Secure Stochastic Multi-party Computation for
Combinatorial Problems

Marius C. Silaghi’ and Gerhard Friedrich?
fFlorida Institute of Technology, USA
{University Klagenfurt, Austria

Technical Report CS-2005-14
May 23, 2005

Abstract

High levels of security often imply that the computation time should be inde-
pendent of the value of involved secrets. When the expected answer of the solver
is either a solution or unsatisfiable, then the previous assumption leads to algo-
rithms that take always the computation time of the worst case. This is particularly
disturbing for NP-hard combinatorial problems.

In this work we start from the observation that sometimes (specially for hard
problems) users find it acceptable to receive as answer either a solution, the answer
unsatisfiable or a failure with meaning don’t know. More exactly users accept
incomplete solvers. As argued in [SilO5b], for certain problems privacy reasons
lead users to prefer having an answer meaning don’t know even when the secure
multi-party computation could have proven unsatisfiable (to avoid revealing that
all alternatives are infeasible). While the solution proposed in [Sil05b] is slower
than complete algorithms, here we show secure stochastic solutions that are faster
than complete solvers, allowing to address larger problem instances.

1 Introduction

Typical examples of combinatorial problems are meeting scheduling, resource alloca-
tion, time-tabling, auctions with several possible winners. Such a problem is typically
defined by a set of variables and constraints on the satisfiable assignments to these
variables. The set of all (satisfiable and unsatisfiable) simultaneous assignments of val-
ues to all variables defines the search space of the problem. An element of the search
space is also referred to as an alternative to be considered as a solution to the problem,
or simply alternative.

A complete solver is one that reports a solution whenever a solution exists. The
answer of such a technique is either a solution or unsatisfiable. Combinatorial problems

can be very hard and therefore we no not have efficient complete secure multi-party
computation solvers. Several complete secure solvers were proposed in the past for
such problems, and high levels of security always require a computation time that is
given by the worst possible case (over all possible values of the secrets).

It was shown that for problems that are solved only once, minimization of privacy
loss often requires that the solution be picked randomly, preferably with a uniform
distribution among the existing solutions [SR04]. Such a random selection can be
achieved if the problem is shuffled prior to solving [Sil03, Sil04]. Two families of
techniques were proposed for shuffling a shared description of a combinatorial prob-
lem,one based on mix-nets and one based on arithmetic circuits [Sil05a].

Sometimes, the security requirements themselves require an incomplete solver
(when the proof of unsatisfiability of the problem leads to unacceptable privacy loss,
by revealing that all alternatives are infeasible) [SilOSb]. The answer of such a solver
is either a solution or unsatisfiable. However, the solution proposed in [Sil05b] is actu-
ally slower than complete solutions. It first computes a solution with a complete secure
solver and then it hides the solution with some small probability.

In this work we show how the shuffling performed on problem descriptions prior to
solving allows to build an incomplete secure stochastic multi-party solver where a high
level of privacy is offered. The answers of the solver consists in either a solution or in
don’t know, and nothing is revealed about the set of alternatives that were not explored
(except for its size). Notably, these algorithms are strictly faster than the corresponding
complete versions and are parametrized with the percentage of the search space to be
explored (the search space is the set of all alternatives that may or may not satisfy the
combinatorial problem).

By specifying the percentage of the combinatorial problem to be explored, one
practically specifies the exact amount of computation (time) that the solver should
perform. The proposed techniques are different for shuffling with mix-nets and for
shuffling with arithmetic circuits.

2 Background

Combinatorial problems have been often discussed in Computer Science and many ex-
amples are known to be very hard. For example SAT was the first proven NP-complete
problem and Constraint Satisfaction Problems are largely addressed with stochastic
and incomplete solvers.

A Constraint Satisfaction Problem (X,D,C) is defined by a set of variables X =
{z1,...;xm}, a set of domains D = {Dq,..., D,,} where D; is the domain for z;,
and a set of constraints C' = {¢1, ..., ¢.}. Each constraint ¢; specifies the acceptable
combinations of assignments of values to a subset X of the variables. A tuple is a
vector of assignments of values to distinct variables. A solution of the CSP is a tuple
of assignments of values to all the variables and that satisfies all the constraints. The
search space of the CSP is defined by the Cartesian product D X ... X D,,,. An element
of the search space is called an alternative. The i alternative is denoted by ¢;.

A distributed CSPis a CSP (X, D, C') where a set of participants A = {41, ..., A, }
have secret shares of C', none of them knowing the whole set C'.

2.1 Shuffling an array of shared secrets

Secure multi-party computations can simulate any arithmetic circuit [BOGWS88] or
boolean circuit [Kil88, Gol04] evaluation. An arithmetic circuit can be intuitively
imagined as a directed graph without cycles where each node is described either by
an addition/subtraction or by a multiplication operator. Each leaf is a constant.

The secure multi-party simulation of arithmetic circuit evaluation proposed
in [BOGW88] exploits Shamir’s secret sharing [Sha79]. This sharing is based on the
fact that a polynomial f(z) of degree t—1 with unknown parameters can be recon-
structed given the evaluation of f in at least ¢ distinct values of x, using Lagrange
interpolation. Absolutely no information is given about the value of f(0) by reveal-
ing the valuation of f in any at most t—1 non-zero values of x. Therefore, in order
to share a secret number s to n participants Ay, ..., A, one first selects t—1 random
numbers ay, ..., a;—1 that will define the polynomial f(x) = s+ Zf;i(aixi). A dis-
tinct non-zero number 7; is assigned to each participant A;. The value of the pair
(74, f(71)) is sent over a secure channel (e.g. encrypted) to each participant A;. This
is called a (t,n)-threshold scheme. We will assume that all computations are per-
formed in a field Z,, for some prime number g. Once secret numbers are shared with a
(t, n)-threshold scheme, evaluation of an arbitrary arithmetic circuit can be performed
over the shared secrets, in such a way that all results remain shared secrets with the
same security properties (the number of supported colluders, t—1) [BOGWS88, Yao82].
For [Sha79]’s technique, one knows to perform additions and multiplications when
t < (n—1)/2. Since any |n/2| participants cannot find anything secret by colluding,
such a technique is called |n/2]-private [BOGW83]. It is also known how to evaluate
with computational securely any arithmetic circuit on additively shared secrets.

Shuffling with mix-nets In [Sil03, Sil04, Sil05a] it is shown how a mix-net can
shuffle a vector of shared secrets and can unshuffle a vector of the same size using
the inverse permutations. Each participant encrypts his share of each secret using a
(+ mod ¢, X) public encryption scheme for which it holds the secret key, and sends
a vector holding each encrypted share to A;. The vectors with the encrypted shares
are passed along each participant in A, each of the applying the same secret permu-
tation on all vectors. A shared O is also added to each sharing of a secret using the
homomorphism of the encryption. Each participant will provide the others with a zero-
knowledge proof for the correctness of his shuffling (respectively unshuffling).

Shuffling with arithmetic circuits Assume that we have composable multi-party
computations [Kil05] for computing:

e 0 (x,y): Kronecker’s delta returning a shared 1 when 2 = y and 0 otherwise
e cmp(x,y) returns 1 when © < y and 0 otherwise

e RS(m,M): random secret generator, generating a shared secret in the interval
m, M.

It is possible to design an arithmetic circuit for shuffling secrets, using the Algo-
rithm 3. This algorithm uses Algorithm 1 for a permutation of two elements on secret

positions in a vector. The random permutation is defined by a random vector computed
with Algorithm 2. Unshuffling can be done with the Algorithm 4.

function Peﬁn (s,i,rm,Mk
S; = Zj:m(éK(rvj) * Sj);
for j € (i, k] do
| sj =55+ (si —5) %0 (r, J):

Algorithm 1: Permuting element s; with s, for a secret value r € [m, M] in vector s
with k shared secrets

function RandomVector(k)
forj=1tok—1do
L rlj] = RS(, k);

return 7;

Algorithm 2: Shuffling a vector s with k shared secrets

function Shuffle(s,k,r)
forj=1t0k—1do
| Perm(s,j,r[jl,j,k.k);

Algorithm 3: Shuffling a vector s with k shared secrets, and a random vector 7 obtained
with Algorithm 2

This permutation was shown in [Sil05a] to lead to a random shuffling (taken from
a uniform distribution). Note that the random vector defining the permutation could
have been built allowing each element to belong to any value between 1 and k. This
would be computationally more expensive as it would require each call to the procedure
Perm to recompute all the elements of the vector to be shuffled (see Algorithm 5).

2.2 MPC-DisCSP4

In [SilO5b] we have proposed a multi-party computation technique, called MPC-
DisCSP4, that extracts a random solution of a distributed CSP. MPC-DisCSP4 uses
general multi-party computation building blocks. General multi-party computation
techniques can solve securely certain functions, one of the most general classes of
solved problems being the arithmetic circuits. A distributed CSP is not a function. A
DisCSP can have several solutions for an input problem, or can even have no solution.
Two of the three reformulations of DisCSPs as a function (see [SR04]) are relevant for
MPC-DisCSP4:

i A function DisCSP!() returning the first solution in lexicographic order, respec-
tively an invalid valuation 7 when there is no solution.

function Shuffle(s,k,r)
forj=k—1t 1do
|_ Perm(s7j’r[j]’j’k?k);

Algorithm 4: Un-shuffling a vector s with k& shared secrets, when the shuffling was
defined by random secret vector 7.

function Shuffle(s,k,r)
for j =1tokdo
| Perm(s,j,r[jl, 1.k.k);

Algorithm 5: Shuffling a vector s with k shared secrets, and a random vector r where
each element is obtained with RS(1, k).

1 A probabilistic function DisCSP() which picks randomly a solution if it exists,
respectively returns 7 when there is no solution.

For privacy purposes only the 2"¢ alternative is satisfactory. DisCSP() only reveals
what we usually expect to get from a DisCSP, namely some solution. DisCSP() in-
trinsically reveals more [SR04]. MPC-DisCSP4 implements DisCSP() in five phases:

1. Share the secret parameters of the input DisCSP using Shamir’s secret sharing.
The value of each publicly possible assignment (allocation) is securely evaluated.

2. The shared DisCSP problem is shuffled in a cooperative way, reordering val-
ues (and eventually variables), with a permutation that is not known to any-
body [Sil05a].

3. A version of DisCSP?() where the operations performed by agents are indepen-
dent of the input secrets (to avoid leaking the secrets), is executed by simulating
arithmetic circuits evaluation with the technique in [BOGWS88].

4. The solution returned by DisCSP'() at Step 3 is translated into the initial
problem formulation using a transformation that is inverse of the shuffling at
Step 2 [Sil05a].

5. Construct the solution from its secret shares.

It is also possible and very simple to find all solutions [HCNT01]. However, when
only a single solution is needed, this leaks a lot of information. At Step 3, MPC-
DisCSP4 requires a version of the DisCSP?() function whose cost is independent of the
input, since otherwise the users can learn things like: The returned solution is the only
one, being found after unsuccessfully checking all other tuples, all other tuples being
infeasible. Since the used DisCSP!() has to be independent of the problem details, its
cost is exponential (at least as long as nobody proves P=NP).

Note that other alternative techniques are available, notably MPC-DisCSP1 [Sil03],
MPC-DisCSP2 [SM04], and MPC-DisCSP3 [Sil04]. We call them generically MPC-

Choice ID: [Tz Ts Ts Js Jo [z Js To Tw |

Satisfaction D {7\%\ shared

Shuffling by participant 1:

L To Jo Jo o Jo Jo o Ju Jo |

Shuffling by participants...i: L
C T T T - T

Result vector after shuffling by participant n:
Lo To o Jo Jo Jv Jv Jo Jv Jo |

Selection of first solution (2)

Lo To 1 Jo Jo Jo [o Jo Jo Jo |

Un-shuffling by each participant: P e e e
N e

o o o o o 1 fo Jo [o]
[+ T [Is [o Tw]

[o |
T |
| | | 319 [10 | qr—

0

|
Result: 7 o
[

1

0 0 0

1
1
2 3 4 7

6

Figure 1: MPC-DisCSP4 using mix-nets

DisCSPx. In this paper we only address multi-party computations without trusted
servers. A family of secure solvers based on trusted servers is proposed in [YSHO2].

2.3 Hiding existence of solution

When no solution is found, all the participants learn that each alternative is infeasible.
For certain problems this leak of secrets may be considered unacceptable and a don’t
know answer is prefered to learning the infeasibility. But the don’t know answer is
believable only if the algorithm may indeed miss some solutions. An algorithm for
missing the solution with some predefined probability p is described in [Sil0O5b]. It
consists of computing a solution using a MPC-DisCSPx algorithm and then setting the
assignments in the result to the invalid value O with a probability p.

2.4 Stochastic algorithms

In the CSP world it is known that complete algorithms are ineffective for hard problem
instances. For large problems, most applications apply stochastic search procedures.
With stochastic search, only a subset of the search space is analyzed. Typical examples
of stochastic search are based on some type of hill climbing. With hill-climbing the
solver starts with a random alternative and searches the neighbouring search space for
solutions.

3 Simulated Annealing for Secure Optimization

Once the secret constraints of a distributed CSP are shared and shuffled with the tech-
nique of MPC-DisCSP1 [Sil03, Sil05a], one can try to search a feasible solution of the
shuffled problem using some hill-climbing. The same considerations and procedures
apply if the problem is shuffled with a mixnet obtained from the one in [YSHO2] by

replacing the encryption scheme with a (4, x)-homomorphic version (E.g., Paillier
with shared secret key, or the version of ElGamal of the form E, , 4 ,(m,r) = (g"
mod p, a™y"” mod p)).

The quality of an alternative will normally be evaluated securely (since we do not
tipically want to reveal individual constraints even if they were shuffled - as it would
lead to an important privacy loss). The total weight (or number of conflicting con-
straints) for an alternative e is computed with g(e, P) = > . c(€). The revelation of
the quality will be relatively expensive for both versions (based on either secret shar-
ing or homomorphic encryption). Therefore, this suggests to use stochastic algorithms
that are lazy in evaluating the qualities of new tuples. Such a technique is Simulated
Annealing (Algorithm 6).

procedure SSA do
Shuffle DisCSP using secret sharing or additive encryption homomorphism;
Select random alternative (tuple) t;
for decreasing 'temperature’ T do
change randoly the value of one variable obtaining t’;
compute securely and then reveal A = ¢(¢') — q(t);
[*alternatively reveal q(t’) to detect termination when the optimum is
known*/;
/*or securely compute and reveal only cmp(q(t'), g(t)), if it returns 1%/,
if A < 0 then
‘ t=t’
else
| t=t" with probability e~ 7

|_ Unshuffle the results;
Algorithm 6: Secure Simulated Annealing (minimization)

Similar to the technique in [Sil02, YSHO02], the Secure Simulated Annealing algo-
rithm may reveal undesired statistical information about some secrets via the knowl-
edge of the shuffle search space. However, specific exact information about a secret
may only be inadvertently revealed only for problems with very special patterns. In the
following we concentrate on algorithms guaranteed not to reveal anything else besides
the solution.

4 Privacy concepts

Definition 1 (IBOGWS88]) A multi-party computation is t-private if an attacker con-
trolling any at most t participants cannot learn anything from the computation, except
Jfrom what can be inferred from its outputs and prior knowledge.

Given secret constraints o the prior knowlege I' of the ¢ colluders and a multi-party
computation process I with answer o, the technique is t-private if the probability distri-
bution of the secrets is conditionally independent on II given answer « and knowledge

P(o|a,T,II) = P(o|a,T)

However, many algorithms provide answers « that contain more information than
what is actually needed. We typically decompose « in a desired data o™ and an algo-
rithmic dependent unrequested data &. For DisCSPs the desired data is an assignment
of some variables satisfying constraints, and the unrequested data consists of peculiar-
ities of the used algorithm A (e.g., the solution is the first/last in some known order on
alternatives).

We say that an algorithm .4 achieves maximal t-privacy if the probability distribu-
tion of the secrets is conditionally independent on II, 4 and @ given requested data o™
and prior knowledge I'.

P(o|a,T',II, A) = P(o]a™,T)

For distributed CSPs, maximal t-privacy typically implies the return of uniformly
random selected solutions whenever the problem may have more than one solution.

5 Secure Stochastic Search

Let us finally detail our proposed techniques for tractable secure stochastic search,
allowing to address hard problems. The idea is that only a subset of 7' alternatives
from, the search space will be explored. This could be achieved by adding a public
constraint that removes the remaining search space. However, to ensure privacy in case
of failure (that the infeasibility of this particular sub-space is not revealed), we propose
to take advantage of the shuffling of the whole problem. We select the subspace to
be explored from the shuffled problem. This hides the exact search subspace that is
analyzed and the only secret leaked in case of failure is that there are 7' infeasible
alternatives (but they are not known).

5.1 Secure Stochastic Search with Mix-nets

Each MPC-DisCSPx solving algorithm using mixnets can be modified into a corre-
sponding secure stochastic search protocol that will be called Stochastic Multi-Party
Computation for Distributed CSPs (SMPC-DisCSPx). Each SMPC-DisCSPx differs
from the corresponding MPC-DisCSPx by the fact that only the first T' tuples of the
shuffled search space are used to compute the shuffled solution. Each stochastic solver
is parametrized by the number T of alternatives to be explored (7" beeing smaller or
equal to the size of the search space). To be noted that a stochastic solver can be seen
as a generalization of the corresponding complete solver, which is obtained when T’
equals the size of the search space.

SMPC-DisCSP4 For example, SMPC-DisCSP4 is shown in Algorithm 7.
SMPC-DisCSP4 requires k(c — 1) multiplications of secrets to build the vector
S and 27 multiplications of secrets to select the solution. Also, the shuffling and

function SMPC-DisCSP4(T,(X,D,C))
for i=1to k do
L S[i]=H¢ec o(€:);
SHUFFLE(S) //using the mixnet;
h[1]=1;
for i=2to T do
h[i]=h[i-1]*(1-S[i-1]);
S[i]=S[il*h[il;
71 /* S[T]=S[T]*cmp(RS(0,q-1),p*q)// fine tuning*/;
UNSHUFFLE(S);
7.2 set solution S to 0 with probability p; //optional;
return S// the solution can be extracted from S as in [Sil05b];

Algorithm 7: SMPC-DisCSP4 for solving a CSP (X, D, C) with k alternatives allowed
by the public constraints, and exploring 7' alternatives.

unshuffling require each O(kn?) expensive operations, O(kn) for each participant.
While SMPC-DisCSP4 leads to a reduction with up to 2k multiplications of secrets,
the complexity remains the same, dictated by the shuffling.

It can be noted that the probability that a solution is lost can be fine tuned (e.g. for
the application in [Sil05b]) by discarding the alternative ey with probability p. This
can be done by uncommenting the Line 7.1 in the Algorithm 7.

One can allow agents to avoid revealing if that there exist 7" alternatives that are
not solutions, by enabling the optional cancelation of the solution with probability p at
Line 7.1. This cancelation of solution can be done with the technique in [SilO5b]).

SMPC-DisCSP1 The stochastic algorithm obtained from MPC-DisCSP1 is more
successful, and is sketched in Algorithm 8.

function SMPC-DisCSPI1(t,(X,D,C))
SHUFFLE(X,D,C) //using the mixnet;
for i=1to t do
| Slil=]Isec #(e):
F=DisCSP1(t,(X,D,C));
UNSHUFFLE(F); // Unshuffle each vector in F separately;
set solution F to 0 with probability p; //optional;
return F;

Algorithm 8: SMPC-DisCSP1 for solving a CSP (X, D, C') with k alternatives and
exploring 7" alternatives.

DisCSP1 (Figure 2) is the arithmetic circuit proposed in [Sil03], with the only
modification that function gconsistent () only integrates the first T tuples (rather
than the whole search space). The result I returned by DisCSP1 is a set of vectors,

p(e,P) = []ele

ceC
gconsistent(P) = Z (p(€;, P) * cmp(z p(er, P), 1))

€;Eler...er) k<i

9i,j(P) = gconsistent(P U {z; = j} U< (xx = fu(P)))

tia(P) = 1

ti(P) = tji1(P)*(1—gji-1(P))
|D;]

£i(P) = > ix(gji(P)xt;i(P))
=1

Figure 2: Arithmetic circuit DisCSP1 for a CSP P = (X, D, C). The result is the
vector of vectors {{0x (fi,J)}je[1..|p:| }ic[1..m]- Versions with other primitives appear
in [Sil03, Sil04]

one for each variable. A vector contains shared Os on all positions, except for a 1 on
the position corresponding the the value of the corresponding variable in the found
solution. If there is no solution, then all elements of the vectors are 0.

The cost of SMPC-DisCSP1 is only O(T'(md + ¢)) multiplications of secrets. Of
these, T'(c — 1) are used to compute S. DisCSP1 computes gconsistent md times,
each of them requiring at most O(7") multiplications. The cost of shuffling in SMPC-
DisCSP1 can be small even for large and hard problems, if the maximum constraint
arity (number of involved variables) is small.

5.2 Secure Stochastic Search with arithmetic circuits

The secure stochastic algorithms based on mix-nets suffer from the fact that the cost
of shuffling remains the same as for the non-stochastic complete approaches. This was
particularly negative in the case of SMPC-DisCSP1 where the cost of the shuffling is
the main cost.

This problem is reduced in algorithms with shuffling based on arithmetic circuits.
Namely, with shuffling based on arithmetic circuits one does not need to compute the
whole shuffling. With SMPC-DisCSP4, it is possible to only compute the first 7" ele-
ments of the shuffled problem (see Algorithms 9, 10), and 11).

function Shuffle(s,k,r,T)
for j =1toT do
L Perm(s,j,r(jl.j.k.k);

Algorithm 9: Shuffling a vector s with k shared secrets, and a random vector 7 obtained
with Algorithm 2

function Shuffle(s,k,r,T)
forj =Tt 1do
|_ Perm(s7j’r[j]’j’k9k);

Algorithm 10: Un-shuffling a vector s with k shared secrets, when the shuffling was
defined by random secret vector 7.

function SMPC-DisCSP4ac(T,(X,D,C))
for i=1 to k do
L S[i]=H¢eC ¢(€i)§
R=RandomVector(T);
SHUFFLE(S,k,R,T) //using the mixnet;
h[1]=1;
for i=2to T do
h[i]=h[i-1]*(1-S[i-1]);
S[i]=S[il*h[il;
/* S[T]=S[T]*cmp(RS(0,q-1),p*q)// fine tuning*/;
for i=T+1 to k do
L S[i]=0;
UNSHUFFLE(S k,R,T);
set solution S to 0 with probability p; //optional;
return S// the solution can be extracted from S as in [Sil05b];

Algorithm 11: SMPC-DisCSP4ac, solving a CSP (X, D, C) with k alternatives al-
lowed by the public constraints, and exploring 1" alternatives.

It can be noted that in secure stochastic algorithms based on arithmetic circuits we
succeed to reduce the cost of shuffling and unshuffling from O(k?) to O(kT') mul-
tiplications of secrets. With this improvement the complexity of SMPC-DisCSP4ac
decreases, but remains high since k is large for hard problems (can be exponential in
the problem size).

In conclusion the most appropriate algorithm for Stochastic Search is SMPC-
DisCSP1 which has polynomial space requirements and whose computational (time)
complexity can be bounded to low values being linear in 7" and in the problem size.

SMPC-DisCSP4ac (with arithmetic circuits) has a time complexity significantly
smaller than MPC-DisCSP4 (O(k(T + c)) versus O(k?)). This implies that the size
of the problems solvable with SMPC-DisCSP4’ is larger than the size solvable with
MPC-DisCSP4, which had the best complexity among complete algorithms.

Remark 1 (SMPC-DisCSPlac) Arithmetic circuit shuffling for SMPC-DisCSP1
works by separately permuting each domain (with a separate random vector for each
of them). The improvement that can be brought is to only compute the permuted con-
straint elements that are part of the first T tuples.

The shuffling for SMPC-DisCSP1 is not expensive. Therefore possible improve-
ments in versions based on arithmetic circuit shuffling are less significant, not changing
the time complexity.

6 Conclusions

In this work we have proposed a new family of secure solvers for distributed Constraint
Satisfaction Problems (disCSPs). While most existing techniques were complete and
inapplicable to large instances, the new techniques can be used to address large prob-
lems.

We have proposed stochastic versions for each of the complete secure multi-party
algorithms MPC-DisCSP1 and MPC-DisCSP4, based on shuffling with mixnets or with
arithmetic circuit. MPC-DisCSP1 is remarkable for its polynomial space requirements
while MPC-DisCSP4 for its low time complexity and for the uniform distribution in
selecting solutions.

The new versions only explore a subset of the search space of the problem, subset
whose size is specified as a parameter. We have thus analyzed in detail three newly
obtained versions: SMPC-DisCSP1, SMPC-DisCSP4, and SMPC-DisCSP4ac.

As its complete counterpart, SMPC-DisCSP1 requires only polynomial space. Un-
expectedly, the versions obtained from MPC-DisCSP4 are much less appropriate for
addressing large problems, but maintain the desirable property of selecting solutions
with a uniform distribution. Among SMPC-DisCSP4 and SMPC-DisCSP4ac, the lat-
ter (based on arithmetic circuits) presents the largest speed-up in comparison to its
complete version. The algorithm of choice for tackling large problems are therefore
the ones based on MPC-DisCSP1 (SMPC-DisCSP1 and SMPC-DisCSP1ac), and their
time complexity is linear in the problem size and in a parameter deciding the size of
the explored search space.

References

[BOGWS88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems

[Gol04]

[HCN01]

[Kil88]

[Kil05]

[Sha79]
[Sil02]

[Sil03]

[Sil04]

[Sil05a]

[Sil05b]

[SMO04]

[SRO4]

[Yao82]

for non-cryptographic fault-tolerant distributed computating. In STOC,
pages 1-10, 1988.

Oded Goldreich. Foundations of Cryptography, volume 2. Cambridge,
2004.

T Herlea, J. Claessens, G. Neven, F. Piessens, B. Preneel, and B. Decker.
On securely scheduling a meeting. In Proc. of IFIP SEC, pages 183—-198,
2001.

J. Kilian. Founding cryptography on oblivious transfer. In Proc. of ACM
Symposium on Theory of Computing, pages 20-31, 1988.

Eike Kiltz. Unconditionally secure constant round multi-party computa-
tion for equality, comparison, bits and exponentiation. Cryptology ePrint
Archive, Report 2005/066, 2005. http://eprint.iacr.org.

A. Shamir. How to share a secret. Comm. of the ACM, 22:612-613, 1979.

Marius-Cilin Silaghi. Asynchronously Solving Distributed Problems
with Privacy Requirements. PhD Thesis 2601, (EPFL), June 27, 2002.
http://www.cs.fit.edu/"msilaghi/teza.

M.-C. Silaghi. Solving a distributed CSP with cryptographic multi-party
computations, without revealing constraints and without involving trusted
servers. In IJCAI-DCR, 2003.

M.-C. Silaghi. Meeting scheduling system guaranteeing n/2-privacy and
resistant to statistical analysis (applicable to any DisCSP). In 3rd IC on
Web Intelligence, pages 711-715, 2004.

M.-C. Silaghi. Zero-knowledge proofs for mix-nets of secret shares and
a version of elgamal with modular homomorphism. Cryptology ePrint
Archive, Report 2005/079, 2005. http://eprint.iacr.org/.

Marius-Cilin Silaghi. Hiding absence of solution for a discsp. In
FLAIRS’05, 2005.

M.-C. Silaghi and D. Mitra. Distributed constraint satisfaction and opti-
mization with privacy enforcement. In 3rd IC on Intelligent Agent Tech-
nology, pages 531-535, 2004.

M.-C. Silaghi and V. Rajeshirke. The effect of policies for selecting the
solution of a DisCSP on privacy loss. In AAMAS, pages 1396-1397, 2004.

A. Yao. Protocols for secure computations. In FOCS, pages 160-164,
1982.

[YSHO2] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint
satisfaction: Reaching agreement without revealing private information.
In Proc. of the AAMAS-02 DCR Workshop, Bologna, July 2002.

