

Learning Implicit User Interest Hierarchy for

Web Personalization

by

Hyoung-rae Kim

A dissertation submitted to

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

Melbourne, Florida

May 2005

TR-CS-2005_12

© Copyright 2005 Hyoung-rae Kim

All Rights Reserved

The author grants permission to make single copies ___________________________

 2

Learning Implicit User Interest Hierarchy for Web Personalization
a dissertation by
Hyoung-rae Kim

Approved as to style and content

Philip K. Chan, Ph.D.
Associate Professor, Computer Sciences
Dissertation Advisor

Debasis Mitra, Ph.D.
Associate Professor, Computer Sciences

Marius-Calin Silaghi, Ph.D.
Assistant Professor, Computer Sciences

Alan C. Leonard, Ph.D.
Professor, Biological Sciences

 William D. Shoaff, Ph.D.
Associate Professor, Computer Sciences
Department Head

 3

Abstract

Learning Implicit User Interest Hierarchy for Web Personalization

by

Hyoung-rae Kim

Dissertation Advisor: Philip K. Chan, Ph.D.

Most web search engines are designed to serve all users in a general way, without

considering the interests of individual users. In contrast, personalized web search engines

incorporate an individual user's interests when choosing relevant web pages to return. In

order to provide a more robust context for personalization, a user interest hierarchy (UIH)

is presented. The UIH extracts a continuum of general to specific user interests from web

pages and generates a uniquely personalized order to search results.

This dissertation consists of five main parts. First, a divisive hierarchical clustering

(DHC) algorithm is proposed to group words (topics) into a hierarchy where more general

interests are represented by a larger set of words. Second, a variable-length phrase-finding

(VPF) algorithm that finds meaningful phrases from a web page is introduced. Third, two

new desirable properties that a correlation function should satisfy are proposed. These

properties will help understand the general characteristics of a correlation function and help

choose or devise correct correlation functions for an application domain. Fourth, methods

are examined that (re)rank the results from a search engine depending on user interests

based on the contents of a web page and the UIH. Fifth, previously studied implicit

 iii

indicators for interesting web pages are evaluated. The time spent on a web page and other

new indicators are examined in more detail as well.

Experimental results indicate that the personalized ranking methods presented in

this study, when used with a popular search engine, can yield more relevant web pages for

individual users. The precision/recall analysis showed that our weighted term scoring

function could provide more accurate ranking than Google on average.

 iv

Table of Contents

List of Figures --- x

List of Tables ---xii

Acknowledgements ---xiii

1. Introduction --- 1

1.1. Motivation --- 2

1.2. Problem Statement --- 4

1.3. Approach -- 7

1.4. Key Contributions -- 9

1.5. Dissertation Organization --10

2. Learning Implicit User Interest Hierarchy for Context in Personalization --------------12

2.1. User Interest Hierarchy ---14

2.2. Building User Interest Hierarchy--17

2.2.1. Algorithm--17

2.2.2. Correlation Functions --23

2.2.2.1. AEMI--23

2.2.2.2. AEMI-SP ---24

2.2.2.3. Other Correlation Functions--26

2.2.3. Threshold-finding Methods ---27

2.2.3.1. Valley ---28

2.2.3.2. MaxChildren ---29

2.2.3.3. Other Threshold-finding Methods---30

2.2.4. Window Size and Minimum Size of a Cluster--------------------------------30

2.3. Experiments --31

2.3.1. Experimental Data and Procedures---31

2.3.2. Evaluation Criteria ---32

2.4. Results and Analysis --34

2.4.1. Building UIH with Only Words as Features ----------------------------------34

 v

2.4.1.1. Correlation Functions ---34

2.4.1.2. Threshold-finding Method--35

2.4.1.3. Window Size ---35

2.4.2. Building UIH with Words and Phrases as Features--------------------------37

2.5. Summary--39

3. Identifying Variable-Length Meaningful Phrases with Correlation Functions ---------40

3.1. Variable-length Phrases --42

3.1.1. VPF Algorithm--42

3.1.2. Correlation Functions --48

3.2. Experiments --50

3.2.1. Experimental Data and Procedures---50

3.2.2. Evaluation Criteria ---52

3.3. Results and Analysis --54

3.3.1. With-pruning vs. Without-pruning ---54

3.3.2. Analysis with Exact Match--54

3.3.2.1. Top 10 Methods--55

3.3.2.2. Comparing with Human Subjects ---57

3.3.3. Analysis with Simple Match --58

3.4. Summary--59

4. Analysis of Desirable Properties of Correlation Functions between Two Events ------61

4.1. Desirable Properties of a Correlation Function--63

4.1.1. Enhancing Property 1 --64

4.1.2. Additional Desirable Properties --64

4.2. Experiments --68

4.2.1. Experimental Data and Procedures---68

4.2.2. Evaluation Criteria ---69

4.3. Results and Analysis --71

4.3.1. Comparing Properties: Old verses New ---------------------------------------71

4.3.2. Comparison Based upon Property 1 ---73

4.3.3. Comparison Based upon Property 6 ---73

4.3.4. Normalized Results – Property 7 ---74

 vi

4.4. Summary--75

5. Personalized Ranking of Search Results with Implicitly Learned User Interest

 Hierarchies---78

5.1. Personalized Results --80

5.2. Approach ---81

5.2.1. Four Characteristics of a Matching Term -------------------------------------82

5.2.1.1. Level/Depth of a UIH Node--83

5.2.1.2. Length of a Term --84

5.2.1.3. Frequency of a Term --84

5.2.1.4. Emphasis of a Term ---85

5.2.2. Scoring a Term--85

5.2.2.1. Uniform Scoring ---85

5.2.2.2. Weighted Scoring--86

5.2.3. Scoring a Page --87

5.2.4. Incorporating Public Page Score ---88

5.3. Experiments --89

5.4. Results and Analysis --91

5.4.1. Interesting Web Page---92

5.4.1.1. Top Link Analysis ---92

5.4.1.2. Statistical Significance --93

5.4.1.3. Precision/Recall Analysis---94

5.4.1.4. Varying Personal Weight ---95

5.4.2. Potentially Interesting Web Page---98

5.4.2.1. Top Link Analysis ---98

5.4.2.2. Statistical Significance --98

5.4.2.3. Precision/Recall Analysis---99

5.4.2.4. Varying Personal Weight --- 102

5.5. Summary-- 102

6. Implicit Indicators for Interesting Web Pages--- 105

6.1. Implicit Interest Indicators --- 107

6.1.1. Complete Duration --- 107

 vii

6.1.2. Active Window Duration-- 107

6.1.3. Look At It Duration -- 108

6.1.4. Distance of Mouse Movement -- 108

6.1.5. Number of Mouse Clicks -- 109

6.1.6. Distance of Scrollbar Movement --- 110

6.1.7. Number of Scrollbar Clicks --- 110

6.1.8. Number of Key UP and Down-- 111

6.1.9. Size of Highlighting Text-- 111

6.1.10. Other Indicators--- 112

6.2. Detecting Face Orientation--- 112

6.2.1. Detecting Three Dots--- 113

6.2.2. Learning Face Orientation--- 117

6.2.2.1. Input/Output Parameters -- 117

6.2.2.2. Learning Algorithm --- 118

6.3. Experiments -- 119

6.3.1. Experimental Data and Procedures--- 119

6.3.2. Evaluation Criteria --- 120

6.4. Results and Analysis -- 121

6.4.1. Visits with Maximum Duration--- 121

6.4.2. All Visits--- 122

6.4.3. Other Indicators--- 125

6.5. Summary-- 128

7. Related Work -- 130

7.1. Web Information Retrieval--- 130

7.1.1. Basics of a WIR System --- 132

7.1.1.1. Lexical Analysis --- 132

7.1.1.2. Phrase --- 133

7.1.2. Clustering Web Contents -- 136

7.1.3. Predicting Navigation -- 138

7.1.4. Personalized Contents-- 139

7.1.5. Assisting Personal Information --- 142

 viii

7.1.6. Implicit Detection of User’s Characteristics -------------------------------- 142

7.2. User Modeling --- 144

7.2.1. Adaptive Hypermedia-- 145

7.2.2. Human Behavior Based User Model--- 146

7.2.3. Contents Based User Model--- 149

7.2.4. Hybrid Way Based User Model -- 151

7.2.5. Explicit/Implicit Way of Building a User Model -------------------------- 151

7.3. Machine Learning --- 152

7.3.1. Symbolic Methods of Learning--- 154

7.3.1.1. Semantic Networks-- 156

7.3.1.2. Learning Decision Trees-- 156

7.3.1.3. Learning Sets of Rules -- 156

7.3.2. Numerical Methods of Learning-- 157

7.3.2.1. Hidden Markov Models--- 157

7.3.2.2. Naïve Bayes Classifier -- 158

7.3.2.3. Artificial Neural Networks --- 158

7.3.2.4. Instance-based Learning -- 159

7.3.3. Clustering Techniques --- 159

7.3.4. Correlation Functions -- 164

8. Conclusions -- 166

8.1. Summary of Contributions --- 167

8.2. Ethical Issues in User Modeling--- 172

8.2.1. Privacy --- 172

8.2.2. Confidence on the Results--- 173

8.3. Limitation and Future Work --- 173

References--- 175

Appendix -- 188

 ix

List of Figures

Figure 1. Five research parts in the framework of web personalization ----------------------- 6

Figure 2. Learning user interest hierarchy in the framework of web personalization-------13

Figure 3. Sample user interest hierarchy --15

Figure 4. DHC algorithm--19

Figure 5. An example of DHC algorithm (1)---21

Figure 6. An example of DHC algorithm (2)---22

Figure 7. Shown in a Histogram ---27

Figure 8. Find the widest and deepest valley ---27

Figure 9. UIH with words ---38

Figure 10. UIH with words and phrases---38

Figure 11. Finding phrases in the framework of web personalization ------------------------41

Figure 12. VPF algorithm ---45

Figure 13. Example of VPF---46

Figure 14. Desirable properties in the framework of web personalization -------------------62

Figure 15. Venn diagram--63

Figure 16. Contingency matrix ---69

Figure 17. Contingency matrix of desirable properties over all functions--------------------72

Figure 18. Contingency matrix of desirable properties over property 1 ----------------------73

Figure 19. Contingency matrix of desirable properties over property 6 ----------------------74

Figure 20. Devising a scoring function in the framework of web personalization ----------79

Figure 21. Diagram of Scoring ---80

Figure 22. Average and SD of precision with Google --96

Figure 23. Precision/recall graph for interesting web pages------------------------------------96

Figure 24. Precision/recall with personal score weight c ---------------------------------------97

Figure 25. Up to 20% recall of Figure 24 ---97

Figure 26. Average and SD of precision with Google -- 100

Figure 27. Precision/recall graph for potentially interesting web pages -------------------- 100

 x

Figure 28. Precision/recall with personal score weight c ------------------------------------- 101

Figure 29. Up to 20% recall of Figure 28 --- 101

Figure 30. Implicit indicator for interesting web pages --------------------------------------- 106

Figure 31. A retrieved image --- 115

Figure 32. Detected three dots-- 116

Figure 33. Three dots in an image --- 116

Figure 34. Diagram of web information retrieval-- 131

Figure 35. Diagram of user modeling --- 147

Figure 36. Diagram of machine learning-- 153

Figure 37. Diagram of classification--- 155

Figure 38. Diagram of clustering--- 160

 xi

List of Tables

Table 1. Sample data set---15

Table 2. AEMI values ---24

Table 3. AEMI-SP values ---25

Table 4. Distribution of frequency and number of children ------------------------------------27

Table 5. Combination of AEMI, MaxChildren, and entire page-------------------------------36

Table 6. Combination of AEMI-SP, MaxChildren, and entire page --------------------------36

Table 7. Combination of AEMI, Valley, and entire page---------------------------------------36

Table 8. Combination of AEMI, MaxChildren, and 100 words -------------------------------36

Table 9. Use words and phrases --38

Table 10. With-pruning vs. without-pruning ---52

Table 11. Ranked by average across humans and articles – Exact match --------------------56

Table 12. Exact match across humans---56

Table 13. Ranked by average across humans and articles – Simple match ------------------58

Table 14. Simple match across humans ---58

Table 15. All possible cases (with the same incremental ratio)--------------------------------65

Table 16. An example for property 4 --66

Table 17. An example for property 5 --67

Table 18. Summary of correlation functions' properties --70

Table 19. Properties of correlation functions---77

Table 20. Precision in Top 1, 5, 10, 15 and 20 for interesting web pages --------------------96

Table 21. Precision in Top 1, 5, 10, 15 and 20 for potentially interesting web pages ---- 100

Table 22. ANOVA test with “visits with maximum duration” data set--------------------- 124

Table 23. ANOVA test with the data set of “all visits” --------------------------------------- 124

Table 24. Results of bookmark, save, print, memo indicators ------------------------------- 127

 xii

Acknowledgments

I would like to express my sincerest thanks to Dr. Philip K. Chan, my dissertation

advisor, for his encouragement, patience, financial support and greatest guidance through

this dissertation, including co-authorship of several papers, which were published as a

result of this research. Mere words cannot express my profound appreciation for his

endless love and support. I extend thanks to my other committee members, Dr. Debasis

Mitra, Dr. Marius-Calin Silaghi, and Dr. Alan C. Leonard.

Appreciation is also acknowledged for the following people who helped me during

my dissertation and Ph.D. program:

• Financial support: Dr. Philip K. Chan, Dr. Shirley A. Becker, Dr. Debasis Mitra,

Dr. William D. Shoaff;

• Experimental help: Matthew Scripter, Stan Salvador, Matthew Mahoney, Dahee

Jung, Timothy, Gaurav Tandon, Rachna Vargiya, Mohammad Arshad, Amanda, Audra,

Matt, Turky Alotaiby, Mohsen AlSharif, Akiki, Michel, Ayanna, Jae-gon Park, Ji-hoon,

Jun-on, Chris Tanner, Grant Beems;

• Support & Prayer: Young-ki Kim, Matthew Scripter, Nattawut Sridranop, Jae-

hyeon Lee, Ji-won Kim, Sun-young Kweon, Seong-won Kim, Gaehlan, Ron, Dana, Kirk,

Simon, Paster Luther V. Laite, Paster Warren E. Baker, Dr. Peggy Douglas, Prof. Harry

Alston, Se-hoon Kweon, Eun-jeong Lee, Seong-jin Park, Young-chun Bae, Su-bong Ham,

Seong-hoon Park, Ali Al-Badi, Marvin Scripter, Faith Scripter, Hun Namgung, Shin-suk

Kim, In-suk Gang, Paster Hyoung-woo Park, Paster Hee-youn Lee, etc.;

• Special thanks: Dr. Do-hong Cheon, Dr. Lieberio, Patti Laite.

 xiii

저의 논문을 위해 희생하신 아버지와 어머니의 노고에 비하면 저는 아무것도

한 것이 없는 것처럼 느껴집니다. 아버지는 새벽기도를 나가시면서 나무를

심으시면서 매일 기도의 마음을 잊지 않으셨습니다. 어머니는 좋아하시는 미역국도

삼가시면서 온 마음의 정성을 다 하셨습니다. 또한 공부는 길고 지루한 과정이기

때문에 습관화가 되지 않으면 그리고 주변의 격려가 없으면 끝까지 견디기가

어렵다고 생각합니다. 항상 연구하는 자세를 보여주시는 아버지의 생활 습관 그리고

항상 적극적으로 믿고 지원해 주신 어머니의 격려가 아니었다면 이 논문을 마치기

힘들었다고 믿습니다. 제 아버님의 성함은 김항남, 어머님은 권성자십니다. 저의

형제들 또한 마치 바위같이 흔들림없이 묵묵히 참으면서 뒤에서 도와준 것에 감사를

드립니다. 형제분들은 김미영, 김혜정, 김정래, 확장된 형제로는 장성수, 스퇴킹어

도미닉, 정래영입니다. 제 작은 아버님들과 어머님들, 그리고 외삼촌분들과

외숙모님들께도 감사 드립니다. 또한 조카들 장문주, 장혁주, 스퇴킹어 막스에게

앞으로 여유있는 외삼촌이 되어 주고 싶습니다. 나이로 인해 이젠 몸의 여러부분이

불편하신 가운데에서도 저의 박사논문을 염려해 주신 외할아버지에게도

감사드립니다. 마지막으로, 연구가 막힐 때 마다 기도를 통해 아이디어를

하나님으로부터 제공받았기에, 한편으론 하나님과 생산적인 대화를 즐겼었다고

봅니다.

 xiv

Chapter 1

Introduction

Web personalization adapts the information or services provided by a web site to

the needs of a user. Web personalization is used mainly in four categories: predicting web

navigation, assisting personalization information, personalizing content, and personalizing

search results. Predicting web navigation anticipates future requests or provides guidance

to client. If a web browser or web server can correctly anticipate the next page that will be

visited, the latency of the next request will be greatly reduced (Eirinaki et al., 2004; Kim et

al., 2004; Shahabi and Banaei-Kashani, 2003; Cadez et al., 2000). Assisting

personalization information helps a user organize his or her own information and increases

the usability of the web (Maarek and Ben-Shaul, 1996; Li et al., 1999). Personalizing

content focuses on personalizing individual pages, site-sessions (e.g., adding shortcut), or

entire browsing sessions (Anderson, 2002). Personalized web search results provide

customized results depending on each user’s interests (Jeh and Widom, 2003; Haveliwala,

2002; Liu et al., 2003; Bharat and Mihaila, 2001). Information access through a search

engine has become an essential part of our daily lives. We use a search engine to find

various information from a cloth to technical references. However, the accuracy of search

engines is still as low as 55% (Delaney, 2004). In this work, we focus on personalizing

web search by ordering search engine results based on the interests of each individual user,

which can greatly aid the search through massive amounts of data on the Internet.

 1

1.1. Motivation

When a user browses the web at different times, s/he could be accessing pages that

pertain to different topics. For example, a user might be looking for research papers at one

time and airfare information for conference travel at another. That is, a user can exhibit

different kinds of interests at different times, which provides different contexts underlying

a user's behavior. However, different kinds of interests might be motivated by the same

kind of interest at a higher abstraction level (computer science research, for example). That

is, a user might possess interests at different abstraction levels — the higher-level interests

are more general, while the lower-level ones are more specific. During a browsing session,

general interests are in the back of one's mind, while specific interests are the current foci.

We believe identifying the appropriate context underlying a user's behavior is important in

more accurately pinpointing her/his interests. Unlike News Dude (Billsus and Pazzani,

1999), which generates a long-term and a short-term model of interests, we propose to

model a continuum of general to specific interests (web browsing interests of a user). The

model provides concept hierarchical clusters called a user interest hierarchy (UIH), while

suffix tree clustering (STC) algorithm (Zamir and Etzioni, 1998) provides flat clusters.

We can improve the UIH by using phrases in addition to words. A composed term

by two or more single words (called “phrase”) usually has more specific meaning and can

disambiguate related words. Statistical phrase-finding approaches have been used for

expanding vector dimensions in clustering multiple documents (Turpin and Moffat, 1999;

Wu and Gunopulos, 2002), or finding more descriptive or important/meaningful phrases

(Ahonen et al., 1998; Chan, 1999). We attempt to find more meaningful phrases in a

 2

document. The definition of meaningful is unique to each individual. So, we define a

phrase as more meaningful if it is meaningful to the most people.

Building UIH, finding phrases, and devising page-scoring functions (in Chapter 5)

can use correlation functions. The analysis of relationships among variables/events is a

fundamental task for many data mining problems. There are two types of properties for

correlation functions: other properties and desired properties of functions. Other properties

such as inversion invariance are depending on each application domain (Tan et al., 2002).

One has to examine which properties of other properties are more suitable for his/her

application domain (Tan and Kumar, 2000). However, the desirable properties can be

applied to all correlation functions. Before selecting or devising a correlation function, it is

important to check whether each measure satisfies basic desirable properties of a function

(Piatetsky-Shapiro, 1991; Tan et al., 2002). We propose two new desirable properties.

Web personalization adapts the information or services provided by a web site to

the needs of a user. There are two main techniques for performing web personalization:

collaborative filtering (Eirinaki et al., 2004; Kim et al., 2004; Cadez et al., 2000) and using

user profiles (Albanese et al., 2004; Mobasher et al., 1999). Collaborative filtering uses

information from many different users to make recommendations. Disadvantages of this

method are that it cannot predict a new page and it requires a large amount of data from

many users to determine what pages are the most popular. Obtaining data on the web pages

visited by many different users is often difficult (or illegal) to collect in many application

domains. In contrast, user profiles require the web page history of only a single user.

Google (2005) provides personalized services based on explicitly learned user profiles,

which consumes users’ time and effort. We attempt to personalize the search results using

 3

the user profile that is learned implicitly and uses contents of web pages instead of user’s

behavior (Kim et al., 2004; Albanese et al., 2004).

A UIH is learned from a set of interesting web pages to a user. Determining a

user’s interesting web pages can be performed explicitly by asking the user, or implicitly

by observing the user’s behaviour. Implicit indicators are usually less accurate than explicit

indicators (Watson et al., 1998). However, implicit indicators do not require any extra time

or effort from the user and can adapt to changes in the user’s interests over time. To

implicitly measure user interest we need to identify reliable implicit indicators. One of the

major user interest indicators identified by researchers is duration, or the time spent on a

web page (Granka et al., 2004; Jung, 2001; Claypool et al., 2001; Resnick et al., 1994;

Liberman, 1995; Kim et al., 2001; Oard et al., 1998). However, some researches indicate

that duration may not be an accurate measure of user interest (Jung, 2001). We suspect that

this is because the duration indicator often does not account for the user’s absence. We

examine the duration in more detail and attempt to propose new other indicators.

1.2. Problem Statement

Our problem consists of three parts as shown in Figure 1: identifying interesting

web pages, learning user profile, and personalizing search results. The part of learning

user profile can be divided into three sub problems: profile-learning, phrase-finding, and

desirable properties of a correlation function. These five main problems for the framework

of our web personalization are marked as thick boxes.

The first problem in our system is learning implicit user interest hierarchy for

context in personalization. The inputs are the terms (words and phrases) in a set of

 4

interesting web pages or bookmarks. The bookmarked web pages are used when it is

difficult to collect a set of interesting web pages to a user. The output is a learned profile

called a user interest hierarchy (UIH). We want to devise a method that can learn the UIH

from bookmarks implicitly. The second problem is identifying variable-length meaningful

phrases with correlation functions from a web page. The inputs are the words in a

document. The outputs are meaningful phrases with various lengths. The definition of

meaningful is unique to each individual. We let each individual define his or her own

definition of meaningful. So, we define a phrase as more meaningful if it is meaningful to

the most people. The third problem is about the analysis of desirable properties of

correlation functions between two events. These properties of correlation functions help

select a right correlation function in learning a user profile, finding meaningful phrases,

and scoring interesting web pages. The problem is to find properties that can describe the

characteristics of correlation functions. The fourth problem is the personalized ranking of

search results with implicitly learned user interest hierarchies. The inputs are a profile (user

interest hierarchy) and search results from Google (2005). The outputs will be the

reordered search results depending on a user’s interests. The goal is to assign higher scores

to web pages that a user finds more interesting. The last problem is to find implicit

indicators for interesting web pages. The inputs are web log-files and interest scores of web

pages provided by a user. The log-files record users’ behavior while they are reading web

pages. The goal is to find an implicit indicator that could predict the interest score of a web

page.

 5

Profile-learning
(DHC)

Words Phrases

Profile
(UIH)

Scoring
function

(WS)

Personalized
search engine

results

Search engine
results

Interesting
web pages

Desirable
properties of a

correlation
function

Implicit
indicator

for interesting
web pages

Bookmarked
web pages

Visited
web pages

3. Personalize search results

2. Learn user profile

1. Identify interesting web pages

Phrase-finding
(VPF)

Figure 1. Five research parts in the framework of web personalization

 6

1.3. Approach

The first main objective of this research is to build UIH’s that capture general to

specific interests without the user’s involvement (implicitly). The most common and

obvious solution for building a UIH is for the user to specify interests explicitly. However,

the explicit approach includes these disadvantages: time and effort in specifying interests,

and user interest may change over time. Alternatively, an implicit approach can identify a

user’s interests by inference. Leaf nodes of the UIH generated by our algorithm represent a

list of specific user interests. Internal nodes (towards root node) represent more general

interests. For example, a graduate student in computer science is looking for a research

paper in web personalization. The specific interest is web personalization, but the general

interest is computer science. The web pages the student is interested could all be related to

computer science and hence words and phrases from these pages would appear in the root

node of the UIH. Some of the pages he is interested in could be related to web

personalization, and the words (e.g., profile, user, and personalization) might be at the leaf

of the UIH. Between the root and the leaves, “internal” tree nodes represent different levels

of generality of interest. We devise a divisive hierarchical clustering (DHC) algorithm that

constructs such a hierarchy and supports overlapping clusters of the original objects (web

pages in our case). Note that clustering web pages is not one of our objectives; the

overlapping property allows us to associate a web page to (potentially) multiple topics. We

believe our approach has significant benefits and possesses interesting challenges.

Using phrases, in addition to words, we can improve the UIH. A composed term

by two or more single words (called “phrase”) usually has more specific meaning and can

disambiguate related words. For instance, “apple” has different meanings in “apple tree”

 7

and in “apple computer”. Therefore, we propose a variable-length phrase finding algorithm

(VPF), which finds more meaningful variable-length phrases. VPF is designed to remove

the maximum length of phrases in Ahonen’s algorithm (Ahonen et al., 1998) and fix the

problem in Chan’s algorithm (Chan, 1999). VPF increases the length of phrases by adding

a word to the phrases made in the previous stage one by one, maintaining high correlation

within a phrase. VPF also applies pruning to the phrases collected in order to remove less

meaningful phrases.

Both divisive hierarchical clustering (DHC) algorithm and variable-length phrase

finding (VPF) algorithm use correlation functions. It is important to understand the

characteristics of a correlation function in selecting a correlation function and devising a

new correlation function. We analyze the previous desirable properties and propose two

new desirable properties. All possible cases that could be made by two events are

enumerated and examined. Out of many possible cases, we illustrate that a measure should

show a consistent pattern in two cases that are new desirable properties of a correlation

function. We believe that these properties will help understand the general characteristics

of a measure.

The UIH can be used to build a method for personalizing web search results that is

able to reorder the results from Google (2005), such that web pages that a user is most

interested in appear at the top of the page. We wish to devise a page scoring function with

a user’s implicitly learned User Interest Hierarchy (UIH). Web pages are ranked based on

their “score,” where higher scores are considered to be more interesting to the user after

comparing the text of the page to the user’s profile. For example, if a user searches for

“Australia” and is interested in “travel,” then links related to “travel” will be scored higher;

 8

but if a user is interested in “universities,” then pages related to “universities” will be

scored higher.

Implicit indicators for interesting web pages help build a UIH implicitly. We

compare previous implicit indicators and propose other new implicit indicators. A user’s

duration on a web page is divided into three types depending on if the browser is open

(complete duration), if the browser is the active application (active window duration), and

if the user is looking at the screen (look at it duration). We also study new implicit

indicators (memo) that have not been evaluated in previous research. We divide the web

pages visited during our evaluation into two groups: (1) web pages that a user visited more

than once and viewed for the longest duration, and (2) all web pages that were visited more

than once.

1.4. Key Contributions

The main contributions are:

• we represent user interest hierarchy (UIH) at different abstraction levels (general to

specific), which can be learned implicitly from the contents (words/phrases) in a

set of interesting pages to a user;

• we build a divisive graph-based hierarchical clustering algorithm (DHC), which

constructs a UIH by grouping words (topics) into a hierarchy instead of flat cluster

used by STC;

• we propose a variable-length phrase-finding algorithm (VPF) that is designed for

finding meaningful phrases – the time complexity remains as O(nw) where nw is the

number of distinct words in a document;

• more meaningful phrases than previous methods are found and the improvement in

performance is statistically significant.

 9

• we identify 2 new desirable properties for a correlation function in general;

• our results indicate that these 2 new desirable properties are more descriptive than

the previous 3 desirable properties provided in Piatetsky-Shapiro (1991), because

the previous ones highly depend on cross product ratio (CPR);

• We introduce personalized ranking methods that utilize an implicitly learned user

profile (UIH);

• Our experimental results indicate that Weighted Scoring method can achieve

higher precision than Google for some top links with interesting and potentially

interesting web pages to the user;

• Our experiments indicate that complete duration, active window duration, look at

it duration, and distance of mouse movement are reliable indicators for more users

than other indicators;

1.5. Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2 through 6, we

introduce 5 problems of our web personalization architecture. These five parts are learning

implicit user interest hierarchy for context in personalization (Kim and Chan, 2003),

identifying variable-length meaningful phrases with correlation functions (Kim and Chan,

2004), analysis of desirable properties of correlation functions between two events,

personalized ranking of search results with implicitly learned user interest hierarchies, and

implicit indicators for interesting web pages. In Chapter 2, we introduce user interest

hierarchies (UIH’s) and detail our approach towards building an implicit UIH’s. Our

empirical evaluation regarding the meaningfulness of a UIH is discussed. In Chapter 3, we

provide the detailed description of our variable-length phrase-finding algorithm (VPF).

Every iteration a word is added to the phrases generated in a previous stage when the

correlation value between them is higher than a threshold. This algorithm does not request

 10

any user-defined parameters. The performance of the algorithm will be evaluated by

experimental result. In Chapter 4, two new desirable properties of correlation functions are

proposed. The experimental comparisons with previous three desirable properties are

discussed. In addition to proposing two new properties, we summarize the characteristics

of 32 correlation functions based on those properties. In Chapter 5, we incorporate UIHs to

the personalization of web search results. Scoring functions are introduced that calculates

the public and personal page score of a web page in the web search results. The function

uses four characteristics for a term: the level of a node where a term belongs to (D), the

length of a term (L), the frequency of a term (F), and the html formatting used for the

emphasis of a term (E). The results will be evaluated empirically. In Chapter 6, we learn

implicit indicators for interesting web pages to a user and propose more predictable

implicit indicators. Some indicators are used frequently and some less frequently. We test

both types of implicit indicators empirically. In Chapter 7, we review the areas of web

information retrieval, user modeling, and machine learning. In Chapter 8, we summarize

our contributions and discuss limitations and future work.

 11

Chapter 2

Learning Implicit User Interest Hierarchy

for Context in Personalization

To provide a more robust context for personalization, we desire to extract a

continuum of general to specific interests of a user, called a user interest hierarchy (UIH).

The higher-level interests are more general, while the lower-level interests are more

specific. A UIH can represent a user’s interests at different abstraction levels and can be

learned from the contents (words/phrases) in a set of web pages bookmarked by a user. We

propose a divisive hierarchical clustering (DHC) algorithm to group words (topics) into a

hierarchy where more general interests are represented by a larger set of words. Our

approach does not need user involvement and learns the UIH “implicitly.” To enrich

features used in the UIH, we used phrases in addition to words.

 12

Profile-learning
(DHC)

Words Phrases

Profile
(UIH)

Scoring
function

(WS)

Personalized
search engine

results

Search engine
results

Interesting
web pages

Desirable
properties of a

correlation
function

Implicit
indicator

for interesting
web pages

Bookmarked
web pages

Visited
web pages

3. Personalize search results

2. Learn user profile

1. Identify interesting web pages

Phrase-finding
(VPF)

Figure 2. Learning user interest hierarchy in the framework of web personalization

 13

2.1. User Interest Hierarchy

A user interest hierarchy (UIH) organizes a user’s general to specific interests.

Towards the root of a UIH, more general (passive) interests are represented by larger

clusters of words while towards the leaves, more specific (active) interests are represented

by smaller clusters of words. To generate a UIH for a user, our clustering algorithm (details

in Section 4) accepts a set of web pages bookmarked by the user as input. That is, the input

of DHC is web pages that are interesting to a user. We use the words and phrases in the

web pages and ignore link or image information. The web pages are stemmed and filtered

by ignoring the most common words listed in a stop list (Rasmussen, 1992). The phrases

are extracted by VPF algorithm (Kim and Chan, 2004). These processes are depicted in

Figure 2.

 14

Table 1. Sample data set

Web Content
1 ai machine learning ann perceptron
2 ai machine learning ann perceptron
3 ai machine learning decision tree id3 c4.5
4 ai machine learning decision tree id3 c4.5
5 ai machine learning decision tree hypothesis space
6 ai machine learning decision tree hypothesis space
7 ai searching algorithm bfs
8 ai searching algorithm dfs
9 ai searching algorithm constraint reasoning forward

10 ai searching algorithm constraint reasoning forward

ai, machine, learning, ann, perceptron, decision, tree, id3, c4.5,
hypothesis, space, searching, algorithm, bfs, dfs, constraint,

reasoning, forward, checking

machine, learning, ann, perceptron,
decision, tree, id3, c4.5,

hypothesis

searching, algorithm,
bfs, dfs, constraint,

reasoning,
forward, checking

constraint, reasoning,
forward, checking

ann,
perceptron,

decision, tree, id3,
c4.5, hypothesis,

space

Figure 3. Sample user interest hierarchy

Table 1 contains a sample data set. Numbers on the left represent individual web

pages; the content has words stemmed and filtered through the stop list. These words in the

web pages can be represented by a UIH as shown in Figure 3. Each cluster, node, can

represent a conceptual relationship, for example ‘perceptron’ and ‘ann’ (in italics) can be

categorized as belonging to neural network algorithms, whereas ‘id3’ and ‘c4.5’ (in bold)

in another node cannot. Words in these two nodes are mutually related to some other words

such as ‘machine’ and ‘learning’. This set of mutual words, ‘machine’ and ‘learning’,

 15

performs the role of connecting italic and bold words in sibling clusters and forms the

parent cluster. We illustrate this notion in the dashed box in Figure 3.

One can easily identify phrases like “machine learning” and “searching algorithm”

in the UIH, however only the individual words are represented in the UIH. By locating

phrases from the pages, we can enrich the vocabulary for building the UIH. For example,

the phrase “machine learning” can be identified and added to Pages 1-6. If we can use

phrases as feature in the UIH, each cluster will be enriched because phrases are more

specific than words. For example, a user is interested in both phrases “java coffee” and

“java language”. The word “java” will be in the parent cluster of both “coffee” and

“language”. Each child cluster would contain only “coffee” or “language”, which is

relatively less useful when not in combination with “java”.

The approach we take to generate the hierarchy is similar to clustering pages, but

pages may belong to multiple clusters – overlapping clusters of pages. That is, instead of

directly clustering the original objects (web pages), we first cluster features (words) of the

objects and then the objects are assigned to clusters based on the features in each cluster.

Note that a document can have terms in different clusters, hence, a document can be in

more than one cluster. Since the more challenging step is the initial hierarchical clustering

of features, our primary focus for this Chapter is on devising and evaluating algorithms for

this step.

 16

2.2. Building User Interest Hierarchy

We desire to learn a hierarchy of interest topics from a user’s web pages

bookmarked by a user, in order to provide a context for personalization. Our divisive

hierarchical clustering (DHC) algorithm recursively partitions the words into smaller

clusters, which represent more related words. We assume words occurring close to each

other (within a window size) are related to each other. We investigate correlation functions

that measure how closely two words are related in Section 4.2. We also investigate

techniques that dynamically locate a threshold that decides whether two words are strongly

related or not in Section 4.3. If two words are determined to be strongly related to each

other, they will be in the same cluster; otherwise, they will be in different clusters.

2.2.1. Algorithm

Our algorithm is a divisive graph-based hierarchical clustering method called

DHC, that recursively divides clusters into child clusters until it meets the stopping

conditions. In preparation for our clustering algorithm, we extract words from web pages

that are interesting to the user, filter them through a stop list, and stem them (Rasmussen,

1992). Figure 4 illustrates the pseudo code for the DHC algorithm. Using a correlation

function, we calculate the strength of the relationship between a pair of words in line 1.

After calculating a threshold to differentiate strong correlation values from weak

correlation in line 2, we remove all weak correlation values in line 5. We then build a

weighted undirected graph with each vertex representing a word and each weight denoting

the correlation between two words. Since related words are more likely to appear in the

 17

same document than unrelated terms, we measure co-occurrence of words in a document.

Given the graph, called a CorrelationMatrix, the clustering algorithm recursively

partitions the graph into sub-graphs, called Clusters, each of which represents a sibling

node in the resulting UIH in line 6.

At each partitioning step, edges with “weak” weights are removed and the

resulting connected components constitute sibling clusters (we can also consider cliques as

clusters, but more computation is required). We treat the determination of what value is

considered to be “strong” or “weak”, as another clustering. The recursive partitioning

process stops when one of the stopping criteria is satisfied. The first criterion is when the

current graph does not have any connected components after weak edges are removed. The

second criterion is a new child cluster is not formed if the number of words in the cluster

falls below a predetermined threshold.

 18

Cluster: distinct words in a set of interesting web pages to a user
 of web page membership] [with information

CORRELATIONFUNCTION: Calculates the "closeness" of two words.
FINDTHRESHOLD: Calculates the cutoff value for determining strong

 correlation values. and weak
WindowSize: The maximum distance (in number of words) between two

related words in calculating their correlation value.

Procedure DHC (Cluster,CORRELATIONFUNCTION,FINDTHRESHOLD,WindowSize)
1. CorrelationMatrix ← CalculateCorrelationMatrix

(CORRELATIONFUNCTION, Cluster, WindowSize)
2. Threshold ← CalculateThreshold(FINDTHRESHOLD, CorrelationMatrix)
3. If all correlation values are the same or a threshold is not

found
4. Return EmptyHierarchy
5. Remove weights that are less than Threshold from

CorrelationMatrix
6. While (ChildCluster←NextConnectedComponent (CorrelationMatrix))
7. If size of ChildCluster >= MinClusterSize
8. ClusterHierarchy←ClusterHierarchy + ChildCluster +
 DHC(ChildCluster,CORRELATIONFUNCTION,FINDTHRESHOLD,

WindowSize)
9. Return ClusterHierarchy
End Procedure

Figure 4. DHC algorithm

 19

Suppose we built a weighted undirected graph with the running example in Table 1

where each vertex represents a word and each weight (value) denotes the correlation value.

The undirected graph can be depicted as shown in a) in Figure 5 and Figure 6 – the left

column shows graph partitioning and the right column represents the corresponding tree.

We presented only some vertices and edges as shown in a). Once a threshold for

differentiating “strong” edges from “weak” edges is calculated by using a Findthreshold

method, we can remove weak edges – those removed edges are represented as dashed lines.

After removing weak edges, DHC finds connected components, which is shown in b). If

the number of elements in a cluster is greater than the minimum number of elements in a

cluster (e.g., 4), then the correlation values are recalculated and the algorithm repeats the

process of removing “weak” edges as shown in c). Since DHC recursively partitions the

graph into subgraphs, called Clusters, the final result becomes hierarchical clusters as

shown in d).

The CalculateCorrelationMatrix function takes a correlation function, cluster, and

window size as parameters and returns the correlation matrix, where the window size

affects how far two words (the number of words between two words) can be considered as

related. The CalculateThreshold function takes a threshold-finding method and correlation

matrix as parameters and returns the threshold. The correlation function (Sec. 4.2) and

threshold-finding method (Sec. 4.3) greatly influence the clustering algorithm, and are

discussed next. .

 20

a) Calculate correlation values

0.010.01

0.050.32

0.32

0.32

0.31

easoningr0.32 constraint

tree
0.01

ai

learning

machine

decision

ann
0.18 ann, learning, machine, tree,

decision, ai, constraint,
reasoning

0.32

0.32

0.32

0.31

easoningr0.32 constraint

tree

learning

machine

decision

ann
0.18

constraint,
reasoning

ann, learning, machine,
tree, decision

ann, learning, machine, tree,
decision, ai, constraint,

reasoning

b) Find connected components

Figure 5. An example of DHC algorithm (1)

 21

c) Recalculate correlation values

ann

decision

machine

learning

tree

constraint reasoning

0.18
0.01

0.3
0.3

0.2

0.4

0.8

0.01

ann, learning, machine, tree,
decision, ai, constraint,

reasoning

ann, learning, machine,
tree, decision

constraint,
reasoning

ann, learning tree, decision reasoningconstraint

tree

learning

decision

ann

constraint,
reasoning

ann, learning, machine,
tree, decision

ann, learning, machine, tree,
decision, ai, constraint,

reasoning

d) Find connected components

Figure 6. An example of DHC algorithm (2)

 22

2.2.2. Correlation Functions

The correlation function calculates how strongly two words are related. Since

related words are likely to be closer to each other than unrelated words, we assume two

words co-occurring within a window size are related to each other. To simplify our

discussion, we have been assuming the window size to be the entire length of a document.

That is, two words co-occur if they are in the same document. These functions are used in

CalculateCorrelationMatrix function in Figure 4.

2.2.2.1. AEMI

We use AEMI (Augmented Expected Mutual Information) (Chan, 1999) as a

correlation function. AEMI is an enhanced version of MI (Mutual Information) and EMI

(Expected Mutual Information). Unlike MI which considers only one corner of the

contingency matrix and EMI which sums the MI of all four corners of the contingency

matrix, AEMI sums supporting evidence and subtracts counter-evidence. Chan (1999)

demonstrates that AEMI could find more meaningful multi-word phrases than MI or EMI.

Concretely, consider A and B in AEMI (A,B) are the events for the two words.)(aAP =

is the probability of a document containing a and)(aAP = is the probability of a

document not having term a.)(bBP = and)(bBP = is defined likewise.),(bBaAP ==

is the probability of a document containing both terms a and b. These probabilities are

estimated from documents that are interesting to the user. AEMI (A,B) is defined as:

∑
====

−=
),)(,()()(

),(log),(
)()(

),(log),(),(
bBaAbBaA BPAP

BAPBAP
bPaP

baPbaPBAAEMI
Eq. 1

 23

The first term computes supporting evidence that a and b are related and the

second term calculates counter-evidence. Using our running example in Figure 3, Table 2

shows a few examples of how AEMI values are computed. The AEMI value between

‘searching’ and ‘algorithm’ is 0.36, which is higher than the AEMI value between ‘space’

and ‘constraint’, –0.09.

Table 2. AEMI values

)(aP)(aP)(bP)(bP)(abP) (baP)(baP AEMI(a,b)

a = searching, b = algorithm

0.4 0.6 0.4 0.6 0.4 0 0 0.36
a = space, b = constraint

0.2 0.8 0.2 0.8 0 0.2 0.6 -0.09
a = ann, b = perceptron

0.2 0.8 0.2 0.8 0.2 0 0 0.32

2.2.2.2. AEMI-SP

Inspired by work in the information retrieval community, we enhance AEMI by

incorporating a component for inverse document frequency (IDF) in the correlation

function. The document frequency of a word calculates the number of documents that

contain the word. Words that are commonly used in many documents are usually not

informative in characterizing the content of the documents. Hence, the inverse document

frequency (the reciprocal of document frequency) measures how informative a word is in

characterizing the content. Since our formulation is more sophisticated than IDF and it

involves a pair of words rather than one word in IDF, we use a different name and call our

function specificity (SP).

 24

We estimate the probability of word occurrence in documents instead of just

document frequency so that we can scale the quantity between 0 and 1. We desire to give

high SP values to words with a probability below 0.3 (approximately), gradually

decreasing values from 0.3 to 0.7, and low values above 0.7. This behavior can be

approximated by a sigmoid function, commonly used as a smoother threshold function in

neural networks, though ours needs to be smoother. SP(x) is defined as: 1/(1 + exp(0.6 × (x

× 10.5 – 5))), where x is defined as: MAX (P(a), P(b)) - we choose the larger probability so

that SP is more conservative. The factor 0.6 smoothes the curve, and constants 10.5 and –5

shift the range of x from between 0 and 1 to between -5 and 5.5. The new range of -5 and

5.5 is slightly asymmetrical because we would like to give a small bias to more specific

words. For instance, for a = ‘ann’ and b = ‘perceptron’, x is 0.2 and SP(x) is 0.85, but for

a=‘machin’ and b=‘ann’, x is 0.6 and SP(x) is 0.31.

Our correlation function AEMI-SP is defined as: AEMI × SP/2. The usual range

for AEMI is 0.1–0.45 and SP is 0–1. To scale SP to a similar range as AEMI, we divide SP

by 2. For example, in Table 3 the AEMI-SP value for ‘searching’ and ‘algorithm’ is lower

than the value for ‘ann’ and ‘perceptron’ because the SP value for ‘ann’ and ‘percetpron’ is

higher even though the AEMI value is lower.

Table 3. AEMI-SP values

AEMI SP AEMI-SP
a = searching
b = algorithm 0.36 0.62 0.113

a = ann
b = perceptron 0.32 0.85 0.137

 25

2.2.2.3. Other Correlation Functions

We also investigated other existing correlation functions. The Jaccard function

(Rasmussen, 1992) is defined as:
)(

),(
baP

baP
∪

. When a word describes a more general topic, we

expect it to occur quite often and appear with different, more specific words. Hence, we

desire general (“connecting”) words to exist only at higher levels in the UIH. For example,

‘ai’ is general and preferably should not appear at the lower levels. Using our running

example in Figure 3, the Jaccard value between ‘ai’ and ‘machine’ is 0.6 and the value

between ‘ai’ and ‘search’ is 0.5. If the threshold is 0.49, both pairs are in the same cluster

and ‘ai’ may perform the role to connect ‘machine’ and ‘search’. Even if the threshold is

0.55, ‘ai’ still remains in the child cluster with ‘machine’ (since their correlation value is

over the threshold) - which is a wrong decision. This phenomenon tells us the Jaccard

function is not proper for making hierarchical clusters.

The MIN method in STC (Zamir and Etzioni, 1998) can be defined as MIN(P(a|b),

P(b|a)). The idea is that if we assign the same correlation value to connected words and

connecting words, they would go together. For instance, ‘ai’ connects ‘machine’ and

‘searching’, so they are grouped together in one cluster. However, when they are divided

into child clusters, ‘ai’ should be removed because ‘ai’ is too general. But MIN

(P(‘ai’|’machine’), P(‘machine’|’ai’)) still yields a relatively higher value than the average.

Alternatively, the MAX function, MAX(P(a|b),P(b|a)), does not distinguish the value for

‘ai’ and ‘machine’, and the value for ‘machine’ and ‘learning’, even though the latter pair

has a much stronger relationship. Since Jaccard, MIN, and MAX did not generate desirable

cluster hierarchies, we excluded them from further experiments.

 26

2.2.3. Threshold-finding Methods

Instead of using a fixed user-provided threshold (as in STC (Zamir and Etzioni,

1998)) to differentiate strong from weak correlation values between a pair of words, we

examine methods that dynamically determine a reasonable threshold value. Weights with a

weak correlation are removed from CorrelationMatrix and child clusters are identified.

Table 4. Distribution of frequency and number of children

Region Range Freq. # of Children
0 0.27 <= x < 0.28 16 Not counted
1 0.28 <= x < 0.29 0 Not counted
2 0.29 <= x < 0.30 0 Not counted
3 0.30 <= x < 0.31 1 Not counted
4 0.31 <= x < 0.32 0 Not counted
5 0.32 <= x < 0.33 13 6
6 0.33 <= x < 0.34 0 1
7 0.34 <= x < 0.35 0 1
8 0.35 <= x < 0.36 0 1
9 0.36 <= x 2 Not applicable

Figure 7. Shown in a Histogram

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9

Region

F
re
q
.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9

Region

F
re
q
.

Figure 8. Find the widest and deepest

valley

 27

2.2.3.1. Valley

To determine the threshold, we would like to find a sparse region that does not

have a lot of similar values. That is, the frequency of weights in that region is low. We first

determine the highest observed and lowest desirable correlation values, and quantize the

interval into ten regions of equal width. The lowest desirable correlation value is defined as

the value achieved by a pair of words that occur together only in one document. We then

determine the frequency of values in each region. Generally, lower weights have a higher

frequency and higher weights have a lower frequency. If the frequency monotonically

decreases with regions of higher weights, picking the region with the lowest frequency will

always be the region with the highest weights. If, unfortunately, the threshold is too high,

then too many edges will be cut. In this case, the threshold is set to be the average plus

standard deviation (biasing to remove more edges with lower weights).

However, if the frequency does not decrease monotonically, we attempt to identify

the “widest and steepest” valley. A valley is defined as any region where the frequency

decreases and then increases. Steepness can be measured by the slopes of the two sides of a

valley and the width of how many regions the valley covers. Since the regions are of equal

width, we calculate “quality” of a valley by:∑ −
ji ji freqfreq

,
, where i and j are successive

regions on the two sides of a valley. Once the widest and steepest valley is located, we

identify the threshold in the region that constitutes the bottom (lowest frequency) of the

valley.

For example, in Table 4, the first column is the id of each region, the second

column is the range of correlation values, the third column is the number of values resides

in each region, and the last column is the number of child nodes that can be generated with

the lowest value in each range as a threshold. There are three valleys when a histogram is

drawn like Figure 7: one from Region 0 through 3, (quality is 17), another one from

Region 3 through 5, (quality is 14), and the last one is from Region 5 through 9, (quality is

15). Therefore, the widest and steepest valley is the first valley and its bottom is in Regions

1 and 2, which is shown in Figure 8. To identify the threshold inside the bottom region, we

ignore the frequency information and find two clusters of correlation values. In this case, it

is a one-dimensional two-cluster task, which can be accomplished by sorting the weights

and splitting at the largest gap between two successive weights (Largest gap). In our

example, since the bottom has zero frequency, any value between .28 and .30 can be the

threshold. If the bottom does not have zero frequency, we recursively divide the bottom

until the frequency is zero.

2.2.3.2. MaxChildren

The MaxChildren method selects a threshold such that maximum of child clusters

are generated. This way we divide the strongly correlated values from weakly correlated

ones. This also ensures that the resulting hierarchy does not degenerate to a tall and thin

tree (which might be the case for other methods). This preference also stems from the fact

that topics are generally more diverse than detailed and the library catalog taxonomy is

typically short and wide. For example, we want the trees in Figure 3 to be shorter and

wider. MaxChildren calculates the number of child clusters for each boundary value

between two quantized regions. To guarantee the selected threshold is not too low, this

method ignores the first half of the boundary values. For example, in Table 4, the boundary

value 0.33 (between Regions 5 and 6) generates the most children and is selected as the

threshold. This method recursively divides the selected best region until there are no

changes on the number of child clusters.

2.2.3.3. Other Threshold-finding Methods

There are some other threshold-finding methods that we initially studied but found

to be inferior to Valley or MaxChildren, and subsequently are not included in this Chapter.

LargestGap sorts the values and split at the largest gap between two successive values (this

method can be used in the Valley method after the bottom of the largest valley is found).

Again this is motivated by trying to form two clusters in a one-dimensional space.

However, in our initial experiments, the largest gap is close to the largest observed value

and thus the resulting tree is usually too small. To prevent the threshold from being too

large, Top30% method selects a threshold that retains values in the top 30%. However, this

method generates tall and thin trees. To retain ‘abnormally’ large values of a threshold, we

also studied Average+StandardDeviation, in order to select a threshold larger than the

average. This is later combined into the Valley method.

2.2.4. Window Size and Minimum Size of a Cluster

The window size parameter specifies the maximum ‘physical’ distance (in terms of

number of words) between a pair of words for consideration of co-occurrence. We have

been using the entire document length as the window size to simplify our discussion.

However, considering two words occurring in the same page as related might be too

optimistic. Hence, we investigated smaller window sizes that roughly cover a paragraph

(e.g., 100 words) or a sentence (e.g., 15 words). However, in our experiments the window

size does not make a significant difference. And, the minimum size of a cluster affects the

number of clusters. A larger number of clusters makes the hierarchy less comprehensible

and requires more computation. We picked 4 as the minimum size of a cluster, because this

number of words can represent a concept that is sufficiently specific.

2.3. Experiments

We will evaluate the UIH itself to see if it is meaningful using real data. The

quality of the UIH will also describe the performance of DHC. We then compared user

interest hierarchies using different methods. Furthermore, we compared the quality of

UIHs of which one uses words only and the other includes phrases.

2.3.1. Experimental Data and Procedures

Experiments were conducted on data obtained from our departmental web server.

By analyzing the server access log from January to April 1999, we identified hosts that

were accessed at least 50 times in the first two months and also in the next two months. We

filtered out proxy, crawler, and our computer lab hosts, and identified “single-user” hosts,

which are at dormitory rooms and a local company (Chan, 1999). We yielded 13 different

users and collected the web pages they visited. The total pages that we used were around

1400 files and most of the pages contained regular contents such as no media biased files.

The number of words on the web pages was on the average 1,918 – minimum number of

words was 340, and maximum was 3,708. To find phrases we used variable-length phrase

finding algorithm (VPF) (Kim and Chan, 2004) because it finds more meaningful phrases

than other methods (Chan, 1999; Ahonen et al., 1998). We evaluated the effectiveness of

our algorithms by analyzing the generated hierarchies in terms of meaningfulness and

shape. Separate experiments were conducted to evaluate the effectiveness of different

correlation functions, threshold-finding methods, and window sizes. In order to remove the

researcher’s bias, we randomly reordered whole clusters from all approaches, before we

evaluate each cluster.

2.3.2. Evaluation Criteria

To evaluate a UIH, we use both qualitative and quantitative measures.

Qualitatively, we examine if the cluster hierarchies reasonably describe some topics

(meaningfulness). Quantitatively, we measure shape of the cluster trees by calculating the

average branching factor (ABF) (Russell and Norvig, 1995). ABF is defined as the total

number of branches of all non-leaf nodes divided by the number of non-leaf nodes.

We categorized meaningfulness as ‘good’, ‘bad,’ or ‘other’. Since the leaf clusters

should have specific meaning and non-leaf clusters are hard to interpret due to their size,

we only evaluated the leaf clusters for meaningfulness. Our measure is based on

interpretability and usability (Han, 2001). So, we check two properties of the leaf clusters:

the existence of related words, and possibility of combining words. For instance, for

related words, consider ‘formal’, ‘compil’, ‘befor’, ‘graphic’, ‘mathemat’, and ‘taken’ are

in a cluster, even though ‘befor’ and ‘taken’ do not have any relationship with the other

words. Since the words, ‘formal’, ‘compil’, ‘graphic’, and ‘mathemat’, are classified as

class names related to computer science major, this cluster is evaluated as ‘good’. For the

possibility of combining words, consider ‘research’, ‘activ’, ‘class’, and ‘web’ are in a

cluster. In this case, the meaning of the cluster can be estimated as ‘research activity’ or

‘research class’ (Zamir and Etzioni, 1999), so we regard this cluster as ‘good’. A cluster is

marked as ‘good’ when it has more than 2/5 of the words that are related or have more than

2 possible composite phrases as well. This is hard to measure, so we attempted to be as

skeptical as possible. For example, suppose a cluster has ‘test’, ‘info’, ‘thursdai’, ‘pleas’,

‘cours’, ‘avail’, and ‘appear’. In this case one can say ‘test info’ or ‘cours info’ are possible

composite phrases, but ‘test info’ does not have any conceptual meaning in our opinion, so

we did not count that phrase. If a cluster contains less then 15 words and does not satisfy

the criteria for ‘good’ cluster, it is marked as ‘bad’. A cluster is marked as ‘other’ when a

leaf cluster has more than 15 words because a big leaf cluster is hard to interpret.

We categorized shape as ‘thin’, ‘medium,’ or ‘fat’. If a tree’s ABF value is 1, the

tree is considered a ‘thin’ tree (marked as ‘T’ in the following tables). If the ABF value of

a tree is at least 10, the tree is considered a ‘fat’ tree (marked as ‘F’). The rest are

‘medium’ trees (marked as ‘M’). We consider one more tree type: ‘conceptual’ tree

(marked as ‘C’), which subsumes ‘M’ or ‘F’ type trees. A conceptual tree is one that has at

least one node with more than two child clusters and more than 80% of the words in each

child cluster have similar meaning. Since we prefer a tree that can represent meaningful

concepts, ‘C’ type trees are the most desirable. ‘T’ type trees are degenerate (imagine each

node in the hierarchy has only one child and the hierarchy resembles a list, which is usually

not how concepts are organized) and hence undesirable. Based on these evaluation criteria,

we analyze different correlation functions, threshold-finding methods and window sizes.

2.4. Results and Analysis

In this section we analyze the results from the DHC. We first evaluate the DHC

algorithm with only words as features. Then, we compare the results from DHC using only

words and the combination of words and phrases as features.

2.4.1. Building UIH with Only Words as Features

2.4.1.1. Correlation Functions

We compared two correlation functions: AEMI versus AEMI-SP. We fixed the

threshold-finding method to Valley and the window size to ‘entire page.’ Table 5 and

Table 6 illustrate the results. The letter ‘U’ stands for user, ‘# of L’ means the number of

leaf nodes. ‘G %’ means ‘percentage of good’, which is calculated by dividing the number

of ‘good’ leaves by the ‘# of L’. AEMI yielded significantly more meaningful leaf clusters

(59% good) than AEMI-SP (41% good). The means of the two groups were significantly

different from each other according to the t-test at level 0.05 (Lind et al., 2002). Both

methods generated trees whose shapes were mostly ‘medium’. For U8, AEMI generated a

conceptually related tree ― the tree had a node with two child clusters, which contained

words from course titles and hence represented the concepts of different classes. For U2

with AEMI-SP, the generated tree was ‘fat’ and had an ABF value of 10.

2.4.1.2. Threshold-finding Method

We compared two threshold-finding methods: Valley versus MaxChildren. We

fixed the correlation function to AEMI and the window size to entire page. Table 5 and

Table 7 illustrate the results. MaxChildren generated more meaningful leaf clusters (59%

good) than Valley (47% good). However, the means of two groups were not statistically

different from each other according to the t-test at level 0.05. Tree shapes are similar

(medium) in both methods. However, generally, trees generated by MaxChildren were

shorter, which indicates that MaxChildren reduces the number of iterations in the DHC

algorithm by dividing the cluster in an early stage. Hence, MaxChildren is faster than

Valley.

2.4.1.3. Window Size

We compared the performance using different window sizes: ‘entire page’ versus

100 words (paragraph length). We fixed the correlation function to AEMI and the

threshold-finding method to MaxChildren. Table 5 and Table 8 illustrate the results. A

window size of the entire page generated slightly more meaningful clusters (59% good)

than a window size of 100 (57% good). However, a window size of 100 yielded more tress

with 100% ‘good’ leaf clusters (6) than a window size of the entire page (5). Hence, it is

not clear which window size produces more meaningful clusters. Both methods resulted in

‘medium’ trees. A window size of 100 generated one thin tree for U11. The ‘T’ tree in

Table 8 has only two nodes: the root and one leaf.

Table 5. Combination of AEMI, MaxChildren, and entire page

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum
of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 5 3 2 2 6 3 2 1 3 1 35
Bad 1 2 1 1 1 2 1 6 7 1 1 24

Other 0
G % 75 50 67 83 75 50 100 100 75 25 13 75 50 59
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2
Shape M M M M M M M C M M M M M

Table 6. Combination of AEMI-SP, MaxChildren, and entire page

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum
of L 10 10 5 10 9 7 7 5 10 13 17 8 4 115
Good 2 6 1 3 3 3 3 3 4 5 6 4 4 47
Bad 8 4 4 7 6 4 2 2 4 5 8 4 58

Other 2 2 3 3 10
G % 20 60 20 30 33 43 43 60 40 38 35 50 100 41
ABF 2.8 10 2.3 3.3 3 3 2.5 3 4 2.7 2.8 3.3 2.5
Shape M F M M M M M M M M M M M

Table 7. Combination of AEMI, Valley, and entire page

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum
of L 6 6 4 6 5 5 4 3 3 8 11 4 7 72
Good 4 4 1 5 2 3 4 1 1 1 2 3 3 34
Bad 2 1 3 1 2 2 2 2 7 7 1 4 34

Other 1 1 2 4
G % 67 67 25 83 40 60 100 33 33 13 18 75 43 47
ABF 2.7 2 2 2.7 2.3 2.3 2 2 3 2.5 2.4 2.5 2.5
Shape M M M M M M M M M M M M M

Table 8. Combination of AEMI, MaxChildren, and 100 words

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum
of L 5 2 12 9 4 4 2 7 8 13 1 6 4 77
Good 5 2 3 5 4 3 2 7 3 2 1 3 4 44
Bad 8 4 1 5 11 3 32

Other 1 1
G % 100 100 25 56 100 75 100 100 38 15 100 50 100 57
ABF 3 2 4.7 3.7 2.5 2.5 2 3 3.3 3.4 1 3.5 4
Shape M M M M M M M M M M T M M

2.4.2. Building UIH with Words and Phrases as Features

If we can add phrases as feature in the UIH, each cluster will be enriched because

phrases are more specific than words. We compared two different data sets: one consisting

of only words and the other consisting of words and phrases – the phrases were collected

by VPF (Kim and Chan, 2004). Table 5 and Table 9 illustrate the results. Results from the

data with phrases presented more meaningful leaf clusters (64%) than results with only

words (59%). Tree shapes were similar (medium) in both methods.

UIHs learned from a user (U1) are depicted in Figure 9 and Figure 10. The one

from only words has three ‘good’ leaf clusters (1, 3, and 4) and one ‘bad’ leaf cluster (5).

Cluster 0 denotes root nodes, which has all words or phrases. The right one which is

learned from both words and phrases has all ‘good’ clusters; furthermore, it is more

descriptive because Clusters 6 and 7 in Figure 10 describe class names while cluster 3 in

Figure 9 alone describes class names. We can say Clusters 6 and 7 in Figure 10 are

conceptually related because both are class names. We cannot explain why some specific

interests in one UIH do not exist in the other UIH. For example, Clusters 4 in Figure 9

showed that the user (U1) was interested in a Master or Doctoral degree program, but the

interest in Master degree did not exist in the UIH in Figure 10.

Table 9. Use words and phrases

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum
of L 6 2 13 8 4 5 3 10 8 15 1 6 4 85
Good 6 2 3 4 2 4 3 10 5 8 1 2 4 54
Bad 9 4 2 1 3 7 4 30

Other 1 1
G % 100 100 23 50 50 80 100 100 63 53 100 33 100 64
ABF 3.5 2 5 3.4 2.5 3 2 5.5 3.4 3.8 1 3.5 4
Shape C M M M M M M C M M T M M

 0

florida tec
appli
ph d
comprehens
software

1

1 2

3 4 5 research

activ
class
web

formal
compil
befor
graphic
mathemat
taken

master
degree
doctor
school
manual
registr

semest
foundat
onli
mai
second

Figure 9. UIH with words

 0

3

5

4

6

2

local
job
career
servic

stansif
lina
khatib
morri

data
structure
engin
network

h

exam

7

artificial
intellig
database
graphic
discret
mathemat

acm
seminar
open
event

Figure 10. UIH with words and phrases

2.5. Summary

To create a context for personalization, we proposed establishing a user interest

hierarchy (UIH) that can represent a continuum of general to specific interests from a set of

web pages interesting to a user. This approach is non-intrusive and allows web pages to be

associated with multiple clusters/topics. We proposed our divisive hierarchical clustering

(DHC) algorithm and evaluated it based on data obtained from 13 users on our web server.

We also introduced correlation functions and threshold-finding methods for the clustering

algorithm. Our empirical results suggested that DHC with the AEMI correlation function

and the MaxChildren threshold-finding method yielded more meaningful leaf clusters. In

addition, by using phrases found by VPF algorithm, we improved performance up to 64%

of interpretable clusters. We did not analyze differences among the UIHs’ obtained from

various users because of the large numbers of web pages used in our experiments. Results

from experiments not reported here indicated that stemmed words were more effective than

whole words. The minimum cluster size affected the number of leaf clusters; size 4 was

easy to use and seemed to produce reasonable results.

The performance of the DHC algorithm varied depending on a user and the articles

selected. We currently do not understand the reason for the variance in performance. We

assume this is due to intrinsic characteristics of a user and an article.

Chapter 3

Identifying Variable-Length Meaningful

Phrases with Correlation Functions

Finding phrases in a document has been studied in various information retrieval

systems to improve their performance. Many previous statistical phrase-finding methods

had a different aim such as document classification. Some are hybridized with statistical

and syntactic grammatical methods; others use correlation heuristics between words. We

propose a new phrase-finding algorithm that adds correlated words one by one to the

phrases found in the previous stage, maintaining high correlation within a phrase. The

inputs are words in a document and the outputs are phrases collected. These processes are

depicted in Figure 11 with thicker features.

Profile-learning
(DHC)

Words Phrases

Profile
(UIH)

Scoring
function

(WS)

Personalized
search engine

results

Search engine
results

Interesting
web pages

Desirable
properties of a

correlation
function

Implicit
indicator

for interesting
web pages

Bookmarked
web pages

Visited
web pages

3. Personalize search results

2. Learn user profile

1. Identify interesting web pages

Phrase-finding
(VPF)

Figure 11. Finding phrases in the framework of web personalization

3.1. Variable-length Phrases

Our algorithm consists of two components: the main algorithm and the correlation

function. In preparation for VPF, we extract words from a web page visited by the user,

filter them through a stop list, and stem them (Ahonen et al., 1998; Chan, 1999; Frakes and

Baeza-Yates, 1992; Zamir and Etzioni, 1998). Other phrase-finding algorithms also require

these pre-processing steps.

3.1.1. VPF Algorithm

Our algorithm adds words one by one to the phrases found in a previous stage –

each stage corresponds to each recursion in the VPF algorithm. One might insist that each

phrase P{l} of length l has the form P{l-1}w, where w is one word and P{l-1} is a phrase

of length l-1. Since the phrase P{ l-1}w is defined by the correlation between P{l-1} and

w, it is possible that the correlation exists between a non-phrase P{l-1} and a word w. That

is, P{l-1} is not a phrase, but can be extended into a phrase of length l. If this is possible, it

is also possible that even if there exists a phrase, P{l}, in a document, the phrase P{l}

could not be generated because P{l-1} does not exist. For example, there exists a phrase

“wireless powerful computer” in a web page. But, since “wireless powerful” is not a

phrase, it is possible that the phrase could not be generated. However, if the phrase is

meaningful/important enough, the sub phrases “wireless powerful” and “powerful

computer” will be generated. Next, “computer” will be added to “wireless powerful”. To

relieve this problem, we calculate the threshold once at the beginning – this means the

threshold is consistent. If the correlation value of “wireless powerful” is lower than the

value of “wireless powerful computer” then the shorter phrase will be removed at a pruning

stage.

Our algorithm receives a sequence of words as input and returns meaningful

phrases. It combines words into phrases until it generates no more phrases. Figure 12

illustrates the pseudo code for the variable-length phrase-finding algorithm (VPF). It uses

three main variables – List, SEQ, and Corr. The List variable stores all collected phrases in

a Hash attribute. Each element (phrase) of the Hash attribute keeps correlation value in sim

attribute and the position list in posi attribute. VPF first makes a linked list (SEQ) with an

input example. Each word and word position are stored in each node in the linked list.

Then, all 1-gram distinct words are stored in List[1].Hash. Corr is a chosen correlation

function. The List , SEQ, and Corr are passed to BeSpecific procedure and this finds all

phrases. Once the phrases are acquired, they are pruned. The pruning process simply

removes all sub-phrases that have a sim value lower than the sim value of the super-

phrases.

The BeSpecific procedure receives five parameters: List that stores all phrases, l

which is the length of phrases (initial value is 2), thre which keeps the calculated threshold

value differentiating “strong” relations from “weak” relations (initialized to 0); SEQ which

stores the linked list, and Corr. BeSpecific recursively creates new sequences by removing

nodes that are not in the Hash table generated in the previous stage, and also by removing

consecutive nodes whose lengths are shorter than l. Since it removes words that are not in

the Hash table generated in the previous stage, there can be gaps between nodes. Once the

new sequence is generated, it collects all l-grams having no gaps from the sequence. The

threshold is calculated when l=2 only once by averaging all correlation values between the

first and second word in each element in List[2].Hash. The for loop removes any element

with low correlation values (sim) from Hash. The sim property of p keeps the correlation

between a sub phrase, p[1 .. l-1], and the last word, p[l], where p is a phrase consisting of l

words. For example, if p=“computer science seminar”, then p[1 .. l-1]=“computer science”

and p[l]=“seminar”. The Intersection counts all adjacent points based on the distance. The

intersection between the positions of p[1 .. l-1] and p[l] becomes the positions of p. If the

intersection of p becomes 0, then the p is removed. The BeSpecific procedure recursively

increases the phrase length L until Hash become empty. We can also apply various

correlation functions in the place of Corr.

In order to improve the phrase-selection accuracy, we need to calculate for each

word the percentage that a word can come before any other words and the percentage that

the word can come after any other words, called pre-percentage and post-percentage

respectively. The idea is that if a word occurred at the end of a sequence, then this word

loses his one chance to come before any other words, so we adjust the pre-percentage of

the word by deducting one from the number of occurrences of the word. The post-

percentage is vice versa. We can view a string S[1..n] of n consecutive words as two sub

strings, Spre=S[1..n-1] and Spost=S[2..n]. Pre- and post-percentage of w can be computed in

time O(1), when we know all the positions where w occurred:

wpre-percentage= Frequency of w in Spre / |Spre|

wpost-percentage= Frequency of w in Spost / |Spost|.

Input: Example– a sequence of words
Output: Collected phrases
Function VPF (Example) return phrases
 SEQ– linked list, each node has a word and a position.
 List– array of Hash table, each word in a Hash has sim and posi

ributes. att
 Corr- a correlation function
1. SEQ←linked list made by the input Example
2. List[1].Hash←store all 1-grams, each word keeps its positions
3. BeSpecific(List, 2, 0, SEQ, Corr)
4. Prune phrases in the List
5. Return al
End Function

l phrases in the List

Input: List- store array of Hash table
 L- length of phrase, initialized to 2

 SEQ linked list, the size reduces every iteration
thre- threshold value, initialized to 0

-
 Corr- correlation function
BeSpecific(List, L, thre, SEQ, Corr)
1. if List[L-1].Hash is empty then stop
2. SEQ←remove nodes that are not in the List[L-1].Hash and also remove

consecutive nodes which length is shorter than L
3. List[L].Hash←Collect all L-grams from SEQ
4. if L=2 then thre←Average correlation across all words in List[2].Hash
5. for each p in List[L].Hash do
6. A ← pre-percentage of p[1..L-1]
7. B ← post-percentage of p[L]
8. p.sim←Corr(A,B,A∩B)
9. remove any p for which p.sim is lower then thre
10. p.posi←Intersection of p[1..L-1].posi and p[n].posi with distance of

L-2
11. remove any p for which p.posi=0
12.
End Procedure

BeSpecific(List, L+1, thre, SEQ, Corr)

Figure 12. VPF algorithm

Pruning

Input
SEQ
a
b
c
d
a
b
e
f
b
c
d
g
h
a
b
c
d

4th BeSpecific(L=5)3rd BeSpecific(L=4)2nd BeSpecific(L=3)

SEQ SEQSEQSEQ
a
b
c
d
a
b
e
f
a
b
.
.
.

1st BeSpecific(L=2)

abcda
bcdab

List[5].
Hash

a
b
c
d
a
b
*

a
b
c
d
a
b
*
a
b
c
d

a
b
c
d
a
b
*
a
b
c
*
a
b
c
d

abcd
bcda
cdab

abcd

List[4].
Hash

abc
bcd
cda
dab

abc
bcd

List[3].
Hash

List[2].
Hash

ab
bc
cd

ab
bc
cd
da
be
ef
fb
dg
gh
ha

a
b
c
d
e
f
g
h

List[1].
Hash

Phrases returned
ab
bcd
abcdSuppose, the pruning removes all sub-

phrases that have a sim value lower
than or equal to the sim value of the
super-phrases

Phrases in the List
ab
bc
cd
abc
bcd
abcd

Figure 13. Example of VPF

The most expensive part in the BeSpecific procedure will be scanning a sequence

when L is 2. Even though the BeSpecific is called L times, as L increases the size of the

sequence decreases drastically. The Corr function has O(T) time complexity, where T is

the position length. But, as T increases the number of element in a Hash decrease. We,

therefore, can claim that the time complexity of VPF in general case is roughly: O(S),

where S is the sequence size.

For example, in Figure 2 we have an input string S = “abcdabefbcdghabcd,” in

which each letter represents a word. The correlation function simply returns the frequency

of a phrase using a threshold value of 1.5. List[1].Hash contains all distinct words.

List[2].Hash originally contains all possible 2-word phrases, then removes any phrase that

occur less than 2 times, resulting in {“ab”, “bc”, “cd”}. We remove all words that are not

in the List[2].Hash from the 1st SEQ resulting in 2nd SEQ. List[3].Hash contains all 3-word

phrases, and then remove “cda” and “dab” because they occur only once. When we came

to BeSpecific for the 3rd time, we removed “*abc*” from the 3rd SEQ, because their

consecutive length is less than 4 – the size of L increases every time we come to

BeSpecific. When we run the 4th BeSpecific, we can remove all phrases (“abcda” and

“bcdab”) in List[5].Hash, because they occur only once. Since the 5th Hash is empty, the

BeSpecific stops. After the BeSpecific, the List keeps {“ab”, “bc”, “cd”, “abc”, “bcd”,

“abcd”}. Suppose the pruning removes all sub-phrases that have a sim value lower than or

equal to the sim value of the super-phrases. The occurrences of phrases are: “ab”-3, “bc”-3,

“cd”-3, “abc”-2, “bcd”-3, and “abcd”-2. We remove “bc” and “cd” because “abc”

subsumes them and has equal frequency. “abc” is removed by “abcd” with the same

reason. The final returned phrases are {“ab”, “bcd”, “abcd”}.

3.1.2. Correlation Functions

The VPF algorithms build phrases; and correlation functions actually calculate the

weight of a phrase. The correlation functions are important in terms of selecting more

meaningful phrases. The VPF is able to cooperate with many different existing correlation

functions, and it can be hard to choose one correlation function out of many. In this

section, we describe several key properties of a good correlation function. Much of the

statistical work in building multi-word features focuses on co-occurrence (Chen and Sycara,

1998; Rosenfeld, 1994). All correlation measures are not equally good at capturing the

dependencies between different events (Tan et al., 2002). It is because each correlation

function biases toward different individual event probabilities and joint probabilities.

Piatetsky-Shapiro (1991) has proposed three key properties that a good correlation

function, F, for events A and B should satisfy:

P1: if A and B are statistically independent, then F is 0;

P2: F monotonically increases with P(A,B) when P(A) and P(B) remain the

same;

P3: if P(A) (or P(B)) increases when the rest of the parameters (P(A,B)

and P(B) (or P(A))) remain unchanged, then F monotonically decreases.

Statistical independence can be measured by the determinant operator, where Det (A,B) =

A∩B×A′∩B′ − A∩B′×A′∩B. Thus, a singular diagram is independent when its determinant

is equal to zero (Tan and Kumar, 2000). Another important operation in finding phrases is

distinguishing between positive and negative correlations (P4). Measuring their cross

product ratio (CPR) can assess the significance of the correlation between A and B

(Rosenfeld, 1994) and is defined as:

)',(),'(
)','(),(log),(log

BAPBAP
BAPBAPBACRP =

Negative correlation has a negative log CPR value. P4 is that F can distinguish positive

and negative correlation of A and B. Since positive correlation is much more important

than negative correlation in finding phrases, we only measured the change of correlation

values over positive correlation.

Tan et al. (2002) illustrated those properties and extended them to each of the

existing measures to determine if the existing measure satisfies the properties required

(Kamber and Shinghal, 1996). Some of these properties have been extensively investigated

in the data mining literature (Hilderman and Hamilton, 2001; Tan and Kumar, 2000; Tan et

al., 2002). We examined 32 correlation functions of properties and cooperated them with

phrase-finding algorithms. A complete list of the correlation functions to be examined in

this study is given in Appendix 1.

3.2. Experiments

3.2.1. Experimental Data and Procedures

We use five New York Times articles and five web pages collected from our

department server. We use web pages to test, because contents in a web page differ from

the content found in normal article. The data used in this study is accessible at

http://cs.fit.edu/~hkim/dissertation/dissertation.htm. The article size was about 2 pages and

we asked 10 human subjects, other than the authors, to read the 10 articles. Each article

contains about 1,300 words - 720 words after removing stop-words. Since we assigned 6 as

a threshold of maximum phrases length for Ahonen’s and Chan’s, the total possible

number of phrases for each article is approximately 3600 (=720×5). Of the 10 subjects, 4

were graduate students from a department of computer sciences and 6 were undergraduates

with various majors.

We asked the 10 human subjects to choose their top 10 meaningful phrases for

each article or web page. One might insist that the results will be different depending on

how 10 humans are chosen. If all volunteers have the same background the matching rate

will be higher than the normal case. However, since we are not comparing the algorithm

with humans, but comparing among algorithms, it does not matter how we chose the 10

volunteers. Furthermore, since the algorithm finds phrases statistically that cover general

human meaningfulness, we choose 10 human subjects arbitrarily.

The instruction that we gave them were:

Identify the top 10 "meaningful/important" phrases for each article.

Phrases are defined as two or more adjacent words that are meaningful,

for example, "computer science," "florida institute of technology," ...

The definition of meaningful is up to you.

We will measure the number of matches between the human subjects’ selections and

different correlation functions’ selections as well as different phrase-finding algorithms.

We also count average matching of humans – in this case, we divided the sum by

9. There are cases for the human or algorithm to select less than 10 phrases. In order to be

fair in these cases, we use an additional adjustment function. We also attempt to prevent a

measure from being scored 1 by finding one phrase and having one matched phrase by

chance – the results are too sensitive. We, therefore, decided to give a lower incentive as a

measure finds fewer phrases 20% at the most. For example, if there are 5 matches out of

10, the number of matching is 5×1/10. If there are 5 matches out of 9, then we assigned

5×1/9. But, if there are 5 matches out of 8, then we assigned 5×1/8.5. The generalized

formula is:

f

m

−
+

=

102
28

 f)(m,function Adjustment

, where m is the number of matched words and f is the number of selected words.

We also applied different correlation functions to Ahonen’s algorithm to see if the

difference of the performance depended on the correlation functions. Ahonen used two

different correlation functions: conditional probability (Confidence, F11) for filtering

phrases and mutual confidence (F32) for ordering the collected phrases determining which

phrase is more important than the other. Since he used fixed user-defined threshold (0.2)

for filtering the phrases, we only varied the correlation function used for ordering phrases.

3.2.2. Evaluation Criteria

We evaluate the meaningfulness of phrases. We believe the closer a match comes

to our set of human-selected phrases, the better the phrase-finding algorithm is in terms of

finding meaningful phrases. To evaluate the correlation functions for each phrase-finding

algorithm, we have two evaluation criteria: the number of exact matches and the number of

simple matches. We have 128 methods (4 algorithms × 32 correlation functions) – the 4

algorithms are VPF, Chan’s, Ahonen’s, and Ahonen’s with gap, and the correlation

functions F1 through F32 are in Appendix A.

Table 10. With-pruning vs. without-pruning

Avg. across humans and articles Ratio of Rank Method
With-pruning Without-pruning Improv.

1 VPF_F25 0.933 0.883 5.7%
2 VPF_F16 0.920 0.866 6.2%
3 VPF_F28 0.912 0.871 4.7%
4 VPF_F8 0.824 0.707 16.5%
5 VPF_F10 0.819 0.825 -0.7%
6 VPF_F29 0.814 0.810 0.5%
7 VPF_F27 0.812 0.796 2.0%
8 VPF_F24 0.812 0.758 7.1%
9 VPF_F13 0.772 0.666 15.9%

10 VPF_F26 0.726 0.683 6.3%

The number of exact matches of a method is measured by the percentage of the

matches between the human’s and a method’s. We count each match with a human’s and

then average the 10 compared results. This counting approach assigns more weights to the

more meaningful words – more meaningful word means that they were selected by more

human subjects. If a phrase is selected by several human subjects, every match is counted.

Therefore, finding more popular phrases increases the matching average. The number of

matches will be very low, because only 10 phrases selected by a method and a human

respectively are going to be compared.

The number of simple matches counts the matched phrases against the list

collected by all human (i.e., the union of the words from the 10 human subjects). The list

will be less then 100 because some phrases can overlap. Simple match is not directly

related to finding more meaningful phrases, because this count removes the popularity

information. We count this only to support the result of the exact match.

Comparison of the results is done using a matched-pair design (Robertson, 1981).

In this design, the top ten phrases in the ranking generated are compared. The comparison,

which simply identifies if one group of ten phrases is better than the other, is on the basis

of precision in other words the number of matched phrases. This type of evaluation has the

following advantages: It is realistic in the sense that many information retrieval systems are

interested in the top group. Traditional recall/precision tables are very sensitive to the

initial rank positions and evaluate entire rankings (Crotf and Das, 1989). Another

advantage is that significance measures can be readily used.

3.3. Results and Analysis

Before comparing our algorithm with existing methods we need to decide whether

to use pruning or not. After that we will be able to perform the comparison. In evaluating

our method against related algorithms we use different scoring methods: exact match and

simple match.

3.3.1. With-pruning vs. Without-pruning

The VPF algorithm has a pruning function. The results differed whether we used

the pruning function or not. We compared them by comparing the top 10 best methods

with exact match (Sec 6.2). By composing the algorithm and 32 correlation functions (in

Appendix A), we generated 32 methods. We ranked the top 10 methods using “with

pruning” and presented the corresponding results of “without-pruning” next in Table 10.

The values are the average of matches across 10 human subjects and 10 articles. Most

methods yielded improved results when they had been pruned. The top method VPF with

F25 had improved its performance by 5.7%. With pruning is statistically significantly

better than without-pruning with a 95% confidence interval (P=0.004).

3.3.2. Analysis with Exact Match

Because “with-pruning” achieves a higher matching rate than “without-pruning”,

we decided to use pruning in our algorithms for the rest of our experiment.

3.3.2.1. Top 10 Methods

The main purpose of the analysis in this section is to choose the best method.

Which method is the best is the most interesting question. We averaged the results from 10

articles and 10 human subjects and sorted by the average to rank all 128 methods. We

presented the results in Table 11 and included the rank, methods used, and the average.

Each method was composed of an algorithm and a correlation function. Notice that, we

also presented the results of previous methods. Ahonen used correlation function F32. He

also introduced a method with gaps. The row Ahonen_gap represented the results using

Ahonen’s method allowing gaps within a phrase.

The best method was the combination of VPF and correlation functions F25

followed by F16 and F28 – all those three correlation functions satisfied Piatetsky-

Shapiro’s three desirable properties and distinguish positive from negative correlations.

The best method VPF with F25 matched 0.93 phrases on average with the phrases selected

by a human subject. In the next section we measured the average number of matching

phrases between human subjects and compared those results to the results from methods.

Interestingly, VPF won the top 3. Chan’s algorithm occupied the next ranks.

Another observation was that the correlation functions F25, F16, and F28 that marked high

rank with VPF also marked high rank with Chan’s. This observation implied that the

performance also depends on the correlation functions.

Table 11. Ranked by average across humans and articles – Exact match

Rank Method Avg. Rank Method Avg.
1 VPF_F25 0.933 13 Ahonen_F6 0.797
2 VPF_F16 0.920 15 Ahonen_F10 0.779
3 VPF_F28 0.912 15 Ahonen_F11 0.779
4 Chans_F16 0.858 15 Ahonen_F12 0.779
5 Chans_F25 0.856 15 Ahonen_F17 0.779
6 Chans_F29 0.850 15 Ahonen_F26 0.779
7 Chans_F28 0.848 20 Ahonen_F20 0.774
8 VPF_F8 0.824 20 Ahonen_F23 0.774
9 VPF_F10 0.819 24 Ahonen_F32 0.767

10 VPF_F29 0.814 105 Ahonen_gap_F3 0.452

Table 12. Exact match across humans

 Avg. across 10 articles
Human best 1.48
Human avg. 1.30

Human worst 1.03

Ahonen’s algorithm ranked 24 and Ahonen_gap 105. These methods matched

0.767 and 0.452 numbers of phrases with human subjects respectively. The low

performance with gap is the same phenomenon as shown in (Ahonen et al., 1998). We

conducted t-Test (paired two sample for means) between VPF with F25 and Ahonen with

F32. There was a clear statistically significant difference between the two methods with

95% confidence (P=0.016). Therefore, we can conclude that VPF with F25 found

statistically significantly more meaningful phrases than Ahonen’s previous algorithm.

Ahonen’s algorithm with other correlation functions received higher ranks such as

F6, F10, F11, F12, F17, F26, and F20 as shown in Table 11. They all ranked 13, 15, and

20, which are higher than Ahonen’s original method (24). This indicates Ahonen’s

algorithm can be improved upon by using different correlation functions.

3.3.2.2. Comparing with Human Subjects

To see the average number of matches among human subjects is interesting and

also provides insight into interpreting the average number of matching by the algorithm.

For instance, if an algorithm matches 1 on average and the human matches 7, then the

performance of the algorithm is almost negligible no matter how much higher its

performance is compared to others.

We presented the best, average, and worst matching human results in Table 3. The

results told us that only 1.3 phrases out of 10 picked by a human subject matched with the

phrases picked by the others on average. This is not an unrealistic result. Considering that

each document has approximately 1,300 words, more than 7779 possible phrase

combinations exist and each person has a different background, matching 1.3 phrases out

of 10 on average is a reasonable result. Our method achieved a result (0.93), which was

close to the typical human result. We also conducted a t-Test with the human average and

VPF with F25. The human subjects’ average was statistically significantly better than the

best result obtained by the algorithm with a 95% confidence interval (P=0.02). It would be

interesting to see if the worst case of human matching was higher than the algorithm’s. The

answer was no. It was not statistically significantly better than the machine’s. This result

indicates that human matching is better than the matching of algorithms in general but not

always.

Table 13. Ranked by average across humans and articles – Simple match

Rank Method Avg. Rank Method Avg.
1 vpf_F28 3.696 12 ahonen_F10 3.195
2 vpf_F25 3.689 12 ahonen_F11 3.195
3 vpf_F13 3.672 12 ahonen_F12 3.195
4 vpf_F8 3.656 12 ahonen_F17 3.195
5 vpf_F27 3.575 12 ahonen_F26 3.195
5 vpf_F24 3.575 17 ahonen_F6 3.181
7 vpf_F21 3.377 23 ahonen_F2 3.025
8 vpf_F29 3.342 24 ahonen_F20 3.018
9 vpf_F16 3.321 24 ahonen_F22 3.018

10 chans_F29 3.282 24 ahonen_F23 3.018
22 chans_F25 3.053 33 ahonen_F32 2.934

 118 ahonen_gap_F32 1.755

Table 14. Simple match across humans

 Avg. across 10 articles
Human best 6.3
Human avg. 5.6

Human worst 4.7

3.3.3. Analysis with Simple Match

This simple match count showed similar ranking to the exact match. VPF with F28

followed by F25 and F13 had the top matching rates: 3.70, 3.69, and 3.67 respectively as

shown in Table 13. Since simple match uses a list of meaningful phrases by taking the

union of phrases selected by the 10 human subjects, average number of matching phrases is

higher than the average by exact match. Chan’s with F25 ranked 22 (3.05 matching rate),

Ahonen without gap ranked 33 (2.93), and Ahonen with gap ranked 118 (1.76) out of 128.

Chan’s original method ranked 22 (3.053). These results also told us VPF found more

phrases than Ahonen’s and Chan’s. The result from simple match also indicated that

Ahonen’s algorithm could be improved by incorporating different correlation functions.

We also attempted to compare the methods’ results with the results from humans.

Human matched the list 5.6 out of 10 on average; the best and worst cases are 6.3 and 4.7

as shown in Table 14. The result 3.69 of method VPF with F25, which was the highest

score with exact match, was quite significant considering that we only used the statistical

information.

3.4. Summary

We proposed a variable-length phrase-finding algorithm, which find more

meaningful phrases – VPF – than older methods – Ahonen’s and Chan’s algorithms. We

also coordinated these algorithms with 32 different correlation functions. They regenerate

sequences recursively with the words selected in the previous stage and search for

increased length of phrases in time O(nw), where nw is the number of distinct words in a

page. Since our algorithm uses average as a threshold and stops when the length of phrases

does not increase, no user-defined parameter is required.

In order to choose the best method, we conducted an experiment by asking 10

human subjects to select 10 phrases from 10 different articles. We compared the number of

matching phrases chosen by a method to those phrases chosen by 10 human subjects. By

comparing the top 10 best measures (matched-pair design (Robertson, 1981)), we observed

that when we add pruning, the algorithm (VPF) had improved performance.

We concluded that VPF with F25 found a statistically significantly greater number

of meaningful phrases than Ahonen’s previous method. We suspect the filtering stage of

Ahonen’s algorithm filtered many meaningful phrases out or their weighting scheme using

the length of a phrase and tightness (Ahonen et al., 1998) distracted the correlation value of

a phrase. Interestingly, the correlation functions F25 and F28 were both included in the top

10 in both exact match and simple match. This result indicates the correlation functions

F25 and F28 had higher matching rates than the other correlation functions. These two

correlation functions both satisfied desirable properties for phrases. We can also improve

Ahonen’s algorithm by incorporating correlation functions F10, F11, F12, F17, F26, F6,

and F20. Those functions resulted in a higher match of average scores for both exact match

and simple match experiments.

The performance of our method varied depending on the articles selected. We

currently do not understand the reason for the variance in performance over different

articles. We assume it is due to the intrinsic characteristics of an article, because the human

subjects’ results are also different depending on the articles. Phrases in VPF grow

backwards; however, in the future we will devise an algorithm that grows both forwards

and backwards.

Chapter 4

Analysis of Desirable Properties of Correlation

Functions between Two Events

Before selecting a correlation function, it is important to check whether a

correlation function satisfies basic desirable properties of a correlation function. Likewise

knowing the characteristics of a correlation function is important. We propose two new

desirable properties that a correlation function should satisfy. These new properties will

help understand the general characteristics of correlation functions and help to choose or

devise a right correlation function for an application domain. Correlation functions can be

used for finding phrases, building profile, and devising scoring functions in our system as

shown in Figure 14. We tested with 32 correlation functions to see which one satisfies

what desirable properties.

Profile-learning
(DHC)

Words Phrases

Profile
(UIH)

Scoring
function

(WS)

Personalized
search engine

results

Search engine
results

Interesting
web pages

Desirable
properties of a

correlation
function

Implicit
indicator

for interesting
web pages

Bookmarked
web pages

Visited
web pages

3. Personalize search results

2. Learn user profile

1. Identify interesting web pages

Phrase-finding
(VPF)

Figure 14. Desirable properties in the framework of web personalization

4.1. Desirable Properties of a Correlation Function

In this section, we describe several key properties of a correlation function.

Correlation functions differ in their ability to capture the dependencies between variables,

because each correlation function has its own bias in preferring a set of diagrams to

another. The dependencies between variables can be described in a Venn diagram as shown

in Figure 15 – A, B, A∩B, and A∪B.

A B

Figure 15. Venn diagram

Piatetsky-Shapiro (1991) proposed three key properties that a good correlation function, F,

should satisfy:

P1: if A and B are statistically independent, then F is 0;

P2: F monotonically increases with P(A,B) when P(A) and P(B) remain the same;

P3: if P(A) (or P(B)) increases when the rest of the parameters, P(A,B) and P(B)

(or P(A)), remain unchanged, then F monotonically decreases.

Tan et al. (2002) illustrated those three properties and the extent to which each of the

existing measure satisfies the properties. Some of these properties have been extensively

investigated in the data mining literature (Hilderman and Hamilton, 2001; Tan and Kumar,

2000).

4.1.1. Enhancing Property 1

The detection of statistical independence is a desirable property – Piatetsky-

Shapiro (1991) specified this as his first desirable property (P1). However, should the

correlation function return only 0?

When two events, A and B, are statistically independent, some functions return 0,

but some functions return a different value such as 1. Each column in Table 19 is for each

correlation function and we used “o” mark as satisfaction of P1 in the P1 row. The “value”

row signifies the return value. For instance, the test functions Odds, Conv, Inte, and Coll in

Appendix 1 return 1 when two events are statistically independent as shown in Table 19.

Therefore, we argue that the definition of P1 is too strict. We revise the definition of P1 to

be:

P1: F can distinguish statistical independence of A and B.

The revised definition of P1 is used for the duration of this Chapter.

4.1.2. Additional Desirable Properties

We propose and investigate additional properties desirable for a correlation

function. When the universe is fixed, three events – A, B, and A∩B – can enumerate all

possible cases. We list seven possible cases in Table 15. The notation “↑” indicates

increase, “↓”indicates decrease, and “-”indicates no change in the value of a correlation

function. We add two other possible cases – two variables increase at the same ratio (P4

and P5 in Table 15).

Case 1 has variable A fixed, B fixed, and A∩B increasing. Piatetsky-Shapiro

(1991) refers to this case as P2, so we follow his designation. We show the proper change

of a correlation function in the “Proper change” column. Other cases can be interpreted in

the same way. The proper change of case 1 is increasing (Piatetsky-Shapiro, 1991). Case 2

and 3 have the same property name (P3) by similarity – variable A and B could be

alternated with each other. The proper change of P3 is decreasing (Piatetsky-Shapiro,

1991).

Table 15. All possible cases (with the same incremental ratio)

Case A B A∩B Property
name

Proper
change

1 − − ↑ P2 ↑
2 ↑ − −
3 − ↑ −

P3 ↓

4 ↑ ↑ − P4 ↓
5 ↑ − ↑
6 − ↑ ↑

P5 ↑

7 ↑ ↑ ↑

Case 4 appears to be the same as the inverse of P2. But not all correlation functions

return the same results (e.g., Supp in Appendix 1 increases for case 1 but no change for

case 4). The value of a correlation function should decrease as the value of A∪B increases

when A∩B remains unchanged in the formula of
BA
BA

∪
∩ . As A and B increase, the value of

BA
BA

∪
∩ decreases when A∪B=A+B-A∩B. Therefore, property 4 (P4) states that if P(A,B)

increases when P(A) and P(B) remain unchanged, then F monotonically decreases.

An example of case 4 is shown in Table 16. The union is 100. Variable A and B

increase with the same incremental ratio; A∩B remains unchanged. Intuition suggests as A

and B increase, the value of a correlation function is expected to decrease.

Table 16. An example for property 4

A B A∩B Incremental ratio
20.0 30.0 10.0 1.0
22.0 33.0 10.0 1.1
24.0 36.0 10.0 1.2
30.0 45.0 10.0 1.5
34.0 51.0 10.0 1.7
40.0 60.0 10.0 2.0

Case 5 and 6 have the same property name (P5) due to their similarity. The proper

change in a correlation value for P5 is monotonically increasing. In the formula of

BABA
BA

∩−+
∩ , where A and B are greater than A∩B and one of A and B are fixed, as B (or

A) and A∩B increase together at the same ratio, the whole value should increase. The P5

states that if P(A) (or P(B)) and P(A,B) increase at the same ratio, then F monotonically

increases.

We illustrate cases 5 and 6 with an example below in Table 17. Since both cases

are the same, we will only use case 5. Cases can have two possible sub-scenarios: A is

smaller than B, or A is bigger than B. The union is 100. Variable A and A∩B increase with

the same incremental ratio; B remains unchanged. In the case of A<B, the value of

correlation function is expected to increase, because the ratio between B and A∩B

increases, while the ratio between A and A∩B remains the same. In the case of A>B, A

seemingly subsumes B gradually, because B remains the same while A∩B grows.

Consider the cases where A1=5.0, A2=10.0, B=10.0, A1∩B=3.0, A2∩B=6.0 as in

Table 17. The correlations of the two cases (F(A1,B,A1∩B) and F(A2,B,A2∩B)) may have

different values. The log CPR (Rosenfeld, 1994) values for the two cases are 4.2 and 5.0

respectively, which assess the significance of the correlation between A and B. However,

for example Inte in Appendix 1 satisfies all previous 3 desirable properties (P1 – P3); but,

it returns the same value, 6, for both cases (case of (A1,B,A1∩B) and case of (A2,B,A2∩B)).

Our P5 is to verify whether a correlation function can tell the difference between the two

cases. This determines that the P5 is critical for measuring the characteristics of correlation

functions.

Table 17. An example for property 5

Case of A<B Case of A>B
A B A∩B A B A∩B

Incremental
ratio

5.0 10.0 3.0 20.0 10.0 4.0 1.0
5.5 10.0 3.3 22.0 10.0 4.4 1.1
6.0 10.0 3.6 24.0 10.0 4.8 1.2
7.5 10.0 4.5 30.0 10.0 6.0 1.5
8.5 10.0 5.1 34.0 10.0 6.8 1.7

10.0 10.0 6.0 40.0 10.0 8.0 2.0

Case 7 is defined as the values of A, B, and A∩B increase monotonically together

at the same ratio. It is difficult to define what is a desirable change of the correlation

function for this case. This property is somewhat related to the frequency. For example, too

frequent and too rare words are usually removed in some researches (Croft et al., 1991;

Zamir and Etzioni, 1998). Due to the uncertainty inherent in case 7, we are unable to

determine any proper changes to this property.

4.2. Experiments

4.2.1. Experimental Data and Procedures

If all those correlation functions that satisfy our new 2 desirable properties also

satisfy the previous 3 desirable properties, our proposed properties would not be a

substantial improvement in characterizing correlation functions. Therefore, we collected 32

correlation functions to see which correlation functions only satisfy the previous 3

desirable properties. A complete listing of the correlation functions examined for further

properties in this Chapter was given in Appendix 1. In order to verify whether a correlation

function satisfies desirable properties, we systematically generated 923 different test cases

(combinations of A, B, and A∩B). For P2 we generated 76 test cases, P3 had 399 test cases,

P4 had 35 test cases, and P5 had 413 test cases. Generating test cases P3 and P5 were more

complicated, because both had two different sub cases. We wrote our program with Excel

macro and ran on Intel Pentium 4 CPU. The detailed test cases and source code are

available on the web: http://cs.fit.edu/~hkim/dissertation/dissertation.htm.

We added dMAX, AEMI3, dMIN, and dMIN2 correlation functions to an

experiment. The dMAX and the dMIN were cooperating with the Supp. The dMIN2

emphasized the original MIN value. The AEMI3 function was similar to AEMI4 except that

AEMI3 did not include the negative relation part, A′B′ × log(A′B′/A′×B′). For example, the

two matrixes in Figure 16 had different value assignments – basically the positive and

negative intersection values were exchanged. An AEMI4 weighed two tables the same,

even though Matrix A had a value of 5 for A∩B and Matrix B had a value of 75 for A∩B.

However, in some application domains the positive relation, A∩B× log(A∩B/(A×B)) is

more important than the negative relation, which prefers Matrix B to Matrix A. Therefore,

AEMI3 removed the negative relation part from AEMI4.

 B B′ B B′
A 5 10 A 75 10
A′ 10 75

A′

10 5
Matrix A Matrix B

Figure 16. Contingency matrix

4.2.2. Evaluation Criteria

In addition to the proposed properties (P1-P5), another important property was the

ability to distinguish between positive and negative correlations (P6). Tan et al. (2002)

described this property in detail. Positive correlation is more important than negative

correlation in some application domains. Therefore, we also checked correlation functions

whether they do or do not satisfy P6.

Statistical independence (P1) can be measured by the determinant operator,

Det(A,B) = A∩B×A′∩B′ − A∩B′×A′∩B. Thus, a singular Venn diagram is independent

when whose determinant is equal to zero (Tan et al., 2002). Measuring their cross product

ratio (CPR) can assess the significance of the correlation between A and B (Rosenfeld,

1994) and is defined as:

),(),(
),(),(log),(log

BAPBAP
BAPBAPBACPR

′′
′′

=
.

Negative correlation function would have a negative log CPR value. The definition of P6

was that F can distinguish between positive and negative correlations of A and B. We also

tested whether the result of each correlation function was normalized or not. P7 is that F

returns normalized results. The total properties that we summarized are listed in Table 18.

Normalized functions have return values within certain boundaries such as between 0 and

1.

Table 18. Summary of correlation functions' properties

Property Description

P1 F can distinguish statistical independence of A
and B.

P2 F monotonically increases with P(A,B) when
P(A) and P(B) remain the same

P3
If P(A) (or P(B)) increases when the rest of the
parameters, P(A,B) and P(B) (or P(A)), remain
unchanged, then F monotonically decreases.

P4 If P(A,B) increases when P(A) and P(B) remain
unchanged, then F monotonically decreases.

P5 If P(A) (or P(B)) and P(A,B) increase at the same
ratio, then F monotonically increases.

P6 F can distinguish positive and negative
correlations of A and B.

P7 F returns normalized results.

We measured mainly whether a correlation function shows consistent increasing

pattern or decreasing pattern under a condition for each property. The changes with

negative relations are disregarded. Since we can detect positive and negative correlations it

would be more practical to check over positive correlations.

4.3. Results and Analysis

The purpose of this experiment is to test whether those correlation functions that

satisfy our new 2 desirable (new properties) properties also satisfy 3 established desirable

properties (old properties). If there are correlation functions that satisfy only one of either

the previous 3 properties or our 2 new properties, then the experiment provides evidence

that our new properties will be useful for distinguishing properties of correlation functions.

This analysis based upon 3 categories. First, we compared old properties and new

properties based upon the number of correlation functions that satisfies those properties.

Second, old properties and new properties were compared based upon the number of

functions that satisfied the two categories of properties upon the satisfaction of P1. Third

was regarding the satisfaction of P6. After that, we summarized whether correlation

functions return normalized results.

4.3.1. Comparing Properties: Old verses New

We compared how many correlation functions satisfied old properties and how

many satisfied new properties. Each property of a correlation function and the desirable

changes in the function for the properties P2 though P5 were given in Table 18. Table 19

contained the detailed results of our experiment designed to test correlation functions and

the five desirable properties of correlation functions. If a given function satisfies a

particular property, it receives an “o” notation, and “×” if the function does not satisfy the

property. Some properties could have 2 conditions (A>B or A<B) depending on which

variable was greater.

Twenty correlation functions – Coef, Odds, YulQ, YulY, Kapp, Mutu, JMea, Gini,

Conv, Inte, Piat, Certa, Added, Coll, Klos, MI, EMI, AEMI4, dMI, and AEMI3 – satisfied

old properties. Nineteen correlation functions – Coef, Odds, YulQ, YulY, Kapp, Mutu, JMea,

Gini, Piat, Coll, Jacc, Klos, EMI, AEMI4, dMAX, dMI, AEMI3, dMIN, and MuConf –

satisfied new properties. Fifteen correlation functions – Coef, Odds, YulQ, YulY, Kapp,

Mutu, JMea, Gini, Piat, Coll, Klos, EMI, AEMI4, dMI, and AEMI3 – satisfied all five

desirable properties.

We summarized the results in a Contingency matrix in Figure 17. The numbers

outside the box were the sum of rows and columns. Out of 32 total correlation functions

tested, 20 correlation functions satisfied old properties (P1-P3); 19 satisfied our new

properties (P4, P5); 15 satisfied both desirable properties (P1-P5); 5 functions satisfied old

properties only, and 4 functions satisfied new properties only. Since our properties could

distinguish 5 correlation functions out of 20 functions that satisfied old properties

(5/20=25%), it determined that our properties were independent from previous 3 desirable

properties.

 Satisfying
old properties

Unsatisfying
old properties

Satisfying
new properties 15 4 19

Unsatisfying
new properties 5 8 13

 20 12 32

Figure 17. Contingency matrix of desirable properties over all functions

4.3.2. Comparison Based upon Property 1

If a correlation function can detect the statistical independence of a diagram, it

satisfies P1. The correlation functions that satisfy old properties and new properties were

counted under the condition of satisfying P1. We created contingency matrix of the

correlation functions that satisfied P1 in Figure 18. Twenty correlation functions satisfied

P1. Interestingly, the correlation functions that satisfied P1 also satisfied P2 and P3. The

correlation functions that satisfied P2 and P3 were dependent on the correlation functions

that satisfied P1. This means P1 alone can explain P2 and P3. In other words, P1 can

subsume P2 and P3, which reveals the nonessential nature of P2 and P3. When verifying

correlation functions, P1 may be the only necessary reference property.

 Satisfying
old properties

Unsatisfying
old properties

Satisfying
new properties 15 0 15

Unsatisfying
new properties 5 0 5

 20 0 20

Figure 18. Contingency matrix of desirable properties over property 1

4.3.3. Comparison Based upon Property 6

In Table 19, an “o” is placed in each column, for P6 if the correlation function can

distinguish positive and negative relations. The correlation functions that satisfied old

properties or new properties was counted and shown in the contingency matrix (Figure 19).

Of the 12 functions satisfying P6, 8 satisfied P1-P5; only 4 satisfied old properties (P1-P3)

without satisfying new properties (P4 and P5).

All correlation functions satisfying P6 also satisfied old properties. It might be

unnecessary to test a function for P1-P3 when P6 encompasses all three. Our properties (P4

and P5) tested an alternative aspect of the correlation functions, which is unrelated to P6.

In the contingency matrix, we compared 12 correlation functions, which satisfied old

properties to new properties (Table 19). Of the 12 functions, only 8 satisfied our new

properties. Clearly our properties were testing an alternative aspect of correlation functions.

 Satisfying
old properties

Unsatisfying
old properties

Satisfying
New properties 8 0 8

Unsatisfying
New properties 4 0 4

 12 0 12

Figure 19. Contingency matrix of desirable properties over property 6

4.3.4. Normalized Results – Property 7

Normalization helps users analyze or understand the data. The P7 is not a highly

desirable property because normalization is unrealistic for many correlation functions. We

included the results of P7 testing only to help those users who prefer normalized results.

A comparison of P7 to both old properties and new properties may prove

illustrative. Correlation functions that produced normalized results were assigned an “o” in

Table 19. Out of 32 correlation functions, 22 functions satisfied P7. Ten functions satisfied

both old properties and P7; fourteen functions satisfied both new properties and P7. The

results also indicated that the characteristics of correlation functions were unrelated to

function normality.

4.4. Summary

In order to select the right correlation functions for an application out of a set of

well-known correlation functions, the characteristics of each function must be compared.

Piatetsky-Shapiro (1991) opened new research areas by proposing three basic desirable

properties for functions (P1-P3). Tan et al. (2002) compared correlation functions using the

three established desirable properties and other existing function properties. Our research

on two-variable Venn diagrams led us to identify two more desirable properties of

correlation functions (P4 and P5). Property 4: If P(A,B) increases when P(A) and P(B)

remain unchanged, then F monotonically decreases. Property 5: If P(A) (or P(B)) and

P(A,B) increase at the same ratio, then F monotonically increases.

Consider the cases where A1=5.0, A2=10.0, B=10.0, A1∩B=3.0, and A2∩B=6.0

(Table 17). The correlations of the two cases, F(A1,B,A1∩B) and F(A2,B,A2∩B), may have

different values. The log CPR values, which assess the significance of the correlation

between A and B, are 4.2 and 5.0 respectively (Rosenfeld, 1994). But a deficiency exists.

For example, the function Inte satisfies P1-P3, but returns the same value of 6 in both

cases. Our proposed property 5 can tell the difference between the two cases, and is critical

for measuring the characteristics of correlation functions.

In addition, the definition of P1 used by Piatetsky-Shapiro (1991) lacks some

descriptive power. For example, some correlation functions (e.g., Odds, Conv, Inte, and

Coll in Appendix 1) produced a score of 1, even when two events were statistically

independent. We revised the definition of P1 to improve its descriptive power.

P1: F can distinguish statistical independence of A and B.

In order to see whether those correlation functions that satisfy our two new

desirable properties also satisfy previous three desirable properties, we collected 32

correlation functions as shown in Appendix 1 and used systematically generated test cases

for testing each property. The results indicated that our two new desirable properties were

more descriptive than the previous three old desirable properties. It was because all

correlation functions that satisfy P1 also satisfied P2 and P3, and all correlation functions

that satisfied P6 also satisfied P1-P3; but our properties were independent from P1 and P6.

We insist that these two properties are important in terms of understanding the correlations

of two variables and characterizing an appropriate correlation function. The summarized

results not only of P1-P5 but also of P6 that measured negative/positive correlation and the

result of P7 that checked which correlation function returned a normalized return value will

help reader compare characteristics of correlations functions.

Our experiment was limited to positive correlations for our web personalization

since many applications depend on positive correlation. We will extend our analysis to

negative correlation as well.

Table 19. Properties of correlation functions

1 2 3 4 5 6 7 8 9 10 11 Property Conditions
Coef Good Odds YulQ YulY Kapp Mutu JMea Gini Supp ConMa

 o x o o o o o o o x x P1
Value 0 1 o o o o o o

P2 A=B o o o o o o o o o o o
A<B o x o o o o o o o x x P3
A>B o x o o o o o o o x o

P4 A=B o o o o o o o o o x o
A<B o x o o o o o o o o o P5
A>B o x o o o o o o o x

P6 o x x o o o x x x x x
 x o x o o o o o o o o P7

Scope 0-1 0-.5 0-.5 0-.5 0-1

o

12 13 14 15 16 17 18 19 20 21 22 Property Conditions

Lapl Conv Inte Cosi Piat Certa Added Coll Jacc Klos MI
 x o o x o o x o o o o P1

Value 1 1 o o o 1 o o
P2 A=B o o o o o o o o o o o

A<B o o o o o o o o o o o P3
A>B x o o o o o o o o o o

P4 A=B o o o o o o o o o o o
A<B x x x x o x x o o o x P5
A>B o o x o o o o o o o x

P6 x x x x o o x o o x x
 o x x o o x o x o o x P7

Scope 0-1 0-1 0-1 0-1 0-1 0-1 0-1

23 24 25 26 27 28 29 30 31 32 Property Conditions
StcMi EMI Aemi4 dMAX dMI AEMI3 dMIN dMIN2 NegCos MuCon

 x o o x o o x o o x P1
Value o o o o

P2 A=B o o o o o o o x o o
A<B o o o o o o x x o o P3
A>B x o o x o o o o o o

P4 A=B o o o o o o o o o o
A<B x o o o o o o x x o P5
A>B o o o o o o o x x o

P6 o o x x o x o o x x
 o o x o o x o o x o P7

Scope 0-1 0-1 0-1 0-1 0-1 0-1 0-1

Chapter 5

Personalized Ranking of Search Results with

Implicitly Learned User Interest Hierarchies

Web search engines are usually designed to serve all users, without considering the

interests of individual users. Personalized web search incorporates an individual user's

interests when deciding relevant results to return. We propose to learn a user profile, called

a user interest hierarchy (UIH), from web pages that are of interest to the user. The user’s

interest in web pages will be determined implicitly, without directly asking the user. Using

the implicitly learned UIH, we study methods that (re)rank the results from a search

engine. Experimental results indicate that our personalized ranking methods, when used

with a popular search engine, can yield more relevant web pages for individual users. This

process is depicted in Figure 20.

Profile-learning
(DHC)

Words Phrases

Profile
(UIH)

eng lts
Scoring
function

(WS)

Personalized
search engine

results

Search
ine resu

Interesting
web pages

Desirable
properties of a

correlation
function

Implicit
indicator

for interesting
web pages

Bookmarked
web pages

Visited
web pages

3. Personalize search results

2. Learn user profile

1. Identify interesting web pages

Phrase-finding
(VPF)

Figure 20. Devising a scoring function in the framework of web personalization

5.1. Personalized Results

Personalization of web search involves adjusting search results for each user based

on his or her unique interests. Our approach orders the pages returned by a search engine

depending on a user’s interests. Instead of creating our own web search engine, we

retrieved results from Google (Google, 2005). Since the purpose of this Chapter is to

achieve a personalized ordering of search engine results, we can score a page based on the

user profile and the results returned by a search engine as shown in the dashed box in

Figure 21.

Personalized
ordering

Retrieved
results

Search
engine

UIH

Scoring
function

Bookmark

DHC

Figure 21. Diagram of Scoring

To build the user profile, called User Interest Hierarchy (UIH), we use the web

pages in his/her bookmarks (Li et al., 1999; Maarek and Ben-Shaul, 1996) and the Divisive

Hierarchy Clustering (DHC) algorithm (Kim and Chan, 2003). A UIH organizes a user’s

interests from general to specific. Near the root of a UIH, general interests are represented

by larger clusters of terms while towards the leaves, more specific interests are represented

by smaller clusters of terms. The root node contains all distinct terms in the bookmarked

web page. The leaf nodes contain more specifically interesting terms. The relations

between terms are calculated based on the co-occurrence in the same web page.

An example of a UIH is shown in Figure 3. Each node (cluster) contains a set of

words. The root node contains all words that exist in a set of web pages. Each node can

represent a conceptual relationship if those terms occur together at the same web page

frequently, for example ‘perceptron’ and ‘ann’ (in italics) can be categorized as belonging

to neural network algorithms, whereas ‘id3’ and ‘c4.5’ (in bold) in another node cannot.

Words in these two nodes are mutually related to some other words such as ‘machine’ and

‘learning’. This set of mutual words, ‘machine’ and ‘learning’, performs the role of

connecting italicized and bold words in sibling nodes and forms the parent node. We

illustrate this notion in the dashed box.

This Chapter focuses on devising a scoring method that receives two inputs (UIH

and retrieved results) and one output (personalized ranking).

5.2. Approach

In order to provide personalized, reordered search results to a user, we need to

score each page depending on personal interests. Therefore, the goal is to assign higher

scores to web pages that a user finds more interesting. This section explains how to score a

retrieved web page using a user’s UIH. First, we explain the basic characteristics for each

matching term. Second, based on the characteristics, we propose functions to score a term.

These functions determine how interesting a term is to a user. Third, based on the score

and the number of the matching terms, we calculate an overall score for the page. Last,

since the search engine provides a score/ranking for a web page, we incorporate this

ranking into our final score of the web page.

5.2.1. Four Characteristics of a Matching Term

Given a web page and a UIH, we identify matching terms (words/phrases) that

reside both in the web page and in the UIH. The number of matching terms is defined m,

which is less than the number of total distinct terms in the web page, nt, and the number of

total distinct terms in the UIH, nu.

Each matching term, ti, is analyzed according to four characteristics: the level of a

node where a term belongs to (Dti), the length of a term such as how many words are in the

term (Lti), the frequency of a term (Fti), and the emphasis of a term (Eti). D and L can be

calculated while building a UIH from the web pages in a user’s bookmark. Different web

page has different values for F and E characteristics. We estimate the probability of these

four characteristics and based on these probabilities, we approximate the significance of

each matching term.

5.2.1.1. Level/Depth of a UIH Node

A UIH represents general interests in large clusters of terms near the root of the

UIH, while more specific interests are represented by smaller clusters of terms near the

leaves. The root node contains all distinct terms and the leaf nodes contain small groups of

terms that represent more specific interests. Therefore, terms in more specific interests are

harder to match, and the level (depth) where the term matches indicates significance. For

example, a document that contains terms in leaf nodes will be more related to the user’s

interests than a document that contains the terms in a root node only. If a term in a node

also appears in several of its ancestors, we use the level (depth) closest to the leaves.

There is research that indicates user-defined query scores can be used effectively

(Salton and Waldstein, 1978; Harper, 1980; Croft and Das, 1989). From the acquisition

point of view, it is not clear how many levels of importance users can specify if we ask a

user directly. In I3R (Croft and Thompson, 1987), they used only two levels: important or

default. Harper (1980) used 5 levels of importance, and Croft and Das (1989) used 4 levels.

We calculate the scores of terms using the level (depth) of a node in the UIH instead of

explicitly asking the user.

The significance of a term match can be measured by estimating the probability,

P(Dti), of matching term ti at depth (level) Dti in the UIH. P(Dti) is the probability of a level

in a UIH. A term that matches more specific interests (deeper in the UIH) has a lower P(Dti)

of occurring. Lower probability indicates the matching term, ti, is more significant. The

probability is estimated by:

number of distinct terms at depth Dti in the UIH =)(
it

DP
nu

5.2.1.2. Length of a Term

Longer terms (phrases) are more specific than shorter ones. If a web page contains

a long search term typed in by a user, the web page is more likely what the user was

looking for.

In general, there are fewer long terms than short terms. To measure the

significance of a term match, the probability, P(Lti), of matching term ti of length Lti in the

UIH is calculated. Lti is defined as MIN (10, the length of a term). We group the longer

(greater than 10) phrases into one bin because they are rare. Longer terms has a smaller

probability, P(Lti), of occurring, which indicates a more significant match. The probability

is estimated by:

number of distinct terms of length Lti in the UIH =)(
it

LP
nu

5.2.1.3. Frequency of a Term

More frequent terms are more significant/important than less frequent terms.

Frequent terms are often used for document clustering or information retrieval (van

Rijsbergen, 1979). A document that contains a search term many times will be more

related to a user’s interest than a document that has the term only once.

We estimate the probability, P(Fti), of a matching term ti at frequency Fti in a web

page to measure the significance of the term. However, in general, frequent terms have a

lower probability of occurring. For example, in a web page most of the terms (without the

terms in a stop list (Rasmussen, 1992)) will occur once, some terms happen twice, and

fewer terms repeat three times or more. Lower probabilities, P(Fti), of a term ti indicates the

significance of a term. The probability is estimated by:

number of distinct terms with frequency Fti in a web page =)(
it

FP
nt

5.2.1.4. Emphasis of a Term

Some terms have different formatting (HTML tags) such as title, bold, or italic.

These specially-formatted terms have more emphasis in the page than those that are

formatted normally. A document that emphasize a search term as a bold format will be

more related to the search term than a document that has the term in a normal format

without emphasis. If a term is emphasized by the use of two or more types of special

formatting we assign a priority in the order of title, bold, and italic.

The significance for each type of format is estimated based on the probability,

P(Eti), of matching term ti with the format type Eti in a web page. Those format types are

more significant/important if the format type has lower probability of occurring in a web

page. Lower probability P(Eti) of a matching term, ti, indicates the term is more significant.

The probability is estimated by:

number of distinct terms with emphasis Eti in a web page =)(
it

EP
nt

5.2.2. Scoring a Term

5.2.2.1. Uniform Scoring

P(Dti, Lti, Fti, Eti) is the joint probability of all four characteristics occurring in term ti

-- Dti is the depth of a node where a term belongs to, Lti is the length of a term, Fti is the

frequency of a term, and Eti is the emphasis of a term. Assuming independence among the

four characteristics, we estimate:

)()()()(),,,(
iiiiiiii tttttttt EPFPLPDPEFLDP ×××=

The corresponding log likelihood is:

)(log)(log),,,(log
iiiiii tttttt LPDPEFLDP +=

)(log)(log
ii tt EPFP ++

Eq. 1

Smaller log likelihood means the term match is more significant. In information theory

(Mitchell et al., 1997), –log2 P(e) is the number of bits needed to encode event e, hence

using –log2, instead of log, in Eq. 1 yields the total number of bits needed to encode the

four characteristics. The uniform term scoring (US) function for a personalized term score

is formulated as:

)(log)(log 22 iii ttt LPDPS −−=
)(log)(log 22 ii tt EPFP −−

Eq. 2

which we use as a score for term ti. Larger Sti means the term match is more significant.

5.2.2.2. Weighted Scoring

The uniform term scoring function uses uniform weights for each characteristic. It

is possible that some characteristics are more important than the others. For instance, the

depth of a node (D) may be more significant than frequency (F). Therefore, we attempted

to differentiate the weights for each characteristic. F and E characteristics represent the

relevance of a web page. Longer terms (greater L) represent a user’s interest more

specifically; however, longer terms do not mean that a user is more interested in that term.

Therefore, those L, F, and E characteristics do not fully reflect a user’s interests. It is more

reasonable to emphasize D characteristic more than other characteristics, because D (depth)

represents the strength of a user’s interests.

A simple heuristic is used in this paper that assumes the depth of a node is at least

two times more important than other characteristics. Based on this heuristic, the weights

w1=0.4, w2=0.2, w3=0.2, and w4=0.2 are assigned. The weighted term scoring (WS)

function for a personalized term score is formulated as:

)(log)(log 2221 iii ttt LPwDPwS −−=

)(log)(log 2423 ii tt EPwFPw −−
Eq. 3

5.2.3. Scoring a Page

The personal page score is based on the number of interesting terms and how

interesting the terms are in a web page. If there are many terms in a web page that are

interesting to a user, it will be more interesting to the user than a web page that has fewer

interesting terms. If there are terms in a pages that are more interesting to a user, the web

page will be more interesting to the user than a web page that has less interesting terms.

The personalized page scoring function for a web page Spj adds all the scores of the

terms in the web page and can be formulated as:

∑ =
=

m

i tp ij
SS

1 Eq. 4

where m is the total number of matching terms in a web page and Sti is the score for each

distinct term. The time complexity of scoring a page is O(nt), where nt is the number of

“distinct” terms in a web page. D and L characteristics can be calculated during the

preprocessing stage of building a UIH. F and L characteristics can be calculated while

extracting distinct terms from a web page.

5.2.4. Incorporating Public Page Score

Personal page scoring is not sufficient for some search engines. The success of

using public scoring in popular search engines, such as Google’s PageRank, indicates the

importance of using a public page-popularity measure to determine what page a user is

interested in. Many existing methods determine the public popularity of a page by

determining the number pages that link to it (Haveliwala, 2002; Jeh and Widom, 2003).

Many collaborative filtering approaches also use the popularity of a web page for

recommendation (Eirinaki et al., 2004; Kim et al., 2004). Section 6.2.3 described our

personal web page scoring function. We wish to incorporate the public scoring into our

page scoring function so both the popularity of a page and individual interests are taken

into account. We use the rank order returned by Google as our public score. GOOGLEpj is

the score of a web page pj based on the page rank returned by Google for a search term.

Google’s public page scoring function has been found in a recent study (Delaney, 2004) to

be very effective at returning pages that users find interesting. The use of Google’s page

rank as a public page score makes our experimental comparison with Google clearer,

because any improvement in the ordering is due to the contribution of our personal page

score. For a given web page, pj, the personal and public page score (PPS) equation can be

written as:

PPSpj = c×R (Spj) + (1-c)×R (GOOGLEpj) Eq. 5

where function R(GOOGLEpj) return the rank of a web page, pj, with the public page score

of GOOGLEpj, and R(Spj) is the rank of a web page, pj, with the personal page score, Spj. If

the function R returns the rank in an ascending order, more interesting web pages will have

lower PPS values. Therefore, the function R reverses the rank. The personal page score

and the public page score are weighted by the value of the constant c. In this paper, both

functions are weighed equally: c = 0.5.

5.3. Experiments

In our experiments data were collected from 11 different users. Of the 11 human

subjects, 4 were undergraduate students and 7 were graduate students. In terms of major, 7

were Computer Sciences, 2 were Aeronautical Sciences, 1 was Chemical Engineering, and

1 was Marine Biology. We asked each volunteer to submit 2 search terms that can contain

any Boolean operators. Some examples of the search terms used are

{review forum +"scratch remover", cpu benchmark, aeronautical, Free

cross-stitch scenic patterns, neural networks tutorial, DMC(digital

media center), artificial intelligence , etc.}

Then, we used Google to retrieve 100 related web pages for each search term. Those

collected web pages were classified/labeled by user based on two categories: interest and

potential interest. The data set for interest has more authority because it indicates direct

relevance to the current search query. The data set for potential interest reflects the user’s

general personal interests, which might not be directly relevant at the time of query. The

areas of a user’s potential interests often go beyond the boundary of a search term’s

specific meaning. Sometimes users find interesting web pages while searching for different

subjects. These unexpected results help the user as well. Therefore, it is also a contribution

if a method shows higher precision in finding potentially interesting web pages.

In order to build UIHs, we also requested each volunteer to submit the web pages

in their bookmarks. If there were fewer than 50 web pages in their bookmark, we asked

them to collect more pages up to around 50. The minimum number of web pages was 38

and the maximum number was 72. Web pages from both bookmarks and Google were

parsed to retrieve only texts. The terms (words and phrases) in the web pages are stemmed

and filtered through the stop list (Rasmussen, 1992). A phrase-finding algorithm (Kim and

Chan, 2004) was used to collect variable-length phrases. Words in selection boxes/menus

were also removed because they did not appear on the screen until a user clicks on them.

Unimportant contexts such as comments and style were also removed. Web pages that

contain non-text (e.g., “.pdf” files, image files, etc.) were excluded because we are

handling only text. To remove any negative bias to Google, broken links that were still

ranked high erroneously by Google were excluded from the test, since those web pages

will be scored “Poor” by the user for sure. The data used in this study is accessible at

http://cs.fit.edu/~hkim/dissertation/dissertation.htm. Microsoft .NET language was used,

and the program ran on an Intel Pentium 4 CPU.

We attempted to remove any negative bias to Google. Those web pages that

contain non-text (e.g., “.pdf” files, image files, etc.) were excluded because we are

handling only texts. Furthermore, the broken links that were still ranked high erroneously

by Google were excluded from the test, since those web pages will be scored “Poor” by

user for sure.

We categorized the interest as “Good”, “Fair”, and “Poor”; the potential interest is

categorized as “Yes” and “No”. A web page was scored as “Good”, “Fair”, and “Poor”

depending on each individual’s subjective opinion based on the definition of interest. It

was also marked as “Yes” or “No” based on the user’s potential interest. We evaluated a

ranking method based on how many interesting (categorized as “Good”) or potentially

interesting web pages (categorized as “Yes”) the method collected within a certain number

of top links (Bharat and Mihaila, 2001) (called “Top link analysis”). It is realistic in a sense

many information retrieval systems are interested in the top 10 or 20 groups.

Precision/recall graph (van Rijsbergen, 1979) is used for evaluation as well (called

“precision/recall analysis”). It is one of the most common evaluation methods in

information retrieval. However, traditional precision/recall graphs are very sensitive to the

initial rank positions and evaluate entire rankings (Croft and Das, 1989). The formula for

precision and recall were:

Precision = Number of “Good” or ”Yes” pages retrieved in the
set / Size of the set

Recall = Number of “Good” or ”Yes” pages retrieved in the set /
Number of “Good” or “Yes” pages in the set

where the “set” is the group of top ranked web pages. In this paper we study five groups:

Top 1, 5, 10, 15, and 20.

5.4. Results and Analysis

We compare four ranking methods: Google, Random, US, and WS. Google is the

ranking provided by Google. Random arbitrarily ranks the web pages. US and WS are the

two proposed methods based on a personal UIH learned from a user’s bookmarks. For

Random, US, and WS, the top 100 pages retrieved by Google are re-ranked based on the

method. Each method is analyzed with two data sets: a set of web pages chosen as

interesting and another chosen as potentially interesting by the users. Top link analysis,

precision/recall analysis, the sensitivity of personal score weight c (Section 6.2.4) are

discussed.

5.4.1. Interesting Web Page

5.4.1.1. Top Link Analysis

Web search engine users are usually interested in the links ranked within top 20

(Chen and Sycara, 1998). We compare each method only with Top 1, 5, 10, 15, and 20

links on the interesting web page data set and present the results in Table 20. The first

column is the methods; the next five columns present the precision values of each method

with respect to the five Top links. The values in each cell are the average of 22 search

terms’ precision values. High precision value indicates high accuracy/performance.

Precision values higher than Google’s are formatted as bold and the percentage of

improvement is within parentheses. The highest precision value in each column is

underscored.

The results show that our WS method was more accurate than Google in three Top

links (Top 10, 15, and 20) and the percentages of improvements are at least 13%, while

WS ties with Google for Top 1 and Top 5. In terms of the highest precision, WS showed

highest performance in four columns; Google showed in only two columns and the values

are equal to WS. Compared to US, WS showed higher precision in four (Top 1, 5, 15 and

20) of the five columns. Random was the lowest as we expected, showing the lowest

precisions in all five columns. These results indicate that WS achieves the highest overall

precision.

We also wanted to know which search terms yielded higher precision with WS

than with Google and analyzed the precision with respect to each individual search terms.

Out of 22 search terms (11 users × 2 search terms), WS achieved higher precision for 12

search terms (55%), Google did for 8 search terms (36%), and they were even for 2 search

terms (9%). Since the UIH is built from a user’s bookmarks, we analyse the bookmarks to

understand the search terms that did not perform well using WS. When we compare the

bookmarks with the “good” retrieved web pages, we found that they are unrelated. For

example, a volunteer used “woodworking tutorial” as a search term, but he never

bookmarked web pages related to that term. This implies bookmarks are useful for

building user profiles, but they are not sufficient. We will discuss enhancements in the

conclusion.

5.4.1.2. Statistical Significance

In order to see if this improvement is statistically significant we conducted t-Test

(paired two samples for means) between two groups of individual search terms with

Google and WS for each Top link. There was no statistically significant difference between

WS and Google for any Top link with 95% confidence (P=1and t=2.079 for Top 1; P=1and

t=2.079 for Top 5; P=0.328 and t=2.079 for Top 10; P=0.204 and t=2.079 for Top 15;

P=0.147 and t=2.079 for Top 20).

To understand why our improvements are not statistically significant, we analyze

the variance in the precision values. In Figure 22 we plot the average and the standard

deviation (SDs) of 22 search terms’ precisions from Google with respect to the five Top

links. The x-axis shows the Top links and y-axis represents the average and the SD of

precision values. The dots in the middle of vertical bars are the averages and the bars

themselves represent the SD values. Variance was large for Top 1 and decreases when

more links were considered.

To understand the difficulty of improving Google’s ranking, we calculate the

number of multiples needed to achieve one SD from the average. Formally, the number of

multiples is defined as (Avg.+SD)/Avg. The larger the number of multiples indicates more

difficulty in beating Google with statistically significance. The number of multiples for

Top 1 is 3.35, Top 5 is 2.79, Top 10 is 2.72, Top 15 is 2.71, and Top 20 is 2.72. In

information retrieval doubling or tripling the precision for a large variance like Google’s is

rare. From our calculated number of multiples, we need to at least double or triple the

precision to achieve statistically significant improvement over Google’s ranking.

To further demonstrate the difficulty, we applied the same t-Test to precision

values from Google and Random (P=0.134, t=2.079 for Top 1; P=0.179, t=2.079 for Top

5; P=0.062, t=2.079 for Top 10; P=0.035, t=2.079 for Top 15; P=0.024, t=2.079 for Top

20). We found that, though Google’s improvement over random is statistically significant

for Top 15 and 20, it is not statistically significant for Top 1, 5, and 10.

5.4.1.3. Precision/Recall Analysis

Precision/recall analysis visualizes the performance of each method in graphs as

shown in Figure 23. The x-axis is recall and y-axis is precision. The line closer to the

upper-right corner has higher performance. WS and US are closer to the upper-right corner

than Google except with recall values lower than .15 (after Top 5). In general, WS

outperforms US and Random.

5.4.1.4. Varying Personal Weight

The performance of WS may depend on how much we weigh the personal page

score over the public page score. The parameter c in Section 6.2.4 represents the weight for

the personal page score. For example, c=0.9 means the page is scored by 90% of personal

page score and 10% of public page score. We experimented with c={0.9, 0.7, 0.5, 0.3, and

0.1} and measured the corresponding precision and recall. The results are plotted in Figure

24 and each line represents a different c value. The line closer to the upper right corner

indicates higher performance. c=0.9 has lowest precision. c=0.1 achieved the second

lowest precision except for recall values lower than 0.2. Figure 25 enlarges the scale of

recall between 0 through 0.2 in Figure 24. It is still not clear which one is higher than the

others except the line with c=0.9; however, c=0.5 in general seems to show the highest

performance. Therefore, we chose c=0.5 as the weight of personal page score.

Table 20. Precision in Top 1, 5, 10, 15 and 20 for interesting web pages

 Top 1 Top 5 Top 10 Top 15 Top 20
Google .36 .34 .277 .285 .270

Random .14 .25 .205 .206 .209
US .32 .31 .323 (17%) .315 (11%) .305 (13%)
WS .36 .34 .314 (13%) .327 (15%) .309 (14%)

-0.20

0.00

0.20

0.40

0.60

0.80

00

1 5 10 15 20

1.
precision

Figure 22. Average and SD of precision w

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0
Recall

P
re

ci
si

on

Go

Ra

US

WS

Figure 23. Precision/recall graph for interest

 Top links

ith Google

.8 1

ogle

ndom

ing web pages

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 0.2 0.4 0.6 0.8 1Recall

P
re

ci
si

on

c = 0.9

c = 0.7

c = 0.5

c = 0.3

c = 0.1

Figure 24. Precision/recall with personal score weight c

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 0.05 0.1 0.15 0.2
Recall

P
re

ci
si

on

c = 0.9 c = 0.7
c = 0.5 c = 0.3
c = 0.1

Figure 25. Up to 20% recall of Figure 24

5.4.2. Potentially Interesting Web Page

5.4.2.1. Top Link Analysis

We compare our four methods with Top 1, 5, 10, 15, and 20 links on the

potentially interesting web page data set and present the results in Table 21. The values in

each cell are the average of 22 search terms’ precision values. The ways of reading this

table and the table for interesting web pages are similar.

WS showed higher performances than Google in all five Top links. All five

precisions achieved by WS are the highest values as well. The percentages of

improvements are between 3% and 17%. Random showed the lowest in all five Top links.

The reason for the improvement of WS is, we predict, because the UIH that was derived

from a user’s bookmarks supported the user’s potential interest. It might be difficult for

Google that used the global/public interest to predict individual user’s broad potential

interests.

We also counted what search terms yielded higher precision with WS than with

Google. WS achieved higher performance for 12 search terms (55%), Google made for 8

search terms (36%), and they were even for 2 search terms (9%) out of 22 search terms.

The reason for the low performance of some search terms might be because there is no

relation between his/her bookmarks and the search terms.

5.4.2.2. Statistical Significance

The t-Test between the two groups of 22 individual search terms with WS and

Google showed no statistically significant difference with 95% confidence for any Top link

(P=0.665 and t=2.079 for Top 1; P=0.115 and t=2079 for Top 5; P=0.466 and t=2.079 for

Top 10; P=0.580 and t=2.079 for Top 15; P=0.347 and t=2.079 for Top 20).

We analyze the variance in the precision values to understand why the

improvements are not statistically significant. The graph in Figure 26 illustrates the

average and the standard deviation (SD) of 22 search terms’ precisions with Google to the

five Top links. Variance was large for Top 1 and decreased as more links were considered.

In order to estimate how difficult it is to achieve statistically significant

improvements over Google, we calculate the number of multiples, which is

(Avg.+SD)/Avg. The number of multiples for Top 1 is 2.77, for Top 5 is 2.53, for Top 10

is 2.59, for Top 15 is 2.58, for Top 20 is 2.60. From our calculated number of multiples, we

need to at least double the precision for achieving statistically significant improvement on

potentially interesting web pages.

5.4.2.3. Precision/Recall Analysis

The results from precision/recall graph for potentially interesting web pages in

Figure 27 and the Top link analysis in Table 21 are similar. WS was closer to the upper-

right corner than Google, US, and Random over all. WS outperformed other methods on

potentially interesting web pages data set.

Table 21. Precision in Top 1, 5, 10, 15 and 20 for potentially interesting web pages

 Top 1 Top 5 Top 10 Top 15 Top 20
Google .59 .53 .514 .509 .475

Random .36 .39 .350 .358 .364
US .59 .58 (9%) .536 (4%) .521 (2%) .493 (4%)
WS .64 (8%) .62 (17%) .541 (5%) .524 (3%) .498 (5%)

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 15

Figure 26. Average and SD of precision

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6Recall

P
re

ci
si

on

Figure 27. Precision/recall graph for potentially

20

Top links
precision

 with Google

0.8 1

Google

Random

US

WS

interesting web pages

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6 0.8 1Recall

P
re

ci
si

on

c = 0.9

c = 0.7

c = 0.5

c = 0.3

c = 0.1

Figure 28. Precision/recall with personal score weight c

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.05 0.1 0.15 0.2
Recall

P
re

ci
si

on

c = 0.9
c = 0.7
c = 0.5
c = 0.3
c = 0.1

Figure 29. Up to 20% recall of Figure 28

5.4.2.4. Varying Personal Weight

In order to see the improvement of WC’s performance with different personal

weights, we varied the parameter for the weight: c = {0.9, 0.7, 0.5, 0.3, and 0.1}. The

results are plotted in Figure 28. c=0.9 draw the lowest line; c=0.7 looks the second lowest

line. Figure 29 enlarges the scale of recall in Figure 28. It looks clear that c=0.5 in general

seems to show the highest performance. Therefore, we chose c=0.5 for the weight of

personal page score. The weights for personal page score with both data sets are the same.

5.5. Summary

The purpose of this research is to devise a new method of ranking web search

results to serve each individual user’s interests. A user profile called UIH is learned from

his/her bookmarks. For scoring a term in a web page that matches a term in the UIH, we

identified four characteristics: the depth of tree node in the UIH that contains the term, the

length of the term, the frequency of the term in the web page, and the html formatting used

for emphasis. Our approach uses the terms filtered though stop list in web pages

(Rasmussen, 1992). This approach removes the process of selecting important/significant

terms unlike other information retrieval techniques (Pazzani and Billsus, 1997). Therefore,

we can handle smaller data set and reduce the danger of eliminating new important terms.

We evaluated methods based on how many interesting web pages or potentially interesting

web pages each algorithm found within certain number of top links (Bharat and Mihaila,

2001). Traditional precision/recall graphs (van Rijsbergen, 1979) were also used for

evaluation. We counted which search term showed higher performances with WS than with

Google as well.

We compared four ranking methods: Google, Random, US, and WS. Google is the

most popular search engine and posts the best ordering results currently. Random method

was chosen to see the improved performance of Google and our new methods. We used

two data sets: interesting web pages that are relevant to the user search term and potentially

interesting web pages that could be relevant in the future. On interesting web pages, the

Top link analysis indicated WS achieved at least 13% higher precision than Google for

Top 10, 15 and 20 links on average. WS outperformed US and Random in general also.

The precision/recall analysis showed that WS outperformed Google except with recall

values lower than .15. Out of 22 search terms, WS achieved higher precision than Google

for 12 search terms (55%). On potentially interesting web pages, WS achieved the highest

performance in all five Top links with improvement over Google between 3% and 17%. It

also outperformed the other methods in the precision/recall graph. The analysis of

individual search terms yielded the same results as on interesting web pages. A weight of

0.5 for the personal ranking seemed to show the highest performance on both data sets.

Therefore, these results conclude that WS can provide more accurate ranking than Google

on average. The improvement of WS was not statistically significant because the precision

values of Google had large variance. The reason for the low performance of some search

terms might be because there is no relation between his/her bookmarks and the search

terms. We may be able to relieve this problem by incorporating interesting web pages

based on implicit interest indicators such as mouse movements (Kim and Chan, 2005) in

addition to bookmarking.

During the experiment, we observed that users do not tend to measure index pages

as "Good". It is because index pages usually contain long lists of hyperlinks with little

description for a user to find interesting. To identify index pages automatically, we count

the number of "outside words" (the text outside anchor tags), which usually provide the

subject content. However, our approach of penalizing the index pages did not make much

improvement in our initial experiments. We will examine this approach further in the

future.

Measuring the precision with clustered search results like the results from

Vivisimo (2005) may show different performance from Google’s. In a clustered search

engine, a link that does not belong to the top 10 in whole can belong to the top 10 in some

sub clusters. The clustered search results provide users easier access to the interesting links

after Top 10 or 20. Since WS showed higher performance for those links than Google as

shown in Section 6.4.1.3, we assume that our method may get higher performance with

clustered search engines. We may be able to make a search engine more interactive using a

UIH. For example when a user’s query resides in an intermediate node in his/her UIH, we

can ask a user to choose more specific interests providing the terms in the child nodes, or

in another sub-trees in the UIH.

Chapter 6

Implicit Indicators for Interesting Web Pages

A user’s interest in a web page can be estimated by unobtrusively (implicitly)

observing his or her behaviour rather than asking for feedback directly (explicitly). Implicit

methods are naturally less accurate than explicit methods, but they do not waste a user’s

time or effort. Implicit indicators of a user’s interests can also be used to create models that

change with a user’s interests over time. Research has shown that a user’s behaviour is

related to his/her interest in a web page. We evaluate previously studied implicit indicators

and examine the time spent on a page in more detail. For example, we observe whether a

user is really looking at the monitor when we measure the time spent on a web page. Our

results indicate that the duration is related to a user’s interest of a web page regardless a

user’s attention to the web page. The thicker features in Figure 30 describe the position of

this work in our overall diagram of web personalization.

Profile-learning
(DHC)

Words Phrases

Profile
(UIH)

Scoring
function

(WS)

Personalized
search engine

results

Search engine
results

Interesting
web pages

Desirable
properties of a

correlation
function

Implicit
indicator

for interesting
web pages

Bookmarked
web pages

Visited
web pages

3. Personalize search results

2. Learn user profile

1. Identify interesting web pages

Phrase-finding
(VPF)

Figure 30. Implicit indicator for interesting web pages

6.1. Implicit Interest Indicators

The time spent on a web page is one of the most intuitive candidates for user

interest indicators. This paper thoroughly examines whether duration is related to a user’s

interest. This section describes duration, as well as other user interest indicators that will be

examined. The reason why each indicator is chosen is explained and how each indicator is

measured is described.

6.1.1. Complete Duration

A user may tend to spend more time on pages that he or she finds interesting, so

we record the duration spent on a web page. The complete duration is defined as the time

interval between the time a user opens and leaves a web page. Some web pages contain

many images that delay the downloading time, so we start measuring the duration after the

entire page is loaded. Thus, the complete duration won’t be affected by the connection

speed, the amount of Internet traffic, or the CPU speed. The complete duration for a web

page can be calculated by subtracting the time of finishing downloading the current web

page from the time of leaving the web page. The complete duration is different from the

duration used by Jung (2001). His duration includes the downloading time of a web page.

6.1.2. Active Window Duration

Most modern operating systems allow a user to multitask, or run several

applications at the same time. A user may write a report or chat while browsing a web

page. Those other applications can be unrelated to the contents of a web page. If a user

spent one hour writing a homework paper with a web browser minimized, the complete

duration of the web page could be one hour. This is very likely to provide erroneous

indications of user interest. In order to avoid being affected by this problem, we determine

whether a web browser is active or not. The time that a web browser is inactive is

subtracted from the complete duration. We call this duration active window duration since

we count the time only when a web browser is active.

6.1.3. Look At It Duration

Users are not always reading a web page when the web browser is active. They can

easily be talking to friends or having a coffee break, while the web browser is active. The

active window duration can easily be more than 30 minutes if a user leaves the browser

active and goes for a coffee break. We may be able to detect the user’s absence by

detecting the action of mouse movement. However, a better solution is to use a camera that

detects a user’s face orientation. A camera can even check if a user is looking at the web

browser or if his attention is diverted. This duration will be more accurate than the active

window duration in terms of checking user’s attention to a web page. Since this duration

counts the time that a user is looking at the web browser, we call it look at it duration. The

look at it duration can be calculated by subtracting the time when a user does not look at

the browser from active window duration.

6.1.4. Distance of Mouse Movement

Many people move their mouse while reading the contents of a web page. Mouse

movement can occur while looking at an interesting image, or when pointing at interesting

objects. We hypothesize that the more distance a mouse moves, the more a user be

interested in the web page. This indicator was also examined by Jung (2001). Our distance

is a little bit different from his in a sense of detecting overall mouse movement. He counted

on the mouse movement only when the mouse point is inside the active browser. The

distance of mouse movement is detected by its x and y coordinates on a monitor every 100

milliseconds. The formula is

∑
−

=
−−=

1

1
1))()(()(_

t

i
ii tPtPDistpixelsmovementmouse

where time t is the active window duration, the time interval, ti-ti-1, is 100 milliseconds,

P(ti) is a mouse location with x and y coordinates at time ti, and the Dist function is a

Euclidean distance.

6.1.5. Number of Mouse Clicks

People use “click” to hyperlink to another web page. In addition, clicking can be

considered as a habitual behaviour (Jung, 2001). Clicking can be a way of expressing our

emotions such as if some people are happy to find a product that they were looking for

(e.g., book), then they can click the object several times repeatedly. This indicator was

examined in Kixbrowser (Jung, 2001), Curious browser (Claypool et al., 2001), Goeck’s

browser (Goecks et al., 2000), and Letizia (Liberman, 1995). We use the hypothesis that

the greater the number of mouse clicks on a web page is, the more a user is interested in it

(Jung, 2001). The number of mouse clicks is counted every time a mouse button is clicked.

6.1.6. Distance of Scrollbar Movement

A user can also scroll a web page up and down by dragging a scrollbar. Those

dragging events can occur several times while a user is reading a web page. The distance of

scrollbar movement for an occasion, E, can be calculated by measuring the mouse

movement every 100 milliseconds. By summing all distances of scrollbar movement for all

occasions, the distance of a scrollbar movement for a web page can be calculated. The

formula is

∑∑
−

=
−−=

1)(

1
1)()()(_

jE

i
ii

E

j
tPtPpixelsmovementscrollbar

where E is the number of times the scrollbar is pressed, time E(j) is the duration that the

scrollbar is dragged in a single dragging event, and ti-ti-1, is 100 milliseconds. We

hypothesize that greater scrollbar movement is correlated with more user interest in a web

page.

6.1.7. Number of Scrollbar Clicks

The length of many web pages is longer than the height of a monitor. If a user

finds a web page interesting, he or she may read further down the web page. A user can

scroll down a web page either by clicking or by dragging the scrollbar. Those events are

counted separately. The number of scrollbar clicks is counted every time a user clicks

scrollbar. As a user scrolls a web page up and down by clicking, the number of scrollbar

clicks increases. Jung (2001), Goecks et al. (2000), and Claypool et al. (2001) measured

this event and reported that it is a good indicator. We hypothesize that we will also find

that the number of scrollbar clicks is correlated with a user’s interest in the web page.

6.1.8. Number of Key UP and Down

When scrolling a web page, some people use the “up” and “down” keys instead of

the scrollbar. This indicator is similar to the number of scrollbar clicks and the distance of

scrollbar movement. The hypothesis is that the greater the number of key up and down

presses, the more a user is interested in the web page. This event is measured by increasing

the count every time a user strikes up or down keys. Curious browser (Claypool et al.,

2001) and Jung (2001) measured keyboard activities. But they did not measure the key up

and down for measuring scrollbar movement.

6.1.9. Size of Highlighting Text

While reading a web page, if a user copies some contents of the web page it

probably means that the user is interested in the web page. Furthermore, a user can also

habitually highlight portions of the page that they are interested in, which is a sign that the

user is interested in the page. We assume that the more a user highlights in a web page, the

more a user is interested in that web page. A user can highlight several different sentences

in a web page for several different occasions. We sum all highlighted contents at the end.

Jung (2001) examined this indicator. He used the Euclidean distance between two points of

pressing and releasing. The weakness of his measure resides in neglecting the texts

highlighted horizontally when the mouse moves vertically. In order to solve this problem,

we assumed a character is 5 pixels, each line has 80 characters, and distance between two

lines is 20 pixels on average. The formula is

∑ +×=
E

j
jj DistXDistYtextnghighlighti 5/8020/_

where E is the number of occasions when highlighting occurs, DistY is the vertical distance

between two points, and DistX is the horizontal distance between two points.

6.1.10. Other Indicators

We also measure other less-frequently-used events such as bookmark, save, print,

and memo. A user usually bookmarks web pages in order to visit them later again. We

assume those bookmarked web pages are interesting to a user (Li et al., 1999; Maarek and

Ben-Shaul, 1996). This can be measured by detecting bookmarking activities during the

experiment. Users save important/interesting web pages in their hard drive by using the

“Save As” command. This also implies that those saved web pages are interesting to users

(Liberman, 1995). This indicator is also counted by detecting saving activities during the

users’ browsing. Most web browsers allow users to print web pages. These printed web

pages are likely to be interesting to users (Kim et al., 2001). The Memo box is a new

feature added in our system. It allows a user to write down a short description on a web

page. When the user visits the web page again, the message shows up on the Memo box

automatically. We assume that if a user is interested in a web page, then s/he will write a

note about the web page.

6.2. Detecting Face Orientation

The look at it duration is the time when a user looks at a computer screen. In order

to count the time we monitor a user’s head orientation. In this chapter, we detail how we

detect the head orientation using a webcam. For detecting head orientation, we use three

dots on the hat that a user wears during our experiment. Discussed are how to detect the

three dots and how to learn head orientation with the three dots.

6.2.1. Detecting Three Dots

To recognize head orientation in an image, the background is usually removed

(Intel Inc., 2001). The term “background” stands for a set of motionless image pixels, that

is, pixels that do not belong to a human object in front of the camera. The background

image can reduce the performance or increase the time complexity.

A simple model of removing background may assume that every background pixel

brightness varies independently, according to normal distribution. The background

characteristics can be calculated by the mean and standard deviation for every pixel of

several dozens of frames collected. After that the pixel in a certain pixel location in certain

frame is regarded as belonging to a moving object if condition Abs(mean(x,y)–

p(x,y))>3×StandardDeviation(x,y) is met, where p(x,y) is a pixel in a new frame (Intel Inc.,

2001). However, as the object moves closer to the camera (from “Far” to “Close” in Figure

31), the background color changes from dark color to almost white color -- the assumption

is not right (do not follow normal distribution).

Since a user is wearing a black hat, the derivation between two adjacent points

helps detect the boundary of the hat. If we continue to remove the pixels that have lower

derivation than a threshold starting from edges (left, right, and top) and stop when the

derivation is higher than the threshold, at the end the object alone remains without

background. The formula for the derivation is

otherwise
yxpyxpDistyxpyxpDistif

yxp
200)))1,(),,(()),,1(),,((max(

0
1

),(
<−−





=

where p(x,y) is the pixel at the coordination of x and y and 200 of the constant is chosen as

the threshold by observation. The distance between two pixels is the difference of green

color values of two pixels.

Once the background is removed, the image is converted into a black and white

image – entire image becomes black except three dots. Each dot/circle is detected by

connecting adjacent white pixels as shown in Figure 32. Some erroneous white pixels are

cleaned by applying some rules such as removing pixels which size is smaller than 5 and

choosing top three circles. The 3 dots are depicted in Figure 33: left, center, and right dots.

a) Far

b) Medium

c) Close

Figure 31. A retrieved image

Figure 32. Detected three dots

DistanceAngle

Center

Left dot Right dot

Center dot

Figure 33. Three dots in an image

6.2.2. Learning Face Orientation

6.2.2.1. Input/Output Parameters

The information about the 3 dots becomes the input parameter of a learning

algorithm (this will be explained later). All examined information about the three dots is

{the coordination of left, center, right dots; the sizes of left, center, right dots;

distances between dots; the coordination of center dot; the ratios between the

sizes of dots; the ratios between the distances of dots; the angles of left, center,

right dots; the levelness of the line between left and right dots}.

The size of a dot is the number of pixels in a dot. If the size of a left dot is smaller and the

size of the right dot, then it indicates that the face is not oriented to the web browser. The

ratio between the sizes of the left and the right dots can be a more accurate indicator

because the ratio is independent from the distance between a face and the monitor. The

distances between dots can be used to measure the face orientation. Short distance between

the left and the right dots shows that the face does not direct to the monitor. The relative

ratios among the three distances are independent from the distance between a face and the

monitor. We also use the three angles of three dots and the levelness between the left and

the right dots. The levelness will tell us whether the head is up strait or not. All input

values are normalized (between 0.1 – 0.9). The output parameter is the head orientation:

looking at the monitor (0.1) and not looking at the monitor (0.9).

6.2.2.2. Learning Algorithm

Artificial Neural Network (ANN) algorithm provides a robust approach to

approximating various types of examples. The BACKPROPAGATION algorithm is the most

commonly used ANN learning technique. The BACKPROPAGATION algorithm has proven

surprisingly successful in many practical problems such as learning to recognize

handwritten characters (LeCun et al., 1989), learning to recognize spoken words (Lang et

al., 1990), and learning to recognize faces (Cottrell, 1990). This algorithm is appropriate

for problems with the following characteristics (Mitchell, 1997): the input and the output

should be able to be represented as vectors; the training examples may contain errors; long

training times are acceptable; fast evaluation of the learned target function may be

required; the ability of humans to understand the learned target function is not important.

Our input and output data can be represented as vectors; error can reside in our

training data; training time is not important in our work; since our web browser has to

evaluate an image every other seconds, fast evaluation of the learned target function is

required; the ability of humans to understand the learned target function is not important.

These characteristics of our example data match BACKPROPAGATION algorithm.

We used BACKPROPAGATION to learn the face orientation with 100 hidden units and

0.03 of learning rate. The results reached more than 90% accuracy. Since the purpose of

this paper is not to evaluate the performance of our face-orientation-detection method, we

omit the technical details and the analysis of the results.

6.3. Experiments

6.3.1. Experimental Data and Procedures

For our experiments, we built a web browser that can record the indicators

described above from user’s behaviour and used a camera to record images for identifying

face orientation. 11 data sets were collected from 11 different users. Of the 11 human

subjects, 4 were undergraduate students, 6 were graduate students, and 1 was a Ph.D.

student. In terms of major, 7 were Computer Sciences, 2 were Aeronautical Sciences, 1

was Chemical Engineering, and 1 was Marine Biology. Each subject was asked to spend a

total of 2 hours at the computer. Volunteers were allowed to leave the computer and do

other non-computer work. All volunteers were encouraged to behave as normal as possible.

To get a variety of behaviours, we asked the volunteers to divide their activities into

multiple sessions, each of which does not exceed 1 hour.

In the browser used in our experiment, most of the functions in Microsoft Explore

6.0 were implemented. The popup windows were disabled initially, but our browser

allowed a user to change the option to able them. We asked users to bookmark more than

10 pages, save more than 5 pages, print more than 5 pages, use Memo on more than 5

pages. The browser had Memo box so that users can write small note on a web page. Our

web browser takes a picture of a user every 2 seconds. Every time a user leaved a web

page, the web browser asked the user how much they are interested in the web page – there

were 5 scales between “not interested” (1) and “very interested” (5).

The interests were subjective to each user. The system had a “rescore” button to

allow changing the score marked in the previous visit. The browser was written in Visual

Studio .NET and ran on a Pentium 4 CPU. The Operating System was Windows XP.

6.3.2. Evaluation Criteria

Two evaluation criteria are used: how accurate an indicator could predict a user’s

interest and how many users an indicator can accurately predict their interests. Instead of

mixing all users’ data sets together, each individual data set was analysed separately so that

we could clearly observe whether some indicator predicted certain individual’s interests

more accurately than other indicators. An indicator that could predict the score with a

lower variance is a more accurate indicator. In order to evaluate each indicator to see which

one is more predictable, we use ANOVA (Analysis of Variance). Jung (2001) treated the

scale as numeric scale and applied linear regression, multiple linear regression, etc.

methods. We, however, consider the interest scores as discrete values and check if the

indicator values are significantly different among the five different interest scores provided

by the user. For ANOVA, we use a confidence level of 95% to indicate statistical

significance. If the difference is significant, indicator values can predict interest scores. As

a second criterion, we count the number of users predicted accurately by an indicator. This

criterion indicates how reliable the indicator is across different users.

6.4. Results and Analysis

This section analyzes the data collected from the users who participated in our

experiment. There are two data sets: “visits with maximum duration” and “all visits”. For

web pages that a user visited more than once, the score might be the same, but all other

information (the durations or number of mouse clicks etc.) may be different. The “visits

with maximum duration” data set contains only page views where the user stayed for the

longest period of time. The maximum duration is determined using complete duration,

which is described in Section 3.1. The “all visits” data set contains all page views collected

in our experiment. We believe that the “visits with maximum duration” data set is more

useful than “all visits”, because users do not tend to read the web page again if they know

about a web page before (Billsus and Pazzani, 1999). On average, users had 182 visits in

the “visits with maximum duration” data set, and users had 291 visits in the data set of “all

visits”. Jung (2001) only used the “all visits” data set.

6.4.1. Visits with Maximum Duration

Table 22 shows the experimental results with “visits with maximum duration” data

set. The table summarized which indicator is reliable for which volunteer. The first column

is users, the second column is complete duration (Complete), the third column is active

window duration (Active), the rest columns are for look at it duration (LookAtIt), distance

of mouse movement (MousMove), number of mouse clicks (MousClk#), distance of

scrollbar movement (ScrolMov), number of scrollbar clicks (ScrolCk#), number of key up

and down (KeyUpDn#), and size of highlighting text (Highligh). They are implicit

indicators examined. The “√” mark means that the hypothesis for the indicator is

statistically significant and “x” means that it was not. The mark “?” means it was

unavailable to apply statistical methods to the data due to various reasons such as limited

data. The last row indicates how many users’ interests can be predicted by that indicator –

the number of “√” mark for each column.

The Indicators Complete, Active, LookAtIt, and MousMove were able to classify 8

users’ interests towards web pages (73%). The indicator of MousClk# was the next best

indicator, which was recognized as the best in (Jung, 2001). Indicators of KeyUpDn# and

Highligh were able to distinguish the lowest number of users’ interests – KeyUpDn# was

significant to only 1 user and Highligh was significant to only 3 users. No indicator could

predict User 5’s interest. The indicator Highligh could predict User 7, but no other

indicators could do his interest. Indicator of ScrolMov was also valid only to User 4. These

results indicate that there was no indicator that was valid to all of the users. Depending on

users, an indicator may or may not be valid.

We expected that the LookAtIt would be the most accurate indicator, but the result

did not turn out as we expected. We suspect that this was because they did not move

around much and looked at the monitor most of the time while browsing. In practice, a user

can use browser longer period.

6.4.2. All Visits

Table 23 shows the experimental results with the data set of “all visits”. The table

summarized which indicator is reliable for which volunteer. The implicit interest indicators

Complete, Active, LookAtIt, and MousMove were able to predict the interests of 7 users

(64%) that participated in the study. This means that when we used “visits with maximum

duration” we could predict more number of users – 8 users. This result notifies that the

“visits with maximum duration” data set is more useful in predicting users’ interests more

accurately than the data set of “all visits”.

The indicator of MousClk# was the next best indicator and was able to predict the

interests of 6 users. User interest was more accurately predicted by the MousClk# implicit

indicator in the “all visits” data set, but this was less predictable than the 4 indicators

above. This result is similar to the findings of Jung (2001), who also used the “all visits”

data set, and where MouseClk# was found to be the best indicator. No indicator could

predict User 5’s interest. User 4’s interest could be predicted only by ScrolCk# and User

7’s interest could be predicted only by Highligh. These results also indicate that different

indicators can predict different people.

Table 22. ANOVA test with “visits with maximum duration” data set

Users Complete Active LookAtIt MousMove MousClk# ScrolMov ScrolCk# KeyUpDn# Highligh

User 1 √ √ √ √ √ × × ? ×

User 2 √ √ √ √ √ √ √ √ √

User 3 √ √ √ √ √ √ √ ? √

User 4 × × × × × √ × ? ×
User 5 × × × × × × × ? ×
User 6 √ √ √ √ × × √ × ×
User 7 × × × × × × × × √

User 8 √ √ √ √ √ × × × ×
User 9 √ √ √ √ × × × × ×

User 10 √ √ √ √ √ √ √ × ×
User 11 √ √ √ √ × × × × ×

Sum 8 8 8 8 5 4 4 1 3

Table 23. ANOVA test with the data set of “all visits”

Users Complete Active LookAtIt MousMove MousClk# ScrolMov ScrolCk# KeyUpDn# Highligh

User 1 √ √ √ √ √ √ √ ? ×
User 2 √ √ √ √ √ × √ √ ×
User 3 √ √ √ √ √ √ √ ? √

User 4 × × × × × × √ × ×
User 5 × × × × × × × × ×
User 6 √ √ √ √ √ × √ × ×
User 7 × × × × × × × × √

User 8 √ √ √ √ √ × × × √

User 9 √ √ √ √ √ × × × ×
User 10 × × × × × √ × √ ×
User 11 √ √ √ √ × √ × √ ×

Sum 7 7 7 7 6 4 5 3 3

6.4.3. Other Indicators

The implicit interest indicators bookmark, save, print, and memo had lower usage

than the other indicators mentioned above. Users bookmarked or printed only a few web

pages while surfing web. Users did not bookmark all interesting web pages, so if used

alone they cannot be used to identify all of the pages that a user finds interesting. However,

these indicators have a very high accuracy when they are used, and they can be used

together with other more frequently used indicators.

The results for the bookmark, save, print, and memo indicators are listed in Table

24. The first column is the indicator, the second column is the score (1-“not interested”, 3-

“interested” and 5-“very interested”); the third column is the sum of the usages for the

specified indicator across 11 volunteers. The rest of the columns are detailed usages for

each user. The value in each cell is the number of times that the indicator was used. The

number of times each indicator was used varied significantly between each individual. For

instance, for some users the bookmark indicator was a clearer indicator than other ones –

user 5; for some other users save was a clearer indicator – user 10.

Of the web pages that were bookmarked, 95% of them were scored more than or

equal to “interested” (3). The sum of bookmarked web pages across 11 volunteers tells us

that users rarely bookmarked uninteresting web pages – no bookmarked web pages were

scored as “not interested”. User 1 and 5 showed a tendency of book-marking more web

pages as the web pages became more interesting. These results indicate that bookmark was

a good indicator.

Saved web pages were scored more than or equal to “interested” 98% of the time.

This means that users rarely saved uninteresting web pages. Saved web pages were never

scored as “not interested.” All users, except user 8, only saved pages that they found

interesting. Users 3, 6, and 10 showed a tendency of saving more web pages as the web

pages became more interesting. These results indicate that save is a good implicit indicator.

All of the printed web pages were scored more than or equal to “interested”. This

result tells us that users did not print uninteresting web pages. User 2, 3, 6, and 10 showed

a tendency of saving more web pages as the web pages were getting more interesting.

These results indicate that print is a good indicator.

Nearly all (98%) of the memoed web pages were scored more than or equal to

“interested.” No memoed web pages were scored as “not interested.” No user other than

user 9 memoed on web pages for which he was less than “interested.” User 1 did not used

the memo, but user 3, 5, and 10 showed a tendency of saving more memos as the web

pages became more interesting. These results also indicate that memo is a good indicator.

Table 24. Results of bookmark, save, print, memo indicators

 Users
Indicator Score Sum 1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 0 0 0
2 5 0 1 0 0 0 0 1 2 0 0 1
3 24 2 6 1 2 1 0 2 5 0 2 3
4 31 2 3 0 1 6 4 1 2 3 7 2

bookmark

5 41 5 7 6 1 9 1 3 1 2 6 0
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 1 0 0 0
3 12 0 8 1 0 0 1 0 2 0 0 0
4 15 0 4 3 5 0 1 0 0 0 2 0

save

5 29 0 10 6 0 1 3 0 1 2 6 0
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 12 0 2 0 1 0 1 5 2 0 0 1
4 11 0 4 1 2 0 1 0 0 0 2 1

print

5 40 0 15 7 1 3 4 2 1 4 3 0
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 1 0 0
3 8 0 3 0 1 0 1 2 1 0 0 0
4 12 0 1 2 2 1 0 0 0 3 1 2

memo

5 30 0 9 10 0 2 0 0 1 1 7 0

6.5. Summary

This paper identifies several implicit indicators that can be used to determine a

user’s interest in a web page. This paper evaluates both previously studied implicit

indicators and several new implicit indicators. All indicators examined were complete

duration, active window duration, look at it duration, distance of mouse movement,

number of mouse clicks, distance of scrollbar movement, number of scrollbar clicks,

number of key up and down, and size of highlighting text. The data was 11 users’ implicit

indicator data and a 1-5 interest rating of each page. During our experiment volunteers

were encouraged to behave normally.

Two evaluation criteria were used: (1) how accurately an indicator can predict

users’ interests and (2) how many users’ interests an indicator can predict. We used two

data sets: “visits with maximum duration” and “all visits”. We believe that “visits with

maximum duration” is more useful for prediction than “all visits”, because users did not

tend to read a web page again, once users read about the web page (Billsus and Pazzani,

1999). Over the data set containing “visits with maximum duration”, the implicit interest

indicators Complete, Active, LookAtIt, and MousMove were able to predict 8 users’

interests towards web pages, but over the data set of “all visits” the indicators were able to

predict only 7 users’ interests. These facts also notified that the “visits with maximum

duration” data set is more useful in predicting users’ interests more accurately than the data

set of “all visits”.

The experimental results told us that MousMove could be the most practical

indicator because this event is simple to detect and has less risk than Active. If a user leaves

a web page open and leaves the room, the MousMove indicator will not be affected. The

indicator of MousClk# was the next best indicator, which was recognized as the best in

(Jung, 2001). Our results indicate that there was no indicator that was valid for all users.

Depending on the user, an indicator may or may not be valid.

We also evaluated less-frequently-used indicators of user interest: bookmark, save,

print, and memo. When we divided the data set less than “interested” and more than or

equal to “interested”, “95% of the bookmarked web pages, 98% of the saved web pages,

100% of the printed web pages, and 98% of the memoed web pages belonged to the score

of more than or equal to “interested”.

We expected that the LookAtIt indicator would be more accurate than the Complete

and Active indicators, but the results for all three were similar. We believe that this was

because volunteers did not move around much and looked at the monitor most of the time

while browsing. Perhaps a longer evaluation would give more accurate results for the

LookAtIt indicator, since users would act more naturally after more than 1 or 2 hours of

surfing. We can combine this indicator to an application for personalized web search

results in the future. The collected interesting web pages for a user can be used for building

a user interest hierarchy.

Chapter 7

Related Work

The adaptive web is a relatively young research area, starting in early 1990. Now it

attracts many researchers from different communities: machine learning, information

retrieval, user modeling, and web-based education (Brusilovsky and Maybury, 2002). Our

goal is to build user interest models implicitly and incorporate them to personalized web

search. Thus, we review web information retrieval, user modeling, and machine learning.

We discuss each of these categories in turn.

7.1. Web Information Retrieval

Web information retrieval (WIR) systems gather information from web pages or

users who are using web pages. In this section we overview basic steps of a WIR.

Furthermore, we overview those adaptive web systems that do not include personalized

user modeling such as recommendation systems (collaborative filtering systems) that rely

on the similarity between a user’s preference and that of other people. The six sub sections

are listed in Figure 34

 Basics of
WIR

Clustering
web

contents

Predicting
navigation

Personalized
contents

Implicit
detection

Assisting
personal

information

Web information
retrieval
(WIR)

Figure 34. Diagram of web information retrieval

7.1.1. Basics of a WIR System

Many WIR systems use a model based on word frequency information to identify

relevant documents (Zamir and Etzioni, 1999; Cutting et al., 1992). It is important to

describe the process by which the computer converts text into a form that can be processed.

For most WIR systems, the most basic unit of text analysis is the word, while phrases,

sentences, or paragraph may be more meaningful.

7.1.1.1. Lexical Analysis

Text processing converts the text into a stream of tokens, including numbers,

abbreviations, and alphanumeric sequences. There exists a large class of words - called

stop list - that have no inherent meaning when taken out of context (e.g., “a”, “the”, “are”,

or “to”). By removing the stop list from web documents, a web information retrieval

system can significantly increase its efficiency like reducing the time and memory space

required for running the system.

Opinion varies as to the optimal size of a stop list, although a larger size is

preferred. The size and content may be domain dependent (Hull, 1994). The stop list

should not be selected solely on the basis of frequency, because some frequent words still

bear important semantic meaning in a document. In some researches (Croft, 1991; Zamir

and Etzioni, 1998) both too frequent words and too rare words were removed. It has been

found in retrieval experiments that using a stop list in the range of 8 through 500 words

does not reduce the accuracy of search algorithms in identifying relevant documents

(Frakes and Baeza-Yates, 1992).

Another common strategy for reducing text size and potentially improving WIR

systems is to apply a stemming algorithm to word tokens. A stemming algorithm is a

linguistic tool for building word equivalence classes by removing and modifying prefixes

and suffixes to identify the root form of the word. This idea is based on the assumption that

common morphological variants of a word have similar meanings. For example, a user

who is interested in the word “computer” may also be interested in the word of

“computing”, “computerized”, “compute” etc. Search engines are able to reduce the size of

the index, often as much as 20-50% by applying a stemming method (Hull, 1994). Frakes

and Baeza-Yates (1992) conducted a large number experiments to test the performance of

stemming algorithm. In general, it appears that stemmers do not degrade retrieval

performance, and the specific choice of stemmer does not seem to be important.

7.1.1.2. Phrase

Describing concepts often requires more than a single word. A composed term

using two or more single words (called “phrase”) usually has more specific meaning and

can disambiguate related words. For instance, “apple” has different meanings in “apple

tree” and in “apple computer”. Using phrases, in addition to words, can improve the

performance of WIR systems. Statistical phrase-finding algorithms are mainly used for

improving the performance of information retrieval (Kim and Chan, 2003; Turpin and

Moffat, 1999; Croft et al., 1991; Fagan, 1987). There are three main approaches: syntactic

(Lima and Pedersen, 1999), statistical (Mitra et al., 1997), and hybridized (Gokcay and

Gokcay, 1995). Our research mainly focuses on the statistical approach, which does not

need any grammatical knowledge and has easy adaptability to other languages. Statistical

phrase-finding approaches have been used for expanding vector dimensions in clustering

multiple documents (Turpin and Moffat, 1999; Wu and Gunopulos, 2002), or finding more

descriptive or important/meaningful phrases (Ahonen et al., 1998; Chan, 1999).

Wu and Gunopulos (2002) examined the usefulness of phrases as terms in vector-

based document classification. They used statistical techniques to extract phrases from

documents whose document frequency (df) is larger than or at least equal to a predefined

threshold. Fagan (1987) selected phrases having a document frequency of at least 55 and a

high co-occurrence in the same sentence. Mitra et al. (1997) collected all pairs of non-

function words that occur contiguously in at least 25 documents. Turpin and Moffat (1999)

used Mitra’s method for statistical phrases for vector-space retrieval. Since the aim of these

approaches was to find the significant words or phrases among documents, this method

could remove meaningful phrases in a document. These all methods focused on collecting

two-word phrases.

Croft, et al. (1991) described an approach where phrases identified in natural

language queries are used to build structured queries for probabilistic retrieval models and

showed that using phrases could improve performance. They used tf×idf (term frequency

inverse document frequency) information for a similarity measure. Croft (2000) segmented

a document’s text using a number of phrase separators such as verbs, numbers, dates, title

words, format changes, etc. Next, his method checks the candidate phrases to see if they

are syntactically correct. Finally, the occurrence frequency of the remaining phrases is

checked.

Gokcay and Gokcay (1995) used statistically extracted keywords and phrases for

title generation. Their statistical method used grammatical information of tags and

sentences, but it is hard to determine a sentence without grammatical information. They

used the cosine correlation function for comparing the similarity of two words.

Ahonen’s method (Ahonen et al., 1998) finds all possible combinations of words

within a fixed window using Mannila and Toivonen’s (1996) algorithm. Suppose the

window size is 6 and the string in that window is “abcdef”. Their algorithm generates all

possible cases: “ab”, “bc”, “cd”, “de”, “ef”, “abc”, “bcd”,… “bcdef”, “abcdef”. Then, it

computes the conditional probability for the weight of those phrases. A phrase “abc” has

two possible weights from P(“c”| “ab”) and P(“bc”| “a”), from which the higher value is

chosen. They also allowed gaps within a phrase. The use of two parameters – a threshold to

remove less descriptive phrases in the generating stage and a threshold for the maximum

phrase length – could be too strict.

Zamir’s algorithm (Zamir and Etzioni, 1998) uses only frequency information.

They collect neither too frequent nor too rare phrases. This method needs two user-defined

parameters: one for removing too rare or too frequent words and the other for selecting

phrases out of all possible phrases.

Chan’s algorithm (1999) improved performance by using correlation information

within a phrase. His algorithm calculates the correlation values of all pairs. The main

drawback of this method resides in its incompleteness. Suppose there is a string

S=“abaxbxaxxbxaxxxb…xxbbxbxbxxbxxxb…”, where ‘a’ and ‘b’ represent words, and ‘x’

represents any word. If all correlations between ‘a’ and ‘b’ with 1 through 4 distances, and

correlations between ‘b’ and ‘b’ with 1 through 4 distances have values higher than the

threshold, Chan’s algorithm will generate a word “abbbb” that does not exist in the string.

These cases are very unlikely to happen in a normal article such as newspaper or journal

article. But web pages contain lists of similar product names or tables that just arrange a

few different repeating words many times. We experienced these non-existing words in our

experiment such as “test pass test”, “student test pass”, “teach assist teach class”, etc.

Another disadvantage of Chan’s algorithm is that it requires a user-defined maximum

phrase length. Chan (1999) implemented the algorithm in time O(nw2), where nw is the

number of distinct words, while our implementation consumes O(nw).

We compare previous statistical approaches and attempts to find meaningful

phrases in a document. The length of the phrases is various like normal phrases and our

algorithm requires no specified parameters. We mainly focus on a statistical approach

without using syntactic information. Simple phrase separators (e.g., stop-words and non-

alphabet characters) are used only. Our research experimentally shows which correlation

functions are better than others in terms of measuring word correlation in our variable-

length phrase-finding algorithm.

7.1.2. Clustering Web Contents

Methods about clustering web contents group related web pages together (e.g.,

Vivisimo (2005)). It does not use any personal information. These methods focus on

clustering large amount of information in a short time.

Scatter/Gather (Cutting et al., 1992) supports a hierarchical interface by clustering

documents into topically coherent groups and providing descriptive summaries. A user can

select one or more basic clusters to focus on, recursively, in the subset of documents. The

user specifies a query and two thresholds (the # of documents to be initially retrieved and

the # of sub-clusters). Scatter/Gather produces significant improvements over similarity

search ranking.

STC (Suffix Tree Clustering) (Zamir and Etzioni, 1998) is a linear clustering

algorithm in terms of the document size, which is based on the phrases (an ordered

sequence of one or more words) that are common to groups of documents. STC has three

steps: document cleaning, identifying base features using a suffix tree, and merging these

base features into clusters.

Grouper (Zamir and Etzioni, 1999) is an interface that dynamically groups the

search results into clusters labeled by phrases extracted from the snippets – this uses STC

as its clustering algorithm. Given a set of phrases from STC, Grouper presents them in

descending order of coverage (the percentage of documents in the cluster that contain the

phrase) and length (# of words in the phrase, not counting stopped words). Grouper creates

clusters by merging base features (a phrase and the set of documents that contain it).

However, when the clusters fail to capture the semantic distinctions the users were

expecting, it can be confusing.

Newsblaster (Barzilay et al., 1999) generates a concise summary by identifying

and synthesizing similar elements across related text from a set of multiple documents.

Common phrases are identified across sentences assuming a set of similar sentences as

input extracted from multiple documents on the same event. Using language generation to

merge similar information is a new approach that significantly improves the quality of the

resulting summaries. This technique may be able to be used for summarizing web pages.

7.1.3. Predicting Navigation

Another approach of web personalization is to predict forward references based on

partial knowledge about the history of a session. This approach predicts future requests and

present documents to client. When the server guesses correctly, the latency of the next

request is greatly reduced; and if the server guesses incorrectly, the client requests the

intended next document. These techniques also use other people’s information, and can

support pre-fetching. The drawback is that it is difficult for them to predict previously

unvisited pages.

The two major approaches for predicting navigation are Markov models and n-

gram models. Zukerman et al. (1999) and Cadez et al. (2000) use a Markov model to learn

and represent significant dependencies among page references. The n-gram models predict

which URL will be requested next; the Markov models compute the probability of next

request. An n-gram is a sequence of n web requests, and the n-gram models learn how

often each sequence of n requests was made in the training data.

Deshpande and Karypis (2001) use pruning techniques to reduce the model size

and improve predictions. Their method intelligently selects parts of different order Markov

models so that the resulting model has a reduced state complexity and improved prediction

accuracy.

WebCANVAS (Cadez et al., 2000) visualizes the similar group of users by using a

Markov model – this is illustrated on user-traffic data from msnbc.com. Zukerman et al.

(1999) developed a system that reduces a user’s expected waiting time by pre-sending

documents s/he is likely to request. Their models are based on observing the behavior

patterns of many users, rather than using the behavior of an individual user. They combine

two features: the order in which documents are requested and the structure of the server

site. Mladenić (2000) used naïve Bayes or k-nearest neighbor models to predict the next

link.

SurfLen (Fu et al., 2000) actively monitors and tracks a user’s navigation. Once a

user’s navigation history is captured, they discover the hidden knowledge contained in the

history by applying association rule mining techniques. This uses a form of “market

basket” analysis (Agrawal and Srikant, 1994). The knowledge is then used to recommend

potentially interesting web pages to users. PageGather (Perkowitz and Etzioni, 2000)

builds a co-occurrence matrix of all pairs of pages visited and finds clusters of pages that

are frequently viewed in the same session. Like SurfLen, PageGather also recommends the

top n pages that are most likely to co-occur with the visitor’s current session.

Shahabi and Banaei-Kashani (2003) proposed a web-usage-mining framework

using navigation pattern information. They introduced a feature-matrices model (FM) to

discover and interpret users’ access patterns.

This approach is different from ours since we do not use navigation pattern

information but rather the contents of web pages. Both the n-gram and the Markov

methods require large volumes of training data and cannot generate previously unvisited

pages because they use navigation pattern information.

7.1.4. Personalized Contents

The methods related to personalized contents use user’s access pattern to provide

personalized web services. Server usually monitors the user’s access patterns. This

technique identifies a set of categories from other users’ access pattern and then provides a

new user the closest category based on his/her access pattern. Our method does not

personalize the set of categories, but personalizes results returned from a search engine.

Page et al. (1998) first proposed personalized web searches based on modifying the

global PageRank algorithm with the input of bookmarks or homepages of a user. Their

work mainly focuses on global “importance” by taking advantage of the link structure of

the web. Haveliwala (1999) determined that PageRank could be computed for very large

subgraphs of the web on machines with limited main memory. Brin et al. (1998) suggested

the idea of biasing the PageRank computation for the purpose of personalization, but it was

never fully explored. Haveliwala (2002) used personalized PageRank scores to enable

“topic sensitive” web search. He concluded that the use of personalized PageRank scores

can improve web search, but the number of hub vectors (e.g., number of interesting web

pages used in a bookmark) used was limited to 16 due to the computational requirements.

Jeh and Widom (2003) scaled the number of hub pages beyond 16 for finer-grained

personalization.

Liu et al. (2002) also tried mapping user queries to sets of categories. This set of

categories served as a context to disambiguate the words in the user’s query, which is

similar to Vivisimo (2005). They studied how to supply, for each user, a small set of

categories as a context for each query submitted by the user, based on his or her search

history.

Anderson (2002) proposed PROTEUS (This system personalizes web browsing for

visitors using wireless PDAs at many web sites, adapting each site in turn), MINPATH (This

algorithm finds personalized shortcut links efficiently), and MONTAGE (This system

supports personalized, dynamic portals of web content, based on the navigation behavior of

each individual visitor), which personalize the web content for different audience, that

personalize individual pages (e.g., elide-content), site-sessions (add-shortcut), or entire

browsing sessions.

Footprints (Wexelblat and Maes, 1997) helps user browse complex web sites by

visualizing the paths taken by users who have been to the site before. The paths are

visualized as a graph of linked document nodes – color represents the frequency of use of

the different paths. Footprints are left automatically by anonymous different users, and new

visitors do not need to provide any information about themselves in order to use the

system. However, users can only see the frequency of the links between adjacent pages.

Perkowitz and Etzioni (1997, 2000) find singular transformations that appeal to all

visitors at the site by synthesizing index pages – hubs of links to other pages in the site.

They consider the problem of index page synthesis and sketch a solution that relies on

novel clustering and conceptual clustering techniques.

Yan et al. (1996) present a system that facilitates the analysis of past user access

patterns to discover common user access behavior (for example, navigation through the

men’s clothing department, consumer electronics, and traveling). They perform clustering

over a web site’s logs. Once this information is analyzed, it is used to improve the static

hypertext structure or to dynamically insert links to web pages. They model visitors as

vectors in URL-space (an n-dimensional space with a separate dimension for each page at a

site) and cluster them using “leader algorithm” (Hartigan, 1975).

7.1.5. Assisting Personal Information

Methods for assisting personal information help a user to organize their own

information better and increase the web usability. The assistant usually resides in a user’s

personal computer. These techniques do not use other people’s information and are not

related to predicting navigation.

PowerBookmarks (Li et al., 1999) is a web information organization, sharing, and

management tool, which monitors and utilizes users’ access patterns to provide useful

personalized services. PowerBookmarks provides automated URL bookmarking, document

refreshing, bookmark expiration, and subscription services for new or updated documents.

BookmarkOrganizer (Maarek and Ben-Shaul, 1996) is an automated system that maintains

a hierarchical organization of a user’s bookmarks using the classical HAC algorithm

(Voorhees, 1986), but by applying “slicing” technique (slice the tree at regular intervals

and collapse into one single level all levels between two slices). Both BookmarkOrganizer

and PowerBookmarks reduce the effort required to maintain the bookmark, but they are

insensitive to the context browsed by users and do not have reordering functions.

7.1.6. Implicit Detection of User’s Characteristics

Detecting the interests of a web page from a person can happen in either Client or

Server. Obtaining labeled training instances is necessary for agents to learn a user’s

interest; however, how the learning algorithm obtains training examples is an important

issue.

Jung (2001) developed Kixbrowser, a custom web browser that recorded users’

explicit rating for web pages and their actions: mouse clicks, highlight, key input, size, copy,

rollover, mouse movement, add to bookmark, select all, page source, print, forward, stop,

duration, the number of visits (frequency), and recency during users’ browsing. He

developed individual linear and nonlinear regression models to predict the explicit rating.

His results indicate that the number of mouse clicks is the most accurate indicator for

predicting a user’s interest level.

CuriousBrowser (Claypool et al., 2001) is a web browser that recorded the actions

(implicit ratings) and explicit ratings of users. This browser was used to record mouse

clicks, mouse movement, scrolling and elapsed time. The results indicate that the time spent

on a page, the amount of scrolling on a page, and the combination of time and scrolling has

a strong correlation with explicit interest.

The two experiments above show some inconsistency. Jung (2001) said mouse

click is a good indicator, but Claypool et al. (2001) did not. Jung (2001) found that

duration and scrollbar movement are not very predictive of a user’s interest, but Claypool

et al. (2001) said they are good indicators.

Powerize (Kim et al., 2001) is a content-based information filtering and retrieval

system that uses an explicit user interest model. They also reported a way to implement the

implicit feedback technique of user modelling for Powerize. They also found that

observing the printing of web pages along with reading time could increase the prediction

rate for detecting relevant documents.

Goecks and Shavlik (2000) proposed an approach for an intelligent web browser

that is able to learn a user’s interest without the need for explicitly rating pages. They

measured mouse movement and scrolling activity in addition to user browsing activity (e.g.,

navigation history). We extend these existing implicit interest indicators in this research.

Granka et al. (2004) measured eye-tracking to determine how the displayed web

pages are actually viewed. Their experimental environment was restricted to a search

results.

We examine the duration implicit indicator in more detail. We divide the duration

into three types: complete duration, active window duration, and look at it duration. Our

complete duration is different from the duration in Jung’s (2001) work. His duration

includes the downloading time of a web page, but ours does not. We divided the web pages

visited during our evaluation into two groups: (1) web pages that a user visited more than

once and viewed for the longest duration, and (2) all web pages that were visited more than

once, while Jung (2001) only used the second data set. In our experiment, we let a user

navigate to any web page and do normal tasks such as using chat programs or word

processors during the experiment. Another difference is that we use head orientation

instead of eye-tracking (Granka et al., 2004). Our experiment is also valuable since there

are cases where an application does not have devices for tracking a user’s eyes.

7.2. User Modeling

This section lists adaptive systems that use user modeling. The primary goal of

user modeling is to enable the prediction of a user’s actions on a personalized web site, and

thus to help determine which adaptation are useful for the user and navigate the web. The

forms of user model are as varied as the purposes for which user models are formed as

shown in Figure 35. Mainly user models try to describe (Webb et al., 2001): the cognitive

processes of user’s action, the difference between the user’s skill and expert skills, the

user’s behavioral pattern or preferences, and the user’s characteristics. Another important

dimension is to distinguish whether models are based on individual users or communities

of users (Webb et al., 2001). Whereas much of the academic research is related to

modeling individual users, many applications (Ungar and Foster, 1998) in electronic

commerce are related to forming generic models of user communities.

User modeling poses a number of challenges for machine learning, including:

computational complexity, concept drift, the need for labeled data, and the need for large

data sets. User modeling is known to be a very dynamic modeling task – attributes are

changing over time. The capability of adjusting to these changes quickly is known as

“concept drift” (Widmer and Kubat, 1996). Webb et al. (2001) examined each of these

issues and reviewed approaches. These techniques can reside on both client/server sides.

Generally these techniques do not use other people’s information. These can support

prefetching and advise unvisited pages.

7.2.1. Adaptive Hypermedia

Adaptive hypermedia focuses on improving web (Hypermedia) interactions by

modeling users and adapting the experience. The differences from adaptive web sites lies

in the application domain – Hypermedia is related to help systems (adapting to the

particular context of the help request), information retrieval (helping users find as much

relevant content as possible), or online information systems (helping users find high-

quality content quickly). Brusilovsky (2001) introduced this field for newcomers by an

overview. Previous empirical studies have shown that adaptive navigation support can

improve the speed of navigation (Kaplan et al., 1993) and learning (Brusilovsky and Pesin,

1998). The adaptive presentation can also affect the understanding of content (Boyle and

Encarnacion, 1994).

Weber and Specht (1997) demonstrated that user modeling techniques like simple

overlay models or more elaborated episodic learner models are effective for adaptive

guidance and for individualized help in web-based learning systems. This system uses a

combination of an overlay model (provide default path and short cut path) and an episodic

user model (stores knowledge about the learner in terms of a collection of episodes, such

episodes can be viewed as cases). This system also supports adaptive navigation as

individualized diagnosis and helps on problem solving tasks.

7.2.2. Human Behavior Based User Model

Human behavior based user models are not good at predicting unvisited web pages,

because this approach utilizes models that are based upon user actions such as path, click,

downloads, frequency of visits to a web page, etc.

Mobasher et al. (1999) proposed an approach to usage-based web personalization

that takes into account both the offline tasks related to the mining of usage data and the

online process of automatic web page customization. Their technique captures common

user profiles based on association-rule discovery and usage-based clustering.

 Adaptive
Hypermedia

Human
behavior

based user
model

Contents based
user model

Hybrid way
based

user model

Implicit/Explicit
way of building

user model

User modeling

Figure 35. Diagram of user modeling

Letizia (Lieberman, 1995) is a user interface agent (client-side), which operates

with conventional web browser. The agent tracks the user’s browsing behavior (e.g.,

following links, initiating searches, and requests for help) and tries to estimate the user’s

interest in as-yet-unseen pages. Letizia can recommend nearby pages by doing lookahead

search. Letizia cannot take advantage of the past experiences of other visitors to the same

site, since it runs on a client.

Pazzani and Billsus (1997, 1999a, 1999b) state that a web site should be

augmented with an intelligent agent to help visitors navigate the site, and should learn from

the visitors to the web site. An agent can learn common access patterns of the site both by

analyzing web logs and by inferring the visitor’s interests from actions of the visitor.

TELLIM (Hoerding, 1999) monitors the behavior of a customer and recognizes the

user’s needs and preferences. This information adapts the product presentations. Using a

set of rules, the system evaluates for every presentation element whether the customer was

interested in it or not. Those rules are extracted from their personal experience. For

example, if the downloading of an integrated image was interrupted, then it has negative

interest to the customer. The attribute of an element is quite simple: kind of product (e.g.,

“car”, brand, e.g. “Ford”) and kind of information (e.g., “engine”). They used CDL4

algorithm to learn the preferences of the customer. The user model for each customer is

expressed as a set of rules like if the size of the item is less than 20GB (hard drive), then

the customer may not be interested. They addressed the refinement of the user model as a

future work.

The AVANTI Project (Fink et al., 1996) focuses on helping users by adapting the

content and the presentation of web pages to each individual user. The elderly and

handicapped users are also partly considered. AVANTI also relies partly on explicit

profiles. It uses both user’s path and his/her model to guess pages.

7.2.3. Contents Based User Model

Contents based user models can predict web pages unvisited by users. This is

achieved because this model learns from the contents of web pages that a user visited. This

technique usually has higher dimensional vectors.

WebWatcher (Joachims et al., 1997) is a tour guide software agent. It accompanies

users from page to page providing several types of assistance: highlighted interesting

hyperlinks, menu bar, and advice. It also learns from experience to improve its advice-

giving skills. Since it runs as a centralized server it can leverage data from different users.

User interest (user model) is represented by high-dimensional feature vectors, each

dimension representing a word. This uses reinforcement learning (Sutton and Barto, 1998)

to allow agents to learn control strategies that select optimal actions in certain settings.

SiteIF (Stefani and Strapparava, 1999) is a personal agent that follows users as

they browse a web site. It learns user’s interests from the requested pages and

builds/updates a user model. This system builds the user model in the form of a semantic

net whose nodes are concepts and arcs are the co-occurrence relation of two concepts. The

relevance between user model and a document is estimated using the Semantic Network

Value Technique.

Mobasher et al (1999) propose an approach to usage-based web personalization

taking into account both the offline tasks related to mining of usage data and the online

process of automatic web page customization. Their technique captures common user

profiles based on association-rule discovery and usage-based clustering. The advantage of

this approach is that it can predict visited web pages well, but is not good for predicting

unvisited web pages. Content-based user models are generated from the contents of web

pages that a user has visited. This technique usually has higher dimensional vectors and

needs a greater number of training data. The advantage is that it can predict unvisited web

pages by users.

Syskill & Webert (Pazzani et al., 1996) is an intelligent agent that learns user

profiles. After identifying informative words from web pages to use as Boolean features, it

learns a Naïve Bayesian classifier to determine the interest of a page to a user. It converts

the HTML source of a web page into a Boolean feature vector that indicates whether a

particular word is present or absent in a particular web page. Hybrid models are learned by

observing user’s actions and the contents of web pages visited by a user.

Mobasher et al. (2000) combine site usage-based clustering and a site content-

based approach to obtain uniform representation, in which the user preference is

automatically learned from web usage data and integrated with domain knowledge and the

site content. These profiles could be used to perform real-time personalization. Their

experimental results indicate that the integration of usage and content mining increases the

usefulness and accuracy of the resulting recommendations.

A news-agent called News Dude (Billsus and Pazzani, 1999), learns which stories

in the news a user is interested in. The news-agent uses a multi-strategy machine learning

approach to create separate models of a user’s short-term and long-term interests. They use

the Nearest Neighbor algorithm for modeling short-term interests and a Naïve Bayesian

classifier for long-term interests.

Unlike News Dude that creates a model of two layers, our approach tries to model

a continuum that spans from general to specific interests. Once we get a user profile based

on contents, we can extend it to incorporate human behavior based user model.

7.2.4. Hybrid Way Based User Model

Hybrid approach uses both user’s actions and the contents of the web pages visited

by a user for building a user model. Mobasher et al. (2000) combine site usage based

clustering and site contents based approach to obtain a uniform representation in which the

user preference is automatically learned from web usage data and integrated with domain

knowledge and the site contents. These profiles can be used to perform real-time

personalization. Their experimental results indicate that the integration of usage and

content mining increases the usefulness and accuracy of the resulting recommendations.

7.2.5. Explicit/Implicit Way of Building a User Model

Most current approaches to personalization rely heavily on human participation to

collect profile information about a user. The most common and obvious solution for

collecting profile information about a user is asking for the user to specify their interests

explicitly (Yahoo mail, 2003). However, the explicit approach has several disadvantages.

Time and effort are required to specify interests, and user’s interests may change over time.

Alternatively, an implicit approach can identify a user’s interests by inference.

Ardissono et al. (1999) demonstrated how user modeling and adaptive hypermedia

techniques could be applied to present the most appropriate set of news (and

advertisement) to each user. This system builds the initial model of a new user by asking

questions directly such as age, gender, job, hobbies, etc. Since the initial stereotype user

model may be not accurate, the model is refined periodically after monitoring the user’s

behavior (e.g., which news s/he selects). The obtained user models are used for dynamic

generation of the web pages based on a knowledge base (e.g., which news, at which detail

level and which advertisement). However, setting rules for revising user profile and for

predicting probability is difficult.

7.3. Machine Learning

Machine learning has two different methods for leaning: supervised learning and

unsupervised leaning. Supervised leaning has labels on learning data sets, but unsupervised

learning does not. Supervised learning can be divided into two sub categories:

characterization and classification. Characterization methods learn from a set of good data,

and then detect no-goods based on the learning. This technique is mainly used for anomaly

detection. Classification accepts a set of labeled data and then learns from them.

Unsupervised learning has two sub categories: clustering and outlier detection. Both

methods use unlabeled data. Clustering tries to group similar elements. Outlier detection

also groups similar elements, but rejects far elements at the same time. Outlier detection is

commonly used for anomaly detection. Theses categories can be depicted as shown in

Figure 36.

Outlier detection Clustering Classification Characterization

Unsupervised Supervised

Machine
learning

Outlier detection:
Given no labels,
find minorities

Clustering: Given
no labels, find
boundaries

Classification:
Given multiple
labels, find
boundaries

Characterization:
Given only one
label, find
boundary

Figure 36. Diagram of machine learning

Classification can also be sub divided into symbolic and numerical methods as

shown in Figure 37. Generally numerical method is hard for humans to understand in terms

of how it is educated; but human can easily interpret the learned results by symbolic

method. Following study mainly focuses on symbolic method, numeric method, and

clustering techniques.

Some web personalization systems use machine learning to model user interest

model or visitor’s behavior. In their work, they have a set of web pages, which have

category labels (e.g. interesting, uninteresting, or topics of interest). The task is to assign

labels to the unseen web pages.

7.3.1. Symbolic Methods of Learning

Symbolic methods of learning yield results that can be readily understood by users.

This ease of user interface contributes to understanding the learning methods and

estimating their performance.

Outlier
detection

Clustering ClassificationCharacterization

Unsupervised Supervised

Machine
learning

Numerical
method

Symbolic
method

Figure 37. Diagram of classification

7.3.1.1. Semantic Networks

Semantic networks use objects as nodes in a graph, where the nodes are organized

in a taxonomic structure and arrows represent relations between nodes. Each node

represents a separate concept and links between nodes have several types of semantic

relations. SiteIF (Stefani and Strapparava, 1999) represents a user model as a semantic

network, whose nodes are concepts and arcs between nodes are the co-occurrence relation

of two concepts. These methods learn the relationship between two concepts. It is an

effective way to represent data as they incorporate the inheritance mechanism that prevents

duplication of data.

7.3.1.2. Learning Decision Trees

Decision tree, such as ID3, ASSISTANT, and C4.5, generates a nested set of if-

then-else rules, which is of the form, “if attribute < value then …”. These algorithms

recursively construct a tree using a greedy algorithm by finding the next attribute that

maximizes the separation of categories at each node. Their inductive bias is a preference

for small trees over large trees, Occam’s razor.

7.3.1.3. Learning Sets of Rules

Rule-learning algorithms learn rule sets to assign categories to a training set.

RIPPER (Cohen, 1995) is a rule learning algorithms that perform efficiently on large noisy

datasets. It uses greedy algorithm, so the early rules generated cover more number of

training instances. Apriori (Agrawal and Srikant, 1994) generates all significant association

rules between the categories and other attributes in large databases. Given a training set, it

allows any attribute to serve as the label and finds if-then rules among attributes. LERAD

(Mahoney and Chan, 2003) also finds association rules by choosing a set of rules randomly

and applying rule validation.

Genetic algorithms encode each rule set as a bit string and use genetic search

operators to explore this hypothesis space. It operates by iteratively updating a pool of

rules, called population. On each generation, only some of the rules are selected according

to their fitness and are carried forward into the next generation’s population intact.

SurfLen (Fu et al., 2000) uses rules in recommending next web pages. TELLIM

(Hoerding, 1999) represents user profile as a set of rules. TELLIM handles only some

product items, and measures if a customer is interested in the item or not. Their rules

consist of not many precedents and antecedents. However in our study there are many

attributes (all distinct words in web pages), which can reduce the speed of the rule-learning

algorithm.

7.3.2. Numerical Methods of Learning

If a symbolic method of learning can be called a white box method, a numerical

method of learning will be a black box method. Black box methods do not provide human

readable results. However, the performance is quite good such as with Neural Networks

which is one of the most popular learning algorithms.

7.3.2.1. Hidden Markov Models

Hidden markov models (HMM) are to model sequences of data. It can be viewed

as a stochastic generalization of finite-state automata, where both the transitions between

states and the generation of output symbols are governed by probability distributions.

Deshpande and Karypis (2001) applied pruning techniques to HMM model in order to

reduce the model size and improve the prediction. Anderson (2002) also used Markov

models to provide a probability distribution over out-links. Like wise, this approach is

mainly used in predicting navigation in a web server.

7.3.2.2. Naïve Bayes Classifier

Naïve Bayes classifier is a Bayesian learning method. It is called “naïve” because

the attribute values are assumed to be conditionally independent. Even when this

assumption is not met, the naïve Bayes classifier is often quite effective. Bayesian belief

networks represent the sets of conditional independence assumptions among subsets of the

attributes more effectively. Syskill & Webert (Pazzani et al., 1996) uses Naïve Bayes

classifier in building user profiles. As a disadvantage, the interpretation of the results can

be difficult since every vector has only probability values.

7.3.2.3. Artificial Neural Networks

Artificial neural networks is among the most effective learning methods currently

known. For example BACKPROPAGATION algorithm has been surprisingly successful in

many practical problems. Each vector element is assigned to an input neuron; each

category to an output neuron. These neurons and other intermediate neurons are all

connected by weights. The network is trained by incrementally adjusting the weights to

correctly categorize the training set. Nonlinear functions of the input can be learned by

adding the intermediate neurons. Even though this approach shows good performance in

various areas, it supports very little human interpretation.

7.3.2.4. Instance-based Learning

Instance-based learning such as nearest neighbor and locally weighted regression

simply memorize the presented training data. When a new query instance is encountered, a

set of similar instances is retrieved from memory and used to classify the new query

instance. These methods can use more complex, symbolic representations for instances.

The disadvantage of this approach is that the cost of classifying new instances can be high.

For some application domains, it may be necessary to classify hundreds or thousands of

web documents in a few seconds.

7.3.3. Clustering Techniques

Many web personalization systems use clustering techniques in building a user

model. In our work, we try to group words according to their correlations. For example all

class names are supposed to be in one cluster or some related words such as computer and

monitor are also in the same cluster. There are five categories of major clustering methods

(Han and Kamber, 2000) as shown in Figure 38.

 Characterization

Model-
based

Grid-based Density-
based

Hierarchical Partition

Outlier
detection

Clustering Classification

Unsupervised Supervised

Machine
learning

Figure 38. Diagram of clustering

Agglomerative (bottom-up) hierarchical clustering (AHC) algorithms initially put

every object in its own cluster and then repeatedly merge similar clusters together,

resulting in a tree shape structure that contains clustering information on many different

levels (Voorhees, 1986). Merges are usually binary – merging two entities, which could be

clusters or initial data points. Hence, each parent is forced to have two children in the

hierarchy. Divisive (top-down) hierarchical clustering (DHC) algorithms are similar to

agglomerative ones, except that initially all objects start in one cluster which is repeatedly

split. These algorithms find the two furthest points, which are the two initial clusters. Then,

the rest of the points are assigned to those two clusters depending on which one is closer.

Hence, a binary tree is generated. Our DHC algorithm can generate multiple branches from

one node depending on the data, which is the advantage of using a graph-partitioning

technique. Several stopping criteria for AHC/DHC algorithms have been suggested, but

they are typically predetermined constants – one common stopping criterion is the desired

number of clusters (Fisher, 1987; Milligan and Cooper, 1985). These algorithms are very

sensitive to the stopping criterion. The web documents, however, could be extremely

varied (in the number, length, type and relevance of the terms/documents). When these

algorithms mistakenly merge multiple “good” clusters due to the predetermined constraint,

the resulting cluster could be meaningless to the user (Zamir and Etzioni, 1998). Another

characteristic of the terms in web documents is that there reside many outliers. These

outliers (sort of “noise”) reduce the effectiveness of commonly used stopping criteria.

AGNES (AGglomerative NESting) (Kaufman and Rousseeuw, 1990), DIANA(DIvisive

ANAlysis) (Kaufman and Rousseeuw, 1990), BIRCH (Balanced Iterative Reducing and

Clustering using Hierarchies) (Zhang et al., 1996), CURE(Clustering Using

REpresentatives) (Guha et al., 1998), ROCK (Guha et al, 1999), CHAMELEON (Karypis

et al., 1999) all use these methods. In some application this binary split can be a major

disadvantage. The hierarchical tree reorganized by slicing technique (Maarek and Ben-

Shaul, 1996) can be useful in many areas.

Partitioning clustering algorithms such as the K-means algorithm initially creates a

partitioning of K clusters. Those initial K clusters are then iteratively refined to achieve the

final clustering of K clusters. A major drawback of this approach is that the number of

clusters must be specified beforehand as an input parameter. Our algorithm only needs to

cluster strongly connected words, but the K-means algorithm divides all words into K

clusters without removing weak relations. We define the “strongly connected” in this paper

as the relation between words whose correlation value is higher than the threshold. K-mean

algorithm is too sensitive to outliers since an object with an extremely large value may

substantially distort the distribution of data. Instead of taking the mean value, the medoid

can be used, which is the most centrally located object in a cluster. PAM(Partitioning

around Medoids) (Kaufman and Rousseeuw, 1990), CLARA(Clustering LARge

Applications) (Kaufman and Rousseeuw, 1990), and CLARANS (Clustering Large

Applications based upon RANdomized Search) (NG and Han, 1994) all use k-medoid

method. We will not use this method in our work, because it is too difficult to find the best

number of clusters initially.

Density-based clustering methods handles clusters with arbitrary shapes. This

method regard clusters as dense regions of objects in the data space that are separated by

regions of low density. Some examples of density-based approach are DBSCAN (Density

Based Spatial Clustering of Applications with Noise) (Ester et al., 1996), OPTICS

(Ordering Points To Identify the Clustering) (Ankerst et al., 1999), and DENCLUE

(DENsity-based CLUstEring) (Hinneburg and Keim, 1998).

Grid-based method uses a multi-resolution grid data structure. It quantizes the

space into a finite number of smaller cells. On which all of the operations for clustering are

performed. It is typically fast; the processing time is typically dependent on the number of

cells not the number of data objects. Examples of grid-based methods are STING

(STatistical INformation Grid approach) (Wang et al., 1997) and WaveCluster (Wang et

al., 1997).

Model-based clustering methods set some mathematical model and then attempt to

optimize the fit between the given data and the mathematical model. Such methods are

based on the assumption that there is a mixture of underlying probability distributions that

generate the data. COBWEB is an incremental conceptual clustering algorithm. Each

cluster records the probability of each attribute and value, and the probabilities are updated

every time an object is added to a cluster (Fisher, 1987). Instead of recalculating the whole

probabilities of clusters to determine if child clusters are generated, our DHC algorithm

uses a graph-based method and a different correlation function. CLASSIT (Gennari et al.,

1989) is an extension of COBWEB for incremental clustering of continuous data set. It

stores a mean or distribution for each individual attribute in each node and uses a modified

similarity/dissimilarity measure that is an integral over continuous attributes. AutoClass

(Cheeseman and Stutz, 1996) allows probabilistic membership of objects in clusters and

hence clusters can overlap (an object belonging to multiple clusters). Also, it is a flat (non-

hierarchical) clustering algorithm.

7.3.4. Correlation Functions

Correlation functions are used to measure the similarity/distance between objects

within a clustering function or other machine learning algorithms.

Tan et al. (2002) demonstrated that not all functions are equally good at capturing

the dependencies among variables and there is no single function that is consistently better

than the others in all applications. They compared various existing correlation functions

based on the key properties that Piatetsky-Shapiro (1991) presented and other properties of

a correlation function. We propose some additional desirable properties for correlation

functions.

Huang et al. (2002) applied a number of correlation functions in their application

to identify interesting rules and sequential patterns from the Livelink log files. They

presented a comparison of these measures based on the feedback from domain experts.

Some of the interestingness measures were found to be better than others. Their experiment

also supported that no single function is consistently better than the others. However, they

did not analyze the desirable properties of correlation functions.

Piatetsky-Shapiro (1991) opened a new research area of information retrieval by

presenting three desirable properties of a correlation function. However, his properties

depend on cross product ratio (CPR) (Rosenfeld, 1994), in that all correlation function

those satisfy CPR satisfies Piatetsky-Shapiro’s properties. We propose two other desirable

properties, which independent from CPR.

Jaroszewicz and Simovici (2004) presented a method of computing interestingness

of item sets and attribute sets with respect to background knowledge encoded as a

Bayesian network. Their algorithm found interesting, unexpected patterns. Their work can

be expanded to calculating all possible interestingness such as correlation or support

between variables. Their work used the interestingness of dependency but did not focus on

the property of correlation functions.

Chapter 8

Conclusions

We described a new approach of web personalization system and implemented this

system. This consisted of 5 areas. First, to create a context for personalization, we

proposed to establish a user interest hierarchy (UIH) that can represent a continuum of

general to specific interests from a set of web pages interesting to a user. This approach

was non-intrusive and allowed web pages to be associated with multiple clusters/topics.

We evaluated the learned UIH based on data obtained from 13 users on our web server.

Second, variable length phrase-finding algorithm found meaningful phrases. In order to

choose the best method, we compared the number of matching phrases chosen by a method

to those phrases chosen by 10 human subjects. Matched-pair design (Robertson, 1981),

comparing the top 10 best measures, was used for evaluation. Third, we proposed two

properties as desirable properties for correlation functions. In order to compare our 2 new

desirable properties and previous 3 desirable properties, we collected 32 correlation

functions and examined which correlation function satisfied which desirable properties.

Fourth, we devised a new method of ranking web search results to serve each individual

user’s interests using UIH. We evaluated methods based on how many interesting web

pages or potentially interesting web pages each algorithm found within certain number of

top links (Bharat and Mihaila, 2001). Traditional precision/recall graphs (van Rijsbergen,

1979) were also used for evaluation. We counted which search term showed higher

performances with our weighted scoring method (WS) than with Google as well. Fifth, this

we identified several implicit indicators that can be used to determine a user’s interest in a

web page. This paper evaluates both previously studied implicit indicators and several new

implicit indicators. All indicators examined were complete duration, active window

duration, look at it duration, distance of mouse movement, number of mouse clicks,

distance of scrollbar movement, number of scrollbar clicks, number of key up and down,

and size of highlighting text. The data was 11 users’ implicit indicator data and a 1-5

interest rating of each page. During our experiment volunteers were encouraged to behave

normally. Two evaluation criteria were used: (1) how accurately an indicator can predict

users’ interests and (2) how many users’ interests an indicator can predict.

8.1. Summary of Contributions

The following is a summary of our contributions.

In Chapter 2, Learning Implicit User Interest Hierarchy for Context in

Personalization, we represented user interest hierarchy (UIH) at different abstraction levels

(general to specific), which could be learned implicitly from the contents (words/phrases)

in a set of web pages bookmarked by a user. The higher-level interests were more general,

while the lower-level ones were more specific. In order to build a UIH, we devised a

divisive graph-based hierarchical clustering algorithm (DHC), which constructed a UIH by

grouping words (topics) into a hierarchy instead of flat cluster used by STC (Zamir and

Etzioni, 1998). Between the root and the leaves, "internal" tree nodes represented different

levels of generality and duration of interest. Towards the root of a UIH, more general

(passive) interests were represented by larger clusters of words while towards the leaves,

more specific (active) interests were represented by smaller clusters of words. DHC

automatically found the threshold for clusters of terms (words and phrases) where as STC

needed to specify the threshold. Furthermore, we used a more sophisticated correlation

function, AEMI, than STC’s conditional probability. We also observed that DHC with an

AEMI correlation function and MaxChildren threshold-finding method made a more

meaningful UIH with 59% of meaningful clusters than the other combinations. We added

phrases to the words as feature. Our experimental results indicated that 64% of UIH were

interpretable by human.

In Chapter 3, Identifying Variable-Length Meaningful Phrases with Correlation

Functions, we proposed a variable-length phrase-finding algorithm (VPF), which found

more meaningful phrases – VPF – than older methods – Ahonen’s algorithm and Chan’s

algorithms. They regenerated sequences recursively with the words selected in the previous

stage and searched for increased length of phrases in time O(nw), where nw was the page

size. This algorithm does not need any user-specified parameters, since our algorithm used

average as a threshold and stopped when the length of phrases did not increase. The

algorithm achieved further improved performance by pruning less meaningful phrases. The

With-pruning was statistically significantly better than the Without-pruning with 95%

confidence interval (P=0.004) for the VPF with F25. More meaningful phrases than

previous methods were found by VPF with F25 and the improvement in performance is

statistically significant than Ahonen’s original method. We suspected the filtering stage of

Ahonen’s algorithm filtered many meaningful phrases out or their weighting scheme using

the length of a phrase and tightness (Ahonen et al., 1998) distracted the correlation value of

a phrase.

In Chapter 4, Analysis of Desirable Properties of Correlation Functions between

Two Events, we identified 2 new desirable properties for a correlation functions in general.

They were:

• if P(A,B) increases when P(A) and P(B) remain unchanged, then F

monotonically decreases;

• if P(A) (or P(B)) and P(A,B) increase at the same ratio, then F monotonically

increases.

In addition, we revise and improve the first desirable property proposed by Piatetsky-

Shapiro (1991) to make it more accurately descriptive. Some functions (e.g., Odds, Conv,

Inte, and Coll in Appendix 1) produced a score of 1, even when two events were

statistically independent.

• F can distinguish statistically independence of A and B.

Our empirical results indicated that our two new desirable properties were more descriptive

than the previous three desirable properties provided in Piatetsky-Shapiro (1991). It was

because all correlation functions that satisfy P1 also satisfied P2 and P3, and all correlation

functions that satisfied P6 also satisfied P1-P3; but our properties were independent from

P1 and P6. We tested our 2 new desirable properties over many different correlation

functions and summarized their results with respect to each property. The summarized

results included P1-P5, P6 that measured negative/positive correlation, and P7 that checked

which correlation function returned a normalized return value. The associated table will

help user compare the characteristics of correlations functions.

In Chapter 5, Personalized Ranking of Search Results with Implicitly Learned User

Interest Hierarchies, we compared four ranking methods: Google, Random, US, and WS.

We used two data sets: interesting web pages that are relevant to the user search term and

potentially interesting web pages that could be relevant in the future. We introduced two

personalized ranking methods (WS and US) that utilize an implicitly learned user profile

(UIH). We built different UIHs for users depending on their interests. We identified four

characteristics for terms that match the user profile and provide a probabilistic measure for

each characteristic. The four characteristics were the level of a node where a term belongs

to (D), the length of a term (L), the frequency of a term (F), and the emphasis of a term (E).

D and L were calculated while building a UIH from the web pages in a user’s bookmark.

Different web pages had different values for F and E characteristics. Our experimental

results indicate that WS method could achieve higher precision than Google for Top 10, 15

and 20 web pages that are relevant to the user search query. On interesting web pages, the

Top link analysis showed WS achieved at least 13% higher precision than Google for Top

10, 15 and 20 links on average. WS outperformed US and Random in general also. On

potentially interesting web pages, WS achieved the highest performance in all five Top

links (Top 1, 5, 10, 15, and 20) as well. When incorporating the (public) ranking from the

search engine, we found that equal weights for the public and personalized ranking can

result in higher precision. A weight of 0.5 for the personal ranking seemed to show the

highest performance on both data sets.

The precision/recall analysis visualizes the performance of each method in graphs.

WS and US are closer to the upper-right corner than Google except with recall values

lower than .15 (after Top 5). In general, WS outperforms US and Random for interesting

web pages. The results from precision/recall graph for potentially interesting web pages are

similar. WS was closer to the upper-right corner than Google, US, and Random over all.

These results conclude that WS could provide more accurate ranking than Google on

average.

In Chapter 6, Implicit Indicators for Interesting web Pages, our experiments

indicate that complete duration, active window duration, look at it duration, and distance

of mouse movement are reliable indicators for more users than other indicators – 8 users out

of 11. Over the data set of “all visits”, the indicators were able to predict the most number

of users’ interests as well – 7 users out of 11. The distance of mouse movement was as

accurate as indicators based on duration, and it can be the most practical indicator since it

is simple to detect and is more robust than active window duration against the case of

user’s absence. If a user leaves a web page open and leaves the room, the distance of

mouse movement will not be affected. For the bookmark, save, print, and memo indicators,

more than 95% of the pages were correctly scored as “interested”. When we divided the

data set less than “interested” and more than or equal to “interested”, “95% of the

bookmarked web pages, 98% of the saved web pages, 100% of the printed web pages, and

98% of the memoed web pages belonged to the score of more than or equal to “interested”.

Our results also indicate that there was no indicator that was valid for all users. Depending

on the user, an indicator may or may not be valid.

8.2. Ethical Issues in User Modeling

8.2.1. Privacy

An individual’s right to privacy has always been an issue in user modeling. This is

because the fact that the consequences for victims of privacy intrusions can be serious

problems. Although the Internet is widely used nowadays, many users remain unfamiliar

and skeptical about the level of security and privacy on the Internet. Great numbers of

users are uncomfortable with “user profiling,” a practice in which users’ online movements

are recorded. Much of this user anxiety is caused by the fact that users have no clear

understanding regarding the rules that govern this practice, how extensive it is, what is

recorded, and even how the information is used (Chiu, 2000). If the process of user

profiling is explained, then user modeling will be more readily accepted.

This personalization method should be provided as an option of a web browser to a

user along with full descriptions. Before building a user profile, the browser must accept

the user’s permission whether s/he wants to build the user profile from their bookmarks or

the web pages collected by implicit interest indicator. This is a permission-based

personalization tool. Furthermore, the profile can be stored in a client. If both the web log

file of the user’s behavior and the user profile remain in the user’s computer, then s/he will

feel their privacy is protected. The browser should provide complete controls over the

profile to the user.

8.2.2. Confidence on the Results

This section briefly discusses the extent to which we can trust the profile generated

by the DHC algorithm. For example, if the profile indicates a user is interested in “laptop

computer”, how much can we trust the result? The user profile is built out of a set of

interesting web pages to a user. As previously explained, bookmarks or web pages detected

by an implicit indicator can be used as the set. Since the set of interesting web pages can

change over time, the user profile can change as well. The profiles should be rebuilt

periodically. Then, are the interests of the user that appear over consecutive different

periods more confident than the interests that occur only once? The results may also

depend on how reliable the input data sets are. In order to answer the question, we may

have to be able to measure the reliability of the set of interesting web pages. These

questions are not easy for us to answer at this moment. It can be future work.

8.3. Limitation and Future Work

In our system there are several limitations.

• We did not analyze differences among the UIHs’ obtained from various users

because of the large numbers of web pages used in our experiments.

• The performance of the DHC algorithm varied depending on the articles selected.

We believe this is because of the intrinsic characteristics in a document.

• The performance of VPF varied depending on the articles selected. We currently

do not understand the reason for the variance in performance over different

articles. We assume it is due to the intrinsic characteristics of an article, because

the human subjects’ results are also different depending on the articles.

• Our experiment for desirable properties of a correlation function was limited to

positive correlations for our web personalization since many applications depend

on positive correlation. We will extend our analysis to negative correlation as well.

• The improvement of WS was not statistically significant because the precision

values of Google had large variance.

• The reason for the low performance of some search terms might be because there

is no relation between his/her bookmarks and the search terms. We may be able to

relieve this problem by incorporating interesting web pages based on implicit

interest indicators.

• Our approach of penalizing the index pages did not make much improvement in

our initial experiments. We will examine this approach further in the future.

• Since WS showed higher performance for links after Top 5 than Google, we expect

that our method may get higher performance with clustered search engines.

• A longer evaluation would give more accurate results for the LookAtIt indicator,

since users would act more naturally after more than 1 or 2 hours of surfing.

• We can combine this indicator to an application for personalized web search

results in the future. The collected interesting web pages for a user can be used for

building a user interest hierarchy.

References

Note: Internet references current as of March 2005

Agrawal, R. and R. Srikant (1994), “Fast Algorithm for Mining Association Rules”, Proc.

20th Vary Large Data Base Conference, 487-499.

Ahonen, H., Heinonen, O., Klemettinen, M. and A.I. Verkamo (1998), “Applying Data

Mining Techniques for Descriptive Phrase Extraction in Digital Document

Collections”, Proc. Advances in Digital Libraries Conference, 2-11.

Albanese, M., Picariello, A., Sansone, C., and L. Sansone (2004), “Web Personalization

Based on Static Information and Dynamic User Behavior”, Proc. 6th annual ACM

international workshop on Web information and data management, 80-87.

Anderson, C.R. (2002), A Machine Learning Approach to Web Personalization, Ph.D.

thesis. University of Washington, Department of Computer Science and

Engineering. http://www.the4cs.com/~corin/research/pubs/thesis.pdf

Ardissono, L., Console, L., and I. Torre (1999), “Exploiting User Models for Personalizing

News Presentations”, Proc. 2nd Workshop on Adaptive Systems and User Modeling

on the WWW.

Barzilay, R., McKeown, K., and M. Elhadad (1999), “Information Fusion in the Context of

Multi-Document Summarization”, Proc. 37th Annual Meeting of the Association

for Computational Linguistics. http://www.cs.mu.oz.au/acl/P/P99/P99-1071.pdf

Bellegarda, J.R. (1998), “Exploiting Both Local and Global Constraints for Multi-Span

Statistical Language Modeling”, Proc. Intl. Conf. On Acoustics, Speech, and

Signal Processing, IEEE press, 2, 677-680.

Bharat, K. and G.A. Mihaila (2001), “When Dxperts Agree: Using Non-Affiliated Experts

to Rank Popular Topics”, Proc. 10th Intl. World Wide Web Conference.

Billsus, D. and M.J. Pazzani (1999), “A Hybrid User Model for News Story

Classification”, Proc. 7th International Conference on User Modeling, Verlag,

Wien-New York: Springer, 99-108.

Boyle, C. and A.O. Encarnacion (1994), “MetaDoc: An Adaptive Hypertext Reading

System”, User Modeling and User-Adapted Interaction 4, 1 (Jan.), 1-19.

Brin, S., Motwani, R., Page, L., and T. Winograd (1998), “What Can You Do with a Web

in Your Pocket”, In Bulletin of the IEEE Computer Society Technical Committee

on Data Engineering.

Brusilovsky, P. and M.T. Maybury (2002), “From Adaptive Hypermedia to Adaptive

Web”, In P. Brusilovsky and M. T. Maybury (eds.), Communications of the ACM

45 (5), Special Issue on the Adaptive Web, 31-33.

Brusilovsky, P. and L. Pesin (1998), “Adaptive Navigation Support in Educational

Hypermedia: An Evaluation of the ISIS Tutor”, Journal of Computing and

Information Technology 6, 1, 27-38.

Brusilovsky, P. (2001), “Adaptive hypermedia”, User Modeling and User Adapted

Interaction, Ten Year Anniversary Issue (Alfred Kobsa, ed.) 11 (1/2), 87-110.

http://umuai.informatik.uni-essen.de/anniversary.html

Cadez, I., Heckerman, D., Meek, C., Smyth, P., and S. White (2000), “Visualization of

Navigation Patterns of a Web Site Using Model-Based Clustering”, Proc. 6th

International Conference on Knowledge Discovery and Data Mining.

Chan, P.K. (1999), “A Non-Invasive Learning Approach to Building Web User Profiles”,

In KDD-99 Workshop on Web Usage Analysis and User Profiling, 7-12.

Cheeseman, P. and J. Stutz (1996), “Bayesian Classification (AutoClass): Theory and

Results”, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,

Menlo Park, Calif., 153-180.

Chen, L. and K. Sycara (1998), “Webmate: A Personal Agent for Browsing and

Searching”, Proc. 2nd International Conference on Autonomous Agents, pp.132-

139.

Chiu, A.S. (2000), “The Ethics of Internet Privacy”,

http://web.tepper.cmu.edu/files/PDF_Document/c3f42085bfea4608914d62539d4f5

579.pdf

Claypool, M., Le, P., Wased, M., and Brown, D., (2001) “Implicit Interest Indicators”,

Proc. 6th international conference on Intelligent User Interfaces, 33-40.

Cohen, W.W. (1995), “Fast Effective Rule Induction”, Proc. Twelfth International

Conference.

Cohen, W.W. (1998), “Joins that Generalize: Text Classification Using WHIRL”, Proc. 4th

International Conference on Knowledge Discovery and Data Mining (KDD-98).

Croft, W.B. and R. Das (1989), “Experiments with Query Acquisition and Use in

Document Retrieval Systems”, Proc. 13th ACM SIGIR.

Croft, W.B. and R.T. Thompson (1987), “I3R: A New Approach to the Design of

Document Retrieval Systems”, Journal of the Americal Society for Information

Science, 38: 389-404.

Croft, W.B., Turtle, H.R., and D.D. Lewis (1991), “The Use of Phrases and Structure

Queries in Information Retrieval”, ACM SIGIR Conference on Research and

Development in Information Retrieval, 32-45.

Croft, W.B. (2000), (editor) Advances in Information Retrieval: Recent Research from the

Center for Intelligent Information Retrieval, Massachusetts, Kluwer Academic

Publishers, 243.

Crotf, W.B. and R. Das (1989), “Experiments with Query Acquisition and Use in

Document Retrieval Systems”, Proc. 13th ACM SIGIR.

Cutting, D.R., Karger, D.R., Pedersen, J.O., and J.W. Tukey (1992), “Scatter/Gather: A

Cluster-based Approach to Browsing Large Document Collections”, Proc. 15th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval.

Delaney, K.J. (2004), “Study Questions Whether Google Really is Better,” Wall Street

Journal (Eastern edition), New York, May 25, B.1.

http://proquest.umi.com/pqdweb?RQT=309&VInst=PROD&VName=PQD&VTyp

e=PQD&sid=5&index=45&SrchMode=1&Fmt=3&did=000000641646571&client

Id=15106

Deshpande, M. and G. Karypis (2001), “Selective Markov Models for Predicting Web-

Page Accesses”, First SIAM International Conference on Data Mining.

Eirinaki, M., Lampos, C., Paulakis, S., and M. Vazirgiannis, (2004a) “Web Personalization

Integrating Content Semantics and Navigational Patterns”, Workshop on Web

Information and Data Management, 72 – 79.

Fagan, J.L. (1987), “Automatic Phrase Indexing for Document Retrieval”, Proc. 10th

Annual ACM SIGIR Conference on Research & Development in Information

Retrieval, 91-101.

Fink, J., Kobsa, A., and A. Nill (1996), “User-oriented Adaptivity and Adaptability in the

AVANTI project”, Proc. for the Web: Empirical Studies, Microsoft Usability

Group, Redmond (WA).

Fisher, D.H. (1987), “Knowledge Acquisition via Incremental Conceptual Clustering”.

Machine Learning 2, 139-172.

Frakes, W.B. and R. Baeza-Yates (1992), Information Retrieval: Data Structures and

Algorithms, Prentice-Hall.

Fu, X., Budzik, J., and K.J. Hammond (2000), “Mining Navigation History for

Recommendation”, Proc. 2000 Conference on Intelligent User Interfaces.

Gennari, J.H., Langley, P., and D. Fisher (1989), “Models of Incremental Concept

Formation”, Artificial Intelligence, 40, 11-61.

Goecks, J. and J. W. Shavlik (2000), “Learning Users’ Interests by Unobtrusively

Observing Their Normal Behavior”, Proc. ACM Intelligent User Interfaces

Conference (IUI), Jan 2000.

Goecks, J. and J.W. Shavlik (2000), “Learning Users’ Interests by Unobtrusively

Observing Their Normal Behavior”, Proc. ACM Intelligent User Interfaces

Conference (IUI), Jan.

Gokcay, D. and E. Gokcay (1995), “Generating Titles for Paragraphs Using Statistically

Extracted Keywords and Phrases, Systems, Man and Cybernetics”, Proc. IEEE

International Conference on Intelligent Systems for the 21st Century, Vol. 4, 22-

25, Oct.

Google co. (2004), Google. http://www.google.com/

Granka, L. A., Joachims, T., and G. Gay (2004), “Eye-tracking Analysis of User Behavior

in WWW Search”, Proc. 27th annual international conference on Research and

development in information retrieval.

Gravano, L., Garcia-Molina, H., and A. Tomasic (1999), “Gloss: Text-source Discovery

over the Internet”, ACM Transactions on Database Systems, 24(2):229-264, June.

Grossman, D., Frieder, O., Holmes, D., and D. Roberts (1997), “Integrating Structured

Data and Text: A Relational Approach”, Journal of the American Society for

Information Science, 48(2), February.

Guha, S., Rastogi, R., and K. Shim (1998), “CURE: An Efficient Clustering Algorithm for

Large Databases”, Proc. ACM-SIGMOD Int. Conf. Management of Data

(SIGMOD’98), 73–84.

Guha S., Rastogi, R., and K. Shim (1999), “ROCK: A Robust Clustering Algorithm for

Categorical Attributes”, Proc. 15th Int’l Conf. on Data Eng.

Han, J. (2001), eds., Data Mining: Concepts and Techniques, San Francisco: Morgan

Kaufmann Publishers, pp.338.

Harper, D.J. (1980), Relevance Feedback in Document Retrieval Systems: An Evaluation of

Probabilistic Strategies, Ph.D. Thesis, Computer Laboratory, University of

Cambridge.

Hartigan, J. (1975), Clustering Algorithm, John Wiley.

Haveliwala, T.H. (1999), “Efficient Computation of PageRank”, Technical Report,

Stanford University Database Group. http://dbpubs.stanford.edu/pub/1999-31

Haveliwala, T.H. (2002), “Topic-sensitive PageRank”, Proc. 11th Intl. World Wide Web

Conference, Honolulu, Hawaii, May.

Herlocker, J., Konstan, J., Borchers, A., and J. Riedl (1999), “An Algorithmic Framework

for Performing Collaborative Filtering”, Proc. 1999 Conference on Research and

Development in Information Retrieval.

Hilderman, R. and H. Hamilton (2001), “Evaluation of Interestingness Measures for

Ranking Discovered Knowledge”, Proc. 5th Pacific-Asia Conference on

Knowledge Discovery and Data Mining.

Hoerding, T. (1999), “A Temporary User Modeling Approach for Adaptive Shopping on

the Web”, Proc. 2nd Workshop on Adaptive Systems and User Modeling on the

WWW.

Huang, S., An, A., and N. Cercone (2002), “Comparison Of Interestingness Functions for

Learning Web Usage Patterns”, Proc. eleventh international conference on

Information and knowledge management, 617-620.

Hull, D.A. (1994), Information Retrieval Using Statistical Classification, PhD thesis,

Stanford University, Statistics.

Intel Inc. (2001), “Open Source Computer Vision Library”, Reference Manual, Intel

Corporation, 2-1~2-2.

Jaroszewicz, S. and D. A. Simovici (2004), “Interestingness of Frequent Item sets Using

Bayesian Networks as Background Knowledge”, Proc. 2004 ACM SIGKDD

international conference on Knowledge discovery and data mining. 2004, 178 –

186.

Jeh, G. and J. Widom (2003), “Scaling Personalized Web Search”, Proc. 12th Intl.

Conference on World Wide Web, Budapest, Hungary, 20-24, May.

Joachims, T., Freitag, D., and T. Mitchell (1997), “Web Watcher: A Tour Guide for the

World Wide Web”, Proc. 15th International Joint Conference on Artificial

Intelligence, 770-775.

Johansson, C. (1996), “Good Bigrams”, Proc. COLING-96, 592-597.

Jung, K. (2001) Modeling Web User Interest with Implicit Indicators, Master Thesis,

Florida Institute of Technology.

Kamber, M. and R. Shinghal (1996), “Evaluating the Interestingness of Characteristic

Rules”, Proc. 2nd International Conference on Knowledge Discovery and Data

Mining, 263-266, Portland, Oregon.

Kaplan, C., Fenwick, J., and J. Chen (1993), “Adaptive Hypertext Navigation Based on

User Goals and Context”, User Modeling and User-Adapted Interaction 3, 3, 193-

220.

Karypis, G., Han, E., and V. Kumar (1999), “CHAMELEON: A Hierarchical Clustering

Algorithm Using Dynamic Modeling”, IEEE Computer.

Kaufman, L. and P.J. Rousseeuw (1990), Finding Groups in Data: An Introduction to

Cluster Analysis, Wiley, New York.

Kim, D., Atluri, V., Bieber, M., Adam, N., and Y. Yesha (2004), “A clickstream-based

collaborative filtering personalization model: towards a better performance”, Proc.

6th annual ACM international workshop on web information and data

management, 88-95.

Kim, H. and P.K. Chan (2003), “Learning Implicit User Interest Hierarchy for Context in

Personalization”, Proc. International Conference on Intelligent User Interfaces,

101-108.

Kim, H. and P.K. Chan (2004), “Identifying Variable-Length Meaningful Phrases with

Correlation Functions”, International Conference on Tools with Artificial

Intelligence (ICTAI), IEEE press, 30-38.

Kim, H. and P. K. Chan (2005), “Implicit Indicator for Interesting Web Pages”, Technical

Report CS-2005-05, Florida Institute of Technology.

Kim, J., Oard, D.W., and K. Romanik, (2001), “Using Implicit Feedback for User

Modeling in Internet and Intranet Searching”, Technical Report, College of Library

and Information Services, University of Maryland, May.

Li, W.S., Vu, Q., Agrawal, D., Hara, Y., and H. Takano (1999), “PowerBookmarks: A

System for Personalizable Web Information Organization, Sharing, and

Management”, Proc. 8th International World Wide Web Conference, Toronto,

Canada.

Liberman, H. (1995), “Letizia: An Agent that Assists Web Browsing”, Proc. 14th

International Joint Conference on Artificial Intelligence.

Lima, E.F. and J.O. Pedersen (1999), “Phrase Recognition and Expansion for Short,

Precision-Biased Queries Based on a Query Log”, Proc. SIGIR.

Lind, D.A., Marchal, W.G., and R.D. Mason (2002), Statistical Techniques in Business &

Economics 11th edition, McGraw-Hill Irwin, 377-412.

Liu, F., Yu, C., and W. Meng (2002), “Personalized Web Search by Mapping User Queries

to Categories”, Proc. CIKM’02, ACM Press, Virginia, USA.

Maarek, Y.S. and I.Z. Ben-Shaul (1996), “Automatically Organizing Bookmarks Per

Contents”, Proc. 5th International World Wide Web Conference.

Mahoney, M.V. and P.K. Chan (2003), “Learning Rules for Anomaly Detection of Hostile

Network Traffic”, Proc. 3rd International Conference on Data Mining (ICDM).

Mannila, H. and H. Toivonen (1996), “Discovering Generalized Episodes Using Minimal

Occurrences”, Proc. Knowledge Discovery and Data Mining.

Milligan, G.W. and M.C. Cooper (1985), “An Examination of Procedures for Detecting the

Number of Clusters in a Data Set”, Psychometrika, 50, 159-59.

Mitchell, T. (1997), Machine Learning, McGraw-Hill, 81-126 and 154-199.

Mitra, M., Buckley, C., Singhal, A., and C. Cardie (1997), “An Analysis of Statistical and

Syntactic Phrases”, Proc. RIAO-97, 5th International Conference.

Mladeni, D. (2000), “Machine Leaning for Better Web Browsing”, AAAI Spring

Symposium on Adaptive User Interfaces.

Mobasher, B., Cooley, R., and J. Srivastave (1999), “Creating Adaptive Web Sites through

Usage-Based Clustering of URLs”, Proc. 1999 IEEE Knowledge and Data

Engineering Exchange Workshop, 19-25.

Mobasher, B., Dai, H., Luo, T., Sun, Y., and J. Zhu (2000), “Combining Web Usage and

Content Mining for More Effective Personalization”, Proc. International

Conference on E-Commerce and Web Technologies (ECWeb).

Ng, R., and J. Han (1994), “Efficient and Effective Clustering Method for Spatial Data

Mining”, Proc. Int. Conf. on Very Large Data Bases (VLDB’94), 144–155.

Oard, D. and J. Kim. (1998) “Implicit Feedback for Recommendation Systems”, Proc. the

AAAI Workshop on Recommendation Systems, July.

Page, L., Brin, S., Motwani, R., and T. Winograd (1998), “The PageRank Citation

Ranking: Bringing Order to the Web”, Technical Report, Stanford University

Database Group, 1998. http://citeseer.nj.nec.com/368196.html

Pazzani, M. and D. Billsus (1997), “Learning and Revising User Profiles: The

Identification of Interesting Web Sites”, Machine Learning, 27(3), 313-331.

Pazzani, M. and D. Billsus (1999a), “Adaptive Web Site Agents”. Proc. 3rd International

Conference, Autonomous Agents.

Pazzani, M. and D. Billsus (1999b), “Evaluating Adaptive Web Site Agents”, Proc.

Workshop on Recommender Systems Algorithms and Evaluation, 22nd

International Conference on Research and Development in Information Retrieval.

Pazzani, M., Muramatsu, J., and D. Billsus (1996), “Syskill & Webert: Identifying

Interesting Web Sites”. Proc. National Conference on Artificial Intelligence, 54-

61.

Pazzani, M. and D. Billsus (1997), “Learning and Revising User Profiles: The

Identification of Interesting Web Sites”, Machine Learning, 27(3), 313-331.

Perkowitz, M. and O. Etzioni (1997), “Adaptive Web Sites: an AI Challenge”, Proc. 15th

International Joint Conference on Artificial Intelligence.

Perkowitz, M. and O. Etzioni (1998), “Adaptive Web Sites: Automatically Synthesizing

Web Pages”, Proc. AAAI98.

Perkowitz, M. and O. Etzioni (2000), “Towards Adaptive Web Sites: Conceptual

Framework and Case Study”, Artificial Intelligence 118, 245-275.

Perkowitz, M. (2001), Adaptive Web Sites: Cluster Mining and Conceptual Clustering for

Index Page Synthesis, PhD thesis, University of Washington, Computer Science

and Engineering.

Piatetsky-Shapiro, G. (1991), “Discovery, Analysis and Presentation of Strong Rules”, In

G. Piatetsky-Shapiro and W. Frawley, editors, Proc. Knowledge Discovery in

Database, 2299-248. MIT Press, Cambridge, MA.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and J. Riedl (1994) “GroupLens: An

open architecture for collaborative filtering of netnews”. In Richard K. Faruta and

Christine M. Neuwirth, editors, Proc. Conference on Computer Supported

Cooperative Work, 175-186, ACM, October

Rasmussen, E. (1992), Clustering algorithms. Information Retrieval: Data Structures and

Algorithms, W.B. Frakes and R. Baeza-Yates, Editors, Prentice Hall, Englewood

Cliffs, NJ.

Robertson, S.E. (1981), “The Methodology of Information Retrieval Experiment”, In:

Sparck Jones, editor, Information Retrieval Experiment, London: Butterworths, 9-

31.

Rosenfeld, R. (1994), Adaptive Statistical Language Modeling: A Maximum Entropy

Approach, PhD thesis, Computer Science, Carnegie Mellon University, Pittsburgh,

PA.

Russell, S. and P. Norvig (1995), eds., Artificial Intelligence: A Modern Approach,

Prentice Hall, pp.74.

Salton, G. and R.G. Waldstein (1978), “Term Relevance Weights in On-Line Information

Retrieval”, Information Processing and Management, 14, 29-35.

Schraefel, M.C., Modjeska, D., Wigdor, D., and Y. Zhu (2002), “Hunter Gatherer:

Interaction Support for the Creation and Management of Within-Web-page

Collections”, Proc. 11th International World Wide Web Conference.

Shahabi, C. and F. Banaei-Kashani (2003), “Efficient and Anonymous Web-Usage Mining

for Web Personalization”, INFORMS Journal on Computing-Special Issue on Data

Mining, 15 (2), Spring.

Shardanand, U. and P. Maes (1995), “Social Information Filtering: Algorithms for

Automating Word Of Mouth”, Proc. ACM CHI Conference.

Stefani, A. and C. Strapparava (1999), “Exploiting NLP Techniques to Build User Model

for Web Sites: the Use of WorldNet in SiteIF Project”, Proc. 2nd Workshop on

Adaptive Systems and User Modeling on the WWW.

Sutton, R.S. and A.G. Barto (1998), Reinforcement Learning: An Introduction, MIT Press,

Cambridge, MA.

Tan, P. and V. Kumar (2000), “Interestingness Measure for Association Patterns: A

Perspective*”, Proc. KDD.

Tan, P., Kumar, V. and J. Srivastava (2002), “Selecting the Right Interestingness Measure

for Association Patterns”, Porc. ACM SIGKDD.

Turpin, A. and A. Moffat (1999), “Statistical Phrases for Vector-space Information

Retrieval”, Proc. SIGIR, 309-310.

Ungar, L.H. and D.P. Foster (1998), “Clustering Methods for Collaborative Filtering”,

AAAI Workshop on Recommendation Systems.

http://citeseer.nj.nec.com/cache/papers/cs/18784/http:zSzzSzwww.cis.upenn.eduzS

zdataminingzSzPublicationszSzclust.pdf/ungar98clustering.pdf

van Rijsbergen, C.J. (1979), Information Retrieval, Butterworths, London, 68–176.

Vivisimo co. (2005), Vivisimo. http://www.vivisimo.com

Voorhees, E.M. (1986), “Implementing Agglomerative Hierarchical Clustering Algorithms

for Use in Document Retrieval”, Information Processing & Management, 22 (6),

465-476.

Watson, A. and M. A. Sasse, (1998) “Measuring Perceived Quality of Speech and Video in

Multimedia Conferencing Applications”, Proc. ACM Multimedia Conference, 55-

60.

Webb, G.I., Pazzani, M.J., and D. Billsus (2001), “Machine Learning for User Modeling”,

User Modeling and User-Adapted Interaction 11: 19-29.

Webb, G.I. (1993), “Feature Based Modelling: A Methodology for Producing Coherent,

Consistent, Dynamically Changing Models of Agents Competency”, Proc. 1993

World Conference on Artificial Intelligence in Education (AACE), 497-504.

http://www.cm.deakin.edu.au/~webb/

Weber, G. and M. Specht (1997), “User Modeling and Adaptive Navigation Support in

WWW-bases Tutoring Systems”, Proc. 6th International Conference on User

Modeling (UM97).

Wexelblat, A. and P. Maes (1997), “Footprints: History-Rich Web Browsing”, Proc.

Conference on Computer-Assisted Information Retrieval (RIAO), 75-84.

Widmer, G. and M. Kubat (1996), “Learning in the Presence of Concept Drift and Hidden

Contexts”, Machine Learning.

http://citeseer.nj.nec.com/cache/papers/cs/15513/http:zSzzSzwww.cacs.usl.eduzSz

~mkubatzSzpublicationszSzgermljfinal.pdf/widmer96learning.pdf

Willet, P. (1988), “Recent Trends in Hierarchical Document Clustering: A Critical

Review”, Information Processing and Management, 24, 577-597.

Wu, H. and D. Gunopulos (2002), “Evaluating the Utility of Statistical Phrases and Latent

Semantic Indexing for Text Classification”, IEEE International Conference on

Data Mining, 713-716.

Yahoo (2003), Yahoo mail.

http://edit.yahoo.com/config/eval_register?.v=&.intl=&new=1&.done=&.src=ym&

.partner=&.p=&promo=&.last=

Yan, T.W., Jacobsen, M., Garcia-Molina, H., and U. Dayal (1996), “From User Access

Patterns to Dynamic Hypertext Linking”, Proc. 5th International World Wide Web

Conference.

Zamir, O. and O. Etzioni (1998), “Web Document Clustering: A Feasibility

Demonstration”, SIGIR Conference on Research and Development in Information

Retrieval, 46-54.

Zamir, O. and O. Etzioni (1999), “Groper: A Dynamic Clustering Interface to Web Search

Results”, Computer Networks 31, 1361-1374.

Zhang, T., Ramakrishnan, R. and M. Livny (1996), “BIRCH: An Efficient Data Clustering

Method for Very Large Databases”, Proc. ACM SIGMOD Intl. Conf. on

Management of Data.

Zukerman, I., Albrecht, D.W., and A.E. Nicholson (1999), “Predicting Users’ Requests on

the WWW”, Proc. 7th Intel. Conference on User Modeling (UM), Banff, Canada.

275-284

Appendix

Appendix 1. Correlation functions

 Name Formula
1 φ-coefficient (Tan et al., 2002) (Coef) (AB - (A × B)) / Sqr(A × B × (1 - A) × (1 - B))

2 Goodman-Kruskal’s (Tan et al., 2002) (Good)
(MAX(AB, AB′) + MAX(A′B, A′B′)
+ MAX(AB, A′B) + MAX(AB′, A′B′)

- MAX(A, A′) - MAX(B, B′)) / (2 - MAX(A, A′) - MAX(B, B′))

3 Odds ratio (Tan et al., 2002) (Odds) D((AB × A′B′), (AB′ × A′B))

4 Yule’s Q (Tan et al., 2002) (YulQ) (AB × A′B′ - AB′ × A′B) / (AB × A′B′ + AB′ × A′B)

5 Yule’s Y (Tan et al., 2002) (YulY) (Sqr(AB × A′B′) - Sqr(AB′ × A′B)) / (Sqr(AB × A′B′)
+ Sqr(AB′ × A′B))

6 Kappa (k) (Tan et al., 2002) (Kapp) (AB + A′B′ - (A × B) - (A′ × B′)) / (1 - (A × B) - (A′ × B′))

7 Mutual Information (Tan et al., 2002) (Mutu)
(AB × log2(AB / (A × B)) + AB′ × log2(AB′ / (A × B′))

+ A′B × log2(A′B / (A′ × B)) + A′B′ × log2(A′B′ / (A′ × B′)))
/ (MIN(-(A × log2(A) + A′ × log2(A′)), -(B × log2(B) + B′ × log2(B′))))

8 J-Measure (Tan et al., 2002) (JMea) MAX(AB × log2(P(B|A) / B) + AB′ × log2(P(B′|A) / B′),
AB × log2(P(A|B) / A) + A′B × log2(P(A′|B) / A′))

9 Gini index (Tan et al., 2002) (Gini)

MAX(A(pow(P(B|A),2) + pow(P(B′|A),2)) + A′(pow(P(B|A′),2) +
pow(P(B′|A′),2)) - pow(B,2) - pow(B′,2), B(pow(P(A|B), 2) +

pow(P(A′|B), 2)) + B′(pow(P(A|B′),2) + pow(P(A′|B′),2)) - pow(A,2) -
pow(A′,2))

10 Support (Tan et al., 2002) (Supp) AB

11 Confidence (Tan et al., 2002) (ConMa) MAX(P(B|A), P(A|B))

12 Laplace (Tan et al., 2002) (Lapl) MAX((100 × AB + 1) / (100 × A + 2), (100 × AB + 1) / (100 × B + 2))

13 Conviction (Tan et al., 2002) (Conv) MAX((A × B′) / AB′, (B × A′) / A′B)

14 Interest (Tan et al., 2002) (Inte) AB / (A × B)

15 Cosine (Tan et al., 2002) (Cosi) AB / Sqr(A × B)

16 Piatetsky-Shapiro’s (Tan et al., 2002) (Piat) AB - A × B

17 Certainty Factor (Tan et al., 2002) (Certa) MAX((P(B|A) - B) / (1 - B), (P(A|B) - A) / (1 - A))

18 Added Value (Tan et al., 2002) (Added) MAX(P(B|A) - B, P(A|B) – A)

19 Collective strength (Tan et al., 2002) (Coll) ((AB + A′B′) / (A × B + A′ × B′))
× ((1 - A × B - A′ × B′) / (1 - AB - A′B′))

20 Jaccard (Tan et al., 2002) (Jacc) AB / (A + B - AB)

21 Klosgen (Tan et al., 2002) (Klos) Sqr(AB) × MAX(P(B|A) - B, P(A|B) - A)

22 MI (Tan et al., 2002) Log2(AB / (A × B))

23 STC_MIN (Zamir and Etzioni, 1998) (StcMi) MIN(P(B|A), P(A|B))

24 EMI (Chan, 1999) AB × log(AB / (A × B)) + AB′ × log(AB′ / (A × B′))
 + A′B × log(A′B / (A′ × B)) + A′B′ × log(A′B′ / (A′ × B′))

25 AEMI4 (Chan, 1999) AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′)
- A′B × log(A′B/ A′ × B) + A′B′ × log(A′B′/ A′ × B′)

26 DMAX AB × MAX(P(B|A), P(A|B))

27 DMI AB × log2(AB / (A × B))

28 AEMI3 AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′)
- A′B × log(A′B/ A′ × B)

29 dMIN AB × MIN(P(B|A), P(A|B))

30 dMIN2 1 + AB × log(MIN(P(B|A), P(A|B)))

31 NegativeCosine (Ahonen et al., 1998)
(NegCos) (1 - AB) / Sqr((1 - A) × (1 - B))

32 MutualConfidence (Ahonen et al., 1998)
(MuConf) (AB / A + AB / B) / 2

