
Trajectory Boundary Modeling of Time Series
for Anomaly Detection

Matthew V. Mahoney and Philip K. Chan
Computer Science Dept. Technical Report CS-2005-08

Florida Institute of Technology
Melbourne FL 32901

{mmahoney,pkc}@cs.fit.edu

ABSTRACT
We address the problem of online detection of unanticipated
modes of mechanical failure given a small set of time series under
normal conditions, with the requirement that the anomaly
detection model be manually verifiable and modifiable. We
specify a set of time series features, which are linear combinations
of the current and past values, and model the allowed feature
values by a sequence of minimal bounding boxes containing all of
the training trajectories. The model can be constructed in O(n log
n) time. If there are at most three features, the model can be
displayed graphically for verification, otherwise a table is used.
Test time is O(n) with a guaranteed upper bound on computation
time for each test point. The model compares favorably with
anomaly detection algorithms based on Euclidean distance and
dynamic time warping on the Space Shuttle Marrotta fuel control
valve data set.

Keywords
Time series anomaly detection, Machine health monitoring, Path
model, Box model, Rule Learning, NASA.

1. INTRODUCTION
In 1996 an Ariane 5 rocket self destructed during launch because
the primary and backup flight control units had identical software
errors. In each processor, a 64 bit floating point number was
assigned to a 16 bit integer, raising an unhandled Ada overflow
exception and halting it [1]. In 1999 the Mars Climate Orbiter
was lost when engineers sent navigation commands using English
units, while the spacecraft was expecting metric units [2]. In
2004, half of the data sent by the Huygens probe to Titan was lost
because one of two receiver channels on the Cassini mother craft
orbiting Saturn was not turned on due to a software error [14].

We are given the task of automating the detection of mechanical
failures in the Marrotta fuel control valves used in the space
shuttle. Because not all failure modes can be anticipated, this is
an ideal task for time series anomaly detection: train a model on

known good data, estimate the probability distribution, and assign
a likelihood-based score to new sensor data. However, NASA is
keenly aware of the consequences of software errors on a manned
spacecraft. Therefore a requirement of our project is that the
model be transparent. It is not enough that we demonstrate the
ability to detect anomalies caused by simulated failures in the lab.
Engineers also want to know what the modeler learned, and if
necessary, manually update the model using domain specific
knowledge. Unfortunately, many good time series anomaly
detection algorithms produce opaque models that are difficult to
analyze.

Our goal is to produce an anomaly detection system whose model
is transparent. In addition, testing must be online, fast, and
generalize when given more than one training series. By online,
we mean that each test point receives an anomaly score, with an
upper bound on computation time. We accept that there is no
"best" anomaly detection algorithm for all data, and that many
algorithms have ad-hoc parameters which are tuned to specific
data sets. Therefore our subgoal is to provide tools to make this
tuning easier on a given data set. The software that allows this
capability is not directly discussed in this paper.

Our approach is to offer a set of models based on feature
trajectory paths, because these models can be visualized in two or
three dimensions, or coded as rules which can be edited in higher
dimensions. A feature is defined as a linear combination of
present and past values (a digital filter), for example, a time
lagged copy, a derivative, or a smoothed signal. Thus, a feature is
also a time series. Given d features, a signal traces a path or
trajectory through d-dimensional feature space. The idea is that a
test series should follow a similar trajectory to that of a known
good training signal, or at least be near the training trajectory at
all times. An engineer may choose to approximate the trajectory
using straight line segments or a sequence of boxes for
performance reasons. There may also be more than one training
series, in which case we can construct a model which encloses all
of the trajectories.

Our main contributions include:

- we propose two anomaly detection methods based on
models that are transparent/editable, generalizable from
multiple training time series, efficient during testing, and
provide online scoring during testing;

- our empirical results from the NASA shuttle valve data
indicate that our methods can detect similar or more
abnormal time series than three existing methods.

The rest of the paper is organized as follows. In Section 2 we
discuss related work. In Sections 3 and 4 we introduce path and
box modeling respectively, along with efficient algorithms for
generating approximations. In Section 5 we present experimental
results with the NASA valve data set. In Section 6, we conclude.

2. RELATED WORK
One view of time series anomaly detection is that of a machine
learning or modeling task. Given a training set X of time series
with an unknown probability distribution P, the task is to estimate
P. Then given a new time series y, we assign an anomaly score
inversely related to P(y). Ypma [15] surveys some important
techniques, such as Bayesian models, neural networks, and
support vector machines, and applications to the detection of
failures in rotating machinery using vibration sensors

Dasgupta and Forrest [4] uses an immunological approach. A
time series is quantized and chopped into fixed length strings of
several symbols. A random set of strings is generated. Any
strings which match the training data are removed. The remaining
strings form an anomaly model. If a test signal matches any
strings in the model, then an alarm is signaled. This technique
was shown to detect simulated failures in a milling machine.

Keogh approaches the problem as that of finding a dissimilarity
function D(x, y) between a (normal or good) training series x and
a test series y [7]. Viewed this way, we avail ourselves of the vast
body of research in related data mining topics such as
classification, clustering, and search. The simplest measure is
Euclidean distance:

 ∑
=

−=
N

i
iiEUCLID yxyxD

1

22)(),((1)

where both series have length N and x1, x2, ..., xN are the N values
of x. In some applications, we normalize x and y to have zero
mean and unit standard deviation. Two disadvantages of this
measure are that the series must have equal length and it is
sensitive to shifts in time. Dynamic time warping (DTW)
overcomes these problems by finding the minimum Euclidean
distance when the data points of both series may be shifted
arbitrarily in time (but maintained in order). DTW is defined
recursively as follows:

),(),(11
nm yxDyxDTW = (2)

where

)],(),,(),,(min[

)(),(
1

1
1

1
1

111
1

1

2
11

−−−−+

−=
jijiji

ji
ji

yxDyxDyxD

yxyxD

and
ix1 means the sequence x1, x2, ..., xi and D(x, y) is infinite if

either x or y is empty. A warp path is the set of (i,j) from (1,1) to
(m,n) such that if all xi are aligned with yj by shifting them in time,
then DTW(x, y) = DEUCLID(x, y).

A disadvantage of DTW is that computation time is O(mn).
Various fast approximations have been proposed. For example,
Salvador [10] describes FastDTW, an approximation to DTW in
which the warp path is estimated as successively higher

resolutions and the search is constrained within a radius of the
previous estimate.

Many other distance measures have been proposed. In an
exhaustive test, Keogh and others at UCR implemented about 50
proposed distance measures published over a 10 year period and
evaluated them on a variety of data mining tasks on a large corpus
of time series from diverse domains [7]. The rather surprising
finding is that while many of the proposed measures improve over
existing techniques on the specific data sets on which they were
tested, none did better than normalized Euclidean distance over
the entire data set.

Keogh also proposes a very general method which does
outperform Euclidean distance on this diverse set: a compression
dissimilarity measure, or CDM [8], defined as:

)()(

)(
),(

yCxC

xyC
yxCDM

+
=

where C(x) is the compressed size of a symbolic (SAX)
representation of x, saved as a file and compressed with an off-
the-shelf compressor such as gzip. The idea is that CDM
estimates the information shared by x and y. If the two series are
identical, then a compressor can store y as a reference to x, so
C(xy) � C(x) and CDM(x, y) ����� ���	��
 x and y are unrelated, then
the compressor cannot use knowledge from x to model y, so C(xy) � C(x) + C(y) and CDM(x, y) ����
2.1 Feature Trajectory Models
Some proven and broadly applicable techniques such as CDM and
neural networks suffer from opacity. It is not at all clear from the
state of a data compression program or the trained weights of a
neural network exactly what has been learned. Our work is based
on trajectory modeling in feature space as described by Povinelli
et. al. [9]. Povinelli extracted d features of a time series, which
are simply time-lagged copies of the data delayed by t, 2t, 3t, ...
dt, and d and t are parameters. The density in d-dimensional
feature space is modeled by clustering the training points and
using a Gaussian mixture model to approximate the clusters. A
test point is evaluated by its distance (in standard deviations) from
the nearest cluster. The model was shown to classify phonemes in
speech, detect arrhythmias in ECG traces, and detect mechanical
failures in a motor simulation.

Generating a Gaussian mixture model requires a slow, iterative
process. Vlachos et. al. [13] describe a minimum bounding
rectangle (MBR) clustering algorithm that runs in O(n log n) time
that is nearly identical to the one used in our system. A sequence
of n points in feature space is first approximated by a sequence of
n – 1 boxes, each enclosing a pair of adjacent points. Then pairs
of adjacent boxes are merged by greedily selecting the pair that
minimizes the increase in volume after merging. The algorithm
for modeling the sequence of n points x1, x2, ..., xn using k boxes is
as follows:

 MBR(x1...n, k)

 For each i in [1, n-1] do

 xi := merge(xi, xi+1)

 Delete xn

 While n > k do

 Find i minimizing � ���

 V(i, i+1) – V(i) – V(i+1)

 (minimize increase in volume)

 x i : = merge(x i , x i+1)

 Delete x i+1

 Return x = x 1...k

Fig. 1. MBR Algorithm.

In the MBR algorithm, merge(x, y) means to replace points
or boxes x and y with the smallest box that encloses both, V(i)
means the volume of xi, and V(i, i+1) means the volume of
merge(x i , x i+1) . � V is the increase in volume that would
result from merging. Deleting an element xi implicitly decrements
n.

Fig. 2. Merging boxes B and C in the MBR algorithm.

MBR can run in O(n log n) time by storing the boxes in a heap ������������� ��! " V, the increase in volume that would result from
merging it with the next box. In a heap, the elements are stored in
a balanced binary tree such that at each node the parent is smaller
than the two children. Each node xi also stores pointers to xi-1 and
xi+1 to form a doubly linked list. When the box at the root of the
heap is merged with its neighbor, the two old boxes are removed
from the heap, the merg #�$&%�'�() *+) ,-*.#�/�0 #�$�132�,�$&4 V of the two
neighbors of the new box are updated, requiring them to be sifted
up or down the heap. Each of the heap operations takes O(log n)
time.

2.2 Gecko
In our earlier work on the NASA valve data [5], we used the
Gecko algorithm [11] to create a bounded rectangle model. The
Gecko model is more complex and less eff icient than MBR in the
training phase, but our interest is in the correctness of the model
and eff iciency in the testing phase. Gecko uses 3 dimensions of
feature space: the original signal and the first and second
derivatives, each of which is smoothed by a low pass filter. The
trajectory is then segmented in feature space using a bottom-up
clustering algorithm. Next, RIPPER [3] is used to generate a
minimal rule set which separates the clusters. Each rule

corresponds to one surface of one box, for example "if segment =
3 then feature2 < 2.5". It is possible to define one segment by
several boxes, and some boxes may be open on some sides.
Gecko, li ke MBR, satisfies our criteria that the model be
comprehensible. The feature space can either be visualized in
three dimensions, or expressed as a set of if...then rules.

During testing, a state machine is constructed such that each state
corresponds to one trajectory segment, plus one error state. A
transition to the next state occurs if the number of consecutive
points satisfying the rules for the new state (falli ng within one of
the bounding boxes) exceeds a threshold. An error occurs if the
number of consecutive points satisfying neither the current nor
next state exceeds a second threshold. Both thresholds are user
defined parameters.

Gecko has been extended to handle multiple training series. First,
the series are aligned by DTW or FastDTW. Next, the aligned
series are averaged. Then the averaged series is segmented as
before. Finally RIPPER is applied to separate the points in the
original series that align with different segments in the merged
series.

3. PATH MODELING
Our work in time series modeling falls between two extremes. At
one end, we have a single training series, and we compute the
distance from it using some function. At the other extreme, we
have a large set of training sequences (or a single series with
thousands of cycles) which we model using a probabilit y
distribution in a feature space and then estimate the probabilit y of
the test series. The NASA valve data set is one example of a data
set that falls in the middle. We have one to four "normal" training
series from which we generalize to a model. Our approach is to
construct a model that encloses all of the training trajectories and
the space "between" them.

We describe two representations that approximate this space, path
modeling and box modeling. For path modeling, we store the
training trajectories and test whether the sensor data falls between
or near these paths. For box modeling, we construct a sequence
of boxes enclosing all of the training paths, and test whether a test
point falls within or near these boxes. We describe path modeling
in this section, and box modeling in Section 4.

For the case of a single training path x in d-dimensional feature
space, and a point yi in a test series y, we could assign an anomaly
score D(x, yj) equal to the square of the Euclidean distance
between yj and the nearest point in x.

 ∑
=∈

−=
d

k
jkik

ni
j yxyxD

1

2

],1[
)(min),((3)

where xik denotes the value of the k'th feature of the i 'th point in x.
This measure would have two problems. First it is ineff icient
because the testing time would be O(dn) per test point (or O(n)
best case if we test the nearest points first). Second, the score
would be nonzero even for the case of a test path following the
training path exactly, because x is sampled and yi could fall
between the sample points in x. Addressing the latter problem by
increasing the number of samples would make the first problem
worse.

Our approach is to model x using a piecewise linear
approximation of k – 1 straight line segments defined by k

A

B

C

D

A

B+C

D

vertices, where k is a parameter. Then we define D(x, yj) to be the
square of the Euclidean distance between yj and the nearest point
in the approximation of x. The computation time is now O(kd),
where k << n. Computing the distance between a point and a line
segment is more complex than computing the distance between
two points, but is still O(d).

Depending on the domain, we might require that the test signal
follow the same trajectory as the training data in the same order.
This restriction, which we call sequential testing, is used by
Gecko and is appropriate when we require the training and test
series to have the same overall shape, while still allowing time
shifts. Suppose that the line segment (xi, xi+1) is the closest
segment to test point yj. Then it is only necessary to test the next
point, yj+1 by computing the distance to the current and next
segments, (xi, xi+1) and (xi+1, xi+1). We maintain i as a state
variable and set it to the index of the closest segment. The time to
compute D(x, yj) is now O(d). Other variations are possible, such
as also testing the previous segment to allow backwards
movement.

Path modeling can be extended to multiple training series in a
number of ways. For example, we could use 1-nearest neighbor
modeling, in which the anomaly score is the square of the distance
to the nearest path. If our training set is limited, it may be
desirable to test whether a point lies "between" the training paths.
Depending on how we define "between", this can lead to diff icult
calculations. We use the following definition, which is an easy to
compute approximation. Given p paths and a test point yj, we find
the nearest point on each path, and then find the smallest box that
will enclose all p nearest points. If yj is inside this box, its
anomaly score is zero. Otherwise its score is the square of the
Euclidean distance to the box (Fig. 3). For a single path, this
reduces to finding the minimum Euclidean distance from the test
point to the path.

Fig. 3. Computing distance to multiple paths. Point A is
inside the box enclosing the three points nearest to it, so its
score is 0. Point B is outside the box enclosing the three points
nearest to it, so its score is the distance squared to that box.

The test time complexity of multiple path modeling is O(pkd)
given p paths, k segments per path, d dimensions and stateless
modeling (testing all path segments). Run time improves to O(pd)
using sequential testing and maintaining a nearest segment state
for each path. Later in Section 4, we will eliminate the O(p)
penalty by approximating the training paths with a sequence of
boxes that enclose them.

3.1 Path Model Generation
To approximate x with k – 1 line segments defined by k vertices,
we use a greedy bottom-up approach. The vertex removal
algorithm removes n – k vertices. Referring to Figure 4, the effect
of removing vertex B in the sequence ABC is to replace the two
line segments AB and BC with the line segment AC. This induces
an error, which we define to be |AC||BB'|2, where |AC| is the
length of segment AC, and |BB'| is the distance from B to B', the
nearest point on segment AC. The justification for this definition
is that if we were to test the training data on itself, then the
measured anomaly score would be proportional to our proposed
measure, while the true anomaly score should be zero.

Fig. 4. Removing vertex B induces an error approximated by
|AC||BB'|2

An improvement to vertex removal is path fitting, in which, after
removing B, we shift A and C a distance of |BB'|/4 in the direction
from B' to B (Fig. 4). If the path is smooth with a gradual curve,
then this has the effect of reducing the error because the new
segment A'C' is a better fit to ABC than the original AC in the
vertex removal algorithm. An optimal shift for AC alone would
be |BB'|/2, but this would induce too much error in the segments
adjacent to A'C'.

Fig. 5. Path fitt ing. After removing vertex B, A and C are
shifted 1/4 the distance from B' to B to reduce the induced
error .

The algorithm for path fitting is given in Fig. 6. The input is the
sequence of n vectors xi...xn in d-dimensional feature space and
the desired number of vertices, k. The algorithm runs in O(n log
n) time by storing the vertices in a doubly linked heap, as in the
MBR algorithm. The vertices are sorted by error with the smallest
at the root. When a vertex is removed, the stored errors of the two
nearest neighbors on each side are updated, and they are sifted up
or down to restore the heap property. The vertex removal
algorithm is identical to path fitting except that the shift is zero

 B

 A' C'

 A B' C A

 B

 B

 A B' C

and only one neighbor on each side of the removed vertex needs
to be updated.

 path_fit(x1... xn , k)

 while n > k do

 find i minimizing error(xi)

 b := point on (xi-1,xi+1) nearest xi

 shift := (xi – b)/4

 xi-1 := xi-1 + shift

 xi+1 := xi+1 + shift

 (xi... xn-1) := (xi+1... xn)

 n : = n – 1

 return (x1... xk)

Fig. 6. Path fitting algorithm

4. BOX MODELING
Building a box model follows the MBR algorithm described in
Section 2 with two modifications. First, instead of merging two
boxes into one, we merge three boxes into two. Second, we
model multiple paths by first constructing a box model of one
path, then expanding the boxes to enclose the other paths. In
addition, testing differs from MBR in that the test series is not
also converted to a box model. This allows us to assign an
anomaly score to each test point online.

Box merging is shown in Fig. 7. We first find the box whose
removal results in the smallest increase in volume (ignoring
overlap between nonadjacent boxes). Then to remove the box, we
expand the two neighboring boxes just enough to include the
center of the removed box. We call this algorithm MBR3.

Fig. 7. When box B is removed in MBR3, boxes A and C are
grown to enclose the center of B.

The intent of MBR3 is to produce a more uniform distribution of
box sizes than MBR. (However we did not test this, nor claim
that we succeeded). However MBR3 has the disadvantage that
the original path is no longer guaranteed to be enclosed by the
new boxes. This occurs when the original path does not pass
exactly through the center of the removed box.

The second modification is to expand the k boxes that
approximate the first training path to contain all of the remaining
p - 1 paths. This is done in two passes for each path. First, we

label each point in the path with the box that is closest to it. In
the second pass we expand the boxes to enclose the points with
matching labels. We do this one path at a time to reduce the space
complexity between passes from O(pk) to O(k). Two passes are
required because consecutive points in a path tend to be close
together, which could result in a pathological model in which a
single box grows in small steps to enclose the entire data set. The
algorithm is given in Fig. 8..

 box_expand(x 1...x k, y 1...y n)

 (x: sequence of k boxes)

 (y: sequence of n points)

 (output: x expanded to enclose y)

 for each y j

 l j = i: x i is closest box to y j

 for each y j

 expand x lj to enclose y i

Fig. 8. Expanding box sequence x to enclose path y.

We recommended that the first path (the input to MBR3) be
included in the box expansion step, even if it is the only path.
This solves the problem mentioned earlier in which the path may
lie slightly outside the box model.

Note that the box model depends on the order in which the paths
are presented. We recommend that the most "average" path be
used as the initial input to MBR3, and to present the outlier cases
last

5. EXPERIMENTAL RESULTS
In this section, we compare path and box modeling with
Euclidean distance, DTW and Gecko on the NASA valve data set.
The purpose of the experiments is to show that it is possible to
construct working anomaly detection systems based on path or
box modeling for this data set.

5.1 NASA Valve Data Set
The NASA valve data set [5] consists of solenoid current
measurements recorded on Marrotta series MPV-41 valves as they
are remotely opened and closed in a laboratory. These small
valves are used to actuate larger, hydraulic valves that control the
flow of fuel to the space shuttle engines. Sensor readings were
recorded using either a shunt resistor or a Hall effect sensor under
varying conditions of voltage, temperature, or blockage or forced
movement of the poppet to simulate fault conditions.

There are several data subsets, of which two are suitable for
testing anomaly detection systems. These are the TEK and VT1
(voltage test 1) sets. The TEK set contains 4 normal and 8
abnormal time series. The four normal traces are labeled TEK 0
through TEK 3, and vary slightly in the degree of background
noise, duration of the "on" cycle, and average current during both
the "on" and "off" portions. The abnormal series (TEK 10
through 17) were generated by restricting or forcing the
movement of the poppet, which has the effect of changing the
shape of the rising and falling edges of the waveform. All of the
waveforms consist of 1000 samples at a rate of 1 ms per sample.
The trace begins at time -0.1s. The valve is actuated at time 0,
and deactivated at various times, typically around time 0.2s to
0.3s. The "on" current is approximately 4 in unspecified units.

A

B

C

 A

 C

The "off" current is approximately 0. Measurements are
quantized with a resolution of 0.04. In our experiments we do not
use TEK 4 through TEK 9 because these are partial waveforms
with different sampling rates.

Figure 9 shows three typical waveforms, TEK 0, 10, and 16. TEK
0 is normal. The spikes on the rising and falling edges of the
waveform are due to induced voltage caused by movement of the
solenoid magnet during opening and closing of the poppet. In
TEK 10, the poppet is blocked, so these spikes are absent. In
TEK 16, the poppet is initially blocked, then released during the
middle of the "on" cycle, causing a temporary dip in the current.
It lacks a spike on the rising edge, but has a normal spike on the
falling edge.

Fig. 9. Concatenation of TEK 0, 10, and 16.

In addition to these differences, there are also differences
unrelated to valve failure. TEK 0, 1, and 15 have a 500 Hz signal
with amplitude 0.24 as a background signal, visible in the first
waveform as a double line. TEK 0 also has a large 2 ms
alternating current spike at the start of the falling edge (not visible
at this scale) that is absent in the other traces.

The second data set is the VT1 set. This consists of 27 time series
recorded under varying conditions of voltage, temperature, and
poppet blockage. Each series is 20,000 samples over a period of 2
seconds. In all cases the valve is actuated at time 0.5 sec. and
deactivated at time 1.3 sec. For each series there are two
readings, the first with a shunt resistor and the second with a Hall
effect sensor. In our experiments we use the Hall effect
measurement because it is less noisy but otherwise identical. The
"off" current is approximately 0 A. The "on" current ranges from
0.42 to 1.08 A, increasing with voltage and decreasing with
temperature (due to increased resistance of the solenoid coil). The
voltage ranges from 14 V to 32 V in steps of 2 V at room
temperature (21C or 22C). At 4 V steps (16, 20, 24, 28, 32) there
is an additional recording for high temperature (69C to 71C) and
one recording each for a poppet impedance of 4.5 and 9 mils.
There are three runs under normal conditions at 32 V, but only
one run for all other test conditions. The poppet fails to open at
14 V and at 16 V at high temperature.

In this paper we use the following notation to refer to VT1 traces:
V for voltage, T for high temperature, i45 or i90 for 4.5 or 9.0 mil
impedance. For example, V24i45 denotes 24 V and 4.5 mil
impedance. V32T denotes 32 V and high temperature.

5.2 Experimental Procedures and Evaluation
Criteria
We test each proposed anomaly detection algorithm on the TEK
and data sets. In each case we train the model on a proper subset
of the training data, assign anomaly scores to all of the traces, and
compare the normal and abnormal scores.

We say that an abnormal trace is detected if it has a higher score
than all of the normal traces, whether those traces were included

in the training set or not. We evaluate an anomaly detection
system by the number of detections.

We evaluate the following algorithms.

• Euclidean model (equation (1)), with and without
normalization.

• DTW (equation (2)), with and without normalization.

• Gecko with default parameters (tuned to TEK 0-1).

• Path modeling with parameters tuned for best results.

• Box modeling with parameters tuned for best results.

The VT1 set does not label the data as normal or abnormal. In
our experiments we define "normal" to be the set of traces at low
temperature with no impedance in the range 18 V to 30 V. Thus,
there are 7 normal traces: V18, V20, V22, V24, V26, V28 and
V30. We use the VT1 set to test the capability of Gecko, path and
box modeling to generalize to unseen voltages given a subset of
the normal voltages, and to detect temperature and impedance
anomalies at unseen voltages. This test arrangement is not
suitable for testing Euclidean distance or DTW because they
cannot generalize.

By adjusting the threshold on the anomaly scores, different
detection and false alarms rates can be obtained. For this study,
we choose a threshold that yields no false alarms. That is, the
threshold is set to be higher than the anomaly scores obtained
from the normal traces (including those that are not used in
training). In practice this is reasonable because normal traces are
readily available for tuning the threshold and unforeseen bad
traces are not available.

5.2.1 Euclidean Distance and DTW
Euclidean modeling requires that the time series be aligned.
Recall that only the rising edge of the TEK waveforms are
aligned. We test two solutions to the TEK alignment problem.

• Test the rising edge only.

• Manually align the falling edge.

To test the rising edge only, the series are truncated at time 0.1s,
at which point the "on" current has stabilized. To align the falling
edge, we insert copies of or remove samples at time 0.1s to align
the falling edge to 0.2s and then truncate at time 0.78s.

5.2.2 Gecko
We used the default Gecko parameters, which were previously
tuned for training on TEK 0 and TEK 1: a consecutive error
threshold of 8, a consecutive next state threshold of 4, a
smoothing window of size 2, and a derivative window of size 11
(5 before and 5 after). Although a Gecko model can be edited, we
did not do so.

Gecko is designed to give a pass/fail result. The test data
determines the transitions in a sequential state machine, which
either goes to an accepting state or an error state. However, the
current version will also produce an anomaly score using a rather
complex algorithm which we outline here; see [12] for details.
The modification is to run as a "nondeterministic" state machine,
in which the state is the set of segments for which the test point
satisfies the rules. When a point fails to satisfy the rules of either
the current or next segment, that segment is removed from the set.
When the set is empty, Gecko goes into a recovery mode in which

it tests segments in an exponentially growing window starting at
the last known matching segment. Gecko outputs an anomaly
score as a time series which increases by 1 at each step when the
set is empty and decreases by 1/3 otherwise. The final score is the
sum of these outputs.

5.2.3 Path and Box Modeling
We used the same feature set for path and box modeling. For
features, we used the smoothed signal, and the smoothed first and
second differences to create a 3-D feature space. We chose the
first and second differences because they are intuitive (each test
point should match the level, slope, and curvature of a training
point), but it is actually the time lag in the smoothing filters that
makes the model work. The smoothing is also necessary because
the valve data is quite noisy. We selected the filters based largely
on visual inspection of the output, and found that additional
filtering is needed after each difference operation.

Specifically, we built the filters from two primitive elements, a
two tap low pass infinite impulse response filter, F, and a two tap
finite impulse response difference filter, D. F is defined:

T

xxFT
xF ii

i

+−= −)()1(
)(1

where T is the filter time constant and xi is the input at time i.
F(x0) is initialized to 0. D is defined:

 1)(−−= iii xxxD

The three features are:

)))_(((_2

)))(((_

))((

currentdDFFcurrentd

currentDFFcurrentd

xFFcurrent

=
=

=

To make a distance measure meaningful, each of the features
should play a role. In this experiment, we scale the three features
to fit a unit cube, so that the training data always ranges from 0 to
1. Other approaches are certainly possible, such as normalizing to
unit standard deviation, or specifying the scaling as parameters.

Smoothing allows the output to be subsampled at the rate 1/T to
speed processing with little loss of information. We do this for all
of our experiments.

Figure 10 shows a 3-D view of a path model. Our software allows
the user to rotate the image with the mouse, making it easier to
visualize. In the figure, the three closely spaced loops are the
trajectory path approximations of TEK 0, 2, and 3, each
segmented by the path fitting algorithm with k = 25 segments.
The outer loop of connected dots is the test path of TEK 16,
which has not been approximated. As can be seen, the points on
TEK 16 lie far from the three training paths. This model uses a
filter time constant of T = 4 ms with subsampling at the same rate.

Figure 10. Path model of TEK 0, 2 and 3 with abnormal test
path TEK 16.

Figures 11 and 12 shows the equivalent box model with k = 25
boxes. Figure 11 shows a normal test trace, TEK 1, which closely
follows the model. Figure 12 shows the same abnormal test trace,
TEK 16 as Figure 10, which again deviates from the model.

Fig. 11. Box model of TEK 0, 2, 3 with normal test path TEK
1.

Fig. 12. Box model of TEK 0, 2, 3 with abnormal test path
TEK 16.

Path and box modeling allow testing with or without a sequential
constraint. The parameter R selects the number of path segments
or boxes tested. Segments/boxes are tested in the following order:
current, next, previous, second from next, or chosen at random.
Thus, R = 2 constrains the test data to proceed forward, R = 3
allows backwards movement, R = 5 allows escape from local
minima. R = k tests all boxes or segments. Note that test time
complexity is O(Rpd) for path modeling and O(Rd) for box
modeling, where p is the number of training paths and d is the
number of features.

5.3 TEK Results
For the TEK data set, we label TEK 0 through 3 as normal and
TEK 10 through 17 as abnormal. Results are given in Table 1.
Recall that an abnormal trace is detected if its score is higher than
all of TEK 0-3. The column Pct 1 gives the percent detected out
of the 32 tests with one training trace (8 for each training trace).
The column Pct 2 gives the percent detected out of the 48 tests
with two training traces for Gecko and path modeling, or 96 tests
for box modeling. The number is higher for box modeling
because the training order is significant. N/A means not
applicable.

Table 1. TEK test results using 1 or 2 training traces.

Algorithm Pct 1 Pct 2

Euclidean, raw, rising edge only 69 N/A

Euclidean, normalized, rising edge only 66 N/A

Euclidean, raw, edited full waveform 69 N/A

DTW, not normalized 41 N/A

DTW, normalized 44 N/A

Gecko 41 65

Path T=5ms, k=25, R=4 or k 100 100

Box, T=5ms, k=20, R=2,3,4,5,k 100 100

Table 2 lists the abnormal traces not detected by each algorithm
when trained on one trace.

Table 2. TEK misses with one training trace

Method TEK 0 TEK 1 TEK 2 TEK 3

Euc raw rise 15,17 14,15 11,14,
15,17

15,17

Euc norm rise 14,15,17 14,17 11,13,15 15,17

Euc raw edit 11,15,17 12,14,
15, 17

11,14,17 14,15,
17

DTW raw 15 15 10-15,17 10-15,
17

DTW norm 15 15 10-15 10-15

Gecko 17 17 10-17 10-17

Path

Box

Table 3 lists the abnormal traces not detected when Gecko is
trained on two traces. The results only apply to Gecko because
Euclidean distance and DTW allow only one training trace, and
because path and box modeling do not miss any anomalies.

Table 3. Gecko misses with two training traces

Training Missed detections among TEK 10-17

TEK 0, 1 TEK 17

TEK 0, 2

TEK 0, 3

TEK 1, 2

TEK 1, 3 TEK 10-17

TEK 2, 3 TEK 10-17

To be fair, Gecko gives better results (83% detected) when trained
on TEK 0, 1, or both, for which it was tuned. The other missed
detections are due mainly to a very high false alarm score
assigned to TEK 0 when trained on TEK 2 or 3. We did not
attempt to tune Gecko for these other training sets.

Path and box modeling generally give good results on the TEK
data using a filter time constant of T from about 4 to 10 ms,
subsample interval S 5 T, k 687�9 path segments or 20 boxes,
whether testing with or without sequential constraints.

5.4 VT1 Results
As we mentioned, the VT1 set lacks baselines when used with
only one training series, so it is not possible to test Euclidean and
DTW on this data set. Instead, we test the generalization
capabilities of Gecko, path and box modeling. To do this, we
arbitrarily define the range 18 to 30 V, low temperature and no
impedance as our normal set. There are 7 traces in this range,
allowing us to train on a subset and use the remainder as a
baseline. The 20 anomalies consist of low voltage, high voltage,
high temperature and impedance.

In this experiment we train on V18, V22, V26 and V30. The
order is irrelevant for Gecko and path modeling. For box
modeling the training order is V22, V18, V22, V26, V30,
following the recommendation of starting in the middle and
repeating the first trace (V22). An abnormal trace is counted as

detected if the score is higher than all normal traces including the
three normal traces not used in training, V20, V24 and V28.
Results are shown in Table 4.

Table 4. VT1 test results.

Algorithm Pct

Gecko 95% (misses V20i45)

Path, T=5ms, k=20, R=k 100%

Box, T=5ms, k=20, R=4 90% (misses V28T, V32T)

Box as above but R=k 85% (misses V24T, V28T, V32T)

The missed detections by box modeling are higher voltage, high
temperature anomalies such as V32T. These are hard to detect
because the effects of high voltage and high temperature cancel
out to produce a normal looking waveform.

The same range of path and box model parameters that work well
on the TEK data also work well on the VT1 data.

6. CONCLUSIONS AND FUTURE WORK
We introduced two time series anomaly detection algorithms that
that are accurate, not opaque, editable, score each data point
(online), efficient, and generalizable from multiple time series.
We first extended feature trajectory path models by introducing an
efficient but approximate method of testing whether a data point
lies between the trained paths. Then we eliminated the test time
penalty for multiple paths by extending the MBR model to
approximate the set of paths with a sequence of boxes in feature
space. A box model is not quite as accurate as a path model, but
is faster.

We evaluated our two methods (path and box modeling) against
three existing methods (Euclidean, DTW, Gecko) with the shuttle
valve data from NASA. For the TEK data, compared to existing
algorithms, our methods detected more abnormal traces. For the
VT1 data, our methods detected similar or more abnormal time
series.

We do not pretend that path or box models are appropriate for all
time series. Some work is required to tune parameters to a data
set, but this is no different than most other anomaly detection
systems. However these models have the nice property that they
can be visualized, which should aid in verifying their correctness
or modifying them manually to add domain specific knowledge.
We did not directly test this capability, however.

In addition to the valve data, path and box modeling have been
tested on spring-mass and battery charger simulations with good
results. Future work will include online testing to identify
anomalous points within a time series, comparison with other
algorithms such as CDM, and testing on other data sets, such as
arrhythmia detection in ECG traces.

7. ACKNOWLEDGMENTS
This work is supported by NASA (NAS10-02044). Bob Ferrell
and Steve Santuro at NASA provided the valve data set. Walter
Schefele at ICS developed the visualization software used in this
project and provided screenshots for this paper. Stan Salvador

and Chris Tanner at Florida Tech. provided test results for Gecko.
Eamonn Keogh of UCR provided helpful comments on this paper.

8. REFERENCES
[1] "Inquiry Board Traces Ariane 5 Failure to Overflow Error",

SIAM News, 29 (8), October 1996,
http://www.siam.org/siamnews/general/ariane.htm

[2] Greg Clark, Alex Canizares, "Navigation Team Was
Unfamiliar with Mars Climate Orbiter", space.com, Nov. 10,
1999,
http://www.space.com/news/mco_report-b_991110.html

[3] W. Cohen, "Fast Effective Rule Induction", Proc. ICML,
1995.

[4] D. Dasgupta and S. Forrest, Artificial Immune Systems in
Industrial Applications, Proc. International Conference on
Intelligent Processing and Manufacturing Material (IPMM),
Honolulu, HI, 1999.

[5] B. Ferrell, S. Santuro, NASA Shuttle Valve Data.
http://www.cs.fit.edu/~pkc/nasa/data/ (2005)

[6] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras,
Dimitrios Gunopulos, "Efficient Indexing of Spatiotemporal
Objects". EDBT 2002: 251-268.

[7] E. Keogh and S. Kasetty, On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical
Demonstration, Proc. Proc. SIGKDD, 2002.

[8] E. Keogh, S. Lonardi, C. A. Ratanamahatana, Towards
Parameter-Free Data Mining, Proc. ACM SIGKDD, 2004.

[9] Richard J. Povinelli, Michael T. Johnson, Andrew C.
Lindgren, Jinjin Ye, "Time Series Classification using
Gaussian Mixture Models of Reconstructed Phase Spaces,"
IEEE Transactions on Knowledge and Data Engineering, 16
(6), June 2004, pp. 779-783.

[10] S. Salvador, P. Chan, "FastDTW: Toward Accurate Dynamic
Time Warping in Linear Time and Space", KDD Workshop
on Mining Temporal and Sequential Data, 2004.

[11] S. Salvador, P. Chan, J. Brodie, Learning States and Rules
for Time Series Anomaly Detection, Proc. 17th Intl. FLAIRS
Conf, pp. 300-305, 2004.

[12] Stan Salvador, "Learning States for Detecting Anomalies in
Time Series", MS Thesis, Florida Tech, 2004.

[13] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos,. & E.
Keogh, "Indexing Multi-Dimensional Time-Series with
Support for Multiple Distance Measures", Proc. SIGKDD,
2003

[14] James Watson, "Veteran software makes it to Titan",
Personal Computer World, Jan. 26, 2005,
http://www.pcw.co.uk/analysis/1160783

[15] A. Ypma, "Learning Methods for Machine Vibration
Analysis and Health Monitoring", Dissertation, Delft
University of Technology, Netherlands, 2001.

