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Abstract. Here we show how the idea of dynamic backtracking can be
applied to branch and bound optimization. This is done by exploiting
the concept of valued nogood introduced in [6, 16, 17]. However, simple
replacement of nogoods with valued nogoods does not lead to a correct
algorithm. We show that a way to achieve correctness is to use at each
variable a separate nogood storage for each position that the variable
holds in the order on assigned variables. This is a slightly different version
to the one in [5].
Constraint Satisfaction Problems (CSPs) are typically addressed with
some kind of backtracking algorithm. A seminal work that helped to
deeply understand and unify many backtracking algorithms was [9]’s dy-
namic backtracking (DB). Optimization problems are often solved with
branch and bound (B&B) algorithms, a family of algorithms related to
backtracking. However, no equivalent of DB’s heuristic was so far de-
veloped for branch and bound. The algorithm proposed here, Dynamic
Branch&Bound (DBB), is optimal and guaranteed to terminate, having
polynomial space complexity and a reordering policy similar to Dynamic
Backtracking. The experimentation performed validates the correctness
of the theory. Like Dynamic Backtracking, whose reordering heuristic is
known to be rather inefficient, the interest of the proposed algorithm is
shown to be mainly theoretical.

1 Introduction

Constraint Satisfaction provides a framework for modelling and solving prob-
lems that can be represented by a set of variables taking values from corre-
sponding domains and where the possible assignments are restricted by a set
of constraints (predicates). A large set of flexible/general algorithms exist for
solving Constraint Satisfaction Problems (CSPs). Some of the most general such
algorithms are based on inference with nogoods [9, 13, 8, 1, 3]. CSPs do not model
any kind of optimization requirement. An extension allowing for modeling some
optimization problems is given by Valued CSPs.

Definition 1 (VCSP). A Valued CSP is defined by a set, X, of variables X =
{x1, ..., xm} where xi can take values from a domain Di, and a set of functions,
f1, f2, ..., fi, ..., fn, of type fi : Xi → IR+, where Xi ⊆ X.



The valued constraint satisfaction problem consists in finding
argmin

x

∑n

i=1 fi(x|Xi
), where x assigns values for all variables in X.

For discrete problems with binary functions fi, the functions can be repre-
sented by matrices with values. To model CSPs with VCSPs, infeasible tuples
can be set to ∞, and feasible ones to 0.

Most algorithms for addressing CSPs are not directly applicable to VCSPs,
and in particular no optimization equivalent was known so far for versions of
Dynamic Backtracking [9, 13, 8, 3, 10]. Here we show how the first of these al-
gorithms can be adapted to solve valued constrained satisfaction problems by
exploiting a new type of nogoods, introduced in [16, 17].

2 Background

Many constraint satisfaction algorithms are based on reasoning with nogoods
but only few optimization algorithms boast some usage of nogoods. We first
introduce the concept of nogood and nogood-based backtracking algorithms for
constraint satisfaction, as well as some well known optimization algorithms and
value nogoods.

2.1 Nogoods

A nogood is a list of assignments that was proven impossible, by inference using
constraints [18]. It has the form ¬(〈x1, v1〉, ..., 〈xt, vt〉) and is often denoted ¬N

where N is a set of assignments.
Given a nogood ¬(〈x1, v1〉, ..., 〈xt, vt〉), one can infer an elimination ex-

planation [9] for removing the value vt from the domain of xt given the
assignments E = 〈x1, v1〉, ..., 〈xt−1, vt−1〉. This inference is denoted (vt, E),
and is semantically equivalent to an applied nogood, (i.e. the inference):
(〈x1, v1〉, ..., 〈xt−1, vt−1〉) → ¬〈xt, vt〉

Given a set of such applied nogoods, one for each value of a variable xt with
domain Dt = {v1, ..., vd}, the following version resolution can be used to infer
new nogoods.
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2.2 Dynamic Backtracking

Dynamic backtracking [9] is an algorithm where all inferences are performed us-
ing a polynomial number of nogoods, leading to a strong logical fundation. The



stength that was proven for such an approach is that it allows very flexible ways
to systematically explore the search space, in particular a scheme for reordering
of variables that were not possible otherwise. Additional previously impossible
heuristics for reordering variables in systematic search, but enabled by [9] no-
goods storage, were discovered in [13, 8, 3]. These reordering heuristiques were
shown to perform well only an limited types of problems [9, 1, 10]. The basic
method is given in Algorithm 1.

1. If all variables are assigned, return. Otherwise select a variable i that is not yet
assigned and use a mechanism generating elimination explanations, removing as
many values as possible from i using constraints with previously assigned variables.

2. If i has any value that was not eliminated, assign it with such a value and go to
step 1.

3. If all values of i were eliminated, apply a resolution step on all elimination expla-
nations of its values to abtain a new nogood N. If N is empty then return failure.
Otherwise let j be the last variable in N and transform N into an elimination ex-
planation for the current value of j. Remove any elimination explanation involving
j, unassign j and go to step 1 (optionally select i=j at next step).

Algorithm 1: Dynamic Backtracking (informal description)

2.3 Optimization Algorithms

Some of the most well known optimization algorithms guaranteeing optimal-
ity are Branch&Bound and A*. Branch&Bound can be seen as a version of
backtracking for optimization. While A* requires exponential space, a kind of
polynomial space iterative deepening of A* is commonly used in distributed al-
gorithms under the name of ADOPT [14]. An important class of optimization
algorithms is based on variable elimination [7]. The algorithms in this class have
both space complexity and time complexity that is exponential in the induced
width of the graph. The idea of consistency maintenance, that is ubiquitous in
constraint satisfaction [15, 2], is shown to be also useful in optimization in the
work of Larrosa [11].

2.4 AND-OR Optimization

It was shown in [4] that given a depth first search spanning (DFS) tree of the
constraint graph of a problem, search can proceed in parallel and independently
on branches of this DFS tree, as long as results are aggregated at the nodes
where the branches meet. The concept was shown valid for optimization prob-
lems in [14] and was applied to Branch&Bound in [12]. Certain versions of this
algorithm can employ nogoods as a way of storing additional constraints. No
previous algorithm is known to us whose inference is based solely on nogoods.



2.5 Valued Nogoods

With VCSPs a cost is associated to each partial assignments by valued con-
straints whose variables are involved in those assignments. To avoid accumulating
twice the contribution of the same constraint, one can keep track of the culprit
constraints used for inferring each cost. This is done using sets of references to
culprit constraints.

Definition 2 (SRC). A set of references to constraints (SRC) is a set of names
of constraints of the distributed VCSP. It is a set of symbols, each of them
standing for a distinct constraint.

An example of a SRC is {f1,2, f3,4} where f1,2 and f3,4 are names of two
distinct constraints of a VCSP.

Definition 3 (Valued Nogood). A valued nogood has the form [Γ, c, N ] where
Γ is a set of references to constraints having cost at least c, given a set of
assignments, N , for distinct variables.

The (classic/hard) nogood is obtained for c=∞.
By deciding that a nogood [Γ, c, (〈x1, v1〉, ..., 〈xi, vi〉)] will be applied to

a certain variable xi, one obtains a cost assessment for xi tagged with
the SRC Γ ,1 denoted (Γ, vi, c, (〈x1, v1〉, ..., 〈xi−1, vi−1〉)), and meaning that
(〈x1, v1〉, ..., 〈xi−1, vi−1〉) → (assignment 〈xi, vi〉 has cost c for Γ ).

Definition 4 (Cost Assesment (CA)). A cost assesment of variable xi has
the form (Γ, v, c, N) where Γ is a set of references to constraints having cost
with lower bound c, given a set of assignments, N , for distinct variables, and the
value v in the domain of xi.

A cost assesment is always specified together with the variable for which it
applies.

Proposition 1 (min-resolving). A set of cost assesments for xi,
(Γi, vi, ci, Ni) where ∪i{vi} covers the whole domain of xi and assign-
ments are identical in all Ni, can be combined into a new valued nogood. The
obtained valued nogood is [Γ, c, N ] such that Γ=∪iΓi, c= mini(ci) and N=∪iNi.

Example 1. For the graph coloring problem in Figure 1, x1 is colored red, x2

yellow and x3 green. Assume that due to its constraints with the three neighbors,
one can infer for each of the valued of x4 the following valued nogoods:

(r): [{f1,4}, 10, {(x1, r), (x4, r)}] obtaining CA ({f1,4}, r, 10, {(x1, r)})
(y): [{f2,4}, 5, {(x2, y), (x4, y)}] obtaining CA ({f2,4}, y, 5, {(x2, y)})
(g): [{f3,4}, 7, {(x3, g), (x4, g)}] obtaining CA ({f3,4}, g, 7, {(x3, g)})

By min-resolution on these CAs one obtains the valued global nogood
[{f1,4, f2,4, f3,4}, 5, {(x1, r), (x2, y), (x3, g)}], meaning that given the coloring of
the first 3 nodes there is no solution with cost lower than 5 for the constraints
{f1,4, f2,4, f3,4}.

1 its extension to set of values is denoted valued conflict list in [16]
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2.6 Combining valued nogoods

If several cost assesments (valued nogoods) for the same value of a variable are
infered from disjoint SRCs, then they can be combined into stronger valued
nogoods. This mechanism is what enables the usage of the concepts behind
AND-OR optimization in our algorithm.
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Fig. 2. SUM-inference on CAs

Proposition 2 (sum-inference). A set of cost assesments, (Γi, v, ci, Ni) where
∀i, j : (i 6= j) ⇒ (Γi ∩Γj = ∅), and the assignment of any variable xk is identical
in any Ni where xk is present, can be combined into a new cost assesment.



The obtained cost assesment is (Γ, v, c, N) such that Γ=∪iΓi, c=
∑

i(ci), and
N=∪iNi.

Example 2. For the graph coloring problem in Figure 2, x1 is colored red, x2

yellow, x3 green, and x4 red. Assume that due to its constraints with the three
following neighbors x5, x6, and x7, one has infered for (x4, r) the following valued
nogood:

– [{f4,5}, 5, {(x2, y), (x4, r)}] obtaining CA ({f4,5}, r, 5, {(x2, y)})
– [{f4,6}, 7, {(x1, r), (x4, r)}] obtaining CA ({f4,6}, r, 7, {(x1, r)})
– [{f4,7}, 9, {(x2, y), (x4, r)}] obtaining CA ({f4,7}, r, 9, {(x2, y)})

Due to x4’s constraint with X1, one can infer for (x4, r) the following valued
nogood:

– [{f1,4}, 10, {(x1, r), (x4, r)}] obtaining CA ({f1,4}, r, 10, {(x1, r)})

By sum-inference on these CAs one obtains for x4 the CA
[{f1,4, f4,5, f4,6, f4,7}, r, 31, {(x1, r), (x2, y)}], meaning that given the color-
ing of the first 2 nodes, coloring x4 in red leads to a cost of at least 31 for the
constraints {f1,4, f4,5, f4,6, f4,7}.

2.7 Dynamic Branch&Bound

A mechanism for inferring CAs from constraints is called a CA mechanism. Given
a correct, complete, and concise CA mechanism ε, (where these concepts parallel
those for elimination mechanisms in [9]), we can formulate generalizations of
dynamic backtracking for solving VCSPs.

Dynamic Branch and Bound (DBB) is an algorithm where we parallel the
Dynamic Backtracking (DB) algorithm of [9], having similar strengths and weak-
nesses [1, 3]. Like with DB, a partial solution is being built, and when it is shown
unacceptable (by being more expensive than a current bound, B) a culprit vari-
able is isolated and uninstantiated. Uninstantiating a variable consists of dis-
carding all nogoods based on its previous assignment, and moving the variable
to the set of unassigned variables.

Dynamic Backtracking assumes that variables are going to be reordered dur-
ing the exploration of the search space. We will apply a similar approach to
implement a dynamic branch and bound, with initial bound B. The current or-
der on variables is maintained using an array o, where o[i] specifies the variable
on position i, i.e., xo[i]. The position of a variable’s index k in the array o is
denoted pos(k), o[pos(k)] = k. An array v holds the values of currently assigned
variables, v[i] being the value assigned to xi.

To manage CAs (that replace the nogoods of DB), we use matrices l, h and
ca.

– l[i, k] stores a CA for xi = k that is infered solely from the constraints
between xi and prior variables using a CA mechanism.



procedure DBB(B) do

i := 0; //last instantiated variable;
k := 1; //variable under inspection;
forever do

if (k > n) then

store solution and compute new B =
∑

y
cost(l[y, x[y]]);

k −−; // or first var xi with h[i, v[i]] ≥ B;

y := o[k]; // index of current variable;
if (k > i) then

foreach value j of xy do

l[y, j] := ε(o, x, k, j); // use constraints with previous variables;
h[y, j]:=sum-inference(l[y≤, j], ca[y, j, ∗]); // up to cost B;

v[y] := select(l, h, y, k); // with minimal cost h(), lower than B;
if (v[y] valid) i := k; // new variable instantiated;

vn:=min-resolution(h[y, ∗]);
j:=target(vn);
if (vn better than ca[j, x[j], pos(j)]) then

replace ca[j, v[j], pos(j)] with vn2ca(vn, j);
update h[j, v[j]] by sum-inference;

if (cost(h[j, v[j]]) ≥ B) then

k := pos(j); continue; // optional;

if (cost(vn) ≥ B) then

if (j < 0) then

break;

reorder xj after xi (or after y if v[y] invalid);
i −−; k := i + 1; continue;

if (cost(h[y][x[y]]) ≥ B) then

reorder xk after xi; i −−;

k := i + 1;

Algorithm 2: Dynamic Branch&Bound (DBB)

– ca[i, k, t] stores a CA for xi = k that is computed when i is o[t], by combining
different CAs with the mentioned inferences.

– h[i, k] stores a CA for xi = k that is infered from ca[i, k, t] and l[j, v[j]] for
all j positioned before i in the current order.

To denote the set of elements having all possible values of an index, we will
use an “*” for that index. E.g., h[i, ∗] is the set of the CAs for all possible values
of xi.

Remark 1. In computing the CAs in h[i, v] we ensure that their costs are equal
or higher to the cost of the constraints between variables on positions smaller or
equal to i, given the current assignments. Such a computation of h[i, v] is done
by first combining all corresponding CAs with

vca = sum infernce(ca[i, v, ∗]).



Then compute

ld = sum inference({l[j, v[j]]|pos(j) ≤ pos(i), with SRCs disjoint from vca}

and

lo = sum inference({l[j, v[j]]|pos(j) ≤ pos(i),with SRCs not disjoint from vca}

Finally,

h[i, v] = (cost(lo) > cost(vca))?sum inference(lo, ld) : sum inference(vca, ld).

The function cost(N) receives as parameter a CA or a valued nogood and
returns its assessed cost. The function target(N) receives as parameter a valued
global nogood and returns the position of the latest instantiated variable that is
specified in N .

In Algorithm 2 we use an index i to specify the position of the last assigned
variable, and an index k to specify the position of the variable that we are
analyzing at this cycle. To instantiate a new variable xj we use function select

which selects the value v with the smallest (most promissing) cost in its h[j, v].
If the smallest such cost is larger than the current bound B, then -1 is returned.

The target variable in a valued nogood vn is the one with the largest position.
We say that the domain of a variable is wiped out when the nogood vn generated
by min-resolution on it has a cost higher than B. If a variable’s domain is wiped
out than the target variable in vn is the one that will be reordered and uninstan-
tiated. Nogoods are used to update CAs of already instantiated variable, which
can lead to getting an h with cost higher than B. Any such variable is reordered
and unassigned. When the CA of some instantiated variable is modified, a cycle
verifying it can be initiated by starting a round with k set to its position.

Theorem 1. Dynamic B&B is optimal and terminates.

Proof. Assuming termination, the optimality of DBB is guaranteed by the fact
that all used operations (inferences) are logically sound. Therefore if DBB returns
that there is no solution with value smaller than a result B, that is founded.

Let us now prove termination (absence of an infinite loop). When a variable
is on the first position, it will receive only CAs whose culprit assignments list is
empty. These CAs never expire due to a reordering, and they can only have an
increasing threshold. As thresholds are limited and increase monotonically, the
total possible set of new empty CAs that a variable can receive for all its values
is finite. Therefore, eventually, the variable and assignment on the first position
will no longer change.

Let us now prove the termination by induction. Assuming that the variable
asignments for the variables on the first k positions no longer change. It follows
by the same reasoning as above that, eventually, the variable on position k + 1
will no longer change.
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Fig. 3. Number of search nodes on problems with density .2.
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Fig. 4. Number of search nodes on problems with density .3.

3 Experimentation

We have implemented DBB and we tested it on problems with 8, 10, 12, 14, 16,
18, 20, 25, 30, and 40 variables. For each of these problem sizes we performed
test on problems with density .2 and respectively with density .3. The density
of a (binary) constraint problem’s graph with n variables is defined by the ratio

between the number of binary constraints and n(n−1)
2 . Results are averaged on

the 25 problems with the same parameters.
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Fig. 5. Number of constraint checks on problems with density .2.
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Fig. 6. Number of constraint checks on problems with density .3.

The quality of the found solutions was identical to the quality of the results of
other techniques (notably ADOPT and ADOPT-ng), run on the same problems,
confirming the optimality of DBB.

4 Conclusions

We have proposed an optimization counterpart for Dynamic Backtracking by
paralleling that algorithm using valued nogoods instead of classic nogoods and
cost assesments instead of elimination explanations. The obtained technique is



called Dynamic Branch&Bound. The optimality and termination of the algo-
rithm are based on storing a separate set of cost assesments for each position
occupied by each variable.
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