

Technical report CS-2006-02

Culprit Detection on Incremental Tractable
Qualitative Temporal Reasoning Problems

by

Florent Marie Launay and Dr. Debasis Mitra

Bachelor of Science
In Computer Science

Florida Institute of Technology
2002

Melbourne, Florida
Spring, 2006

©Copyright 2005 Florent Marie Launay
All Rights Reserved

The author grants permission to make single copies

iii

Abstract

Title:

“Culprit Detection on Incremental Tractable

Qualitative Temporal Reasoning Problems”

Author:

Florent Marie Launay

Major Advisor:

Debasis Mitra, Ph.D.

 This thesis is a confluence of three problems in constraint reasoning:

qualitative temporal reasoning (QTR), incremental reasoning, and explanation

generation. We first address a set of algorithms to solve the QTR for point algebra

(PA) with explanation. Next, we turn to the tractable form of Allen’s Interval

Algebra (IA). For both problems, an incremental version of the problem, where a

new temporal object is added to a set of objects committed on the time-line, is

being studied. We provide a model or solution space for the new object, if it exists,

otherwise, for (PA) and a particular subalgebra of (IA) called ORD-Horn, we

provide explanation for inconsistency. Both the problems of incremental reasoning

and explanation generation are based on some recent investigation in constraint

programming.

iv

Table of Contents

Abstract .. iii

List of Figures .. vii

Acknowledgement ..ix

Dedication ..x

Chapter 1 – Introduction..1

 1.1 – Problem overview...1

 1.2 – Thesis organization...1

 1.3 – Contribution ...2

 1.4 – Publications ..3

Chapter 2 – Background...4

 2.1 – Temporal reasoning ..4

 2.1.1 Point Reasoning ..4

 2.1.2 Interval Reasoning ..5

 2.2 – Incremental Temporal Reasoning..10

 2.3 – Incremental Complexity issues ...11

 2.4 – Problem Complexity...15

v

 2.4.1 Point reasoning complexity15

 2.4.2 Interval reasoning complexity15

Chapter 3 – Problem Establishment ..16

 3.1 – Disjunctive Normal Form ...16

 3.2 – Conjunctive Normal Form ..16

 3.2 – Culprit detection in the point algebra17

 3.2.1 – The FindMinSet Algorithm20

 3.2.2 – A Tractable problem...23

 3.2.3 – Implementation ..34

 3.3 – Culprit detection in the Interval Problem...............................36

 3.3.1 – Reasoning on the whole algebra is NP-Hard36

Chapter 4 – ORD-Horn algebra ...38

 4.1 – Definition ...38

 4.2 – Literature..39

 4.3 – Decomposition into a point algebra problem43

 4.3.1 – Positive model..43

 4.3.2 – Negative model ..46

 4.4 – Algorithms..48

 4.4.1 – Normalization Algorithm48

 4.4.2 – Sorter Algorithm ..55

vi

Chapter 5 – Tractable cases, 17 maximum tractable

 subalgebras ..57

 5.1 – Definition of maximum tractable subalgebra (MTS)57

 5.2 – Literature..58

 5.3 – Express 17 MTS, a graphical representation..........................60

 5.4 – A generic algorithm ..68

 5.4.1 – Classes of Solvable problems68

 5.4.2 – Ordering the committed intervals............................70

 5.4.3 – Deciding satisfiability...71

 5.4.4 – Algorithm...75

Chapter 6 – Conclusions ...76

Chapter 7 – Related works ...77

References ..80

vii

List of Figures

Figure 2.1: Basic relation on Point Reasoning ..4

Figure 2.2: Composition table of point relations ...5

Figure 2.3: Basic relation of higher-dimension Interval-Relations6

Figure 2.4: Basic relation of one-dimension Interval-Relations...................7

Figure 2.5: Basic relation of zero-dimension Interval-Relations..................7

Figure 2.6: Composition table of Allen’s Interval Algebra..........................8

Figure 2.7a: An inconsistent temporal network ..12

Figure 2.7b: An inconsistent temporal network ..12

Figure 3.1: Conjunction of constraints..17

Figure 3.2: Binary constraints on temporal objects19

Figure 3.3: Bipartite graph on point-based reasoning................................25

Figure 3.4: Conflict set on point-based reasoning26

Figure 3.5: Bipartite constraints assignment ...29

Figure 3.6: Relation conflicting with a maximum cardinality partition......33

Figure 3.7a: Implementation ..34

Figure 3.7b: Implementation ..34

Figure 3.7c: Implementation...35

viii

Figure 3.7d: Implementation ..35

Figure 3.7e: Implementation...35

Figure 3.7f: Implementation ...35

Figure 4.1: 2D plane space for interval representation40

Figure 4.2: Ligozat’s lattice representation ...41

Figure 4.3: ORD-Horn representation of basic relations42

Figure 4.4: Positive model representation...43

Figure 4.5: Negative model representation ...47

Figure 4.6: ORD-Horn representation of lower-dimensional

 negative relations...49

Figure 5.1: Graphical representation of 17 MTSs61

Figure 5.2: Constrained temporal network in ALJ[11] and ALJ[14]69

Figure 5.3: Untractable constrained temporal network..............................69

Figure 5.4: Forward relations of figure 5.2 ...70

Figure 5.5a: Constraint Network a..72

Figure 5.5b: Constraint Network b ...72

ix

Acknowledgement

 I would like to thank the Computer Science faculty of Florida Tech, most

particularly Dr Debasis Mitra for his support, his advices and his patience. I would

also like to express my gratitude to my family that always supported me morally

and financially and pushed me to give the better of myself while always respecting

my choices. Finally, I would like to thank Dr. Gerard Ligozat (LIMSI university of

Paris) for the discussions we had and who helped me to better understand some

aspects of my work.

x

Dedication

This Thesis is dedicated to my little sister Laurie-Anne and my little niece Maya

1

Chapter 1 – Introduction

1.1 – Problem Overview

 Along with the exponential grow of complexity in recent technologies

comes a need to more powerful computational techniques capable of solving

increasingly complex problems in reasonable time. A slight improvement in the

complexity of an algorithm can have significant effects on the overall problem

resolution. Temporal Representation and Reasoning in AI often provide ways to

compute complex problems and sometimes find the ‘best’ imperfect solution. There

exist a growing interest in the scientific community for modeling and reasoning on

spatio-temporal problems.

1.2 – Thesis organization

 This thesis is divided into 7 chapters. The first two chapter chapters will

provide the reader with essential background information needed to understand the

problem addressed in this thesis and the suggestions we brought to solve a

particular cast of scheduling problems. Chapter 3 formally describes the problem

and proposes a solution for the Online Qualitative Temporal Reasoning on Point

algebra. This section also introduces our approach in defining the “causes” for

inconsistency and the algorithms to find it. Subsequently we have enhanced the

approach toward online reasoning with time-intervals which is divided into two

distinct sub problems. Chapter 4 deals with one of these problems known as the

ORD-Horn Interval Algebra and describes a series of algorithms to solve this

problem instance. Then we turn to a more general approach of tractable temporal

2

reasoning in chapter 5. This chapter also proposes a set of algorithms to solve the

more general tractable temporal reasoning case. Chapter 6 generalizes again the

Interval algebra’s approach with a discussion on non-tractable cases. Finally we

conclude this thesis with a discussion on past and current interest in the scientific

community for solving the type of problems addressed here.

 1.3 – Contribution

 In many cases, no follow up intervenes after inconsistency detection in

spatio-temporal reasoning problems. This thesis proposes such ‘incomplete’

solutions for a particular set of temporal reasoning problems when no perfect

solution can be addressed. This partial solution is defined in a systematic way for

the point based reasoning, and subject to tractability limitation in case of interval

reasoning. Whereas many study focused on finding the maximal set of consistent

constraints, the problem of finding the minimal set of culprit relations is new to the

community. Section 3.2.1 proposes an algorithm to solve such problem for the

point based reasoning and provides a proof of correctness and minimality of the

output set. Finally, section 5.3 gives a graphical representation of 17 out of the 18

maximal tractable algebras of the full interval algebra, providing an alternative way

to reason on the algebras, as well as an easy way to count them.

3

1.4 – Publications

 The work addressed in this thesis has partially been published in:

1. Debasis Mitra, and Florent Launay: On-line Qualitative Temporal

Reasoning with Explanation. FLAIRS 2006

2. Florent Launay, and Debasis Mitra: Incrementally Scheduling with

Qualitative Temporal Information. IEA/AIE 2005: 229-231

3. Florent Launay, and Debasis Mitra: An optimum greedy algorithm for

choosing minimal set of conflicting constraints in the point sequencing

problem. Technical Report on http://www.cs.fit.edu/~tr/cs-2002-16.doc.

4

Chapter 2 – Background

2.1 – Temporal Reasoning

 Temporal Reasoning Problem can be viewed as finding an assignment for a

set of constrained temporal events. The next two sections describe two particular

instances of TR. Both algebras are the central topics under discussion of the

research.

 2.1.1 Point Reasoning

 The point-based temporal reasoning constitutes the simplest form of spatio-

temporal reasoning (Allen). The scheme has three basic relations {<, >, =}.

Binary operator Relation type Example Representation

< Before A (<) B

> After A (>) B

= Equal A (=) B

Figure 2.1: Basic relation on Point Reasoning

 The corresponding relational algebra is comprised of the power set of the

basic relations, thus containing 8 elements:

• {(<), (>), (=), (<=), (>=), (<>), (<=>), ()}

A=B

A B

B A

5

The three basic relations, the relation less-than-or-equal (<=), the relation greater-

than-or-equal (>=), the relation different-from (<>), the relation any-relation (<=>),

and the relation no-relation () stating that no relation should exist between two

points. Thus, a constraint between two points A and B expressed as: (A <= B) has a

valid assignment for A and B if either (A = B) or (A < B). The composition

between basic relations is a disjunction of basic constraints.

The composition table of the point based relation is described in the table below:

. < = >

< < < <=>

= < = >

> <=> > >

Figure 2.2: Composition table of point relations

 This set of relations forms an algebra since it is closed under the traditional

reasoning operators; composition, converse, set union, and set intersection.

 2.1.2 Interval Reasoning

 With the interval reasoning problem, the objects are the time-intervals

(Allen) rather than the time points. There are thirteen basic relations between a pair

of intervals, B={before (b), meet (m), overlap (o), start (s), during (d), finish (f),

equal (eq), finish-inverse (~f), during-inverse (~d), start-inverse (~s), overlap-

inverse (~o), meet-inverse (~m), before-inverse (~b)}, as opposed to three basic

6

relations in the case of time-points. Every basic relation has a degree of freedom

associated to it given by the freedom of end points of an interval for a given

relation. Each of these basic relations and its associate dimension is defined in the

tables below:

Among the 13 atomic relations;

• Six are of dimension 2:

Binary

operator

Relation

type

Example Representation

b before A(b)B

~b before

inverse

A(~b)B

o overlap A(o)B

~o overlap

inverse

A(~o)B

d during A(d)B

~d during

inverse

A(~d)B

Figure 2.3: Basic relation of higher-dimension Interval Relations

A

B

B A

 B A

A

B

A B

 A B

7

• Six are of dimension 1:

Binary

operator

Relation

type

Example Representation

m meet A(m)B

~m meet inverse A(~m)B

s start A(s)B

~s start inverse A(~s)B

f finish A(f)B

~f finish

inverse

A(~f)B

Figure 2.4: Basic relation of one-dimension Interval Relations

• One is of dimension 0:

Binary

operator

Relation

type

Example Representation

eq equal B(eq)A

Figure 2.5: Basic relation of zero-dimension Interval Relations

 B

B

A

A

B

B

A

A

B

A
B

 B

A

A

8

 A relation between two intervals is expressed as the disjunction between

basic interval relations.

Example: A {b or d or ~d} B

Meaning that interval A must be placed before, or during, or after interval B. We

will refer to such a set of constraints as A {b, d, ~d} B for the sake of simplified

notations and clarity.

 The composition table of the interval reasoning is not as trivial as for the

point based reasoning. In this table, the rows indicate a relation between an interval

A and an interval B. The columns indicate the relation between the interval B and

an interval C. Finally, each entry represents the composed relation between interval

A and interval C. The composition table for interval reasoning is given below:

 b m o s d f eq ~f ~d ~s ~o ~m ~b
b b b b b Γ Γ b b b b Γ Γ U

m b b b m Θ Θ m b b m Θ F ~Γ

o b b Ψ o Θ Θ o Ψ Ω Σ Φ ~Θ ~Γ

s b b Ψ s d d s Ψ Ω S ~Σ ~m ~b

d b b Γ d d d d Γ U ~Ω ~Ω ~b ~b

f b m Θ d d f f F ~Γ ~Ψ ~Ψ ~b ~b

eq b m o s d f = ~f ~d ~s ~o ~m ~b

~f b m o o Θ F ~f ~f ~d ~d ~Θ ~Θ ~Γ

~d Ω Σ Σ Σ U ~Θ ~d ~d ~d ~d ~Θ ~Θ ~Γ

~s Ω Σ Σ S ~Σ ~o ~s ~d ~d ~s ~o ~m ~b

~o Ω Σ Φ ~Σ ~Σ ~o ~o ~Θ ~Γ ~Ψ ~Ψ ~b ~b

~m Ω S ~Σ ~Σ ~Σ ~m ~m ~m ~b ~b ~b ~b ~b

~b U ~Ω ~Ω ~Ω ~Ω ~b ~b ~b ~b ~b ~b ~b ~b

Figure 2.6: Composition table of Allen’s Interval Algebra

9

With the following set of abbreviations:

• U = {b, m, o, s, d, f, eq, ~f, ~d, ~s, ~o, ~m, ~b}

• Φ = { ~o, ~f, ~d, ~s, eq, s, d, f, o}

• Γ= {b, m, o, s, d}

• ~Γ= {~b, ~m, ~o, ~s, ~d}

• Ω = {b, m, o, ~f, ~d}

• ~Ω = {~b, ~m, ~o, f, d}

• Ψ = {b, m, o}

• ~Ψ = {~b, ~m, ~o}

• Θ = {o, s, d}

• ~Θ = {~o, ~s, ~d}

• Σ = {o, ~d, ~f}

• ~Σ = {~o, d, f}

• F = {f, eq, ~f}

• S = {s, eq, ~s}

 As it is the case for the point based reasoning, Allen’s interval reasoning is

closed under composition, converse, set union and set intersection and hence forms

the Interval Algebra (IA). Our work uses the framework of Incremental Temporal

Reasoning (Gerevini) also known as Online Problem that is applicable to some real

life situations, where information is gradually added to a database. We will refer to

the online qualitative temporal reasoning on point as OLQTR-P and on intervals as

10

OLQTR-I. In the next section we introduce the problem of online interactive

reasoning scheme with qualitative constraints between temporal events.

2.2 – Online Qualitative Temporal Reasoning (OLQTR)

 In our incremental framework a new temporal event is inserted into a set of

events already committed on a time-line, i.e., the new temporal event is inserted

within a sequence of old events, satisfying the binary constraints between the new

event and the old ones. The problem could be viewed as a database entry, where a

consistency checking needs to be first performed before committing the entry

operation.

 Incremental temporal reasoning is often really tied to real life problems.

When an existing set of consistent constraints has to be redefined because of new

or unexpected set of constraint, it is in most of the cases reasonable to treat them

one by one until the whole set of new constraints is exhausted. This section will

introduce the reader with the incremental problem in constraint reasoning.

Definition 1: Online Qualitative Temporal Reasoning (OLQTR).

Given:

• a total order T ={t1, t2, . . ., tm} of temporal events located on a timeline,

• a new object n whose location is yet to be determined

• a set C of binary temporal constraints between n and some elements ti of T,

with C= {(n ri ti), where i is in [1, m]}

11

 Incremental temporal reasoning (ITR) problem answers whether n can be

located on the time line satisfying the constraints in C or not. Moreover, for a

satisfying problem it assigns n on the time line appropriately.

When an ITR problem is inconsistent there could be multiple subsets of C that has

mutually conflicting constraints in each of them. We are interested in finding a

minimal cardinality subset amongst these subsets. We presume that no weight or

priority values are assigned apriori to any constraint in C.

 An algorithm for solving the OLQTR-P problem is described in section

3.2.2. The next section introduces an algorithm that decides consistency for the

Incremental point based reasoning. This algorithm is the core of our approach in

defining the “causes” for inconsistency and is enhanced in the subsequent sections

to form another set of algorithms solving our problem instance.

2.3 – Incremental Consistency issues

 A system of constraint between temporal events is either consistent or

inconsistent. In case of inconsistency, some constraints are not satisfied and

conflict with each other. Algorithms solving temporal constraint reasoning

traditionally do not inform the user about the causes of inconsistency. One of the

reasons behind this is the ambiguity in identifying such a cause. For example, given

a set of comparable objects a, b, and c, the information a<b, b<c, and c<a, is

inconsistent (Figure 2.7a). There is no preferred constraint here that could be

12

identified as the cause for the inconsistency, and each one of them is equally

responsible. However, if we have {a<b, b<c, b<d, d<e, e<a, c<a}, then the

constraint a<b becomes a clear choice as the culprit, presuming that all constraints

have equal priority (figure 2.7b).

 In this work, we have investigated the issues related to detecting the

“reason” behind inconsistency. We have first used a simple domain of point-based

temporal reasoning that is tractable and is well understood. Then, we apply this last

to the wider area of incremental interval reasoning. The objective is to detect a

minimal set of constraints that should be eliminated or modified for restoring

consistency of an otherwise inconsistent problem instance. This work on

identifying the responsible set of constraints causing inconsistency in a problem

instance will be useful in the diagnosis area for quite obvious reasons. Adding such

a capability would also improve the user-friendliness of the CSP-solver systems

and thus, enhance their usage.

a

c b

a<b

b<c

c<a

a

c b

a<b

b<c

c<a

d

e

b<d

d<e

e<a

Figure 2.7a: An inconsistent
temporal network

Figure 2.7b: An inconsistent
temporal network

13

Assertion 1: Constraints in inconsistent point-based ITR conflict pairwise.

The following is the definition of the culprit detection (CD) problem.

Definition 2: Culprit Detection (CD)

Given an inconsistent ITR problem, culprit detection recalls constraints conflicting

pairwise.

Definition 3: MinConflict

 Given an inconsistent ITR problem, a MinConflict set is a minimal subset

of the original constraint network removal of which will make the problem

consistent.

For example, S= {s1, s2, s3} with s1<s2<s3. C= {(n < s1), (n >s2), (n > s3)}. This is

inconsistent and the first constraint is in conflict with the other two. Hence the

MinConflict= {(n < s1)}. We define a related concept of degree of conflict of a

constraint.

 Mitra et al (1999) have obtained some interesting results in the point-based

incremental reasoning problem, or point-sequencing problem. They have observed

that a satisfiable region for a new point within a sequence of points or a contiguous

region possibly excluding some old points within the interval (a preconvex interval

as per Ligozat, 1996). They have utilized this property to devise an efficient

14

algorithm for preprocessing before attempting to find the actual valid regions for

the new point that satisfies the binary constraints.

 In this work we have attacked the same problem but with a different

objective of finding the “cause” behind the inconsistency when the latter is

detected. The following is an outline of (Mitra et al) et al’s algorithm, adopted for

the purpose of first detecting the inconsistency in an incremental problem.

Algorithm 1D (Mitra et al, 1999): Scan the sequence of existing points from left to

right on the time-line and their relationship/constraints with respect to the “new”

node that is to be inserted (within the sequence, satisfying those constraints). Keep

a status variable that keeps track of whether the left end (of the list of valid regions

for the new point, or as it is called, the “box”) has been found, or an equality

relation (new = xi) has been found, or the right boundary has been found. The

“box” is found when the constraint from the new point to the current point xi

changes from >, or ≥ to < or ≤, for i running over all the old points. The inequality

(<>) and the tautology (< = >) are ignored in this scan. A singleton equality relation

is a hard constraint, making the box converge to that old point. After a “box” is

found, if any constraint demands the new point to be outside the “box,” then an

inconsistency would be detected, otherwise with a second scan over the “box” the

algorithm would elicit the exact set of valid regions checking if the old points

within the box themselves are valid regions or not. For example, a set of valid

15

region may be {(x5, x5), (x5, x6), (x6, x7), (x7, x7), (x7, x8)}, indicating that the new

point may be assigned anywhere on the box [x5, x8) except on points x6 and x8.

 On detection of inconsistency we run a second algorithm to find the conflict

set between the constraints. This algorithm will be described in detail in section

3.2.2.

2.4 – Problem Complexity

 2.4.1 Point reasoning complexity

 The point reasoning is known to be solvable in polynomial time (Van

Beek). However, the algorithm presented in section 3.2.2 not only decides whether

the problem is consistent or not, it also suggests a minimal set of culprit relations to

remove in order to ‘roll back’ to a consistent problem. Nevertheless, this

enhancement doesn’t affect the tractability of the point based reasoning problem.

This will be further discussed in section 3.2.1.

 2.4.2 Interval reasoning complexity

 We will call ITR-I the incremental interval temporal reasoning. There exist

tractable subsets of the full disjunctive set (213 in number) of interval relations.

Eighteen of these subsets have been identified as the only maximum tractable

subsets of the full algebra (MTS). The most studied of these tractable subsets is the

ORD-Horn subset (Nebel and Burckert). The problem resolution of the ORD-Horn

algebra is the subject of chapter 4. Chapter 5 discusses the 17 other maximal

tractable algebras.

16

Chapter 3 – Problem Establishment

3.1 – Disjunctive Normal Form

 In an incremental temporal problem, each constraint between two relations

is expressed in a disjunctive normal form. Thus, we can express the constraint

“event E1 is before or equal to event E2” in a temporal point based reasoning as E1

less-than-or-equal E2; E1 (≤) E2. In this simple problem, satisfying either one of the

constraints is sufficient to find a valid assignment for the problem.

3.2 – Conjunctive Normal Form

 Finding an assignment for a temporal event, satisfying a set of constraint is

the same as satisfying at least one relation in every set of relation defining the new

event. Such a problem can be expressed as a conjunction of disjunctive constraints.

Consider the following problem:

• Events A, B, and C are committed to a time line

• A new event D is being added to the time line

• A set of relations is defined between the point D and each of the already

existing points: D (Ra) A, D (Rb) B, D (Rc) C, where Ra, Rb, Rc are some

disjunctive temporal constraints between D and the existing events.

In order to find a valid assignment for D, we must satisfy at least a relation in each

of the Ra, Rb, Rc. Thus, the consistency of a problem P is given by: P = (D (Ra) A)

∧ (D (Rb) B) ∧ (D (Rd) C)

17

Example: let P be a problem on a point-based constrained network containing 2

ordered points a and b. We want to add a third point c to the network respecting the

following constraints (Figure 3.1):

• c (>=) a ∧∧∧∧ c (<=>) b

Figure 3.1: Conjunction of constraints

In other words, a valid assignment for c is a region greater-than or equal to a and

less-than or equal or greater-than b. The satisfaction of an assignment on both sides

of the and operator implies that the system is consistent and point c can be assigned

to the time line.

 The next section describes the algorithms we developed to solve the point

incremental temporal problem and detects minimal culprits set when inconsistency

occurs. We conclude this chapter by a discussion on detecting inconsistencies in the

far more complex interval problem.

3.3 – Culprit detection in the point algebra

 Many sets of constraints together could cause inconsistency, such that

removal (or fixing) the constraints in this set would make the system consistent.

c

a b <

> or = < or = or >

18

We call this problem the “consistency restoration” problem and such a set of

constraints as the “responsible set.” It is quite inconceivable that all the provided

constraints need to be removed/fixed to solve the “consistency restoration”

problem. Actually this assertion could be easily checked with an example presented

later in this section. A related question here is then which particular set of

conflicting relations we chose as a solution to the problem, and subsequently report

to the user. Our proposal is that we choose a responsible set that is of minimal

cardinality out of all possible responsible sets. We call such a minimal cardinality-

responsible set as the “minimal set” or MinSet. Of course, there could be more than

one such minimal set with same cardinality values, but we would like to find any

one of them.

Definition 4: The degree of conflict of a given constraint in a CSP is the number of

other constraints, that, combined with this constraint, render the system

inconsistent.

 If a system contains n constraints, then the degree of conflict for any

constraint will be at most n-1, since a relation cannot conflict with itself, and at

least 0 which indicates that the relation does not conflict with any other relation .

19

Example: Let S be a set of constraints S = {c1, c2, c3, c4, c5, c6}. Note that the

elements of S are not temporal objects, but binary constraints between the temporal

objects.

Figure 3.2: Binary constraints on temporal objects

The edges between binary constraints represent a conflict between the constraints.

Here, the degree of conflict for c1 DC(c1) is zero, since c1 does not conflict with

any other constraint. The degree of conflict for c2 is three, for c3, c4 and c6 each it is

one, and for c5 it is two. The degree of conflict of S can be summarized as:

• DC(c1) = 0

• DC(c2) = 3

• DC(c3) = 1

• DC(c4) = 1

• DC(c5) = 2

• DC(c6) = 1

c1 c2

c3 c6

c5 c4

20

Removing relation c2 and one of the relations between c5 and c4 would be enough to

make the system consistent. Hence, {c2, c4} and {c2, c5} are both MinSets here,

whereas {c6, c5, c3} is another responsible set that is not a MinSet.

 We can now introduce the FindMinSet algorithm which purpose is to solve

such problems and propose a minimal conflicting set of constraints to restore

consistency.

 3.2.1 – The FindMinSet Algorithm

 The following algorithm is a preprocessing of the FindMinSet algorithm. It

finds the conflict set for constraints and the corresponding degree of conflict for

each constraint.

21

Input: A set of constraints between the new point and the set of committed intervals

Output: a set of conflicting constraints if the system is inconsistent, ‘consistent’otherwise

Algorithm GenerateConflictSet

1 ConflictSet = null;

2 FOR i =1 to N do DegreeOfConflict[i] = 0;

3 FOR each constraint ci from i =1 to N do

4 FOR each constraint cj from j = i+1 to N DO

5 IF (ci is “<”, or “≤”, or “=”) and (cj is “>”, or “≥”, or “=”) THEN

6 ConflictSet = ConflictSet U {(ci, cj)};

7 DegreeOfConflict[i]++;

8 DegreeOfConflict[j]++;

9 end IF;

10 RETURN ConflictSet if ConflictSet ≠ null, consistent otherwise;

11 end FOR;

12 end FOR;

End Algorithm.

 First, the conflict set and the degree of conflict of every relation are

initialized (lines 1 and 2). Next, for each pair of ordered constraints (lines 3 and 4),

if two relations conflict with each other, the conflicting pair of constraint is stored

in the conflict set ConflicSet (line 6) and the respective degree of conflict of each

relation is incremented (lines 7 and 8). When the outer FOR loop terminates, the

algorithm returns the conflict set if different from null, consistent or ‘consistent’ if

the conflict set is null (line 10). This is obviously an O(N2) algorithm. The problem

of finding a minimal set of constraints removal/fixing of which would restore

22

consistency in a system (constraint network) is solved by the following greedy

algorithm.

Input: A set of conflicting constraints with their respective degrees of conflict

Output: A minimal set of constraints to remove to restore consistency

Algorithm FindMinset

1 Minset = empty; // set of minimal nodes to be removed

2 AggregateDegreeOfConflict = Σ |ConflictSet [DegreeOfConflict]|;

3 WHILE AggregateDegreeOfConflict ≠ 0 DO // O(N)

4 Let c = a constraint with the maximum DegreeofConflict; //O(N log N)

5 Minset = Minset U {c};

6 FOR each element (c, ci) in ConflictSet DO // O(N)

7 ConflictSet = ConflictSet - (c,ci);

8 DegreeOfConflict[c] = DegreeOfConflict[c] -1;

9 DegreeOfConflict[ci] = DegreeOfConflict[ci] -1;

10 AggregateDegreeOfConflict = AggregateDegreeOfConflict -2;

11 end FOR;

12 end WHILE;

13 RETURN Minset;

End Algorithm.

This is a greedy algorithm that will populate the Minset set of relation with a

minimal number of constraints responsible for inconsistency. Line 1 initializes

Minset to null. AggregateDegreeOfConflict holds the summation of every degree

of conflict within ConflictSet. While AggregateDegreeOfConflict is greater than 0,

the system remains inconsistent, and some more relations must be removed from

the original set (line 3). Line 4 picks a relation with highest degree of conflict as a

‘best’ candidate for elimination. Lines 8 through 10 update the set of variables,

23

omitting the relation c with highest degree of conflict. As soon as

AggregateDegreeOfConflict reaches 0, FindMinset returns the Minset set

containing the minimal set to remove (line 13).

 The preprocessing ‘GenerateConflictSet’ algorithm runs in O(N2). As

shown with comments in the ‘FindMinset’ algorithm, O(N2 log N) is the asymptotic

time complexity. Hence the overall complexity of the problem solver for point

algebra is: O(N2) + O(N2 log N) = O(N2 log N)

 3.2.2 – A Tractable problem

 The problem has a flavor of the well known “vertex cover” problem, and

hence a polynomial algorithm is unlikely to be a complete algorithm in general

(subject to P ≠ NP). However, in the point-sequencing problem it could be easily

shown that a graph generated over the conflict set (with nodes being the constraints

and edges being the conflicting constraints) is a bipartite graph (see the set of

properties below). The vertex cover problem is tractable over bipartite graph and

the algorithm FindMinset is a complete algorithm in this situation.

 We will now establish a set of theorems and properties that apply to our

problem. These properties will be used to prove the correctness and minimality of

the FindMinset algorithm.

Property 1: Considering a set S = {R1, .., Rn} where Ri is a relation making a

system inconsistent (1≤ i ≤ n), and mi(S) is the degree of inconsistency of Ri in S.

Then the number of conflicting pairs is N = ∑i mi(S)/2.

24

(∑i mi(S) will always be an even number, since inconsistent relations exists

pairwise)

Proof: Every time a relation appears in a pair of conflicting relation, both relations

have their inconsistency degree increased by one, hence the sum of all

inconsistency degree is twice the number of conflicting pairs.

Property 2: Let I be the set in which FindMinset adds relations to be removed

form the original set to roll back to consistency. Let mi(I) be the inconsistency

degree of a relation Ri contained in S. Finally, let S be the initial number of

conflicting pairs in the original inconsistent set of relations S. Then, if ∑ mi(I) ≥ N,

the system is consistent.

Note that ∑i mi(I) = N is a sufficient condition for the system to be consistent. As a

matter of fact, in our algorithm, ∑i mi(I) will never be greater than N, since the goal

of our investigation is to find a minimal set of conflicting relations and hence to

stop removing relations as soon as the system is consistent.

Proof: Removing a relation Ri will also decrement DC(Rj) by one when Ri

conflicted with Rj. So, the total inconsistency degree of S will be lowered by 2*mi

.Recall that when ∑i mi(S) reaches 0 in line 3 of algorithm FindMinset, the system

is consistent. Hence, if 2* ∑i mi
 (I) = ∑i mi(S), the system is consistent; ∑ mi

 (I) = ∑

mi(S)/2 =N

25

Lemma 1: From properties 1 and 2, we can conclude that if ∑i mi(I) ≥ ∑i mi(S)/2,

the system is consistent. Inversely, if ∑i mi(I) < ∑i mi(S)/2, then the system is not

consistent.

Property 3: If no ‘=’ relation is involved in a conflicting set, then a set of point-

based conflicting constraints S is a bipartite graph with two partitions S1 and S2, S1

being the “less-than partition”, and S2 being the “greater-than partition”.

Proof: Whenever an element is added to S, it is conflicting with another element in

S. let us call these two elements V1 and V2. Then, either:

V1 (> or ≥) V2 or V1 (< or ≤) V2. According to their relation with each other, V1 and

V2 will be stored in their respective bipartite subgraph.

Figure 3.3: Bipartite graph on point-based reasoning

C1

<

S1

C1

C2

C4

C2

≤
C3

≥
C4

<
C5

>

S2

C3

C5

26

Property 4: If either |S1| = 0 or |S2| = 0, then both |S1| = 0 and |S2| = 0, therefore the

system is consistent

Similarly, |S1| or |S2| = 0 is a sufficient condition for |S| = 0.

Proof: If S1 or S2 is empty, then the graph S is totally disconnected and no

conflicting constraint remains, hence |S| = 0 and the system is consistent.

Property 5: The element with the highest number of edges of each bipartite

subgraph is connected with all elements of the other subgraph.

Proof: Consider a time line with events assigned on it. We want to assign a new

point on the time line with inconsistent constraints. The element with highest

inconsistency degree in each sub graph are the conflicting elements on the far most

left side (e1) for any ‘<’, ‘≤’, or ‘=’ constraint and inversely on the far most right

side (e2) for any constraint of type ‘>’, ‘≥’, or ‘=’ as illustrated in figure 3.4.

Figure 3.4: Conflict set on point-based reasoning

< >

Set of points

Conflicts with all ‘>’,
‘≥’, or ‘=’ constraints

Conflicts with all ‘<’,
‘≤’, or ‘=’ constraints

e1 e2

27

Hence, e1 ∈ partition 1 and conflicts with every ‘<’, ‘≤’, or ‘=’ constraint from “Set

of points” and e2 ∈ partition 2 and conflicts with every ‘>’, ‘≥’, or ‘=’ constraints

from “Set of points”. Since no element is connected within a partition and elements

(e1) and (e2) are connected with every element of their opposite partition, (e1) and

(e2) have the maximum number of adjacent edges within their respective partitions.

This completes the proof.

 For the following theorem, we must define the procedure Edges(E) as being

the set of adjacent edges of element E,

Theorem 1: Let two elements E1 and E2 belong to the same partition. Then, if

|Edges(E2)| ≤ |Edges(E1)| then the set of adjacent edges of E2 is a subset of the set of

adjacent edges of E1. In other words:

Let E1, E2 ∈ S1. If |Edges(E2)| ≤ |Edges(E1)| then Edges(E2) ⊆ Edges(E1).

Proof: From property 5, we know that the element E1 with highest number of

adjacent edges within a partition, say S1 is connected to every element from the

other partition. Hence, the set of adjacent edges of every other element in S1 is a

subset of the set of adjacent edges of E1. Consider the removing procedure below:

Removing the element E1 from S1 will leave the partition with a new element with

highest number of adjacent edges E2. Recursively, every set of adjacent edges of

every other element in S1 is a subset of the set of adjacent edges of E2. This

28

procedure can be applied until there remains no element in the set, proving

Theorem 1.

Property 6: Each time a relation is chosen by Algorithm FindMinset on line 4, it

has a number of adjacent edges of exactly: Max (|S1|,| S2|)

Proof: The element with the highest number of adjacent edges is the element in the

smaller sub graph, and from property 5, is connected with all elements of the bigger

sub graph.

Property 7: The equal relation can be added to the partition of the bipartite set by

dividing it into two sub relations: less-than-or equal and greater-than-or-equal, each

of which appear in its respective sub graph and do not change the nature of the

bipartite graph. As a result:

• {n (=) p} ≡ {n (≥) p} ∩ { n (≤) p }

This property is illustrated in figure 3.5.

29

Figure 3.5: Bipartite constraints assignment

Proof: The ≤ part of an equality will not conflict with any relation in the ‘<’ (S1)

partition, and will conflict with every relation from the partition ‘>’ the = relation

originally conflicted with. The proof for the partition (S2) is equivalent.

For S1: The “<”partition includes the following relations: {<, ≤, and the ≤ part of

the equality}.

A

<

S1

A

B1

C

D1

F

C

≤
E

≥
F

<
G

>

S2

B2

D2

E

G

H1

B

=
D

=
H

=

Partition“<” Partition“>”

30

For S2: The “>”partition includes the following relations: {>, ≥, and the ≥ part of

the equality}.

Property 8: The maximum sufficient number of elements to remove to make the

system consistent is ≤ Min (|S1|, |S2|)

Proof: At most, removing the entire smallest set will remove inconsistency

(bipartite graph).

Lemma 8: Algorithm FindMinset finishes with a set |I| ≤ Min (|S1|, |S2|)

Proof: From property 6, we know that each time algorithm FindMinset chooses a

relation, it is the one conflicting with Smax = argMax(|S1|, |S2|). Then Algorithm

FindMinset chooses a relation in the smallest partition. After each step, exactly one

relation is removed from the current Smin set, and some relation(s) may be

removed from Smax. Then, either Smax becomes less than Smin, in which case the

next element to be picked up will be in Smax, or Smin still the minimal set, and the

next element will be picked up in it. Eventually, Smin remains the minimal set

during the entire procedure, and will be totally removed by successive choices of

algorithm FindMinset.

Property 9: Two different sets I1a and I1b found with algorithm FindMinset have

the same minimal cardinality for a given input:

31

Proof: The goal of the FindMinset algorithm is to obtain a minimal set of

inconsistent relations to remove from the original inconsistent set of relations by

removing (Max (S1, S2)) edges for the bipartite graph at each stage until the number

of connecting edges reaches 0. Two sets found with algorithm FindMinset will not

necessarily have the same set of elements. If at any stage, a tie occurs between two

elements in the smallest partition, or if |S1| = |S2|, then the algorithm has the choice

among several elements to remove.

Let us consider these two cases separately.

• First, if two elements are tied in the smallest partition: R1 and R2 (R1, R2 ∈

Si), then both elements will eventually be picked up by the algorithm in

arbitrary order.

• Second, if at any stage |S1| = |S2|, with R1 being the element with maximal

adjacent edges in S1, and R2 being the element with maximal adjacent edges

in S2. Removing R1 will possibly make |S1| < |S2|, then at the next stage, R2

will be picked up. Otherwise, it could make |S1| > |S2|, meaning that

removing R1 also removed at least 2 elements in S2. Then the next element

to be picked up will be in S2.

Theorem 2: Algorithm FindMinSet finds a minimal set to remove from an

inconsistent set of point-based relation to make the system consistent

32

Proof: The proof of theorem 2 is divided in two parts. The first part proves that

when the algorithm terminates, the remaining set of relations is consistent. The

second part proves that the set removed from the original set is minimal.

• Consistent:

When the algorithm finishes, n = 0 and S is empty. When S is empty, every

inconsistent relation have been removed, consequently, the system becomes

consistent.

• Minimal:

Let I1 be a set of inconsistent relation found with FindMinset. Next, assume that

there exists a minimal set of inconsistent relations to remove to regain consistency

I2 found with another algorithm than FindMinset which contains fewer elements

than I1. The set of constraints to remove from an inconsistent system found by

Algorithm FindMinset is not unique. In fact, algorithm FindMinset proposes one of

these sets if it exists. The choice of this set depends on the ordering of the variables

as FindMinset picks the first occurrence of maximal conflict based cardinality

within the set of all inconsistent relations. Hence, according to the constraint

ordering, algorithm FindMinset may find different sets with same cardinality

(minimal). Let us call the set of all different sets possibly found by algorithm

FindMinset: GI = {I1a, I1b, I1c, ...}

No proper subset of any set found by algorithm FindMinset can make the system

consistent; hence, I2 is not a proper subset of I1i for any i (1 ≤ i ≤ |GI|).

33

- S1 and S2 are the sets held by the two subset of the bipartite set before the

algorithms run (original bipartite sets).

- s1, and s2 are the sets held by the two subsets of the bipartite set while the

algorithms are running (dynamic bipartite sets).

Contradiction

 At one time, |s1| ≠ |s2| and FindMinset will pick the element with highest

inconsistency degree, but I2 will not in order to have a different set from I1. Since

the element picked by FindMinset is connected with all elements of the other set of

the bipartite graph, the other algorithm MUST pick all elements of this last set

MAX(s1, s2) (i.e., the set with the highest number of elements). But from property

8, removing MIN(s1, s2) is enough to have the bipartite graph totally disconnected.

Therefore, the previous assumption is false, leading the proof to a contradiction.

Figure 3.6: Relation conflicting with a maximum cardinality partition

I2 = { }
Sxz

I1 = { . . . ElmtI1 . }

Si Sj

ElmtI1

…

…

Rk1

Rk2

…

Rkk

Sxz

If I 2 does not pick ElmtI1, it has to pick the whole set Sxz

34

 3.2.3 – Implementation

 The algorithms mentioned in the previous section have been implemented

with a graphical user interface to the software. It displays the valid regions (if

consistent) on the time-line with the existing point-sequence, and allows the user to

commit the new point on one of the valid regions interactively. Then it goes to the

next iteration for accepting the next new point. In case of inconsistency, the

GenerateConflictSet algorithm provides a set of conflicting constraints to the

FindMinset algorithm and dumps the Minset for possible corrective action by the

user.

 A graphical interface allows the user to add points incrementally, and at

each new point, the system reacts giving the user the information about consistency

of the system and the minimum conflict set if applicable.

The interface shows the time line basis

and a set of options allowing the user to

Add a new point, load a pre-computed

example, or reset the current database.

Figure 3.7a

When adding a new point, the user has

the choice to set constraints between the

old set of points and the new point to be

35

Figure 3.7b added.

At each stage, if the system is consistent

the application prompts the user to add

the new point into a set of valid regions

on the time line

Figure 3.7c

Figure 3.7d

The user then defines where the new

point should be added. The valid regions

are shown in green on the time line.

In case of inconsistency, the program

display the conflict set as it is

transmitted to the FindMinSet

algorithm.

Figure 3.7e

Figure 3.7f

Then, the program suggests the user a

minimal set of relations to remove from

the previous query in order to make the

system consistent.

36

 This program has been implemented to test the correctness of the algorithms

as well as to conduct some experience, giving us a better understanding of the

OLQTR-P. The correctness of the algorithm is crucial as we use it to solve the

OLQTR-I problem.

3.3 – Culprit detection in the Interval Problem

 3.3.1 – Reasoning on the whole algebra is NP-Hard

 The problem of finding consistency for interval algebra is obviously more

complex than for point algebra since interval has 13 basic relations against 3 for

point algebra. The extra set of relations comes from the fact that the constraints not

only deals with a unique discrete point, but with a starting point and an ending

point. In fact, any interval can be thought as a pair of points, where the following

trivial property always holds:

Property 10: Any given interval A is defined by its two end points A- and A+

where A- < A+.

Hence, we will omit to specify this property for the formulas and examples

presented in the rest of this thesis.

 Since we can express an interval in terms of points, we can also express any

relation between two intervals as a set of point interval problems. Hence, the

37

relation A (s) B can be represented as (A- = B-) & (A+ < B+). This is sufficient to

describe the relation between both intervals and any other relation between any two

points is redundant. Unfortunately, this dramatically increases the complexity of

the overall Interval problem. Actually, reasoning on the whole interval algebra is

known to be NP-complete. However, about 90% of the full algebra has been shown

to belong to tractable subsets. Recent works have proven that there exist exactly 18

maximal tractable sub-algebras (MTS), and that only problems that do not belong

to one of these subsets are untractable. The next chapter is entirely dedicated to one

of these sub-algebras known as the ORD-Horn Algebra and identified as (H) here.

It is an algebra with very different properties than the others. The remaining MTSs

are explained in section 5.3.

38

Chapter 4 – ORD-Horn algebra

 4.1 – Definition

 Search for inconsistency and consistency restoration can be done in

polynomial time on interval algebra when the set of constraints being involved

belong to a tractable subclass of Allen’s interval algebra. The ORD-Horn algebra is

one of those, and it is also the only maximal tractable subset of Allen algebra

containing all 13 basic relations making it one of the most interesting. Nebel and

Burckert discovered that any relation within the ORD-Horn algebra can be

expressed in a conjunctive normal form where each literal contains at most one

relation of the type ≤ or =, and any number of relations of type ≠ (Nebel and

Burckert).

Example: Consider an interval Old committed to a time line. We want to add a

new interval New to the time line satisfying the following ORD-Horn interval

relation: New{o, s, fi}Old. This relation can be expressed in terms of constraints

between interval end points in following conjunctive normal form as:

(New- ≤ New+) ∩ (New- ≠ New+) ∩ (Old- ≤ Old+) ∩ (Old- ≠ Old+) ∩

(New- ≤ Old-) ∩ (New- ≤ Old+) ∩ (New- ≠ Old+) ∩ (Old- ≤ New+) ∩

(New+ ≤ Old+) ∩ (New+ ≠ Old-) ∩ (New- ≠ Old- ∪ New+ ≠ Old+).

With index ‘-’ standing for an interval’s ‘starting point’ and ‘+’ standing for an

interval’s ‘ending point’.

39

 In Section 4.3, we introduce a systematic procedure to express any ORD-

Horn relation into its equivalent point representation satisfying the ORD-Horn

definition. We will call the OLQTR-I problem with ORD-horn relations only as

OLQTR-I (O) problem. The following fact about the interval reasoning with

tractable subsets like that with ORD-Horn relations is important in attacking the

OLQTR-I problem.

Assertion 3: The path consistency (or triangle-consistency between every three

intervals) in an interval-reasoning problem is necessary and sufficient for global

consistency of the interval reasoning problem with tractable subsets. In the ITR-I

framework all the old intervals si in S are committed on the time-line. Hence, for

each triangle (si sj n) that needs to be checked for consistency for some i and j, only

two constraints could conflict with each other (n ri si), and (n rj sj). This is a very

similar situation as with the OLQTR-P problem, since the point-based reasoning is

also tractable.

4.2 – Literature

 As mentioned earlier, any ORD Horn relation can be expressed in a

conjunctive normal form, containing only clauses, with at most one positive literal.

In other words, any relation belonging to the ORD-Horn algebra can be expressed

as a conjunction of literals with any number of inequalities (≠) and at most one

expression of higher dimension (≤ or =).

40

 Ligozat noted in his work that the basic interval relation could be

represented as a point on a 2D Cartesian space where the X-coordinates represents

the starting point of an interval, and the Y-coordinates represents its ending point.

Thus, every basic relation on an interval is defined as an area on the 2D plane

space. It can be noticed on figure 4.1 that 2-dimensional relations cover an area,

whereas 1-dimensional relations are represented by a line segment, and the 0-

dimensional relation, equality, is represented as a point.

Figure 4.1: 2D plane space for interval representation

 Hence, any set of relations can be expressed with respect to the interval

being studied as an area on the 2D plane space. Moreover, Ligozat has discovered

that the interval algebra corresponded to a lattice as shown on figure 4.2. This

lattice becomes very useful when reasoning about the ‘neighborhood’ relation

between basic interval relations. Besides, Ligozat defined a convex relation as

being the set of relations included in an interval on the lattice. Thus, {m, o, s, ~f,

41

eq} is a convex relation since it includes every relation between the basic relations

m and eq. Last, Ligozat described a pre-convex set of relations as a convex relation

in which some basic lower dimensional relations might be omitted. This last

definition corresponds to the set of ORD-Horn relations (Ligozat).Table 4.3

associates the basic relations with their lattice coordinates, and their point-based

ORD-Horn representation.

Figure 4.2: Ligozat’s lattice representation

42

Relation Coordinates (x,y) ORD-Horn representation

b (0,0) B+
≤A- ∩ A-≠B+

m (0,1) A-=B+

o (0,2) B+
≤A+ ∩ A+≠B+ ∩ A-

≤B+ ∩ A-≠B+ ∩ A-
≤B+ ∩ A-≠B+

s (1,2) B+
≤A+ ∩ A+≠B+ ∩ A-=B-

d (2,2) B+
≤A+ ∩ A+≠B+ ∩ A-

≤B- ∩ A-≠B-

f (2,3) A-
≤B- ∩ A-≠B- ∩ A+=B+

eq (1,3) A+=B+ ∩ A-=B-

~f (0,3) A+=B+ ∩ B-
≤A- ∩ A-≠B-

~d (0,4) B-
≤A- ∩ A-≠B- ∩ A+

≤B+ ∩ A+≠B+

~s (1,4) A+
≤B+ ∩ A+≠B+ ∩ A-=B-

~o (2,4) B-
≤A+ ∩ A+≠B- ∩ A-

≤B- ∩ A-≠B- ∩ A+
≤B+ ∩ A+≠B+

~m (3,4) A+=B-

~b (4,4) A+
≤B- ∩ A+≠B-

Figure 4.3: ORD-Horn representation of basic relations

 As we can see on figure 4.3, some interval constraints have common point-

based relations within their neighborhood as it is the case for ~s and ~o. Both of

these interval relations have (A+ ≤ B+
 ∩ A+ ≠ B+) in common.

 We combined these facts in order to create a set of models capable of

expressing any ORD-Horn set of relation in its simplest ORD-Horn formula. These

models are described in the next section.

43

4.3 – Decomposition into a point algebra problem

 4.3.1 – Positive model

 Any interval basic relation can be expressed in terms of its starting and

ending point’s relation. To do so, we use Ligozat’s lattice representation of basic

relations and enhanced it with point information relative to groups of basic

relations on each axis. We called this model the ‘positive model’. It is illustrated in

Figure 4.4.

Figure 4.4: Positive model representation

44

 This model allows us to represent a relation between two intervals in an

ORD Horn form. For example, relation start’s ORD-Horn representation is given

by

• B {s} A = (B+
≤A+ ∩ A+≠B+ ∩ A-

≤B+ ∩ A-≠B+ ∩ A-=B-)

Since the constraint A-=B- must be satisfied in order to find an assignment for the

interval constraint, the equation can be simplified by removing the terms A-≠B+

and A-
≤B+ giving:

• B {s} A = (B+
≤A+ ∩ A+≠B+ ∩ A-=B-)

Moreover, this model is capable of expressing a set of relations when the involved

relations are contiguous on the lattice (Figure 4.4). Thus, the ORD-Horn formulae

expressing the set of relations {start, equal, start inverse} is:

• B {s, eq, ~s} A = (A-=B-)

Furthermore, it is possible to state the point relations of a contiguous area of the

model by associating the relations given on the axis. We will call such an area a

‘convex box’ of relations. Let us consider the relations {start, during, finish, equal}.

• B {s, d, f, eq} A = (B+
≤A+ ∩ A+≠B+ ∩ A-

≤B+ ∩ A-≠B+) ∩ (A+=B+) ∩

 (A-=B-) ∩ (A-
≤B- ∩ A-≠B- ∩ B-

≤A+ ∩ B-≠A+)

After simplification, the set of interval relations can be traduced in point-based

constraints as:

• B {s, d, f, eq} A = (B+
≤A+ ∩ A-

≤B+ ∩ A-≠B+ ∩ A-
≤B- ∩ B-

≤A+ ∩

 B-≠A+)

45

 The simplification procedure will be explained in section 4.4. We can note

here that the corresponding formula respects the ORD-Horn definition. But now,

we might want to remove some relations from a given convex box while keeping

the ORD-Horn properties. Actually, ORD-Horn algebra permits to remove some of

the lower dimensional relations within a convex box of neighbor relations. We

designed a second model to serve this purpose and we call this model the ‘negative

model’.

46

 4.3.2 – Negative model

 It is possible to express the negation, or nonexistence of basic relations

respecting the ORD-Horn conditions using a model expressing absence of the

relations. We use the ‘!’ sign to signify that a basic interval relation does not belong

to a set of interval relations. This ‘negative model’ is shown in figure 4.5. Any

basic relation can be expressed as the disjunction of the point constraints given by

the model. Note here that only absence of lower dimensional relations meet, start,

finish, finish inverse, start inverse, meet inverse, equal only and the higher

dimensional relations before, before inverse can be represented in an ORD-Horn

way. Before and before inverse can actually be added to or removed from any

preconvex relation without changing the property of the preconvex relation, as

defined by Ligozat. This is simply due to the fact that the higher dimensional

relations before and before inverse are located at the boundaries of the lattice.

Adding the negative expression of a higher dimensional relation renders the

relations non-ORD-Horn.

47

Figure 4.5: Negative model representation

With this model, we can express relations such as U-{eq} where U is the set of all

basic relations, also referred to as the Universe, as shown in the example below:

• B (U-{eq}) A = (A - ≠ B- ∪ A+ ≠ B+)

Now, by combining both models, it is possible to express any ORD-Horn relation

from a ‘box’ expressed using the positive model, and removing absent lower

dimensional relations with the negative model. A procedure to automate the

simplification is described in section 4.4.1. This procedure first expresses the

formulae of the convex relation in which every clause contains at most one positive

literal (=, ≤) and any number of negative literals (≠) in a conjunctive normal form.

The procedure then adds the absent relations as given in Figure 4.6, hence reducing

the formulae to a pre-convex relation respecting the ORD-Horn definition.

48

 4.4 – Algorithms

 In order to transpose the incremental interval problem to a succession of

point problem, we include the ORD-Horn clauses of the point to be added in the set

of existing clauses. Then, we pick the unit clauses (clauses that contain only one

relation) which are, by definition the tightest constraints, and some inequalities (the

less constraining relations) in the remaining multiple clauses, making sure than no

inequality conflicts with any possible ORD equivalence relation “=” and compute

them together. The next step consists in grouping respectively the relations

involving the new ‘start point’, and the new ‘endpoint ’, and apply on both sets the

FindMinSet algorithm. If a box is found for both start and end points, and there

exist a way to choose a start point < an end point, then the system is consistent.

Otherwise, the FindMinSet algorithm finds the independent culprits, involving

inconsistent start point and/or the end point.

 4.4.1 – Normalization Algorithm

 The normalization algorithm presented in this section converts a set of

interval ORD-Horn relations into a point-based ORD-Horn formula. But first, we

must introduce the ‘negative lookup table’ used for absent lower dimensional

relations.

49

Relation Coordinates (x,y)

in lattice

ORD-Horn representation of

absent relations

!m (0,1) A- ≠ B+ ∪ A- ≤ B-

!s (1,2) A- ≠ B- ∪ A+ ≤ B+

!f (2,3) A+ ≠ B+ ∪ A- ≤ B+

!eq (1,3) A- ≠ B- ∪ A+ ≠ B+

!~f (0,3) A+ ≠ B+ ∪ A- ≤ B-

!~s (1,4) A- ≠ B- ∪ B+ ≤ A+

!~m (3,4) A+ ≠ B- ∪ B+ ≤ A+

Figure 4.6: ORD-Horn representation of lower-dimensional negative relations

 This table is used in the Normalization algorithm instead of the negative

model. It avoids some computation to simplify the expressions. Next, we define an

‘opposite relation’ as:

• X ≠ Y for X = Y

• X = Y for X ≠ Y

• X ≤ Y for Y ≤ X

Before exploring the core of the Normalization algorithm, we must introduce a few

linear procedures used by the Normalization.

50

• Algorithm get_x: returns the lattice coordinate of a basic relation on the X

axis.

Input: A basic interval relation r

Output: an integer corresponding to the x-coordinate of r on the lattice

Algorithm get_x (basic relation r)

1 Switch (r)

2 Case b:

3 Case m:

4 Case o:

5 Case ~f:

6 Case ~d: return 0

7 Case s:

8 Case eq:

9 Case ~s: return 1

10 Case d:

11 Case f:

12 Case ~o: return 2

13 Case ~m: return 3

14 Case ~b: return 4

end algorithm get_y

51

• Algorithm get_y: returns the lattice coordinate of a basic relation on the Y

axis.

Input: A basic interval relation r

Output: an integer corresponding to the y-coordinate of r on the lattice

Algorithm get_y (basic relation r)

1 Switch (r)

2 Case b: return 0

3 Case m: return 1

4 Case o:

5 Case s:

6 Case d: return 2

7 Case ~f:

8 Case eq:

9 Case f: return 3

10 Case ~d:

11 Case ~s:

12 Case ~o:

13 Case ~m:

14 Case ~b: return 4

end algorithm get_y

The two algorithms above are a set of switch statements, returning the coordinates

over the lattices axis (lines 1 through 14).

52

• Algorithm Simplify: get the interval lattice of a given ORD-Horn relation.

Input: an array of clause

Output: a single clause result of the simplification of the input set of clauses

Algorithm Simplify (clause[])

1 Sort every clause by size in decreasing order

2 k = number of clauses

3 while (k>1) do {

4 Next_Clause = clause[k]

5 for each relation r in Next_Clause do {

6 r = Current_Relation

7 remove the opposite of r in each other clause

8 }

9 remove Next_Clause

10 k--

11 }

12 return clause[1]

end algorithm Simplify

Simplify translates a set of point-based relations over a lattice axis into an ORD-

Horn formula. The procedure takes the largest clause and ‘shrinks’ with respect to

smaller clauses. Line 1 sorts every clause by size. The largest clause is held in

clause[1]. While there remains more than one clause (line 3), the algorithm picks

the last clause (line 4) and remove every ‘opposite’ relation held in the last clause

from the every other clause (lines 5 through 8). Lines 9 and 10 remove the last

clause from the current set of clauses and decrement the total number of clauses.

Finally, line 12 returns the clause containing

53

• Algorithm lookup_Negative_Table: Return the point based formulae of an

absent basic interval relation in ORD-Horn form.

Input: a pair of integers

Output: a clause representing an absent relation

Algorithm lookup_Negative_Table (x,y)

1 if (x==1 & y == 1) return (A- ≠ B+ ∪ A- ≤ B-)

2 else if (x==1 & y == 2) return (A- ≠ B- ∪ A+ ≤ B+)

3 else if (x==2 & y == 3) return (A+ ≠ B+ ∪ A- ≤ B+)

4 else if (x==1 & y == 3) return (A- ≠ B- ∪ A+ ≠ B+)

5 else if (x==0 & y == 3) return (A+ ≠ B+ ∪ A- ≤ B-)

6 else if (x==1 & y == 4) return (A- ≠ B- ∪ B+ ≤ A+)

7 else if (x==3 & y == 4) return (A+ ≠ B- ∪ B+ ≤ A+)

8 return error (“not a lower dimensional relation”)

end algorithm lookup_Negative_Table

lookup_Negative_Table returns the point-based formula from an absent atomic

lower-dimensional interval relation (lines 1 through 7) or null if the relation is not a

lower dimensional relations (line 8).

54

We can now introduce the Normalization algorithm

• Algorithm Normalization: Transforms an ORD-Horn interval relation into

its corresponding ORD-Horn point based formulae.

Input: an interval relation R in ORD-Horn

Output: a point based ORD-Horn formula

Algorithm Normalization (ITR-I(O))

1 //Get the convex box

2 integers x_min, y_min = 4

3 integers x_max, y_max= 0

4 initialize x_clause to be empty

5 initialize y_clause to be empty

6 initialize AbsentRelation to be empty

7 //Get ranges from the input set of relations (0 ≤ x,y ≤ 4) on the lattice

8 for each basic relation b in R

9 if (x_min > get_x(b)) x_min = get_x(b)

10 if (y_min > get_y(b)) y_min = get_y(b)

11 if (x_max > get_x(b)) x_max = get_x(b)

12 if (y_max > get_y(b)) y_max = get_y(b)

13 for (x = x_min to x_max)

14 add X_Positive_Model(x) to x_clause

15 for (y = y_min to y_max)

16 add Y_Positive_Model(y) to Y_clause

17 for (x = x_min to x_max)

18 for (y = y_min to y_max)

19 if (relation(x,y)∉R)

20 add lookup_Negative_Table(x,y) to AbsentRelation

21 x_clause = Simplify(x_clause)

22 y_clause = Simplify(y_clause)

23 return x_clause ∩ y_clause ∩ (conjunction of all element in AbsentRelation).

end algorithm Normalization

55

 4.4.2 – Sorter Algorithm

 The Sorter algorithm split the set of clauses given by the Normalization

algorithm into two sets of relations involving respectively the starting and the

ending points of the interval to be added. It also checks for consistency on equal

interval bounds. If an inconsistency is found at this level, the algorithm returns the

set of inconsistent relations.

Input: A constraint set C as a conjunctive normal ORD-clausal formula {c1, c2, …, cn}

Output: A pair of constraint sets over boundary points of the interval New as L+ and L-, or a set of inconsistent relations

Algorithm Sorter (a set of Clause C)

1 initialize a set for the chosen literals, L := empty;

2 initialize a set for inconsistent relations, N := empty;

3 FOR each clause ci in C DO

4 IF ci is unit-clause DO

5 L :=L U ci;

6 ELSE IF there exist an ≠ type literal p from ci such that p does not conflict with any literal in L DO

7 assign L :=L U {p};

8 ELSE IF the positive literal p1 from ci does not conflict with any literal in L DO

9 assign L :=L U {pl};

10 ELSE DO

11 N := N U { p};

12 IFN is not empty DO

13 RETURN N;

14 Group L into L- with elements involving New- only and L+ with elements involving New+ only;

15 RETURN L- and L+;

end algorithm Sorter

// {note that each element of L is only a literal and so, must involve either New- or New+ but not both}

56

Lines 1 and 2 initialize the set L in which the chosen relations will be stored, and

the set N in which inconsistent relations might be stored if the system is

inconsistent. Then, for each clause (line 3) store unit relations in L(Lines 4 and 5).

If the current clause is not a unit clause, choose and store the relation involving

inequality if it does not conflict with any other relation in L (lines 6 and 7). If the

inequality relation conflicts with some relation in L, we pick the highest

dimensional relation and store it in L if it doesn’t conflict with L (lines 8 and 9).

Otherwise, store the relation p in the set N as one culprit for leading the system to

inconsistency (lines 10 and 11). Once every clause have been computed, if the Set

of inconsistent relations is not empty, return it (lines 12 and 13). Otherwise, sort

every relation into two set, L+ and L-, respectively involving the starting and ending

point of the new interval (line 15).

 When the algorithm terminates, if no inconsistency have been found among

eventual equal relations, the FindMinSet Algorithm is run on both sets, L- and L+.

Each of the algorithms described above, the Normalization, the Sorter, and the

FindMinSet algorithm are polynomial algorithms. However, in case of non pre-

convex constraints, i.e., for the general unrestricted input, the sorter algorithm may

have to backtrack when inconsistency is detected by the FindMinSet algorithm.

 The next section deals with the other ‘more generic’ tractable subclasses of

Allen’s Interval Algebra.

57

Chapter 5 – 17 maximum tractable subalgebras

 The ORD-Horn Algebra was the first Maximal tractable algebra to be

discovered. This algebra’s properties are very different from the other algebra’s.

Since it has been described in details in the previous chapter, we will only consider

the 17 other MTSs in the remaining of this chapter. This chapter starts with a

discussion on past and current interest on the study of tractability in Allen’s

Algebra. Next, we establish a formal graphical approach of the MTSs and describe

a simple approach to count them. This is a new way to understand and reason on

these algebras. We believe this approach will to help the reader understanding the

nature of the tractable algebras. Finally, we propose a systematic way to classify

any interval relation in one of 17 of these algebras.

5.1 – Definition of maximum tractable subalgebra (MTS)

 A maximum tractable algebra is a set of interval relations respecting the

definition of algebra for which there exits an algorithm that can decide satisfiability

for any problem in polynomial time. Also, if any relation is added to the algebra,

either one of the condition mentioned above is violated. To resume, an MTS is:

• Closed under composition, set union, set intersection and converse

operations

• Tractable, as proved by Krokhin et al

• Maximal: no super algebra of a MTS is tractable.

58

5.2 – Literature

 After the ORD-Horn algebra was discovered Thomas Drakengren, Peter

Jonsson discovered in 1997 21 large tractable subclasses and, identified eight of

them as being maximal tractable algebras. Shortly after, they discovered 10 more

MTSs. Finally, Krokhin proved that reasoning in a fragment not entirely included

in one of the 18 MTS is NP-complete.

 In their paper “Reasoning about Temporal Relations: The Tractable

Subalgebras of Allen’s Interval Algebra”, Krokhin et al expressed the formal

definition of the 18 MTSs. This is their original representation. We must inform the

reader that this notation uses ‘p’ (precede) for our interval relation ‘b’ (before)

basic relation, and the superscript ‘-1’ for our prefix ‘~’ defining the ‘converse’

relation. Furthermore, the superscript ‘±1’ is used to denote the conjunction of two

conditions. For example, (o) ±1 ⊆ r ⇔ (d-1) ±1 means that both,

• o ⊆ r ⇔ d-1

and

• o-1 ⊆ r ⇔ d

hold.

59

The notation originally designed by Krokhin et al is given below:

1. Sp = {r | r ∩ (pmod-1f-1)±1 ≠ Ø ⇒ (p)±1 ⊆ r}

2. Sd = {r | r ∩ (pmod-1f-1)±1 ≠ Ø ⇒ (d-1)±1 ⊆ r}

3. So = {r | r ∩ (pmod-1f-1)±1 ≠ Ø ⇒ (o)±1 ⊆ r}

4. A1 = {r | r ∩ (pmod-1f-1)±1 ≠ Ø ⇒ (s-1)±1 ⊆ r}

5. A2 = {r | r ∩ (pmod-1f-1)±1 ≠ Ø ⇒ (s)±1 ⊆ r}

6. A3 = {r | r ∩ (pmodf)±1 ≠ Ø ⇒ (s)±1 ⊆ r}

7. A4 = {r | r ∩ (pmodf-1)±1 ≠ Ø ⇒ (s)±1 ⊆ r}

8. Ep = {r | r ∩ (pmods)±1 ≠ Ø ⇒ (p)±1 ⊆ r}

9. Ed = {r | r ∩ (pmods)±1 ≠ Ø ⇒ (d)±1 ⊆ r}

10. Eo = {r | r ∩ (pmods)±1 ≠ Ø ⇒ (o)±1 ⊆ r}

11. B1 = {r | r ∩ (pmods)±1 ≠ Ø ⇒ (f-1)±1 ⊆ r}

12. B2 = {r | r ∩ (pmods)±1 ≠ Ø ⇒ (f)±1 ⊆ r}

13. B3 = {r | r ∩ (pmod-1s-1)±1 ≠ Ø ⇒ (f-1)±1 ⊆ r}

14. B4 = {r | r ∩ (pmod-1s)±1 ≠ Ø ⇒ (f-1)±1 ⊆ r}

15. S* = {r | r ∩ (pmod-1f-1)±1 ≠ Ø ⇒ (f-1)±1 ⊆ r, and r ∩ (ss-1) ≠ Ø ⇒ (≡) ⊆ r}

16. E* = {r | r ∩ (pmods)±1 ≠ Ø ⇒ (s)±1 ⊆ r, and r ∩ (ff -1) ≠ Ø ⇒ (≡) ⊆ r}

17. H = { r r ∩ (os)±1 ≠ Ø & r ∩ (o-1f)±1 ≠ Ø ⇒ (d)±1 ⊆ r, and

r ∩ (ds)±1 ≠ Ø & r ∩ (d-1f-1)±1 ≠ Ø ⇒ (o)±1 ⊆ r, and

r ∩ (pm)±1 ≠ Ø & r ⊄ (pm)±1 ⇒ (o)±1 ⊆ r}

18. A≡= {r | r ≠ Ø ⇒ (≡) ⊆ r}

60

 This notation can be quite confusing at first, but it is important that the

reader understands which elements constitute the Maximal Tractable Subalgebras

(MTS). Consider the following example for the MTS Sp:

A relation r belongs to Sp

1. if r contains any of the basic relation among pmod-1f-1, then p must belong

to r,

2. if r contains any of the relations among p-1m-1o-1df, then p-1 must belong to

r.

We can now move on our graphical representation of the 17 MTSs.

5.3 – Express 17 MTS, a graphical representation

 In this thesis, we assign different names to the MTSs than those defined by

Krokhin et al. However, the original names will appear in parenthesis so that the

reader can refer to the original work. Also, we will rearrange the order the algebras

are presented. For each algebra, there is a ‘lattice model’ and a ‘space model’ to

represent it. But before turning to the graphical representation of the algebras, let us

introduce some vocabulary we will use in the rest of this thesis.

Definition 5: A sublattice stands for an MTS sub-lattice. It represents an acyclic

set of relation, subset of the complete algebra. Every sublattice contains a “pivot”,

defined below.

Definition 6: A pivot is a mandatory relation for a given algebra when other

relations are present in the original set. If for a given algebra and a given set of

61

input relation the pivot is absent, and another relation in the sublattice is present

implies that the relation is not in this algebra.

Algebras 1 through 17 can be read as follows:

- To check if a relation is in an algebra with the lattice model:

Only consider the sublattice relations. For each atomic relation belonging to

a sublattice, the corresponding pivot must be present, or the relation is not

in the algebra.

- To check if a relation is in an algebra with the space model:

Any atomic relation matching the left side of an implication requires the right side

of the implication, or the set of relations is not in the set. Figure 5.1 below shows

the graphical representation of these algebras.

Algebra name and

cardinality

Lattice model

Space model

ALJ[1] - (A1)

211+26+26+2 = 2178

(Nx<X)->(~s)

(Nx=X0)^(Ny>Y)->(~s)

(Nx>X)->(s)

(Nx=X)^(Ny<Y)->(s)

62

ALJ[2] - (B3)

211+26+26+2 = 2178

(Nx<X)->(~f)

(Nx=X)^(Ny>Y)-> (~f)

(Nx>X)-> (f)

(Nx=X)^(Ny<Y) ->(f)

ALJ[3] - (A2)

211+26+26+2 = 2178

(Nx<X)->(s)

(Nx=X)^(Ny<Y)->(s)

(Nx>X)->(~s)

(Nx=X)^(Ny>Y)->(~s)

ALJ[4] - (B4)

211+26+26+2 = 2178

(Nx<X)->(~f):

(Nx=X) ^(Ny<Y)->(~f)

(Nx>X)->(f)

(Nx=X)^(Ny>Y)->(f)

63

ALJ[5] - (A3)

211+26+26+2 = 2178

(Ny<Y)->(s)

(Ny=Y)^(Nx>X)->(s)

(Ny>Y)->(~s)

(Ny=Y)^(Nx<X)->(~s)

ALJ[6] - (B2)

211+26+26+2 = 2178

(Ny<Y)->(f)

(Ny=Y)^(Nx>X)->(f)

(Ny>Y)->(~f)

(Ny=Y)^(Nx<X)->(~f)

ALJ[7] - (A4)

211+26+26+2 = 2178

(Ny<Y)->(s)

(Ny=Y)^(Nx<X) ->(s)

(Ny>Y)->(~s)

(Ny=Y)^(Nx>X)->(~s)

64

ALJ[8] - (B1)

211+26+26+2 = 2178

(Ny<Y)->(~f):

(Ny=Y)^(Nx<X)->(~f)

 (Ny>Y) ->(f)

(Ny=Y)^(Nx>X) ->(f)

ALJ[9] - (Sp)

211+27+27+23 = 2312

(Nx<X)->(b)

(Nx>X)-> (~b)

ALJ[10] - (Sd)

211+27+27+23 = 2312

(Nx<X)->(~d)

(Nx>X)-> (d)

65

ALJ[11] - (So)

211+27+27+23 = 2312

(Nx<X)->(o)

(Nx>X)->(~o)

ALJ[12] - (Ep)

211+27+27+23 = 2312

(Ny<Y)->(b)

(Ny>Y)->(~b)

ALJ[13] - (Ed)

211+27+27+23 = 2312

(Ny<Y)->(d)

(Ny>Y)->(~d)

66

ALJ[14] - (Eo)

211+27+27+23 = 2312

(Ny<Y)->(o)

(Ny>Y)->(~o)

ALJ[15] - (S*)

210+28+26+26+

24+24+22+20=1445

(Ny<Y)->(~f)

 (Nx=X)->(eq)

 (Ny>Y)->(f)

ALJ[16] - (E*)

210+28+26+26+

24+24+22+20=1445

(Nx<X)->(s)

 (Ny=Y)->(eq)

 (Nx>X)->(~s)

67

ALJ[17] - (A)

212=4096

Pivot (eq):

Nx=X

Ny=Y

Figure 5.1: Graphical representation of 17 MTSs

Example: The sublattices for ALJ[1] are {b, m, o, ~f, ~d, s} and {~b, ~m, ~o, f, d,

~s}, and there respecting pivots are {s} and {~s}.

 The cardinality of the 17 algebras is shown in table 5.2. The elements in any

of these algebras can easily be counted using the graphical representation. The

following example shows how the cardinality of ALJ[1] is computed.

Example: The number of elements in ALJ[1] is given by all the possible

assignments of relation R ∈ ALJ[1]:

• If (s) and (~s) belong to the relation R, then any of the 11 remaining

relations might belong to R: 211 elements.

• If (s) belong to the relation R and (~s) doesn’t, then any of the 5 remaining

relations from the sublattice of (s), and eventually the equal relation might

belong to R: 26 elements

68

• If (~s) belong to the relation R and (s) doesn’t, then any of the 5 remaining

relations from the sublattice of (~s), and eventually the equal (eq) relation

might belong to R: 26 elements

• If neither (s) nor (~s) belong to the relation R, then only (eq) or no relation

might belong to R: 2 elements

Hence, the total number of elements for ALJ[1] is: 211+26+26+2 = 2178. A similar

approach will give the cardinality of the remaining algebras.

5.4 – A generic algorithm

 In this section, we will propose a generic algorithm capable of solving the

OLQTR-I for any of the 17 MTSs in polynomial time. Moreover, in case of

inconsistency, the algorithm proposes a minimum number of modifications of the

original problem to set back consistency to the problem. However, the class of

solvable problems with this technique is far less interesting than the possibilities

offered by the ORD-Horn algebra. This issue is discussed in the following section

 5.4.1 – Classes of solvable problems

 The algorithm presented in this section can only solve problems belonging

to one of the MTS presented earlier in this chapter. This considerably reduces the

usability of this algorithm. As a matter of fact, since a relation between two

committed intervals consists of a single basic relation, only the pivots and the equal

relations are allowed between two committed intervals. Consider the two

constrained temporal networks in Figures 5.2 and 5.3. Every relation in the first

69

figure belongs to the set {o, eq, ~o} and is therefore tractable with ALJ[8] or

ALJ[14], whereas the committed relations in Figure 5.3 does not belong to any

MTS. The set of relations between the intervals are {~b, o, d, eq, ~o} and hence is

not tractable with the algorithm presented in this section. Note that it might be

tractable within, and only within the ORD-Horn class, depending on the constraints

between the new interval to be added and the committed intervals.

Figure 5.2: Constrained temporal

network in ALJ[11] and ALJ[14]

Figure 5.3: Constrained temporal

network that does not belong to any MTS

Hence, the class of solvable problems requires that the relations between

committed intervals satisfy the following condition:

Assertion 5: For any pair of committed intervals I1 and I2:

• I1 r I2 ⇒ r ∈ {pv, ~pv, eq} where ‘pv’ is any basic interval relation except

meet.

Proof: Consider a constrained temporal network T where basic relations belong to

ALJ[i], 1<i<17 with pivots ∈ {pv, ~pv, eq}. Suppose a relation r’ does not belong

to { pv, ~pv, eq}, then, obviously, r’ ∉ ALJ[i].

70

 5.4.2 – Ordering the committed intervals

 Knowing that for a tractable problem, the constraints between committed

intervals respects assertion 5; it is possible to assign a total ordering to the set of

intervals by redirecting the edges of ‘inverse’ intervals to set them in a ‘forward’

type of relations only. Hence the previous tractable example in Figure 5.2 can be

modified to give the constrained temporal network of Figure 5.4.

Figure 5.4: Forward relations of figure 5.2

The ties generated by equality are assigned arbitrarily. Hence, the total order T over

the basic relation overlap defining the temporal network above is:

• T(o) = {D ≻ A ≻ C ≻ B}.

This total ordering can be viewed as a combination of constraints like:

• (D {o} (A {o} (C {eq} B)))

Assertion 6: there exist a total order T(pv) for any temporal constraint network

belonging to one of ALJ[i] 1<i<17.

71

Proof: from assertion 5, the relation between any two intervals in a constrained

network must belong to {pv, ~pv, eq}. Since for any intervals I1 and I2, the trivial

property I1 {pv} I 2 ≡ I2 {~pv} I 1, every relation r can be expressed as its non-inverse

basic relation by reordering the intervals. The total order generated by equality

relation does not matter and can be chosen arbitrarily.

To summarize:

• The total ordering for the algebras involving before (b), overlap (o) or

during (d) pivots and their respective inverses is given by the order of either

boundaries point.

• The total ordering for the algebras involving start (s) pivot and its inverse is

given by the end point.

• The total ordering for the algebras involving finish (f) pivot and its inverse

is given by starting point.

• The basic relation equality belongs to every algebra and the total ordering

for the algebra with equality as basic relation or as pivots is arbitrary.

 5.4.3 – Deciding satisfiability

 In order to remain in the tractable class, the interval relation constraining a

new interval in OLQTR-I must also belong to the ALJ[i] and hence includes one of

the pivots relation or the equality relation.

Proposition 7: The satisfiability of the OLQTR-I problem for a set of constrained

temporal network is equivalent to finding a new non-null total order NewT(pv)

including the new interval.

72

Example: Suppose there exist a total order T on some temporal constraint network

such as:

Figure 5.5a

Then, one can easily construct a scenario where every constraint is satisfied. Such a

scenario is presented in the following figure:

Figure 5.5b

Suppose we now want to add a new interval satisfying the following constraints:

73

• New {o, f, d, eq, ~o} I1

• New {b, o, s, ~f} I2

• New {b, m, o} I3

• New {~o, ~d} I4

• New {~b, ~o, ~s} I5

Obviously, each relation belong to the ALJ[14] with {o, ~o} as pivots. Thus we can

construct the total order T of committed intervals as follow:

• T = (I5 {o} (I 4 {o} ((I 1 {eq} I 3) {o} (I 2))))

≡

• T = (I5 ≻ I4 ≻ I1 ≻ I3 ≻ I2)

We now must find a position where to insert interval New respecting the preceding

order. To do so, we only redirect the constraints defined above only considering the

pivots in forward way:

• [New {o} I 1 OR I1 {o} New] ≡ [New ≻ I1 OR I1 ≻ New]

• [New {o} I 2] ≡ [New ≻ I2]

• [New {o} I 3] ≡ [New ≻ I3]

• [I 4 {o} New] ≡ [I4 ≻ New]

• [I 5 {o} New] ≡ [I5 ≻ New]

It now becomes trivial to find an assignment for New if it exists.

74

Lemma 7: inconsistency can be found by looking for a cycle on the directed

temporal constrained network with the new interval.

Assertion 8: The directed temporal constrained network is a complete graph.

Proof: (Trivial) there exist a relation between any two intervals in the network.

Assertion 9: in OLQTR-I, choosing a relation other than one of the pivots or the

equality relation translates the problem into a different algebra on the next iteration

on ALJ[i].

Proof: This proof directly follows Assertion 5. After the new interval has been

added to the set of committed intervals, at least one relation between New and a

committed interval ∉ ALJ[i] and hence, becomes only tractable in the next set of

iterations if the relation between a new interval and every committed interval

belongs to the ORD-Horn algebra, only algebra to include every atomic relation.

Assertion 10: on detecting inconsistency in an OLQTR-I, relaxing at most n/2

relations by adding a pivot to these relations, with n being the number of intervals

in the problem, is sufficient to restore consistency of the problem.

Proof: This proof relies on the bipartite nature of the OLQTR-P. At most n/2

constraints conflict with each other. Adding a ‘pivot’ to at most n/2 relation that

only contain ‘inverse pivot’ relaxes every constraint, resulting in a directed

temporal constraint network with at least ‘pivot’ as a possible assignment for each

relation , thus eliminating every cycle created by more constrained relations

(lemma 7).

75

 5.4.4 – Algorithm

This algorithm transposes the OLQTR-I to an OLQTR-P problem to decide the

satisfiability of the overall problem since considering only one of the boundary

points of each pivot is sufficient to decide consistency as mentioned in assertion 6.

Input: A OLQTR(I) problem within ALJ[i] (1<i<17)

Output:

Algorithm TrSAT

1 for each relation Ri in T(pv) that does not contain a pivot and it’s inverse

2 if N (~pv) Ri

3 mark Ri as ‘>’

4 else if N (pv) Ri

5 mark Ri as ‘<’

6 else if N (=) Ri

7 mark Ri as ‘=’

8 end else

9 end for

10 run PoSeq on T(pv)

11 if inconsistent do

12 if inconsistent points are marked < do

13 suggest (pv) for each inconsistent point

14 else if inconsistent points are marked > do

15 suggest (~pv) for each inconsistent point

16 end else

17 end if

end Algorithm

76

Chapter 6 – Conclusions

 In this work, we first develop an algorithm that decides satisfiability for the

OLQTR-P problem, and on inconsistency detection, proposes a minimal set of

relations to remove to ‘roll back’ to consistency. We then use this algorithm to

extend the capabilities of the minimum culprit detection to a subset of Allen’s

interval algebra known as ORD-Horn algebra. Finally, we introduce a graphical

way to express every other maximal tractable algebras of Allen’s interval algebra,

and propose a battery of algorithms to solve the culprit detection problems for these

maximal tractable subalgebras. Hence, every tractable case of the Interval Algebra

is taken care of in this Thesis.

 However, it might be interesting to be able to deal with the full algebra even

though the reasoning would not end up in polynomial time. Future works could

involve non-polynomial algorithms to deal with such type of problems.

Nevertheless, depending on the number of entries for a given problem, the

algorithm is not guaranteed to finish ever.

77

Chapter 7 – Related works

 Identification of “causes” behind inconsistency for solely the purpose of

improving the search algorithms has been occasionally explored in the CSP

literature. Recent works like Jussien and Lhomme proposes optimization for

existing conflict based-heuristics algorithms as in the Tabu search (Glover) and in

backtracking-based search algorithms. For example, backjumping and dynamic

backtracking attempts to find the appropriate constraints at the time of

backtracking. Other works using Dynamic Variables Ordering (Bacchus and Van

Run) tend to enhance performance by looking forward in the tree search, applying a

method to sort the variables in such a way that the general computation of known

algorithms becomes faster and more efficient. Another technique using the

‘QUICKXPLAIN’ (Junker) algorithm looks for relaxation for over constrained

problems. The purpose of another algorithm called "Ng learning" (Hirayama and

Yokoo) is to build and maintain a set of No-Good constraints leading to

inconsistencies, or for which optimization is not efficient. Hirayama and Yokoo

combined this method with asynchronous weak-commitment search algorithm and

improved the technique of no-good learning. Similarly, tabu-search explores

different arrangements of conflicting sets, keeping track of some solutions that

should not be explored in the next iterations, rendering them Tabu. Several of such

‘optimization algorithms’ have been attempted within the last few years as in the

“Guided Tabu search” (Klau et al), where the user is solicited to aid in enhancing

the efficiency of the search. No-Good backmarking (Richards et al) works almost

78

the same way. It processes learning of constraints during search for which a failure

occurred and intends to ‘repair’ some non-optimal paths. A sense of topological

relations between the solutions is implicit in this heuristic. However, only a few

works have investigated the direction of providing suggestions to the user (as an

output of the system on detection of inconsistency) for the purpose of his/her taking

appropriate actions by removing or modifying some constraints. Amilhastre et al

suggest considering the user's choices as assumptions.

 Identification of “causes” behind inconsistency for the solely purpose of

improving the search algorithms has been occasionally explored in the CSP

literature. Several of such ‘optimization’ algorithms have been attempted within the

last few years as in Klau et al, where the user is solicited to aid in enhancing the

efficiency of the search. Richards et al no-Good backmarking, works almost the

same way. It processes learning of constraints during search for which a failure

occurred and intends to ‘repair’ some non-optimal paths. This thesis proposes an

extension of the incremental CSP framework for which interactive decisions

involve a method for computing a maximum subset of the user’s choices to ensure

consistency. Such incremental temporal scheme is being thoroughly investigated as

in Gerevini, but no work combines the incremental scheme with minimum

relaxation as we propose in this work. Thus, many of such “intelligent”

backtracking heuristics (or other extensions of the classical CSP) may be useful for

further investigation on consistency restoration in constraint reasoning systems.

79

Boguraev and Ando attempt to propose a solution to ‘unify’ information extracted

from temporal problems using TimeML modeling.

80

References

[1]. Allen, J. F., (1983). “Maintaining knowledge about temporal intervals.”

Communications of the ACM, v.26 n.11, pages 832-843.

[2]. Amilhastre, J., Fargier, H., and Marquis, P., (2002). “Consistency

restoration and explanations in dynamic CSPs-Application to configuration”

Artificial Intelligence journal, Vol 135, No. 1-2, pages 199-234.

[3]. Bacchus, F., van Run, P., (1995). “Dynamic Variable Ordering In CSPs”

Principles and Practice of Constraint programming (CP95), pages 258-275.

[4]. Boguraev, B., Ando, R., (2005). “TimeML-Compliant Text Analysis for

Temporal Reasoning” IJCAI-05, page 997.

[5]. Drakengren, T. and Jonsson, P., (1997). “Twenty one large tractable

subclasses of allen's algebra.” Artificial Intelligence journal, Vol. 93, pages 297-

319.

[6]. Gerevini, A. (2003) “Incremental Tractable Reasoning about Qualitative

Temporal Constraints.” Proceedings of International Joint Conference on Artificial

Intelligence, pp1283—1288.

[7]. Glover, F., (1989). “Tabu search – part I” ORSA Journal on Computing,

Vol 1, No 3, pages 190-206.

81

[8]. Hirayama, K., Yokoo, M., (2000). “The Effect of Nogood Learning in

Distributed Constraint Satisfaction” 20th IEEE International Conference on

Distributed Computing Systems.

[9]. Junker, U. (2004) “QUICKXPLAIN: Preferred Explanations and

Relaxations for Over-Constrained Problems,” Proceedings of the National

Conference on Artificial Intelligence, pp 167-172

[10]. Jussien, N., and Lhomme, O., (2000). “Local search constraint propagation

and conflict-based heuristics” Artificial Intelligence journal, Vol. 139, pp 21-45.

[11]. Klau, G. W., Lesh, N., Marks, J., and Mitzenmacher, M., (2002). “Human

guided Tabu search” In Proceedings of the 18th National Conference on Artificial

Intelligence, pages 41-47.

[12]. Krokhin, A., Jeavons, P., and Jonsson, P., (2003). “Reasoning about

temporal relations: The tractable subalgebras of Allen’s interval algebra.” Journal

of the ACM, Vol. 50, No. 5, pages 591-640.

[13]. Launay, F., and Mitra, D. (2005) “Incrementally scheduling with qualitative

temporal information,” Springer Lecture Notes on AI - 3533, Proceedings of The

18th International Conference on Industrial & Engineering Applications of

Artificial Intelligence & Expert Systems, Bari, Italy.

[14]. Ligozat, G., (1996). “A new proof of tractability for ORD-Horn relations.”

In Proceedings of the 13th National (US) Conference on Articial Intelligence

(AAAI-96), pages 395-401, Menlo Park, CA,. AAAI Press.

82

[15]. Mitra, D., Ligozat, G., and Hossein, L. (1999). "Modeling of multi-

dimensional relational constraints between point objects." Proceedings of the

Florida AI Research Symposium.

[16]. Nebel, B., and Burckert, H. J., (1995). “Reasoning about temporal

relations: A maximal tractable subclass of Allen’s algebra.” Journal of the ACM,

Vol. 42, No. 1, pages 43-66.

[17]. Richards, T., Jang, Y., Richards, B., (1995). “Ng-backmarking – an

algorithm for constraint satisfaction” BT technol J Vol 13 No 1 pages 102-109

[18]. Van Beek, P., (1992). “Reasoning about qualitative temporal information.”

Artificial Intelligence Vol 58, pages 297-326

[19]. Vilain, M.B. and Kautz, H. A., (1986). “Constraint propagation algorithms

for temporal reasoning.” In Proceedings of the Fifth National Conference on

Artificial Intelligence (AAAI-86), pages 377- 382.

 [20]. Vilain, M.B., Kautz, H. A., and van Beek, P.G., (1989). “Constraint

propagation algorithms for temporal reasoning; A revised report.” In Readings in

Qualitative Reasoning about Physical Systems, pages 373-381. Morgan Kaufmann,

Sant Mateo, CA.

