
Secure Combinatorial Optimization using

DFS-based Variable Elimination

†Silaghi, M. and ‡Petcu, A. and ‡Faltings, B.
‡Florida Tech

‡EPFL

July 19, 2005

Abstract

It is known that, in general, Constraint Optimization Problems (COP)
are NP-hard. Existing arithmetic circuits for secure protocols solving such
problems are exponential in the number of variables, n. Recently a com-
binatorial optimization algorithm was proposed whose cost is exponential
only in a parameter of the Depth First Search tree (DFS) of the constraint
graph, smaller than n. We show how to construct an arithmetic circuit
with this property and solving any COP. For forest constraint graphs, this
leads to a linear cost secure solver.

1 Introduction

Combinatorial Optimization is an important operation in many problems. One
important formalism for modeling combinatorial optimization is the constraint
optimization problem (COP). A constraint optimization problem (X,D,C) is de-
fined by a set of variables, X = {x1, ..., xm}, with domains fromD = {D1, ..., Dm},
and a set of weighted constraints C = {φ0, ..., φm}, each such constraint φi spec-
ifying a distinct cost associated with each assignment of values to a subset Xi

of X.
An assignment is a pair 〈xi, v〉 where v ∈ Di. A solution of the COP is a

tuple of assignments ε with values for each variable in X such that the sum of
the weights associated by the constraints in C to ε is maximized (minimized).
Without loss of generality we assume that by optimal solution we understand
the solution with maximal weight. If we denote the projection of a tuple ε on a
set of variables Xi by ε|Xi , then the solution is:

argmax
ε

∑

φi∈C
φ(ε|Xi)

A distributed COP (DCOP) arises when some constraints are functions of
secrets own by some agents from a set A = {A1, ..., An}. Without loss of

1

generality we assume that φ0 is a public constraint and that Xm, the set of
variables in φm, contains besides xm only variables xi with i < m. Note that
such a formulation can be obtained from any DCOP by building a Depth First
Search (DFS) tree, introduced later and combining the constraints such that
there remains a single constraint per variable (with his ancestors in the tree).

Our work employs the following secure techniques:

• polynomial secret sharing: Each participant k out of n participants re-
ceives 〈s〉tk = s +

∑t
i=1 aik

i. The secret could be reconstructed with

s =
∑t+1
k=1 lk,t, where lk,t are the corresponding Lagrange coefficients.

• addition of shared secrets: 〈s1 + s2〉tk = 〈s1〉tk + 〈s2〉tk
• resharing shared secrets: To reshare a secret 〈s〉t with another threshold
t′, each share 〈s〉tk is shared with (t′ + 1, n)-polynomial sharing scheme.

• multiplication of shared secrets: 〈s1 ∗ s2〉2tk = 〈s1〉tk ∗ 〈s2〉tk
• secure test: δ(x) returns 1 if x = 0 and 0 otherwise.

• secure Kronnecker’s δ: δK(x, y) = δ(x − y) returns 1 if x = y and 0
otherwise.

• secure comparison: cmp(x, y) returns 1 if x < y and y otherwise.

• secure max: max(x, y) = cmp(x, y) ∗ (x− y) + y.

2 Background

DCOPs have been addressed with various techniques that differ both in ef-
ficiency and in their privacy guarantees. The former techniques seeking the
strongest privacy guarantees are based on secure multiparty computation and
scan several times the whole search space, i.e. Cartesian product of domains in
D, once for each possible total weight. An optimization protocol specialized on
generalized Vickrey auctions and based on dynamic programming is proposed
in [12] and is significantly more efficient, but does not randomize the selection
of the solution needed to increase privacy [10]. A dynamic programming algo-
rithm for solving (D)COPs was proposed in [4] and consists of a Viterbi-like
combination of a maximization and decoding [11]. The algorithm in [4] can also
be seen as a clever heuristique for variable elimination [2], or as a parallelization
of ADOPT [3], and is based on a different concept of privacy [8].

2.1 Variable Elimination

Variable Elimination is a principled technique for complexity reduction in COPs.
It consists of replacing all the constraints linked to a variable chosen for elim-
ination by the projection of their composition on the remaining variables. A
heuristique for selecting the variables to be eliminated next is provided by the
DFS tree [4].

2

2.2 DFS tree

The primal graph of a COP is the graph having the variables as nodes and
having an arc for each pair of variables linked by a constraint. A Depth First
Search (DFS) tree associated to a COP is a spanning tree generated by the
first arcs used for visiting each node during some depth first traversal of its
primal graph. DFS trees were first successfuly used for Distributed Constraint
problems in [1]. The property exploited there is that separate branches of the
DFS-tree are completely independent once the assignments of common ancestors
are decided.

The ancestors of xi are all the nodes of the path between root of the tree
and xi, inclusively the root. The descendants of xi are all the nodes for which
xi is an ancestor. We use the following notation. Let:

• Fx be the parent of x

• Sx be the children of x

• Px be the neighbor ancestors of x

• Gx be the induced parents of x (ancestors that are neighbors for x or for
some descendant of x)

In this work we do not address heuristiques for building DFS trees, but
consider that such a tree is provided.

2.3 DFS-based Variable Elimination

A heuristique for selecting the order to eliminate variables based on exploiting
the DFS-tree is proposed in [4]. The idea is that before eliminating a node in
the DFS tree one should first eliminate its children. In a centralized approach,
such an order could be generated by either a postorder traversal or a reversed
level-order traversal. This heuristiq guarantees that the arity of the largest
constraint that will be added to the problem (and therefore the complexity of
the algorithm) is bounded by the distance between two neighbors in the DFS
tree. This is bounded by the depth of the tree and potentially much smaller
than n. The advantage of this heuristique is that the quality of an elimination
order can be easily evaluated.

2.4 Secure Optimization

A secure optimization algorithm for DCOP is proposed in [9]. It chooses ran-
domly one of the values with the optimal value and reveals the total weight
of the solution and the corresponding assignments only if desired and only to
agreed participants. To ensure random selection of the solution, shuffling of val-
ues is done prior to solving. The result of the computation will be unshuffled.
In [6] it is shown how to make the selection with a uniform random distribution.
However, the complete versions of these techniques are always exponential in
the size of the search space (as defined by the public constraints).

3

In the following we show how to formulate arithmetic circuits for securely
computing an optimal solution of a DCOP using DFS-based Variable Elimina-
tion. As in the non-secure version, the algorithm has two parts, un (upward) d
ynamic programming step, and a (downward) decoding step.

3 Arithmetic Circuits

On the upward path in the DFS tree, for each node xi one computes for each
assignment S of the induced parents Gx:

W
xFi
i [S] = max

v∈Di
(W xi

i [〈xi, v〉 ∪ S|Pxi] +
∑

y∈Sxi

(W y
i [S ∪ {〈xi, v〉}|Gy])

The value W ∅r , where r is the index of the root node, is the weight of the
optimal solution.

procedure Upward(xi) do
foreach (y ∈ Sxi) do

Upward(y);

foreach tuple ε for Gxi ∪ {xi} do
W xi [ε] = W xi

i [ε|{xi}∪Pxi]+
∑
y∈Sxi

(W y
i [ε|Gy];

foreach tuple ε for Gxi do
W

xFi
i [ε] = max

v∈Di
(W xi [ε ∪ 〈xi, v〉]);

Algorithm 1: Arithmetic circuit for the upward (dynamic programming) step.
At the first call, the parameter xi is the root of the DFS tree.

3.1 Unsecure decoding of solution

If we also want to reaveal the assignment with the optimal value, it can be done
with the following arithmetic circuit, for the downward path (e.g., level-order
traversal from root).

The value of the whole tree is the shared secret W ∅r computed at the upward
step. At variable xi with subtree value W, for each tuple ε with value W’ in the
vector W xi and with assignments equal to the ones selected at previous levels,
compute and reveal δK(W,W ′). If the result is 1, the corresponding assignment
of xi is selected, and the corresponding values Wy in W y

i for each child variable
y ∈ Sxi is selected as value of the subtree with root y.

The problems with this approach, of revealing the solution, is that the al-
gorithm cannot be used in cases where the solution of the COP is only an
intermediary computation, e.g. [5]. We fix this in the following algorithm.

4

x3
x2
x1

x4
x3
x2

MAX

MAX

MAX

MAX

x1

x4

x3

x2

x3
x2

x4
x3
x2

x3
x2
x1

x2
x1x2

x1

x1 x1

x1

W

x2
x1

W(x4)

+=W(x3)

+=W(x2)

+=W(x1)

W2(x1) W1(x1)

W3(x3)

W4(x4)

W2(x2)

W4(x3)

W3(x2)

Figure 1: Data structures in the Upward computation.

3.2 Secure decoding of solution

After performing the upward computation of dynamic programming, we can de-
code the solution securely during a preorder or level-order traversal of the tree.

5

On visiting each node xi, a procedure is run to compute securely the shared se-
cret assignment of xi using the shared secret assignments of the induced parents,
dxk , and the shared selected weight of this variable, W ∅xi . The procedure also
computes the inputs for the next recursive procedure calls, at the descendents
of xi, namely the selected weight W ∅y of each child y ∈ Sxi .

W ∅y =
∑

ε

(
∏

p∈Gxi

dp[ε|p])δK(W ∅xi ,W
xi [ε])W xi

y [ε]

dxi [v] =
∑

ε,ε|{xi}=v

(
∏

p∈Gxi

dp[ε|p])δK(W ∅xi ,W
xi(ε))

procedure Downward(CSP) do
while xi ← get InOrder Next(DFS(CSP)) do

foreach v ∈ Di do
dxi [v] =

∑
ε,ε|{xi}=v

(
∏
p∈Gxi

dp[ε|p])δK(W ∅xi ,W
xi(ε));

foreach y ∈ Sxi do
W ∅y =

∑
ε(
∏
p∈Gxi

dp[ε|p])δK(W ∅xi ,W
xi [ε])W xi

y [ε];

Algorithm 2: Arithmetic circuit for the downward step.

At the end of this computation, the vectors dxi hold a shared unary con-
straint allowing a single value for xi, namely the one in the optimal solution.
These unary constraints can then be unshuffled.

4 Complexity Analysis

The Upward step is called once for each variable xi and the number of operations
for each variable is linear in the number of elements of W xi , i.e., exponential
in |Gxi | + 1. The total cost for the upward step is O(ndg+1), where d is the
maximum size of a domain of a variable, and g is the maximum value for |Gxi |.

In the Downward step there exist a while loop for each variable xi and each
such cycle has two summations for each element in W xi , each term having
|Gxi |+ 1 multiplications. The total cost for the downward step is O(ngdg+1).

Therefore, the total complexity of the secure version is O(ngdg+1). If the
downward version with immediate revelation of assignments in solutions is used,
then the complexity is only O(ndg+1). If shuffling of constraints and unshuffling
of solution vectors dx are used to randomize the selection of the solution, then
the cost of the shuffling is also added [7].

5 Conclusion

We have shown how to speed up the secure computation for constraint opti-
mization, by exploiting fix-cost DFS-based Variable Elimination. The previ-

6

ous techniques performed secure verifications separately for each possible tuple
weight, and were significantly more expensive, specially for sparse graphs and
for problems with a large range of possible weights for tuples.

References

[1] Z. Collin, R. Dechter, and S. Katz. Self-stabilizing distributed constraint
satisfaction. Chicago Journal of Theoretical Computer Science, 2000.

[2] R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning, and cutset decomposition. AI’90, 1990.

[3] P.J. Modi, M. Tambe, W.-M. Shen, and M. Yokoo. An asynchronous com-
plete method for distributed constraint optimization. In AAMAS, Mel-
bourne, 2003.

[4] A. Petcu and B. Faltings. Distributed variable elimination. In CP’04 DCR
Workshop, 2004.

[5] M. Silaghi. Secure generalized vickrey auctions. In IJCAI05 DCR Work-
shop, 2005.

[6] M.-C. Silaghi. Meeting scheduling system guaranteeing n/2-privacy and
resistant to statistical analysis (applicable to any DisCSP). In 3rd IC on
Web Intelligence, pages 711–715, 2004.

[7] M.-C. Silaghi. Zero-knowledge proofs for mix-nets of secret shares and a ver-
sion of elgamal with modular homomorphism. Cryptology ePrint Archive,
Report 2005/079, 2005. http://eprint.iacr.org/.

[8] M.-C. Silaghi and B. Faltings. A comparison of DisCSP algorithms with
respect to privacy. In AAMAS-DCR, 2002.

[9] M.-C. Silaghi and D. Mitra. Distributed constraint satisfaction and opti-
mization with privacy enforcement. In 3rd IC on Intelligent Agent Tech-
nology, pages 531–535, 2004.

[10] M.-C. Silaghi and V. Rajeshirke. The effect of policies for selecting the
solution of a DisCSP on privacy loss. In AAMAS, pages 1396–1397, 2004.

[11] A.J. Viterbi. Error bounds for convolutional codes and an asymtoti-
cally opti mum decoding algorithm. IEEE Trans. on Information Theory,
13(2):260–267, 1967.

[12] M. Yokoo and K. Suzuki. Generalized Vickrey Auctions without Third-
Party Servers. In FC04, 2004.

7

