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Abstract

Title:
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Author:
Florent Marie Launay
Major Advisor:

Debasis Mitra, Ph.D.

This thesis is a confluence of three problems in constr@asoning:
gualitative temporal reasoning (QTR), incremental reasoramg, explanation
generation. We first address a set of algorithms to b€ TR for point algebra
(PA) with explanation. Next, we turn to the tracealdbrm of Allen’s Interval
Algebra (IA). For both problems, an incremental versséithe problem, where a
new temporal object is added to a set of objects coeunibh the time-line, is
being studied. We provide a model or solution space fordheabject, if it exists,
otherwise, for (PA) and a particular subalgebra of (t&Jled ORD-Horn, we
provide explanation for inconsistency. Both the problemscremental reasoning
and explanation generation are based on some recegstigation in constraint

programming.
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Chapter 1 — Introduction

1.1 — Problem Overview

Along with the exponential grow of complexity in reteechnologies
comes a need to more powerful computational techniqueshleapé solving
increasingly complex problems in reasonable time. Ahsligiprovement in the
complexity of an algorithm can have significant effects the overall problem
resolution. Temporal Representation and Reasoning in #&hqdrovide ways to
compute complex problems and sometimes find the ‘best’ ieqtesblution. There
exist a growing interest in the scientific community feodeling and reasoning on
spatio-temporal problems.
1.2 — Thesis organization

This thesis is divided into 7 chapters. The first tvimapter chapters will
provide the reader with essential background informatiodete& understand the
problem addressed in this thesis and the suggestions we brmugitdlve a
particular cast of scheduling problems. Chapter 3 fornadiscribes the problem
and proposes a solution for the Online Qualitative Tem@®ealsoning on Point
algebra. This section also introduces our approach inidgfime “causes” for
inconsistency and the algorithms to find it. Subsequentlyhawee enhanced the
approach toward online reasoning with time-intervals whécklivided into two
distinct sub problems. Chapter 4 deals with one of tipesblems known as the
ORD-Horn Interval Algebra and describes a series ofrilffigns to solve this

problem instance. Then we turn to a more general apprdachctable temporal
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reasoning in chapter 5. This chapter also proposes d akgooithms to solve the
more general tractable temporal reasoning case. Chaptere6alygss again the
Interval algebra’s approach with a discussion on nactdble cases. Finally we
conclude this thesis with a discussion on past and cumnnest in the scientific
community for solving the type of problems addressed here.
1.3 — Contribution

In many cases, no follow up intervenes after inconsistaletection in
spatio-temporal reasoning problems. This thesis proposes ‘swmmplete’
solutions for a particular set of temporal reasoning problernen no perfect
solution can be addressed. This partial solution is defimedsystematic way for
the point based reasoning, and subject to tractabilitydiimn in case of interval
reasoning. Whereas many study focused on finding the magmhaif consistent
constraints, the problem of finding the minimal setwdpadt relations is new to the
community. Section 3.2.1 proposes an algorithm to solve pusbhlem for the
point based reasoning and provides a proof of correctmessnanimality of the
output set. Finally, section 5.3 gives a graphical remtasion of 17 out of the 18
maximal tractable algebras of the full interval algelproviding an alternative way

to reason on the algebras, as well as an easy wautd them.
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Chapter 2 — Background

2.1 — Temporal Reasoning
Temporal Reasoning Problem can be viewed as finding agnassnt for a
set of constrained temporal events. The next twassectescribe two particular
instances of TR. Both algebras are the central topmkerudiscussion of the
research.
2.1.1 Point Reasoning
The point-based temporal reasoning constitutes thdestrmjprm of spatio-

temporal reasoning (Allen). The scheme has three balaions {<, >, =}.

Binary operator Relation type Example Representation
< Before AK)B >
A B
> After A(>)B >
B A
= Equal A(=)B >
A=B

Figure 2.1: Basic relation on Point Reasoning

The corresponding relational algebra is comprisedhefpower set of the

basic relations, thus containing 8 elements:

* {9, 4), (5, (<2), 3), (=2), (<=2), O}



The three basic relations, the relation less-thaegoial (<=), the relation greater-
than-or-equal (>=), the relation different-from (<the relation any-relation (<=>),
and the relation no-relation () stating that no retatshould exist between two
points. Thus, a constraint between two points A and@essed as: (A <= B) has a
valid assignment for A and B if either (A = By (A < B). The composition
between basic relations is a disjunction of bagitstraints.

The composition table of the point based relation isritgsd in the table below:

< = >
< < < <=>
— < = >
> <=> > >

Figure 2.2: Composition table of point relations

This set of relations forms an algebra since it isefiounder the traditional
reasoning operators; composition, converse, set uniorsearakersection.
2.1.2 Interval Reasoning
With the interval reasoning problem, the objects are time-intervals
(Allen) rather than the time points. There are thintbasic relations between a pair
of intervals, B={before (b), meet (m), overlap (obars (s), during (d), finish (f),
equal (eq), finish-inverse (~f), during-inverse (~d), startyiswe(~s), overlap-

inverse (~0), meet-inverse (~m), before-inverse (~b)}ppagosed to three basic
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relations in the case of time-points. Every basiati@h has a degree of freedom
associated to it given by the freedom of end pointamfinterval for a given
relation. Each of these basic relations and its #sodimension is defined in the
tables below:

Among the 13 atomic relations;

e Six are of dimension 2:

Binary Relation Example| Representation
operator | type
b before A(b)B
A
~b before A(~b)B
B
inverse
0 overlap A(0)B
A
~0 overlap A(~0)B
B
inverse
d during A(d)B B
A
~d during A(~d)B A
inverse B

Figure 2.3: Basic relation of higher-dimension Intervala®ons




e Six are of dimension 1:

Binary Relation Example| Representation
operator | type
m meet A(m)B A
B
~m meet inverse A(~m)B B
A
S start A(s)B B
A
~S start inverseg A(~s)B A
B
f finish A(H)B B
A
~f finish A(~f)B A
. B
inverse

Figure 2.4: Basic relation of one-dimension Interval Bt

* One is of dimension O:

Binary Relation Example| Representation
operator | type
eq equal B(eq)A A

B

Figure 2.5: Basic relation of zero-dimension Interval Bt

7




A relation between two intervals is expressed asdibginction between

basic interval relations.

Example: A{b ordor ~d} B

Meaning that interval A must be placed befayeduring, or after interval B. We
will refer to such a set of constraints as A {b, d, ~djoB the sake of simplified
notations and clarity.

The composition table of the interval reasoning is otrigial as for the
point based reasoning. In this table, the rows indicagéatian between an interval
A and an interval B. The columns indicate the relabetween the interval B and
an interval C. Finally, each entry represents the ceegboelation between interval

A and interval C. The composition table for intervasening is given below:

b 'm o |s |d |f |eq| ~f|] ~d ~s|] - ~-m| -~b

b b b b b r r b b b b r r u

m b b b m (€] (€] m b b m (€] F I

0 b b b4 o [©] [©] o b4 Q z 0] ~0 ~r

S b b v 5 d d 5 v Q S <z ~m ~b
d b b r d d d d r u ~Q ~Q ~b ~b

f b m ) d d f f F I ~y ~y ~b ~b
eq b m o s d f = ~f ~d ~s ~0 ~m ~b
~f b m o 0 (€] F ~f ~f ~d ~d 2] ~0 ~T
..d Q z z z U ~0 ~d ~d ~d ~d [C] ~0 ~r
~S Q z z S <z ~0 ~s ~d ~d ~s ~0 ~m ~b
~0 Q z 0] ~X ~X ~0 ~0 © ~T ~¥ ~¥ ~b ~b
~-m Q S ) ~x ~x ~m ~m ~m ~b ~b ~b ~b ~b
~b u ~Q ~Q ~Q ~Q ~b ~b ~b ~b ~b ~b ~b ~b

Figure 2.6: Composition table of Allen’s Interval Algebra



With the following set of abbreviations:
e U={b,mo,s,dfeq,~f, ~d, ~s, ~0, ~m, ~b}
e ®={-~0,~f,~d, ~s,€q,s,d,f, o}
e I'={b,m,o0,s,d}
e ~I'={~b, ~m, ~o0, ~s, ~d}
e Q={b, m, o, ~f, ~d}
e ~Q={~b, ~m, ~o, f, d}
e ¥Y={b,m o}
e ~¥={~b, ~m, ~0}
 0={o,s,d}

« ~0={~0,~s, ~d}

e X={o, ~d, ~f}
e ~X={~o0,d,f}
« F={f eq, ~f}

 S={s,eq, ~s}

As it is the case for the point based reasoning, Allemésval reasoning is
closed under composition, converse, set union and sesaation and hence forms
the Interval Algebra (1A). Our work uses the frameworlrmafremental Temporal
Reasoning (Gerevini) also known@sline Problenthat is applicable to some real
life situations, where information is gradually added tatabase. We will refer to

the online qualitative temporal reasoning on point as CR®Tand on intervals as
9



OLQTR-I. In the next section we introduce the problefmonline interactive

reasoning scheme with qualitative constraints betweepderhevents.

2.2 — Online Qualitative Temporal Reasoning (OLQTR)

In our incremental framework a new temporal evemgsrted into a set of
events already committed on a time-line, i.e., the bemporal event is inserted
within a sequence of old events, satisfying the binary cainssrbetween the new
event and the old ones. The problem could be viewed asbadatentry, where a
consistency checking needs to be first performed beforamitting the entry
operation.

Incremental temporal reasoning is often really tiede@ fife problems.
When an existing set of consistent constraints hde teedefined because of new
or unexpected set of constraint, it is in most of theesaeasonable to treat them
one by one until the whole set of new constraintexisausted. This section will

introduce the reader with the incremental problem irstamt reasoning.

Definition 1: Online Qualitative Temporal Reasoning (OLQTR).

Given:
 atotalorder T ={ t,, . . ., t} of temporal events located on a timeline,
* anew object n whose location is yet to be determined
» aset C of binary temporal constraints between n and steneents;tof T,

with C={(n r; t)), where i is in [1, m]}

10



Incremental temporal reasoning (ITR) problem answershehet can be
located on the time line satisfying the constraints imrhot. Moreover, for a
satisfying problem it assigns n on the time line apprtgdyia
When an ITR problem is inconsistent there could be melspbsets of C that has
mutually conflicting constraints in each of them. We aterested in finding a
minimal cardinality subset amongst these subsetspkgume that no weight or
priority values are assigned apriori to any constrai.in

An algorithm for solving the OLQTR-P problem is describedséation
3.2.2. The next section introduces an algorithm that deadesistency for the
Incremental point based reasoning. This algorithm is the obour approach in
defining the “causes” for inconsistency and is enhanced isuhsequent sections

to form another set of algorithms solving our problem iregan

2.3 — Incremental Consistency issues

A system of constraint between temporal events tiseeiconsistent or
inconsistent. In case of inconsistency, some constraané not satisfied and
conflict with each other. Algorithms solving temporal swtaint reasoning
traditionally do not inform the user about the causemadnsistency. One of the
reasons behind this is the ambiguity in identifying such aecdter example, given
a set of comparable objects a, b, and c, the informatidn b<c, and c<a, is
inconsistent (Figure 2.7a). There is no preferred constrere that could be

11



identified as the cause for the inconsistency, and eaehof them is equally
responsible. However, if we have {a<b, b<c, b<d, d<eg, exxa}, then the
constraint a<b becomes a clear choice as the gufpeisuming that all constraints

have equal priority (figure 2.7b).

a

a</ \<a a</ \<a O e
c___ O IE—

b b<c c

Figure 2.7a: An inconsistent b<d
temporal network

Figure 2.7b: An inconsistent
temporal network

In this work, we have investigated the issues relatedletecting the
“reason” behind inconsistency. We have first used a sidpiain of point-based
temporal reasoning that is tractable and is well undedstbaen, we apply this last
to the wider area of incremental interval reasoninge ®hjective is to detect a
minimal set of constraints that should be eliminatedmodified for restoring
consistency of an otherwise inconsistent problem instafides work on
identifying the responsible set of constraints causingnsistency in a problem
instance will be useful in the diagnosis area for cuiiteious reasons. Adding such
a capability would also improve the user-friendlinesshaf CSP-solver systems

and thus, enhance their usage.

12



Assertion 1: Constraints in inconsistent point-based ITR conflmirwise.

The following is the definition of the culprit detecti¢@D) problem.

Definition 2: Culprit Detection (CD)
Given an inconsistent ITR problem, culprit detection lteeonstraints conflicting

pairwise.

Definition 3: MinConflict

Given an inconsistent ITR problem, a MinConflict seaisinimal subset
of the original constraint network removal of which wiltake the problem
consistent.
For example, S= {s , s} with s;<5<s3. C={(n < 3), (n >3), (n > g)}. This is
inconsistent and the first constraint is in conflict witle other two. Hence the
MinConflict= {(n < s)}. We define a related concept of degree of conflict of a

constraint.

Mitra et al (1999) have obtained some interesting r®suithe point-based
incremental reasoning problem, or point-sequencing probleny. fide observed
that a satisfiable region for a new point within a segeeof points or a contiguous
region possibly excluding some old points within the wdkfa preconvex interval
as per Ligozat, 1996). They have utilized this property to deais efficient

13



algorithm for preprocessing before attempting to find ttteiad valid regions for
the new point that satisfies the binary constraints.

In this work we have attacked the same problem but withffarent
objective of finding the “cause” behind the inconsistency rwhiee latter is
detected. The following is an outline of (Mitra et al)aés algorithm, adopted for

the purpose of first detecting the inconsistency imaremental problem.

Algorithm 1D(Mitra et al, 1999): Scan the sequence of existing p&imts left to
right on the time-line and their relationship/constmmith respect to the “new”
node that is to be inserted (within the sequence, saiisthiose constraints). Keep
a status variable that keeps track of whether the nefft(ef the list of valid regions
for the new point, or as it is called, the “box”) hasen found, or an equality
relation (new = ¥ has been found, or the right boundary has been folimel.
“box” is found when the constraint from the new poiatthe current point;x
changes from >, az to < ors, for i running over all the old points. Theequality
(<>) and theaautology(< = >) are ignored in this scan. A singletaqualityrelation
is a hard constraint, making the box converge to that alit.pafter a “box” is
found, if any constraint demands the new point to bsideitthe “box,” then an
inconsistency would be detected, otherwise with a seccand sver the “box” the
algorithm would elicit the exact set of valid regiortsecking if the old points

within the box themselves are valid regions or not. &@mple, a set of valid

14



region may be {(x Xs), (X, Xs), (X, X7), (X7, X7), (%7, Xg)}, indicating that the new
point may be assigned anywhere on the bex§) except on pointspand %.

On detection of inconsistency we run a second algotithfimd the conflict
set between the constraints. This algorithm will becdleed in detail in section

3.2.2.

2.4 — Problem Complexity
2.4.1 Point reasoning complexity
The point reasoning is known to be solvable in polylabrtime (Van
Beek). However, the algorithm presented in section 3.2.»migtdecides whether
the problem is consistent or not, it also suggests a rairset of culprit relations to
remove in order to ‘roll back’ to a consistent probleMevertheless, this
enhancement doesn'’t affect the tractability of the pbaged reasoning problem.
This will be further discussed in section 3.2.1.
2.4.2 Interval reasoning complexity
We will call ITR-I the incremental interval tempdbraasoning. There exist
tractable subsets of the full disjunctive set®*(@ number) of interval relations.
Eighteen of these subsets have been identified asmlyenmaximum tractable
subsets of the full algebra (MTS). The most studied egehractable subsets is the
ORD-Horn subset (Nebel and Burckert). The problem resolatf the ORD-Horn
algebra is the subject of chapter 4. Chapter 5 discussed7ttother maximal
tractable algebras.

15



Chapter 3 — Problem Establishment

3.1 — Disjunctive Normal Form
In an incremental temporal problem, each constraitwd®n two relations
is expressed in a disjunctive normal form. Thus, we egmess the constraint
“‘event g is beforeor equal to event E in a temporal point based reasoning as E
less-than-or-equal£E; (<) Ex. In this simple problem, satisfying either one of the
constraints is sufficient to find a valid assignmemtth@ problem.
3.2 — Conjunctive Normal Form
Finding an assignment for a temporal event, satisfyind afsmnstraint is
the same as satisfying at least one relation in evémyf selation defining the new
event. Such a problem can be expressed as a conjuntt@jumctive constraints.
Consider the following problem:
* Events A, B, and C are committed to a time line
* A new event D is being added to the time line
* A set of relations is defined between the point D arch ed the already
existing points: D (B A, D (Ry) B, D (R) C, where R R,, R. are some
disjunctive temporal constraints between D and thetiegi events.
In order to find a valid assignment for D, we must satfieast a relation in each

of the R, Ry, Re. Thus, the consistency of a problem P is given by:(P fR,) A)

0(D (Ry) B) (D (Ry) C)

16



Example: let P be a problem on a point-based constrained neteantaining 2
ordered points a and b. We want to add a third point ctoe¢hwork respecting the
following constraints (Figure 3.1):

e c(>=)alc(<=>)b

C
Q@
~
PN
>or= I \\<or=or>
I’ ~
J S |
a. < . b

Figure 3.1: Conjunction of constraints

In other words, a valid assignment for ¢ is a regiomtgrethanor equal to aand
less-tharor equalor greater-than b. The satisfaction of an assignmebbtimsides
of theand operator implies that the system is consistent antt pacan be assigned
to the time line.

The next section describes the algorithms we developsedite the point
incremental temporal problem and detects minimal culpeitsvben inconsistency
occurs. We conclude this chapter by a discussion on dejastionsistencies in the
far more complex interval problem.

3.3 — Culprit detection in the point algebra
Many sets of constraints together could cause inconsistesuch that

removal (or fixing) the constraints in this set would m#ke system consistent.

17



We call this problem the “consistency restoration” probland such a set of
constraints as the “responsible set.” It is quiteomoeivable that all the provided
constraints need to be removed/fixed to solve the “stersty restoration”
problem. Actually this assertion could be easily checkeld &an example presented
later in this section. A related question here is thdnchv particular set of
conflicting relations we chose as a solution to thélem, and subsequently report
to the user. Our proposal is that we choosesponsibleset that is of minimal
cardinality out of all possibleesponsiblesets We call such a minimal cardinality-
responsible set as the “minimal set”"MinSet Of course, there could be more than
one such minimal set with same cardinality values,weitvould like to find any

one of them.

Definition 4: Thedegree of conflicof a given constraint in a CSP is the number of
other constraints, that, combined with this constrairgnder the system

inconsistent.

If a system containg constraints, then the degree of conflict for any

constraint will be at most-1, since a relation cannot conflict with itself, and at

least O which indicates that the relation does not icbnitith any other relation .

18



Example: Let S be a set of constraints S =,{¢;, G, &, G, G}. Note that the
elements of S are not temporal objects, but binary cn&t between the temporal

objects.

Q@
Cs

£ e

Figure 3.2: Binary constraints on temporal objects

The edges between binary constraints represent a cdidteen the constraints.
Here, the degree of conflict for c1 Dg)as zero, since cl does not conflict with
any other constraint. The degree of conflict fpisahree, for g ¢, and ¢ each it is

one, and for it is two. The degree of conflict of S can be sump®tias:

. DC(c) =0
.+ DC(c) =3
.« DC(c) =1
* DC(a) =1
* DC(c) =2
¢ DC(c) =1

19



Removing relation cand one of the relations betwegraad ¢ would be enough to
make the system consistent. Hence, {} and {c;, o} are bothMinSetshere,

whereas {g, G, C3} is anotherresponsiblesetthat is not avlinSet

We can now introduce the FindMinSet algorithm which purpsde solve
such problems and propose a minimal conflicting set ofstraints to restore
consistency.

3.2.1 — The FindMinSet Algorithm

The following algorithm is a preprocessing of the FindMin&gorithm. It

finds the conflict set for constraints and the corredpundegree of conflict for

each constraint.

20



Input: A set of constraints between the new poitt the set of committed intervals
Output: a set of conflicting constraints if thetgys is inconsistent, ‘consistent’otherwise
Algorithm GenerateConflictSet

1 ConflictSet = null;

2 FOR i =1 to N do DegreeOfConflict[i] = O;

3 FOR each constraint fom i =1 to N do

4 FOR each constraing from j = i+1 to N DO

5 IF (q is “<”, or “<”, or “=") and (g is “>", or “>", or *=") THEN

6 ConflictSet = ConflictSet U {(cq)};

7 DegreeOfConflict[i]++;

8 DegreeOfConflict[j]++;

9 end IF;

10 RETURN ConflictSet if ConflictSet null, consistent otherwise;
11 end FOR,;

12 end FOR;

End Algorithm.

First, the conflict set and the degree of conflictevkery relation are
initialized (lines 1 and 2). Next, for each pair of ordecenstraints (lines 3 and 4),
if two relations conflict with each other, the cactihg pair of constraint is stored
in the conflict set ConflicSet (line 6) and the respectiegree of conflict of each
relation is incremented (lines 7 and 8). When the ou@R foop terminates, the
algorithm returns the conflict set if different fromlineonsistent or ‘consistent’ if
the conflict set is null (line 10). This is obviously an @(algorithm. The problem

of finding a minimal set of constraints removal/fixing of which would restore
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consistency in a system (constraint network) is sobgdhe following greedy

algorithm.

Input: A set of conflicting constraints with thegspective degrees of conflict
Output: A minimal set of constraints to removeéstore consistency
Algorithm FindMinset

1 Minset = empty; /I set of minimal nodes toremoved

2 AggregateDegreeOfConflict = |ConflictSet [DegreeOfConflict]|;

3 WHILE AggregateDegreeOfConfliet0 DO 1l O(N)

4 Let ¢ = a constraint with the maximum Degreeoflict; /IO(N log N)
5 Minset = Minset U {c};

6 FOR each element (g) i ConflictSet DO /I O(N)

7 ConflictSet = ConflictSet - (¢)¢

8 DegreeOfConflict[c] = DegreeOfConflict[c] -1;

9 DegreeOfConflict[¢ = DegreeOfConflict[d -1;

10 AggregateDegreeOfConflict = AggregateDegreeasdfict -2;

11 end FOR;

12 end WHILE;

13 RETURN Minset;

EndAlgorithm

This is a greedy algorithm that will populate the Minset af relation with a
minimal number of constraints responsible for inconsgte Line 1 initializes
Minset to null. AggregateDegreeOfConflict holds the sutmmaof every degree
of conflict within ConflictSet. While AggregateDegreeOfCoctflis greater than O,
the system remains inconsistent, and some more redatmist be removed from
the original set (line 3). Line 4 picks a relation witghest degree of conflict as a

‘best’ candidate for elimination. Lines 8 through 10 upda&e gét of variables,
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omitting the relation c¢ with highest degree of conflicAs soon as
AggregateDegreeOfConflict reaches O0JFindMinset returns the Minset set
containing the minimal set to remove (line 13).

The preprocessingGenerateConflictSetalgorithm runs in O(K). As
shown with comments in th&indMinset algorithm, O(Nf log N) is the asymptotic
time complexity. Hence the overall complexity of theoblem solver for point
algebra is: O(R) + O(N’log N) = O(Nlog N)

3.2.2 — A Tractable problem

The problem has a flavor of the well known “vertewer” problem, and
hence a polynomial algorithm is unlikely to be a conglelgorithm in general
(subject to P£ NP). However, in the point-sequencing problem it coulcdsly
shown that a graph generated over the conflict sé¢h (wades being the constraints
and edges being the conflicting constraints) is a bipartiphg(see the set of
properties below). The vertex cover problem is tractalbkr bipartite graph and
the algorithmFindMinsetis a complete algorithm in this situation.

We will now establish a set of theorems and propettias apply to our
problem. These properties will be used to prove the comsstand minimality of

the FindMinsetalgorithm.

Property 1: Considering a set S = {R.., R} where R is a relation making a
system inconsistent €1i < n), and n{S) is the degree of inconsistency gfiRS.

Then the number of conflicting pairsNs= )i m(S)/2.
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3 m(S) will always be an even number, since inconsistefdtions exists
pairwise)

Proof: Every time a relation appears in a pair of conflictiafation, both relations
have their inconsistency degree increased by one, hdmeesum of all

inconsistency degree is twice the number of conflictingspai

Property 2: Let | be the set in whiclFindMinsetadds relations to be removed
form the original set to roll back to consistencyt b&(l) be the inconsistency
degree of a relation ;Reontained in S. Finally, let S be the initial number of
conflicting pairs in the original inconsistent set oatens S. Then, i}, m(l) > N,
the system is consistent.

Note that}; m(I) = N is a sufficient condition for the systemlie consistent. As a
matter of fact, in our algorithn};; mi(I) will never be greater than N, since the goal
of our investigation is to find a minimal set of coctfing relations and hence to
stop removing relations as soon as the system isstensi

Proof: Removing a relation Rwill also decrement DC(R by one when R
conflicted with R So, the total inconsistency degree of S will be l@dey 2*m
.Recall that wher}; m(S) reaches 0 in line 3 of algorithkindMinset the system

is consistent. Hence, if 2% m (I) = Y m(S), the system is consistept;m (I) = >

mi(S)/2 =N
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Lemma 1: From properties 1 and 2, we can conclude thgt ifi(l) > Y m(S)/2,
the system is consistent. Inverselyy ifm(l) < Y m(S)/2, then the system is not

consistent.

Property 3: If no ‘=" relation is involved in a conflicting set, thenset of point-
based conflicting constraints S is a bipartite graph withgauitions $ and S, S;
being the “less-than partition”, and Being the “greater-than partition”.

Proof: Whenever an element is added to S, it is conflictingy ariother element in
S. let us call these two elementsand \4. Then, either:

Vi1 (>or>) V,or Vi (<or<) V, According to their relation with each other, &d

V2 will be stored in their respective bipartite subgraph.

Cs C, Cs Cs Cs
< < > < >
A A
S S
Cl L= —d C3
(k¢
C4 .//

Figure 3.3: Bipartite graph on point-based reasoning
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Property 4: If either |S] = 0 or |g = 0O, then both |$= 0 and |8 = O, therefore the
system is consistent

Similarly, |§] or |$] = 0 is a sufficient condition for |S| = 0.

Proof. If S; or & is empty, then the graph S is totally disconnected and n

conflicting constraint remains, hence |S| = 0 and thesys consistent.

Property 5: The element with the highest number of edges of eachtibgpar
subgraph is connected with all elements of the other aphgr

Proof: Consider a time line with events assigned on it. Vé@two assign a new
point on the time line with inconsistent constrainthie Telement with highest
inconsistency degree in each sub graph are the conflicengeats on the far most

left side (g) for any ‘<’, ‘'<’, or ‘=" constraint and inversely on the far mosiht

side (@) for any constraint of type >'>", or ‘=" as illustrated in figure 3.4.

Set of points

€ AL (S7)

B o ——— RN
Conflicts with all *>’, Conflicts with all ‘<’,
‘>' or ‘=" constraints ‘<’ or ‘=" constraints

Figure 3.4: Conflict set on point-based reasoning
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Hence, e[ partition 1 and conflicts with every ‘<’<’, or ‘=" constraint from “Set
of points” and ¢ [J partition 2 and conflicts with every ‘>'>', or ‘=" constraints
from “Set of points”. Since no element is connectedwit partition and elements
(e1)) and (@) are connected with every element of their oppositatpart(e) and
(e2) have the maximum number of adjacent edges within tesrective partitions.

This completes the proof.

For the following theorem, we must define the procedure E8yes being
the set of adjacent edges of element E,
Theorem 1: Let two elements Eand E belong to the same partition. Then, if
|Edges(k)| < |Edges(B)| then the set of adjacent edges piska subset of the set of
adjacent edges ofiEIn other words:
Let B, E; 0 S;. If |Edges(k)| < |Edges(B)| then Edges(f [ Edges(k).
Proof: From property 5, we know that the elementviath highest number of
adjacent edges within a partition, sayi$ connected to every element from the
other partition. Hence, the set of adjacent edges afyetber element inSis a
subset of the set of adjacent edges;ofd®nsider theemoving proceduréelow:
Removing the element;Erom S will leave the partition with a new element with
highest number of adjacent edges Eecursively, every set of adjacent edges of

every other element in;9s a subset of the set of adjacent edges 0fTHhis

27



procedure can be applied until there remains no elenterthe set, proving

Theorem 1.

Property 6: Each time a relation is chosen by AlgoritfimdMinseton line 4, it
has a number of adjacent edges of exactly: Max |[(F2)

Proof: The element with the highest number of adjacent edgédm® ielement in the
smaller sub graph, and from property 5, is connectedallitlements of the bigger

sub graph.

Property 7: The equal relation can be added to the partition of thetihgaet by
dividing it into two sub relations: less-than-or equal greater-than-or-equal, each
of which appear in its respective sub graph and do not ehdregnature of the
bipartite graph. As a result:

c nEpEn@pn{n(=s)p}

This property is illustrated in figure 3.5.
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A B C D E F G H
< = S = 2 < > =
1 | 1 1 1 1 1 1
\_|_l | I | | | | | |
y \4
St S
A L 382 <
C o< Se E
F o N, e
Partition“<” Partition“>"

Figure 3.5: Bipartite constraints assignment

Proof: The< part of an equality will not conflict with any relation the ‘<’ ($;)
partition, and will conflict with every relation frothe partition >’ the = relation
originally conflicted with. The proof for the partitio&) is equivalent.

For S: The “<"partition includes the following relations: {<, and the< part of

the equality}.
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For S: The “>"partition includes the following relations: {=, and the> part of

the equality}.

Property 8: The maximum sufficient number of elements to removenéke the
system consistent sMin (]S, |S|)
Proof: At most, removing the entire smallest set will remameonsistency

(bipartite graph).

Lemma 8: Algorithm FindMinsetfinishes with a set [§ Min (|S], |S])

Proof: From property 6, we know that each time algorithimdMinsetchooses a
relation, it is the one conflicting with Smax = argM&, |S|). Then Algorithm
FindMinsetchooses a relation in the smallest partition. Aét@ch step, exactly one
relation is removed from the current Smin set, and esgelation(s) may be
removed from Smax. Then, either Smax becomes leassSmin, in which case the
next element to be picked up will be in Smax, or Smihtee minimal set, and the
next element will be picked up in it. Eventually, Smin remaahe minimal set
during the entire procedure, and will be totally removed uncassive choices of

algorithmFindMinset

Property 9: Two different sets;h and Ly found with algorithmFindMinset have

the same minimal cardinality for a given input:
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Proof: The goal of theFindMinset algorithm is to obtain a minimal set of
inconsistent relations to remove from the original ingiest set of relations by
removing (Max (& )) edges for the bipartite graph at each stage untiluh#ar

of connecting edges reaches 0. Two sets found with algoFRthdMinsetwill not
necessarily have the same set of elements. If astagge, a tie occurs between two
elements in the smallest partition, or i||S |S], then the algorithm has the choice
among several elements to remove.

Let us consider these two cases separately.

* First, if two elements are tied in the smallest panitR, and R (R;, R, U
S), then both elements will eventually be picked up by dlgorithm in
arbitrary order.

* Second, if at any stage:|$ |$|, with R being the element with maximal
adjacent edges i Sand R being the element with maximal adjacent edges
in S. Removing R will possibly make |§ < |S], then at the next stage; R
will be picked up. Otherwise, it could make||S |S|, meaning that
removing R also removed at least 2 elements inThen the next element

to be picked up will be inS

Theorem 2: Algorithm FindMinSet finds a minimal set to remove from an

inconsistent set of point-based relation to make thesysonsistent
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Proof. The proof of theorem 2 is divided in two parts. The firstt paoves that
when the algorithm terminates, the remaining set otiogls is consistent. The
second part proves that the set removed from the orgghds minimal.

» Consistent:
When the algorithm finishes, n = 0 and S is empty. Whes 8mpty, every
inconsistent relation have been removed, consequentdy,syistem becomes
consistent.

*  Minimal:
Let I; be a set of inconsistent relation found whiimdMinset Next, assume that
there exists a minimal set of inconsistent relationsetoove to regain consistency
I, found with another algorithm thafindMinset which contains fewer elements
than L. The set of constraints to remove from an incondistgatem found by
Algorithm FindMinsetis not unique. In fact, algorithFindMinsetproposes one of
these sets if it exists. The choice of this set dependbke ordering of the variables
as FindMinset picks the first occurrence of maximal conflict baseddmality
within the set of all inconsistent relations. Hencegoading to the constraint
ordering, algorithmFindMinset may find different sets with same cardinality
(minimal). Let us call the set of all different sgdsssibly found by algorithm
FindMinset GI = {l14 lip, l1c, ...}
No proper subset of any set found by algoritRimdMinsetcan make the system

consistent; hence; Is not a proper subset af for any i (1<i < |Gl|).
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- S and $ are the sets held by the two subset of the bipartitebesiore the
algorithms run (original bipartite sets).
- 5, and s are the sets held by the two subsets of the bipartitevisiée the
algorithms are running (dynamic bipartite sets).
Contradiction

At one time, |8 # || andFindMinsetwill pick the element with highest
inconsistency degree, but Will not in order to have a different set from Since
the element picked byindMinsetis connected with all elements of the other set of
the bipartite graph, the other algorithm MUST pick allnedats of this last set
MAX(s1, $) (i.e., the set with the highest number of elemeat from property
8, removing MIN(s, $) is enough to have the bipartite graph totally discomukct

Therefore, the previous assumption is false, leadingrbef to a contradiction.

S S
l1={ Eimg .} Rae 7 _~7)
e sz z’,//
|2 = { voe ] e } R {
kk g

If 1, does not pick EImil it has to pick the whole sef,S

Figure 3.6: Relation conflicting with a maximum cardinagartition
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3.2.3 — Implementation

The algorithms mentioned in the previous section hava beplemented
with a graphical user interface to the software. Ipldigs the valid regions (if
consistent) on the time-line with the existing point-segee and allows the user to
commit the new point on one of the valid regions extéwely. Then it goes to the
next iteration for accepting the next new point. Inecad inconsistency, the
GenerateConflictSetlgorithm provides a set of conflicting constraints to the
FindMinsetalgorithm and dumps théinset for possible corrective action by the
user.

A graphical interface allows the user to add pointsemantally, and at
each new point, the system reacts giving the user tbemation about consistency

of the system and the minimum conflict set if applieabl

The interface shows the time line basf BETE]

and a set of options allowing the user

Java dpplet indow

D

Add a new point, load a pre-comput

example, or reset the current database
Figure 3.7a
Lobow E When adding a new point, the user has
NewRelaﬁon:W o <1 = . .
| mesopmna | C0F || the choice to set constraints between |the
assaraaion || ox | [ RN old set of points and the new point to be
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Figure 3.7b added.

At each stage, if the system is consist

s
the application prompts the user to & (1) e systemis consistent 5 =162 13,65,

the new point into a set of valid regio

Java Applet Window

on the time line
Figure 3.7c

The user then defines where the new

£
8]
4
b
0z
e}

point should be added. The valid regians

Java Applet Window

are shown in green on the time line.
Figure 3.7d

display the conflict set as it |s| (i) TheSvstemisNOT consistent:

{ (New < x1) conflicts with (New >= x6)
{New < x1) conflicts with {New > xd4)
{New < x1) conflicts with {New > x5)
{New < x2) conflicts with (New >= ®6)
algorithm. {New < x2) conflicts with (New > x4)
{New < x2) conflicts with {(New > x5)
{New < x3) conflicts with {(New > x4}
{New < x3) conflicts with {(New > x5) }

transmitted to the FindMinSet

Java Applet Window

Figure 3.7e

Then, the program suggests the user a

e
Q) One minimum set ta remove to make the system consistent : [ { (New<x2) (New>xd) (New>x5)} |

minimal set of relations to remove from

Figure 3.7f the previous query in order to make the

system consistent.
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This program has been implemented to test the correabhéise algorithms
as well as to conduct some experience, giving us a betterstanalding of the
OLQTR-P. The correctness of the algorithm is crucialvasuse it to solve the
OLQTR-I problem.

3.3 — Culprit detection in the Interval Problem
3.3.1 — Reasoning on the whole algebra is NP-Hard

The problem of finding consistency for interval algebrabsiously more
complex than for point algebra since interval has Iscbeelations against 3 for
point algebra. The extra set of relations comes fitwarfact that the constraints not
only deals with a unique discrete point, but with a stgrpoint and an ending
point. In fact, any interval can be thought as a papaifits, where the following

trivial property always holds:

Property 10: Any given interval A is defined by its two end points ad A
where A< A"
Hence, we will omit to specify this property for therrfalas and examples

presented in the rest of this thesis.

Since we can express an interval in terms of poirgs;am also express any
relation between two intervals as a set of point ualeproblems. Hence, the
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relation A (s) B can be represented as$¥M) & (A" < BY). This is sufficient to
describe the relation between both intervals and arer o¢tation between any two
points is redundant. Unfortunately, this dramatically iases the complexity of
the overall Interval problem. Actually, reasoning on Wi®le interval algebra is
known to be NP-complete. However, about 90% of theafigkkbra has been shown
to belong to tractable subsets. Recent works have pthaéthere exist exactly 18
maximal tractable sub-algebras (MTS), and that only prabknat do not belong
to one of these subsets are untractable. The nepterha entirely dedicated to one
of these sub-algebras known as the ORD-Horn Algeldadentified as (H) here.
It is an algebra with very different properties thhe others. The remaining MTSs

are explained in section 5.3.

37



Chapter 4 — ORD-Horn algebra

4.1 — Definition

Search for inconsistency and consistency restoratam lee done in
polynomial time on interval algebra when the set afst@ints being involved
belong to a tractable subclass of Allen’s interval algelbhe ORD-Horn algebra is
one of those, and it is also the only maximal tractableset of Allen algebra
containing all 13 basic relations making it one of the tnnateresting. Nebel and
Burckert discovered that any relation within the ORD-H@gebra can be
expressed in a conjunctive normal form where eachaliteontains at most one
relation of the type< or =, and any number of relations of type(Nebel and

Burckert).

Example: Consider an intervaDld committed to a time line. We want to add a
new intervalNew to the time line satisfying the following ORD-Horn interva
relation: New{o, s, fi}OId.This relation can be expressed in terms of constraints
between interval end points in following conjunctivemal form as:

(New < New’) n (New # New') n (Old < OId") n (Old # Old") n

(New < Old) n (New < Old") n (New # Old") n (Old < New") n

(New" < Old") n (New # Old) n (New # Old 0 New' # Old").

With index * standing for an interval’s ‘starting point’ and ‘standing for an

interval’s ‘ending point’.
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In Section 4.3, we introduce a systematic procedure icesx any ORD-
Horn relation into its equivalent point representatiatisying the ORD-Horn
definition. We will call the OLQTR-I problem with ORBern relations only as
OLQTR-I (O) problem. The following fact about the int& reasoning with
tractable subsets like that with ORD-Horn relationgmgortant in attacking the
OLQTR-I problem.
Assertion 3: The path consistency (or triangle-consistency betvesamy three
intervals) in an interval-reasoning problem is necesaary sufficient for global
consistency of the interval reasoning problem with &ialet subsets. In the ITR-I
framework all the old intervals ;@ S are committed on the time-line. Hence, for
each triangle (s n) that needs to be checked for consistency for s@mé j, only
two constraints could conflict with each other (i), and (n ys). This is a very
similar situation as with the OLQTR-P problem, since ploint-based reasoning is

also tractable.

4.2 — Literature

As mentioned earlier, any ORD Horn relation can beressed in a
conjunctive normal form, containing only clauses, witlmast one positive literal.
In other words, any relation belonging to the ORD-Hogehta can be expressed

as a conjunction of literals with any number of ineqieditZ) and at most one

expression of higher dimensioR ¢r =).
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Ligozat noted in his work that the basic interval tiela could be
represented as a point on a 2D Cartesian space wheXecthardinates represents
the starting point of an interval, and the Y-coordinaggsesents its ending point.
Thus, every basic relation on an interval is definedaa area on the 2D plane
space. It can be noticed on figure 4.1 that 2-dimensiotatiales cover an area,
whereas 1-dimensional relations are represented by asdéigment, and the O-

dimensional relation, equality, is represented as ra.poi

Figure 4.1: 2D plane space for interval representation

Hence, any set of relations can be expressed wiffeces$o the interval
being studied as an area on the 2D plane space. Moréayezat has discovered
that the interval algebra corresponded to a latticehasvn on figure 4.2. This
lattice becomes very useful when reasoning about thghherhood’ relation
between basic interval relations. Besides, Ligozatnddfia convex relation as

being the set of relations included in an interval on alticé. Thus, {m, o, s, ~f,
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eq} is a convex relation since it includes every relabetween the basic relations
m and eq. Last, Ligozat described a pre-convex set dioredaas a convex relation
in which some basic lower dimensional relations migat dmitted. This last
definition corresponds to the set of ORD-Horn relatidhgjozat).Table 4.3
associates the basic relations with their lattioerdinates, and their point-based

ORD-Horn representation.

0 1 2 3 4

Figure 4.2: Ligozat’s lattice representation
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Relation | Coordinates (x,y] ORD-Horn representation

b (0,0 B'<sA n AzB’

m (0,2) A=B"

0 0,2) B'<A" n A"#2B" n A<B" n A#B" n A<B" n AZB"
s 1,2 B'<sA" n A'zB" n A=B"

d 2,2) B'<sA" n A'#2B" n A<B n AZB’

f 2,3) A<B n A#B'n A'=B"

eq (1.3) A'=B" n A=B’

~f (0,3) A'=B* n B<A n A%B

~d 0,4) B<A n A#B n A'sB" n A'zB"

~s 1,4) A'SB" n A"2B" n A=B’

~0 (2,4) B<A"n A'#B ' n A<B n AZB n A'<sB' n A'#B"
~m (3,4) A'=B’

b ) A'SB n A'#B’

Figure 4.3: ORD-Horn representation of basic relations
As we can see on figure 4.3, some interval constrahae common point-
based relations within their neighborhood as it is the das~s and ~o. Both of
these interval relations havA’(< B* n A" # B*) in common.
We combined these facts in order to create a set of Immadeable of
expressing any ORD-Horn set of relation in its simp@RD-Horn formula. These

models are described in the next section.
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4.3 — Decomposition into a point algebra problem
4.3.1 — Positive model
Any interval basic relation can be expressed in terimgsaostarting and
ending point’s relation. To do so, we use Ligozat'sdattepresentation of basic
relations and enhanced it with point information re&atio groups of basic
relations on each axis. We called this model the ‘mesihodel’. It is illustrated in

Figure 4.4.

A+=EB+ ~ A+2B+

A+=B+

B+ AdzBd o OB+ o A-2B+

Figure 4.4: Positive model representation

43



This model allows us to represent a relation betweenimtervals in an

ORD Horn form. For example, relation start’'s ORDrRi@epresentation is given
by

e B{s}A=(B'<A"n A"#B* n A<B" n A#B" n A=B)
Since the constraint ’AB" must be satisfied in order to find an assignment fer th
interval constraint, the equation can be simplified byodny the terms 2:B*
and A<B" giving:

« B{sStA=(B'<A"n A'#2B" n A=B)
Moreover, this model is capable of expressing a setlatiors when the involved
relations are contiguous on the lattice (Figure 4.4). TthesORD-Horn formulae
expressing the set of relations {start, equal, start $a}es:

* B{s, eq, ~s} A=(A=B)
Furthermore, it is possible to state the point relatioha contiguous area of the
model by associating the relations given on the axiswillecall such an area a
‘convex box’ of relations. Let us consider the relasigstart, during, finish, equal}.

e B{s,d,f,eqgtA=(B<A"n A"2B" n A<B"n AZB") n (A'=B") n

(A=B) n (A<B n A#B n B<A" n BZA")

After simplification, the set of interval relatiortan be traduced in point-based
constraints as:

« B{s,dfeqA=(B<A"n A<B"'n A#B" n A<B n B<A"' n

BZA")
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The simplification procedure will be explained in seatd.4. We can note
here that the corresponding formula respects the OBD-efinition. But now,
we might want to remove some relations from a giwenvex box while keeping
the ORD-Horn properties. Actually, ORD-Horn algebra pesto remove some of
the lower dimensional relations within a convex box oifyinior relations. We
designed a second model to serve this purpose and whisatladel the ‘negative

model'.
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4.3.2 — Negative model
It is possible to express the negation, or nonexistaricbasic relations

respecting the ORD-Horn conditions using a model expresdisgnae of the

relations. We use the ‘!’ sign to signify that a lasterval relation does not belong
to a set of interval relations. This ‘negative modelsi®own in figure 4.5. Any

basic relation can be expressed as the disjunctidheopoint constraints given by
the model. Note here that only absence of lower daémeal relations meet, start,
finish, finish inverse, start inverse, meet inverse, equdy and the higher

dimensional relations before, before inverse can peesented in an ORD-Horn
way. Before and before inverse can actually be added temoved from any

preconvex relation without changing the property of thecqumeex relation, as

defined by Ligozat. This is simply due to the fact tha thgher dimensional

relations before and before inverse are located abolmdaries of the lattice.
Adding the negative expression of a higher dimensionktioa renders the

relations non-ORD-Horn.
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B+=A+

At+=B+

B+=a- ! A+=B+

A-=B+

A+=B+

Figure 4.5: Negative model representation
With this model, we can express relations such as U-{dgrevU is the set of all
basic relations, also referred to as the Universeh@srsin the example below:
« B(U{eq) A=(A" 2B OA*£B"

Now, by combining both models, it is possible to express@Rip-Horn relation
from a ‘box’ expressed using the positive model, and remosingent lower
dimensional relations with the negative model. A procedio automate the
simplification is described in section 4.4.1. This procedins expresses the
formulae of the convex relation in which every clausetains at most one positive
literal (=, <) and any number of negative literad§ {n a conjunctive normal form.
The procedure then adds the absent relations as givagure 4.6, hence reducing

the formulae to a pre-convex relation respectingdR®-Horn definition.
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4.4 — Algorithms

In order to transpose the incremental interval proldlera succession of
point problem, we include the ORD-Horn clauses of the goibe added in the set
of existing clauses. Then, we pick the unit clauses (efatisat contain only one
relation) which are, by definition the tightest coastts, and some inequalities (the
less constraining relations) in the remaining multipleis¢s, making sure than no
inequality conflicts with any possible ORD equivalenceti@ta“=" and compute
them together. The next step consists in grouping respBctihe relations
involving the new ‘start point’, and the new ‘endpoinafhd apply on both sets the
FindMinSetalgorithm. If a box is found for both start and end piand there
exist a way to choose a start point < an end pointy the system is consistent.
Otherwise, theFindMinSet algorithm finds the independent culprits, involving
inconsistent start point and/or the end point.
4.4.1 — Normalization Algorithm

The normalization algorithm presented in this sectionverts a set of
interval ORD-Horn relations into a point-based ORDri formula. But first, we
must introduce the ‘negative lookup table’ used for absenerlodvmensional

relations.
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Relation | Coordinates (x,y) ORD-Horn representation of
in lattice absent relations
Im (0,1) A #2B"0A <B
Is 1,2) A 2B OA"<B"
If 2,3) A"2B'0A <B*
leq (1,3) A 2B OA 2B"
I~f (0,3) A"2B" DA <B
I~s 1,4) A 2B OB <A’
I~m (3,4) A"2B OB <A’

Figure 4.6: ORD-Horn representation of lower-dimensiongatiee relations

This table is used in the Normalization algorithm instefthe negative
model. It avoids some computation to simplify the expo@ss Next, we define an
‘opposite relation’ as:

e X#YforX=Y
e X=YforX£Y
e X<YforY<X
Before exploring the core of the Normalization algon, we must introduce a few

linear procedures used by the Normalization.
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» Algorithm get_x: returns the lattice coordinate of a baslation on the X

axis.
Input: A basic interval relation r
Output: an integer corresponding to the x-coordirwdtr on the lattice
Algorithm get_x (basic relation r)
1 Switch (r)
2 Case b:
3 Case m:
4 Case o:
5 Case ~f:
6 Case ~d: return 0
7 Case s:
8 Case eq:
9 Case ~s:return 1
10 Case d:
11 Case f:
12 Case ~o: return 2
13 Case ~m: return 3
14 Case ~b: return 4
end algorithm get_y
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» Algorithm get_y: returns the lattice coordinate of a daslation on the Y

axis.
Input: A basic interval relation r
Output: an integer corresponding to the y-coordirwdtr on the lattice
Algorithm get_y (basic relation r)
1 Switch (r)
2 Case b: return 0
3 Case m: return 1
4 Case o:
5 Case s:
6 Case d: return 2
7 Case ~f:
8 Case eq:
9 Case f: return 3
10 Case ~d:
11 Case ~s:
12 Case ~o0:
13 Case ~m:
14 Case ~b: return 4
end algorithm get_y

The two algorithms above are a set of switch statesnegturning the coordinates

over the lattices axis (lines 1 through 14).
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* Algorithm Simplify: get the interval lattice of a givédRD-Horn relation.

Input: an array of clause

Output: a single clause result of the simplificataf the input set of clauses
Algorithm Simplify (clause[])

1 Sort every clause by size in decreasing order

2 k = number of clauses

3 while (k>1) do {

4 Next_Clause = clause[k]

5 for each relation r in Next_Clause do {

6 r = Current_Relation

7 remove the opposite of r in each other clause
8 }

9 remove Next_Clause

10 k--

11 }

12 return clause[1]

end algorithm Simplify

Simplify translates a set of point-based relations over iadadixis into an ORD-

Horn formula. The procedure takes the largest clausestmohks’ with respect to

smaller clauses. Line 1 sorts every clause by size. [dtgest clause is held in
clause[1]. While there remains more than one clause @), the algorithm picks
the last clause (line 4) and remove every ‘oppositetioglcheld in the last clause
from the every other clause (lines 5 through 8). Lines ® Hhremove the last
clause from the current set of clauses and decrerhertbtal number of clauses.

Finally, line 12 returns the clause containing
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. Algorithm lookup_Negative_Table: Return the point based formofasn

absent basic interval relation in ORD-Horn form.

Input: a pair of integers

Output: a clause representing an absent relation
Algorithm lookup_Negative_Table (x,y)

1 if (x==1 &y ==1)return (AzB* 0 A <B)

2 else if (x==1 & y == 2) return (& B" 0 A* < B")
3 else if (x==2 & y == 3) return (AzB* 0 A" <B")
4 else if (x==1 & y == 3) return (& B0 A* #B")
5 else if (x==0 & y == 3) return (AzB* 0 A" <B)
6 elseif (x==1 & y==4) return (& B OB < A"
7 else if (x==3 & y == 4) return (AzB" 0 B* < A")
8 return error (“not a lower dimensional relation”)
end algorithm lookup_Negative_Table

lookup_Negative Tableeturns the point-based formula from an absent atomic
lower-dimensional interval relation (lines 1 througlo?hull if the relation is not a

lower dimensional relations (line 8).
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We can now introduce the Normalization algorithm
* Algorithm Normalization: Transforms an ORD-Horn intgrvelation into

its corresponding ORD-Horn point based formulae.

Input: an interval relation R in ORD-Horn
Output: a point based ORD-Horn formula

Algorithm Normalization (ITR-1(O))

1 /IGet the convex box

2 integers x_min, y_min =4

3 integers x_max, y_max=0

4 initialize x_clause to be empty

5 initialize y_clause to be empty

6 initialize AbsentRelation to be empty

7 /IGet ranges from the input set of relations §Qy < 4) on the lattice
8 for each basic relation b in R

9 if (x_min > get_x(b)) x_min = get_x(b)

10 if (y_min > get_y(b)) y_min = get_y(b)

11 if (x_max > get_x(b)) x_max = get_x(b)

12 if (y_max > get_y(b)) y_max = get_y(b)

13 for (X = x_min to x_max)

14 add X_Positive_Model(x) to x_clause

15 for (y = y_mintoy_max)

16 add Y_Positive_Model(y) to Y_clause

17 for (X = x_min to x_max)

18 for (y = y_min toy_max)

19 if (relation(x,ylJR)

20 add lookup_Negative_Table(x,y) to AbsentRefat
21 x_clause = Simplify(x_clause)

22 y_clause = Simplify(y_clause)

23 return x_clause y_clausen (conjunction of all element in AbsentRelation).

end algorithm Normalization
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4.4.2 — Sorter Algorithm
The Sorter algorithm split the set of clauses givenhay Normalization
algorithm into two sets of relations involving respediivehe starting and the
ending points of the interval to be added. It also chesk€dnsistency on equal
interval bounds. If an inconsistency is found at thigllethe algorithm returns the

set of inconsistent relations.

Input: A constraint se€ as a conjunctive normal ORD-clausal formuta, &, ..., 6}

Output: A pair of constraint sets over boundarynpobf the intervaNewasL® andL’, or a set of inconsistent relations
Algorithm Sorter (a set of Clause C)

1 initialize a set for the chosen literals,= empty;

2 initialize a set for inconsistent relatiofs;= empty;

3 FOR each clausgin CDO

4 IFciis unit-clause DO

5 L:=L Ug;

6 ELSE IF there exist antype literalp from ¢; such thap does not conflict with any literal in DO
7 assigrh =L U {p};

8 ELSE IF the positive litergdl from ¢; does not conflict with any literal ibh DO

9 assigrL :=L U {pl};

10 ELSE DO

11 N:=NU{p}

12 IFN is not empty DO

13 RETURN N;

14 GroupL into L” with elements involvingNew only andL" with elements involvingNew' only;
15 RETURNL andL";

end algorithm Sorter

/I {note that each element bf is only a literal and so, must involve eitiiNew or New" but not both}
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Lines 1 and 2 initialize the set L in which the choseati@hs will be stored, and
the set N in which inconsistent relations might be stoifethe system is
inconsistent. Then, for each clause (line 3) store uratiogls in L(Lines 4 and 5).
If the current clause is not a unit clause, choose tor@é $he relation involving
inequality if it does not conflict with any other relatiin L (lines 6 and 7). If the
inequality relation conflicts with some relation in L,ewpick the highest
dimensional relation and store it in L if it doesn’hiwt with L (lines 8 and 9).
Otherwise, store the relatigmnin the set N as one culprit for leading the system to
inconsistency (lines 10 and 11). Once every clause have beguted, if the Set
of inconsistent relations is not empty, return it (lii2sand 13). Otherwise, sort
every relation into two set,’land L, respectively involving the starting and ending
point of the new interval (line 15).

When the algorithm terminates, if no inconsistencyehasen found among
eventualequalrelations, theFindMinSetAlgorithm is run on both sets, and L.
Each of the algorithms described above, Nermalization,the Sorter, and the
FindMinSetalgorithm are polynomial algorithms. However, in casenofh pre-
convex constraints, i.e., for the general unresgttlichput, thesorteralgorithm may

have to backtrack when inconsistency is detected bitltMinSetalgorithm.

The next section deals with the other ‘more genéractable subclasses of

Allen’s Interval Algebra.
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Chapter 5 — 17 maximum tractable subalgebras

The ORD-Horn Algebra was the first Maximal tractablgebra to be
discovered. This algebra’s properties are very diffefemh the other algebra’s.
Since it has been described in details in the previous chamewill only consider
the 17 other MTSs in the remaining of this chapter. This enagiirts with a
discussion on past and current interest on the studyaofability in Allen’s
Algebra. Next, we establish a formal graphical appraddhe MTSs and describe
a simple approach to count them. This is a new way tierstand and reason on
these algebras. We believe this approach will to ha@pe¢hder understanding the
nature of the tractable algebras. Finally, we proposgstematic way to classify

any interval relation in one of 17 of these algebras.

5.1 — Definition of maximum tractable subalgebra (MTS)

A maximum tractable algebra is a set of intervalti@s respecting the
definition of algebra for which there exits an algorithmattban decide satisfiability
for any problem in polynomial time. Also, if any relatimmadded to the algebra,
either one of the condition mentioned above is vemlafo resume, an MTS is:

* Closed under composition, set union, set intersection eowverse
operations
» Tractable, as proved by Krokhin et al

» Maximal: no super algebra of a MTS is tractable.
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5.2 — Literature

After the ORD-Horn algebra was discovered Thomask&rgren, Peter
Jonsson discovered in 1997 21 large tractable subclasseglamifjed eight of
them as being maximal tractable algebras. Shortly aftey, discovered 10 more
MTSs. Finally, Krokhin proved that reasoning in a fragmeott entirely included
in one of the 18 MTS is NP-complete.

In their paper “Reasoning about Temporal Relations: Thactable
Subalgebras of Allen’s Interval Algebra”, Krokhin et alpeessed the formal
definition of the 18 MTSs. This is their original repnesgion. We must inform the
reader that this notation uses ‘p’ (precede) for oumrvaterelation ‘b’ (before)
basic relation, and the superscript for our prefix ‘~' defining the ‘converse’
relation. Furthermore, the superscrifit is used to denote the conjunction of two
conditions. For example, (80 r < (d*)** means that both,

« oOre d*
and
« o'0r-d

hold.
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The notation originally designed by Krokhin et al isegivbelow:

1. Sp={r|rn (pmod¥YH)* £ @ = (p)' O 1}

2. Sd={r|rn (pmod'tH*£@F= (@HY* Or}

3. So={r|rn (pmod'tH** £ @ = (o)* O r}

4. AL={r|rn (pmod'tHY* £ @ = (sH* Or}

5 A2={r|rn (pmod'fY)* £ @ = (sf* O}

6. A3={r|rn (pmodff'# @= (s)* Or}

7. Ad={r|rn (pmodf) £ @ = (sy* O}

8. Ep={r|rn (pmodsj' # @= (p)*! O 1}

9. Ed={r|rn (pmodsj* # @= (dy*' O r}

10.Eo = {r | rn (pmodsj* # @= (o) O 1}

11.B1 ={r | rn (pmodsj* # @= (FH* O n}

12.B2 ={r | rn (pmodsj* # @ = (H** O r}

13.B3={r|rn (pmod'sH* #@= (FH* O n

14.B4 = {r | rn (pmod's)* # @ = (FH* O n}

15.8*={r|rn (pmod"¥H)* £ @ = (fFH)* Or,and rn (ssH) # = (=) O 1}

16.E*={r|rn (pmodsj* # @= (sf* Or,and rn (fY)#@B= (=) Or}

17.H={rl rn (0sf*'#@&rn (0 +@= (d*Or, and
rodsf'#@&rn (df1)*+#@= (oy*Or, and
rn (pmit# @ &r O (pm)* = (o) O}

18.A={r|r£@= (3 0r}
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This notation can be quite confusing at first, but itniportant that the
reader understands which elements constitute the Maxiraatable Subalgebras
(MTS). Consider the following example for the MTS Sp:

A relation r belongs to Sp
1. if r contains any of the basic relation among pitfddthen p must belong
tor,
2. if r contains any of the relations amongnp*o™df, then p* must belong to
r.
We can now move on our graphical representation cfTHATSs.
5.3 — Express 17 MTS, a graphical representation

In this thesis, we assign different names to theSThan those defined by
Krokhin et al. However, the original names will appeapanenthesis so that the
reader can refer to the original work. Also, we walhrrange the order the algebras
are presented. For each algebra, there is a ‘lattadeinmand a ‘space model’ to
represent it. But before turning to the graphical repitesien of the algebras, let us
introduce some vocabulary we will use in the reshisf thesis.

Definition 5: A sublatticestands for an MTS sub-lattice. It represents anl&cyc
set of relation, subset of the complete algebraryEseblattice contains a “pivot”,
defined below.

Definition 6: A pivot is a mandatory relation for a given algebra when other

relations are present in the original set. If for @egialgebra and a given set of
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input relation the pivot is absent, and another relatiothe sublattice is present

implies that the relation is not in this algebra.

Algebras 1 through 17 can be read as follows:
- To check if a relation is in an algebra with the ¢tsttmodel:
Only consider the sublattice relations. For each atoeftation belonging to
a sublattice, the corresponding pivot must be preserthe relation is not
in the algebra.
- To check if a relation is in an algebra with the spacéel:
Any atomic relation matching the left side of an imgtlion requires the right side
of the implication, or the set of relations is mothe set. Figure 5.1 below shows

the graphical representation of these algebras.

Algebra name and Lattice model Space model

cardinality

ALJ[L] - (A1)

W48+ 2542 = 2178 d

(Nx<X)>(~s)

l
T 2 &

(Nx=X0)Y(Ny>Y)->(~s)

(Nx>X)->(s)

(NXEX)N(NY<Y)->(s) /
o
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ALJ[2] - (B3)

W48+ 2542 = 2178

(Nx<X)>(=D
(NX=X)"(Ny>Y)-> (~f)
(Nx>X)-> (1)

(NX=X)"(Ny<Y) ->(1)

A

by

—b

ALJ[3] - (A2)

W48+ 2542 = 2178

Nx<X)>(9)
(NX=X)"(Ny<Y)->(s)
(NX>X)->(~s)

(NX=X)*(Ny>Y)->(~s)

ALJ[4] - (B4)

W48+ 2542 = 2178

(Nx<X)>(~);
(NX=X) A(Ny<Y)->(~f)
(NX>X)->()

(Nx=X)*(Ny>Y)->(f)
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ALJ[5] - (A3)

W48+ 2542 = 2178

Ny<V)>()
(Ny=Y) (Nx>X)->(s)
(Ny>Y)->(~s)

(Ny=Y)MNx<X)->(~s)

ALJ[6] - (B2)

W48+ 2542 = 2178

(Ny<¥)->(f)
(Ny=Y)*(Nx>X)->(f)
(Ny>Y)->(~1)

(Ny=Y) (Nx<X)->(~f)

ALJ[7] - (A4)

W48+ 2542 = 2178

Ny<V)>()
(Ny=Y)"(Nx<X) ->(s)
(Ny>Y)->(~s)

(Ny=Y)M(Nx>X)->(~s)
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ALJ[8] - (B1)

W48+ 2542 = 2178

Ny<V)>(-;
(Ny=Y) (Nx<X)>(~)
(Ny>Y) >(7)

(Ny=Y)" (Nx>X) ->(1)

ALJ[9] - (Sp)

M4 27+ 27+2% = 2312

(Nx<X)->(b)

(Nx>X)-> (~b)

o—

ALJ[10] - (Sd)

W4 27+ 27+2% = 2312

(Nx<X)->(~d)

(Nx>X)-> (d)

e
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ALJ[11] - (So)

W47+ 27+2% = 2312

Nx<X)>(0)

(Nx>X)->(~0)

fo—

7]

ALJ[12] - (Ep)

M4 27+ 27+2% = 2312

(Ny<Y)->(b)

(Ny>Y)->(~b)

i

ALJ[13] - (Ed)

W4 27+ 27+2% = 2312

Ny<v)>(d)

(Ny>Y)->(~d)
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ALJ[14] - (Eo)

W47+ 27+2% = 2312

(Ny<Y)->(0)

(Ny>Y)->(~0)

e

ALJ[15] - (S%)
210428+ 254+ 28+

24+ 2*+224+2°=1445

(Ny<Y)->(~1)
(Nx=X)->(eq)

(Ny>Y)->(f)

ALJ[L6] - (E¥)
210428428425+

24+ 28+224+2°=1445

(Nx<X)->(s)
(Ny=Y)->(eq)

(NX>X)->(~s)
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ALJ[L7]- (A)

2'2=4096

Pivot (eq):

Nx=X

Ny=Y

Figure 5.1: Graphical representation of 17 MTSs

Example: The sublattices for ALJ[1] are {b, m, o, ~f, ~d, s)da-b, ~m, ~o, f, d,
~s}, and there respecting pivots are {s} and {~s}.

The cardinality of the 17 algebras is shown in table2.elements in any
of these algebras can easily be counted using the grhpé&pasentation. The
following example shows how the cardinality of ALJjdlcomputed.

Example: The number of elements in ALJ[1] is given by all thesgble
assignments of relation R ALJ[1]:
 If (s) and (~s) belong to the relation R, then anyle 11 remaining
relations might belong to R*2elements.
» If (s) belong to the relation R and (~s) doesn't, taag of the 5 remaining
relations from the sublattice of (s), and eventually ¢élqual relation might

belong to R: 2elements
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» If (~s) belong to the relation R and (s) doesn't, taag of the 5 remaining
relations from the sublattice of (~s), and eventutldly equal (eq) relation
might belong to R: 2elements

* If neither (s) nor (~s) belong to the relation Rertlonly (eq) or no relation
might belong to R: 2 elements

Hence, the total number of elements for ALJ[1] i9+2°+2°+2 = 2178. A similar

approach will give the cardinality of the remaining aiges.

5.4 — A generic algorithm

In this section, we will propose a generic algorithm bépaf solving the
OLQTR-I for any of the 17 MTSs in polynomial time. Moker, in case of
inconsistency, the algorithm proposes a minimum numbenazfifications of the
original problem to set back consistency to the problowever, the class of
solvable problems with this technique is far less interggtian the possibilities
offered by the ORD-Horn algebra. This issue is discusstte following section

5.4.1 — Classes of solvable problems

The algorithm presented in this section can only solve prableelonging
to one of the MTS presented earlier in this chapter. dtisiderably reduces the
usability of this algorithm. As a matter of fact, sinceredation between two
committed intervals consists of a single basic ratatimly the pivots and the equal
relations are allowed between two committed interval®nsider the two

constrained temporal networks in Figures 5.2 and 5.3. Eveaatiorlin the first
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figure belongs to the set {0, eq, ~0o} and is therefoeetable with ALJ[8] or
ALJ[14], whereas the committed relations in Figure 5.3 dussbelong to any
MTS. The set of relations between the intervals{ake o, d, eq, ~0} and hence is
not tractable with the algorithm presented in this sectidote that it might be
tractable within, and only within the ORD-Horn class, deji@non the constraints

between the new interval to be added and the committedrals.

Figure 5.2: Constrained temporal Figure 5.3: Constrained temporal

network in ALJ[11] and ALJ[14] network that does not belong to any MTS

Hence, the class of solvable problems requires that rétations between
committed intervals satisfy the following condition:
Assertion 5: For any pair of committed intervalsdnd b:
e lirla=rO{pv, ~pv, eq} where ‘pv’ is any basic interval relation egt
meet.
Proof. Consider a constrained temporal network T where basitordabelong to
ALJ[I], 1<i<17 with pivotsO {pv, ~pv, eq}. Suppose a relation r' does not belong

to { pv, ~pv, eq}, then, obviously, £1 ALJJi].
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5.4.2 — Ordering the committed intervals
Knowing that for a tractable problem, the constraisvben committed
intervals respects assertion 5; it is possible to assiptal ordering to the set of
intervals by redirecting the edges of ‘inverse’ intervalset them in a ‘forward’
type of relations only. Hence the previous tractable @kanm Figure 5.2 can be

modified to give the constrained temporal network of Fidgude

Figure 5.4: Forward relations of figure 5.2

The ties generated by equality are assigned arbitrarilycéjehe total order T over

the basic relation overlap defining the temporal netvatutwve is:
i T(o):{D > A > C> B}

This total ordering can be viewed as a combination of contsrigke:

* (D{o} (A{o}(C{eq}B))
Assertion 6: there exist a total order}) for any temporal constraint network

belonging to one of ALJ[i] 1<i<17.
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Proof: from assertion 5, the relation between any two i@tisrin a constrained
network must belong to {pv, ~pv, eq}. Since for any intesMaland b, the trivial
property | {pv} | 2=1> {~pVv} | 1, every relation r can be expressed as its non-inverse
basic relation by reordering the intervals. The totaleorgenerated by equality
relation does not matter and can be chosen arbitrarily.

To summarize:

* The total ordering for the algebras involving before (bjertap (o) or
during (d) pivots and their respective inverses is giverhbytder of either
boundaries point.

» The total ordering for the algebras involving start (s) pamd its inverse is
given by the end point.

» The total ordering for the algebras involving finish (fygt and its inverse
is given by starting point.

* The basic relation equality belongs to every algebrhtha total ordering
for the algebra with equality as basic relation opiasts is arbitrary.

5.4.3 — Deciding satisfiability
In order to remain in the tractable class, the irtlerglation constraining a
new interval in OLQTR-I must also belong to the AL3ijd hence includes one of
the pivots relation or the equality relation.
Proposition 7: The satisfiability of the OLQTR-I problem for a sdtamnstrained
temporal network is equivalent to finding a new non-nulaltarder NewT,

including the new interval.

71



Example: Suppose there exist a total order T on some temporal aoistetwork

such as:

Figure 5.5a
Then, one can easily construct a scenario where eo@straint is satisfied. Such a

scenario is presented in the following figure:

I

Figure 5.5b

Suppose we now want to add a new interval satisfying tleenviolg constraints:
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* New/{o,f, d, eq, ~0}1
* New{b,o,s,~f}b
* New{b, m o}k
* New {~o0, ~d} I4
* New {~b, ~0, ~s} §
Obviously, each relation belong to the ALJ[14] with {0}-a8 pivots. Thus we can

construct the total order T of committed intervalsalewv:

e T=(s{0}(I4{0} ((11{eq}3) {0} (12))))

o T=(Us>1ls> 11> 13> 1)

We now must find a position where to insert interval Nespecting the preceding
order. To do so, we only redirect the constraints ddfat®ve only considering the

pivots in forward way:

[New {0} I; OR I, {o} New] = [New > |; OR |, > New]

[New {0} I ;] = [New > I]

[New {0} I 3] = [New > I3

[14 {0} New] = [l4 > New]

[Is {o} New] = [I5 > New]

It now becomes trivial to find an assignment for New éxists.
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Lemma 7: inconsistency can be found by looking for a cycle on dhmected
temporal constrained network with the new interval.

Assertion 8: The directed temporal constrained network is a compieteh.

Proof: (Trivial) there exist a relation between any two in&svn the network.
Assertion 9:in OLQTR-I, choosing a relation other than one of pinets or the
equality relation translates the problem into a diffesdgebra on the next iteration
on ALJJI].

Proof: This proof directly follows Assertion 5. After the newtarval has been
added to the set of committed intervals, at least elaion between New and a
committed intervald ALJ[i] and hence, becomes only tractable in the nekio$
iterations if the relation between a new intervall avery committed interval
belongs to the ORD-Horn algebra, only algebra to incéwdey atomic relation.
Assertion 10: on detecting inconsistency in an OLQTR-I, relaxing at tng&
relations by adding a pivot to these relations, with ndpé¢ine number of intervals
in the problem, is sufficient to restore consistenicthe problem.

Proof. This proof relies on the bipartite nature of the OLQTRAP.most n/2
constraints conflict with each other. Adding a ‘pivad’ at most n/2 relation that
only contain ‘inverse pivot’ relaxes every constrairesulting in a directed
temporal constraint network with at least ‘pivot’ apassible assignment for each
relation , thus eliminating every cycle created by mooastrained relations

(lemma 7).
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5.4.4 — Algorithm
This algorithm transposes the OLQTR-I to an OLQTR-P mmbto decide the
satisfiability of the overall problem since considermgly one of the boundary

points of each pivot is sufficient to decide consisyess mentioned in assertion 6.

Input: A OLQTR(I) problem within ALJ[i] (1<i<17)

Output:

Algorithm TrSAT

1 for each relation jRn T, that does not contain a pivot and it’s inverse
2 if N (~pv) R

3 mark Ras >’
4 else if N (pv) R

5 mark Ras ‘<’
6 elseif N (=) R

7 mark Ras ‘=’
8 end else

9 end for

10 run PoSeq ong

11 if inconsistent do

12 if inconsistent points are marked < do

13 suggest (pv) for each inconsistent point
14 else if inconsistent points are marked > do

15 suggest (~pv) for each inconsistent point
16 end else

17 end if

end Algorithm
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Chapter 6 — Conclusions

In this work, we first develop an algorithm that decidassfiability for the
OLQTR-P problem, and on inconsistency detection, pregpas minimal set of
relations to remove to ‘roll back’ to consistency. Wen use this algorithm to
extend the capabilities of the minimum culprit detectiona subset of Allen’s
interval algebra known as ORD-Horn algebra. Finally, inteoduce a graphical
way to express every other maximal tractable algedir#dlen’s interval algebra,
and propose a battery of algorithms to solve the culptéation problems for these
maximal tractable subalgebras. Hence, every tractaisie of the Interval Algebra
is taken care of in this Thesis.

However, it might be interesting to be able to dati ¥he full algebra even
though the reasoning would not end up in polynomial time. Fuiunds could
involve non-polynomial algorithms to deal with such type foblems.
Nevertheless, depending on the number of entries forvangproblem, the

algorithm is not guaranteed to finish ever.
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Chapter 7 — Related works

Identification of “causes” behind inconsistency for soléie purpose of
improving the search algorithms has been occasionadploeed in the CSP
literature. Recent works like Jussien and Lhomme propogésization for
existing conflict based-heuristics algorithms as in thleuTsearch (Glover) and in
backtracking-based search algorithms. For exammpdekjumpingand dynamic
backtracking attempts to find the appropriate constraints at the tmhe
backtracking. Other works usirigynamicVariablesOrdering (Bacchus and Van
Run) tend to enhance performance by looking forward itrdgesearch, applying a
method to sort the variables in such a way that the decmngputation of known
algorithms becomes faster and more efficient. Anottehnique using the
‘QUICKXPLAIN’ (Junker) algorithm looks for relaxationof over constrained
problems. The purpose of another algorithm called "Ng ledr{idgayama and
Yokoo) is to build and maintain a set ®&fo-Good constraints leading to
inconsistencies, or for which optimization is not @fnt. Hirayama and Yokoo
combined this method with asynchronous weak-commitmenttsedgorithm and
improved the technique of no-good learning. Similatigbu-search explores
different arrangements of conflicting sets, keepingktrat some solutions that
should not be explored in the next iterations, reindethemTabu Several of such
‘optimization algorithms’ have been attempted within thet few years as in the
“Guided Tabu search” (Klau et al), where the user igited to aid in enhancing

the efficiency of the searcNo-Good backmarkingRichards et alyvorks almost
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the same way. It processes learning of constraints dseiagch for which a failure
occurred and intends to ‘repair’ some non-optimal pathsedse of topological
relations between the solutions is implicit in this heicisHowever, only a few

works have investigated the direction of providing suggestiorthe user (as an
output of the system on detection of inconsistencyjHe purpose of his/her taking
appropriate actions by removing or modifying some constrainslhastre et al

suggest considering the user's choices as assumptions.

Identification of “causes” behind inconsistency for tlmdely purpose of
improving the search algorithms has been occasionadploeed in the CSP
literature. Several of such ‘optimization’ algorithms héaeen attempted within the
last few years as in Klau et al, where the user igitgdi to aid in enhancing the
efficiency of the search. Richards et al no-Good backmg, works almost the
same way. It processes learning of constraints duringlsdar which a failure
occurred and intends to ‘repair’ some non-optimal pafhss thesis proposes an
extension of the incremental CSP framework for whicteractive decisions
involve a method for computing a maximum subset of the sistdices to ensure
consistency. Such incremental temporal scheme is bleangughly investigated as
in Gerevini, but no work combines the incremental schemitdén minimum
relaxation as we propose in this work. Thus, many of stiotelligent”
backtracking heuristics (or other extensions of thesadal CSP) may be useful for

further investigation orconsistencyrestorationin constraint reasoning systems.
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Boguraev and Ando attempt to propose a solution to ‘unifgrination extracted

from temporal problems using TimeML modeling.
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