

Mindshare: a Collaborative Peer-to-Peer System for Small Groups

by

Gareth Charles Farrington

Bachelor of Science
in Computer Science

Florida Institute of Technology
2002

A thesis
submitted to the College of Engineering at

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Software Engineering

Melbourne, Florida
May, 2005

Technical Report
CS-2005-10

The undersigned committee,

having examined the attached thesis,
”Mindshare: a Collaborative Peer-to-Peer System for Small Groups”,

by
Gareth Charles Farrington

hereby indicates its unanimous approval.

William H. Allen, Ph. D
Assistant Professor, Computer Sciences
Major Advisor

Walter P. Bond, Ph. D
Associate Professor, Computer Sciences
Committee Member

Mohammad Shahsavari, Ph. D
Associate Professor, Computer Engineering
Committee Member

William Shoaff, Ph. D
Associate Professor, Computer Sciences
Department Head

 ii

Abstract

Title:

Mindshare: a Collaborative Peer-to-Peer System for Small Groups

Author:

Gareth Charles Farrington

Major Advisor:

William H. Allen, Ph.D.

We present Mindshare, a system for small group collaboration using Peer

to Peer networking technology. This paper details the motivation behind its design,

how it benefits users and details of its construction and operation. The solution

focuses on the needs of small collaborating groups with limited computing

experience and resources. Mindshare allows the group to share an unlimited

number of files and visualize them in unified hierarchical file system. Mindshare

synchronizes the files between users without user input. Its robust design allows

files to be shared even when the owner is offline and allows users to work with files

from the group while not connected.

 iii

Table of Contents

Table of Contents ... iii

List of Figures... vi

Acknowledgements.. vii

Chapter 1 Introduction..1
1.1 Collaboration Scenarios ...2

1.1.1 A Group Photo Album ..2
1.1.2 A Group Project ..4
1.1.3 Small Team Programming ..6

1.2 Problem Summary..7

1.3 Proposed Solution ..9

Chapter 2 Computer-Supported Collaboration..11
2.1 The Recent Growth and Near Future of P2P Systems11

2.2 A Brief Overview of Existing Collaboration Systems and Environments.....13
2.2.1 Local Area Networks ..13
2.2.2 CVS...14
2.2.3 Lotus Notes ...14
2.2.4 Waste and Grouper..15
2.2.5 Groove...15
2.2.6 Speakeasy..15

2.3 The Mindshare Approach to Collaboration ...16
2.3.1 Mindshare’s Design Philosophy ...18
2.3.2 Mindshare's File System Organization ...19

2.4 Functional Requirements ...19
2.4.1 Large and Numerous Files ..20
2.4.2 Structured File System ..20
2.4.3 Offline Access to Files ..20

2.5 Non Functional Requirements ...20
2.5.1 Automation..21
2.5.2 Reliability..21
2.5.3 Security ...22
2.5.4 Clients for Multiple Platforms ..23

 iii

Chapter 3 Prototype Design and Implementation ..24
3.1 Design Issues..24

3.1.1 Concurrent Resource Modification ...25
3.1.2 Distributed Authority ..27
3.1.3 How Distributed Authority is Implemented..28

3.2 Trees...29
3.2.1 Uniform Resource Identifier Usage ..31
3.2.2 Unique IDs ..32
3.2.3 Merging Trees ...33
3.2.4 Tree Synchronization ..33

3.3 Network Technology..34
3.3.1 Protocol Stack ...35

3.4 Peer Protocols ..38
3.4.1 Message Encoding ..38
3.4.2 Peer Presence ..39
3.4.3 BEEP Session..40
3.4.4 Availability Channel ...40
3.4.5 Data Transfer Channel ..41
3.4.6 Chat ...42

3.5 Presence Service ..42
3.5.1 Aims of a Presence Service...43
3.5.2 Pipe ID’s and Naming...44
3.5.3 Presence Messages ..44
3.5.4 Managing Failures & Network Issues...45
3.5.5 User Presence ..46

3.6 Availability...47
3.6.1 Tree Availability ...48
3.6.2 File Piece Availability...50

3.7 Data Transfer..50
3.7.1 Tree Request ...51
3.7.2 Piece Request ..51
3.7.3 Efficiency ..52

3.8 User Interface Design...54
3.8.1 Buddy List...54
3.8.2 File Browser ..56

Chapter 4 Software Engineering ..58
4.1 Development Model Overview..58

4.2 Requirements ...60

 iv

4.3 System Architecture and Design..61
4.3.1 Mediator Design Pattern ...61
4.3.2 Network Components..62
4.3.3 Model View Controller Pattern...63
4.3.4 The Storage Component..63

4.4 Risk Management ..65

4.5 Software Libraries..66
4.5.1 JXTA...67

4.5.1.1 Peer & Group Organization ...68
4.5.1.2 Locating Peers..69
4.5.1.3 Library Immaturity...70

4.5.2 BEEP & BEEP Core Java ...71
4.5.3 SwixML ..72
4.5.4 Log4J...73

4.6 Testing..74
4.6.1 Offline Testing ..74
4.6.2 Network Testing..75

4.7 Deployment..77

4.8 Maintenance ...78

Chapter 5 Conclusion ..79
5.1 Future Work ...79

5.1.1 Security ...79
5.1.1.1 Membership Authentication...80
5.1.1.2 Tree Security ..81
5.1.1.3 Transport Security..81

5.1.2 Distributed Download ...82
5.1.3 Transferring Ownership ..83
5.1.4 Database Backed Storage..84
5.1.5 Usability Testing ...84

5.2 Lessons Learned...85
5.2.1.1 Improved Testability ..85
5.2.1.2 Alternative P2P Networking ..85

5.3 Conclusion ...87

References ...88

 v

List of Figures

Figure 1.1 How Mindshare relates to other collaboration solutions9
Figure 3.1 Mindshare Protocol Stack...36
Figure 3.2 Mindshare Protocols and Connections ...38
Figure 3.3: Buddy List Icons..55
Figure 3.4: Buddy List Toolbar Icons and Functions ..55
Figure 3.5: File Browser Toolbar Icons & Functions ..56
Figure 4.1 System Architecture Diagram...62
Figure 4.2 Sample Log Output in Mindshare ..73

 vi

Acknowledgements

I would like to thank my parents, Charlie and Ann, without their

unwavering love and support this work would not have been possible.

Thank you to my supervisor, Dr. William Allen, for keeping me focused

and urging me to keep it simple. Without his aid I am sure I would never have

finished.

I would also like to thank the members of the Open Source community

whose tools, examples and support were vital contributions to this project.

 vii

Chapter 1 Introduction

Working in coordinated groups using computers is often more difficult than

it should be, considering the high level of performance and connectivity that

modern computers and networks provide. If a small group is attempting to produce

a body of work that consists of many large files, the tools in widespread use today

often fail to provide adequate support. The most widely used collaboration tool is

e-mail. Many people who do not own a computer have an e-mail account and use it

to send messages and images to family, friends and co-workers. Although e-mail is

useful for exchanging information between individuals, it provides little assistance

in organizing and managing a collaborative project. Updates must be transmitted

manually and care must be taken to save the latest version of a document or photo

that often arrives with the same filename as the previous versions. E-mail accounts

usually have a limit on the maximum size of file that can be transmitted (often 5 to

10 Megabytes [FEPWC98]) and many word processing or presentation

(PowerPoint) documents exceed that size when they contain graphics. Even a

small group of people (say 5 to 10) may generate dozens of updates daily and, if e-

mail is employed, each person must spend a significant amount of time managing

this manual transfer of information.

While commercial and open source solutions to this problem exist (see

further discussion in Section 2.2), most require centralized account management

 1

and a dedicated server. However, many small group collaborations are constructed

in an ad hoc manner and lack the infrastructure support needed to make use of

current workgroup support systems. In this thesis, we propose an automated, peer-

to-peer collaboration support system, called Mindshare, which will provide the

organizational and file transfer features needed for small group collaboration.

1.1 Collaboration Scenarios

To illustrate the scope of the small group collaboration problem, we will

describe three scenarios where a tool such as Mindshare would be useful. Initially,

we will discuss the most common solutions available today, assuming that the

participants must make use of universally-available tools, such as e-mail or

removable storage.

1.1.1 A Group Photo Album Scenario

You and several other individuals have taken a significant number of digital

photographs and want to create a group photo album. Your group may be

composed of co-workers, fellow students or family members, but this is not

considered to be a work-related project and must be completed using the resources

shared by the group. Each camera has at least a 256MB memory card that holds

100-200 images (depending on the camera's resolution), thus the group could have

produced 500-1000 images which require well over one Giga Byte (GB) of storage

 2

space. The group members agree that they want to produce the highest quality

photo album possible and that many of the photos must be edited or “enhanced” to

meet that goal. However, although all members of the group have access to a

networked computer, not all possess the expertise and/or software to perform the

required editing. To further complicate matters, some of the group members do not

want to exchange their memory cards.

Considering the number and size of image files, e-mail cannot provide the

support needed to transfer and organize the data for this project. While images

could be exchanged via removable media (CD-ROM, Flash cards, etc.) or a local

area network (LAN), the task of organizing the files and dealing with duplicate

filenames is daunting.

Each group member could copy all of their image files to a CD-ROM or

other removable storage medium and deliver it to one location. The group could

then work together to select the images to include in the final album and determine

what editing or enhancements were needed. Once the selecting and editing are

completed, a CD could be made of the finished product and five copies could be

distributed to the group. Of course, with up to 1000 images, the editing and

selection process could take a considerable amount of time. Alternatively, each

person could carry copies to all of the other group members and they could discuss

the editing and selection via e-mail. However, edited images would have to be

distributed back to all group members by hand before final selection could be

 3

made. Needless to say, the difficulty of coordinating these activities keeps most

users from using this solution for projects of any size.

If the group members were all in the same office or University campus and

their PC’s were connected on a common network they could eliminate the physical

transfer of images by using remote file access. This solution allows the group

members to access and transfer files between machines at very high speeds. This

solution is more attractive but it presumes the existence of significant infrastructure

and poses potential security risks. It also does not provide automated transfer or

organization of the image files and could lead to the accidental erasure of files on

another group member's computer.

1.1.2 A Group Project Scenario

Let’s consider another problem that occurs frequently in a academic setting.

A class is broken into groups and asked to write a paper and produce a

presentation. One copy of each final document must be submitted to the instructor.

The paper and presentation must include images, diagrams and perhaps other

media.

Groups of this type, particularly in college, use e-mail to solve this problem.

E-mail is ubiquitous and easy to use. Its behavior is simple and predictable for

novice users. Groups using e-mail generally find that it serves them well for

 4

projects with a limited scope. However, there are several common problems that

groups exchanging files via e-mail will experience.

Presentations in particular tend to be very large documents, particularly

when they include images, sound and movie clips. These files are often

significantly larger than 5 Megabytes (MB). But, as a general rule, 5 MB is the

largest attachment that many e-mail systems can reliably deliver [FEPWC98]. Files

larger than this have to be compressed or partitioned by the sender and re-

assembled when received.

There can also be confusion over file versions. If each member of the group

is contributing individual slides, a single user must be in charge of integrating these

slides into a final presentation. They must then send the final document back to

everyone for approval. This tends to generate lots of duplicate files. It can be

difficult to tell what version of a file or slide you are looking at, particularly if you

aren’t looking at it in the context of the e-mail message that it arrived in.

This process also wastes space. Old versions of files are not automatically

deleted from your mailbox when new ones arrive. Users often reply to messages

containing files and include the file in the reply. This creates yet another

unnecessary copy. As the number of duplicates climbs it becomes harder to

determine which version is the most recent.

When sending multiple attachments in a single e-mail message there is no

folder structure. The sender's original file organization is lost. The sender could

 5

archive the files before transmission by using one of the many archival tools that

are available; this adds complexity to the version tracking issues mentioned above.

Unless there is an agreed-upon protocol and each group member has a certain level

of familiarity with the archival software, files could be over-written or erased.

1.1.3 Small Team Programming Scenario

A small team of programmers has to produce a working program of some

reasonable complexity. The program is too large for a single programmer so it is

divided amongst several team members. The team uses and produces many of files

including; specification documents, code, libraries, configuration files and

documentation. Every member of the team needs to have these files in order to

carry out their work. They all need the most current code to build and test their

work. This is called Continuous Integration by extreme programmers [Beck99].

Large programming teams use specialized collaboration software called a

Source Control System that includes functions for source code control. Source code

is stored in text files and this allows two files to be compared and merged

automatically. A popular package is Concurrent Versioning System (CVS)

[CVS04] but many other packages exist (SourceSafe [SourceSafe04], Subversion

[Sussman04]) that have similar capabilities.

Source control systems are designed to work from a dedicated server that

runs the Source Control Software. Each user installs a client program to interact

 6

with the Source Control Server. This requirement is usually not a problem for

teams in a corporate environment. They have the required resources; a server and

someone to maintain that server required to use source control. However, teams in

small companies or in open-source environments often do not have the necessary

resources or expertise required to use server-based source control software.

The other barrier to continuous integration with a Source Control System is

synchronizing resources across computers. The server stores the master copies of

the resources (source code etc.) and manages changes that are initiated by the

clients. When a resource is changed by a client, the other clients are not informed

of this change. They have to initiate synchronization manually with the server to

receive the update. In some cases this is desirable. However, if the project is large

and synchronization is time consuming, the clients may only synchronize once a

day. In smaller teams it is more likely that an update will affect another team

member because the smaller working set puts the group members in closer

proximity. Therefore, for smaller teams it is critical that updates reach the rest of

the team in a timely manner.

1.2 Problem Summary

The scenarios presented above each describe a different collaboration

problem, but could all be solved with a flexible, on-line system for small group

collaboration. In each case there is a small group of individuals who are not

 7

strangers and who have no desire to share their work with people outside their

group. The group is small enough to solve conflicts socially, rather than having a

computer-based tool enforce a workflow or structure. Each member will be

contributing in some way to the group, but often performing different tasks. Each

user has a PC that is capable of performing the necessary work. In a computerized

environment, information takes the form of files and productive work involves

changing and organizing those files and creating new derivative works. In ad hoc

small group collaboration scenarios, such as those described above, the problem

lies in getting the right files to the right user in a timely manner so they can perform

their work. For a truly collaborative environment many people must see the same

information so they can all provide input on the work being done, even if they are

not doing it themselves.

As described above, existing tools that support small group collaboration

provide a range of different solutions, each with its own strengths and weaknesses.

Figure 1.1 shows the relationship between the solution provided by Mindshare and

existing tools such as e-mail and CVS. Mindshare provides some features from

each of these systems but also introduces new capabilities that better support small

workgroup collaboration.

 8

Figure 1.1 How Mindshare relates to other collaboration solutions

1.3 Proposed Solution

In this thesis we propose a solution to the problem of small group

collaboration that does not require a dedicated server and supports the formation of

small ad hoc workgroups. We will discuss the design of Mindshare, a Java-based

prototype that demonstrates the proposed system design. Mindshare is a Peer-to-

Peer (P2P) system to aid small groups of users in performing tasks similar to those

described in Section 1.2. Our solution is simple to use and easy to deploy and is

 9

based on Java so that it runs on many platforms. It requires no dedicated server

hardware; the client runs on the PCs the users already have. No special expertise is

needed to set up or configure the software. Mindshare allows the groups members

to share an unlimited number of files of unrestricted size and to visualize and use

these files in a single unified file system structure. Mindshare performs all of the

necessary file replication tasks in real time without requiring user-intervention.

The remainder of this paper is divided into four chapters that cover the

design and implementation of the prototype: Chapter 2 encompasses the

requirements and goals that drove the design of the prototype. Chapter 3 provides

specific details on the prototype design and implementation. Chapter 4 covers the

Software Engineering challenges specific to the prototype. General challenges in

developing P2P software are also discussed along with a description of specific

tools and libraries that are already available for P2P applications. We will also

comment on the difficulties involved in testing a network-based P2P application.

Finally, in Chapter 5, we present ideas for future enhancement of the prototype and

our conclusions.

 10

Chapter 2 Computer-Supported
Collaboration

In this chapter we discuss current collaborative systems and how they relate

to our solution. We will also briefly describe goals and requirements for the

Mindshare system.

2.1 The Potential of Peer-to-Peer Systems

In this section, we discuss the benefits provided by peer-to-peer (P2P)

systems and technologies, along with comments on the equally significant potential

for abuse.

[Briedenbach01] discusses the growing potential of P2P systems for

distributed processing, file sharing, collaboration and content distribution, but also

points out the security threats and copyright issues that come with decentralized

systems. [Thompson05] discusses the growth of P2P file sharing and how it has

been used for software and content piracy. The impact of the BitTorrent

[Cohen04b] file distribution protocol on file sharing is also discussed, along with a

projection of future trends in file sharing. Kant, et al., [Kant02] provide a detailed

taxonomy of P2P technologies and usage models.

 11

Some research has provided a more detailed look at specific systems and

technologies. For example, [Ripeanu01] takes an in-depth look at one peer-to-peer

architecture, Gnutella, and [Vaughan03] discusses the importance of maintaining

real-time presence as an aid to collaboration systems.

In [Biddle03], the authors discuss the future of legal and illegal content

distribution. This paper, written before the release of BitTorrent, predicted that the

restriction or elimination of server-based or semi-centralized illegal file sharing

(such as provided by Napster [Stern00] or Gnutella [Ripeanu01]) will not prevent

an increase in the illicit distribution of protected content over "darknets", i.e.,

unregulated on-line distribution channels[Biddle03]. They state: "There seem to be

no technical impediments to darknet-based peer-to-peer file sharing technologies

growing in convenience, aggregate bandwidth and efficiency."

Clearly, peer-to-peer systems provide technology that can be used for both

positive and negative purposes. The possibility that Mindshare can be used for

illicit activities has been considered, but we believe that its ability to solve

collaboration issues for socially-connected small groups far outweighs the potential

for misuse. We remain hopeful that positive social interaction between group

members will provide the common goals and incentives that will exclude malicious

or illicit motives from impacting the overall good of the group.

 12

2.2 A Brief Overview of Existing Collaboration
Systems and Environments

In this section, we will discuss several existing workgroup collaboration

systems that could potentially be used to solve the problems presented in Chapter 1.

We will describe why they may or may not provide a useful solution and will also

compare their features and capabilities to the Mindshare system.

2.2.1 Local Area Networks

A Local Area Network (LAN) is the most widely used collaboration

environment in today’s workplace. A LAN generally consists of one or more

server computers that store data and shared software and many client computers

that access that data. Clients collaborate through the server by altering files that are

stored on the server. This clearly entails an investment in infrastructure and often

requires (both for security and performance reasons) that the client computers be on

the same physical network as the server. If the server is inoperative, the clients can

no longer work together. One of Mindshare’s goals is to free users from these

constraints by eliminating the centralized server and providing connectivity over

any existing network connection that supports the TCP/IP protocol.

 13

2.2.2 CVS

Concurrent Versioning System (CVS) [Cederqvist02, CVS04] is a widely

used Source Control System. It allows a set of users to share and work on a corpus

of text files with coordination and control provided by a central server. A variety of

client applications exist to access files stored on the server, but CVS does not notify

clients when a file on the server is changed. Mindshare does not require a server

and it will automatically update clients that are online when a file is modified.

Mindshare also supports binary files but forgoes the advanced processing of text

files (that CVS provides) to do this.

2.2.3 Lotus Notes

Lotus Notes [Lotus05] is an e-mail system that is based on a database-

driven network of ‘hub’ servers and Lotus Notes clients. Lotus Notes can support

very large file attachments between clients over the hub network. For projects that

consist of several files Lotus Notes does not escape any of the other problems with

e-mail. Mindshare can keep many files organized both in terns of logical

organization and keeping each peers copy up to date. Mindshare also does not

waste space on archiving old versions of documents or make any unnecessary

duplication of current files.

 14

2.2.4 Waste and Grouper

Waste [Waste05] and Grouper [Grouper05] are two Peer-to-Peer

applications that are very similar in their function. They allow a group to form a

small world network and share files in a manner very similar to the tools predicted

in [Biddle03]. Users can search for and download files from other peers in the

network. This is a good design for groups where the material being shared is not of

interest to everyone. Mindshare is also a small world network but it provides key

benefits for groups whose main objective is creative collaboration. Mindshare

automatically synchronizes files without requiring tedious user interaction.

2.2.5 Groove

Groove [Groove05] is a proprietary Peer-to-Peer application that can

synchronize files between peers. It is very similar in functionality to Mindshare.

Groove does not require a server for basic operation on a LAN, but a server is

needed for Internet-based collaboration. Also, a relay server is required to

synchronize information between peers that have gone offline. Mindshare can use

other peers on the network to synchronize so that, in effect, each peer is a relay.

2.2.6 Speakeasy

Speakeasy [Edwards02] is an extensible Peer to Peer system that allows for

a wide variety of collaborative features beyond file sharing. In addition to files,

 15

Speakeasy can share peripheral devices like cameras, printers and displays. These

features are great for group collaboration when the individuals are in close physical

proximity. Speakeasy does not appear to support automatic file synchronization or

structured file shares.

2.3 The Mindshare Approach to Collaboration

One important design assumption for Mindshare is that the typical size of a

group that would use this tool is less than twenty people. Much larger groups are

not as likely to employ a peer-to-peer tool such as Mindshare because those groups

usually are formed in situations where alternative groupware is a possibility.

Enterprise users generally have a Local Area Network (LAN) provided for them.

They also have dedicated infrastructure and staff to administer more complex

solutions such as CVS or Lotus Notes. In larger groups, social and organizational

issues would require a tool that imposed a stronger organizational structure than

Mindshare attempts provide. Larger groups require more structure because the

social dynamics in those groups increase, requiring a system that enforces strict

rules and access controls.

We also assume that the individuals participating in computer-based groups

will have a computer with an Internet connection because they already send e-mail

or have digital devices that require a computer for support. It would also be safe to

assume that most users of this type have broadband access. These connections are

 16

fast but are generally asymmetrical, providing greater download speed (1.5 Mbits)

than upload speed. A Local Area Network would have links an order of magnitude

faster (10 or 100 Mbits) and these links are symmetric.

The collaborators have a need to work with large files and/or frequently

updated files. On a LAN such files can be accessed from another computer quickly

so local duplication is unnecessary. The lack of reliable direct access to the other

group member’s computers in a P2P environment means each user will need a local

copy of all the files being shared. This will allow the user to work ‘off-line’,

something they cannot do on a LAN. This will also eliminate the need for dedicated

server hardware.

The system also targets users that do not have significant computer usage

experience. They can use e-mail successfully but a more complicated system would

make a formidable barrier to adoption of a new tool. E-mail works well on all

popular computing platforms. Users already have an e-mail address so setting up a

group to collaborate using e-mail simply involves exchanging e-mail addresses. If

the system is significantly less reliable or more difficult to use than e-mail they

may not be successful. Any system developed needs to meet the needs of this

group of users.

 17

2.3.1 Mindshare’s Design Philosophy

The design of the system was not driven solely by the deriving requirements

from scenarios described in Chapter 1. We wanted to create a Peer-to-Peer (P2P)

system to investigate P2P networking technologies as a useful tool for solving a

real problem that would impact a large potential user set. P2P systems have this far

been used primarily for the theft of intellectual property (e.g., Napster [Stern00]

and Gnutella [Matei02, Ripeanu01]) or for academic computing applications

(Cracking encryption [Distributed05, RSA05] and SETI [Anderson02, SETI05])

that don’t yield tangible benefit to the average home user. The lack of positive and

widely visibly applications based on P2P technology has caused many, including

much of the news media [Thompson05], to assume that any technology that is

described as ‘P2P’ is a vehicle for theft. We had a desire to show that this view is

incorrect. We believe that P2P technologies can find widespread use without the

lure of potential theft of intellectual property.

Usability was a primary focus in all aspects of the design. To provide a

useful solution to the small group collaboration problem, the proposed system must

rival e-mail and Local Area Networks in ease of use. This meant giving users a

more powerful tool than e-mail without making its use overly complicated or

foreign to the typical user experience.

 18

2.3.2 Mindshare's File System Organization

The first key area where Mindshare enhances usability and power is in the

way it organizes and distributes the files themselves. Early in the design phase a

decision was made to support a hierarchical file system over a flat system. This fits

well with the way users are already comfortable with for organizing their files on

disk or on a LAN. They use directories, sometimes called folders, to organize and

segregate files. Most P2P systems to date have used a flat file system so there was

no precedent for this in existing P2P tools.

Most P2P tools require the user to search for information on remote

computers. Some users make available far more resources than other users are

interested in. In a collaborative environment this is not very useful. We can assume

the collaborators are sharing a set of files focused on a particular topic or project.

When files are added, changed or removed this should be immediately visible to

the other users. These files need to be available even when the peer that is sharing

them is offline.

2.4 Functional Requirements

“Functional requirements describe the interaction between the system and

its environment” [Pfleeger01].

 19

2.4.1 Large and Numerous Files

The tool needs to support large files and large numbers of files. The only

practical limit should be the size of the user’s hard disk. If possible, transferring

these files should happen as fast or faster then e-mail can support.

2.4.2 Structured File System

The file system should have a hierarchical structure like a native file

system. This structure of files and directories is familiar to users.

2.4.3 Offline Access to Files

To support shared viewing and editing, a user’s files should be available

even when that user is not online. From within the tool it should be obvious if a file

has been changed or a new file has been created even if the file has not been

completely downloaded to the user's PC. This provides an accurate picture of the

structure of the file system even if the data is not available.

2.5 Non Functional Requirements

Non functional requirements describe the constraints on the system that

limit or guide choices in constructing a solution to the problem. [Pfleeger01]

 20

2.5.1 Automation

The process for starting a new group (bootstrapping) needs to be simple

enough to encourage users who have limited experience with computer-based

collaboration. It should be as simple a process as possible, analogous to people

swapping e-mail addresses.

However, the tool should also be at least as easy to use for file transfer as e-

mail or users will prefer that method. Automatic replication of new and changed

files would be a useful feature which would save users the effort required to create

an e-mail message and attach the changed resource(s). These updates should also

be accessible to all the group members immediately, synchronization should be

automatic and require no user intervention. The files should reside on each local

user’s hard disk in a structured manner, something e-mail does not support. It

should also be possible to access the files from a PC in a lab or other ad hoc

location where team meetings might take place.

2.5.2 Reliability

Typical home PCs are not on at all times. They are prone to power outages

as few are protected by an interruptible power source. Users also turn off their

equipment to save power or to reduce noise and heat. E-mail gets around these

outages by holding mail in a mailbox at a central server until the user is online

again. A collaboration support system should provide the same level of reliability

 21

as e-mail and should automatically deliver updates when the user comes back

online.

Modern home computers are of adequate power and are equipped with more

storage than most users need. A useful tool should leverage this extra storage to

overcome the limitations of an unreliable network.

2.5.3 Security

E-mail users are besieged by spam. Any new system needs to allow for

keeping out unwanted data and people. If a social group is formed, then the tool

should reinforce the boundaries of this social network. Only those invited to the

group by existing members should be allowed in. The group should be reasonably

sure that someone they are inviting to join is not misrepresenting their identity.

To protect against eavesdropping and theft, the tool should also use

cryptography to keep data safe while it is being transmitted. E-mail does not

provide for transport security and most mail transfer agents don’t support

encryption. Some users hare resorted to encrypting the plain text sent inside

messages. This requires the individuals that wish to exchange encrypted

communications to exchange keys. E-mail does not support key exchange directly,

though keys can be sent in an e-mail message. This is a manual process and deters

most users from employing encryption.

 22

2.5.4 Clients for Multiple Platforms

To approach the usability of e-mail any new collaboration software will

have to be available on as many platforms as possible. The three key consumer

platforms are Windows, Mac OSX and Linux. The Java virtual machine [Sun05] is

available for all of these platforms and, potentially, for future developments as

well. Java was chosen as the implementation language for Mindshare largely

because of its portability.

 23

Chapter 3 Prototype Design and
Implementation

In this chapter, we will discuss the evolution of Mindshare's design and the

prototype implementation. Major components and sub-systems will be described,

along with details on their features and limitations. The various open-source

libraries that are used for network connectivity and data transfer will also be

described.

3.1 Design Issues

The Mindshare prototype was initially intended to be a distributed source

control system. The idea was that the server could be replaced by a distributed

locking mechanism. If a peer wanted to change a resource it would obtain a lock,

make the change and release the lock. Work started under the pretense that this

initial design could be made functional. Use cases and scenarios were developed to

try and break this system. The initial use cases did not take the unstable nature of

home PCs and Internet connections into account. Once this lack of reliability was

considered, it was determined that the existing design was not adequate and

subsequently, a new design was developed.

 24

3.1.1 Concurrent Resource Modification

To understand why a fully distributed system with inconsistent node uptime

can’t avoid conflict we need only look at a simple example. Consider a simple

network with 2 peers, Bob and Alice and a single file shared between them. Bob

has a laptop and in the morning he goes online and finds that Alice is not online.

Bob spends the morning making many changes to the file and then packs up his

laptop and heads to lunch. While Bob is out Alice goes online and joins the

network. Because Bob was not online when Alice came online there is no way for

her to know that changes have been made to the file they share. She then makes a

minor change to the file while Bob is out to lunch. When Bob gets back there is a

problem. Both Bob and Alice have made legitimate modifications to a file but

software cannot be used to decide whose file is most current. Computer Scientists

call this a Concurrent Modification. A single resource appears to have been

modified by two entities at the same time.

Comparing modification timestamps would not be useful. Alice’s

modification timestamp is newer than Bob's but her file only contains a single

minor change. Bob’s file contains a whole morning’s work. Using timestamps to

choose a file would cause all of Bobs work to be lost when the system updated his

file with Alice’s minor change.

Comparing version numbers won’t work either. If each client keeps a

version number you could use software to compare the version numbers. Bob’s

 25

version number would be higher because he made several changes. Alice’s version

would be overwritten by Bob’s version.

Neither situation is satisfactory for both parties; in either case data loss is

the result. This situation would not arise if Bob had left his laptop on and connected

while he went to lunch. There are a number of other circumstances beyond Bob’s

control where the same situation might arise even if he had left his laptop behind.

His battery might die, the power might be cut or his network connection might go

down all leading to the same result. The fact remains that consumers don’t want to

leave their computers on at all times. Computers will be shut down for a variety of

reasons and the software needs to cope with this scenario gracefully.

The other problem is detecting and resolving these conflicts. Using both a

timestamp and a version number together could allow the software to recognize

concurrent modification conditions. Detection involving more than two peers

becomes increasingly complicated. Resolving these conflicts requires human

intervention and coordination.

Normally a server, a centralized master computer, is used to solve this

problem. It has centralized authority to prevent concurrent modifications from

occurring. It enforces this by not allowing a resource to be modified while it is in

use by someone else. In a pure Peer to Peer environment there is no server and

hence no possibility of central authority. A different solution had to be found that

avoided concurrent modification but still let Bob take his laptop on his lunch break.

 26

3.1.2 Distributed Authority

Mindshare takes the approach of distributing authority amongst the peers to

make concurrent modification impossible. Each file in the system has an owner.

Only the owner of the file can modify the file. Ownership can be transferred from

one owner to another but to accomplish this both peers have to be online at the

same time.

Let’s see how Alice and Bob would have managed their day under this new

system. Assume that Bob has ownership of the file at the start of the day. He makes

his modifications and goes to lunch. Alice doesn’t own the file but she still wants to

work on it so while Bob is at lunch she makes a copy of the file and modifies the

copy. Bob arrives back from lunch and the system automatically synchronizes

Bob’s file to Alice’s computer. Bob is the owner so his version is always

considered the most current. Alice then sees Bob’s work but still wants to make her

small change. She asks Bob to give the file to her so she can change it. Bob

complies, she makes her change and then she returns the file to Bob.

The file can be thought of as if it were a physical object. Only a single

person can possess it at once. This gives users a very simple mental model to plan

their work around. They don’t have to concern themselves with Concurrent

Modification. They can also turn off their computers when they wish.

 27

3.1.3 How Distributed Authority is Implemented

Mindshare implements ownership using metadata. The metadata for all the

files that a user owns is compiled into a single document. This document, called a

Tree, is replicated by Mindshare to all the other connected peers in the group. The

receiving peers take all of the individual Trees they receive and merge them to form

an intermeshed Tree to display to the user. Imagine that each Tree was written on a

transparency sheet and then layered one on top of another. The display is a sort of

optical illusion. There is no centralized master data set but we can make the user

believe this is so by composing the individual Tree together. Thus, the Tree is a

visual representation of the merged Trees of all users, but that merger of Trees does

not actually exist in the system.

Files in the display that do not belong to the user cannot be renamed, moved

or deleted. This is not because of artificial checks in the software but because of the

architecture. A user's edit operations are performed against the user's own Tree, not

across the intermeshed view. After an edit the intermeshed Tree is recreated and the

view is updated.

Files are the only resource that you can own in Mindshare; directories

(folders) have no owner. If two or more users create a folder with the same path

name, Mindshare will interpret this logically as being the same folder. Any files

that each user might place into that folder will be displayed as if there were in the

 28

same logical folder, but they will actually reside in the owner's version of the folder

and each owner retains control over the files.

3.2 Trees

To achieve the goal of distributed authority a document is needed to convey

to other peers what is being shared. This document would include the metadata

about the files that a peer is sharing. In the Mindshare system this document is

called a ‘Tree’ because it represents a hierarchical set of files. The metadata

includes details like the file’s path, name, size, last modification time and a hash

calculated from the data in the file. Compared to the total size of the files a peer is

sharing, the Tree document can be orders of magnitude smaller. A Tree’s small size

allows it to be quickly transmitted between peers. Peers can receive a Tree and

present the update to the user even before the files it represents are downloaded.

This enhances usability in an unstable network. For example, if a peer goes offline

before it can distribute a large file to the rest of the network, the other peers still

know that the file exists because they have the metadata tree that shows it exists.

Peers don’t have to receive a tree directly from the peer that published it either.

Any peer can deliver a copy of the tree to other peers. This allows peers to

distribute information on behalf of others that are currently offline.

The use of metadata Trees allows each peer to form its own strategy for

downloading the files from other peers. A Mindshare peer will perform a

 29

comparison of each incoming Tree update against the files it already has. If any

files have changed or new files have been created, they are put into a download

queue. Mindshare uses the file size information so that the smallest files are

downloaded first. This "shortest-file-first" approach does mean that very large files

may not be distributed across the entire set of peers as quickly as smaller files.

Although the possibility that some large files may never be distributed to all peers

can be a drawback, it also discourages sharing large files that other peers may not

want on their computers, such as large video files. This design decision makes

Mindshare less useful for sharing illegal music or video files, but may be

undesirable for groups that want to build a photo album from their own pictures.

Some thought has been given to allowing users to assign a priority to files that they

need updates to, overriding the default "shortest-file-first" algorithm. This

approach lets the user decide what files should be brought to his or her own

computer, rather than letting the person who adds the file force its distribution upon

other peers.

Trees are also easily merged; this is a key factor in the display. The

Mindshare client shows a file system composed of all the trees shared on the

network merged together. Directory names that are common to two trees will

appear as a single directory in the display. This allows the user to place their files in

a folder that another user has created even though the files, in fact, exist in separate

trees and have different owners. The display can also be recomposed to show only

 30

a single tree or subset of trees. This feature is useful for answering questions like

“Where are Bob’s files?” Showing only Bobs tree will hide unnecessary data and

let the user quickly find what they are looking for.

Lastly, trees can be stored and used later. Mindshare saves the trees it

receives from other peers. Even if a peer has not been online in weeks, other users

can still see files from that peer in the combined display.

3.2.1 Uniform Resource Identifier Usage

Mindshare uses a Uniform Resource Indicators (URI) to identify resources.

Each file can be identified individually by its URI. Each URI is unique and can be

used as a primary key.

Mindshare URI’s take the form:

mshare://userid@groupid/path/file.txt

This form fully qualifies a file with the Tree so that it can be identified if it

is being processed outside of the context of the Tree it belongs to. The URI

contains the user’s unique identification, group identification, path to the file and

name of the file. The format of the unique identifiers is discussed in the next

section.

URI’s are versatile and can be used to denote an individual user:

mshare://userid@groupid/

 31

The group:

mshare://groupid/

Or a path within the group:

mshare://groupid/path/

You will notice that user identifiers are only valid within the context of a

group and thus have group scoping. Paths ending in ‘/’ denote a directory.

3.2.2 Unique IDs

Each user and group needs to be identified by a unique ID to allow for

possible collisions between user names and group names. This also allows for user

and group names that contain characters that would be illegal in a URI. Because

each user has a unique identifier and each user can only publish a single Tree it is

logical to think of the user ID as the Tree ID.

The IDs need to be used in the user and host components of a URI there are

a number of reserved characters that cannot be used for unique IDs in Mindshare.

The raw randomly generated IDs are in binary format and must be encoded before

they are suitable. The raw data is hex encoded to produce a 20 byte ID. For the rest

of this paper references to ‘userid’ and ‘groupid’ refer to one of these 20 byte

hex encoded identifiers.

 32

3.2.3 Merging Trees

Trees are merged to be displayed in the user interface. This is the process of

converting the flat list of URIs and metadata within each Tree into a hierarchy of

objects that can be used as a model for the file browser table. Files that have

matching paths are lumped together into a single list. This is achieved by

processing every Tree and file in the system and recursively building a graph of

folders that contains these lists of files.

3.2.4 Tree Synchronization

The goal of this process is to distribute new Trees throughout the entire

network quickly and efficiently. While the size of a single Tree is theoretically

unlimited, the average size is only a few kilobytes. Still, sending trees directly

between peers without cause could use unnecessary bandwidth.

New Trees are announced over the Availability Channel (see Section 3.6) in

the form of a Tree Availability Message. Only two pieces of information are

needed to reference a particular Tree; the userid of the tree’s owner and a version

number. Together, these bits of information form a Tree descriptor. Because the

descriptors are small they are perfect for advertising and requesting Trees.

Each peer keeps a list of current Tree Descriptors in memory. This list

mirrors the actual Trees stored on disk. Each time an availability message is

received it is compared to the list in memory. Receiving information about a new or

 33

updated Tree causes an event to be fired and initiates the tree synchronization

process. The new Tree Descriptor is entered into a request queue. If the new Tree

would duplicate a descriptor already in the queue, it is discarded. This is entirely

possible as peers that have successfully downloaded the new Tree will be sending

new availability information.

The queue is emptied by first choosing a peer that has the desired Tree and

then downloading a copy from that peer. Once the new Tree has been downloaded

and saved to disk then the internal Tree Descriptor list is updated. The new Tree is

merged with the other trees and the user interface is updated. Finally the peer will

send an availability message advertising the new Tree at this peer.

3.3 Network Technology

Mindshare uses JXTA [Oaks02] for all communication between peers.

JXTA is a peer to peer overlay network. It allows peers to communicate from

behind firewalls and Network Address Translation (NAT) routers. It transparently

uses relay and routing peers to achieve this.

JXTA provides a facility for grouping peers together called a Peer Group.

Members of a Peer Group are expected to communicate with a common set of

protocols. JXTA also dynamically designates one or more super peers, called

Rendezvous Peers, from within the group to route/relay traffic and maintain routs

between peers. Any peer is also free to act as a Relay Peer to retransmit traffic on

 34

behalf of peers that cannot be directly connected. Such cases include peers behind

Network Address Translation routers, and firewalls that restrict traffic. JXTA can

operate over any suitable transport mechanism. The current Java implementation

uses UDP, TCP and HTTP as transports. Peers located behind restrictive measures

use the HTTP transport to communicate with other peers.

Every peer group is created as a child of another group. There is a single

parent peer group, called the Net Peer Group of which all nodes are a member by

default. From there peers create and join subgroups as needed. For Mindshare a two

layer approach was chosen. A peer group called ‘Mindshare’ is created under the

Net Peer Group. All Mindshare clients are deployed with the advertisement of this

group. This group serves to segregate the application from the rest of the public

JXTA network. The Mindshare group contains numerous user created subgroups.

The client creates a new sub group for each group of users that wish to collaborate.

This scopes the resources and traffic generated by each group of users. It also keeps

the burden of sufficient resource provisioning within the group.

3.3.1 Protocol Stack

Mindshare uses both multicast and regular sockets for peer communication.

JXTA provides primitive socket types to be used in place of the native Java

Sockets. These Sockets resolve endpoints in the JXTA overlay network rather than

 35

in the physical TCP/IP network. Below these sockets is whatever physical transport

(HTTP/TCP) that the user has configured JXTA to use.

Figure 3.1 Mindshare Protocol Stack

A single common Multicast Socket address is used for Peer Presence. All

peers transmit and listen on the same socket address. The address, known formally

in JXTA parlance as a Pipe Advertisement, is generated from the Peer Groups

Advertisement so it is unique to the group. Multicast traffic is unreliable and

limited in size to single packets. Generally the limit for safe delivery is 16k of data

payload. All Presence messages are well below this size. A separate but similar

Multicast Socket is used for the group chat protocol.

 36

To transfer large objects, like Trees and Files a reliable Socket capable of

fragmentation and reassembly is used. To avoid having to open many sockets

between each pair of peers the Blocks Extensible Exchange Protocol (BEEP)

[BEEP05] is used. BEEP supports multiple channels of communication over a

single socket. Each channel can operate a different protocol and the messages will

be multiplexed over the socket automatically. In the prototype two channels are

used; one for announcing the availability of resources and the other for File & Tree

transfer. In the future this architecture will support more channels for one to one

chat and the exchange of security information.

 37

3.4 Peer Protocols

Figure 3.2 Mindshare Protocols and Connections

Figure 3.2 shows the typical connections between two peers. The BEEP

session carries the Availability and Data Transfer channels while separate Multicast

links are used for Peer Presence and Chat.

3.4.1 Message Encoding

Mindshare uses a single encoding scheme for all messages and data passed

across the network. This scheme is called BEncoding and was created by Bram

Cohen [Cohen04a] for the BitTorrent protocol. This encoding is attractive because

it supports structured documents and allows for raw binary data to be included in

those documents. XML [XML05] is currently a popular standard for data transfer

 38

but it does not support the transfer of binary data without wasteful encoding. For

that reason we decided that XML was not a suitable encoding scheme for

messages.

BEncoding supports strings, numbers, lists and dictionaries. Dictionaries are

similar to hash tables and can be used to store structures of associated data

elements. Strings can be of arbitrary length and can contain raw binary data.

BEncoding uses a form of run-length encoding to record the length of strings so

that a unique, reserved end-delimiter character is not needed. By design there are

no reserved characters in a BEncoded document so that strings may contain raw

binary data. BEncoded documents are not as readable as XML therefore, this paper

simply describes message elements without providing examples.

Messages sent between peers are preceded by a single byte to denote the

type of message. This makes it easier to route raw messages to the factory without

reading the entire message.

3.4.2 Peer Presence

This protocol allows peers to quickly discover when the other peers in the

same group are online. This is a basic service and uses multicast messages that

reach the entire group. This service will be described in detail in section 3.5.

 39

3.4.3 BEEP Session

When two peers within the same group intend to exchange data, they first

use the presence service to discover each other and then establish a single BEEP

session between them. BEEP requires that one party act as the initiator; opening the

underlying socket connection and starting all channels. To determine which of the

two peers will serve as the initiator each peer compares its unique PeerID to the

other. The peer with the lower id acts as the initiator and must open the connection.

This architecture implies that the network of peer-to-peer connections created is a

fully connected graph. Although this technique will not scale well to large

networks, our design assumes that networks will remain small (see section 2.3).

The initiating peer opens at least two channels within the BEEP session, one

for exchanging availability information and the other for data transfer.

3.4.4 Availability Channel

The Availability channel transfers information about the Trees and file

pieces available at a peer. Files are divided into 512 kilobyte pieces to simplify

transfer. Two messages are supported, one for advertising a Tree and another for a

single piece of a file. To save bandwidth the Tree availability message also includes

a bit field encoded in a string element that represents the availability of every file

piece in that tree. This allows peers to quickly get a picture of the network without

exchanging thousands of messages.

 40

Each message is sent as a BEEP ANS type response. The receiving peer is

not required to give a response to the individual ANS messages. When the sending

peer is shut down it sends a NUL message to terminate the exchange gracefully.

As the peer receives availability data it is checked and recorded in internal

data structures. This allows each peer to builds an effective map of the resources

that are available at each peer. The data in this map is then used to decide which

pieces to download from other peers. Trees and file pieces are requested over the

Data Transfer channel.

3.4.5 Data Transfer Channel

This channel is used for lengthy bulk data transfers. This includes both the

Trees and files. This protocol has two messages that follow a request-response

pattern; one message is used for requesting a tree and the other is used for

requesting a file. There are corresponding response messages. Requests are queued

on the client side and prioritized. Tree requests have a higher priority than all file

requests and file requests are further sorted by the size of the file, smallest first.

This causes updates to smaller files like office documents or code files to move to

the head of the queue and makes the system more responsive.

Once a data item has successfully been transferred and stored, its

availability is advertised through the Availability Channel.

 41

3.4.6 Chat

This is a very simple multicast-based service. It allows the group to

communicate in a fashion similar to an Instant Messenger. The chat service

broadcasts and listens for simple BEncoded chat messages. This service does not

support advanced features found in other chat protocols but it may be enhanced in

the future. Chat is functionally separate from the rest of the system, and is not

dependant on the presence service. As such, it will not be discussed in any greater

detail in this paper.

3.5 Presence Service

Because JXTA uses a “super peer” architecture, network nodes in a group

are not always directly connected. Without a guarantee of direct connectivity, it is

necessary for each peer to discover which other peers are in the peer group before a

direct connection can be established. A peer group in JXTA may have many RDV

peers and this can result in queries that do not span the entire group. In order to

have the software operate in as many environments as possible, it was necessary to

avoid using RDV peers for presence information. Instead a protocol was created

using Propagated Pipes [Oaks02]. Messages sent through a Propagated Pipe will

reach all peers that are listening in a group.

In this case ‘listening’ is not so easily defined. For a peer to hear a

propagated message its RDV peer must be able to ‘see’ the RDV peer that is

 42

propagating the message on behalf of the sender. Experiments show that in large

groups this can sometimes be a problem. Nodes may require a significant amount

of time to find each other on the network and traffic will not be delivered.

However, once messages do start to arrive at a peer they continue to do so reliably.

JXTA Propagate Pipes are by definition unreliable, therefore message

delivery is not guaranteed. This is partially due to the use of UDP multicast in LAN

environments. The underlying transport is itself unreliable. Over the internet

however UDP multicast is not available and JXTA ‘simulates’ multicasting

behavior by using reliable TCP connections. This means that the design of the

presence protocol was less affected by any lack of reliability inherit to the

underlying transport protocol and more by the lack of reliability of JXTA itself.

Nodes that join the group at opposite ends of a large network of RDV peers

will take a long time to find a route to each other, even though they have joined the

same group. Also after a connection has been realized it is possible for a relay peer

or RDV to go offline changing the route between peers. In the end there is no fixed

timeout or positive condition that occurs when a route is found so the protocol has

to take the dynamic nature of peer-to-peer systems into account.

3.5.1 Aims of a Presence Service

The presence service must reliably supply information about the peers that

are currently online. To provide reasonable performance mindshare must know

 43

when peers join and leave the group or when peers fail. It should also be possible to

convey arbitrary status information about a peer. The other network services rely

on the presence service to know when to establish a connection between peers.

3.5.2 Pipe ID’s and Naming

Peers connect to the “PeerGroup:Presence” propagate pipe, where

‘PeerGroup’ is the name of the JXTA group. This is similar to the IP:Port naming

scheme used in TCP/IP. The unique ID for the pipe is generated by applying a hash

function to the groups ID. In JXTA parlance is this referred to as a ‘well known id’

because all peers that join the group have the necessary information to generate it

directly.

3.5.3 Presence Messages

A presence message contains only 2 fields; a message type and a payload.

The message type is a single byte that denotes the purpose of the message. The

remainder of the message contains the payload and can include binary data. There

are three recognized message types; CONNECT (0), UPDATE (1) and

DISCONNECT (2).

When a peer joins the group it transmits a ‘CONNECT’ type message.

Peers that receive a CONNECT are expected to reply by broadcasting an UPDATE

 44

message. In this manner, a peer that joins the group will quickly become aware of

any peers that are already online.

When a peer is leaving a group it sends a DISCONNECT message. This

notifies the other peers in the group that this peer is being shut down in an orderly

fashion and further communication with this peer will not be possible.

3.5.4 Managing Failures & Network Issues

In a centralized P2P architecture a server would maintain presence

information for the group. The server would have a direct socket connection to each

peer. If a peer failed the resulting socket failure could be detected. This event can

then be used to inform the remainder of the group that a specific node had failed.

When using a JXTA Multicast Socket, there is no ‘connection’ to break, therefore

the socket closure method cannot be used to detect failures. Instead a ‘keep-alive’

or ‘heartbeat’ system is used. Each peer transmits a single UPDATE message once

every 30 seconds. It is quite possible that the first evidence that members of a

group will see from a new peer will be these keep-alive messages. The initial

connect messages may be lost because the new peer may not have found the rest of

the group yet. This is common when a peer fails to find the groups RDV peer and

promotes itself to RDV status. This is handled automatically by the JXTA platform.

At any time, when a peer detects another peer that it has not seen before it will

respond with an UPDATE message of its own.

 45

If a peer fails to receive a keep-alive signal from another peer for twice the

duration of the keep-alive interval it can be assumed that the peer has failed or that

its location has been lost. When this timeout occurs, the peer acts as id the other

peer had disconnected. Receipt of a subsequent UPDATE message from the lost

peer is treated as a new connection attempt and the two peers repeat the

initialization protocol.

Note that the choice of time interval between keep-alive messages is chosen

as a tradeoff between network traffic volume and application responsiveness. Users

have become accustomed to the quick response times of server-based protocols

such as Instant Messaging. It is important to make every attempt to emulate server

based performance without destroying network throughput. Also the aim here was

not to build a perfect Presence Protocol but to build something robust and

serviceable for the prototype. Other protocols may prove more serviceable in the

future such as the new Session Initiation Protocol [Johnston04, SIP05].

3.5.5 User Presence

The Presence protocol, as described thus far, is an implementation of ‘Peer

Presence’. The other important element in a collaborative application is ‘User

Presence’. In Mindshare some additional information is needed to identify the user

at each peer. User presence information is sent inside the payload block as a

 46

BEncoded message. All messages, except for disconnect, can include a payload.

The payload sent by Mindshare has three fields.

• The ‘userid’ field is the unique User ID this identifies the current user at the

originating peer.

• The ‘name’ field is used to associate a friendly name or ‘handle’ with the User

ID. This is used in the buddy list display and the ownership field in the File

Browser.

• The ‘join’ field contains the time in milliseconds that the peer joined the

network. This is the remote peer’s perception of the time it joined, taken from

the start of Unix epoch. This is used to calculate and display the peer’s uptime,

e.g. “Bill has been online for 4 hours, 20 minutes”. This can be displayed even

if the observing peer joined the group after the peer that sent the message.

3.6 Availability

Ulike the classic client-server model where each client must request specific

information from the server, Mindshare uses an approach that distributes the

availability of information from peer to peer. Peers broadcast a list of the items they

have “available” for download. When a peer receives a tree update it “discovers”

that it must download new files. Rather than query each of the other peers in the

group to determine where it may find the information it needs, the peer can look in

the “availability” cache that is has received to determine which peer, if any, has the

 47

files it needs. If more than one peer has the needed information, the peer can

request some portion of the files from each of those peers, distributing the load for

fairly.

Availability information is exchanged by peers when a channel is opened

and updated throughout the channel’s lifetime. Peers use a BEEP message to send

availability messages. The receiving peer replies with a ‘NUL’ message indicating

that the response is not important.

There are two message types that are sent over the availability channel: Tree

Availability and File Piece Availability.

3.6.1 Tree Availability

The tree availability message has two purposes. First is to advertise the

availability of a particular version of a tree. The second is to advertise the

availability of file pieces from within that tree. The message body contains three

elements:

• uri – A text field denoting the URI of the user in the form

‘mshare://userid@groupid/’

• version – An integer field denoting the version of the tree being

advertised.

 48

• bits - A string field containing a bitfield encoded as 1’s and 0’s, such as

‘1011110010001’.

The URI and version fields identify the tree. All trees belonging to the same

user will have the same URI. The version field increments with each change that is

made. Thus, when a peer receives a tree availability message describing a higher,

and hence newer, version of a tree, it knows to download that tree.

The bits field contains a complete set of availability data for the files

described within the tree. Each bit represents one 512 kilobyte chunk of a file.

There is one MD5 hash for each 512k piece of each file and the pieces correspond

to the bits in the bits field. The file entries in a tree are sorted first by their path

and then by the file’s name. The bits in the bits field follow this ordering so it is

trivial to match up an availability bit with the MD5 hash for that piece.

When a peer receives one of these messages for a tree that it does not have,

it wipes out all stored availability information pertaining to that tree from memory.

It also stops all data requests for file pieces from that tree. It caches the information

in the bits field until it can download the new tree and process it. The old

information is thrown away because it is now stale. Changes in the tree may have

changed the mapping between the bits field and the old tree.

 49

3.6.2 File Piece Availability

Availability information about individual files continues to be transmitted

while peers download pieces. These update messages are sent out after each piece

is successfully downloaded, verified and stored. Peers use this information to

spread the network load and to form an efficient download strategy. The messages

contain fields similar to a Tree availability message:

• uri – A string field denoting URI of the file for which the piece is

available in the form:

‘mshare://userid@groupid/path/file.txt’

• version – An integer field denoting the version of the tree that this file

belongs to.

• index – An integer field containing the index of the piece within the file.

3.7 Data Transfer

The data Transfer Channel is responsible for carrying all bulk data traffic

between peers. The two kinds of data are whole tree documents and pieces of files.

Tree documents have a higher importance and they are queued to be requested

before any file pieces are.

 50

3.7.1 Tree Request Messages

The request response pair for a tree is very simple. The tree is requested

with a message containing:

• uri – A string field denoting URI of the tree being requested in the form

‘mshare://userid@groupid/’

• version – An integer field denoting the version of the tree being

requested.

The response is a BEncoded tree document with no additional elements.

BEEP remembers an identifier for each request so there is no need to add

identifying data to the response.

This is a very simple request-response protocol. Trees are transferred far

less frequently than files so the optimization of this protocol is not of great concern.

3.7.2 File Piece Request Messages

File Piece requests contain three fields:

• uri – A string field denoting URI of the file being requested

‘mshare://userid@groupid/path/file.txt’

• version – An integer field denoting the version of the tree this file

belongs to.

 51

• index – An integer field containing the index of the piece within the

requested file.

Again, the response is the raw bits within the specified piece. BEEP takes

care of the message tracking. Once the piece is received, it is hashed and checked

against the appropriate hash in the tree. While the hashing and checking proceed in

one thread, the request thread can issue another request and start receiving a

response.

3.7.3 Efficiency

Efficiency in file piece requests is the key to good performance. File data

will dominate all other data transfer on the network. The basic problem is to

efficiently disperse a large volume of data from a single peer to the other peers in

the group. The bottleneck in this problem tends to be the outgoing bandwidth of the

peer that is distributing the data. Broadband connections in use today tend to be

asymmetrical and this restricts the amount of bandwidth a peer has available for

sending data to other peers. A perfect algorithm would disperse the data to all peers

in the group in the time it takes the originating peer to transmit exactly one copy of

the data.

The BitTorrent Protocol [Cohen04a] appears to solve this problem breaking

large files into smaller ‘pieces’ and dispersing 8k ‘blocks’ of those pieces to other

nodes on the network. The group of receiving nodes then trades the pieces amongst

 52

themselves, returning to the originator only when a chunk cannot be found

elsewhere. In the real world this algorithm has proven effective for distributing

very large files and scales well to swarms of peers much larger than Mindshare was

designed to support.

In BitTorrent, a hash value is calculated for each piece of a file and a file

containing these hashes is distributed to the swarm via a web server. Special

software is installed on the web server to track the peers in the swarm so they can

find one another. Mindshare already has equivalent functionality for both of these

functions. The hashes are distributed in the Tree and the Presence Service allows

peers in the swarm to find each other. The Availability Channel is used to advertise

availability of individual pieces of a file.

As discussed by BitTorrent's designer in [Cohen04b], peers in these swarms

tend to act in a selfish manner. Mindshare has some advantage over BitTorrent in

this case. Mindshare peers are more likely to stay online after they have

downloaded a file because they are waiting for updates from other peers. This

means that a Mindshare network would have a large percentage of ‘Seeding’ peers

when compared to a Bit Torrent Network. When a peer that has been offline for

some time rejoins the group it will find that every peer has a copy of the files that it

needs. This means that the peer can spread its requests across all of the peers in the

group and be updated quickly without significantly affecting the resources of any

one peer.

 53

BitTorrent type file transfer was not implemented in the prototype but is an

important component of the future work described in chapter 5.

3.8 User Interface Design

Mindshare is a graphical application and relies on its user interface to

present a large amount of information to its users. The UI uses components and

constructs that are familiar to users but are overloaded to present the extra

information that Mindshare needs to convey.

The UI contains two main areas; the Buddy List and the File Browser. The

buddy list is a concept that will be instantly familiar to users that already use any

sort of Instant Messenger application. The File Browser is typical of many

operating system browsers and includes a location bar that shows the current path

and a list of files and folders available at that path. Each of these displays has an

associated toolbar that can perform common functions relevant to that display area.

3.8.1 Buddy List

Other users appear in the Buddy List (see Figure 3.3) in a Tree categorized

by the group that they belong to. Selecting a group or a buddy in that group will

cause the file browser display to change and display the files for the relevant group.

This is the primary reason why the buddy list is situated on the left side of the

screen. Users typically move from left to right as they recognize information,

 54

similar to how they read. All information in the right panel is relative to what is

selected in the buddy list on the left. This arrangement allows the user’ to orient

themselves when they glance at the display without having to look back and forth

across the screen.

Icon Function

 Represents a user who is online

 Represents a user who is offline

 Represents a group in the buddy list

Figure 3.3: Buddy List Icons

Other users appear by name and have an icon that depicts the user’s state.

The currently supported states are online and offline. The users name also dims

when they are offline. In the future this display may support more states as the

presence support is enhanced. One example of this is an “away” state that lets the

user know that someone is online but not physically available at their computer.

Icon Function

 Enter the selected group

 Leave the selected group

 Invite someone to join the group

 Create a new group

Figure 3.4: Buddy List Toolbar Icons and Functions

The toolbar (see Figure 3.4) attached to the buddy list provides three

buttons. The Enter/Leave button allows the user to enter and leave individual

groups, similar to entering a conference room. This allows the user to choose to end

participation in an individual group without closing the program. The Invite User

 55

button allows the user to create an invitation to send to someone else who is not

already a group member so they can join the group. The Create Group button is

used to create a new group.

3.8.2 File Browser

The File Browser is intended to function as much like the user’s native

operating system file browser as possible. Thus, the File Browser uses the host

operating system’s icons to display each file’s type correctly. The address bar

shows the current folder. It also has icons (see Figure 3.5) for navigating up the

folder Tree and to return to the root of the Tree.

Icon Function

 Navigate back to the root of the file system

 Navigate upwards to the parent directory

 Create a new folder in the current path

 Cut the selected objects

 Copy the selected objects

 Paste the selected objects

 Delete the selected objects

 Change the highlighting

Figure 3.5: File Browser Toolbar Icons & Functions

The toolbar at the top of the pane is duplicated as a context menu that can

be accessed with a right click on the mouse. This gives two ways to perform the

identical set of functions. In this case choice is not a bad thing. Most applications

give the user this choice and users have individual preferences that need to be

 56

catered to. The functions on this toolbar include the familiar file manipulation

commands; New Folder, Cut, Copy, Paste, Rename and Delete. The additional

commands specific to Mindshare are Give and Highlight. The Give command

initiates the process for changing ownership of a file from one user to another. This

is covered later in the section on Trees. The Highlight command can be used to

change the display so that files belonging to a specified user appear with bold text.

This can assist the users in visualizing who owns the files they are looking at. To

actually change what user us being actively highlighted you select the user from the

buddy list. The other mode supported will highlight the difference between files

that are available locally and those that are still currently being replicated.

One column in the file browser shows the name of the owner of each file.

Folders with the same name that appear in multiple Trees are specially annotated to

show a comma separated list of owners. This alerts the user as to whose files they

will find in that folder. The other columns show information common in most file

browsers, including the size and type of the file, date it was entered into the system,

date it was last modified and version of the file. The version number tells the user

the number of times a file has been changed.

 57

Chapter 4 Software Engineering

In this chapter we will discuss the development of the prototype from a

Software Engineering perspective. We will examine the development process that

was employed and applicable stages of the software lifecycle from design to

deployment. We will also detail the choices that were made regarding tools and

libraries used during development.

4.1 Development Model Overview

The development model for this project was a mix of Extreme

Programming and Iterative Development. From the Extreme Programming world

we took the idea of incrementally designing, constructing and testing small batches

of functionality to the program. We used Unit Testing and the JUnit [Niemeyer03]

test framework to create and automate those tests. Each incremental piece was

designed with a minimal understanding of its impact on the rest of the system. This

is counter intuitive to the ideas suggested by the Waterfall model [Pfleeger01] but it

proved advantageous on this project. Because the capabilities of the underlying

network layer continues to change and mature, the design of Mindshare continued

to evolve as the software was being built. A procedure or technique that was

inefficient one week might become viable the next and cause the redesign of a

component.

 58

The continuous change caused many refactoring activities. We practiced

ruthless refactoring. No part of the software remained completely unaffected or was

immune to change. The most common refactoring performed was renaming of a

Class, Method or data member followed by moving functionality from one package

to another. This was supported by two key advantages. The first was the use of a

refactoring development environment, Eclipse, which can automatically perform

many common but tedious refactoring tasks. The second was the small team size,

just one developer, affected by these changes. In a larger project sweeping changes

might have broken the build or upset other developers. With a single developer

these issues are not a problem so it made sense to take full advantage of this

opportunity for agility. The final result is higher quality software that is easier to

understand.

In the book “The Mythical Man Month” [Brooks72], the author suggests

that you should “Plan to throw one away, you will anyhow”. This turned out to be

very good advice and we threw away a significant amount of code on this project,

although we actually kept every file that we threw away in case it was useful for

later analysis. To date, the project consists of approximately 100 source files and

we discarded 70 additional files, so over 1/3 of the files were eventually replaced.

Some components, like Peer Presence, were re-written no less than three times.

 59

4.2 Requirements

Thorough the project we maintained an overall guiding vision of the

system’s purpose and capabilities. We divided the overall design into small, easily

manageable, chunks to plan in detail. More detailed requirements were created for

each chunk and the chunk was then implemented. This was an iterative process

such that we only planned and implemented one set of functionality at a time.

If we found that we lacked some knowledge necessary to implement the

requirements we would often create a Spike Solution [Wake01] to explore the

requirement in greater detail and to access its feasibility and associated risk. For

example, there was an original requirement that the Group Share be viewable in a

JTree widget to give the user their current location in the Tree. To be confident that

we could meet this requirement we needed detailed knowledge of the Java Swing

API [JavaAPI05] for using JTrees. We built a spike to test this and found it to be

extremely difficult. This caused the requirement to change and resulted in the

location being displayed in a browser-style address bar instead.

Another Spike Solution was created to answer a simple question; “Could we

make BEEP work over JXTA?” We constructed a small program that retrofit the

BEEP echo server/client to a JXTA application. The result found a bug in the close

semantics of JxtaSocket that had to be fixed before work with BEEP could

continue. Ultimately the answer was “Yes, we can use BEEP” but had we

 60

immediately integrated the code into the application spotting the bug in the API

would have been much more difficult.

Requirements changed constantly throughout the project and we handled

this very well. We minimized the amount of redesign by restricting our efforts to

creating detailed requirements for a single component per iteration.

4.3 System Architecture and Design

In this section, we will discuss important design issues, such as Design

Patterns [Gamma95] and major components.

4.3.1 Mediator Design Pattern

The System Component Diagram (Figure 4.1) shows the relationships

between the major system components of the system. The system’s global

architecture uses the Mediator Design Pattern [Gamma95]. This pattern’s goal is to

promote low coupling between the individual components it mediates. What is not

obvious from this diagram is that it also acts as a thread boundary, allowing events

from different threads in different components to interact without deadlock.

 61

Figure 4.1 System Architecture Diagram

4.3.2 Network Components

The Presence, Availability and Data Transfer components are the

components the system uses to interact with other peers. Each of these components

sends and receives information. They receive information in an asynchronous

manner and they deliver this information in the form of events to a listener

interface. The mediator component implements these interfaces, allowing it to

receive and process these events. This is known formally as the Observer Design

Pattern [Gamma95]. This potentially allows several components to receive events

from a single component and allows the Mediator to be broken into several objects

that perform different tasks on the same event.

 62

4.3.3 Model View Controller Pattern

The application makes use of the Model-View-Controller [Gamma95]

pattern for the User Interface. This pattern separates the responsibility for

displaying data from the actual data model. In our case the users, groups and trees

are the model layer. Where these components meet the user interface there are

controllers that interpret user interaction and call appropriate functions in the

model. These controllers are all part of the UI package. The view is represented by

Java Swing components rendered from SwixML [SwixML05] documents. This

topic will be discussed further in section 4.5.3. In Mindshare, the model state and

data can change due to events received across the network. This means that the

Model must be able to update the view asynchronously. Many of the controllers

extend a common Java class that gives them an event queue capability and allows

them to process model events in a separate thread. This reduces the need for

synchronization and makes the interface more responsive.

4.3.4 The Storage Component

The storage component uses the host file system to store Trees and files.

This component is also responsible for hashing imported files and for copying files.

Two logical storage layouts could have been implemented. The easier to

implement would have stored each user’s files in a separate directory. This

segregation allows the user to determine the owner of a file even when the program

 63

is not running. It also avoids problems with name collisions. This scheme does

have one key disadvantage. Files from different users are not in the same folder, as

they are depicted in the display, so they cannot be used together by external

programs. This would be an issue for code compilation or photo slide shows. A

better solution would be to build a single file hierarchy that mirrors the display in

the File Browser.

Placing files from several users in the same folder makes it hard to tell what

files belong to whom. To assist the user (and to prevent inadvertent changes) the

files received from other users are marked as read only by setting the host file

system’s read only flag. The user can open these files but if they attempt to

alter the files they will be warned that the files are read-only by the host operating

system. If the user chose to override the warning and make a change, the Mindshare

client would be forced to synchronize those files the next time it ran, possibly

deleting the user’s changes.

The other major problem is with file name collisions. The host file system

will not allow two files to exist with the same name at the same path. Mindshare

has to support this duplication because it cannot prevent the creation of duplicate

file names on loosely coupled machines. From the programs, and the users, point of

view the files are distinct because they belong to different people. The files may be

created at different times and it may be hours or days before the collision is

discovered. The software must handle this gracefully and without error.

 64

The actual implementation in the prototype uses the first method discussed

above. This method was chosen because it was the safest (minimal chance of

implementation error) and quickest to construct. We acknowledge that the storage

system is not ideal for a collaborative environment and is likely to evolve. To

support this evolution the components details are shielded from the rest of the

program by an interface. The Storage interface supports operations based on file

and Tree URIs. The URI contains the three pieces of information necessary to store

or access a file, the user id, the group and the path. This approach allows a Storage

implementation module that can store the files in a way that is opaque to the user.

This will allow for future improvement without changes to the rest of the program.

4.4 Risk Management

Working on any new software system carries some inherent risk and it is up

to the designer to identify and mitigate those risks. True Peer to Peer systems and

overlay networks are a relatively new field in Computer Science history and well

understood examples of such systems are still developing. There were many

sources of risk on this project, some obvious, some hidden. Identifying risk was an

important task throughout the project.

The decision to allow Mindshare to rely on third party libraries to supply

the underlying networking facilities was difficult because of the associated risk.

The JXTA library in particular is under active development at the time of this

 65

writing. When the Mindshare project commenced, the JXTA library was very

immature and there was a genuine risk that it would not perform as required. If

there was a failure in JXTA the only vector for resolution, aside from abandoning it

entirely, was to become involved in its development process, therefore we have

become active in the JXTA developer community and contributed bug reports and

bug replication code to the project.

The other risk management activities on the project focused around

identifying potentially complex areas of the software and prioritizing their

development. This resulted in multi-threading being an initially identified risk.

Utility code was developed early in the project to allow for many threads to co-

operate with the user interface to avoid performance issues in the User Interface.

4.5 Software Libraries

Many well-documented open-source libraries are available for developers

but no single package provides the full range of features needed to build peer-to-

peer applications. Mindshare's peer management and file transfer components are

based on the JXTA [Oaks02] and BEEP [Rose01] libraries which we will describe

in more detail below. Other libraries are needed to make a fully functional system.

Smart choices in libraries helped to reduce the workload and indeed make the

project possible for a single programmer.

 66

4.5.1 JXTA

The main goal of this prototype was to prove that something useful (and

legal) could be done with P2P software. Developing a full P2P infrastructure was

not a main goal. Having to develop a sophisticated P2P toolkit was beyond the

scope of the project. During the initial design phase a search began for an off-the-

shelf library to perform key P2P functions. JXTA was the only candidate that

showed much promise in this area.

JXTA fulfilled the core requirements of locating peers across the internet

and grouping peers together. JXTA also brought some unexpected bonuses. JXTA

can connect from behind NAT and firewalls using HTTP. Peers that would be

unreachable otherwise can be reached by routing messages across other peers on

the network. JXTA also uses XML for all messages it sends between peers which

initially appeared to fit well with the goal of using XML for all messages in

Mindshare. All resources in JXTA are described using XML documents called

Advertisements. JXTA was not designed for any particular application but as a

general P2P toolkit for connecting peers. JXTA is a “super peer” network, this

means that for any group of peers there is at least one peer that acts as the

coordinator. In JXTA the super peers are called Rendezvous Peers or simply

RDV’s. JXTA allows for multiple super peers to spread load and for redundancy.

Any peer can be an RDV and the network allows for peers to be promoted to RDV

status dynamically as needed.

 67

4.5.1.1 Peer & Group Organization

JXTA organizes all peers into a hierarchy of groups. All peers belong to a

global group called the Net Peer Group. Peers can then join other groups that are

logically below the Net Peer Group. It is possible to recursively form subgroups but

JXTA does not support a mechanism for accurately specifying the path to a group

below the second level. Each group has its own super peer, the Net Peer group is

the largest group and it has several RDV peers. Each application is encouraged to

arrange all of its peers in a single group below the Net Peer Group. If further

subdivision of peers is needed then groups should be formed below the application

level group. Mindshare follows this advice in creating groups. A single Group

Advertisement cannot contain the exact path of a group three levels down in the

group hierarchy. This makes it essential for every Mindshare peer to also have a

copy of the application level group advertisement. It is interesting that a primary

usage pattern is not directly supported by JXTA. This is not a failure of the

implementation but of the actual design of the JXTA protocols.

Having to support a three-level group hierarchy requires a Mindshare peer

to be prepared to become an RDV at both the application and individual group

levels. Implementing this correctly involved much more code than joining a single

group by using a single advertisement.

 68

4.5.1.2 Locating Peers

JXTA provides a built-in mechanism for locating groups and peers called

the Discovery Service. It is advised [Parker04] that before accessing a resource it

first be ‘discovered’ using the Discovery Service to prove its existence. Group

discovery was not very useful because information about groups is delivered to

each Mindshare Peer in the form of an invitation. Mindshare peers know the

‘address’ of the groups they wish to join and so discovering these resources is not

necessary.

One of the first development tasks was to test peer location. Before peers

can begin to coordinate they must first know what other peers are available to

coordinate with. In Mindshare’s case all peers are interconnected at all times.

Initially the Discovery Service was used for locating peers. This worked well in

testing on a single machine or over a LAN, but when testing was performed over

the Internet with peers located in different networks, the results were poor.

Discovery could take several minutes and often returned no results, even when it

was known that peers were indeed active.

The Discovery service was not designed for Peer Presence. Discovering a

peer only tells you that the peers advertisement is cached somewhere on the

network. It cannot tell you if that peer is still online or when the peer goes offline.

In groups that have more than one RDV peer, Discovery queries are not guaranteed

to reach all peers. Queries only propagate over a single hop from their source. This

 69

leads to a lack of repeatability in testing. The group needs several minutes to

organize and to find routes between all peers for proper query propagation. There is

no way to tell if this point of proper organization has been reached. Ultimately the

uncertainty of the Discovery Service makes it unsuitable for peer discovery.

Propagated pipes were used to get around this limitation because propagated

messages are not dropped like Discovery Queries. This required a major

development investment. It also means that JXTA does not directly support one of

Mindshare’s major requirements. This was not apparent from the JXTA

documentation.

4.5.1.3 Library Immaturity

JXTA is at version 2.0. This usually suggests that a program or library is

mature software, has been thoroughly tested and found to be satisfactory. However,

the JXTA libraries (particularly the Java implementation of JXTA) do not exhibit

these characteristics in practice. JXTA’s documentation is still being developed and

frequent API changes mean that the tutorials are often out of sync with the current

version of the software. The examples are simplistic, do not embody good usage

patterns and mislead the novice developer.

During development we uncovered a bug in the JxtaSocket class that

prevented a socket from closing in a timely manner even when connected through

the loopback interface. Providing automated tests for JXTA is difficult not only

because peers are difficult to configure and start but because the network cannot be

 70

controlled in a repeatable manner during the test. Many problems and potential

bugs may be falsely ascribed to network difficulties. Reproducing an effect is

difficult or impossible because the network topology in which the error occurred is

not known and is not under the control of the tester.

It appears that JXTA has a long way to go before it will be a stable

platform. In the Chapter 5 we will discuss alternatives to JXTA and what it an

alternative might look like.

4.5.2 BEEP & BEEP Core Java

BEEP, the Blocks Extensible Exchange Protocol [Rose01], is defined by

IETF draft RFC 3080. Its reason for existence is to make building application layer

protocols easier by providing common functions and features that all application

layer protocols need. BEEP makes it easy to construct request-response type

protocols. It can automatically split messages that are too large to fit in a single

packet and deliver them to a remote peer. It also supports the concept of ‘channels’

which are separate tunnels over a BEEP session. Multiple channels can be in use at

the same time and their traffic will be multiplexed over a single socket. BEEP has

been used in a number of projects and products including the Intrusion Alert

Protocol [Betser01], Reliable Syslog [New01] and SubEthaEdit [SubEthaEdit05].

BEEP’s ability to process large messages and to support multiple channels

made it a very attractive basis for the application layer protocols in Mindshare.

 71

Using channels eliminates the need to have multiple socket connections between

peers. JXTA sockets (called pipes) require significant time to connect and so it was

attractive to use a single socket to decrease the time it takes for one peer to connect

to another.

The Java BEEP Core library [JavaBEEP05] was easily adapted to work

with the JxtaSocket class. From there, the application layer protocols for

Mindshare can be designed using the BEEP connection. Using a standardized

networking layer partially shields Mindshare from JXTA and could facilitate

porting of the application to another overlay network in the future.

4.5.3 SwixML

SwixML [SwiXML05] is an XUL (XML User-interface Language)

[Bullard01, XUL05] motor for Swing. SwixML uses XML documents to describe

the Swing components and layout of a user interface. The SwixML motor then

'renders' these documents by creating Swing components at runtime. This approach

significantly reduced the component creation and layout code that would have been

written in a standard Swing application. The remaining GUI code had better

organization and could be focused on user interaction and event handling. There are

no unnecessary references to components that do not interact with the user, such as

frames or layout managers, in the code. Functionality can be split across multiple,

 72

small, focused controller objects making the code more modular and adhering more

closely to the Model View Controller Pattern.

SwixML also facilitated rapid prototyping of UI layout ideas. Changes to

the design often did not involve any code changes. This ability to 'play' allowed for

the refinement of usability and freed the developer to easily redesign bad interface

design choices. Use of an XUL motor was a great advantage on this project and

saved much time and effort, reduced complexity and increased quality.

4.5.4 Log4J

Figure 4.2 Sample Log Output in Mindshare

Throughout the prototype we used the logging framework Log4J [Gulcu03]

to provide logging facilities for the application. The application contains a log

 73

viewing window so that log output can be observed when the application is being

run outside of the development environment. The log output uses colors for

different types of events. More critical events appear in orange and red while

informational and debugging events appear as blue and green respectively. Within

the development environment the system error output is captured by Eclipse, which

displays this logging output. The use of a configuration file compiled with the

application allowed the developer to configure log message output from individual

components and message priorities. This was an invaluable aid in debugging and

was often the best source of valuable clues.

4.6 Testing

Testing activities for the prototype implementation focused on two program

areas; network testing and non-network testing. Each type of testing presented its

own challenges and required a very different approach.

4.6.1 Offline Testing

When testing the application off the network we used a variety of standard

techniques. We used JUnit to write and run unit tests of as much of the software as

possible. Eclipse has built-in support for JUnit and can discover new test classes

and run all the tests in a single operation. Eclipse can link back to the code that

caused a test to fail to aid in debugging.

 74

We used exploratory testing and scenario testing to test UI interaction.

Log4j output was useful in tracking the bugs found by exploratory testing.

4.6.2 Network Testing

Network Testing covers all activities that require the program to be

connected to the JXTA network to facilitate testing. Working with JXTA to

automate or at least accelerate testing proved to be very difficult.

JXTA is a dynamic network environment and Mindshare was intended to

operate in a dynamic environment. Throughout development the public JXTA

network exhibited instability. This instability is widely acknowledged by the

developers and efforts are ongoing to improve network stability. The main problem

was that any peer could become an RDV in the net peer group. These are the super

peers that route traffic for the entire network. Some developers run tests on the

public network that caused these super RDV peers to start and stop over the course

of a few minutes. Each time these peers join the network there is general upheaval.

Recently the option for peers to become super RDV’s has been removed and this

has greatly improved network stability. This came too late to help with most of the

testing however.

JXTA peers choose a random RDV peer at start up. This is one of the

causes of non determinism in JXTA. If, by coincidence, all the peers in a test

instance pick the same RDV it is much more likely that they will establish

 75

communication quickly. If they choose a wide dispersion of RDV peers it can take

much longer for the peers to find each other and begin the test. It is even possible

that a peer might connect to a short lived RDV that would terminate during the test.

This sometimes caused peers to fail in a non-repeatable way.

Peers being tested on a LAN can use multicasting to locate each other

reliably. This can aid and accelerate testing but can also lead to results that do not

work outside of the LAN. In particular, timeout values for a LAN are much shorter

than for peers that are physically dispersed. Choosing timeout values based on

LAN testing will give poor results in real world conditions.

When Mindshare’s development started, JXTA required the user to interact

with a GUI to configure each peer. This was a major obstacle to automated testing.

Each peer needed to have slightly different configuration to allow several peers to

run on the same computer. As a result, test automation focused on improving the

performance of the build and deployment process. This reduced the time it takes to

set up each test scenario. Testing was then carried out manually by the tester. This

is not ideal because it makes test repeatability partially dependent on consistent

execution by the tester. In the case of JXTA the lack of deterministic behavior

negatively affects the results.

The time it takes to run a particular test is dominated by peer startup and

connection times. Peers need to have long timeouts for connecting to each group. In

practice it takes between 1 and 2 minutes for a peer to load and connect to its

 76

assigned group before a test can start. For most tests, coordination is required from

all peers. They must be connected and locate each other before the feature can be

tested. New techniques need to be devised to test groups of peers. Existing testing

tool don’t work well at exposing bugs found in a non-deterministic environment.

4.7 Deployment

For the prototype we made use of the Ant [Ant05] build system to automate

deployment. An Ant script can build the entire system and package all resources

into a structured Zip file and transfer this file to a website for download. The Ant

script also increments the build number so that each build is uniquely identifiable.

The build number and version number are added as properties to the Java Archive

(Jar) that contains the Mindshare executable. Mindshare picks up the version and

build number from the Jar properties and displays them in its title bar. Mindshare

can also be run from inside the IDE development environment where Jar properties

are not available and it handles this situation silently.

The Zip package that Ant creates contains a folder structure necessary for

Mindshare to run after the Zip file has been decompressed. When the application is

first run the Configuration Subsystem stores required global variables in a

configuration file in the root of the install directory, called “config.cfg”. New

versions of the software can be installed directly over old installations. The

Configuration System will analyze the existing configuration file and make any

 77

changes necessary to accommodate the new version while keeping any old

configuration settings.

The software detects the path it is being executed from at startup and uses

this path to locate resources, such as Icons and UI files, in folders relative to that

path. This allows the installation to be moved on disk without adverse effects. The

application can also be completely and removed by simply deleting a single folder.

4.8 Maintenance

This project will continue after this paper is published. The source will be

released under an Open Source license to solicited contributions and improvements

from others. We intend to follow the “Release early, release often” strategy of

many successful Open Source projects. There are many ideas that were not

practical to implement in the prototype and many opportunities for improvement.

The source code includes comments that conform to the Java Doc specifications

and also includes Unit Tests to aid in system evolution. We hope to see the system

improve and gain widespread use with our target user base.

 78

Chapter 5 Conclusion

In this paper we have presented the design of a system suitable for

collaboration between a small group of people and given motivation for our

specific design choices. We have detailed the design, and architecture of the

system. In this section we look at the future of the system and what was learned

during its construction.

5.1 Future Work

Development of the Mindshare system will continue long after this thesis is

presented; the system described in this paper is merely a prototype. We feel that the

requirements are applicable to the real world and that we will have the strong

support of users to continue development and evolution of the system. To produce

a prototype for a thesis requires a focus on new and unproven areas of computer

science. Future development will fill in the gaps left behind and provide

functionality that users already expect from mature software systems.

5.1.1 Security

Mindshare doesn’t have security implemented at the time of this writing.

There are some fairly clear paths towards securing the system both from attack and

 79

interception. At the moment, two core security problems exist with the software.

The first is keeping unauthorized users out of a group; the second is securing traffic

between group members.

5.1.1.1 Membership Authentication

Currently anyone who obtains a copy of the group advertisement can use

the client to join that group. Group advertisements can be found using the

Discovery service and so it would be easy to infiltrate a group by searching for one

of these advertisements.

A technique is needed to differentiate between members and non members

in secure and distributed way. One way to implement this would be using public

key encryption. Each member of the group would have a key pair. The public keys

would be distributed to other group members by a distribution mechanism similar

to tree synchronization.

To add a member to the group, an invitation would be generated by any

current group member and encrypted using their private key. This invitation would

include the details about the invited user, their user ID and an encoded lifespan

during which the invitation is valid. The peer that generates the invitation is known

as the ‘sponsor’. Any peer in the group that knows the sponsor’s public key can

verify that the invitation is valid. They can also test that the invitation has not been

used yet by checking for the embedded user id in their list of known members.

 80

The invited peer can then initiate a secure transaction with any peer in the

group to become a member. This transaction would involve a member

authenticating the invitation. The new member would generate its own key pair and

the authenticating peer would distribute the new member ID and public key to the

rest of the group.

5.1.1.2 Tree Security

Trees would be distributed in a compressed and encrypted format. Zip

compression could be used to significantly reduce the size of distributed trees

because trees are XML documents. The zipped data would then be encrypted using

the member’s private key. This would allow secure distribution of trees by third

parties and protect tree data from attacks coming from within the group.

5.1.1.3 Transport Security

Securing transport of data between peers is also vital to protect the network

from eavesdropping. Several opportunities exist to secure the point-to-point

communications. JXTA provides for secure pipes using SSL. BEEP also provides

for sessions using TLS (an SSL derivative) and challenge-response authentication.

BEEP currently offers the most flexible and programmer friendly solution. Data

that remains unencrypted at the JxtaSocket layer does not reveal anything about

the payload other than size and source peer.

 81

Multicast data is another problem. No lower level support exists for

encrypting multicast communications. One solution is to avoid using multicast for

anything sensitive. Mindshare already takes this approach. User ID’s and tree

versions are sent via multicast but no tree data is sent. This data would only provide

a potential attacker information on whose Trees are being updated. However, much

of this information could also be inferred from traffic pattern analysis of a

Mindshare network even if the communications were encrypted.

5.1.2 Distributed Download

Mindshare could improve its file download speed and resource usage

efficiency by allowing peers to download different blocks of a file from several

sources. BitTorrent [BitTorrent04] has already proven this to be a powerful

approach. Minimal changes would be needed to allow Mindshare to use the

BitTorrent method.

Trees would need to include block size information and a set of SHA1

hashes along with the existing MD5 hash and length information. The file transfer

protocol GET operation would have to be parameterized to reference each specific

block index to download. The ‘Tracker’ (program that tracks all peers downloading

a file) is not needed in Mindshare because all peers are actively downloading all

files. A more important requirement is that Mindshare clients must build a map of

 82

which peers have specific blocks from a given file. A command to get a block map

for a specific file would then be necessary.

5.1.3 Transferring Ownership

A peer cannot directly edit the Trees that it receives from other peers and

this limits some activities that the collaborating users might wish to perform. To

work around this restriction, one user could give up ownership of a file to another.

To transfer ownership both parties need to be online and have an up to date copy of

the file in question. The current owner initiates the transaction based on a request

from the peer that desires ownership. We have already included some UI elements

in the prototype to support this interaction.

The transfer would be a multi-part exchange including stages for verifying

that the receiving peer has a complete copy of the file(s). This transfer would occur

over a separate BEEP channel. The receiving peer would use the bits field for the

files being transferred to create new entries in its own tree with the same names as

they had in the original owner’s tree. The peer that is granting ownership waits for

acknowledgement of the transfer (which comes when the recipient transmits its

updated tree) and then removes the file(s) from its own local Tree. Because the

original owner does not delete its file(s) until the full transfer is acknowledged,

interruption of this multi-part transaction will not result in a data loss.

 83

Users can already accomplish this by copying files and importing them back

into the program. This manual process is more cumbersome but no less effective.

5.1.4 Database Backed Storage

As we discussed in 4.3.4, the current design of the storage component is not

ideal. The use of a database would be the best solution for storing files in a way

that mirrors the display in the application. The database is necessary to resolve

ownership and to track naming collisions. When a naming collision occurs it will

be necessary to rename the file on disk and there may be no way to successfully

‘guess’ the owner of a file if this data is not recorded persistently somewhere.

5.1.5 Usability Testing

Usability was a major focus area for this project. Given the final state of the

prototype it was not yet practical to deploy it for real-world use. As soon as the

above enhancements are made the prototype could undergo usability testing. A

good way to do this would be in an academic setting where a group project is

required. They would use the software for their collaboration needs and report on

their experience. Observations could also be made in a lab setting where user

interactions and usage patterns are recorded. Based on those results, the user

interface could be enhanced and features selected for future development could be

prioritized.

 84

5.2 Lessons Learned

5.2.1.1 Improved Testability

Testing the network interaction of a Peer to Peer application is not yet well-

supported by standard testing tools. In developing the prototype we focused on two

primary techniques. First we used unit testing to validate as many of the

components as possible offline. This reduced the probable source of a fault to a

limited number of components that interact with the network. Secondly we used

logging facilities to produce accurate transcripts of the interaction at each peer

those logs were consulted after test runs to aid in debugging.

Network testing was not an automated process and testing a protocol or peer

interaction is a very time dependant process.

5.2.1.2 Alternative P2P Networking

JXTA adds a considerable amount of extra code to Mindshare and also

negatively affects performance and reliability, thus its refinement or replacement is

a top priority. JXTA is attractive because it allows peers to connect from common

consumer connections, many of which are behind firewalls or Network Address

Translation. This is because JXTA is an ‘overlay’ network which can route

communications between peers over different connection types.

JXTA does not deliver on all of its promises though. Interestingly, a server

is required to bootstrap peers. The server has a simple list of the running super

 85

peers that an edge peer uses to connect to the network. This bootstrap server could

be enhanced to eliminate much of the JXTA core. If the bootstrap server had the

addresses of every peer this would significantly cut down on startup time and

enhance reliability. The amount of data the server would have to store would be

small and the server could be written in several languages. A single server could

scale to server thousands of clients.

The hierarchy of groups could be replaced by a flat group namespace using

cryptographically generated group ID’s. Group security could be assisted by storing

keys and passwords on the server. This would also solve the problem of removing a

group member. A central server could also hold invitations so that they could be

claimed via e-mail.

Of course, increasing reliance on a server raises all the issues related to

server based systems. The main attraction of this scheme is that it is simple to

implement. The server does not store any of the files for a particular group and

requires very little bandwidth. A single server could handle all of the peers on the

Internet. An example of a similar system is the SHOUTcast [SHOUTcast05] list

server at Winamp.com or the Bit Torrent Tracker. A single server lists all peers in

the group without needing significant bandwidth or storage space.

Peers would connect to the server at startup to get the peer addresses of the

other group members. From there connections are initiated using BEEP between

 86

the peers. Future development would allow for overlay communication between

peers over HTTP. The HTTP relays would be published by the server.

5.3 Conclusion

In this thesis, we have presented the design and development of a prototype

collaborative system for small groups based on peer to peer networking technology.

We discussed the issues that arise in designing and developing P2P systems and

present useful solutions to these problems. The prototype design is very robust,

allowing peers to collaborate even when they are not continuously online. The

prototype achieves these goals without the need for a centralized server, which s

required by other collaboration solutions, such as e-mail. The Metadata Tree based

approach is unique and provides for a fault tolerant system with version control in a

fully distributed environment. The prototype highlights the need for usability in

software targeted at this user segment. It has strong user interface design and

deploys to any platform that runs the Java Virtual Machine.

 87

References

[7Zip05] 7-Zip website, http://www.7-zip.org/

[Anderson02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, Dan

Werthimer, "SETI@home: An Experiment in Public-Resource Computing",

Communications of the ACM, Vol. 45 No. 11, November 2002, pp. 56-61

[Ant05] The Apache Ant Project, http://ant.apache.org/

[Beck99] Kent Beck, "Extreme Programming Explained: Embrace Change",

Addison-Wesley, 1999

[Betser01] Betser, J., Walther, A., Erlinger, M., Buchheim, T., Feinstein, B.,

Matthews, G., Pollock, R., Levitt, K., "GlobalGuard: creating the IETF-

IDWG Intrusion Alert Protocol (IAP)", in Proceedings DARPA Information

Survivability Conference & Exposition, 2001

[Breidenbach01] Breidenbach, Susan, "Peer-to-Peer Potential", Network World,

July 30, 2001

[Biddle03] Peter Biddle, Paul England, Marcus Peinado, et al. "The Darknet and

the Future of Content Protection", Lecture Notes in Computer Science,

Springer-Verlag Vol. 2696, pages 155-176, 2003

[Bullard01] Bullard, Vaughn, Kevin Smith and Michael C. Daconta, "Essential

XUL Programming", Wiley Publishing, 2001

[Cederqvist02] Per Cederqvist, "Version Management With CVS", Network

Theory Ltd. 2002

[Cohen04a] Cohen, Bram. “BitTorrent: Protocol Specification”, Nov 2004.

"bittorrent.com/protocol.html"

 88

[Cohen04b] Cohen, Bram. “Incentives Build Robustness in BitTorrent”, Workshop

on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, May 2003.

[CVS04] Concurrent Versioning System. “CVS Product Overview”,

"www.cvshome.org", Nov 2004.

[Distributed05] Distributed Encryption Cracking Tools, "www.distributed.net",

2005

[Dourish92] Dourish, Paul and Victoria Bellotti, "Awareness and Coordination in

Shared Workspaces", in Proceedings, Conference on Computer Supported

Cooperative Workgroups, 1992

[Ellison03] Ellison, Carl and Steve Dohrmann, "Public-Key Support for Group

Collaboration", ACM Transactions on Information and System Security,

Vol. 6, No. 4, pg. 547-565, November 2003

[Edwards02] Edwards, W. Keith, Mark W. Newman, Jana Z Sedivy, et al., "Using

Speakeasy for Ad Hoc Peer-to-Peer Collaboration", in Proceedings,

Conference on Computer Supported Cooperative Workgroups, 2002

[Farrell04] Farrell S., Ed., "RFC3767 Securely Available Credentials Protocol",

June 2004

[FEPWC98] Federal Email Postmasters Working Committee. “Draft Policy on

Permissible Email Attachment Size” August 1998.

[Gamma95] Gamma, Erick, Richard Helm, Ralph Johnson and John Vlissides,

"Design Patterns", Addison-Wesley Publishing, 1995

[Groove05] Groove Networks, Inc., website, "www.groove.net", 2005

[Grouper05] Grouper website, "www.grouper.com", 2005

[Gulcu03]Gulcu, Ceki, “The Complete Manual - log4j: The Reliable, Fast and

Flexible Logging Framework for Java”, QoS.ch, 2003

 89

[Halepovic02] Halepovic, E., Deters, R., "Building a P2P forum system with

JXTA", in Proceedings, IEEE Conference on Peer-to-Peer Computing, 2002

[JavaBEEP05] Java BEEP Core Libraries web site,

"sourceforge.net/projects/beepcore-java", 2005

[JavaAPI05] Java SDK Reference web site,

"java.sun.com/reference/docs/index.html", 2005

[Johnston04] Johnston, Alan B., "SIP: Understanding the Session Initiation

Protocol", Artech House, second edition, 2004

[Kaner99] Kaner, Cem, Jack Falk and Hung Q. Nguyen, "Testing Computer

Software", 2nd Edition, Wiley Publishing, 1999

[Kaner01] Kaner, Cem, James Bach and Bret Pettichord, "Lessons Learned in

Software Testing", Wiley Publishing, 2001

[Kant02] Kant, Krishna, Ravi Iyer and Vijay Tewari, "A Framework for

Classifying Peer-to-Peer Technologies", in Proceedings, IEEE/ACM

Symposium on Cluster Computing and the Grid, 2002

[Kim03] Kim, Yongdae, Daniele Mazzocchi and Gene Tsudik, "Admission Control

in Peer Groups", in Proceedings, IEEE Symposium on Network Computing

and Applications, 2003

[Klensin01] Klensin, J., "RFC 2821: Simple Mail Transfer Protocol”, "www.rfc-

editor.org", November 2004

[Larman02] Craig Larman, “Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and design and the Unified Process [2nd ed.]”,

Prentice-Hall, 2002

[Lotus05] IBM Lotus Notes website, "www.lotus.com", 2005

[Matei02] Matei, R.; Iamnitchi, A.; Foster, P., "Mapping the Gnutella network",

IEEE Internet Computing, Volume: 6 , Issue: 1 , Jan.-Feb. 2002

 90

[Niemeyer03] Niemeyer, Glenn and Jeremy Poteet, " Extreme Programming with

Ant: Building and Deploying Java Applications with JSP, EJB, XSLT,

XDoclet, and JUnit", SAMS Publishing, 2003

[New01] New D., M. Rose, "RFC3195 Reliable Delivery for syslog", November

2001

[Oaks02] Scott Oaks, Bernard Traversat, Li Gong, "JXTA in a Nutshell", O'Reilly

Publishing, 2002

[Parker04] Parker, D.C.; Collins, S.A.; Cleary, D.C., "Building near real-time P-2-P

applications with JXTA", IEEE International Symposium on Cluster

Computing and the Grid, 2004

[Pfleeger01] Shari Lawrence Pfleeger, “Software Engineering: Theory and Practice

[2nd ed.]” Prentice-Hall, 2001

[Ripeanu01] Ripeanu, M., "Peer-to-peer architecture case study: Gnutella

network", in Proceedings, 1st IEEE Conference on Peer-to-Peer Computing,

2001

[Rose01] M. Rose, "RFC 3080 The Blocks Extensible Exchange Protocol Core",

www.rfc-editor.org, March 2001

[Roseman96] Roseman, Mark and Saul Greenberg, " Building real-time groupware

with GroupKit, a groupware toolkit", ACM Transactions on Computer-

Human Interaction, vol. 3, no. 1, 1996

[RSA05] RSA Labs website, "http://www.rsasecurity.com/rsalabs", 2005

[Saxene03] Saxena, Nitesh, Gene Tsudik and Jeong Hyun Yi, "Admission Control

in Peer-to-Peer: Design and Performance Evaluation", in Proceedings,

ACM Workshop on Security of Ad Hoc and Sensor Networks, 2003

[SETI05] SETI@home website, "setiathome.ssl.berkeley.edu/"

 91

[SHOUTcast05] SHOUTcast MPEG Layer 3 Audio Streaming Technology,

http://www.shoutcast.com/, 2005

[SIP05] Session Initiation Protocol, http://www.cs.columbia.edu/sip/

[SourceSafe04] Microsoft Visual SourceSafe,

"msdn.microsoft.com/vstudio/previous/ssafe/, 2005"

[Stern00] Stern, R., "Napster: a walking copyright infringement?", IEEE Micro,

Volume: 20 , Issue: 6 , Nov.-Dec. 2000

[SubEthaEdit05] The Coding Monkeys, "SubEthaEdit: a Collaborative Text Editing

Environment", http://www.codingmonkeys.de/subethaedit/

[Sun05] Sun Microsystems website, Java Programming Language and Virtual

Machine, http://java.sun.com

[Sussman04] Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato,

"Version Control with Subversion", O'Reilly Publishing, 2004

[SwiXML05] SwixML website, "www.swixml.org", 2005

[Thompson05] Thompson, Clive, "The BitTorrent Effect", Wired, vol. 13, no. 1,

January, 2005

[Tichy04] Tichy, W.F., "Agile development: evaluation and experience" in

Proceedings, 26th International Conference on Software Engineering, 2004

[Udell00] Udell, Jon, "How Ray Ozzie Got His Groove Back", openp2p.com,

O'Reilly Media, Inc., 2000

[Vaughan03] Vaughan-Nichols, Steven, "Presence Technology: More Than Just

Instant Messaging", IEEE Computer, Vol. 36, No. 10, October 2003

[Wake01] Wake, William, " Extreme Programming Explored", Addison-Wesley

Publishing, 2001

[Waste05] Waste website, "waste.sourceforge.net", 2005

 92

[XML05] World Wide Web Consortium website, Extensible Markup Language

(XML) Specification, http://www.w3.org/XML/

[XUL05] Mozilla XUL documentation, http://www.mozilla.org/projects/xul/

[Yeager03] Yeager, B., "Enterprise strength security on a JXTA P2P network", in

Proceedings, 3rd IEEE Conference on Peer-to-Peer Computing, 2003

 93

http://www.mozilla.org/projects/xul/

	List of Figures
	Acknowledgements
	Introduction
	Collaboration Scenarios
	A Group Photo Album Scenario
	A Group Project Scenario
	Small Team Programming Scenario

	Problem Summary
	Proposed Solution

	Computer-Supported Collaboration
	The Potential of Peer-to-Peer Systems
	A Brief Overview of Existing Collaboration Systems and Envir
	Local Area Networks
	CVS
	Lotus Notes
	Waste and Grouper
	Groove
	Speakeasy

	The Mindshare Approach to Collaboration
	Mindshare’s Design Philosophy
	Mindshare's File System Organization

	Functional Requirements
	Large and Numerous Files
	Structured File System
	Offline Access to Files

	Non Functional Requirements
	Automation
	Reliability
	Security
	Clients for Multiple Platforms

	Prototype Design and Implementation
	Design Issues
	Concurrent Resource Modification
	Distributed Authority
	How Distributed Authority is Implemented

	Trees
	Uniform Resource Identifier Usage
	Unique IDs
	Merging Trees
	Tree Synchronization

	Network Technology
	Protocol Stack

	Peer Protocols
	Message Encoding
	Peer Presence
	BEEP Session
	Availability Channel
	Data Transfer Channel
	Chat

	Presence Service
	Aims of a Presence Service
	Pipe ID’s and Naming
	Presence Messages
	Managing Failures & Network Issues
	User Presence

	Availability
	Tree Availability
	File Piece Availability

	Data Transfer
	Tree Request Messages
	File Piece Request Messages
	Efficiency

	User Interface Design
	Buddy List
	File Browser

	Software Engineering
	Development Model Overview
	Requirements
	System Architecture and Design
	Mediator Design Pattern
	Network Components
	Model View Controller Pattern
	The Storage Component

	Risk Management
	Software Libraries
	JXTA
	Peer & Group Organization
	Locating Peers
	Library Immaturity

	BEEP & BEEP Core Java
	SwixML
	Log4J

	Testing
	Offline Testing
	Network Testing

	Deployment
	Maintenance

	Conclusion
	Future Work
	Security
	Membership Authentication
	Tree Security
	Transport Security

	Distributed Download
	Transferring Ownership
	Database Backed Storage
	Usability Testing

	Lessons Learned
	Improved Testability
	Alternative P2P Networking

	Conclusion

	References

