.3 Path and Box Modeling 
We used the same feature set for path and box modeling.  For 
features, we used the smoothed signal, and the smoothed first and 
second differences to create a 3-D feature space.  We chose the 
first and second differences because they are intuitive (each test 
point should match the level, slope, and curvature of a training 
point), but it is actually the time lag in the smoothing filters that 
makes the model work.  The smoothing is also necessary because 
the valve data is quite noisy.  We selected the filters based largely 
on visual inspection of the output, and found that additional 
filtering is needed after each difference operation. 

Specifically, we built the filters from two primitive elements, a 
two tap low pass infinite impulse response filter, F, and a two tap 
finite impulse response difference filter, D.  F is defined: 
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where T is the filter time constant and xi is the input at time i.  
F(x0) is initialized to 0.  D is defined: 
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To make a distance measure meaningful, each of the features 
should play a role.  In this experiment, we scale the three features 
to fit a unit cube, so that the training data always ranges from 0 to 
1.  Other approaches are certainly possible, such as normalizing to 
unit standard deviation, or specifying the scaling as parameters. 

Smoothing allows the output to be subsampled at the rate 1/T to 
speed processing with little loss of information.  We do this for all 
of our experiments. 

Figure 10 shows a 3-D view of a path model.  Our software allows 
the user to rotate the image with the mouse, making it easier to 
visualize.  In the figure, the three closely spaced loops are the 
trajectory path approximations of TEK 0, 2, and 3, each 
segmented by the path fitting algorithm with k = 25 segments.  
The outer loop of connected dots is the test path of TEK 16, 
which has not been approximated.  As can be seen, the points on 
TEK 16 lie far from the three training paths.  This model uses a 
filter time constant of T = 4 ms with subsampling at the same rate. 

 

 

Figure 10.  Path model of TEK 0, 2 and 3 with abnormal test 
path TEK 16. 

Figures 11 and 12 shows the equivalent box model with k = 25 
boxes.  Figure 11 shows a normal test trace, TEK 1, which closely 
follows the model.  Figure 12 shows the same abnormal test trace, 
TEK 16 as Figure 10, which again deviates from the model. 

 
 

Fig. 11.  Box model of TEK 0, 2, 3 with normal test path TEK 
1. 



 

Fig. 12.  Box model of TEK 0, 2, 3 with abnormal test path 
TEK 16. 

Path and box modeling allow testing with or without a sequential 
constraint.  The parameter R selects the number of path segments 
or boxes tested.  Segments/boxes are tested in the following order: 
current, next, previous, second from next, or chosen at random.  
Thus, R = 2 constrains the test data to proceed forward, R = 3 
allows backwards movement, R = 5 allows escape from local 
minima.  R = k tests all boxes or segments.  Note that test time 
complexity is O(Rpd) for path modeling and O(Rd) for box 
modeling, where p is the number of training paths and d is the 
number of features. 

5.3 TEK Results 
For the TEK data set, we label TEK 0 through 3 as normal and 
TEK 10 through 17 as abnormal.  Results are given in Table 1.  
Recall that an abnormal trace is detected if its score is higher than 
all of TEK 0-3.  The column Pct 1 gives the percent detected out 
of the 32 tests with one training trace (8 for each training trace).  
The column Pct 2 gives the percent detected out of the 48 tests 
with two training traces for Gecko and path modeling, or 96 tests 
for box modeling.  The number is higher for box modeling 
because the training order is significant.  N/A means not 
applicable. 

Table 1.  TEK test results using 1 or 2 training traces. 

Algorithm Pct 1 Pct 2 

Euclidean, raw, rising edge only 69 N/A 

Euclidean, normalized, rising edge only 66 N/A 

Euclidean, raw, edited full waveform 69 N/A 

DTW, not normalized 41 N/A 

DTW, normalized 44 N/A 

Gecko 41 65 

Path T=5ms, k=25, R=4 or k 100 100 

Box, T=5ms, k=20, R=2,3,4,5,k 100 100 

 

Table 2 lists the abnormal traces not detected by each algorithm 
when trained on one trace. 

Table 2.  TEK misses with one training trace 

Method TEK 0 TEK 1 TEK 2 TEK 3 

Euc raw rise 15,17 14,15 11,14, 
15,17 

15,17 

Euc norm rise 14,15,17 14,17 11,13,15 15,17 

Euc raw edit 11,15,17 12,14, 
15, 17 

11,14,17 14,15, 
17 

DTW raw 15 15 10-15,17 10-15, 
17 

DTW norm 15 15 10-15 10-15 

Gecko 17 17 10-17 10-17 

Path     

Box     

 

Table 3 lists the abnormal traces not detected when Gecko is 
trained on two traces.  The results only apply to Gecko because 
Euclidean distance and DTW allow only one training trace, and 
because path and box modeling do not miss any anomalies. 

Table 3.  Gecko misses with two training traces 

Training Missed detections among TEK 10-17 

TEK 0, 1 TEK 17 

TEK 0, 2  

TEK 0, 3  

TEK 1, 2  

TEK 1, 3 TEK 10-17 

TEK 2, 3 TEK 10-17 

 

To be fair, Gecko gives better results (83% detected) when trained 
on TEK 0, 1, or both, for which it was tuned.  The other missed 
detections are due mainly to a very high false alarm score 
assigned to TEK 0 when trained on TEK 2 or 3.  We did not 
attempt to tune Gecko for these other training sets. 

Path and box modeling generally give good results on the TEK 
data using a filter time constant of T from about 4 to 10 ms, 
subsample interval S 5 T, k 687�9  path segments or 20 boxes, 
whether testing with or without sequential constraints. 

5.4 VT1 Results 
As we mentioned, the VT1 set lacks baselines when used with 
only one training series, so it is not possible to test Euclidean and 
DTW on this data set.  Instead, we test the generalization 
capabilities of Gecko, path and box modeling.  To do this, we 
arbitrarily define the range 18 to 30 V, low temperature and no 
impedance as our normal set.  There are 7 traces in this range, 
allowing us to train on a subset and use the remainder as a 
baseline.  The 20 anomalies consist of low voltage, high voltage, 
high temperature and impedance. 

In this experiment we train on V18, V22, V26 and V30.  The 
order is irrelevant for Gecko and path modeling.  For box 
modeling the training order is V22, V18, V22, V26, V30, 
following the recommendation of starting in the middle and 
repeating the first trace (V22).  An abnormal trace is counted as 



detected if the score is higher than all normal traces including the 
three normal traces not used in training, V20, V24 and V28.  
Results are shown in Table 4. 

Table 4.  VT1 test results. 

Algorithm Pct 

Gecko 95% (misses V20i45) 

Path, T=5ms, k=20, R=k 100% 

Box, T=5ms, k=20, R=4 90% (misses V28T, V32T) 

Box as above but R=k 85% (misses V24T, V28T, V32T) 

 

The missed detections by box modeling are higher voltage, high 
temperature anomalies such as V32T.  These are hard to detect 
because the effects of high voltage and high temperature cancel 
out to produce a normal looking waveform. 

The same range of path and box model parameters that work well 
on the TEK data also work well on the VT1 data. 

6. CONCLUSIONS AND FUTURE WORK 
We introduced two time series anomaly detection algorithms that 
that are accurate, not opaque, editable, score each data point 
(online), efficient, and generalizable from multiple time series.  
We first extended feature trajectory path models by introducing an 
efficient but approximate method of testing whether a data point 
lies between the trained paths.  Then we eliminated the test time 
penalty for multiple paths by extending the MBR model to 
approximate the set of paths with a sequence of boxes in feature 
space.  A box model is not quite as accurate as a path model, but 
is faster. 

We evaluated our two methods (path and box modeling) against 
three existing methods (Euclidean, DTW, Gecko) with the shuttle 
valve data from NASA.  For the TEK data, compared to existing 
algorithms, our methods detected more abnormal traces.  For the 
VT1 data, our methods detected similar or more abnormal time 
series. 

We do not pretend that path or box models are appropriate for all 
time series.  Some work is required to tune parameters to a data 
set, but this is no different than most other anomaly detection 
systems.  However these models have the nice property that they 
can be visualized, which should aid in verifying their correctness 
or modifying them manually to add domain specific knowledge.  
We did not directly test this capability, however. 

In addition to the valve data, path and box modeling have been 
tested on spring-mass and battery charger simulations with good 
results.  Future work will include online testing to identify 
anomalous points within a time series, comparison with other 
algorithms such as CDM, and testing on other data sets, such as 
arrhythmia detection in ECG traces. 
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