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Abstract 

 

Learning Implicit User Interest Hierarchy for Web Personalization 

by 

Hyoung-rae Kim 

Dissertation Advisor: Philip K. Chan, Ph.D. 

 

Most web search engines are designed to serve all users in a general way, without 

considering the interests of individual users. In contrast, personalized web search engines 

incorporate an individual user's interests when choosing relevant web pages to return. In 

order to provide a more robust context for personalization, a user interest hierarchy (UIH) 

is presented.  The UIH extracts a continuum of general to specific user interests from web 

pages and generates a uniquely personalized order to search results.  

This dissertation consists of five main parts. First, a divisive hierarchical clustering 

(DHC) algorithm is proposed to group words (topics) into a hierarchy where more general 

interests are represented by a larger set of words. Second, a variable-length phrase-finding 

(VPF) algorithm that finds meaningful phrases from a web page is introduced. Third, two 

new desirable properties that a correlation function should satisfy are proposed. These 

properties will help understand the general characteristics of a correlation function and help 

choose or devise correct correlation functions for an application domain. Fourth, methods 

are examined that (re)rank the results from a search engine depending on user interests 

based on the contents of a web page and the UIH. Fifth, previously studied implicit 

 iii



indicators for interesting web pages are evaluated. The time spent on a web page and other 

new indicators are examined in more detail as well.  

Experimental results indicate that the personalized ranking methods presented in 

this study, when used with a popular search engine, can yield more relevant web pages for 

individual users. The precision/recall analysis showed that our weighted term scoring 

function could provide more accurate ranking than Google on average. 
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저의 논문을 위해 희생하신 아버지와 어머니의 노고에 비하면 저는 아무것도 

한 것이 없는 것처럼 느껴집니다. 아버지는 새벽기도를 나가시면서 나무를 

심으시면서 매일 기도의 마음을 잊지 않으셨습니다. 어머니는 좋아하시는 미역국도 

삼가시면서 온 마음의 정성을 다 하셨습니다. 또한 공부는 길고 지루한 과정이기 

때문에 습관화가 되지 않으면 그리고 주변의 격려가 없으면 끝까지 견디기가 

어렵다고 생각합니다. 항상 연구하는 자세를 보여주시는 아버지의 생활 습관 그리고 

항상 적극적으로 믿고 지원해 주신 어머니의 격려가 아니었다면 이 논문을 마치기 

힘들었다고 믿습니다. 제 아버님의 성함은 김항남, 어머님은 권성자십니다. 저의 

형제들 또한 마치 바위같이 흔들림없이 묵묵히 참으면서 뒤에서 도와준 것에 감사를 

드립니다. 형제분들은 김미영, 김혜정, 김정래, 확장된 형제로는 장성수, 스퇴킹어 

도미닉, 정래영입니다. 제 작은 아버님들과 어머님들, 그리고 외삼촌분들과 

외숙모님들께도 감사 드립니다. 또한 조카들 장문주, 장혁주, 스퇴킹어 막스에게 

앞으로 여유있는 외삼촌이 되어 주고 싶습니다. 나이로 인해 이젠 몸의 여러부분이 

불편하신 가운데에서도 저의 박사논문을 염려해 주신 외할아버지에게도 

감사드립니다. 마지막으로, 연구가 막힐 때 마다 기도를 통해 아이디어를 

하나님으로부터 제공받았기에, 한편으론 하나님과 생산적인 대화를 즐겼었다고 

봅니다.  
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Chapter 1 

Introduction 

 

Web personalization adapts the information or services provided by a web site to 

the needs of a user. Web personalization is used mainly in four categories: predicting web 

navigation, assisting personalization information, personalizing content, and personalizing 

search results. Predicting web navigation anticipates future requests or provides guidance 

to client. If a web browser or web server can correctly anticipate the next page that will be 

visited, the latency of the next request will be greatly reduced (Eirinaki et al., 2004; Kim et 

al., 2004; Shahabi and Banaei-Kashani, 2003; Cadez et al., 2000). Assisting 

personalization information helps a user organize his or her own information and increases 

the usability of the web (Maarek and Ben-Shaul, 1996; Li et al., 1999). Personalizing 

content focuses on personalizing individual pages, site-sessions (e.g., adding shortcut), or 

entire browsing sessions (Anderson, 2002). Personalized web search results provide 

customized results depending on each user’s interests (Jeh and Widom, 2003; Haveliwala, 

2002; Liu et al., 2003; Bharat and Mihaila, 2001). Information access through a search 

engine has become an essential part of our daily lives. We use a search engine to find 

various information from a cloth to technical references. However, the accuracy of search 

engines is still as low as 55% (Delaney, 2004). In this work, we focus on personalizing 

web search by ordering search engine results based on the interests of each individual user, 

which can greatly aid the search through massive amounts of data on the Internet.  
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1.1. Motivation 

When a user browses the web at different times, s/he could be accessing pages that 

pertain to different topics. For example, a user might be looking for research papers at one 

time and airfare information for conference travel at another. That is, a user can exhibit 

different kinds of interests at different times, which provides different contexts underlying 

a user's behavior. However, different kinds of interests might be motivated by the same 

kind of interest at a higher abstraction level (computer science research, for example). That 

is, a user might possess interests at different abstraction levels — the higher-level interests 

are more general, while the lower-level ones are more specific. During a browsing session, 

general interests are in the back of one's mind, while specific interests are the current foci. 

We believe identifying the appropriate context underlying a user's behavior is important in 

more accurately pinpointing her/his interests. Unlike News Dude (Billsus and Pazzani, 

1999), which generates a long-term and a short-term model of interests, we propose to 

model a continuum of general to specific interests (web browsing interests of a user). The 

model provides concept hierarchical clusters called a user interest hierarchy (UIH), while 

suffix tree clustering (STC) algorithm (Zamir and Etzioni, 1998) provides flat clusters.  

We can improve the UIH by using phrases in addition to words. A composed term 

by two or more single words (called “phrase”) usually has more specific meaning and can 

disambiguate related words. Statistical phrase-finding approaches have been used for 

expanding vector dimensions in clustering multiple documents (Turpin and Moffat, 1999; 

Wu and Gunopulos, 2002), or finding more descriptive or important/meaningful phrases 

(Ahonen et al., 1998; Chan, 1999). We attempt to find more meaningful phrases in a 
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document. The definition of meaningful is unique to each individual. So, we define a 

phrase as more meaningful if it is meaningful to the most people.  

Building UIH, finding phrases, and devising page-scoring functions (in Chapter 5) 

can use correlation functions. The analysis of relationships among variables/events is a 

fundamental task for many data mining problems. There are two types of properties for 

correlation functions: other properties and desired properties of functions. Other properties 

such as inversion invariance are depending on each application domain (Tan et al., 2002). 

One has to examine which properties of other properties are more suitable for his/her 

application domain (Tan and Kumar, 2000). However, the desirable properties can be 

applied to all correlation functions. Before selecting or devising a correlation function, it is 

important to check whether each measure satisfies basic desirable properties of a function 

(Piatetsky-Shapiro, 1991; Tan et al., 2002). We propose two new desirable properties. 

Web personalization adapts the information or services provided by a web site to 

the needs of a user. There are two main techniques for performing web personalization: 

collaborative filtering (Eirinaki et al., 2004; Kim et al., 2004; Cadez et al., 2000) and using 

user profiles (Albanese et al., 2004; Mobasher et al., 1999). Collaborative filtering uses 

information from many different users to make recommendations. Disadvantages of this 

method are that it cannot predict a new page and it requires a large amount of data from 

many users to determine what pages are the most popular. Obtaining data on the web pages 

visited by many different users is often difficult (or illegal) to collect in many application 

domains. In contrast, user profiles require the web page history of only a single user. 

Google (2005) provides personalized services based on explicitly learned user profiles, 

which consumes users’ time and effort. We attempt to personalize the search results using 
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the user profile that is learned implicitly and uses contents of web pages instead of user’s 

behavior (Kim et al., 2004; Albanese et al., 2004). 

A UIH is learned from a set of interesting web pages to a user. Determining a 

user’s interesting web pages can be performed explicitly by asking the user, or implicitly 

by observing the user’s behaviour. Implicit indicators are usually less accurate than explicit 

indicators (Watson et al., 1998). However, implicit indicators do not require any extra time 

or effort from the user and can adapt to changes in the user’s interests over time. To 

implicitly measure user interest we need to identify reliable implicit indicators. One of the 

major user interest indicators identified by researchers is duration, or the time spent on a 

web page (Granka et al., 2004; Jung, 2001; Claypool et al., 2001; Resnick et al., 1994; 

Liberman, 1995; Kim et al., 2001; Oard et al., 1998). However, some researches indicate 

that duration may not be an accurate measure of user interest (Jung, 2001). We suspect that 

this is because the duration indicator often does not account for the user’s absence. We 

examine the duration in more detail and attempt to propose new other indicators. 

 

1.2. Problem Statement 

Our problem consists of three parts as shown in Figure 1: identifying interesting 

web pages, learning user profile, and personalizing search results.  The part of learning 

user profile can be divided into three sub problems: profile-learning, phrase-finding, and 

desirable properties of a correlation function. These five main problems for the framework 

of our web personalization are marked as thick boxes.  

The first problem in our system is learning implicit user interest hierarchy for 

context in personalization. The inputs are the terms (words and phrases) in a set of 
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interesting web pages or bookmarks. The bookmarked web pages are used when it is 

difficult to collect a set of interesting web pages to a user. The output is a learned profile 

called a user interest hierarchy (UIH). We want to devise a method that can learn the UIH 

from bookmarks implicitly. The second problem is identifying variable-length meaningful 

phrases with correlation functions from a web page. The inputs are the words in a 

document. The outputs are meaningful phrases with various lengths. The definition of 

meaningful is unique to each individual. We let each individual define his or her own 

definition of meaningful. So, we define a phrase as more meaningful if it is meaningful to 

the most people. The third problem is about the analysis of desirable properties of 

correlation functions between two events. These properties of correlation functions help 

select a right correlation function in learning a user profile, finding meaningful phrases, 

and scoring interesting web pages. The problem is to find properties that can describe the 

characteristics of correlation functions. The fourth problem is the personalized ranking of 

search results with implicitly learned user interest hierarchies. The inputs are a profile (user 

interest hierarchy) and search results from Google (2005). The outputs will be the 

reordered search results depending on a user’s interests. The goal is to assign higher scores 

to web pages that a user finds more interesting. The last problem is to find implicit 

indicators for interesting web pages. The inputs are web log-files and interest scores of web 

pages provided by a user. The log-files record users’ behavior while they are reading web 

pages. The goal is to find an implicit indicator that could predict the interest score of a web 

page. 
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Figure 1. Five research parts in the framework of web personalization 
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1.3. Approach 

The first main objective of this research is to build UIH’s that capture general to 

specific interests without the user’s involvement (implicitly). The most common and 

obvious solution for building a UIH is for the user to specify interests explicitly. However, 

the explicit approach includes these disadvantages: time and effort in specifying interests, 

and user interest may change over time. Alternatively, an implicit approach can identify a 

user’s interests by inference. Leaf nodes of the UIH generated by our algorithm represent a 

list of specific user interests. Internal nodes (towards root node) represent more general 

interests. For example, a graduate student in computer science is looking for a research 

paper in web personalization. The specific interest is web personalization, but the general 

interest is computer science. The web pages the student is interested could all be related to 

computer science and hence words and phrases from these pages would appear in the root 

node of the UIH. Some of the pages he is interested in could be related to web 

personalization, and the words (e.g., profile, user, and personalization) might be at the leaf 

of the UIH. Between the root and the leaves, “internal” tree nodes represent different levels 

of generality of interest. We devise a divisive hierarchical clustering (DHC) algorithm that 

constructs such a hierarchy and supports overlapping clusters of the original objects (web 

pages in our case). Note that clustering web pages is not one of our objectives; the 

overlapping property allows us to associate a web page to (potentially) multiple topics. We 

believe our approach has significant benefits and possesses interesting challenges.  

Using phrases, in addition to words, we can improve the UIH. A composed term 

by two or more single words (called “phrase”) usually has more specific meaning and can 

disambiguate related words. For instance, “apple” has different meanings in “apple tree” 
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and in “apple computer”. Therefore, we propose a variable-length phrase finding algorithm 

(VPF), which finds more meaningful variable-length phrases. VPF is designed to remove 

the maximum length of phrases in Ahonen’s algorithm (Ahonen et al., 1998) and fix the 

problem in Chan’s algorithm (Chan, 1999). VPF increases the length of phrases by adding 

a word to the phrases made in the previous stage one by one, maintaining high correlation 

within a phrase. VPF also applies pruning to the phrases collected in order to remove less 

meaningful phrases. 

Both divisive hierarchical clustering (DHC) algorithm and variable-length phrase 

finding (VPF) algorithm use correlation functions. It is important to understand the 

characteristics of a correlation function in selecting a correlation function and devising a 

new correlation function. We analyze the previous desirable properties and propose two 

new desirable properties. All possible cases that could be made by two events are 

enumerated and examined. Out of many possible cases, we illustrate that a measure should 

show a consistent pattern in two cases that are new desirable properties of a correlation 

function. We believe that these properties will help understand the general characteristics 

of a measure. 

The UIH can be used to build a method for personalizing web search results that is 

able to reorder the results from Google (2005), such that web pages that a user is most 

interested in appear at the top of the page. We wish to devise a page scoring function with 

a user’s implicitly learned User Interest Hierarchy (UIH). Web pages are ranked based on 

their “score,” where higher scores are considered to be more interesting to the user after 

comparing the text of the page to the user’s profile. For example, if a user searches for 

“Australia” and is interested in “travel,” then links related to “travel” will be scored higher; 
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but if a user is interested in “universities,” then pages related to “universities” will be 

scored higher.  

Implicit indicators for interesting web pages help build a UIH implicitly. We 

compare previous implicit indicators and propose other new implicit indicators. A user’s 

duration on a web page is divided into three types depending on if the browser is open 

(complete duration), if the browser is the active application (active window duration), and 

if the user is looking at the screen (look at it duration). We also study new implicit 

indicators (memo) that have not been evaluated in previous research. We divide the web 

pages visited during our evaluation into two groups: (1) web pages that a user visited more 

than once and viewed for the longest duration, and (2) all web pages that were visited more 

than once. 

 

1.4. Key Contributions 

The main contributions are: 

• we represent user interest hierarchy (UIH) at different abstraction levels (general to 

specific), which can be learned implicitly from the contents (words/phrases) in a 

set of interesting pages to a user; 

• we build a divisive graph-based hierarchical clustering algorithm (DHC), which 

constructs a UIH by grouping words (topics) into a hierarchy instead of flat cluster 

used by STC; 

• we propose a variable-length phrase-finding algorithm (VPF) that is designed for 

finding meaningful phrases – the time complexity remains as O(nw) where nw is the 

number of distinct words in a document; 

• more meaningful phrases than previous methods are found and the improvement in 

performance is statistically significant. 
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• we identify 2 new desirable properties for a correlation function in general; 

• our results indicate that these 2 new desirable properties are more descriptive than 

the previous 3 desirable properties provided in Piatetsky-Shapiro (1991), because 

the previous ones highly depend on cross product ratio (CPR); 

• We introduce personalized ranking methods that utilize an implicitly learned user 

profile (UIH); 

• Our experimental results indicate that Weighted Scoring method can achieve 

higher precision than Google for some top links with interesting and potentially 

interesting web pages to the user; 

• Our experiments indicate that complete duration, active window duration, look at 

it duration, and distance of mouse movement are reliable indicators for more users 

than other indicators; 

 

1.5. Dissertation Organization 

The rest of this dissertation is organized as follows. In Chapter 2 through 6, we 

introduce 5 problems of our web personalization architecture. These five parts are learning 

implicit user interest hierarchy for context in personalization (Kim and Chan, 2003), 

identifying variable-length meaningful phrases with correlation functions (Kim and Chan, 

2004), analysis of desirable properties of correlation functions between two events, 

personalized ranking of search results with implicitly learned user interest hierarchies, and 

implicit indicators for interesting web pages. In Chapter 2, we introduce user interest 

hierarchies (UIH’s) and detail our approach towards building an implicit UIH’s. Our 

empirical evaluation regarding the meaningfulness of a UIH is discussed. In Chapter 3, we 

provide the detailed description of our variable-length phrase-finding algorithm (VPF). 

Every iteration a word is added to the phrases generated in a previous stage when the 

correlation value between them is higher than a threshold. This algorithm does not request 
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any user-defined parameters. The performance of the algorithm will be evaluated by 

experimental result. In Chapter 4, two new desirable properties of correlation functions are 

proposed. The experimental comparisons with previous three desirable properties are 

discussed. In addition to proposing two new properties, we summarize the characteristics 

of 32 correlation functions based on those properties. In Chapter 5, we incorporate UIHs to 

the personalization of web search results. Scoring functions are introduced that calculates 

the public and personal page score of a web page in the web search results. The function 

uses four characteristics for a term: the level of a node where a term belongs to (D), the 

length of a term (L), the frequency of a term (F), and the html formatting used for the 

emphasis of a term (E). The results will be evaluated empirically. In Chapter 6, we learn 

implicit indicators for interesting web pages to a user and propose more predictable 

implicit indicators. Some indicators are used frequently and some less frequently. We test 

both types of implicit indicators empirically. In Chapter 7, we review the areas of web 

information retrieval, user modeling, and machine learning. In Chapter 8, we summarize 

our contributions and discuss limitations and future work. 
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Chapter 2 

Learning Implicit User Interest Hierarchy  

for Context in Personalization 

 

To provide a more robust context for personalization, we desire to extract a 

continuum of general to specific interests of a user, called a user interest hierarchy (UIH). 

The higher-level interests are more general, while the lower-level interests are more 

specific. A UIH can represent a user’s interests at different abstraction levels and can be 

learned from the contents (words/phrases) in a set of web pages bookmarked by a user. We 

propose a divisive hierarchical clustering (DHC) algorithm to group words (topics) into a 

hierarchy where more general interests are represented by a larger set of words. Our 

approach does not need user involvement and learns the UIH “implicitly.” To enrich 

features used in the UIH, we used phrases in addition to words.  
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Figure 2. Learning user interest hierarchy in the framework of web personalization 
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2.1. User Interest Hierarchy 

A user interest hierarchy (UIH) organizes a user’s general to specific interests. 

Towards the root of a UIH, more general (passive) interests are represented by larger 

clusters of words while towards the leaves, more specific (active) interests are represented 

by smaller clusters of words. To generate a UIH for a user, our clustering algorithm (details 

in Section 4) accepts a set of web pages bookmarked by the user as input. That is, the input 

of DHC is web pages that are interesting to a user. We use the words and phrases in the 

web pages and ignore link or image information. The web pages are stemmed and filtered 

by ignoring the most common words listed in a stop list (Rasmussen, 1992). The phrases 

are extracted by VPF algorithm (Kim and Chan, 2004). These processes are depicted in 

Figure 2.  
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Table 1. Sample data set 

Web Content
1 ai machine learning ann perceptron
2 ai machine learning ann perceptron
3 ai machine learning decision tree id3 c4.5
4 ai machine learning decision tree id3 c4.5
5 ai machine learning decision tree hypothesis space
6 ai machine learning decision tree hypothesis space
7 ai searching algorithm bfs
8 ai searching algorithm dfs
9 ai searching algorithm constraint reasoning forward

10 ai searching algorithm constraint reasoning forward
 

ai, machine, learning, ann, perceptron, decision, tree, id3, c4.5, 
hypothesis, space, searching, algorithm, bfs, dfs, constraint, 

reasoning, forward, checking 

machine, learning, ann, perceptron, 
decision, tree, id3, c4.5, 

hypothesis 

searching, algorithm, 
bfs, dfs, constraint, 

reasoning,  
forward, checking 

constraint, reasoning,  
forward, checking 

ann, 
perceptron, 

decision, tree, id3, 
c4.5, hypothesis, 

space 
 

Figure 3. Sample user interest hierarchy 

 

Table 1 contains a sample data set. Numbers on the left represent individual web 

pages; the content has words stemmed and filtered through the stop list. These words in the 

web pages can be represented by a UIH as shown in Figure 3. Each cluster, node, can 

represent a conceptual relationship, for example ‘perceptron’ and ‘ann’ (in italics) can be 

categorized as belonging to neural network algorithms, whereas ‘id3’ and ‘c4.5’ (in bold) 

in another node cannot. Words in these two nodes are mutually related to some other words 

such as ‘machine’ and ‘learning’. This set of mutual words, ‘machine’ and ‘learning’, 
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performs the role of connecting italic and bold words in sibling clusters and forms the 

parent cluster. We illustrate this notion in the dashed box in Figure 3. 

One can easily identify phrases like “machine learning” and “searching algorithm” 

in the UIH, however only the individual words are represented in the UIH.  By locating 

phrases from the pages, we can enrich the vocabulary for building the UIH.  For example, 

the phrase “machine learning” can be identified and added to Pages 1-6. If we can use 

phrases as feature in the UIH, each cluster will be enriched because phrases are more 

specific than words. For example, a user is interested in both phrases “java coffee” and 

“java language”. The word “java” will be in the parent cluster of both “coffee” and 

“language”. Each child cluster would contain only “coffee” or “language”, which is 

relatively less useful when not in combination with “java”. 

The approach we take to generate the hierarchy is similar to clustering pages, but 

pages may belong to multiple clusters – overlapping clusters of pages. That is, instead of 

directly clustering the original objects (web pages), we first cluster features (words) of the 

objects and then the objects are assigned to clusters based on the features in each cluster. 

Note that a document can have terms in different clusters, hence, a document can be in 

more than one cluster. Since the more challenging step is the initial hierarchical clustering 

of features, our primary focus for this Chapter is on devising and evaluating algorithms for 

this step. 
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2.2. Building User Interest Hierarchy 

We desire to learn a hierarchy of interest topics from a user’s web pages 

bookmarked by a user, in order to provide a context for personalization. Our divisive 

hierarchical clustering (DHC) algorithm recursively partitions the words into smaller 

clusters, which represent more related words. We assume words occurring close to each 

other (within a window size) are related to each other. We investigate correlation functions 

that measure how closely two words are related in Section 4.2. We also investigate 

techniques that dynamically locate a threshold that decides whether two words are strongly 

related or not in Section 4.3. If two words are determined to be strongly related to each 

other, they will be in the same cluster; otherwise, they will be in different clusters. 

 

2.2.1. Algorithm 

Our algorithm is a divisive graph-based hierarchical clustering method called 

DHC, that recursively divides clusters into child clusters until it meets the stopping 

conditions. In preparation for our clustering algorithm, we extract words from web pages 

that are interesting to the user, filter them through a stop list, and stem them (Rasmussen, 

1992). Figure 4 illustrates the pseudo code for the DHC algorithm. Using a correlation 

function, we calculate the strength of the relationship between a pair of words in line 1. 

After calculating a threshold to differentiate strong correlation values from weak 

correlation in line 2, we remove all weak correlation values in line 5. We then build a 

weighted undirected graph with each vertex representing a word and each weight denoting 

the correlation between two words. Since related words are more likely to appear in the 
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same document than unrelated terms, we measure co-occurrence of words in a document. 

Given the graph, called a CorrelationMatrix, the clustering algorithm recursively 

partitions the graph into sub-graphs, called Clusters, each of which represents a sibling 

node in the resulting UIH in line 6.  

At each partitioning step, edges with “weak” weights are removed and the 

resulting connected components constitute sibling clusters (we can also consider cliques as 

clusters, but more computation is required). We treat the determination of what value is 

considered to be “strong” or “weak”, as another clustering. The recursive partitioning 

process stops when one of the stopping criteria is satisfied. The first criterion is when the 

current graph does not have any connected components after weak edges are removed. The 

second criterion is a new child cluster is not formed if the number of words in the cluster 

falls below a predetermined threshold.  
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Cluster: distinct words in a set of interesting web pages to a user 
 of web page membership] [with information

CORRELATIONFUNCTION: Calculates the "closeness" of two words. 
FINDTHRESHOLD: Calculates the cutoff value for determining strong 

 correlation values. and weak
WindowSize: The maximum distance (in number of words) between two 

related words in calculating their correlation value. 
 
Procedure DHC (Cluster,CORRELATIONFUNCTION,FINDTHRESHOLD,WindowSize) 
1.  CorrelationMatrix ← CalculateCorrelationMatrix 

(CORRELATIONFUNCTION, Cluster, WindowSize) 
2.  Threshold ← CalculateThreshold(FINDTHRESHOLD, CorrelationMatrix) 
3.  If all correlation values are the same or a threshold is not 

found 
4.     Return EmptyHierarchy 
5.  Remove weights that are less than Threshold from 

CorrelationMatrix 
6.  While (ChildCluster←NextConnectedComponent (CorrelationMatrix)) 
7.     If size of ChildCluster >= MinClusterSize 
8.        ClusterHierarchy←ClusterHierarchy + ChildCluster + 
             DHC(ChildCluster,CORRELATIONFUNCTION,FINDTHRESHOLD, 

WindowSize) 
9. Return ClusterHierarchy 
End Procedure 

 
 

Figure 4. DHC algorithm 
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Suppose we built a weighted undirected graph with the running example in Table 1 

where each vertex represents a word and each weight (value) denotes the correlation value. 

The undirected graph can be depicted as shown in a) in Figure 5 and Figure 6 – the left 

column shows graph partitioning and the right column represents the corresponding tree. 

We presented only some vertices and edges as shown in a). Once a threshold for 

differentiating “strong” edges from “weak” edges is calculated by using a Findthreshold 

method, we can remove weak edges – those removed edges are represented as dashed lines. 

After removing weak edges, DHC finds connected components, which is shown in b). If 

the number of elements in a cluster is greater than the minimum number of elements in a 

cluster (e.g., 4), then the correlation values are recalculated and the algorithm repeats the 

process of removing “weak” edges as shown in c). Since DHC recursively partitions the 

graph into subgraphs, called Clusters, the final result becomes hierarchical clusters as 

shown in d). 

The CalculateCorrelationMatrix function takes a correlation function, cluster, and 

window size as parameters and returns the correlation matrix, where the window size 

affects how far two words (the number of words between two words) can be considered as 

related. The CalculateThreshold function takes a threshold-finding method and correlation 

matrix as parameters and returns the threshold. The correlation function (Sec. 4.2) and 

threshold-finding method (Sec. 4.3) greatly influence the clustering algorithm, and are 

discussed next. .  
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Figure 5. An example of DHC algorithm (1) 
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Figure 6. An example of DHC algorithm (2) 
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2.2.2. Correlation Functions 

The correlation function calculates how strongly two words are related. Since 

related words are likely to be closer to each other than unrelated words, we assume two 

words co-occurring within a window size are related to each other. To simplify our 

discussion, we have been assuming the window size to be the entire length of a document. 

That is, two words co-occur if they are in the same document. These functions are used in 

CalculateCorrelationMatrix function in Figure 4. 

 

2.2.2.1. AEMI 

We use AEMI (Augmented Expected Mutual Information) (Chan, 1999) as a 

correlation function. AEMI is an enhanced version of MI (Mutual Information) and EMI 

(Expected Mutual Information). Unlike MI which considers only one corner of the 

contingency matrix and EMI which sums the MI of all four corners of the contingency 

matrix, AEMI sums supporting evidence and subtracts counter-evidence. Chan (1999) 

demonstrates that AEMI could find more meaningful multi-word phrases than MI or EMI. 

Concretely, consider A and B in AEMI (A,B) are the events for the two words. )( aAP =  

is the probability of a document containing a and )( aAP =  is the probability of a 

document not having term a. )( bBP = and )( bBP =  is defined likewise. ),( bBaAP ==  

is the probability of a document containing both terms a and b. These probabilities are 

estimated from documents that are interesting to the user. AEMI (A,B) is defined as: 

∑
====

−=
),)(,( )()(

),(log),(
)()(

),(log),(),(
bBaAbBaA BPAP

BAPBAP
bPaP

baPbaPBAAEMI  
Eq. 1 
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The first term computes supporting evidence that a and b are related and the 

second term calculates counter-evidence. Using our running example in Figure 3, Table 2 

shows a few examples of how AEMI values are computed. The AEMI value between 

‘searching’ and ‘algorithm’ is 0.36, which is higher than the AEMI value between ‘space’ 

and ‘constraint’, –0.09. 

 

Table 2. AEMI values 

)(aP  )(aP  )(bP  )(bP  )(abP  ) ( baP )( baP AEMI(a,b) 

a = searching, b = algorithm 

0.4 0.6 0.4 0.6 0.4 0 0 0.36 
a = space, b = constraint

0.2 0.8 0.2 0.8 0 0.2 0.6 -0.09 
a = ann, b = perceptron

0.2 0.8 0.2 0.8 0.2 0 0 0.32 
 

2.2.2.2. AEMI-SP 

Inspired by work in the information retrieval community, we enhance AEMI by 

incorporating a component for inverse document frequency (IDF) in the correlation 

function. The document frequency of a word calculates the number of documents that 

contain the word. Words that are commonly used in many documents are usually not 

informative in characterizing the content of the documents. Hence, the inverse document 

frequency (the reciprocal of document frequency) measures how informative a word is in 

characterizing the content. Since our formulation is more sophisticated than IDF and it 

involves a pair of words rather than one word in IDF, we use a different name and call our 

function specificity (SP). 
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We estimate the probability of word occurrence in documents instead of just 

document frequency so that we can scale the quantity between 0 and 1. We desire to give 

high SP values to words with a probability below 0.3 (approximately), gradually 

decreasing values from 0.3 to 0.7, and low values above 0.7. This behavior can be 

approximated by a sigmoid function, commonly used as a smoother threshold function in 

neural networks, though ours needs to be smoother. SP(x) is defined as: 1/(1 + exp(0.6 × (x 

× 10.5 – 5))), where x is defined as: MAX (P(a), P(b)) - we choose the larger probability so 

that SP is more conservative. The factor 0.6 smoothes the curve, and constants 10.5 and –5 

shift the range of x from between 0 and 1 to between -5 and 5.5. The new range of -5 and 

5.5 is slightly asymmetrical because we would like to give a small bias to more specific 

words. For instance, for a = ‘ann’ and b = ‘perceptron’, x is 0.2 and SP(x) is 0.85, but for 

a=‘machin’ and b=‘ann’, x is 0.6 and SP(x) is 0.31.  

Our correlation function AEMI-SP is defined as: AEMI × SP/2. The usual range 

for AEMI is 0.1–0.45 and SP is 0–1. To scale SP to a similar range as AEMI, we divide SP 

by 2. For example, in Table 3 the AEMI-SP value for ‘searching’ and ‘algorithm’ is lower 

than the value for ‘ann’ and ‘perceptron’ because the SP value for ‘ann’ and ‘percetpron’ is 

higher even though the AEMI value is lower. 

 
Table 3. AEMI-SP values 

AEMI SP AEMI-SP
a = searching 
b = algorithm 0.36 0.62 0.113 

a = ann 
b = perceptron 0.32 0.85 0.137 
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2.2.2.3. Other Correlation Functions 

We also investigated other existing correlation functions. The Jaccard function 

(Rasmussen, 1992) is defined as: 
)(

),(
baP

baP
∪

. When a word describes a more general topic, we 

expect it to occur quite often and appear with different, more specific words. Hence, we 

desire general (“connecting”) words to exist only at higher levels in the UIH. For example, 

‘ai’ is general and preferably should not appear at the lower levels. Using our running 

example in Figure 3, the Jaccard value between ‘ai’ and ‘machine’ is 0.6 and the value 

between ‘ai’ and ‘search’ is 0.5. If the threshold is 0.49, both pairs are in the same cluster 

and ‘ai’ may perform the role to connect ‘machine’ and ‘search’. Even if the threshold is 

0.55, ‘ai’ still remains in the child cluster with ‘machine’ (since their correlation value is 

over the threshold) - which is a wrong decision. This phenomenon tells us the Jaccard 

function is not proper for making hierarchical clusters.   

The MIN method in STC (Zamir and Etzioni, 1998) can be defined as MIN(P(a|b), 

P(b|a)). The idea is that if we assign the same correlation value to connected words and 

connecting words, they would go together. For instance, ‘ai’ connects ‘machine’ and 

‘searching’, so they are grouped together in one cluster. However, when they are divided 

into child clusters, ‘ai’ should be removed because ‘ai’ is too general. But MIN 

(P(‘ai’|’machine’), P(‘machine’|’ai’)) still yields a relatively higher value than the average. 

Alternatively, the MAX function, MAX(P(a|b),P(b|a)), does not distinguish the value for 

‘ai’ and ‘machine’, and the value for ‘machine’ and ‘learning’, even though the latter pair 

has a much stronger relationship. Since Jaccard, MIN, and MAX did not generate desirable 

cluster hierarchies, we excluded them from further experiments. 
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2.2.3. Threshold-finding Methods 

Instead of using a fixed user-provided threshold (as in STC (Zamir and Etzioni, 

1998)) to differentiate strong from weak correlation values between a pair of words, we 

examine methods that dynamically determine a reasonable threshold value. Weights with a 

weak correlation are removed from CorrelationMatrix and child clusters are identified. 

 

Table 4. Distribution of frequency and number of children 

Region Range Freq. # of Children
0 0.27 <= x < 0.28 16 Not counted
1 0.28 <= x < 0.29 0 Not counted
2 0.29 <= x < 0.30 0 Not counted
3 0.30 <= x < 0.31 1 Not counted
4 0.31 <= x < 0.32 0 Not counted
5 0.32 <= x < 0.33 13 6
6 0.33 <= x < 0.34 0 1
7 0.34 <= x < 0.35 0 1
8 0.35 <= x < 0.36 0 1
9 0.36 <= x 2 Not applicable

 
 

  

 

 

 

 

 

 

Figure 7. Shown in a Histogram 
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2.2.3.1. Valley 

To determine the threshold, we would like to find a sparse region that does not 

have a lot of similar values. That is, the frequency of weights in that region is low. We first 

determine the highest observed and lowest desirable correlation values, and quantize the 

interval into ten regions of equal width. The lowest desirable correlation value is defined as 

the value achieved by a pair of words that occur together only in one document. We then 

determine the frequency of values in each region. Generally, lower weights have a higher 

frequency and higher weights have a lower frequency. If the frequency monotonically 

decreases with regions of higher weights, picking the region with the lowest frequency will 

always be the region with the highest weights. If, unfortunately, the threshold is too high, 

then too many edges will be cut. In this case, the threshold is set to be the average plus 

standard deviation (biasing to remove more edges with lower weights).  

However, if the frequency does not decrease monotonically, we attempt to identify 

the “widest and steepest” valley. A valley is defined as any region where the frequency 

decreases and then increases. Steepness can be measured by the slopes of the two sides of a 

valley and the width of how many regions the valley covers. Since the regions are of equal 

width, we calculate “quality” of a valley by:∑ −
ji ji freqfreq

,
, where i and j are successive 

regions on the two sides of a valley. Once the widest and steepest valley is located, we 

identify the threshold in the region that constitutes the bottom (lowest frequency) of the 

valley. 

For example, in Table 4, the first column is the id of each region, the second 

column is the range of correlation values, the third column is the number of values resides 

in each region, and the last column is the number of child nodes that can be generated with 

 



the lowest value in each range as a threshold. There are three valleys when a histogram is 

drawn like Figure 7: one from Region 0 through 3, (quality is 17), another one from 

Region 3 through 5, (quality is 14), and the last one is from Region 5 through 9, (quality is 

15). Therefore, the widest and steepest valley is the first valley and its bottom is in Regions 

1 and 2, which is shown in Figure 8. To identify the threshold inside the bottom region, we 

ignore the frequency information and find two clusters of correlation values. In this case, it 

is a one-dimensional two-cluster task, which can be accomplished by sorting the weights 

and splitting at the largest gap between two successive weights (Largest gap). In our 

example, since the bottom has zero frequency, any value between .28 and .30 can be the 

threshold. If the bottom does not have zero frequency, we recursively divide the bottom 

until the frequency is zero. 

 

2.2.3.2. MaxChildren 

The MaxChildren method selects a threshold such that maximum of child clusters 

are generated. This way we divide the strongly correlated values from weakly correlated 

ones. This also ensures that the resulting hierarchy does not degenerate to a tall and thin 

tree (which might be the case for other methods). This preference also stems from the fact 

that topics are generally more diverse than detailed and the library catalog taxonomy is 

typically short and wide. For example, we want the trees in Figure 3 to be shorter and 

wider. MaxChildren calculates the number of child clusters for each boundary value 

between two quantized regions. To guarantee the selected threshold is not too low, this 

method ignores the first half of the boundary values. For example, in Table 4, the boundary 

value 0.33 (between Regions 5 and 6) generates the most children and is selected as the 

 



threshold. This method recursively divides the selected best region until there are no 

changes on the number of child clusters. 

 

2.2.3.3. Other Threshold-finding Methods 

There are some other threshold-finding methods that we initially studied but found 

to be inferior to Valley or MaxChildren, and subsequently are not included in this Chapter. 

LargestGap sorts the values and split at the largest gap between two successive values (this 

method can be used in the Valley method after the bottom of the largest valley is found). 

Again this is motivated by trying to form two clusters in a one-dimensional space. 

However, in our initial experiments, the largest gap is close to the largest observed value 

and thus the resulting tree is usually too small. To prevent the threshold from being too 

large, Top30% method selects a threshold that retains values in the top 30%. However, this 

method generates tall and thin trees. To retain ‘abnormally’ large values of a threshold, we 

also studied Average+StandardDeviation, in order to select a threshold larger than the 

average. This is later combined into the Valley method. 

 

2.2.4. Window Size and Minimum Size of a Cluster 

The window size parameter specifies the maximum ‘physical’ distance (in terms of 

number of words) between a pair of words for consideration of co-occurrence. We have 

been using the entire document length as the window size to simplify our discussion. 

However, considering two words occurring in the same page as related might be too 

optimistic. Hence, we investigated smaller window sizes that roughly cover a paragraph 

(e.g., 100 words) or a sentence (e.g., 15 words). However, in our experiments the window 

 



size does not make a significant difference. And, the minimum size of a cluster affects the 

number of clusters. A larger number of clusters makes the hierarchy less comprehensible 

and requires more computation. We picked 4 as the minimum size of a cluster, because this 

number of words can represent a concept that is sufficiently specific. 

 

2.3. Experiments 

We will evaluate the UIH itself to see if it is meaningful using real data. The 

quality of the UIH will also describe the performance of DHC. We then compared user 

interest hierarchies using different methods. Furthermore, we compared the quality of 

UIHs of which one uses words only and the other includes phrases. 

 

2.3.1. Experimental Data and Procedures 

Experiments were conducted on data obtained from our departmental web server. 

By analyzing the server access log from January to April 1999, we identified hosts that 

were accessed at least 50 times in the first two months and also in the next two months. We 

filtered out proxy, crawler, and our computer lab hosts, and identified “single-user” hosts, 

which are at dormitory rooms and a local company (Chan, 1999). We yielded 13 different 

users and collected the web pages they visited. The total pages that we used were around 

1400 files and most of the pages contained regular contents such as no media biased files. 

The number of words on the web pages was on the average 1,918 – minimum number of 

words was 340, and maximum was 3,708. To find phrases we used variable-length phrase 

finding algorithm (VPF) (Kim and Chan, 2004) because it finds more meaningful phrases 

 



than other methods (Chan, 1999; Ahonen et al., 1998). We evaluated the effectiveness of 

our algorithms by analyzing the generated hierarchies in terms of meaningfulness and 

shape. Separate experiments were conducted to evaluate the effectiveness of different 

correlation functions, threshold-finding methods, and window sizes. In order to remove the 

researcher’s bias, we randomly reordered whole clusters from all approaches, before we 

evaluate each cluster. 

 

2.3.2. Evaluation Criteria 

To evaluate a UIH, we use both qualitative and quantitative measures. 

Qualitatively, we examine if the cluster hierarchies reasonably describe some topics 

(meaningfulness). Quantitatively, we measure shape of the cluster trees by calculating the 

average branching factor (ABF) (Russell and Norvig, 1995). ABF is defined as the total 

number of branches of all non-leaf nodes divided by the number of non-leaf nodes. 

We categorized meaningfulness as ‘good’, ‘bad,’ or ‘other’. Since the leaf clusters 

should have specific meaning and non-leaf clusters are hard to interpret due to their size, 

we only evaluated the leaf clusters for meaningfulness. Our measure is based on 

interpretability and usability (Han, 2001). So, we check two properties of the leaf clusters: 

the existence of related words, and possibility of combining words. For instance, for 

related words, consider ‘formal’, ‘compil’, ‘befor’, ‘graphic’, ‘mathemat’, and ‘taken’ are 

in a cluster, even though ‘befor’ and ‘taken’ do not have any relationship with the other 

words. Since the words, ‘formal’, ‘compil’, ‘graphic’, and ‘mathemat’, are classified as 

class names related to computer science major, this cluster is evaluated as ‘good’. For the 

possibility of combining words, consider ‘research’, ‘activ’, ‘class’, and ‘web’ are in a 

 



cluster. In this case, the meaning of the cluster can be estimated as ‘research activity’ or 

‘research class’ (Zamir and Etzioni, 1999), so we regard this cluster as ‘good’. A cluster is 

marked as ‘good’ when it has more than 2/5 of the words that are related or have more than 

2 possible composite phrases as well. This is hard to measure, so we attempted to be as 

skeptical as possible. For example, suppose a cluster has ‘test’, ‘info’, ‘thursdai’, ‘pleas’, 

‘cours’, ‘avail’, and ‘appear’. In this case one can say ‘test info’ or ‘cours info’ are possible 

composite phrases, but ‘test info’ does not have any conceptual meaning in our opinion, so 

we did not count that phrase. If a cluster contains less then 15 words and does not satisfy 

the criteria for ‘good’ cluster, it is marked as ‘bad’. A cluster is marked as ‘other’ when a 

leaf cluster has more than 15 words because a big leaf cluster is hard to interpret. 

We categorized shape as ‘thin’, ‘medium,’ or ‘fat’. If a tree’s ABF value is 1, the 

tree is considered a ‘thin’ tree (marked as ‘T’ in the following tables). If the ABF value of 

a tree is at least 10, the tree is considered a ‘fat’ tree (marked as ‘F’). The rest are 

‘medium’ trees (marked as ‘M’). We consider one more tree type: ‘conceptual’ tree 

(marked as ‘C’), which subsumes ‘M’ or ‘F’ type trees. A conceptual tree is one that has at 

least one node with more than two child clusters and more than 80% of the words in each 

child cluster have similar meaning. Since we prefer a tree that can represent meaningful 

concepts, ‘C’ type trees are the most desirable. ‘T’ type trees are degenerate (imagine each 

node in the hierarchy has only one child and the hierarchy resembles a list, which is usually 

not how concepts are organized) and hence undesirable. Based on these evaluation criteria, 

we analyze different correlation functions, threshold-finding methods and window sizes. 

 



2.4. Results and Analysis 

In this section we analyze the results from the DHC. We first evaluate the DHC 

algorithm with only words as features. Then, we compare the results from DHC using only 

words and the combination of words and phrases as features.  

 

2.4.1. Building UIH with Only Words as Features 

2.4.1.1. Correlation Functions 

We compared two correlation functions: AEMI versus AEMI-SP. We fixed the 

threshold-finding method to Valley and the window size to ‘entire page.’ Table 5 and 

Table 6 illustrate the results. The letter ‘U’ stands for user, ‘# of L’ means the number of 

leaf nodes. ‘G %’ means ‘percentage of good’, which is calculated by dividing the number 

of ‘good’ leaves by the ‘# of L’. AEMI yielded significantly more meaningful leaf clusters 

(59% good) than AEMI-SP (41% good). The means of the two groups were significantly 

different from each other according to the t-test at level 0.05 (Lind et al., 2002). Both 

methods generated trees whose shapes were mostly ‘medium’. For U8, AEMI generated a 

conceptually related tree ― the tree had a node with two child clusters, which contained 

words from course titles and hence represented the concepts of different classes. For U2 

with AEMI-SP, the generated tree was ‘fat’ and had an ABF value of 10. 

 

 



2.4.1.2. Threshold-finding Method 

We compared two threshold-finding methods: Valley versus MaxChildren. We 

fixed the correlation function to AEMI and the window size to entire page. Table 5 and 

Table 7 illustrate the results. MaxChildren generated more meaningful leaf clusters (59% 

good) than Valley (47% good). However, the means of two groups were not statistically 

different from each other according to the t-test at level 0.05. Tree shapes are similar 

(medium) in both methods. However, generally, trees generated by MaxChildren were 

shorter, which indicates that MaxChildren reduces the number of iterations in the DHC 

algorithm by dividing the cluster in an early stage. Hence, MaxChildren is faster than 

Valley. 

 

2.4.1.3. Window Size 

We compared the performance using different window sizes: ‘entire page’ versus 

100 words (paragraph length). We fixed the correlation function to AEMI and the 

threshold-finding method to MaxChildren. Table 5 and Table 8 illustrate the results. A 

window size of the entire page generated slightly more meaningful clusters (59% good) 

than a window size of 100 (57% good). However, a window size of 100 yielded more tress 

with 100% ‘good’ leaf clusters (6) than a window size of the entire page (5). Hence, it is 

not clear which window size produces more meaningful clusters. Both methods resulted in 

‘medium’ trees. A window size of 100 generated one thin tree for U11. The ‘T’ tree in 

Table 8 has only two nodes: the root and one leaf. 

 



Table 5. Combination of AEMI, MaxChildren, and entire page 

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum 
# of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59 
Good 3 2 2 5 3 2 2 6 3 2 1 3 1 35 
Bad 1 2 1 1 1 2   1 6 7 1 1 24 

Other              0 
G % 75 50 67 83 75 50 100 100 75 25 13 75 50 59 
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2  
Shape M M M M M M M C M M M M M  

 

Table 6. Combination of AEMI-SP, MaxChildren, and entire page 

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum 
# of L 10 10 5 10 9 7 7 5 10 13 17 8 4 115 
Good 2 6 1 3 3 3 3 3 4 5 6 4 4 47 
Bad 8 4 4 7 6 4 2 2 4 5 8 4  58 

Other       2  2 3 3   10 
G % 20 60 20 30 33 43 43 60 40 38 35 50 100 41 
ABF 2.8 10 2.3 3.3 3 3 2.5 3 4 2.7 2.8 3.3 2.5  
Shape M F M M M M M M M M M M M  

 

Table 7. Combination of AEMI, Valley, and entire page 

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum 
# of L 6 6 4 6 5 5 4 3 3 8 11 4 7 72 
Good 4 4 1 5 2 3 4 1 1 1 2 3 3 34 
Bad 2 1 3 1 2 2  2 2 7 7 1 4 34 

Other  1   1      2   4 
G % 67 67 25 83 40 60 100 33 33 13 18 75 43 47 
ABF 2.7 2 2 2.7 2.3 2.3 2 2 3 2.5 2.4 2.5 2.5  
Shape M M M M M M M M M M M M M  

 

Table 8. Combination of AEMI, MaxChildren, and 100 words 

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum 
# of L 5 2 12 9 4 4 2 7 8 13 1 6 4 77 
Good 5 2 3 5 4 3 2 7 3 2 1 3 4 44 
Bad   8 4  1   5 11  3  32 

Other   1           1 
G % 100 100 25 56 100 75 100 100 38 15 100 50 100 57 
ABF 3 2 4.7 3.7 2.5 2.5 2 3 3.3 3.4 1 3.5 4  
Shape M M M M M M M M M M T M M  

 



2.4.2. Building UIH with Words and Phrases as Features 

If we can add phrases as feature in the UIH, each cluster will be enriched because 

phrases are more specific than words. We compared two different data sets: one consisting 

of only words and the other consisting of words and phrases – the phrases were collected 

by VPF (Kim and Chan, 2004). Table 5 and Table 9 illustrate the results. Results from the 

data with phrases presented more meaningful leaf clusters (64%) than results with only 

words (59%). Tree shapes were similar (medium) in both methods.  

UIHs learned from a user (U1) are depicted in Figure 9 and Figure 10. The one 

from only words has three ‘good’ leaf clusters (1, 3, and 4) and one ‘bad’ leaf cluster (5). 

Cluster 0 denotes root nodes, which has all words or phrases. The right one which is 

learned from both words and phrases has all ‘good’ clusters; furthermore, it is more 

descriptive because Clusters 6 and 7 in Figure 10 describe class names while cluster 3 in 

Figure 9 alone describes class names. We can say Clusters 6 and 7 in Figure 10 are 

conceptually related because both are class names. We cannot explain why some specific 

interests in one UIH do not exist in the other UIH. For example, Clusters 4 in Figure 9 

showed that the user (U1) was interested in a Master or Doctoral degree program, but the 

interest in Master degree did not exist in the UIH in Figure 10. 

 



 

Table 9. Use words and phrases 

User U1 U2 U3 U4 U5 U6 U7 U8 U9 U10U11U12U13 Sum 
# of L 6 2 13 8 4 5 3 10 8 15 1 6 4 85 
Good 6 2 3 4 2 4 3 10 5 8 1 2 4 54 
Bad   9 4 2 1   3 7  4  30 

Other   1           1 
G % 100 100 23 50 50 80 100 100 63 53 100 33 100 64 
ABF 3.5 2 5 3.4 2.5 3 2 5.5 3.4 3.8 1 3.5 4  
Shape C M M M M M M C M M T M M  
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Figure 10. UIH with words and phrases 



2.5. Summary 

To create a context for personalization, we proposed establishing a user interest 

hierarchy (UIH) that can represent a continuum of general to specific interests from a set of 

web pages interesting to a user. This approach is non-intrusive and allows web pages to be 

associated with multiple clusters/topics. We proposed our divisive hierarchical clustering 

(DHC) algorithm and evaluated it based on data obtained from 13 users on our web server. 

We also introduced correlation functions and threshold-finding methods for the clustering 

algorithm. Our empirical results suggested that DHC with the AEMI correlation function 

and the MaxChildren threshold-finding method yielded more meaningful leaf clusters. In 

addition, by using phrases found by VPF algorithm, we improved performance up to 64% 

of interpretable clusters. We did not analyze differences among the UIHs’ obtained from 

various users because of the large numbers of web pages used in our experiments. Results 

from experiments not reported here indicated that stemmed words were more effective than 

whole words. The minimum cluster size affected the number of leaf clusters; size 4 was 

easy to use and seemed to produce reasonable results.  

The performance of the DHC algorithm varied depending on a user and the articles 

selected. We currently do not understand the reason for the variance in performance. We 

assume this is due to intrinsic characteristics of a user and an article. 

 

 



Chapter 3 

Identifying Variable-Length Meaningful 

Phrases with Correlation Functions 

 

Finding phrases in a document has been studied in various information retrieval 

systems to improve their performance. Many previous statistical phrase-finding methods 

had a different aim such as document classification. Some are hybridized with statistical 

and syntactic grammatical methods; others use correlation heuristics between words. We 

propose a new phrase-finding algorithm that adds correlated words one by one to the 

phrases found in the previous stage, maintaining high correlation within a phrase. The 

inputs are words in a document and the outputs are phrases collected. These processes are 

depicted in Figure 11 with thicker features. 
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3.1. Variable-length Phrases 

Our algorithm consists of two components: the main algorithm and the correlation 

function. In preparation for VPF, we extract words from a web page visited by the user, 

filter them through a stop list, and stem them (Ahonen et al., 1998; Chan, 1999; Frakes and 

Baeza-Yates, 1992; Zamir and Etzioni, 1998). Other phrase-finding algorithms also require 

these pre-processing steps. 

 

3.1.1. VPF Algorithm 

Our algorithm adds words one by one to the phrases found in a previous stage – 

each stage corresponds to each recursion in the VPF algorithm. One might insist that each 

phrase P{l} of length l has the form P{l-1}w, where w is one word and P{l-1} is a phrase 

of length l-1. Since the phrase P{ l-1}w is defined by the correlation between P{l-1} and 

w, it is possible that the correlation exists between a non-phrase P{l-1} and a word w. That 

is, P{l-1} is not a phrase, but can be extended into a phrase of length l. If this is possible, it 

is also possible that even if there exists a phrase, P{l}, in a document, the phrase P{l} 

could not be generated because P{l-1} does not exist. For example, there exists a phrase 

“wireless powerful computer” in a web page. But, since “wireless powerful” is not a 

phrase, it is possible that the phrase could not be generated. However, if the phrase is 

meaningful/important enough, the sub phrases “wireless powerful” and “powerful 

computer” will be generated. Next, “computer” will be added to “wireless powerful”. To 

relieve this problem, we calculate the threshold once at the beginning – this means the 

threshold is consistent. If the correlation value of “wireless powerful” is lower than the 

 



value of “wireless powerful computer” then the shorter phrase will be removed at a pruning 

stage.  

Our algorithm receives a sequence of words as input and returns meaningful 

phrases. It combines words into phrases until it generates no more phrases. Figure 12 

illustrates the pseudo code for the variable-length phrase-finding algorithm (VPF). It uses 

three main variables – List, SEQ, and Corr. The List variable stores all collected phrases in 

a Hash attribute. Each element (phrase) of the Hash attribute keeps correlation value in sim 

attribute and the position list in posi attribute. VPF first makes a linked list (SEQ) with an 

input example. Each word and word position are stored in each node in the linked list. 

Then, all 1-gram distinct words are stored in List[1].Hash. Corr is a chosen correlation 

function. The List , SEQ, and Corr are passed to BeSpecific procedure and this finds all 

phrases. Once the phrases are acquired, they are pruned. The pruning process simply 

removes all sub-phrases that have a sim value lower than the sim value of the super-

phrases. 

The BeSpecific procedure receives five parameters: List that stores all phrases, l 

which is the length of phrases (initial value is 2), thre which keeps the calculated threshold 

value differentiating “strong” relations from “weak” relations (initialized to 0); SEQ which 

stores the linked list, and Corr. BeSpecific recursively creates new sequences by removing 

nodes that are not in the Hash table generated in the previous stage, and also by removing 

consecutive nodes whose lengths are shorter than l. Since it removes words that are not in 

the Hash table generated in the previous stage, there can be gaps between nodes. Once the 

new sequence is generated, it collects all l-grams having no gaps from the sequence. The 

threshold is calculated when l=2 only once by averaging all correlation values between the 

 



first and second word in each element in List[2].Hash. The for loop removes any element 

with low correlation values (sim) from Hash. The sim property of p keeps the correlation 

between a sub phrase, p[1 .. l-1], and the last word, p[l], where p is a phrase consisting of l 

words. For example, if p=“computer science seminar”, then p[1 .. l-1]=“computer science” 

and p[l]=“seminar”. The Intersection counts all adjacent points based on the distance. The 

intersection between the positions of p[1 .. l-1] and p[l] becomes the positions of p. If the 

intersection of p becomes 0, then the p is removed. The BeSpecific procedure recursively 

increases the phrase length L until Hash become empty. We can also apply various 

correlation functions in the place of Corr. 

In order to improve the phrase-selection accuracy, we need to calculate for each 

word the percentage that a word can come before any other words and the percentage that 

the word can come after any other words, called pre-percentage and post-percentage 

respectively. The idea is that if a word occurred at the end of a sequence, then this word 

loses his one chance to come before any other words, so we adjust the pre-percentage of 

the word by deducting one from the number of occurrences of the word. The post-

percentage is vice versa. We can view a string S[1..n] of n consecutive words as two sub 

strings, Spre=S[1..n-1] and Spost=S[2..n]. Pre- and post-percentage of w can be computed in 

time O(1), when we know all the positions where w occurred: 

wpre-percentage= Frequency of w in Spre / |Spre| 

wpost-percentage= Frequency of w in Spost / |Spost|. 

 



 
 
 
 
 
Input: Example– a sequence of words 
Output: Collected phrases 
Function VPF (Example) return phrases 
 SEQ– linked list, each node has a word and a position.  
 List– array of Hash table, each word in a Hash has sim and posi 

ributes. att
 Corr- a correlation function 
1.  SEQ←linked list made by the input Example 
2.  List[1].Hash←store all 1-grams, each word keeps its positions 
3.  BeSpecific(List, 2, 0, SEQ, Corr) 
4.  Prune phrases in the List 
5.  Return al
End Function 

l phrases in the List 

 
Input: List- store array of Hash table 
 L- length of phrase, initialized to 2 
 
 SEQ  linked list, the size reduces every iteration 
thre- threshold value, initialized to 0 

-
 Corr- correlation function 
BeSpecific(List, L, thre, SEQ, Corr) 
1.  if List[L-1].Hash is empty then stop 
2.  SEQ←remove nodes that are not in the List[L-1].Hash and also remove 

consecutive nodes which length is shorter than L 
3.  List[L].Hash←Collect all L-grams from SEQ 
4.  if L=2 then thre←Average correlation across all words in List[2].Hash 
5.  for each p in List[L].Hash do 
6.    A ← pre-percentage of p[1..L-1] 
7.    B ← post-percentage of p[L] 
8.    p.sim←Corr(A,B,A∩B) 
9.    remove any p for which p.sim is lower then thre 
10.   p.posi←Intersection of p[1..L-1].posi and p[n].posi with distance of 

L-2 
11.   remove any p for which p.posi=0 
12. 
End Procedure 

BeSpecific(List, L+1, thre, SEQ, Corr) 

 
 

Figure 12. VPF algorithm 
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Figure 13. Example of VPF 

 



The most expensive part in the BeSpecific procedure will be scanning a sequence 

when L is 2. Even though the BeSpecific is called L times, as L increases the size of the 

sequence decreases drastically. The Corr function has O(T) time complexity, where T is 

the position length. But, as T increases the number of element in a Hash decrease. We, 

therefore, can claim that the time complexity of VPF in general case is roughly: O(S), 

where S is the sequence size. 

For example, in Figure 2 we have an input string S = “abcdabefbcdghabcd,” in 

which each letter represents a word. The correlation function simply returns the frequency 

of a phrase using a threshold value of 1.5. List[1].Hash contains all distinct words. 

List[2].Hash originally contains all possible 2-word phrases, then removes any phrase that 

occur less than 2 times, resulting in {“ab”, “bc”, “cd”}. We remove all words that are not 

in the List[2].Hash from the 1st SEQ resulting in 2nd SEQ. List[3].Hash contains all 3-word 

phrases, and then remove “cda” and “dab” because they occur only once. When we came 

to BeSpecific for the 3rd time, we removed “*abc*” from the 3rd SEQ, because their 

consecutive length is less than 4 – the size of L increases every time we come to 

BeSpecific. When we run the 4th BeSpecific, we can remove all phrases (“abcda” and 

“bcdab”) in List[5].Hash, because they occur only once. Since the 5th Hash is empty, the 

BeSpecific stops. After the BeSpecific, the List keeps {“ab”, “bc”, “cd”, “abc”, “bcd”, 

“abcd”}. Suppose the pruning removes all sub-phrases that have a sim value lower than or 

equal to the sim value of the super-phrases. The occurrences of phrases are: “ab”-3, “bc”-3, 

“cd”-3, “abc”-2, “bcd”-3, and “abcd”-2. We remove “bc” and “cd” because “abc” 

subsumes them and has equal frequency. “abc” is removed by “abcd” with the same 

reason. The final returned phrases are {“ab”, “bcd”, “abcd”}. 

 

 



3.1.2. Correlation Functions 

The VPF algorithms build phrases; and correlation functions actually calculate the 

weight of a phrase. The correlation functions are important in terms of selecting more 

meaningful phrases. The VPF is able to cooperate with many different existing correlation 

functions, and it can be hard to choose one correlation function out of many. In this 

section, we describe several key properties of a good correlation function. Much of the 

statistical work in building multi-word features focuses on co-occurrence (Chen and Sycara, 

1998; Rosenfeld, 1994). All correlation measures are not equally good at capturing the 

dependencies between different events (Tan et al., 2002). It is because each correlation 

function biases toward different individual event probabilities and joint probabilities. 

Piatetsky-Shapiro (1991) has proposed three key properties that a good correlation 

function, F, for events A and B should satisfy: 

 

P1: if A and B are statistically independent, then F is 0; 

P2: F monotonically increases with P(A,B) when P(A) and P(B) remain the 

same; 

P3: if P(A) (or P(B)) increases when the rest of the parameters (P(A,B) 

and P(B) (or P(A))) remain unchanged, then F monotonically decreases.  

 

Statistical independence can be measured by the determinant operator, where Det (A,B) = 

A∩B×A′∩B′ − A∩B′×A′∩B. Thus, a singular diagram is independent when its determinant 

is equal to zero (Tan and Kumar, 2000). Another important operation in finding phrases is 

distinguishing between positive and negative correlations (P4). Measuring their cross 

 



product ratio (CPR) can assess the significance of the correlation between A and B 

(Rosenfeld, 1994) and is defined as: 
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Negative correlation has a negative log CPR value. P4 is that F can distinguish positive 

and negative correlation of A and B. Since positive correlation is much more important 

than negative correlation in finding phrases, we only measured the change of correlation 

values over positive correlation. 

Tan et al. (2002) illustrated those properties and extended them to each of the 

existing measures to determine if the existing measure satisfies the properties required 

(Kamber and Shinghal, 1996). Some of these properties have been extensively investigated 

in the data mining literature (Hilderman and Hamilton, 2001; Tan and Kumar, 2000; Tan et 

al., 2002). We examined 32 correlation functions of properties and cooperated them with 

phrase-finding algorithms. A complete list of the correlation functions to be examined in 

this study is given in Appendix 1.  

 



3.2. Experiments 

3.2.1. Experimental Data and Procedures 

We use five New York Times articles and five web pages collected from our 

department server. We use web pages to test, because contents in a web page differ from 

the content found in normal article. The data used in this study is accessible at 

http://cs.fit.edu/~hkim/dissertation/dissertation.htm. The article size was about 2 pages and 

we asked 10 human subjects, other than the authors, to read the 10 articles. Each article 

contains about 1,300 words - 720 words after removing stop-words. Since we assigned 6 as 

a threshold of maximum phrases length for Ahonen’s and Chan’s, the total possible 

number of phrases for each article is approximately 3600 (=720×5). Of the 10 subjects, 4 

were graduate students from a department of computer sciences and 6 were undergraduates 

with various majors.  

We asked the 10 human subjects to choose their top 10 meaningful phrases for 

each article or web page. One might insist that the results will be different depending on 

how 10 humans are chosen. If all volunteers have the same background the matching rate 

will be higher than the normal case. However, since we are not comparing the algorithm 

with humans, but comparing among algorithms, it does not matter how we chose the 10 

volunteers. Furthermore, since the algorithm finds phrases statistically that cover general 

human meaningfulness, we choose 10 human subjects arbitrarily. 

 



The instruction that we gave them were: 

Identify the top 10 "meaningful/important" phrases for each article. 

Phrases are defined as two or more adjacent words that are meaningful, 

for example, "computer science," "florida institute of technology," ... 

The definition of meaningful is up to you. 

 

We will measure the number of matches between the human subjects’ selections and 

different correlation functions’ selections as well as different phrase-finding algorithms. 

We also count average matching of humans – in this case, we divided the sum by 

9. There are cases for the human or algorithm to select less than 10 phrases. In order to be 

fair in these cases, we use an additional adjustment function. We also attempt to prevent a 

measure from being scored 1 by finding one phrase and having one matched phrase by 

chance – the results are too sensitive. We, therefore, decided to give a lower incentive as a 

measure finds fewer phrases 20% at the most. For example, if there are 5 matches out of 

10, the number of matching is 5×1/10. If there are 5 matches out of 9, then we assigned 

5×1/9. But, if there are 5 matches out of 8, then we assigned 5×1/8.5. The generalized 

formula is: 
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, where m is the number of matched words and f is the number of selected words. 

We also applied different correlation functions to Ahonen’s algorithm to see if the 

difference of the performance depended on the correlation functions. Ahonen used two 

different correlation functions: conditional probability (Confidence, F11) for filtering 

phrases and mutual confidence (F32) for ordering the collected phrases determining which 

 



phrase is more important than the other. Since he used fixed user-defined threshold (0.2) 

for filtering the phrases, we only varied the correlation function used for ordering phrases. 

 

3.2.2. Evaluation Criteria 

We evaluate the meaningfulness of phrases. We believe the closer a match comes 

to our set of human-selected phrases, the better the phrase-finding algorithm is in terms of 

finding meaningful phrases. To evaluate the correlation functions for each phrase-finding 

algorithm, we have two evaluation criteria: the number of exact matches and the number of 

simple matches. We have 128 methods (4 algorithms × 32 correlation functions) – the 4 

algorithms are VPF, Chan’s, Ahonen’s, and Ahonen’s with gap, and the correlation 

functions F1 through F32 are in Appendix A. 

 

Table 10. With-pruning vs. without-pruning 

Avg. across humans and articles Ratio of Rank Method 
With-pruning Without-pruning Improv. 

1 VPF_F25 0.933 0.883 5.7% 
2 VPF_F16 0.920 0.866 6.2% 
3 VPF_F28 0.912 0.871 4.7% 
4 VPF_F8 0.824 0.707 16.5% 
5 VPF_F10 0.819 0.825 -0.7% 
6 VPF_F29 0.814 0.810 0.5% 
7 VPF_F27 0.812 0.796 2.0% 
8 VPF_F24 0.812 0.758 7.1% 
9 VPF_F13 0.772 0.666 15.9% 

10 VPF_F26 0.726 0.683 6.3% 
 

The number of exact matches of a method is measured by the percentage of the 

matches between the human’s and a method’s. We count each match with a human’s and 

 



then average the 10 compared results. This counting approach assigns more weights to the 

more meaningful words – more meaningful word means that they were selected by more 

human subjects. If a phrase is selected by several human subjects, every match is counted. 

Therefore, finding more popular phrases increases the matching average. The number of 

matches will be very low, because only 10 phrases selected by a method and a human 

respectively are going to be compared. 

The number of simple matches counts the matched phrases against the list 

collected by all human (i.e., the union of the words from the 10 human subjects). The list 

will be less then 100 because some phrases can overlap. Simple match is not directly 

related to finding more meaningful phrases, because this count removes the popularity 

information. We count this only to support the result of the exact match. 

Comparison of the results is done using a matched-pair design (Robertson, 1981). 

In this design, the top ten phrases in the ranking generated are compared. The comparison, 

which simply identifies if one group of ten phrases is better than the other, is on the basis 

of precision in other words the number of matched phrases. This type of evaluation has the 

following advantages: It is realistic in the sense that many information retrieval systems are 

interested in the top group. Traditional recall/precision tables are very sensitive to the 

initial rank positions and evaluate entire rankings (Crotf and Das, 1989). Another 

advantage is that significance measures can be readily used. 

 

 



3.3. Results and Analysis 

Before comparing our algorithm with existing methods we need to decide whether 

to use pruning or not. After that we will be able to perform the comparison. In evaluating 

our method against related algorithms we use different scoring methods: exact match and 

simple match.  

 

3.3.1. With-pruning vs. Without-pruning 

The VPF algorithm has a pruning function. The results differed whether we used 

the pruning function or not. We compared them by comparing the top 10 best methods 

with exact match (Sec 6.2). By composing the algorithm and 32 correlation functions (in 

Appendix A), we generated 32 methods. We ranked the top 10 methods using “with 

pruning” and presented the corresponding results of “without-pruning” next in Table 10. 

The values are the average of matches across 10 human subjects and 10 articles. Most 

methods yielded improved results when they had been pruned. The top method VPF with 

F25 had improved its performance by 5.7%. With pruning is statistically significantly 

better than without-pruning with a 95% confidence interval (P=0.004).  

 

3.3.2. Analysis with Exact Match 

Because “with-pruning” achieves a higher matching rate than “without-pruning”, 

we decided to use pruning in our algorithms for the rest of our experiment. 

 

 



3.3.2.1. Top 10 Methods 

The main purpose of the analysis in this section is to choose the best method. 

Which method is the best is the most interesting question. We averaged the results from 10 

articles and 10 human subjects and sorted by the average to rank all 128 methods. We 

presented the results in Table 11 and included the rank, methods used, and the average. 

Each method was composed of an algorithm and a correlation function. Notice that, we 

also presented the results of previous methods. Ahonen used correlation function F32. He 

also introduced a method with gaps. The row Ahonen_gap represented the results using 

Ahonen’s method allowing gaps within a phrase. 

The best method was the combination of VPF and correlation functions F25 

followed by F16 and F28 – all those three correlation functions satisfied Piatetsky-

Shapiro’s three desirable properties and distinguish positive from negative correlations. 

The best method VPF with F25 matched 0.93 phrases on average with the phrases selected 

by a human subject. In the next section we measured the average number of matching 

phrases between human subjects and compared those results to the results from methods. 

Interestingly, VPF won the top 3. Chan’s algorithm occupied the next ranks. 

Another observation was that the correlation functions F25, F16, and F28 that marked high 

rank with VPF also marked high rank with Chan’s. This observation implied that the 

performance also depends on the correlation functions. 

 



 

Table 11. Ranked by average across humans and articles – Exact match 

Rank Method Avg. Rank Method Avg. 
1 VPF_F25 0.933 13 Ahonen_F6 0.797 
2 VPF_F16 0.920 15 Ahonen_F10 0.779 
3 VPF_F28 0.912 15 Ahonen_F11 0.779 
4 Chans_F16 0.858 15 Ahonen_F12 0.779 
5 Chans_F25 0.856 15 Ahonen_F17 0.779 
6 Chans_F29 0.850 15 Ahonen_F26 0.779 
7 Chans_F28 0.848 20 Ahonen_F20 0.774 
8 VPF_F8 0.824 20 Ahonen_F23 0.774 
9 VPF_F10 0.819 24 Ahonen_F32 0.767 

10 VPF_F29 0.814 105 Ahonen_gap_F3 0.452 
 

 

Table 12. Exact match across humans 

 Avg. across 10 articles
Human best 1.48 
Human avg. 1.30 

Human worst 1.03 
 

Ahonen’s algorithm ranked 24 and Ahonen_gap 105. These methods matched 

0.767 and 0.452 numbers of phrases with human subjects respectively. The low 

performance with gap is the same phenomenon as shown in (Ahonen et al., 1998). We 

conducted t-Test (paired two sample for means) between VPF with F25 and Ahonen with 

F32. There was a clear statistically significant difference between the two methods with 

95% confidence (P=0.016). Therefore, we can conclude that VPF with F25 found 

statistically significantly more meaningful phrases than Ahonen’s previous algorithm.  

 



Ahonen’s algorithm with other correlation functions received higher ranks such as 

F6, F10, F11, F12, F17, F26, and F20 as shown in Table 11. They all ranked 13, 15, and 

20, which are higher than Ahonen’s original method (24). This indicates Ahonen’s 

algorithm can be improved upon by using different correlation functions. 

 

3.3.2.2. Comparing with Human Subjects 

To see the average number of matches among human subjects is interesting and 

also provides insight into interpreting the average number of matching by the algorithm. 

For instance, if an algorithm matches 1 on average and the human matches 7, then the 

performance of the algorithm is almost negligible no matter how much higher its 

performance is compared to others. 

We presented the best, average, and worst matching human results in Table 3. The 

results told us that only 1.3 phrases out of 10 picked by a human subject matched with the 

phrases picked by the others on average. This is not an unrealistic result. Considering that 

each document has approximately 1,300 words, more than 7779 possible phrase 

combinations exist and each person has a different background, matching 1.3 phrases out 

of 10 on average is a reasonable result. Our method achieved a result (0.93), which was 

close to the typical human result. We also conducted a t-Test with the human average and 

VPF with F25. The human subjects’ average was statistically significantly better than the 

best result obtained by the algorithm with a 95% confidence interval (P=0.02). It would be 

interesting to see if the worst case of human matching was higher than the algorithm’s. The 

answer was no. It was not statistically significantly better than the machine’s. This result 

 



indicates that human matching is better than the matching of algorithms in general but not 

always. 

 

 

Table 13. Ranked by average across humans and articles – Simple match 

Rank Method Avg. Rank Method Avg. 
1 vpf_F28 3.696 12 ahonen_F10 3.195 
2 vpf_F25 3.689 12 ahonen_F11 3.195 
3 vpf_F13 3.672 12 ahonen_F12 3.195 
4 vpf_F8 3.656 12 ahonen_F17 3.195 
5 vpf_F27 3.575 12 ahonen_F26 3.195 
5 vpf_F24 3.575 17 ahonen_F6 3.181 
7 vpf_F21 3.377 23 ahonen_F2 3.025 
8 vpf_F29 3.342 24 ahonen_F20 3.018 
9 vpf_F16 3.321 24 ahonen_F22 3.018 

10 chans_F29 3.282 24 ahonen_F23 3.018 
22 chans_F25 3.053 33 ahonen_F32 2.934 

   118 ahonen_gap_F32 1.755 
 

Table 14. Simple match across humans 

 Avg. across 10 articles
Human best 6.3 
Human avg. 5.6 

Human worst 4.7 
 

 

3.3.3. Analysis with Simple Match 

This simple match count showed similar ranking to the exact match. VPF with F28 

followed by F25 and F13 had the top matching rates: 3.70, 3.69, and 3.67 respectively as 

shown in Table 13. Since simple match uses a list of meaningful phrases by taking the 

 



union of phrases selected by the 10 human subjects, average number of matching phrases is 

higher than the average by exact match. Chan’s with F25 ranked 22 (3.05 matching rate), 

Ahonen without gap ranked 33 (2.93), and Ahonen with gap ranked 118 (1.76) out of 128. 

Chan’s original method ranked 22 (3.053). These results also told us VPF found more 

phrases than Ahonen’s and Chan’s. The result from simple match also indicated that 

Ahonen’s algorithm could be improved by incorporating different correlation functions.  

We also attempted to compare the methods’ results with the results from humans. 

Human matched the list 5.6 out of 10 on average; the best and worst cases are 6.3 and 4.7 

as shown in Table 14. The result 3.69 of method VPF with F25, which was the highest 

score with exact match, was quite significant considering that we only used the statistical 

information. 

 

3.4. Summary 

We proposed a variable-length phrase-finding algorithm, which find more 

meaningful phrases – VPF – than older methods – Ahonen’s and Chan’s algorithms. We 

also coordinated these algorithms with 32 different correlation functions. They regenerate 

sequences recursively with the words selected in the previous stage and search for 

increased length of phrases in time O(nw), where nw is the number of distinct words in a 

page. Since our algorithm uses average as a threshold and stops when the length of phrases 

does not increase, no user-defined parameter is required.  

In order to choose the best method, we conducted an experiment by asking 10 

human subjects to select 10 phrases from 10 different articles. We compared the number of 

matching phrases chosen by a method to those phrases chosen by 10 human subjects. By 

 



comparing the top 10 best measures (matched-pair design (Robertson, 1981)), we observed 

that when we add pruning, the algorithm (VPF) had improved performance. 

We concluded that VPF with F25 found a statistically significantly greater number 

of meaningful phrases than Ahonen’s previous method. We suspect the filtering stage of 

Ahonen’s algorithm filtered many meaningful phrases out or their weighting scheme using 

the length of a phrase and tightness (Ahonen et al., 1998) distracted the correlation value of 

a phrase. Interestingly, the correlation functions F25 and F28 were both included in the top 

10 in both exact match and simple match. This result indicates the correlation functions 

F25 and F28 had higher matching rates than the other correlation functions. These two 

correlation functions both satisfied desirable properties for phrases. We can also improve 

Ahonen’s algorithm by incorporating correlation functions F10, F11, F12, F17, F26, F6, 

and F20. Those functions resulted in a higher match of average scores for both exact match 

and simple match experiments. 

The performance of our method varied depending on the articles selected. We 

currently do not understand the reason for the variance in performance over different 

articles. We assume it is due to the intrinsic characteristics of an article, because the human 

subjects’ results are also different depending on the articles. Phrases in VPF grow 

backwards; however, in the future we will devise an algorithm that grows both forwards 

and backwards. 

 

 



Chapter 4 

Analysis of Desirable Properties of Correlation 

Functions between Two Events 

 

Before selecting a correlation function, it is important to check whether a 

correlation function satisfies basic desirable properties of a correlation function. Likewise 

knowing the characteristics of a correlation function is important. We propose two new 

desirable properties that a correlation function should satisfy. These new properties will 

help understand the general characteristics of correlation functions and help to choose or 

devise a right correlation function for an application domain. Correlation functions can be 

used for finding phrases, building profile, and devising scoring functions in our system as 

shown in Figure 14. We tested with 32 correlation functions to see which one satisfies 

what desirable properties.  
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Figure 14. Desirable properties in the framework of web personalization 

 



4.1. Desirable Properties of a Correlation Function 

In this section, we describe several key properties of a correlation function. 

Correlation functions differ in their ability to capture the dependencies between variables, 

because each correlation function has its own bias in preferring a set of diagrams to 

another. The dependencies between variables can be described in a Venn diagram as shown 

in Figure 15 – A, B, A∩B, and A∪B. 

 

A B

 

Figure 15. Venn diagram 

 

Piatetsky-Shapiro (1991) proposed three key properties that a good correlation function, F, 

should satisfy: 

P1: if A and B are statistically independent, then F is 0; 

P2: F monotonically increases with P(A,B) when P(A) and P(B) remain the same; 

P3: if P(A) (or P(B)) increases when the rest of the parameters, P(A,B) and P(B) 

(or P(A)), remain unchanged, then F monotonically decreases.  

 
Tan et al. (2002) illustrated those three properties and the extent to which each of the 

existing measure satisfies the properties. Some of these properties have been extensively 

investigated in the data mining literature (Hilderman and Hamilton, 2001; Tan and Kumar, 

2000). 

 

 



4.1.1. Enhancing Property 1 

The detection of statistical independence is a desirable property – Piatetsky-

Shapiro (1991) specified this as his first desirable property (P1). However, should the 

correlation function return only 0?  

When two events, A and B, are statistically independent, some functions return 0, 

but some functions return a different value such as 1. Each column in Table 19 is for each 

correlation function and we used “o” mark as satisfaction of P1 in the P1 row. The  “value” 

row signifies the return value. For instance, the test functions Odds, Conv, Inte, and Coll in 

Appendix 1 return 1 when two events are statistically independent as shown in Table 19. 

Therefore, we argue that the definition of P1 is too strict. We revise the definition of P1 to 

be: 

P1: F can distinguish statistical independence of A and B. 

 
The revised definition of P1 is used for the duration of this Chapter. 

 

4.1.2. Additional Desirable Properties 

We propose and investigate additional properties desirable for a correlation 

function. When the universe is fixed, three events – A, B, and A∩B – can enumerate all 

possible cases. We list seven possible cases in Table 15. The notation “↑” indicates 

increase, “↓”indicates decrease, and “-”indicates no change in the value of a correlation 

function. We add two other possible cases – two variables increase at the same ratio (P4 

and P5 in Table 15).  

 



Case 1 has variable A fixed, B fixed, and A∩B increasing. Piatetsky-Shapiro 

(1991) refers to this case as P2, so we follow his designation. We show the proper change 

of a correlation function in the “Proper change” column. Other cases can be interpreted in 

the same way. The proper change of case 1 is increasing (Piatetsky-Shapiro, 1991). Case 2 

and 3 have the same property name (P3) by similarity – variable A and B could be 

alternated with each other. The proper change of P3 is decreasing (Piatetsky-Shapiro, 

1991). 

 

Table 15. All possible cases (with the same incremental ratio) 

Case A B A∩B Property 
name 

Proper 
change 

1 − − ↑ P2 ↑
2 ↑ − −
3 − ↑ −

P3 ↓ 

4 ↑ ↑ − P4 ↓
5 ↑ − ↑
6 − ↑ ↑

P5 ↑ 

7 ↑ ↑ ↑  
 

Case 4 appears to be the same as the inverse of P2. But not all correlation functions 

return the same results (e.g., Supp in Appendix 1 increases for case 1 but no change for 

case 4). The value of a correlation function should decrease as the value of A∪B increases 

when A∩B remains unchanged in the formula of
BA
BA

∪
∩ . As A and B increase, the value of 

BA
BA

∪
∩  decreases when A∪B=A+B-A∩B. Therefore, property 4 (P4) states that if P(A,B) 

increases when P(A) and P(B) remain unchanged, then F monotonically decreases. 

 



An example of case 4 is shown in Table 16. The union is 100. Variable A and B 

increase with the same incremental ratio; A∩B remains unchanged. Intuition suggests as A 

and B increase, the value of a correlation function is expected to decrease. 

 

Table 16. An example for property 4 

A B A∩B Incremental ratio 
20.0 30.0 10.0 1.0
22.0 33.0 10.0 1.1
24.0 36.0 10.0 1.2
30.0 45.0 10.0 1.5
34.0 51.0 10.0 1.7
40.0 60.0 10.0 2.0

 

Case 5 and 6 have the same property name (P5) due to their similarity. The proper 

change in a correlation value for P5 is monotonically increasing. In the formula of 

BABA
BA

∩−+
∩ , where A and B are greater than A∩B and one of A and B are fixed, as B (or 

A) and A∩B increase together at the same ratio, the whole value should increase. The P5 

states that if P(A) (or P(B)) and P(A,B) increase at the same ratio, then F monotonically 

increases. 

We illustrate cases 5 and 6 with an example below in Table 17. Since both cases 

are the same, we will only use case 5. Cases can have two possible sub-scenarios: A is 

smaller than B, or A is bigger than B. The union is 100. Variable A and A∩B increase with 

the same incremental ratio; B remains unchanged. In the case of A<B, the value of 

correlation function is expected to increase, because the ratio between B and A∩B 

increases, while the ratio between A and A∩B remains the same. In the case of A>B, A 

seemingly subsumes B gradually, because B remains the same while A∩B grows. 

 



Consider the cases where A1=5.0, A2=10.0, B=10.0, A1∩B=3.0, A2∩B=6.0 as in 

Table 17. The correlations of the two cases (F(A1,B,A1∩B) and F(A2,B,A2∩B)) may have 

different values. The log CPR (Rosenfeld, 1994) values for the two cases are 4.2 and 5.0 

respectively, which assess the significance of the correlation between A and B. However, 

for example Inte in Appendix 1 satisfies all previous 3 desirable properties (P1 – P3); but, 

it returns the same value, 6, for both cases (case of (A1,B,A1∩B) and case of (A2,B,A2∩B)). 

Our P5 is to verify whether a correlation function can tell the difference between the two 

cases. This determines that the P5 is critical for measuring the characteristics of correlation 

functions. 

 

Table 17. An example for property 5 

Case of A<B Case of A>B 
A B A∩B A B A∩B

Incremental 
ratio 

5.0 10.0 3.0 20.0 10.0 4.0 1.0
5.5 10.0 3.3 22.0 10.0 4.4 1.1
6.0 10.0 3.6 24.0 10.0 4.8 1.2
7.5 10.0 4.5 30.0 10.0 6.0 1.5
8.5 10.0 5.1 34.0 10.0 6.8 1.7

10.0 10.0 6.0 40.0 10.0 8.0 2.0
 

Case 7 is defined as the values of A, B, and A∩B increase monotonically together 

at the same ratio. It is difficult to define what is a desirable change of the correlation 

function for this case. This property is somewhat related to the frequency. For example, too 

frequent and too rare words are usually removed in some researches (Croft et al., 1991; 

Zamir and Etzioni, 1998). Due to the uncertainty inherent in case 7, we are unable to 

determine any proper changes to this property. 

 

 



4.2. Experiments 

4.2.1. Experimental Data and Procedures 

If all those correlation functions that satisfy our new 2 desirable properties also 

satisfy the previous 3 desirable properties, our proposed properties would not be a 

substantial improvement in characterizing correlation functions. Therefore, we collected 32 

correlation functions to see which correlation functions only satisfy the previous 3 

desirable properties. A complete listing of the correlation functions examined for further 

properties in this Chapter was given in Appendix 1. In order to verify whether a correlation 

function satisfies desirable properties, we systematically generated 923 different test cases 

(combinations of A, B, and A∩B). For P2 we generated 76 test cases, P3 had 399 test cases, 

P4 had 35 test cases, and P5 had 413 test cases. Generating test cases P3 and P5 were more 

complicated, because both had two different sub cases. We wrote our program with Excel 

macro and ran on Intel Pentium 4 CPU. The detailed test cases and source code are 

available on the web: http://cs.fit.edu/~hkim/dissertation/dissertation.htm. 

We added dMAX, AEMI3, dMIN, and dMIN2 correlation functions to an 

experiment. The dMAX and the dMIN were cooperating with the Supp. The dMIN2 

emphasized the original MIN value. The AEMI3 function was similar to AEMI4 except that 

AEMI3 did not include the negative relation part, A′B′ × log(A′B′/A′×B′). For example, the 

two matrixes in Figure 16 had different value assignments – basically the positive and 

negative intersection values were exchanged. An AEMI4 weighed two tables the same, 

even though Matrix A had a value of 5 for A∩B and Matrix B had a value of 75 for A∩B. 

However, in some application domains the positive relation, A∩B× log(A∩B/(A×B)) is 

 



more important than the negative relation, which prefers Matrix B to Matrix A. Therefore, 

AEMI3 removed the negative relation part from AEMI4. 

 

 B B′   B B′
A 5 10  A 75 10
A′ 10 75 

 
A′ 

10 5
Matrix A                       Matrix B 

Figure 16. Contingency matrix 

 

4.2.2. Evaluation Criteria 

In addition to the proposed properties (P1-P5), another important property was the 

ability to distinguish between positive and negative correlations (P6). Tan et al. (2002) 

described this property in detail. Positive correlation is more important than negative 

correlation in some application domains. Therefore, we also checked correlation functions 

whether they do or do not satisfy P6. 

Statistical independence (P1) can be measured by the determinant operator, 

Det(A,B) = A∩B×A′∩B′ − A∩B′×A′∩B. Thus, a singular Venn diagram is independent 

when whose determinant is equal to zero (Tan et al., 2002). Measuring their cross product 

ratio (CPR) can assess the significance of the correlation between A and B (Rosenfeld, 

1994) and is defined as: 

),(),(
),(),(log),(log
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′′
′′

=
. 

Negative correlation function would have a negative log CPR value. The definition of P6 

was that F can distinguish between positive and negative correlations of A and B. We also 

 



tested whether the result of each correlation function was normalized or not. P7 is that F 

returns normalized results. The total properties that we summarized are listed in Table 18. 

Normalized functions have return values within certain boundaries such as between 0 and 

1. 

 

Table 18. Summary of correlation functions' properties 

Property Description 

P1 F can distinguish statistical independence of A 
and B. 

P2 F monotonically increases with P(A,B) when 
P(A) and P(B) remain the same 

P3 
If P(A) (or P(B)) increases when the rest of the 
parameters, P(A,B) and P(B) (or P(A)), remain 
unchanged, then F monotonically decreases. 

P4 If P(A,B) increases when P(A) and P(B) remain 
unchanged, then F monotonically decreases. 

P5 If P(A) (or P(B)) and P(A,B) increase at the same 
ratio, then F monotonically increases. 

P6 F can distinguish positive and negative 
correlations of A and B. 

P7 F returns normalized results. 

 

We measured mainly whether a correlation function shows consistent increasing 

pattern or decreasing pattern under a condition for each property. The changes with 

negative relations are disregarded. Since we can detect positive and negative correlations it 

would be more practical to check over positive correlations.  

 

 



4.3. Results and Analysis 

The purpose of this experiment is to test whether those correlation functions that 

satisfy our new 2 desirable (new properties) properties also satisfy 3 established desirable 

properties (old properties). If there are correlation functions that satisfy only one of either 

the previous 3 properties or our 2 new properties, then the experiment provides evidence 

that our new properties will be useful for distinguishing properties of correlation functions. 

This analysis based upon 3 categories. First, we compared old properties and new 

properties based upon the number of correlation functions that satisfies those properties. 

Second, old properties and new properties were compared based upon the number of 

functions that satisfied the two categories of properties upon the satisfaction of P1. Third 

was regarding the satisfaction of P6. After that, we summarized whether correlation 

functions return normalized results. 

 

4.3.1. Comparing Properties: Old verses New 

We compared how many correlation functions satisfied old properties and how 

many satisfied new properties. Each property of a correlation function and the desirable 

changes in the function for the properties P2 though P5 were given in Table 18. Table 19 

contained the detailed results of our experiment designed to test correlation functions and 

the five desirable properties of correlation functions. If a given function satisfies a 

particular property, it receives an “o” notation, and “×” if the function does not satisfy the 

property. Some properties could have 2 conditions (A>B or A<B) depending on which 

variable was greater. 

 



Twenty correlation functions – Coef, Odds, YulQ, YulY, Kapp, Mutu, JMea, Gini, 

Conv, Inte, Piat, Certa, Added, Coll, Klos, MI, EMI, AEMI4, dMI, and AEMI3 – satisfied 

old properties. Nineteen correlation functions – Coef, Odds, YulQ, YulY, Kapp, Mutu, JMea, 

Gini, Piat, Coll, Jacc, Klos, EMI, AEMI4, dMAX, dMI, AEMI3, dMIN, and MuConf – 

satisfied new properties. Fifteen correlation functions – Coef, Odds, YulQ, YulY, Kapp, 

Mutu, JMea, Gini, Piat, Coll, Klos, EMI, AEMI4, dMI, and AEMI3 – satisfied all five 

desirable properties. 

We summarized the results in a Contingency matrix in Figure 17. The numbers 

outside the box were the sum of rows and columns. Out of 32 total correlation functions 

tested, 20 correlation functions satisfied old properties (P1-P3); 19 satisfied our new 

properties (P4, P5); 15 satisfied both desirable properties (P1-P5); 5 functions satisfied old 

properties only, and 4 functions satisfied new properties only. Since our properties could 

distinguish 5 correlation functions out of 20 functions that satisfied old properties 

(5/20=25%), it determined that our properties were independent from previous 3 desirable 

properties. 

 Satisfying 
old properties 

Unsatisfying 
old properties  

Satisfying 
new  properties 15 4 19 

Unsatisfying 
new properties 5 8 13 

 20 12 32 

Figure 17. Contingency matrix of desirable properties over all functions 

 

 



4.3.2. Comparison Based upon Property 1 

If a correlation function can detect the statistical independence of a diagram, it 

satisfies P1. The correlation functions that satisfy old properties and new properties were 

counted under the condition of satisfying P1. We created contingency matrix of the 

correlation functions that satisfied P1 in Figure 18. Twenty correlation functions satisfied 

P1. Interestingly, the correlation functions that satisfied P1 also satisfied P2 and P3. The 

correlation functions that satisfied P2 and P3 were dependent on the correlation functions 

that satisfied P1. This means P1 alone can explain P2 and P3. In other words, P1 can 

subsume P2 and P3, which reveals the nonessential nature of P2 and P3. When verifying 

correlation functions, P1 may be the only necessary reference property. 

 

 Satisfying 
old properties 

Unsatisfying 
old properties  

Satisfying 
new properties 15 0 15 

Unsatisfying 
new properties 5 0 5 

 20 0 20 

Figure 18. Contingency matrix of desirable properties over property 1 

 

4.3.3. Comparison Based upon Property 6 

In Table 19, an “o” is placed in each column, for P6 if the correlation function can 

distinguish positive and negative relations. The correlation functions that satisfied old 

properties or new properties was counted and shown in the contingency matrix (Figure 19). 

 



Of the 12 functions satisfying P6, 8 satisfied P1-P5; only 4 satisfied old properties (P1-P3) 

without satisfying new properties (P4 and P5).  

All correlation functions satisfying P6 also satisfied old properties. It might be 

unnecessary to test a function for P1-P3 when P6 encompasses all three. Our properties (P4 

and P5) tested an alternative aspect of the correlation functions, which is unrelated to P6. 

In the contingency matrix, we compared 12 correlation functions, which satisfied old 

properties to new properties (Table 19). Of the 12 functions, only 8 satisfied our new 

properties. Clearly our properties were testing an alternative aspect of correlation functions. 

 

 Satisfying 
old properties 

Unsatisfying 
old properties  

Satisfying 
New properties 8 0 8 

Unsatisfying 
New properties 4 0 4 

 12 0 12 

Figure 19. Contingency matrix of desirable properties over property 6 

 

4.3.4. Normalized Results – Property 7 

Normalization helps users analyze or understand the data. The P7 is not a highly 

desirable property because normalization is unrealistic for many correlation functions. We 

included the results of P7 testing only to help those users who prefer normalized results. 

A comparison of P7 to both old properties and new properties may prove 

illustrative. Correlation functions that produced normalized results were assigned an “o” in 

Table 19. Out of 32 correlation functions, 22 functions satisfied P7. Ten functions satisfied 

 



both old properties and P7; fourteen functions satisfied both new properties and P7. The 

results also indicated that the characteristics of correlation functions were unrelated to 

function normality. 

 

4.4. Summary 

In order to select the right correlation functions for an application out of a set of 

well-known correlation functions, the characteristics of each function must be compared. 

Piatetsky-Shapiro (1991) opened new research areas by proposing three basic desirable 

properties for functions (P1-P3). Tan et al. (2002) compared correlation functions using the 

three established desirable properties and other existing function properties. Our research 

on two-variable Venn diagrams led us to identify two more desirable properties of 

correlation functions (P4 and P5). Property 4: If P(A,B) increases when P(A) and P(B) 

remain unchanged, then F monotonically decreases. Property 5: If P(A) (or P(B)) and 

P(A,B) increase at the same ratio, then F monotonically increases.  

Consider the cases where A1=5.0, A2=10.0, B=10.0, A1∩B=3.0, and A2∩B=6.0 

(Table 17). The correlations of the two cases, F(A1,B,A1∩B) and F(A2,B,A2∩B), may have 

different values. The log CPR values, which assess the significance of the correlation 

between A and B, are 4.2 and 5.0 respectively (Rosenfeld, 1994). But a deficiency exists. 

For example, the function Inte satisfies P1-P3, but returns the same value of 6 in both 

cases. Our proposed property 5 can tell the difference between the two cases, and is critical 

for measuring the characteristics of correlation functions. 

In addition, the definition of P1 used by Piatetsky-Shapiro (1991) lacks some 

descriptive power. For example, some correlation functions (e.g., Odds, Conv, Inte, and 

 



Coll in Appendix 1) produced a score of 1, even when two events were statistically 

independent. We revised the definition of P1 to improve its descriptive power. 

 
P1: F can distinguish statistical independence of A and B. 

 
In order to see whether those correlation functions that satisfy our two new 

desirable properties also satisfy previous three desirable properties, we collected 32 

correlation functions as shown in Appendix 1 and used systematically generated test cases 

for testing each property. The results indicated that our two new desirable properties were 

more descriptive than the previous three old desirable properties. It was because all 

correlation functions that satisfy P1 also satisfied P2 and P3, and all correlation functions 

that satisfied P6 also satisfied P1-P3; but our properties were independent from P1 and P6. 

We insist that these two properties are important in terms of understanding the correlations 

of two variables and characterizing an appropriate correlation function. The summarized 

results not only of P1-P5 but also of P6 that measured negative/positive correlation and the 

result of P7 that checked which correlation function returned a normalized return value will 

help reader compare characteristics of correlations functions. 

Our experiment was limited to positive correlations for our web personalization 

since many applications depend on positive correlation. We will extend our analysis to 

negative correlation as well.  

 



 

Table 19. Properties of correlation functions 

1 2 3 4 5 6 7 8 9 10 11 Property Conditions 
Coef Good Odds YulQ YulY Kapp Mutu JMea Gini Supp ConMa

 o x o o o o o o o x x P1 
Value 0  1 o o o o o o   

P2 A=B o o o o o o o o o o o 
A<B o x o o o o o o o x x P3 
A>B o x o o o o o o o x o 

P4 A=B o o o o o o o o o x o 
A<B o x o o o o o o o o o P5 
A>B o x o o o o o o o x 

P6  o x x o o o x x x x x 
 x o x o o o o o o o o P7 

Scope   0-1           0-.5 0-.5 0-.5 0-1 

o 

 
12 13 14 15 16 17 18 19 20 21 22 Property Conditions 

Lapl Conv Inte Cosi Piat Certa Added Coll Jacc Klos MI 
 x o o x o o x o o o o P1 

Value  1 1  o o o 1  o o 
P2 A=B o o o o o o o o o o o 

A<B o o o o o o o o o o o P3 
A>B x o o o o o o o o o o 

P4 A=B o o o o o o o o o o o 
A<B x x x x o x x o o o x P5 
A>B o o x o o o o o o o x 

P6  x x x x o o x o o x x 
 o x x o o x o x o o x P7 

Scope 0-1     0-1 0-1 0-1 0-1   0-1 0-1   
 

23 24 25 26 27 28 29 30 31 32  Property Conditions 
StcMi EMI Aemi4 dMAX dMI AEMI3 dMIN dMIN2 NegCos MuCon  

 x o o x o o x o o x  P1 
Value  o o  o o      

P2 A=B o o o o o o o x o o  
A<B o o o o o o x x o o  P3 
A>B x o o x o o o o o o  

P4 A=B o o o o o o o o o o  
A<B x o o o o o o x x o  P5 
A>B o o o o o o o x x o  

P6  o o x x o x o o x x  
 o o x o o x o o x o  P7 

Scope 0-1 0-1   0-1 0-1   0-1 0-1   0-1  
 

 

 



Chapter 5 

Personalized Ranking of Search Results with 

Implicitly Learned User Interest Hierarchies 

 

Web search engines are usually designed to serve all users, without considering the 

interests of individual users. Personalized web search incorporates an individual user's 

interests when deciding relevant results to return. We propose to learn a user profile, called 

a user interest hierarchy (UIH), from web pages that are of interest to the user. The user’s 

interest in web pages will be determined implicitly, without directly asking the user. Using 

the implicitly learned UIH, we study methods that (re)rank the results from a search 

engine. Experimental results indicate that our personalized ranking methods, when used 

with a popular search engine, can yield more relevant web pages for individual users. This 

process is depicted in Figure 20. 
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Figure 20. Devising a scoring function in the framework of web personalization 

 



5.1. Personalized Results 

Personalization of web search involves adjusting search results for each user based 

on his or her unique interests. Our approach orders the pages returned by a search engine 

depending on a user’s interests.  Instead of creating our own web search engine, we 

retrieved results from Google (Google, 2005). Since the purpose of this Chapter is to 

achieve a personalized ordering of search engine results, we can score a page based on the 

user profile and the results returned by a search engine as shown in the dashed box in 

Figure 21. 
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Figure 21. Diagram of Scoring 

 

 



To build the user profile, called User Interest Hierarchy (UIH), we use the web 

pages in his/her bookmarks (Li et al., 1999; Maarek and Ben-Shaul, 1996) and the Divisive 

Hierarchy Clustering (DHC) algorithm (Kim and Chan, 2003). A UIH organizes a user’s 

interests from general to specific. Near the root of a UIH, general interests are represented 

by larger clusters of terms while towards the leaves, more specific interests are represented 

by smaller clusters of terms. The root node contains all distinct terms in the bookmarked 

web page. The leaf nodes contain more specifically interesting terms. The relations 

between terms are calculated based on the co-occurrence in the same web page. 

An example of a UIH is shown in Figure 3. Each node (cluster) contains a set of 

words. The root node contains all words that exist in a set of web pages. Each node can 

represent a conceptual relationship if those terms occur together at the same web page 

frequently, for example ‘perceptron’ and ‘ann’ (in italics) can be categorized as belonging 

to neural network algorithms, whereas ‘id3’ and ‘c4.5’ (in bold) in another node cannot. 

Words in these two nodes are mutually related to some other words such as ‘machine’ and 

‘learning’. This set of mutual words, ‘machine’ and ‘learning’, performs the role of 

connecting italicized and bold words in sibling nodes and forms the parent node. We 

illustrate this notion in the dashed box.  

This Chapter focuses on devising a scoring method that receives two inputs (UIH 

and retrieved results) and one output (personalized ranking). 

 

5.2. Approach 

In order to provide personalized, reordered search results to a user, we need to 

score each page depending on personal interests. Therefore, the goal is to assign higher 

 



scores to web pages that a user finds more interesting. This section explains how to score a 

retrieved web page using a user’s UIH. First, we explain the basic characteristics for each 

matching term. Second, based on the characteristics, we propose functions to score a term. 

These functions determine how interesting a term is to a user. Third, based on the score 

and the number of the matching terms, we calculate an overall score for the page. Last, 

since the search engine provides a score/ranking for a web page, we incorporate this 

ranking into our final score of the web page. 

 

5.2.1. Four Characteristics of a Matching Term 

Given a web page and a UIH, we identify matching terms (words/phrases) that 

reside both in the web page and in the UIH. The number of matching terms is defined m, 

which is less than the number of total distinct terms in the web page, nt, and the number of 

total distinct terms in the UIH, nu. 

Each matching term, ti, is analyzed according to four characteristics: the level of a 

node where a term belongs to (Dti), the length of a term such as how many words are in the 

term (Lti), the frequency of a term (Fti), and the emphasis of a term (Eti). D and L can be 

calculated while building a UIH from the web pages in a user’s bookmark. Different web 

page has different values for F and E characteristics. We estimate the probability of these 

four characteristics and based on these probabilities, we approximate the significance of 

each matching term. 

 

 



5.2.1.1. Level/Depth of a UIH Node 

A UIH represents general interests in large clusters of terms near the root of the 

UIH, while more specific interests are represented by smaller clusters of terms near the 

leaves. The root node contains all distinct terms and the leaf nodes contain small groups of 

terms that represent more specific interests. Therefore, terms in more specific interests are 

harder to match, and the level (depth) where the term matches indicates significance. For 

example, a document that contains terms in leaf nodes will be more related to the user’s 

interests than a document that contains the terms in a root node only. If a term in a node 

also appears in several of its ancestors, we use the level (depth) closest to the leaves. 

There is research that indicates user-defined query scores can be used effectively 

(Salton and Waldstein, 1978; Harper, 1980; Croft and Das, 1989). From the acquisition 

point of view, it is not clear how many levels of importance users can specify if we ask a 

user directly. In I3R (Croft and Thompson, 1987), they used only two levels: important or 

default. Harper (1980) used 5 levels of importance, and Croft and Das (1989) used 4 levels. 

We calculate the scores of terms using the level (depth) of a node in the UIH instead of 

explicitly asking the user. 

The significance of a term match can be measured by estimating the probability, 

P(Dti), of matching term ti at depth (level) Dti in the UIH. P(Dti) is the probability of a level 

in a UIH. A term that matches more specific interests (deeper in the UIH) has a lower P(Dti) 

of occurring. Lower probability indicates the matching term, ti, is more significant. The 

probability is estimated by: 

number of distinct terms at depth Dti in the UIH =)(
it

DP  
nu 

 

 



5.2.1.2. Length of a Term 

Longer terms (phrases) are more specific than shorter ones. If a web page contains 

a long search term typed in by a user, the web page is more likely what the user was 

looking for.  

In general, there are fewer long terms than short terms. To measure the 

significance of a term match, the probability, P(Lti), of matching term ti of length Lti in the 

UIH is calculated. Lti is defined as MIN (10, the length of a term). We group the longer 

(greater than 10) phrases into one bin because they are rare. Longer terms has a smaller 

probability, P(Lti), of occurring, which indicates a more significant match. The probability 

is estimated by: 

number of distinct terms of length Lti in the UIH =)(
it

LP  
nu 

 

5.2.1.3. Frequency of a Term 

More frequent terms are more significant/important than less frequent terms. 

Frequent terms are often used for document clustering or information retrieval (van 

Rijsbergen, 1979). A document that contains a search term many times will be more 

related to a user’s interest than a document that has the term only once. 

We estimate the probability, P(Fti), of a matching term ti at frequency Fti in a web 

page to measure the significance of the term. However, in general, frequent terms have a 

lower probability of occurring. For example, in a web page most of the terms (without the 

terms in a stop list (Rasmussen, 1992)) will occur once, some terms happen twice, and 

fewer terms repeat three times or more. Lower probabilities, P(Fti), of a term ti indicates the  

 

 



significance of a term. The probability is estimated by: 

number of distinct terms with frequency Fti in a web page =)(
it

FP  
nt 

 

5.2.1.4. Emphasis of a Term 

Some terms have different formatting (HTML tags) such as title, bold, or italic. 

These specially-formatted terms have more emphasis in the page than those that are 

formatted normally. A document that emphasize a search term as a bold format will be 

more related to the search term than a document that has the term in a normal format 

without emphasis. If a term is emphasized by the use of two or more types of special 

formatting we assign a priority in the order of title, bold, and italic. 

The significance for each type of format is estimated based on the probability, 

P(Eti), of matching term ti with the format type Eti in a web page. Those format types are 

more significant/important if the format type has lower probability of occurring in a web 

page. Lower probability P(Eti) of a matching term, ti, indicates the term is more significant. 

The probability is estimated by:  

number of distinct terms with emphasis Eti in a web page =)(
it

EP  
nt 

 

 

5.2.2. Scoring a Term 

5.2.2.1. Uniform Scoring 

P(Dti, Lti, Fti, Eti) is the joint probability of all four characteristics occurring in term ti 

-- Dti is the depth of a node where a term belongs to, Lti is the length of a term, Fti is the 

 



frequency of a term, and Eti is the emphasis of a term. Assuming independence among the 

four characteristics, we estimate: 

)()()()(),,,(
iiiiiiii tttttttt EPFPLPDPEFLDP ×××=  

 

The corresponding log likelihood is: 

  )(log)(log),,,(log
iiiiii tttttt LPDPEFLDP +=  

                                   )(log)(log
ii tt EPFP ++  

Eq. 1

 

Smaller log likelihood means the term match is more significant. In information theory 

(Mitchell et al., 1997), –log2 P(e) is the number of bits needed to encode event e, hence 

using –log2, instead of log, in Eq. 1 yields the total number of bits needed to encode the 

four characteristics. The uniform term scoring (US) function for a personalized term score 

is formulated as: 

          )(log)(log 22 iii ttt LPDPS −−=
                   )(log)(log 22 ii tt EPFP −−  

Eq. 2

 

which we use as a score for term ti. Larger Sti means the term match is more significant. 

 

5.2.2.2. Weighted Scoring 

The uniform term scoring function uses uniform weights for each characteristic. It 

is possible that some characteristics are more important than the others. For instance, the 

depth of a node (D) may be more significant than frequency (F). Therefore, we attempted 

to differentiate the weights for each characteristic. F and E characteristics represent the 

relevance of a web page. Longer terms (greater L) represent a user’s interest more 

specifically; however, longer terms do not mean that a user is more interested in that term. 

 



Therefore, those L, F, and E characteristics do not fully reflect a user’s interests. It is more 

reasonable to emphasize D characteristic more than other characteristics, because D (depth) 

represents the strength of a user’s interests.  

A simple heuristic is used in this paper that assumes the depth of a node is at least 

two times more important than other characteristics. Based on this heuristic, the weights 

w1=0.4, w2=0.2, w3=0.2, and w4=0.2 are assigned. The weighted term scoring (WS) 

function for a personalized term score is formulated as: 

          )(log)(log 2221 iii ttt LPwDPwS −−=

                    )(log)(log 2423 ii tt EPwFPw −−  
Eq. 3

 

5.2.3. Scoring a Page 

The personal page score is based on the number of interesting terms and how 

interesting the terms are in a web page. If there are many terms in a web page that are 

interesting to a user, it will be more interesting to the user than a web page that has fewer 

interesting terms. If there are terms in a pages that are more interesting to a user, the web 

page will be more interesting to the user than a web page that has less interesting terms. 

The personalized page scoring function for a web page Spj adds all the scores of the 

terms in the web page and can be formulated as: 

∑ =
=

m

i tp ij
SS

1  Eq. 4

 

where m is the total number of matching terms in a web page and Sti is the score for each 

distinct term. The time complexity of scoring a page is O(nt), where nt is the number of 

“distinct” terms in a web page. D and L characteristics can be calculated during the 

 



preprocessing stage of building a UIH. F and L characteristics can be calculated while 

extracting distinct terms from a web page.  

 

5.2.4. Incorporating Public Page Score 

Personal page scoring is not sufficient for some search engines. The success of 

using public scoring in popular search engines, such as Google’s PageRank, indicates the 

importance of using a public page-popularity measure to determine what page a user is 

interested in. Many existing methods determine the public popularity of a page by 

determining the number pages that link to it (Haveliwala, 2002; Jeh and Widom, 2003). 

Many collaborative filtering approaches also use the popularity of a web page for 

recommendation (Eirinaki et al., 2004; Kim et al., 2004). Section 6.2.3 described our 

personal web page scoring function. We wish to incorporate the public scoring into our 

page scoring function so both the popularity of a page and individual interests are taken 

into account. We use the rank order returned by Google as our public score. GOOGLEpj is 

the score of a web page pj based on the page rank returned by Google for a search term. 

Google’s public page scoring function has been found in a recent study (Delaney, 2004) to 

be very effective at returning pages that users find interesting. The use of Google’s page 

rank as a public page score makes our experimental comparison with Google clearer, 

because any improvement in the ordering is due to the contribution of our personal page 

score. For a given web page, pj, the personal and public page score (PPS) equation can be 

written as: 

PPSpj = c×R (Spj) + (1-c)×R (GOOGLEpj) Eq. 5
 

 



where function R(GOOGLEpj) return the rank of a web page, pj, with the public page score 

of GOOGLEpj, and R(Spj) is the rank of a web page, pj, with the personal page score, Spj. If 

the function R returns the rank in an ascending order, more interesting web pages will have 

lower PPS values. Therefore, the function R reverses the rank. The personal page score 

and the public page score are weighted by the value of the constant c. In this paper, both 

functions are weighed equally: c = 0.5. 

 

5.3. Experiments 

In our experiments data were collected from 11 different users. Of the 11 human 

subjects, 4 were undergraduate students and 7 were graduate students. In terms of major, 7 

were Computer Sciences, 2 were Aeronautical Sciences, 1 was Chemical Engineering, and 

1 was Marine Biology. We asked each volunteer to submit 2 search terms that can contain 

any Boolean operators. Some examples of the search terms used are  

{review forum +"scratch remover", cpu benchmark, aeronautical, Free 

cross-stitch scenic patterns, neural networks tutorial, DMC(digital 

media center), artificial intelligence , etc.} 

Then, we used Google to retrieve 100 related web pages for each search term. Those 

collected web pages were classified/labeled by user based on two categories: interest and 

potential interest. The data set for interest has more authority because it indicates direct 

relevance to the current search query. The data set for potential interest reflects the user’s 

general personal interests, which might not be directly relevant at the time of query. The 

areas of a user’s potential interests often go beyond the boundary of a search term’s 

specific meaning. Sometimes users find interesting web pages while searching for different 

 



subjects. These unexpected results help the user as well. Therefore, it is also a contribution 

if a method shows higher precision in finding potentially interesting web pages.  

In order to build UIHs, we also requested each volunteer to submit the web pages 

in their bookmarks. If there were fewer than 50 web pages in their bookmark, we asked 

them to collect more pages up to around 50. The minimum number of web pages was 38 

and the maximum number was 72. Web pages from both bookmarks and Google were 

parsed to retrieve only texts. The terms (words and phrases) in the web pages are stemmed 

and filtered through the stop list (Rasmussen, 1992). A phrase-finding algorithm (Kim and 

Chan, 2004) was used to collect variable-length phrases. Words in selection boxes/menus 

were also removed because they did not appear on the screen until a user clicks on them.  

Unimportant contexts such as comments and style were also removed. Web pages that 

contain non-text (e.g., “.pdf” files, image files, etc.) were excluded because we are 

handling only text. To remove any negative bias to Google, broken links that were still 

ranked high erroneously by Google were excluded from the test, since those web pages 

will be scored “Poor” by the user for sure. The data used in this study is accessible at 

http://cs.fit.edu/~hkim/dissertation/dissertation.htm. Microsoft .NET language was used, 

and the program ran on an Intel Pentium 4 CPU. 

We attempted to remove any negative bias to Google. Those web pages that 

contain non-text (e.g., “.pdf” files, image files, etc.) were excluded because we are 

handling only texts. Furthermore, the broken links that were still ranked high erroneously 

by Google were excluded from the test, since those web pages will be scored “Poor” by 

user for sure. 

 



We categorized the interest as “Good”, “Fair”, and “Poor”; the potential interest is 

categorized as  “Yes” and “No”. A web page was scored as “Good”, “Fair”, and “Poor” 

depending on each individual’s subjective opinion based on the definition of interest. It 

was also marked as “Yes” or “No” based on the user’s potential interest. We evaluated a 

ranking method based on how many interesting (categorized as “Good”) or potentially 

interesting web pages (categorized as “Yes”) the method collected within a certain number 

of top links (Bharat and Mihaila, 2001) (called “Top link analysis”). It is realistic in a sense 

many information retrieval systems are interested in the top 10 or 20 groups. 

Precision/recall graph (van Rijsbergen, 1979) is used for evaluation as well (called 

“precision/recall analysis”). It is one of the most common evaluation methods in 

information retrieval. However, traditional precision/recall graphs are very sensitive to the 

initial rank positions and evaluate entire rankings (Croft and Das, 1989). The formula for 

precision and recall were: 

Precision = Number of “Good” or ”Yes” pages retrieved in the 
set / Size of the set 

Recall = Number of “Good” or ”Yes” pages retrieved in the set / 
Number of “Good” or “Yes” pages in the set 

 

where the “set” is the group of top ranked web pages.  In this paper we study five groups: 

Top 1, 5, 10, 15, and 20. 

 

5.4. Results and Analysis 

We compare four ranking methods: Google, Random, US, and WS. Google is the 

ranking provided by Google.  Random arbitrarily ranks the web pages.  US and WS are the 

two proposed methods based on a personal UIH learned from a user’s bookmarks. For 

 



Random, US, and WS, the top 100 pages retrieved by Google are re-ranked based on the 

method. Each method is analyzed with two data sets: a set of web pages chosen as 

interesting and another chosen as potentially interesting by the users. Top link analysis, 

precision/recall analysis, the sensitivity of personal score weight c (Section 6.2.4) are 

discussed. 

 

5.4.1. Interesting Web Page 

5.4.1.1. Top Link Analysis 

Web search engine users are usually interested in the links ranked within top 20 

(Chen and Sycara, 1998). We compare each method only with Top 1, 5, 10, 15, and 20 

links on the interesting web page data set and present the results in Table 20. The first 

column is the methods; the next five columns present the precision values of each method 

with respect to the five Top links. The values in each cell are the average of 22 search 

terms’ precision values. High precision value indicates high accuracy/performance. 

Precision values higher than Google’s are formatted as bold and the percentage of 

improvement is within parentheses. The highest precision value in each column is 

underscored. 

The results show that our WS method was more accurate than Google in three Top 

links (Top 10, 15, and 20) and the percentages of improvements are at least 13%, while 

WS ties with Google for Top 1 and Top 5. In terms of the highest precision, WS showed 

highest performance in four columns; Google showed in only two columns and the values 

are equal to WS. Compared to US, WS showed higher precision in four (Top 1, 5, 15 and 

20) of the five columns. Random was the lowest as we expected, showing the lowest 

 



precisions in all five columns.  These results indicate that WS achieves the highest overall 

precision. 

We also wanted to know which search terms yielded higher precision with WS 

than with Google and analyzed the precision with respect to each individual search terms. 

Out of 22 search terms (11 users × 2 search terms), WS achieved higher precision for 12 

search terms (55%), Google did for 8 search terms (36%), and they were even for 2 search 

terms (9%). Since the UIH is built from a user’s bookmarks, we analyse the bookmarks to 

understand the search terms that did not perform well using WS. When we compare the 

bookmarks with the “good” retrieved web pages, we found that they are unrelated. For 

example, a volunteer used “woodworking tutorial” as a search term, but he never 

bookmarked web pages related to that term.  This implies bookmarks are useful for 

building user profiles, but they are not sufficient. We will discuss enhancements in the 

conclusion. 

 

5.4.1.2. Statistical Significance 

In order to see if this improvement is statistically significant we conducted t-Test 

(paired two samples for means) between two groups of individual search terms with 

Google and WS for each Top link. There was no statistically significant difference between 

WS and Google for any Top link with 95% confidence (P=1and t=2.079 for Top 1; P=1and 

t=2.079 for Top 5; P=0.328 and t=2.079 for Top 10; P=0.204 and t=2.079 for Top 15; 

P=0.147 and t=2.079 for Top 20).  

To understand why our improvements are not statistically significant, we analyze 

the variance in the precision values. In Figure 22 we plot the average and the standard 

 



deviation (SDs) of 22 search terms’ precisions from Google with respect to the five Top 

links. The x-axis shows the Top links and y-axis represents the average and the SD of 

precision values. The dots in the middle of vertical bars are the averages and the bars 

themselves represent the SD values. Variance was large for Top 1 and decreases when 

more links were considered. 

To understand the difficulty of improving Google’s ranking, we calculate the 

number of multiples needed to achieve one SD from the average. Formally, the number of 

multiples is defined as (Avg.+SD)/Avg. The larger the number of multiples indicates more 

difficulty in beating Google with statistically significance. The number of multiples for 

Top 1 is 3.35, Top 5 is 2.79, Top 10 is 2.72, Top 15 is 2.71, and Top 20 is 2.72. In 

information retrieval doubling or tripling the precision for a large variance like Google’s is 

rare. From our calculated number of multiples, we need to at least double or triple the 

precision to achieve statistically significant improvement over Google’s ranking. 

To further demonstrate the difficulty, we applied the same t-Test to precision 

values from Google and Random (P=0.134, t=2.079 for Top 1; P=0.179, t=2.079 for Top 

5; P=0.062, t=2.079 for Top 10; P=0.035, t=2.079 for Top 15; P=0.024, t=2.079 for Top 

20). We found that, though Google’s improvement over random is statistically significant 

for Top 15 and 20, it is not statistically significant for Top 1, 5, and 10. 

 

5.4.1.3. Precision/Recall Analysis 

Precision/recall analysis visualizes the performance of each method in graphs as 

shown in Figure 23. The x-axis is recall and y-axis is precision. The line closer to the 

upper-right corner has higher performance. WS and US are closer to the upper-right corner 

 



than Google except with recall values lower than .15 (after Top 5). In general, WS 

outperforms US and Random. 

 

5.4.1.4. Varying Personal Weight 

The performance of WS may depend on how much we weigh the personal page 

score over the public page score. The parameter c in Section 6.2.4 represents the weight for 

the personal page score. For example, c=0.9 means the page is scored by 90% of personal 

page score and 10% of public page score.  We experimented with c={0.9, 0.7, 0.5, 0.3, and 

0.1} and measured the corresponding precision and recall. The results are plotted in Figure 

24 and each line represents a different c value. The line closer to the upper right corner 

indicates higher performance. c=0.9 has lowest precision. c=0.1 achieved the second 

lowest precision except for recall values lower than 0.2. Figure 25 enlarges the scale of 

recall between 0 through 0.2 in Figure 24. It is still not clear which one is higher than the 

others except the line with c=0.9; however, c=0.5 in general seems to show the highest 

performance. Therefore, we chose c=0.5 as the weight of personal page score. 

 



 

 

Table 20. Precision in Top 1, 5, 10, 15 and 20 for interesting web pages 

 Top 1 Top 5 Top 10 Top 15 Top 20 
Google .36 .34 .277 .285 .270 

Random .14 .25 .205 .206 .209 
US .32 .31 .323 (17%) .315 (11%) .305 (13%) 
WS .36 .34 .314 (13%) .327 (15%) .309 (14%) 
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Figure 24. Precision/recall with personal score weight c 
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Figure 25. Up to 20% recall of Figure 24 

 

 

 



5.4.2. Potentially Interesting Web Page 

5.4.2.1. Top Link Analysis 

We compare our four methods with Top 1, 5, 10, 15, and 20 links on the 

potentially interesting web page data set and present the results in Table 21. The values in 

each cell are the average of 22 search terms’ precision values. The ways of reading this 

table and the table for interesting web pages are similar. 

WS showed higher performances than Google in all five Top links. All five 

precisions achieved by WS are the highest values as well. The percentages of 

improvements are between 3% and 17%. Random showed the lowest in all five Top links. 

The reason for the improvement of WS is, we predict, because the UIH that was derived 

from a user’s bookmarks supported the user’s potential interest. It might be difficult for 

Google that used the global/public interest to predict individual user’s broad potential 

interests.  

We also counted what search terms yielded higher precision with WS than with 

Google. WS achieved higher performance for 12 search terms (55%), Google made for 8 

search terms (36%), and they were even for 2 search terms (9%) out of 22 search terms. 

The reason for the low performance of some search terms might be because there is no 

relation between his/her bookmarks and the search terms. 

 

5.4.2.2. Statistical Significance 

The t-Test between the two groups of 22 individual search terms with WS and 

Google showed no statistically significant difference with 95% confidence for any Top link 

 



(P=0.665 and t=2.079 for Top 1; P=0.115 and t=2079 for Top 5; P=0.466 and t=2.079 for 

Top 10; P=0.580 and t=2.079 for Top 15; P=0.347 and t=2.079 for Top 20). 

We analyze the variance in the precision values to understand why the 

improvements are not statistically significant. The graph in Figure 26 illustrates the 

average and the standard deviation (SD) of 22 search terms’ precisions with Google to the 

five Top links. Variance was large for Top 1 and decreased as more links were considered. 

In order to estimate how difficult it is to achieve statistically significant 

improvements over Google, we calculate the number of multiples, which is 

(Avg.+SD)/Avg. The number of multiples for Top 1 is 2.77, for Top 5 is 2.53, for Top 10 

is 2.59, for Top 15 is 2.58, for Top 20 is 2.60. From our calculated number of multiples, we 

need to at least double the precision for achieving statistically significant improvement on 

potentially interesting web pages. 

 

5.4.2.3. Precision/Recall Analysis 

The results from precision/recall graph for potentially interesting web pages in 

Figure 27 and the Top link analysis in Table 21 are similar. WS was closer to the upper-

right corner than Google, US, and Random over all. WS outperformed other methods on 

potentially interesting web pages data set. 

 

 



 

 

Table 21. Precision in Top 1, 5, 10, 15 and 20 for potentially interesting web pages 

 Top 1 Top 5 Top 10 Top 15 Top 20 
Google .59 .53 .514 .509 .475 

Random .36 .39 .350 .358 .364 
US .59 .58 (9%) .536 (4%) .521 (2%) .493 (4%) 
WS .64 (8%) .62 (17%) .541 (5%) .524 (3%) .498 (5%) 
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Figure 26. Average and SD of precision
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Figure 28. Precision/recall with personal score weight c 
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Figure 29. Up to 20% recall of Figure 28 

 

 



5.4.2.4. Varying Personal Weight 

In order to see the improvement of WC’s performance with different personal 

weights, we varied the parameter for the weight: c = {0.9, 0.7, 0.5, 0.3, and 0.1}. The 

results are plotted in Figure 28. c=0.9 draw the lowest line; c=0.7 looks the second lowest 

line. Figure 29 enlarges the scale of recall in Figure 28. It looks clear that c=0.5 in general 

seems to show the highest performance. Therefore, we chose c=0.5 for the weight of 

personal page score. The weights for personal page score with both data sets are the same. 

 

5.5. Summary 

The purpose of this research is to devise a new method of ranking web search 

results to serve each individual user’s interests. A user profile called UIH is learned from 

his/her bookmarks. For scoring a term in a web page that matches a term in the UIH, we 

identified four characteristics: the depth of tree node in the UIH that contains the term, the 

length of the term, the frequency of the term in the web page, and the html formatting used 

for emphasis. Our approach uses the terms filtered though stop list in web pages 

(Rasmussen, 1992). This approach removes the process of selecting important/significant 

terms unlike other information retrieval techniques (Pazzani and Billsus, 1997). Therefore, 

we can handle smaller data set and reduce the danger of eliminating new important terms. 

We evaluated methods based on how many interesting web pages or potentially interesting 

web pages each algorithm found within certain number of top links (Bharat and Mihaila, 

2001). Traditional precision/recall graphs (van Rijsbergen, 1979) were also used for 

evaluation. We counted which search term showed higher performances with WS than with 

Google as well. 

 



We compared four ranking methods: Google, Random, US, and WS. Google is the 

most popular search engine and posts the best ordering results currently. Random method 

was chosen to see the improved performance of Google and our new methods. We used 

two data sets: interesting web pages that are relevant to the user search term and potentially 

interesting web pages that could be relevant in the future. On interesting web pages, the 

Top link analysis indicated WS achieved at least 13% higher precision than Google for 

Top 10, 15 and 20 links on average. WS outperformed US and Random in general also. 

The precision/recall analysis showed that WS outperformed Google except with recall 

values lower than .15. Out of 22 search terms, WS achieved higher precision than Google 

for 12 search terms (55%). On potentially interesting web pages, WS achieved the highest 

performance in all five Top links with improvement over Google between 3% and 17%. It 

also outperformed the other methods in the precision/recall graph. The analysis of 

individual search terms yielded the same results as on interesting web pages. A weight of 

0.5 for the personal ranking seemed to show the highest performance on both data sets. 

Therefore, these results conclude that WS can provide more accurate ranking than Google 

on average.  The improvement of WS was not statistically significant because the precision 

values of Google had large variance. The reason for the low performance of some search 

terms might be because there is no relation between his/her bookmarks and the search 

terms. We may be able to relieve this problem by incorporating interesting web pages 

based on implicit interest indicators such as mouse movements (Kim and Chan, 2005) in 

addition to bookmarking. 

During the experiment, we observed that users do not tend to measure index pages 

as "Good". It is because index pages usually contain long lists of hyperlinks with little 

 



description for a user to find interesting. To identify index pages automatically, we count 

the number of "outside words" (the text outside anchor tags), which usually provide the 

subject content. However, our approach of penalizing the index pages did not make much 

improvement in our initial experiments. We will examine this approach further in the 

future. 

Measuring the precision with clustered search results like the results from 

Vivisimo (2005) may show different performance from Google’s. In a clustered search 

engine, a link that does not belong to the top 10 in whole can belong to the top 10 in some 

sub clusters. The clustered search results provide users easier access to the interesting links 

after Top 10 or 20. Since WS showed higher performance for those links than Google as 

shown in Section 6.4.1.3, we assume that our method may get higher performance with 

clustered search engines. We may be able to make a search engine more interactive using a 

UIH. For example when a user’s query resides in an intermediate node in his/her UIH, we 

can ask a user to choose more specific interests providing the terms in the child nodes, or 

in another sub-trees in the UIH. 

 



Chapter 6 

Implicit Indicators for Interesting Web Pages 

 

A user’s interest in a web page can be estimated by unobtrusively (implicitly) 

observing his or her behaviour rather than asking for feedback directly (explicitly). Implicit 

methods are naturally less accurate than explicit methods, but they do not waste a user’s 

time or effort. Implicit indicators of a user’s interests can also be used to create models that 

change with a user’s interests over time. Research has shown that a user’s behaviour is 

related to his/her interest in a web page. We evaluate previously studied implicit indicators 

and examine the time spent on a page in more detail. For example, we observe whether a 

user is really looking at the monitor when we measure the time spent on a web page. Our 

results indicate that the duration is related to a user’s interest of a web page regardless a 

user’s attention to the web page.  The thicker features in Figure 30 describe the position of 

this work in our overall diagram of web personalization. 
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6.1. Implicit Interest Indicators 

The time spent on a web page is one of the most intuitive candidates for user 

interest indicators. This paper thoroughly examines whether duration is related to a user’s 

interest. This section describes duration, as well as other user interest indicators that will be 

examined. The reason why each indicator is chosen is explained and how each indicator is 

measured is described. 

 

6.1.1. Complete Duration 

A user may tend to spend more time on pages that he or she finds interesting, so 

we record the duration spent on a web page. The complete duration is defined as the time 

interval between the time a user opens and leaves a web page. Some web pages contain 

many images that delay the downloading time, so we start measuring the duration after the 

entire page is loaded. Thus, the complete duration won’t be affected by the connection 

speed, the amount of Internet traffic, or the CPU speed. The complete duration for a web 

page can be calculated by subtracting the time of finishing downloading the current web 

page from the time of leaving the web page. The complete duration is different from the 

duration used by Jung (2001). His duration includes the downloading time of a web page. 

 

6.1.2. Active Window Duration 

Most modern operating systems allow a user to multitask, or run several 

applications at the same time. A user may write a report or chat while browsing a web 

page. Those other applications can be unrelated to the contents of a web page. If a user 

 



spent one hour writing a homework paper with a web browser minimized, the complete 

duration of the web page could be one hour. This is very likely to provide erroneous 

indications of user interest. In order to avoid being affected by this problem, we determine 

whether a web browser is active or not. The time that a web browser is inactive is 

subtracted from the complete duration. We call this duration active window duration since 

we count the time only when a web browser is active.  

 

6.1.3. Look At It Duration 

Users are not always reading a web page when the web browser is active. They can 

easily be talking to friends or having a coffee break, while the web browser is active. The 

active window duration can easily be more than 30 minutes if a user leaves the browser 

active and goes for a coffee break. We may be able to detect the user’s absence by 

detecting the action of mouse movement. However, a better solution is to use a camera that 

detects a user’s face orientation. A camera can even check if a user is looking at the web 

browser or if his attention is diverted. This duration will be more accurate than the active 

window duration in terms of checking user’s attention to a web page. Since this duration 

counts the time that a user is looking at the web browser, we call it look at it duration. The 

look at it duration can be calculated by subtracting the time when a user does not look at 

the browser from active window duration. 

 

6.1.4. Distance of Mouse Movement 

Many people move their mouse while reading the contents of a web page. Mouse 

movement can occur while looking at an interesting image, or when pointing at interesting 

 



objects. We hypothesize that the more distance a mouse moves, the more a user be 

interested in the web page. This indicator was also examined by Jung (2001). Our distance 

is a little bit different from his in a sense of detecting overall mouse movement. He counted 

on the mouse movement only when the mouse point is inside the active browser. The 

distance of mouse movement is detected by its x and y coordinates on a monitor every 100 

milliseconds. The formula is 

∑
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where time t is the active window duration, the time interval, ti-ti-1, is 100 milliseconds, 

P(ti) is a mouse location with x and y coordinates at time ti, and the Dist function is a 

Euclidean distance. 

 

6.1.5. Number of Mouse Clicks 

People use “click” to hyperlink to another web page. In addition, clicking can be 

considered as a habitual behaviour (Jung, 2001). Clicking can be a way of expressing our 

emotions such as if some people are happy to find a product that they were looking for 

(e.g., book), then they can click the object several times repeatedly. This indicator was 

examined in Kixbrowser (Jung, 2001), Curious browser (Claypool et al., 2001), Goeck’s 

browser (Goecks et al., 2000), and Letizia (Liberman, 1995). We use the hypothesis that 

the greater the number of mouse clicks on a web page is, the more a user is interested in it 

(Jung, 2001). The number of mouse clicks is counted every time a mouse button is clicked.  

 

 



6.1.6. Distance of Scrollbar Movement 

A user can also scroll a web page up and down by dragging a scrollbar. Those 

dragging events can occur several times while a user is reading a web page. The distance of 

scrollbar movement for an occasion, E, can be calculated by measuring the mouse 

movement every 100 milliseconds. By summing all distances of scrollbar movement for all 

occasions, the distance of a scrollbar movement for a web page can be calculated. The 

formula is 
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where E is the number of times the scrollbar is pressed, time E(j) is the duration that the 

scrollbar is dragged in a single dragging event, and ti-ti-1, is 100 milliseconds. We 

hypothesize that greater scrollbar movement is correlated with more user interest in a web 

page. 

 

6.1.7. Number of Scrollbar Clicks 

The length of many web pages is longer than the height of a monitor. If a user 

finds a web page interesting, he or she may read further down the web page. A user can 

scroll down a web page either by clicking or by dragging the scrollbar. Those events are 

counted separately. The number of scrollbar clicks is counted every time a user clicks 

scrollbar. As a user scrolls a web page up and down by clicking, the number of scrollbar 

clicks increases. Jung (2001), Goecks et al. (2000), and Claypool et al. (2001) measured 

this event and reported that it is a good indicator. We hypothesize that we will also find 

that the number of scrollbar clicks is correlated with a user’s interest in the web page.  

 



6.1.8. Number of Key UP and Down 

When scrolling a web page, some people use the “up” and “down” keys instead of 

the scrollbar. This indicator is similar to the number of scrollbar clicks and the distance of 

scrollbar movement. The hypothesis is that the greater the number of key up and down 

presses, the more a user is interested in the web page. This event is measured by increasing 

the count every time a user strikes up or down keys. Curious browser (Claypool et al., 

2001) and Jung (2001) measured keyboard activities. But they did not measure the key up 

and down for measuring scrollbar movement. 

 

6.1.9. Size of Highlighting Text 

While reading a web page, if a user copies some contents of the web page it 

probably means that the user is interested in the web page. Furthermore, a user can also 

habitually highlight portions of the page that they are interested in, which is a sign that the 

user is interested in the page. We assume that the more a user highlights in a web page, the 

more a user is interested in that web page. A user can highlight several different sentences 

in a web page for several different occasions. We sum all highlighted contents at the end. 

Jung (2001) examined this indicator. He used the Euclidean distance between two points of 

pressing and releasing. The weakness of his measure resides in neglecting the texts 

highlighted horizontally when the mouse moves vertically. In order to solve this problem, 

we assumed a character is 5 pixels, each line has 80 characters, and distance between two 

lines is 20 pixels on average. The formula is 
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where E is the number of occasions when highlighting occurs, DistY is the vertical distance 

between two points, and DistX is the horizontal distance between two points. 

 

6.1.10. Other Indicators 

We also measure other less-frequently-used events such as bookmark, save, print, 

and memo. A user usually bookmarks web pages in order to visit them later again. We 

assume those bookmarked web pages are interesting to a user (Li et al., 1999; Maarek and 

Ben-Shaul, 1996). This can be measured by detecting bookmarking activities during the 

experiment. Users save important/interesting web pages in their hard drive by using the 

“Save As” command. This also implies that those saved web pages are interesting to users 

(Liberman, 1995). This indicator is also counted by detecting saving activities during the 

users’ browsing. Most web browsers allow users to print web pages. These printed web 

pages are likely to be interesting to users (Kim et al., 2001). The Memo box is a new 

feature added in our system. It allows a user to write down a short description on a web 

page. When the user visits the web page again, the message shows up on the Memo box 

automatically. We assume that if a user is interested in a web page, then s/he will write a 

note about the web page. 

 

6.2. Detecting Face Orientation 

The look at it duration is the time when a user looks at a computer screen. In order 

to count the time we monitor a user’s head orientation. In this chapter, we detail how we 

detect the head orientation using a webcam. For detecting head orientation, we use three 

 



dots on the hat that a user wears during our experiment. Discussed are how to detect the 

three dots and how to learn head orientation with the three dots. 

 

6.2.1. Detecting Three Dots 

To recognize head orientation in an image, the background is usually removed 

(Intel Inc., 2001). The term “background” stands for a set of motionless image pixels, that 

is, pixels that do not belong to a human object in front of the camera. The background 

image can reduce the performance or increase the time complexity. 

A simple model of removing background may assume that every background pixel 

brightness varies independently, according to normal distribution. The background 

characteristics can be calculated by the mean and standard deviation for every pixel of 

several dozens of frames collected. After that the pixel in a certain pixel location in certain 

frame is regarded as belonging to a moving object if condition Abs(mean(x,y)–

p(x,y))>3×StandardDeviation(x,y) is met, where p(x,y) is a pixel in a new frame (Intel Inc., 

2001). However, as the object moves closer to the camera (from “Far” to “Close” in Figure 

31), the background color changes from dark color to almost white color -- the assumption 

is not right (do not follow normal distribution).  

Since a user is wearing a black hat, the derivation between two adjacent points 

helps detect the boundary of the hat. If we continue to remove the pixels that have lower 

derivation than a threshold starting from edges (left, right, and top) and stop when the  

 

 



derivation is higher than the threshold, at the end the object alone remains without 

background. The formula for the derivation is 

otherwise
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where p(x,y) is the pixel at the coordination of x and y and 200 of the constant is chosen as 

the threshold by observation. The distance between two pixels is the difference of green 

color values of two pixels. 

Once the background is removed, the image is converted into a black and white 

image – entire image becomes black except three dots. Each dot/circle is detected by 

connecting adjacent white pixels as shown in Figure 32. Some erroneous white pixels are 

cleaned by applying some rules such as removing pixels which size is smaller than 5 and 

choosing top three circles. The 3 dots are depicted in Figure 33: left, center, and right dots. 
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Figure 31. A retrieved image 

 

 



 

 

 

 

 

Figure 32. Detected three dots 
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Figure 33. Three dots in an image 

 

 

 

 



6.2.2. Learning Face Orientation 

6.2.2.1. Input/Output Parameters 

The information about the 3 dots becomes the input parameter of a learning 

algorithm (this will be explained later). All examined information about the three dots is 

 
{the coordination of left, center, right dots; the sizes of left, center, right dots; 

distances between dots; the coordination of center dot; the ratios between the 

sizes of dots; the ratios between the distances of dots; the angles of left, center, 

right dots; the levelness of the line between left and right dots}. 

 
The size of a dot is the number of pixels in a dot. If the size of a left dot is smaller and the 

size of the right dot, then it indicates that the face is not oriented to the web browser. The 

ratio between the sizes of the left and the right dots can be a more accurate indicator 

because the ratio is independent from the distance between a face and the monitor. The 

distances between dots can be used to measure the face orientation. Short distance between 

the left and the right dots shows that the face does not direct to the monitor. The relative 

ratios among the three distances are independent from the distance between a face and the 

monitor. We also use the three angles of three dots and the levelness between the left and 

the right dots. The levelness will tell us whether the head is up strait or not. All input 

values are normalized (between 0.1 – 0.9). The output parameter is the head orientation: 

looking at the monitor (0.1) and not looking at the monitor (0.9). 

 

 



6.2.2.2. Learning Algorithm 

Artificial Neural Network (ANN) algorithm provides a robust approach to 

approximating various types of examples. The BACKPROPAGATION algorithm is the most 

commonly used ANN learning technique. The BACKPROPAGATION algorithm has proven 

surprisingly successful in many practical problems such as learning to recognize 

handwritten characters (LeCun et al., 1989), learning to recognize spoken words (Lang et 

al., 1990), and learning to recognize faces (Cottrell, 1990). This algorithm is appropriate 

for problems with the following characteristics (Mitchell, 1997): the input and the output 

should be able to be represented as vectors; the training examples may contain errors; long 

training times are acceptable; fast evaluation of the learned target function may be 

required; the ability of humans to understand the learned target function is not important.  

Our input and output data can be represented as vectors; error can reside in our 

training data; training time is not important in our work; since our web browser has to 

evaluate an image every other seconds, fast evaluation of the learned target function is 

required; the ability of humans to understand the learned target function is not important. 

These characteristics of our example data match BACKPROPAGATION algorithm. 

We used BACKPROPAGATION to learn the face orientation with 100 hidden units and 

0.03 of learning rate. The results reached more than 90% accuracy. Since the purpose of 

this paper is not to evaluate the performance of our face-orientation-detection method, we 

omit the technical details and the analysis of the results. 

 



6.3. Experiments 

6.3.1. Experimental Data and Procedures 

For our experiments, we built a web browser that can record the indicators 

described above from user’s behaviour and used a camera to record images for identifying 

face orientation. 11 data sets were collected from 11 different users. Of the 11 human 

subjects, 4 were undergraduate students, 6 were graduate students, and 1 was a Ph.D. 

student. In terms of major, 7 were Computer Sciences, 2 were Aeronautical Sciences, 1 

was Chemical Engineering, and 1 was Marine Biology. Each subject was asked to spend a 

total of 2 hours at the computer. Volunteers were allowed to leave the computer and do 

other non-computer work. All volunteers were encouraged to behave as normal as possible. 

To get a variety of behaviours, we asked the volunteers to divide their activities into 

multiple sessions, each of which does not exceed 1 hour. 

In the browser used in our experiment, most of the functions in Microsoft Explore 

6.0 were implemented. The popup windows were disabled initially, but our browser 

allowed a user to change the option to able them. We asked users to bookmark more than 

10 pages, save more than 5 pages, print more than 5 pages, use Memo on more than 5 

pages. The browser had Memo box so that users can write small note on a web page. Our 

web browser takes a picture of a user every 2 seconds. Every time a user leaved a web 

page, the web browser asked the user how much they are interested in the web page – there 

were 5 scales between “not interested” (1) and “very interested” (5).  

 



The interests were subjective to each user. The system had a “rescore” button to 

allow changing the score marked in the previous visit. The browser was written in Visual 

Studio .NET and ran on a Pentium 4 CPU. The Operating System was Windows XP. 

 

6.3.2. Evaluation Criteria 

Two evaluation criteria are used: how accurate an indicator could predict a user’s 

interest and how many users an indicator can accurately predict their interests. Instead of 

mixing all users’ data sets together, each individual data set was analysed separately so that 

we could clearly observe whether some indicator predicted certain individual’s interests 

more accurately than other indicators. An indicator that could predict the score with a 

lower variance is a more accurate indicator. In order to evaluate each indicator to see which 

one is more predictable, we use ANOVA (Analysis of Variance). Jung (2001) treated the 

scale as numeric scale and applied linear regression, multiple linear regression, etc. 

methods. We, however, consider the interest scores as discrete values and check if the 

indicator values are significantly different among the five different interest scores provided 

by the user. For ANOVA, we use a confidence level of 95% to indicate statistical 

significance. If the difference is significant, indicator values can predict interest scores. As 

a second criterion, we count the number of users predicted accurately by an indicator. This 

criterion indicates how reliable the indicator is across different users. 

 

 



6.4. Results and Analysis 

This section analyzes the data collected from the users who participated in our 

experiment. There are two data sets: “visits with maximum duration” and “all visits”. For 

web pages that a user visited more than once, the score might be the same, but all other 

information (the durations or number of mouse clicks etc.) may be different. The “visits 

with maximum duration” data set contains only page views where the user stayed for the 

longest period of time. The maximum duration is determined using complete duration, 

which is described in Section 3.1. The “all visits” data set contains all page views collected 

in our experiment. We believe that the “visits with maximum duration” data set is more 

useful than “all visits”, because users do not tend to read the web page again if they know 

about a web page before (Billsus and Pazzani, 1999). On average, users had 182 visits in 

the “visits with maximum duration” data set, and users had 291 visits in the data set of “all 

visits”. Jung (2001) only used the “all visits” data set. 

 

6.4.1. Visits with Maximum Duration 

Table 22 shows the experimental results with “visits with maximum duration” data 

set. The table summarized which indicator is reliable for which volunteer. The first column 

is users, the second column is complete duration (Complete), the third column is active 

window duration (Active), the rest columns are for look at it duration (LookAtIt), distance 

of mouse movement (MousMove), number of mouse clicks (MousClk#), distance of 

scrollbar movement (ScrolMov), number of scrollbar clicks (ScrolCk#), number of key up 

and down (KeyUpDn#), and size of highlighting text (Highligh). They are implicit 

 



indicators examined. The “√” mark means that the hypothesis for the indicator is 

statistically significant and “x” means that it was not. The mark “?” means it was 

unavailable to apply statistical methods to the data due to various reasons such as limited 

data. The last row indicates how many users’ interests can be predicted by that indicator – 

the number of “√” mark for each column. 

The Indicators Complete, Active, LookAtIt, and MousMove were able to classify 8 

users’ interests towards web pages (73%). The indicator of MousClk# was the next best 

indicator, which was recognized as the best in (Jung, 2001). Indicators of KeyUpDn# and 

Highligh were able to distinguish the lowest number of users’ interests – KeyUpDn# was 

significant to only 1 user and Highligh was significant to only 3 users. No indicator could 

predict User 5’s interest. The indicator Highligh could predict User 7, but no other 

indicators could do his interest. Indicator of ScrolMov was also valid only to User 4. These 

results indicate that there was no indicator that was valid to all of the users. Depending on 

users, an indicator may or may not be valid. 

We expected that the LookAtIt would be the most accurate indicator, but the result 

did not turn out as we expected. We suspect that this was because they did not move 

around much and looked at the monitor most of the time while browsing. In practice, a user 

can use browser longer period. 

 

6.4.2. All Visits 

Table 23 shows the experimental results with the data set of “all visits”. The table 

summarized which indicator is reliable for which volunteer. The implicit interest indicators 

Complete, Active, LookAtIt, and MousMove were able to predict the interests of 7 users 

 



(64%) that participated in the study. This means that when we used “visits with maximum 

duration” we could predict more number of users – 8 users. This result notifies that the 

“visits with maximum duration” data set is more useful in predicting users’ interests more 

accurately than the data set of “all visits”. 

The indicator of MousClk# was the next best indicator and was able to predict the 

interests of 6 users. User interest was more accurately predicted by the MousClk# implicit 

indicator in the “all visits” data set, but this was less predictable than the 4 indicators 

above. This result is similar to the findings of Jung (2001), who also used the “all visits” 

data set, and where MouseClk# was found to be the best indicator. No indicator could 

predict User 5’s interest. User 4’s interest could be predicted only by ScrolCk# and User 

7’s interest could be predicted only by Highligh. These results also indicate that different 

indicators can predict different people. 

 



 

 

Table 22. ANOVA test with “visits with maximum duration” data set 

Users Complete Active LookAtIt MousMove MousClk# ScrolMov ScrolCk# KeyUpDn# Highligh 

User 1 √ √ √ √ √ × × ? × 

User 2 √ √ √ √ √ √ √ √ √ 

User 3 √ √ √ √ √ √ √ ? √ 

User 4 × × × × × √ × ? × 
User 5 × × × × × × × ? × 
User 6 √ √ √ √ × × √ × × 
User 7 × × × × × × × × √ 

User 8 √ √ √ √ √ × × × × 
User 9 √ √ √ √ × × × × × 

User 10 √ √ √ √ √ √ √ × × 
User 11 √ √ √ √ × × × × × 

Sum 8 8 8 8 5 4 4 1 3 

 

Table 23. ANOVA test with the data set of “all visits” 

Users Complete Active LookAtIt MousMove MousClk# ScrolMov ScrolCk# KeyUpDn# Highligh 

User 1 √ √ √ √ √ √ √ ? × 
User 2 √ √ √ √ √ × √ √ × 
User 3 √ √ √ √ √ √ √ ? √ 

User 4 × × × × × × √ × × 
User 5 × × × × × × × × × 
User 6 √ √ √ √ √ × √ × × 
User 7 × × × × × × × × √ 

User 8 √ √ √ √ √ × × × √ 

User 9 √ √ √ √ √ × × × × 
User 10 × × × × × √ × √ × 
User 11 √ √ √ √ × √ × √ × 

Sum 7 7 7 7 6 4 5 3 3 

 

 



6.4.3. Other Indicators 

The implicit interest indicators bookmark, save, print, and memo had lower usage 

than the other indicators mentioned above. Users bookmarked or printed only a few web 

pages while surfing web. Users did not bookmark all interesting web pages, so if used 

alone they cannot be used to identify all of the pages that a user finds interesting. However, 

these indicators have a very high accuracy when they are used, and they can be used 

together with other more frequently used indicators.  

The results for the bookmark, save, print, and memo indicators are listed in Table 

24. The first column is the indicator, the second column is the score (1-“not interested”, 3-

“interested” and 5-“very interested”); the third column is the sum of the usages for the 

specified indicator across 11 volunteers. The rest of the columns are detailed usages for 

each user. The value in each cell is the number of times that the indicator was used. The 

number of times each indicator was used varied significantly between each individual. For 

instance, for some users the bookmark indicator was a clearer indicator than other ones – 

user 5; for some other users save was a clearer indicator – user 10. 

Of the web pages that were bookmarked, 95% of them were scored more than or 

equal to “interested” (3). The sum of bookmarked web pages across 11 volunteers tells us 

that users rarely bookmarked uninteresting web pages – no bookmarked web pages were 

scored as “not interested”. User 1 and 5 showed a tendency of book-marking more web 

pages as the web pages became more interesting. These results indicate that bookmark was 

a good indicator.  

Saved web pages were scored more than or equal to “interested” 98% of the time. 

This means that users rarely saved uninteresting web pages. Saved web pages were never 

 



scored as “not interested.” All users, except user 8, only saved pages that they found 

interesting. Users 3, 6, and 10 showed a tendency of saving more web pages as the web 

pages became more interesting. These results indicate that save is a good implicit indicator. 

All of the printed web pages were scored more than or equal to “interested”. This 

result tells us that users did not print uninteresting web pages. User 2, 3, 6, and 10 showed 

a tendency of saving more web pages as the web pages were getting more interesting. 

These results indicate that print is a good indicator. 

Nearly all (98%) of the memoed web pages were scored more than or equal to 

“interested.” No memoed web pages were scored as “not interested.” No user other than 

user 9 memoed on web pages for which he was less than “interested.” User 1 did not used 

the memo, but user 3, 5, and 10 showed a tendency of saving more memos as the web 

pages became more interesting. These results also indicate that memo is a good indicator. 

 



 

 

 

 

 

Table 24. Results of bookmark, save, print, memo indicators 

   Users 
Indicator Score Sum 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 0 0 0 0 0 0 0 0 0 0 
2 5 0 1 0 0 0 0 1 2 0 0 1 
3 24 2 6 1 2 1 0 2 5 0 2 3 
4 31 2 3 0 1 6 4 1 2 3 7 2 

bookmark 

5 41 5 7 6 1 9 1 3 1 2 6 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 1 0 0 0 
3 12 0 8 1 0 0 1 0 2 0 0 0 
4 15 0 4 3 5 0 1 0 0 0 2 0 

save 

5 29 0 10 6 0 1 3 0 1 2 6 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 
3 12 0 2 0 1 0 1 5 2 0 0 1 
4 11 0 4 1 2 0 1 0 0 0 2 1 

print 

5 40 0 15 7 1 3 4 2 1 4 3 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 1 0 0 
3 8 0 3 0 1 0 1 2 1 0 0 0 
4 12 0 1 2 2 1 0 0 0 3 1 2 

memo 

5 30 0 9 10 0 2 0 0 1 1 7 0 

 
 

 

 



6.5. Summary 

This paper identifies several implicit indicators that can be used to determine a 

user’s interest in a web page. This paper evaluates both previously studied implicit 

indicators and several new implicit indicators. All indicators examined were complete 

duration, active window duration, look at it duration, distance of mouse movement, 

number of mouse clicks, distance of scrollbar movement, number of scrollbar clicks, 

number of key up and down, and size of highlighting text. The data was 11 users’ implicit 

indicator data and a 1-5 interest rating of each page. During our experiment volunteers 

were encouraged to behave normally. 

Two evaluation criteria were used: (1) how accurately an indicator can predict 

users’ interests and (2) how many users’ interests an indicator can predict. We used two 

data sets: “visits with maximum duration” and “all visits”. We believe that “visits with 

maximum duration” is more useful for prediction than “all visits”, because users did not 

tend to read a web page again, once users read about the web page (Billsus and Pazzani, 

1999). Over the data set containing “visits with maximum duration”, the implicit interest 

indicators Complete, Active, LookAtIt, and MousMove were able to predict 8 users’ 

interests towards web pages, but over the data set of “all visits” the indicators were able to 

predict only 7 users’ interests. These facts also notified that the “visits with maximum 

duration” data set is more useful in predicting users’ interests more accurately than the data 

set of “all visits”. 

The experimental results told us that MousMove could be the most practical 

indicator because this event is simple to detect and has less risk than Active. If a user leaves 

a web page open and leaves the room, the MousMove indicator will not be affected. The 

 



indicator of MousClk# was the next best indicator, which was recognized as the best in 

(Jung, 2001). Our results indicate that there was no indicator that was valid for all users. 

Depending on the user, an indicator may or may not be valid. 

We also evaluated less-frequently-used indicators of user interest: bookmark, save, 

print, and memo. When we divided the data set less than “interested” and more than or 

equal to “interested”, “95% of the bookmarked web pages, 98% of the saved web pages, 

100% of the printed web pages, and 98% of the memoed web pages belonged to the score 

of more than or equal to “interested”.  

We expected that the LookAtIt indicator would be more accurate than the Complete 

and Active indicators, but the results for all three were similar. We believe that this was 

because volunteers did not move around much and looked at the monitor most of the time 

while browsing. Perhaps a longer evaluation would give more accurate results for the 

LookAtIt indicator, since users would act more naturally after more than 1 or 2 hours of 

surfing. We can combine this indicator to an application for personalized web search 

results in the future. The collected interesting web pages for a user can be used for building 

a user interest hierarchy. 

 

 

 



Chapter 7 

Related Work 

 

The adaptive web is a relatively young research area, starting in early 1990. Now it 

attracts many researchers from different communities: machine learning, information 

retrieval, user modeling, and web-based education (Brusilovsky and Maybury, 2002). Our 

goal is to build user interest models implicitly and incorporate them to personalized web 

search. Thus, we review web information retrieval, user modeling, and machine learning. 

We discuss each of these categories in turn. 

 

7.1. Web Information Retrieval 

Web information retrieval (WIR) systems gather information from web pages or 

users who are using web pages. In this section we overview basic steps of a WIR. 

Furthermore, we overview those adaptive web systems that do not include personalized 

user modeling such as recommendation systems (collaborative filtering systems) that rely 

on the similarity between a user’s preference and that of other people. The six sub sections 

are listed in Figure 34 
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Figure 34. Diagram of web information retrieval 
 

 

 

 

 

 



7.1.1. Basics of a WIR System 

Many WIR systems use a model based on word frequency information to identify 

relevant documents (Zamir and Etzioni, 1999; Cutting et al., 1992). It is important to 

describe the process by which the computer converts text into a form that can be processed. 

For most WIR systems, the most basic unit of text analysis is the word, while phrases, 

sentences, or paragraph may be more meaningful. 

 

7.1.1.1. Lexical Analysis 

Text processing converts the text into a stream of tokens, including numbers, 

abbreviations, and alphanumeric sequences. There exists a large class of words - called 

stop list - that have no inherent meaning when taken out of context (e.g., “a”, “the”, “are”, 

or “to”). By removing the stop list from web documents, a web information retrieval 

system can significantly increase its efficiency like reducing the time and memory space 

required for running the system. 

Opinion varies as to the optimal size of a stop list, although a larger size is 

preferred. The size and content may be domain dependent (Hull, 1994). The stop list 

should not be selected solely on the basis of frequency, because some frequent words still 

bear important semantic meaning in a document. In some researches (Croft, 1991; Zamir 

and Etzioni, 1998) both too frequent words and too rare words were removed. It has been 

found in retrieval experiments that using a stop list in the range of 8 through 500 words 

does not reduce the accuracy of search algorithms in identifying relevant documents 

(Frakes and Baeza-Yates, 1992). 

 



Another common strategy for reducing text size and potentially improving WIR 

systems is to apply a stemming algorithm to word tokens. A stemming algorithm is a 

linguistic tool for building word equivalence classes by removing and modifying prefixes 

and suffixes to identify the root form of the word. This idea is based on the assumption that 

common morphological variants of a word have similar meanings. For example, a user 

who is interested in the word “computer” may also be interested in the word of 

“computing”, “computerized”, “compute” etc. Search engines are able to reduce the size of 

the index, often as much as 20-50% by applying a stemming method (Hull, 1994). Frakes 

and Baeza-Yates (1992) conducted a large number experiments to test the performance of 

stemming algorithm. In general, it appears that stemmers do not degrade retrieval 

performance, and the specific choice of stemmer does not seem to be important. 

 

7.1.1.2. Phrase 

Describing concepts often requires more than a single word. A composed term 

using two or more single words (called “phrase”) usually has more specific meaning and 

can disambiguate related words. For instance, “apple” has different meanings in “apple 

tree” and in “apple computer”. Using phrases, in addition to words, can improve the 

performance of WIR systems. Statistical phrase-finding algorithms are mainly used for 

improving the performance of information retrieval (Kim and Chan, 2003; Turpin and 

Moffat, 1999; Croft et al., 1991; Fagan, 1987). There are three main approaches: syntactic 

(Lima and Pedersen, 1999), statistical (Mitra et al., 1997), and hybridized (Gokcay and 

Gokcay, 1995). Our research mainly focuses on the statistical approach, which does not 

need any grammatical knowledge and has easy adaptability to other languages. Statistical 

 



phrase-finding approaches have been used for expanding vector dimensions in clustering 

multiple documents (Turpin and Moffat, 1999; Wu and Gunopulos, 2002), or finding more 

descriptive or important/meaningful phrases (Ahonen et al., 1998; Chan, 1999).  

Wu and Gunopulos (2002) examined the usefulness of phrases as terms in vector-

based document classification. They used statistical techniques to extract phrases from 

documents whose document frequency (df) is larger than or at least equal to a predefined 

threshold. Fagan (1987) selected phrases having a document frequency of at least 55 and a 

high co-occurrence in the same sentence. Mitra et al. (1997) collected all pairs of non-

function words that occur contiguously in at least 25 documents. Turpin and Moffat (1999) 

used Mitra’s method for statistical phrases for vector-space retrieval. Since the aim of these 

approaches was to find the significant words or phrases among documents, this method 

could remove meaningful phrases in a document. These all methods focused on collecting 

two-word phrases. 

Croft, et al. (1991) described an approach where phrases identified in natural 

language queries are used to build structured queries for probabilistic retrieval models and 

showed that using phrases could improve performance. They used tf×idf  (term frequency 

inverse document frequency) information for a similarity measure. Croft (2000) segmented 

a document’s text using a number of phrase separators such as verbs, numbers, dates, title 

words, format changes, etc. Next, his method checks the candidate phrases to see if they 

are syntactically correct. Finally, the occurrence frequency of the remaining phrases is 

checked.  

Gokcay and Gokcay (1995) used statistically extracted keywords and phrases for 

title generation. Their statistical method used grammatical information of tags and 

 



sentences, but it is hard to determine a sentence without grammatical information. They 

used the cosine correlation function for comparing the similarity of two words.  

Ahonen’s method (Ahonen et al., 1998) finds all possible combinations of words 

within a fixed window using Mannila and Toivonen’s (1996) algorithm. Suppose the 

window size is 6 and the string in that window is “abcdef”. Their algorithm generates all 

possible cases: “ab”, “bc”, “cd”, “de”, “ef”, “abc”, “bcd”,… “bcdef”, “abcdef”. Then, it 

computes the conditional probability for the weight of those phrases. A phrase “abc” has 

two possible weights from P(“c”| “ab”) and P(“bc”| “a”), from which the higher value is 

chosen. They also allowed gaps within a phrase. The use of two parameters – a threshold to 

remove less descriptive phrases in the generating stage and a threshold for the maximum 

phrase length – could be too strict. 

Zamir’s algorithm (Zamir and Etzioni, 1998) uses only frequency information. 

They collect neither too frequent nor too rare phrases. This method needs two user-defined 

parameters: one for removing too rare or too frequent words and the other for selecting 

phrases out of all possible phrases.  

Chan’s algorithm (1999) improved performance by using correlation information 

within a phrase. His algorithm calculates the correlation values of all pairs. The main 

drawback of this method resides in its incompleteness. Suppose there is a string 

S=“abaxbxaxxbxaxxxb…xxbbxbxbxxbxxxb…”, where ‘a’ and ‘b’ represent words, and ‘x’ 

represents any word. If all correlations between ‘a’ and ‘b’ with 1 through 4 distances, and 

correlations between ‘b’ and ‘b’ with 1 through 4 distances have values higher than the 

threshold, Chan’s algorithm will generate a word “abbbb” that does not exist in the string. 

These cases are very unlikely to happen in a normal article such as newspaper or journal 

 



article. But web pages contain lists of similar product names or tables that just arrange a 

few different repeating words many times. We experienced these non-existing words in our 

experiment such as “test pass test”, “student test pass”, “teach assist teach class”, etc. 

Another disadvantage of Chan’s algorithm is that it requires a user-defined maximum 

phrase length. Chan (1999) implemented the algorithm in time O(nw2), where nw is the 

number of distinct words, while our implementation consumes O(nw). 

We compare previous statistical approaches and attempts to find meaningful 

phrases in a document. The length of the phrases is various like normal phrases and our 

algorithm requires no specified parameters. We mainly focus on a statistical approach 

without using syntactic information. Simple phrase separators (e.g., stop-words and non-

alphabet characters) are used only. Our research experimentally shows which correlation 

functions are better than others in terms of measuring word correlation in our variable-

length phrase-finding algorithm.  

 

7.1.2. Clustering Web Contents 

Methods about clustering web contents group related web pages together (e.g., 

Vivisimo (2005)). It does not use any personal information. These methods focus on 

clustering large amount of information in a short time. 

Scatter/Gather (Cutting et al., 1992) supports a hierarchical interface by clustering 

documents into topically coherent groups and providing descriptive summaries. A user can 

select one or more basic clusters to focus on, recursively, in the subset of documents. The 

user specifies a query and two thresholds (the # of documents to be initially retrieved and 

 



the # of sub-clusters). Scatter/Gather produces significant improvements over similarity 

search ranking. 

STC (Suffix Tree Clustering) (Zamir and Etzioni, 1998) is a linear clustering 

algorithm in terms of the document size, which is based on the phrases (an ordered 

sequence of one or more words) that are common to groups of documents. STC has three 

steps: document cleaning, identifying base features using a suffix tree, and merging these 

base features into clusters.  

Grouper (Zamir and Etzioni, 1999) is an interface that dynamically groups the 

search results into clusters labeled by phrases extracted from the snippets – this uses STC 

as its clustering algorithm. Given a set of phrases from STC, Grouper presents them in 

descending order of coverage (the percentage of documents in the cluster that contain the 

phrase) and length (# of words in the phrase, not counting stopped words). Grouper creates 

clusters by merging base features (a phrase and the set of documents that contain it). 

However, when the clusters fail to capture the semantic distinctions the users were 

expecting, it can be confusing. 

Newsblaster (Barzilay et al., 1999) generates a concise summary by identifying 

and synthesizing similar elements across related text from a set of multiple documents. 

Common phrases are identified across sentences assuming a set of similar sentences as 

input extracted from multiple documents on the same event. Using language generation to 

merge similar information is a new approach that significantly improves the quality of the 

resulting summaries. This technique may be able to be used for summarizing web pages. 

 

 



7.1.3. Predicting Navigation 

Another approach of web personalization is to predict forward references based on 

partial knowledge about the history of a session. This approach predicts future requests and 

present documents to client. When the server guesses correctly, the latency of the next 

request is greatly reduced; and if the server guesses incorrectly, the client requests the 

intended next document. These techniques also use other people’s information, and can 

support pre-fetching. The drawback is that it is difficult for them to predict previously 

unvisited pages.  

The two major approaches for predicting navigation are Markov models and n-

gram models. Zukerman et al. (1999) and Cadez et al. (2000) use a Markov model to learn 

and represent significant dependencies among page references. The n-gram models predict 

which URL will be requested next; the Markov models compute the probability of next 

request. An n-gram is a sequence of n web requests, and the n-gram models learn how 

often each sequence of n requests was made in the training data.  

Deshpande and Karypis (2001) use pruning techniques to reduce the model size 

and improve predictions. Their method intelligently selects parts of different order Markov 

models so that the resulting model has a reduced state complexity and improved prediction 

accuracy.  

WebCANVAS (Cadez et al., 2000) visualizes the similar group of users by using a 

Markov model – this is illustrated on user-traffic data from msnbc.com. Zukerman et al. 

(1999) developed a system that reduces a user’s expected waiting time by pre-sending 

documents s/he is likely to request. Their models are based on observing the behavior 

patterns of many users, rather than using the behavior of an individual user. They combine 

 



two features: the order in which documents are requested and the structure of the server 

site. Mladenić (2000) used naïve Bayes or k-nearest neighbor models to predict the next 

link. 

SurfLen (Fu et al., 2000) actively monitors and tracks a user’s navigation. Once a 

user’s navigation history is captured, they discover the hidden knowledge contained in the 

history by applying association rule mining techniques. This uses a form of “market 

basket” analysis (Agrawal and Srikant, 1994). The knowledge is then used to recommend 

potentially interesting web pages to users. PageGather (Perkowitz and Etzioni, 2000) 

builds a co-occurrence matrix of all pairs of pages visited and finds clusters of pages that 

are frequently viewed in the same session. Like SurfLen, PageGather also recommends the 

top n pages that are most likely to co-occur with the visitor’s current session.  

Shahabi and Banaei-Kashani (2003) proposed a web-usage-mining framework 

using navigation pattern information. They introduced a feature-matrices model (FM) to 

discover and interpret users’ access patterns. 

This approach is different from ours since we do not use navigation pattern 

information but rather the contents of web pages. Both the n-gram and the Markov 

methods require large volumes of training data and cannot generate previously unvisited 

pages because they use navigation pattern information. 

 

7.1.4. Personalized Contents 

The methods related to personalized contents use user’s access pattern to provide 

personalized web services. Server usually monitors the user’s access patterns. This 

technique identifies a set of categories from other users’ access pattern and then provides a 

 



new user the closest category based on his/her access pattern. Our method does not 

personalize the set of categories, but personalizes results returned from a search engine. 

Page et al. (1998) first proposed personalized web searches based on modifying the 

global PageRank algorithm with the input of bookmarks or homepages of a user. Their 

work mainly focuses on global “importance” by taking advantage of the link structure of 

the web. Haveliwala (1999) determined that PageRank could be computed for very large 

subgraphs of the web on machines with limited main memory. Brin et al. (1998) suggested 

the idea of biasing the PageRank computation for the purpose of personalization, but it was 

never fully explored. Haveliwala (2002) used personalized PageRank scores to enable 

“topic sensitive” web search. He concluded that the use of personalized PageRank scores 

can improve web search, but the number of hub vectors (e.g., number of interesting web 

pages used in a bookmark) used was limited to 16 due to the computational requirements. 

Jeh and Widom (2003) scaled the number of hub pages beyond 16 for finer-grained 

personalization.  

Liu et al. (2002) also tried mapping user queries to sets of categories. This set of 

categories served as a context to disambiguate the words in the user’s query, which is 

similar to Vivisimo (2005). They studied how to supply, for each user, a small set of 

categories as a context for each query submitted by the user, based on his or her search 

history.  

Anderson (2002) proposed PROTEUS (This system personalizes web browsing for 

visitors using wireless PDAs at many web sites, adapting each site in turn), MINPATH (This 

algorithm finds personalized shortcut links efficiently), and MONTAGE (This system 

supports personalized, dynamic portals of web content, based on the navigation behavior of 

 



each individual visitor), which personalize the web content for different audience, that 

personalize individual pages (e.g., elide-content), site-sessions (add-shortcut), or entire 

browsing sessions.  

Footprints (Wexelblat and Maes, 1997) helps user browse complex web sites by 

visualizing the paths taken by users who have been to the site before. The paths are 

visualized as a graph of linked document nodes – color represents the frequency of use of 

the different paths. Footprints are left automatically by anonymous different users, and new 

visitors do not need to provide any information about themselves in order to use the 

system. However, users can only see the frequency of the links between adjacent pages. 

Perkowitz and Etzioni (1997, 2000) find singular transformations that appeal to all 

visitors at the site by synthesizing index pages – hubs of links to other pages in the site. 

They consider the problem of index page synthesis and sketch a solution that relies on 

novel clustering and conceptual clustering techniques. 

Yan et al. (1996) present a system that facilitates the analysis of past user access 

patterns to discover common user access behavior (for example, navigation through the 

men’s clothing department, consumer electronics, and traveling). They perform clustering 

over a web site’s logs. Once this information is analyzed, it is used to improve the static 

hypertext structure or to dynamically insert links to web pages. They model visitors as 

vectors in URL-space (an n-dimensional space with a separate dimension for each page at a 

site) and cluster them using “leader algorithm” (Hartigan, 1975). 

 

 



7.1.5. Assisting Personal Information 

Methods for assisting personal information help a user to organize their own 

information better and increase the web usability. The assistant usually resides in a user’s 

personal computer. These techniques do not use other people’s information and are not 

related to predicting navigation. 

PowerBookmarks (Li et al., 1999) is a web information organization, sharing, and 

management tool, which monitors and utilizes users’ access patterns to provide useful 

personalized services. PowerBookmarks provides automated URL bookmarking, document 

refreshing, bookmark expiration, and subscription services for new or updated documents. 

BookmarkOrganizer (Maarek and Ben-Shaul, 1996) is an automated system that maintains 

a hierarchical organization of a user’s bookmarks using the classical HAC algorithm 

(Voorhees, 1986), but by applying “slicing” technique (slice the tree at regular intervals 

and collapse into one single level all levels between two slices). Both BookmarkOrganizer 

and PowerBookmarks reduce the effort required to maintain the bookmark, but they are 

insensitive to the context browsed by users and do not have reordering functions. 

 

7.1.6. Implicit Detection of User’s Characteristics 

Detecting the interests of a web page from a person can happen in either Client or 

Server. Obtaining labeled training instances is necessary for agents to learn a user’s 

interest; however, how the learning algorithm obtains training examples is an important 

issue.  

Jung (2001) developed Kixbrowser, a custom web browser that recorded users’ 

explicit rating for web pages and their actions: mouse clicks, highlight, key input, size, copy, 

 



rollover, mouse movement, add to bookmark, select all, page source, print, forward, stop, 

duration, the number of visits (frequency), and recency during users’ browsing. He 

developed individual linear and nonlinear regression models to predict the explicit rating. 

His results indicate that the number of mouse clicks is the most accurate indicator for 

predicting a user’s interest level. 

CuriousBrowser (Claypool et al., 2001) is a web browser that recorded the actions 

(implicit ratings) and explicit ratings of users. This browser was used to record mouse 

clicks, mouse movement, scrolling and elapsed time. The results indicate that the time spent 

on a page, the amount of scrolling on a page, and the combination of time and scrolling has 

a strong correlation with explicit interest. 

The two experiments above show some inconsistency. Jung (2001) said mouse 

click is a good indicator, but Claypool et al. (2001) did not. Jung (2001) found that 

duration and scrollbar movement are not very predictive of a user’s interest, but Claypool 

et al. (2001) said they are good indicators. 

Powerize (Kim et al., 2001) is a content-based information filtering and retrieval 

system that uses an explicit user interest model. They also reported a way to implement the 

implicit feedback technique of user modelling for Powerize. They also found that 

observing the printing of web pages along with reading time could increase the prediction 

rate for detecting relevant documents.  

Goecks and Shavlik (2000) proposed an approach for an intelligent web browser 

that is able to learn a user’s interest without the need for explicitly rating pages. They 

measured mouse movement and scrolling activity in addition to user browsing activity (e.g., 

navigation history). We extend these existing implicit interest indicators in this research. 

 



Granka et al. (2004) measured eye-tracking to determine how the displayed web 

pages are actually viewed. Their experimental environment was restricted to a search 

results.  

We examine the duration implicit indicator in more detail. We divide the duration 

into three types: complete duration, active window duration, and look at it duration. Our 

complete duration is different from the duration in Jung’s (2001) work. His duration 

includes the downloading time of a web page, but ours does not. We divided the web pages 

visited during our evaluation into two groups: (1) web pages that a user visited more than 

once and viewed for the longest duration, and (2) all web pages that were visited more than 

once, while Jung (2001) only used the second data set. In our experiment, we let a user 

navigate to any web page and do normal tasks such as using chat programs or word 

processors during the experiment. Another difference is that we use head orientation 

instead of eye-tracking (Granka et al., 2004). Our experiment is also valuable since there 

are cases where an application does not have devices for tracking a user’s eyes. 

 

7.2. User Modeling 

This section lists adaptive systems that use user modeling. The primary goal of 

user modeling is to enable the prediction of a user’s actions on a personalized web site, and 

thus to help determine which adaptation are useful for the user and navigate the web. The 

forms of user model are as varied as the purposes for which user models are formed as 

shown in Figure 35. Mainly user models try to describe (Webb et al., 2001): the cognitive 

processes of user’s action, the difference between the user’s skill and expert skills, the 

user’s behavioral pattern or preferences, and the user’s characteristics. Another important 

 



dimension is to distinguish whether models are based on individual users or communities 

of users (Webb et al., 2001). Whereas much of the academic research is related to 

modeling individual users, many applications (Ungar and Foster, 1998) in electronic 

commerce are related to forming generic models of user communities.  

User modeling poses a number of challenges for machine learning, including: 

computational complexity, concept drift, the need for labeled data, and the need for large 

data sets. User modeling is known to be a very dynamic modeling task – attributes are 

changing over time. The capability of adjusting to these changes quickly is known as 

“concept drift” (Widmer and Kubat, 1996). Webb et al. (2001) examined each of these 

issues and reviewed approaches. These techniques can reside on both client/server sides. 

Generally these techniques do not use other people’s information. These can support 

prefetching and advise unvisited pages. 

 

7.2.1. Adaptive Hypermedia 

Adaptive hypermedia focuses on improving web (Hypermedia) interactions by 

modeling users and adapting the experience. The differences from adaptive web sites lies 

in the application domain – Hypermedia is related to help systems (adapting to the 

particular context of the help request), information retrieval (helping users find as much 

relevant content as possible), or online information systems (helping users find high-

quality content quickly). Brusilovsky (2001) introduced this field for newcomers by an 

overview. Previous empirical studies have shown that adaptive navigation support can 

improve the speed of navigation (Kaplan et al., 1993) and learning (Brusilovsky and Pesin, 

 



1998). The adaptive presentation can also affect the understanding of content (Boyle and 

Encarnacion, 1994). 

Weber and Specht (1997) demonstrated that user modeling techniques like simple 

overlay models or more elaborated episodic learner models are effective for adaptive 

guidance and for individualized help in web-based learning systems. This system uses a 

combination of an overlay model (provide default path and short cut path) and an episodic 

user model (stores knowledge about the learner in terms of a collection of episodes, such 

episodes can be viewed as cases). This system also supports adaptive navigation as 

individualized diagnosis and helps on problem solving tasks. 

 

7.2.2. Human Behavior Based User Model 

Human behavior based user models are not good at predicting unvisited web pages, 

because this approach utilizes models that are based upon user actions such as path, click, 

downloads, frequency of visits to a web page, etc.  

Mobasher et al. (1999) proposed an approach to usage-based web personalization 

that takes into account both the offline tasks related to the mining of usage data and the 

online process of automatic web page customization. Their technique captures common 

user profiles based on association-rule discovery and usage-based clustering.  
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Letizia (Lieberman, 1995) is a user interface agent (client-side), which operates 

with conventional web browser. The agent tracks the user’s browsing behavior (e.g., 

following links, initiating searches, and requests for help) and tries to estimate the user’s 

interest in as-yet-unseen pages. Letizia can recommend nearby pages by doing lookahead 

search. Letizia cannot take advantage of the past experiences of other visitors to the same 

site, since it runs on a client. 

Pazzani and Billsus (1997, 1999a, 1999b) state that a web site should be 

augmented with an intelligent agent to help visitors navigate the site, and should learn from 

the visitors to the web site. An agent can learn common access patterns of the site both by 

analyzing web logs and by inferring the visitor’s interests from actions of the visitor.  

TELLIM (Hoerding, 1999) monitors the behavior of a customer and recognizes the 

user’s needs and preferences. This information adapts the product presentations. Using a 

set of rules, the system evaluates for every presentation element whether the customer was 

interested in it or not. Those rules are extracted from their personal experience. For 

example, if the downloading of an integrated image was interrupted, then it has negative 

interest to the customer. The attribute of an element is quite simple: kind of product (e.g., 

“car”, brand, e.g. “Ford”) and kind of information (e.g., “engine”). They used CDL4 

algorithm to learn the preferences of the customer. The user model for each customer is 

expressed as a set of rules like if the size of the item is less than 20GB (hard drive), then 

the customer may not be interested. They addressed the refinement of the user model as a 

future work. 

The AVANTI Project (Fink et al., 1996) focuses on helping users by adapting the 

content and the presentation of web pages to each individual user. The elderly and 

 



handicapped users are also partly considered. AVANTI also relies partly on explicit 

profiles. It uses both user’s path and his/her model to guess pages. 

 

7.2.3. Contents Based User Model 

Contents based user models can predict web pages unvisited by users. This is 

achieved because this model learns from the contents of web pages that a user visited. This 

technique usually has higher dimensional vectors.  

WebWatcher (Joachims et al., 1997) is a tour guide software agent. It accompanies 

users from page to page providing several types of assistance: highlighted interesting 

hyperlinks, menu bar, and advice. It also learns from experience to improve its advice-

giving skills. Since it runs as a centralized server it can leverage data from different users. 

User interest (user model) is represented by high-dimensional feature vectors, each 

dimension representing a word. This uses reinforcement learning (Sutton and Barto, 1998) 

to allow agents to learn control strategies that select optimal actions in certain settings.  

SiteIF (Stefani and Strapparava, 1999) is a personal agent that follows users as 

they browse a web site. It learns user’s interests from the requested pages and 

builds/updates a user model. This system builds the user model in the form of a semantic 

net whose nodes are concepts and arcs are the co-occurrence relation of two concepts. The 

relevance between user model and a document is estimated using the Semantic Network 

Value Technique. 

Mobasher et al (1999) propose an approach to usage-based web personalization 

taking into account both the offline tasks related to mining of usage data and the online 

process of automatic web page customization. Their technique captures common user 

 



profiles based on association-rule discovery and usage-based clustering. The advantage of 

this approach is that it can predict visited web pages well, but is not good for predicting 

unvisited web pages. Content-based user models are generated from the contents of web 

pages that a user has visited. This technique usually has higher dimensional vectors and 

needs a greater number of training data. The advantage is that it can predict unvisited web 

pages by users.  

Syskill & Webert (Pazzani et al., 1996) is an intelligent agent that learns user 

profiles. After identifying informative words from web pages to use as Boolean features, it 

learns a Naïve Bayesian classifier to determine the interest of a page to a user. It converts 

the HTML source of a web page into a Boolean feature vector that indicates whether a 

particular word is present or absent in a particular web page. Hybrid models are learned by 

observing user’s actions and the contents of web pages visited by a user.  

Mobasher et al. (2000) combine site usage-based clustering and a site content-

based approach to obtain uniform representation, in which the user preference is 

automatically learned from web usage data and integrated with domain knowledge and the 

site content. These profiles could be used to perform real-time personalization. Their 

experimental results indicate that the integration of usage and content mining increases the 

usefulness and accuracy of the resulting recommendations.  

A news-agent called News Dude (Billsus and Pazzani, 1999), learns which stories 

in the news a user is interested in. The news-agent uses a multi-strategy machine learning 

approach to create separate models of a user’s short-term and long-term interests. They use 

the Nearest Neighbor algorithm for modeling short-term interests and a Naïve Bayesian 

classifier for long-term interests.  

 



Unlike News Dude that creates a model of two layers, our approach tries to model 

a continuum that spans from general to specific interests. Once we get a user profile based 

on contents, we can extend it to incorporate human behavior based user model.  

 

7.2.4. Hybrid Way Based User Model 

Hybrid approach uses both user’s actions and the contents of the web pages visited 

by a user for building a user model. Mobasher et al. (2000) combine site usage based 

clustering and site contents based approach to obtain a uniform representation in which the 

user preference is automatically learned from web usage data and integrated with domain 

knowledge and the site contents. These profiles can be used to perform real-time 

personalization. Their experimental results indicate that the integration of usage and 

content mining increases the usefulness and accuracy of the resulting recommendations. 

 

7.2.5. Explicit/Implicit Way of Building a User Model 

Most current approaches to personalization rely heavily on human participation to 

collect profile information about a user. The most common and obvious solution for 

collecting profile information about a user is asking for the user to specify their interests 

explicitly (Yahoo mail, 2003). However, the explicit approach has several disadvantages. 

Time and effort are required to specify interests, and user’s interests may change over time. 

Alternatively, an implicit approach can identify a user’s interests by inference. 

Ardissono et al. (1999) demonstrated how user modeling and adaptive hypermedia 

techniques could be applied to present the most appropriate set of news (and 

advertisement) to each user. This system builds the initial model of a new user by asking 

 



questions directly such as age, gender, job, hobbies, etc. Since the initial stereotype user 

model may be not accurate, the model is refined periodically after monitoring the user’s 

behavior (e.g., which news s/he selects). The obtained user models are used for dynamic 

generation of the web pages based on a knowledge base (e.g., which news, at which detail 

level and which advertisement). However, setting rules for revising user profile and for 

predicting probability is difficult. 

 

7.3. Machine Learning 

Machine learning has two different methods for leaning: supervised learning and 

unsupervised leaning. Supervised leaning has labels on learning data sets, but unsupervised 

learning does not. Supervised learning can be divided into two sub categories: 

characterization and classification. Characterization methods learn from a set of good data, 

and then detect no-goods based on the learning. This technique is mainly used for anomaly 

detection. Classification accepts a set of labeled data and then learns from them. 

Unsupervised learning has two sub categories: clustering and outlier detection. Both 

methods use unlabeled data. Clustering tries to group similar elements. Outlier detection 

also groups similar elements, but rejects far elements at the same time. Outlier detection is 

commonly used for anomaly detection. Theses categories can be depicted as shown in 

Figure 36. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outlier detection Clustering Classification Characterization 

Unsupervised Supervised 

Machine 
learning 

Outlier detection:
Given no labels, 
find minorities 

Clustering: Given 
no labels, find 
boundaries 

Classification:
Given multiple 
labels, find 
boundaries 

Characterization: 
Given only one 
label, find 
boundary 

Figure 36. Diagram of machine learning 
 

 



Classification can also be sub divided into symbolic and numerical methods as 

shown in Figure 37. Generally numerical method is hard for humans to understand in terms 

of how it is educated; but human can easily interpret the learned results by symbolic 

method. Following study mainly focuses on symbolic method, numeric method, and 

clustering techniques. 

Some web personalization systems use machine learning to model user interest 

model or visitor’s behavior. In their work, they have a set of web pages, which have 

category labels (e.g. interesting, uninteresting, or topics of interest). The task is to assign 

labels to the unseen web pages. 

 

7.3.1. Symbolic Methods of Learning 

Symbolic methods of learning yield results that can be readily understood by users. 

This ease of user interface contributes to understanding the learning methods and 

estimating their performance. 
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7.3.1.1. Semantic Networks  

Semantic networks use objects as nodes in a graph, where the nodes are organized 

in a taxonomic structure and arrows represent relations between nodes. Each node 

represents a separate concept and links between nodes have several types of semantic 

relations. SiteIF (Stefani and Strapparava, 1999) represents a user model as a semantic 

network, whose nodes are concepts and arcs between nodes are the co-occurrence relation 

of two concepts. These methods learn the relationship between two concepts. It is an 

effective way to represent data as they incorporate the inheritance mechanism that prevents 

duplication of data. 

 

7.3.1.2. Learning Decision Trees 

Decision tree, such as ID3, ASSISTANT, and C4.5, generates a nested set of if-

then-else rules, which is of the form, “if attribute < value then …”. These algorithms 

recursively construct a tree using a greedy algorithm by finding the next attribute that 

maximizes the separation of categories at each node. Their inductive bias is a preference 

for small trees over large trees, Occam’s razor.  

 

7.3.1.3. Learning Sets of Rules 

Rule-learning algorithms learn rule sets to assign categories to a training set. 

RIPPER (Cohen, 1995) is a rule learning algorithms that perform efficiently on large noisy 

datasets. It uses greedy algorithm, so the early rules generated cover more number of 

training instances. Apriori (Agrawal and Srikant, 1994) generates all significant association 

rules between the categories and other attributes in large databases. Given a training set, it 

 



allows any attribute to serve as the label and finds if-then rules among attributes. LERAD 

(Mahoney and Chan, 2003) also finds association rules by choosing a set of rules randomly 

and applying rule validation. 

Genetic algorithms encode each rule set as a bit string and use genetic search 

operators to explore this hypothesis space. It operates by iteratively updating a pool of 

rules, called population. On each generation, only some of the rules are selected according 

to their fitness and are carried forward into the next generation’s population intact. 

SurfLen (Fu et al., 2000) uses rules in recommending next web pages.  TELLIM 

(Hoerding, 1999) represents user profile as a set of rules. TELLIM handles only some 

product items, and measures if a customer is interested in the item or not. Their rules 

consist of not many precedents and antecedents. However in our study there are many 

attributes (all distinct words in web pages), which can reduce the speed of the rule-learning 

algorithm. 

 

7.3.2. Numerical Methods of Learning 

If a symbolic method of learning can be called a white box method, a numerical 

method of learning will be a black box method. Black box methods do not provide human 

readable results. However, the performance is quite good such as with Neural Networks 

which is one of the most popular learning algorithms. 

 

7.3.2.1. Hidden Markov Models 

Hidden markov models (HMM) are to model sequences of data. It can be viewed 

as a stochastic generalization of finite-state automata, where both the transitions between 

 



states and the generation of output symbols are governed by probability distributions. 

Deshpande and Karypis (2001) applied pruning techniques to HMM model in order to 

reduce the model size and improve the prediction. Anderson (2002) also used Markov 

models to provide a probability distribution over out-links. Like wise, this approach is 

mainly used in predicting navigation in a web server. 

 

7.3.2.2. Naïve Bayes Classifier 

Naïve Bayes classifier is a Bayesian learning method. It is called “naïve” because 

the attribute values are assumed to be conditionally independent. Even when this 

assumption is not met, the naïve Bayes classifier is often quite effective. Bayesian belief 

networks represent the sets of conditional independence assumptions among subsets of the 

attributes more effectively. Syskill & Webert (Pazzani et al., 1996) uses Naïve Bayes 

classifier in building user profiles. As a disadvantage, the interpretation of the results can 

be difficult since every vector has only probability values. 

 

7.3.2.3. Artificial Neural Networks 

Artificial neural networks is among the most effective learning methods currently 

known. For example BACKPROPAGATION algorithm has been surprisingly successful in 

many practical problems. Each vector element is assigned to an input neuron; each 

category to an output neuron. These neurons and other intermediate neurons are all 

connected by weights. The network is trained by incrementally adjusting the weights to 

correctly categorize the training set. Nonlinear functions of the input can be learned by 

 



adding the intermediate neurons. Even though this approach shows good performance in 

various areas, it supports very little human interpretation. 

 

7.3.2.4. Instance-based Learning 

Instance-based learning such as nearest neighbor and locally weighted regression 

simply memorize the presented training data. When a new query instance is encountered, a 

set of similar instances is retrieved from memory and used to classify the new query 

instance. These methods can use more complex, symbolic representations for instances. 

The disadvantage of this approach is that the cost of classifying new instances can be high. 

For some application domains, it may be necessary to classify hundreds or thousands of 

web documents in a few seconds. 

 

7.3.3. Clustering Techniques 

Many web personalization systems use clustering techniques in building a user 

model. In our work, we try to group words according to their correlations. For example all 

class names are supposed to be in one cluster or some related words such as computer and 

monitor are also in the same cluster. There are five categories of major clustering methods 

(Han and Kamber, 2000) as shown in Figure 38. 
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Agglomerative (bottom-up) hierarchical clustering (AHC) algorithms initially put 

every object in its own cluster and then repeatedly merge similar clusters together, 

resulting in a tree shape structure that contains clustering information on many different 

levels (Voorhees, 1986). Merges are usually binary – merging two entities, which could be 

clusters or initial data points. Hence, each parent is forced to have two children in the 

hierarchy. Divisive (top-down) hierarchical clustering (DHC) algorithms are similar to 

agglomerative ones, except that initially all objects start in one cluster which is repeatedly 

split. These algorithms find the two furthest points, which are the two initial clusters. Then, 

the rest of the points are assigned to those two clusters depending on which one is closer. 

Hence, a binary tree is generated. Our DHC algorithm can generate multiple branches from 

one node depending on the data, which is the advantage of using a graph-partitioning 

technique. Several stopping criteria for AHC/DHC algorithms have been suggested, but 

they are typically predetermined constants – one common stopping criterion is the desired 

number of clusters (Fisher, 1987; Milligan and Cooper, 1985). These algorithms are very 

sensitive to the stopping criterion. The web documents, however, could be extremely 

varied (in the number, length, type and relevance of the terms/documents). When these 

algorithms mistakenly merge multiple “good” clusters due to the predetermined constraint, 

the resulting cluster could be meaningless to the user (Zamir and Etzioni, 1998). Another 

characteristic of the terms in web documents is that there reside many outliers. These 

outliers (sort of “noise”) reduce the effectiveness of commonly used stopping criteria. 

AGNES (AGglomerative NESting) (Kaufman and Rousseeuw, 1990), DIANA(DIvisive 

ANAlysis) (Kaufman and Rousseeuw, 1990), BIRCH (Balanced Iterative Reducing and 

 



Clustering using Hierarchies) (Zhang et al., 1996), CURE(Clustering Using 

REpresentatives) (Guha et al., 1998), ROCK (Guha et al, 1999), CHAMELEON (Karypis 

et al., 1999) all use these methods. In some application this binary split can be a major 

disadvantage. The hierarchical tree reorganized by slicing technique (Maarek and Ben-

Shaul, 1996) can be useful in many areas. 

Partitioning clustering algorithms such as the K-means algorithm initially creates a 

partitioning of K clusters. Those initial K clusters are then iteratively refined to achieve the 

final clustering of K clusters. A major drawback of this approach is that the number of 

clusters must be specified beforehand as an input parameter. Our algorithm only needs to 

cluster strongly connected words, but the K-means algorithm divides all words into K 

clusters without removing weak relations. We define the “strongly connected” in this paper 

as the relation between words whose correlation value is higher than the threshold. K-mean 

algorithm is too sensitive to outliers since an object with an extremely large value may 

substantially distort the distribution of data. Instead of taking the mean value, the medoid 

can be used, which is the most centrally located object in a cluster. PAM(Partitioning 

around Medoids) (Kaufman and Rousseeuw, 1990), CLARA(Clustering LARge 

Applications) (Kaufman and Rousseeuw, 1990), and CLARANS (Clustering Large 

Applications based upon RANdomized Search) (NG and Han, 1994) all use k-medoid 

method. We will not use this method in our work, because it is too difficult to find the best 

number of clusters initially. 

Density-based clustering methods handles clusters with arbitrary shapes. This 

method regard clusters as dense regions of objects in the data space that are separated by 

regions of low density. Some examples of density-based approach are DBSCAN (Density 

 



Based Spatial Clustering of Applications with Noise) (Ester et al., 1996), OPTICS 

(Ordering Points To Identify the Clustering) (Ankerst et al., 1999), and DENCLUE 

(DENsity-based CLUstEring) (Hinneburg and Keim, 1998). 

Grid-based method uses a multi-resolution grid data structure. It quantizes the 

space into a finite number of smaller cells. On which all of the operations for clustering are 

performed. It is typically fast; the processing time is typically dependent on the number of 

cells not the number of data objects. Examples of grid-based methods are STING 

(STatistical INformation Grid approach) (Wang et al., 1997) and WaveCluster (Wang et 

al., 1997). 

Model-based clustering methods set some mathematical model and then attempt to 

optimize the fit between the given data and the mathematical model. Such methods are 

based on the assumption that there is a mixture of underlying probability distributions that 

generate the data. COBWEB is an incremental conceptual clustering algorithm. Each 

cluster records the probability of each attribute and value, and the probabilities are updated 

every time an object is added to a cluster (Fisher, 1987). Instead of recalculating the whole 

probabilities of clusters to determine if child clusters are generated, our DHC algorithm 

uses a graph-based method and a different correlation function. CLASSIT (Gennari et al., 

1989) is an extension of COBWEB for incremental clustering of continuous data set. It 

stores a mean or distribution for each individual attribute in each node and uses a modified 

similarity/dissimilarity measure that is an integral over continuous attributes. AutoClass 

(Cheeseman and Stutz, 1996) allows probabilistic membership of objects in clusters and 

hence clusters can overlap (an object belonging to multiple clusters).  Also, it is a flat (non-

hierarchical) clustering algorithm.  

 



 

7.3.4. Correlation Functions 

Correlation functions are used to measure the similarity/distance between objects 

within a clustering function or other machine learning algorithms.  

Tan et al. (2002) demonstrated that not all functions are equally good at capturing 

the dependencies among variables and there is no single function that is consistently better 

than the others in all applications. They compared various existing correlation functions 

based on the key properties that Piatetsky-Shapiro (1991) presented and other properties of 

a correlation function. We propose some additional desirable properties for correlation 

functions. 

Huang et al. (2002) applied a number of correlation functions in their application 

to identify interesting rules and sequential patterns from the Livelink log files. They 

presented a comparison of these measures based on the feedback from domain experts. 

Some of the interestingness measures were found to be better than others. Their experiment 

also supported that no single function is consistently better than the others. However, they 

did not analyze the desirable properties of correlation functions. 

Piatetsky-Shapiro (1991) opened a new research area of information retrieval by 

presenting three desirable properties of a correlation function. However, his properties 

depend on cross product ratio (CPR) (Rosenfeld, 1994), in that all correlation function 

those satisfy CPR satisfies Piatetsky-Shapiro’s properties. We propose two other desirable 

properties, which independent from CPR. 

Jaroszewicz and Simovici (2004) presented a method of computing interestingness 

of item sets and attribute sets with respect to background knowledge encoded as a 

 



Bayesian network. Their algorithm found interesting, unexpected patterns. Their work can 

be expanded to calculating all possible interestingness such as correlation or support 

between variables. Their work used the interestingness of dependency but did not focus on 

the property of correlation functions. 

 

 



Chapter 8 

Conclusions 

We described a new approach of web personalization system and implemented this 

system. This consisted of 5 areas. First, to create a context for personalization, we 

proposed to establish a user interest hierarchy (UIH) that can represent a continuum of 

general to specific interests from a set of web pages interesting to a user. This approach 

was non-intrusive and allowed web pages to be associated with multiple clusters/topics. 

We evaluated the learned UIH based on data obtained from 13 users on our web server. 

Second, variable length phrase-finding algorithm found meaningful phrases. In order to 

choose the best method, we compared the number of matching phrases chosen by a method 

to those phrases chosen by 10 human subjects. Matched-pair design (Robertson, 1981), 

comparing the top 10 best measures, was used for evaluation. Third, we proposed two 

properties as desirable properties for correlation functions. In order to compare our 2 new 

desirable properties and previous 3 desirable properties, we collected 32 correlation 

functions and examined which correlation function satisfied which desirable properties. 

Fourth, we devised a new method of ranking web search results to serve each individual 

user’s interests using UIH. We evaluated methods based on how many interesting web 

pages or potentially interesting web pages each algorithm found within certain number of 

top links (Bharat and Mihaila, 2001). Traditional precision/recall graphs (van Rijsbergen, 

1979) were also used for evaluation. We counted which search term showed higher 

performances with our weighted scoring method (WS) than with Google as well. Fifth, this 

we identified several implicit indicators that can be used to determine a user’s interest in a 

 



web page. This paper evaluates both previously studied implicit indicators and several new 

implicit indicators. All indicators examined were complete duration, active window 

duration, look at it duration, distance of mouse movement, number of mouse clicks, 

distance of scrollbar movement, number of scrollbar clicks, number of key up and down, 

and size of highlighting text. The data was 11 users’ implicit indicator data and a 1-5 

interest rating of each page. During our experiment volunteers were encouraged to behave 

normally. Two evaluation criteria were used: (1) how accurately an indicator can predict 

users’ interests and (2) how many users’ interests an indicator can predict. 

 

8.1. Summary of Contributions 

The following is a summary of our contributions.  

In Chapter 2, Learning Implicit User Interest Hierarchy for Context in 

Personalization, we represented user interest hierarchy (UIH) at different abstraction levels 

(general to specific), which could be learned implicitly from the contents (words/phrases) 

in a set of web pages bookmarked by a user. The higher-level interests were more general, 

while the lower-level ones were more specific. In order to build a UIH, we devised a 

divisive graph-based hierarchical clustering algorithm (DHC), which constructed a UIH by 

grouping words (topics) into a hierarchy instead of flat cluster used by STC (Zamir and 

Etzioni, 1998). Between the root and the leaves, "internal" tree nodes represented different 

levels of generality and duration of interest. Towards the root of a UIH, more general 

(passive) interests were represented by larger clusters of words while towards the leaves, 

more specific (active) interests were represented by smaller clusters of words. DHC 

automatically found the threshold for clusters of terms (words and phrases) where as STC 

 



needed to specify the threshold. Furthermore, we used a more sophisticated correlation 

function, AEMI, than STC’s conditional probability. We also observed that DHC with an 

AEMI correlation function and MaxChildren threshold-finding method made a more 

meaningful UIH with 59% of meaningful clusters than the other combinations. We added 

phrases to the words as feature. Our experimental results indicated that 64% of UIH were 

interpretable by human.  

In Chapter 3, Identifying Variable-Length Meaningful Phrases with Correlation 

Functions, we proposed a variable-length phrase-finding algorithm (VPF), which found 

more meaningful phrases – VPF – than older methods – Ahonen’s algorithm and Chan’s 

algorithms. They regenerated sequences recursively with the words selected in the previous 

stage and searched for increased length of phrases in time O(nw), where nw was the page 

size. This algorithm does not need any user-specified parameters, since our algorithm used 

average as a threshold and stopped when the length of phrases did not increase. The 

algorithm achieved further improved performance by pruning less meaningful phrases. The 

With-pruning was statistically significantly better than the Without-pruning with 95% 

confidence interval (P=0.004) for the VPF with F25. More meaningful phrases than 

previous methods were found by VPF with F25 and the improvement in performance is 

statistically significant than Ahonen’s original method. We suspected the filtering stage of 

Ahonen’s algorithm filtered many meaningful phrases out or their weighting scheme using 

the length of a phrase and tightness (Ahonen et al., 1998) distracted the correlation value of 

a phrase. 

 



In Chapter 4, Analysis of Desirable Properties of Correlation Functions between 

Two Events, we identified 2 new desirable properties for a correlation functions in general. 

They were: 

 
• if P(A,B) increases when P(A) and P(B) remain unchanged, then F 

monotonically decreases; 

• if P(A) (or P(B)) and P(A,B) increase at the same ratio, then F monotonically 

increases. 

 

In addition, we revise and improve the first desirable property proposed by Piatetsky-

Shapiro (1991) to make it more accurately descriptive. Some functions (e.g., Odds, Conv, 

Inte, and Coll in Appendix 1) produced a score of 1, even when two events were 

statistically independent.  

 
• F can distinguish statistically independence of A and B. 

 

Our empirical results indicated that our two new desirable properties were more descriptive 

than the previous three desirable properties provided in Piatetsky-Shapiro (1991). It was 

because all correlation functions that satisfy P1 also satisfied P2 and P3, and all correlation 

functions that satisfied P6 also satisfied P1-P3; but our properties were independent from 

P1 and P6. We tested our 2 new desirable properties over many different correlation 

functions and summarized their results with respect to each property. The summarized 

results included P1-P5, P6 that measured negative/positive correlation, and P7 that checked 

which correlation function returned a normalized return value. The associated table will 

help user compare the characteristics of correlations functions. 

 



In Chapter 5, Personalized Ranking of Search Results with Implicitly Learned User 

Interest Hierarchies, we compared four ranking methods: Google, Random, US, and WS. 

We used two data sets: interesting web pages that are relevant to the user search term and 

potentially interesting web pages that could be relevant in the future. We introduced two 

personalized ranking methods (WS and US) that utilize an implicitly learned user profile 

(UIH). We built different UIHs for users depending on their interests. We identified four 

characteristics for terms that match the user profile and provide a probabilistic measure for 

each characteristic. The four characteristics were the level of a node where a term belongs 

to (D), the length of a term (L), the frequency of a term (F), and the emphasis of a term (E). 

D and L were calculated while building a UIH from the web pages in a user’s bookmark. 

Different web pages had different values for F and E characteristics. Our experimental 

results indicate that WS method could achieve higher precision than Google for Top 10, 15 

and 20 web pages that are relevant to the user search query. On interesting web pages, the 

Top link analysis showed WS achieved at least 13% higher precision than Google for Top 

10, 15 and 20 links on average. WS outperformed US and Random in general also. On 

potentially interesting web pages, WS achieved the highest performance in all five Top 

links (Top 1, 5, 10, 15, and 20) as well. When incorporating the (public) ranking from the 

search engine, we found that equal weights for the public and personalized ranking can 

result in higher precision. A weight of 0.5 for the personal ranking seemed to show the 

highest performance on both data sets. 

The precision/recall analysis visualizes the performance of each method in graphs. 

WS and US are closer to the upper-right corner than Google except with recall values 

lower than .15 (after Top 5). In general, WS outperforms US and Random for interesting 

 



web pages. The results from precision/recall graph for potentially interesting web pages are 

similar. WS was closer to the upper-right corner than Google, US, and Random over all. 

These results conclude that WS could provide more accurate ranking than Google on 

average. 

In Chapter 6, Implicit Indicators for Interesting web Pages, our experiments 

indicate that complete duration, active window duration, look at it duration, and distance 

of mouse movement are reliable indicators for more users than other indicators – 8 users out 

of 11. Over the data set of “all visits”, the indicators were able to predict the most number 

of users’ interests as well – 7 users out of 11. The distance of mouse movement was as 

accurate as indicators based on duration, and it can be the most practical indicator since it 

is simple to detect and is more robust than active window duration against the case of 

user’s absence. If a user leaves a web page open and leaves the room, the distance of 

mouse movement will not be affected. For the bookmark, save, print, and memo indicators, 

more than 95% of the pages were correctly scored as “interested”. When we divided the 

data set less than “interested” and more than or equal to “interested”, “95% of the 

bookmarked web pages, 98% of the saved web pages, 100% of the printed web pages, and 

98% of the memoed web pages belonged to the score of more than or equal to “interested”. 

Our results also indicate that there was no indicator that was valid for all users. Depending 

on the user, an indicator may or may not be valid. 

 

 



8.2. Ethical Issues in User Modeling 

8.2.1. Privacy  

An individual’s right to privacy has always been an issue in user modeling. This is 

because the fact that the consequences for victims of privacy intrusions can be serious 

problems. Although the Internet is widely used nowadays, many users remain unfamiliar 

and skeptical about the level of security and privacy on the Internet. Great numbers of 

users are uncomfortable with “user profiling,” a practice in which users’ online movements 

are recorded. Much of this user anxiety is caused by the fact that users have no clear 

understanding regarding the rules that govern this practice, how extensive it is, what is 

recorded, and even how the information is used (Chiu, 2000). If the process of user 

profiling is explained, then user modeling will be more readily accepted.  

This personalization method should be provided as an option of a web browser to a 

user along with full descriptions. Before building a user profile, the browser must accept 

the user’s permission whether s/he wants to build the user profile from their bookmarks or 

the web pages collected by implicit interest indicator. This is a permission-based 

personalization tool. Furthermore, the profile can be stored in a client. If both the web log 

file of the user’s behavior and the user profile remain in the user’s computer, then s/he will 

feel their privacy is protected. The browser should provide complete controls over the 

profile to the user. 

 

 



8.2.2. Confidence on the Results 

This section briefly discusses the extent to which we can trust the profile generated 

by the DHC algorithm. For example, if the profile indicates a user is interested in “laptop 

computer”, how much can we trust the result? The user profile is built out of a set of 

interesting web pages to a user. As previously explained, bookmarks or web pages detected 

by an implicit indicator can be used as the set. Since the set of interesting web pages can 

change over time, the user profile can change as well. The profiles should be rebuilt 

periodically. Then, are the interests of the user that appear over consecutive different 

periods more confident than the interests that occur only once? The results may also 

depend on how reliable the input data sets are. In order to answer the question, we may 

have to be able to measure the reliability of the set of interesting web pages. These 

questions are not easy for us to answer at this moment. It can be future work.  

 

8.3. Limitation and Future Work 

In our system there are several limitations. 

• We did not analyze differences among the UIHs’ obtained from various users 

because of the large numbers of web pages used in our experiments.  

• The performance of the DHC algorithm varied depending on the articles selected. 

We believe this is because of the intrinsic characteristics in a document. 

• The performance of VPF varied depending on the articles selected. We currently 

do not understand the reason for the variance in performance over different 

 



articles. We assume it is due to the intrinsic characteristics of an article, because 

the human subjects’ results are also different depending on the articles. 

• Our experiment for desirable properties of a correlation function was limited to 

positive correlations for our web personalization since many applications depend 

on positive correlation. We will extend our analysis to negative correlation as well. 

• The improvement of WS was not statistically significant because the precision 

values of Google had large variance.  

• The reason for the low performance of some search terms might be because there 

is no relation between his/her bookmarks and the search terms. We may be able to 

relieve this problem by incorporating interesting web pages based on implicit 

interest indicators. 

• Our approach of penalizing the index pages did not make much improvement in 

our initial experiments. We will examine this approach further in the future. 

• Since WS showed higher performance for links after Top 5 than Google, we expect 

that our method may get higher performance with clustered search engines. 

• A longer evaluation would give more accurate results for the LookAtIt indicator, 

since users would act more naturally after more than 1 or 2 hours of surfing.  

• We can combine this indicator to an application for personalized web search 

results in the future. The collected interesting web pages for a user can be used for 

building a user interest hierarchy. 
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Appendix 
 

Appendix 1. Correlation functions 

 Name Formula 
1 φ-coefficient (Tan et al., 2002)  (Coef) (AB - (A × B)) / Sqr(A × B × (1 - A) × (1 - B)) 

2 Goodman-Kruskal’s (Tan et al., 2002) (Good)
(MAX(AB, AB′) + MAX(A′B, A′B′)  
+ MAX(AB, A′B) + MAX(AB′, A′B′)  

- MAX(A, A′) - MAX(B, B′))  /  (2 - MAX(A, A′) - MAX(B, B′)) 

3 Odds ratio (Tan et al., 2002) (Odds) D((AB × A′B′), (AB′ × A′B)) 

4 Yule’s Q (Tan et al., 2002) (YulQ) (AB × A′B′ - AB′ × A′B) / (AB × A′B′ + AB′ × A′B) 

5 Yule’s Y (Tan et al., 2002) (YulY) (Sqr(AB × A′B′) - Sqr(AB′ × A′B)) / (Sqr(AB × A′B′)  
+ Sqr(AB′ × A′B)) 

6 Kappa (k) (Tan et al., 2002) (Kapp) (AB + A′B′ - (A × B) - (A′ × B′)) / (1 - (A × B) - (A′ × B′)) 

7 Mutual Information (Tan et al., 2002) (Mutu)
(AB × log2(AB / (A × B)) + AB′ × log2(AB′ / (A × B′))  

+ A′B × log2(A′B / (A′ × B)) + A′B′ × log2(A′B′ / (A′ × B′)))  
/ (MIN(-(A × log2(A) + A′ × log2(A′)), -(B × log2(B) + B′ × log2(B′))))

8 J-Measure (Tan et al., 2002) (JMea) MAX(AB × log2(P(B|A) / B) + AB′ × log2(P(B′|A) / B′),  
AB × log2(P(A|B) / A) + A′B × log2(P(A′|B) / A′)) 

9 Gini index (Tan et al., 2002) (Gini) 

MAX(A(pow(P(B|A),2) + pow(P(B′|A),2)) + A′(pow(P(B|A′),2) + 
pow(P(B′|A′),2)) - pow(B,2) - pow(B′,2), B(pow(P(A|B), 2) + 

pow(P(A′|B), 2)) + B′(pow(P(A|B′),2) + pow(P(A′|B′),2)) - pow(A,2) - 
pow(A′,2)) 

10 Support (Tan et al., 2002) (Supp) AB 

11 Confidence (Tan et al., 2002) (ConMa) MAX(P(B|A), P(A|B)) 

12 Laplace (Tan et al., 2002) (Lapl) MAX((100 × AB + 1) / (100 × A + 2), (100 × AB + 1) / (100 × B + 2))

13 Conviction (Tan et al., 2002) (Conv) MAX((A × B′) / AB′, (B × A′) / A′B) 

14 Interest (Tan et al., 2002) (Inte) AB / (A × B) 

15 Cosine (Tan et al., 2002) (Cosi) AB / Sqr(A × B) 

16 Piatetsky-Shapiro’s (Tan et al., 2002) (Piat) AB - A × B 

17 Certainty Factor (Tan et al., 2002) (Certa) MAX((P(B|A) - B) / (1 - B), (P(A|B) - A) / (1 - A)) 

18 Added Value (Tan et al., 2002) (Added) MAX(P(B|A) - B, P(A|B) – A) 

19 Collective strength (Tan et al., 2002) (Coll) ((AB + A′B′) / (A × B + A′ × B′))  
× ((1 - A × B - A′ × B′) / (1 - AB - A′B′)) 

20 Jaccard (Tan et al., 2002) (Jacc) AB / (A + B - AB) 

21 Klosgen (Tan et al., 2002) (Klos) Sqr(AB) × MAX(P(B|A) - B, P(A|B) - A) 

22 MI (Tan et al., 2002) Log2(AB / (A × B)) 

23 STC_MIN (Zamir and Etzioni, 1998) (StcMi) MIN(P(B|A), P(A|B)) 

24 EMI (Chan, 1999) AB × log(AB / (A × B)) + AB′ × log(AB′ / (A × B′))  
 + A′B × log(A′B / (A′ × B)) + A′B′ × log(A′B′ / (A′ × B′)) 

25 AEMI4 (Chan, 1999) AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′)  
- A′B × log(A′B/ A′ × B) + A′B′ × log(A′B′/ A′ × B′) 

26 DMAX AB × MAX(P(B|A), P(A|B)) 

 



 

27 DMI AB × log2(AB / (A × B)) 

28 AEMI3 AB × log(AB/ A × B) - AB′ × log(AB′/ A × B′)  
- A′B × log(A′B/ A′ × B) 

29 dMIN AB × MIN(P(B|A), P(A|B)) 

30 dMIN2 1 + AB × log(MIN(P(B|A), P(A|B))) 

31 NegativeCosine (Ahonen et al., 1998)  
(NegCos) (1 - AB) / Sqr((1 - A) × (1 - B)) 

32 MutualConfidence (Ahonen et al., 1998)  
(MuConf) (AB / A + AB / B) / 2 

 

 

 

 


