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Abstract

Anomaly detection focuses on modeling the normal behavior and identifying significant devi-
ations, which could be novel attacks. The previously proposed LERAD algorithm can efficiently
learn a succinct set of comprehensible rules for detecting anomalies. We conjecture that LERAD
eliminates rules with possibly high coverage, which can lead to missed detections. This study
proposes weights that approximate rule confidence and are learned incrementally. We evalu-
ate our algorithm on various network and host datasets. Compared to LERAD, our technique
detects more attacks at low false alarm rates with minimal computational overhead.

1 Introduction

Intrusion detection has two general approaches signature detection (also known as misuse detection),
where we look for patterns signaling well-known attacks, and anomaly detection, where we look for
deviations from normal behavior. Signature detection works reliably on known attacks, but has the
disadvantage of not detecting new attacks. Though anomaly detection can detect novel attacks, it
has the drawback of not being able to discern intent; it can only signal that some event is unusual,
but not necessarily hostile, thus generating false alarms.

The previously proposed LERAD (LEarning Rules for Anomaly Detection) algorithm [19] can
efficiently learn a succinct set of comprehensible rules and detect attacks unknown to the algorithm.
To reduce false alarms, LERAD, during the validation phase, eliminates rules that cause false
alarms. However, these rules were selected initially to cover a relatively large number of training
examples and their elimination could lead to missed detections. Instead of eliminating these rules,
we propose learning weights that approximate rule confidence (Sec. 3). We present an empirical
evaluation of our algorithm and compare it with LERAD on various network and host datasets
(Sec. 4). Results show that our technique detects more attacks than LERAD at low false alarm
rates. The improvement in accuracy is obtained at the cost of small computational overhead and
reasonable space requirements.

2 Related Work

2.1 Anomaly Detection

Network anomaly detection systems can warn of attacks launched from the outside at an earlier
stage, before the attacks actually reach the host. Intrusion detection systems (IDSs) such as NIDES
[1], ADAM [2], and SPADE model only features of the network and transport layer, such as port
numbers, IP addresses, and TCP flags. Models built with these features could detect probes (such
as port scans) and some denial of service (DOS) attacks on the TCP/IP stack, but would not detect
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Input: sample set (Ds), training set (Dt), and validation set (Dv)
Output: LERAD rule set R

1. generate candidate rules from Ds and evaluate them
2. select a “minimal” set of candidate rules that covers Ds

3. train the selected candidate rules on Dt

4. eliminate the rules that cause false alarms on Dv

Figure 1: Main algorithm of LERAD

attacks where the exploit code is transmitted to a server in the application payload. SNORT [25]
and BRO [22] use rules for detecting network attacks. Application payload has been used in
[32] whereas multiple network attributes are utilized in [27]. Web based attacks are detected by
monitoring web request parameters in [24]. Some anomaly detection algorithms are for specific
attacks (e.g., portscans [28]) or services (e.g., DNS [14]).

A host-based anomaly detector can detect some attacks (for example, inside attacks) that do
not generate network traffic. Host based anomaly detection generally uses system call sequences.
[8, 11] create n-gram models (sequences of n = 3 to 6 calls) using a sliding window across system
call sequences. Sequence time-delay embedding (stide) [33] memorizes all contiguous sequences of
predetermined, fixed lengths. Extensions to n-gram method is provided in [34], where variable
length patterns are generated by using a bioinformatics pattern-discovery algorithm. Other mod-
els of normal system call sequences have been used, such as finite state automata [26] and neural
networks [10]. Instance-based methods have been proposed [15] for detecting anomalous user com-
mands. Limitation of system call sequence based techniques have been presented in [31, 29] where
mimcry attacks are shown to evade such IDSs. Other features that have been used include system
call arguments [21, 30, 3] and call stack information [6, 9].

2.2 LERAD (LEarning Rules for Anomaly Detection)

LERAD [19] is an efficient randomized algorithm that forms conditional rules of the form:

SrcIp = 128.1.2.3, DestIp = 128.4.5.6 ⇒ DestPort ∈ {21, 25, 80} [p] (1)

In the above sample rule, given source IP address (SrcIp) = 128.1.2.3 and destination IP address
(DestIp) = 128.4.5.6, destination port (DestPort) is either 21 (FTP), 25 (SMTP), or 80 (HTTP)
in the normal training data. p is the probability of the rule being violated and is explained below.

The LERAD algorithm is based on sampling and randomization. Let D be the entire data
set, and DT be the training set with normal behavior and DE be the evaluation (test) set with
normal behavior as well as attacks such that DT ∪ DE = D and DT ∩ DE = ∅. Training data
is further partitioned into subsets Dt (training set) and Dv (validation set) respectively such that
Dt ∪Dv = DT , Dt ∩Dv = ∅, and |Dt| > |Dv|. Also, let Ds be a random sample of Dt such that
Ds ⊂ Dt and |Ds| ¿ |Dt|.

The LERAD algorithm consists of four main steps as illustrated in Figure 1. Step 1 intends to
generate and evaluate candidate rules from a small sample Ds of the data, which allows efficient
training. Step 2 selects a small set of predictive rules that sufficiently describe the small sample
Ds. This allows learned models to be small. The selected rules are then trained on the much larger
set Dt in Step 3. The validation set Dv is used in Step 4, which involves eliminating rules that are
not satisfied, since any alarm on validation set is a false alarm.
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LERAD adopts a probabilistic framework and estimates P (C|A), where A is the antecedent and
C is the consequent of the rule A ⇒ C. The anomaly score depends on P (¬C|A), where C, though
expected, is not observed when A is observed. During training, a set of rules R that “minimally”
describes the training data are generated and their p = P (¬C|A) is estimated. During detection,
given an instance x, an anomaly score is generated if x violates any of the rules (A ⇒ C). Let
R′ ⊂ R be the set of rules that x violates. The anomaly score is calculated as:

AnomalyScore(x) =
∑

rk∈R′

1
pk

, (2)

where rk is a rule in R′ and pk is the p value of rule rk. The reciprocal of pk reflects a surprise
factor that is large when anomaly has a low likelihood (small pk).

Witten and Bell [35] proposed a few estimates for novel events in the context of data compres-
sion; LERAD uses the following one:

P (NovelEvent) =
r

n
. (3)

where n is the total number of observed events and r is the number of unique observed events.
Intuitively, we are less surprised if we have observed a novel value in a more recent past. Let

tk be the duration since the last novel value was observed in the consequent of rule rk. Hence,
LERAD incoroporates a non-stationary model and the anomaly score is calculated as:

AnomalyScore(x) =
∑

rk∈R′

tk
pk

. (4)

Also, the tk factor accommodates the “bursty” nature of network traffic [23], so that a burst of
anomalies will only generate a single high scoring alarm.

3 Rule Weighting for Anomaly Detection

LERAD performs a coverage test to minimize the number of rules (Step 2 in Fig. 1). Thus each
selected rule covers a relatively large number of examples in the training set Dt. LERAD eliminates
rules that are violated by instances in the validation data set Dv (Step 4 in Fig. 1), since the data
is normal and any anomaly would correspond to a false alarm. But removing a rule that causes
false alarms also removes coverage on a relative large number of training examples, which can lead
to missed detections. Thus, there is a trade off between decreasing false alarms and increasing
missed detections. There are two possible solutions. We can either backtrack to find rules that
cover the training examples that should be covered, or lessen the confidence on the rule instead of
eliminating it. For large amounts of data, the latter option is more efficient.

In this section, we propose LERAD-w (LERAD with weighted rules), which associates a weight
to each rule in the rule set, where the weights symbolize confidence in the respective rules. We
present a new validation phase for the LERAD algorithm, as depicted in Fig. 2. Instead of making
a binary decision of retaining or eliminating a rule, we always keep a rule but update its consequent
and the associated weight and probability values.

A sample rule using our method is of the form:

SrcIp = 128.1.2.3, DestIp = 128.4.5.6 ⇒ DestPort ∈ {21, 25, 80} [p, w] (5)

The semantics of this rule is similar to the rule in Eq. 1, but a new w value is introduced for the rule
weight to represent confidence in the rule. p and w are distinct and independent entities. p is the
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4. for each instance in Dv, check if the instance is consistent with the rules in R

(a) update the rule’s weight w

(b) update the rule’s consequent

(c) update the rule’s probability p

Figure 2: New validation phase. First three steps are the same as Fig. 1.

probability of not seeing a value in the consequent when the conditions in the antecedant hold true.
That is, it is probability of the rule being violated. Weight w, on the other hand, approximates the
confidence of the entire rule.

Given a rule and an instance in the validation phase of Fig. 2, one of three cases apply:

1. The rule is satisfied when all conditions in the antecedant as well as the consequent is satisfied
by the instance. In this case, the rule is not updated but the associated p and w values are
modified. For example, instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6, DestPort = 80]
complies with the rule in Eq. 5.

2. The rule may be violated if the antecedant holds good but the consequent does not. This
results in updating the rule and its respective probability and weight. For example, the rule
in Eq. 5 is violated by the instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6, DestPort = 23].

3. The rule may not be applicable for the instance if any condition in the antecedant is not
satisfied, in which case neither the rule nor its p and w values is updated. For example, the
rule in Eq. 5 does not apply to the instance [SrcIp = 128.1.5.7, DestIp = 128.4.5.6, DestPort
= 21].

Rule update and modification of p and w values is discussed next.
Step 4(a) in Fig. 2 updates the rule’s weight. Initially all rule weights are assigned a value 1,

signifying equality of rule confidence across the rule set. Rules are penalized upon violation and
rewarded upon conformance. When a rule is violated, it reduces our confidence in it. If a rule
formed during training is not useful, it is likely to be violated many times. To minimize its effect,
the penalty involves multiplicative decay of the weight. On the other hand, if a rule is complied to,
it stresses upon its validity and increases our confidence in it. Since the rule formed during training
is expected to hold true in validation as well, we increase its weight by a small fraction. The intent
is to levy a heavy penalty by decreasing the weight by a factor α when the rule is violated, but
increase the weights conservatively by β when the rule is complied. By decreasing the weight of a
rule upon violation and not eliminating them, we hope to increase the number of detections. The
strategy to update weights is formally defined by the following weight update function:

wk =
{

wk × α, if rk ∈ R is violated
wk(1 + β), if rk ∈ R is complied,

(6)

where α, β ∈ R, 0 ≤ α < 1 and 0 ≤ β ≤ 1. Assuming α = 0.5 and inital weight 1, the weight
is equal to 0.5 the first time the rule is violated. It is reduced to 0.25 upon second violation and
so on. On the other hand, weight is updated as 1.1, 1.21, 1.331 respectively (with β = 10%) for
the first three conformances. It can be noted that LERAD is a special case of our rule weighting
strategy, with α = β = 0.

The strategy of associating and decrementing weights is similar to Weighted Majority [18] and
Dynamic Weighted Majority [13], but these techniques do not increment weights upon conformance,
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which is intuitive in our case as it reflects the confidence in a rule. A calendar scheduling technique
[4] proposed a variant of Winnow [17] to increase the weights, but their technique can be visualized
as fixed sized rules whereas we support rules of variable length. Their rule set is exponentially large
in the number of features used whereas our technique derives only a small rule set.

In addition to updating the weights as above, we need to update the rule consequent and the
associated probability p, as mentioned in Steps 4(b) and 4(c) of Fig. 2. Rule update is required only
in the event of the rule being violated. The new attribute value is added to the rule consequent
in this case. The probability p of the rule being violated is computed using Eq. 3. Both n and r
values are incremented to compute p when a rule is violated, whereas only the n value is updated
when the rule is satisfied. Consider the following synthetic rule:

SrcIp = 128.1.2.3, DestIp = 128.4.5.6 ⇒ DestPort ∈ {21, 25, 80} [p = 3/100, w = 1.0] (7)

100 instances satisfy the above rule which claims 3 destination ports (21-FTP, 25-SMTP, 80-HTTP)
for the given source and destination IP addresses. This rule is initially given a weight of 1. If this
rule is violated by an instance (e.g. port 23-TELNET for the given source and destination IP
address pair), our confidence in the rule is reduced. Hence the weight of the rule is reduced by α.
Given α=0.5, the weight becomes 0.5. The rule consequent is updated by adding the new DestPort
value; n and r (hence p) values are modified, resulting in the following rule:

SrcIp = 128.1.2.3, DestIp = 128.4.5.6 ⇒ DestPort ∈ {21, 23, 25, 80} [p = 4/101, w = 0.5] (8)

On the other hand, the weight is incremented by a factor β of the original weight when the rule
is satisfied. If β=0.1, the weight is updated to 1.1. The rule remains the same with only the n
value being incremented by 1. The rule in Eq. 7 would now be represented as:

SrcIp = 128.1.2.3, DestIp = 128.4.5.6 ⇒ DestPort ∈ {21, 25, 80} [p = 3/101, w = 1.1] (9)

For a test instance, an anomaly score is computed by LERAD as per Eq. 4. Confidence in a rule
entails confidence in its anomaly score. Hence each rule assigns a score proportional to its weight.
Thus, the anomaly score is modified as:

AnomalyScore(x) =
∑

rk∈R′

(
wktk
pk

)
(10)

where R′ ⊂ R is the set of rules that instance x violates.

4 Empirical Evaluation

4.1 Experimental Data

We evaluated LERAD and LERAD-w on five different data sets:
(a) The DARPA/Lincoln Laboratory intrusion detection evaluation network data set (IDEVAL)
[16] contains 201 labeled instances of 58 attacks. Since one day of inside traffic is missing, and
there are one queso and four snmpget attacks against the router which are not visible from inside
the local network, the total number of detectable attacks is 185. For attack taxonomy, see [12].
(b) Over 600 hours of network traffic collected on a university departmental server (UNIV) over 10
weeks, comprising of six labeled attacks - port/security scan from inside the firewall, an external
HTTP proxy scan, an external DNS version probe, Nimda HTTP worm, Code Red II HTTP worm
[20], and the Scalper worm [5]. The port/security scan has two parts; first an attempt to retrieve
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the password file by a cgi-bin/htsearch exploit, followed by a port scan, with open ports probed
further to test for vulnerabilities.
(c) The BSM audit log from the 1999 DARPA evaluation (IDEVAL BSM) obtained from a Solaris
host. Data corresponding to 11 different applications is extracted to get a good mix of benign and
malicious behavior. The total number of distinct attacks is 33.
(d) University of New Mexico (UNM) data set, comprising of lpr, login and ps applications contains
3 distinct attacks. lpr comprises of 2703 normal and 1001 attack traces from hosts running SUNOS
4.1.4. Traces from the login and ps applications were obtained from Linux machines.
(e) Florida Tech and University of Tennessee at Knoxville (FIT-UTK) macro execution traces
comprise 36 normal and 2 malicious traces that correspond to a distributed denial of service (DDoS)
attack, modifying registry settings and execute some other application. The behavior is similar to
that exhibited by the “Love bug” worm which opens up the web browser to a specified website and
executes a program, modifying registry keys and corrupting user files.

4.2 Experimental Procedures

We considered three attribute sets for each of the two network data sets: reassembled TCP streams
(TCP) which reads attributes of the inbound side of unsolicited (client to server) reassembled TCP
sessions; inbound client IP packets (PKT) which uses the first 32 pairs of bytes in each IP packet as
attributes; and the combination of the two (COMBINED). The data sets will hereafter be referred
to as IDEVAL TCP, IDEVAL PKT, IDEVAL COMBINED, UNIV TCP, UNIV PKT and UNIV
COMBINED respectively. For the IDEVAL data, we performed training on week 3, which contains
no attacks, and testing on weeks 4 and 5. For UNIV data, we tested on weeks 2 through 10, using
the previous week as training. By chance, there are no known attacks in week 1. However, there
are generally attacks in the training data which could mask detections in the test data.

For host based data sets, we used system calls and related attributes, consisting of return
value, error status and other arguments. Only IDEVAL BSM data set had complete argument
information. For the UNM and FIT-UTK datasets, the sliding window of contiguous system calls
was used, with a window size of 6, as this is claimed to give best results [33].

4.3 Evaluation Criteria

We evaluate and provide comparison for accuracy of models, computational and storage overheads.

Accuracy For IDEVAL data set (both network and host), an attack is counted as detected if one
or more alarms identifies the target address within 60 seconds of any portion of the attack (same as
the 1999 DARPA evaluation criterion). Any other alarm is a false alarm. For the UNIV network
traffic, we use the criterion that the technique must exactly identify at least one of the packets
or TCP sessions involved in the attack. For the UNM and FIT-UTK host data sets, flagging an
anomaly anywhere within the attack trace was used to be consistent with previous evaluations.

A Receiver Operating Characteristic (ROC) curve is an effective representation for model eval-
uation. We use ROC curves for studying the trend in percentage of attacks detected at different
false alarm rates. We also list the areas under the ROC curve, where higher area implies better
performance [7]. The area under the curve is normalized for the false alarm rate. The drawback
of anomaly detection is the generation of false alarms, so we focus only on small false alarm rates
(up to 1%).
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Table 1: Area under ROC curve at 0.1% and 1% false alarm rates.
Data 0.1% FA 1% FA

LERAD LERAD-w LERAD LERAD-w
IDEVAL TCP 21.80% 23.45% 54.71% 56.35%
IDEVAL PKT 38.60% 41.55% 61.14% 62.46%
IDEVAL COMBINED 54.85% 61.60% 80.96% 83.06%
UNIV TCP 8.50% 4.25% 58.68% 62.98%
UNIV PKT 23.10% 28.20% 60.06% 73.77%
UNIV COMBINED 16.60% 58.10% 80.51% 92.41%
IDEVAL BSM 54.40% 78.85% 60.34% 93.99%
UNM 100.00% 100.00% 100.00% 100.00%
FIT-UTK 50.00% 62.50% 95.00% 96.25%

Storage and Computational Overhead To evaluate the viability of our technique for online
usage, we measure its space and computational requirements. The storage overhead includes the
size of the stored model, i.e. rules learned. We also measure the CPU time during the training and
testing phases to determine the effectiveness of the techniques.

4.4 Accuracy of rule weighting

LERAD removes a rule that causes false alarms during validation phase, removing coverage on
a relative large number of training examples, which can lead to missed detections. In Section 3,
we proposed a strategy to associate weights with rules to signify rule confidence. The weight is
increased when the rules is satisfied by an instance, and the weight is decreased upon rule violation.
For our experiments in this section, we present results for weight update strategy of Eq. 6, with
α = 50% and β = 5%. Parameter study is discussed in Section 4.4.3.

4.4.1 Number of attack detections

The ROC curves for LERAD and LERAD-w on all the data sets are depicted in Fig. 3 and the area
under their ROC curves are listed in Table 1. The results for the IDEVAL network data (Fig. 3(a)-
(c)) show that LERAD-w generally detects more attacks than LERAD at various false alarm rates.
It is also seen that the COMBINED attribute set detects the maximum attacks suggesting that
TCP and PKT data detect attacks which are not detected by the other. Looking at the attacks
detected by TCP and PKT, we saw a significant overlap between the two with some attacks being
detected by only one of the attribute set. Combining the two (IDEVAL COMBINED) enables the
system to detect attacks observable in packet data as well as tcp streams. As depicted in Table 1,
the area under the ROC curve for LERAD-w is greater than LERAD at 0.1% and 1% false alarm
rates for all the three IDEVAL network data.

Results also show that the performance of LERAD-w is better than LERAD on UNIV data
(Fig. 3(d)-(f)). The highest detections are for the UNIV COMBINED attribute set due to reasons
mentioned above. LERAD-w detected one more attack than LERAD for both TCP and PKT at
1% false alarm rate. The HTTP proxyscan was detected using tcp streams whereas the packet data
detected the port/security scan, and both were detected when the attribute sets were combined.
Hence 100% detection for LERAD-w in Fig. 3(f).

The ROC curves for the host datasets are presented in Fig. 3(g)-(i). For the IDEVAL BSM
data, LERAD-w detected 49% and 52% more attacks than LERAD at 0.1% and 1% false alarm
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Figure 3: Accuracy comparison of LERAD and LERAD-w on (a) IDEVAL TCP, (b) IDEVAL PKT,
(c) IDEVAL COMBINED, (d) UNIV TCP, (e) UNIV PKT, (f) UNIV COMBINED, (g) IDEVAL
BSM, (h) UNM, and (i) FIT-UTK data sets.
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Table 2: New attacks detected by LERAD-w at 1% FA.
Attack Data set Factor contributing to attack detection

Existing rule(s) with Re-introduced rule(s)
increased confidence with reduced confidence

codered UNIV TCP
√

bindver UNIV PKT
√

arppoison IDEVAL TCP
√

teardrop IDEVAL TCP
√

yaga IDEVAL TCP
√

sechole IDEVAL TCP
√

secret IDEVAL TCP
√

fdformat IDEVAL BSM
√

ffbconfig IDEVAL BSM
√

guest IDEVAL BSM
√

syslogd IDEVAL BSM
√

httptunnel IDEVAL BSM
√

secret IDEVAL BSM
√

portsweep IDEVAL BSM
√

selfping IDEVAL BSM
√

rates respectively. Accuracy was the same for the UNM data set, where both LERAD and LERAD-
w detected all 3 attacks. On the FIT-UTK data, LERAD-w had greater area under ROC curve
than LERAD at 0.1% and 1% false alarm rates. Results indicate that LERAD-w generally has
greater accuracy than LERAD and suggest that the rules discarded by LERAD might be effective
in detecting attack based anomalies. It also stresses on the effectiveness of weight updation and its
incorporation to score anomalies.

4.4.2 Attacks detected by rule weighting

The increase in detections for LERAD-w is caused by an increase in the anomaly score, which
could result from: (a) increase in weights of rules kept by LERAD, and/or (b) scores from rules
eliminated by LERAD, that are re-introduced in LERAD-w. We analysed the attacks detected by
LERAD-w that were missed by LERAD at 1% false alarm rate. The results are listed in Table 2.

As observed from the table, most of the new attacks detected by LERAD-w are due to rules
that were eliminated by LERAD, supporting our claim for retaining the rules but reducing their
confidence. The Code Red II HTTP requests for /default.ida (GET /default.ida?NNNN...) are
captured by anomaly in the application payload. The secret attack is detected due to a secret
file being mailed to unauthorized person, though our rules do not have any knowledge of any
security policy. fdformat and ffbconfig vulnerabilities are buffer overflow attacks that are detected
by encountering unusual arguments. The syslogd exploit is a Denial of Service attack that violates
a rule due to syslog segmentation fault.

Two attacks were detected by increasing the weight of existing rules: yaga is detected by long
duration times due to the TCP connection not being closed after crashing and rebooting the target;
whereas the sechole exploit is detected by an anomaly in the application payload.

Rule weighting also reinforced the detection of attacks already detected by LERAD. This was
attributed to large rule weights for some rules in LERAD-w, resulting in further increase of the
anomaly score. Also, there were multiple alarms for the same attack due to violation of rules
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Table 3: Area under ROC curve for weight decrease parameter α (with β = 0).
Data 0.1% FA 1% FA

Auto α α = 0.5 Auto α α = 0.5
IDEVAL TCP 21.20% 21.20% 54.90% 54.90%
IDEVAL PKT 38.60% 38.60% 61.01% 61.14%
UNIV TCP 4.25% 4.25% 62.98% 62.98%
UNIV PKT 23.10% 23.10% 66.06% 70.06%
IDEVAL BSM 54.40% 53.75% 60.34% 68.08%

Table 4: Area under ROC curve for weight increase parameter β (with α = 0.5).
Data 0.1% FA 1% FA

β = 0 β = 0.05 β = 0.25 β = 0 β = 0.05 β = 0.25
IDEVAL TCP 21.20% 23.45% 1.45% 54.90% 56.35% 13.42%
IDEVAL PKT 38.60% 41.55% 40.05% 61.14% 62.46% 62.31%
UNIV TCP 4.25% 4.25% 4.25% 62.98% 62.98% 62.98%
UNIV PKT 23.10% 28.20% 32.45% 70.06% 73.77% 75.47%
IDEVAL BSM 53.75% 78.85% 73.90% 68.08% 93.99% 91.69%

introduced by LERAD-w but absent in LERAD.

4.4.3 Sensitivity of Parameters

LERAD-w penalizes a rule violation during validation phase by reducing the associated weight. A
straightforward policy is to reduce the weight by a constant factor. Decreasing the weight by half
seems intuitive and reasonable. Thus the inital weight of 1 would decay exponentially to 0.5, 0.25,
0.125 upon the first 3 rule violations. But if the validation set was used in the training phase itself,
rules would only be updated along with the associated probabilities. An alternate way to decrease
the weight for rule violation in validation phase would be such that the probability becomes equal
to what one would have obtained if the sample was part of the training itself. Thus, weight wk is
updated as:

wk = (
n + 1

n
)(

r

r + 1
)wk (11)

where w is the current weight. We call this auto decrement strategy. Since n is generally much
larger than r, this is a very conservative updation of weight. We performed experiments to compare
the conservative weight reduction strategy of Eq. 11 with the stricter 50% penalty. Results, depicted
in Table 3, show that LERAD-w with β = 0.5 has greater area under ROC curve at 1% false alarm
rates. This suggests that the 50% penalty strategy reflects rule confidence more appropriately and
generally detects more attacks than its conservative counterpart.

Our weight updation technique also rewards a rule upon conformance by increasing its weight.
We propose a weight update function in Eq. 6. We fixed α = 50% and varied β ∈ {0%, 5%, 25%},
each set representing three different values for no increment, conservative increment and liberal
increment respectively. The results are presented in Table 3. For each data set, there exists a β 6= 0
with greater area under the curve than no increment strategy, indicating that rule increment is a
better strategy. Generally, non zero β values performed better than no increment except IDEVAL
TCP, where β = 25% performed the worst. But even in that case β = 5% detected more attacks
than β = 0%. Experiments with other increment (β) values gave similar results.
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Table 5: Computational overhead: training phase.
Data Data set size Total training Training rate

(no. of instances) time (seconds) (milliseconds/instance)
LERAD LERAD-w LERAD LERAD-w

IDEVAL TCP 35452 7.58 7.72 0.21 0.22
IDEVAL PKT 280281 33.15 33.32 0.12 0.12
UNIV TCP 141162 33.29 33.58 0.23 0.24
UNIV PKT 1305873 149.43 152.65 0.11 0.12
IDEVAL BSM 1261252 88.91 92.34 0.07 0.07

Table 6: Storage requirements: size of rule set.
Data Number of rules

(per week of data)
LERAD LERAD-w

IDEVAL TCP 54 73
IDEVAL PKT 89 99
UNIV TCP 42 80
UNIV PKT 49 86
IDEVAL BSM 156 179

4.5 Computational and Storage Overhead

Since we suggest keeping all the rules that were previously discarded by LERAD, it would result
in a larger rule set and increased execution times. To check the viability of LERAD-w for online
usage, in this section we study the overhead involved in rule weighting, both in terms of storage
(size of rule set) and the CPU times for training and testing. Experiments were performed on a
SUN Ultra 60 workstation with 450 MHz clock speed and 512 MB RAM.

The results from the experiments conducted to measure the computational overhead during
the training phase is depicted in Table 5. LERAD-w and LERAD form a rule set very efficiently
at approximately the same rates per instance. For the UNIV data, the results are consolidated
over 10 weeks of data, hence higher total training times. But the rates are similar to IDEVAL
TCP and PKT data. For the BSM data the time per instance is much faster, taking only 0.07
milliseconds/instance to train. Network data has more attributes than host data (only system call
and arguments), resulting in higher training times.

Storage of the model is determined by the number of rules in the rule set. Table 6 lists the
number of rules generated for the various data sets. For the IDEVAL BSM data, the LERAD-w rule
set size is approximately 15% more than LERAD. Since 11 different applications were modeled in
IDEVAL BSM data, LERAD-w generates an average of 12 rules per application, which is still small
for one week of training data. The best results are obtained for IDEVAL PKT where the increase
is 11%. In the worst case (UNIV TCP) the number of rules increased by almost 90%. Considering
the large amount of data used during training (1-9 weeks) and the number of attributes involved,
the size of the rule set formed by LERAD-w is fairly small, generally less than 100 rules for one
week of network training data. Additionally, we could limit the rule set size by eliminating a rule
which has been violated many times and its weight falls below a threshold.

The time taken during test phase is also dependent on the rule set size. The more the rules, the
higher is the number of checks to be made for each test instance. Typically, the time taken should
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Table 7: Computational overhead: testing phase.
Data Data set size Total testing Testing rate

(no. of instances) time (seconds) (milliseconds/instance)
LERAD LERAD-w LERAD LERAD-w

IDEVAL TCP 178099 29.61 32.53 0.17 0.18
IDEVAL PKT 534763 19.11 22.83 0.04 0.04
UNIV TCP 143403 25.77 29.66 0.18 0.21
UNIV PKT 1310493 32.52 48.37 0.02 0.04
IDEVAL BSM 1889680 114.50 119.90 0.06 0.06

be low for online detection. The results obtained from our experiments are presented in Table 7.
It can be observed that the bigger rule sets for LERAD-w result in longer execution times, making
LERAD-w computationally more expensive than LERAD. But this overhead is only a fraction of
a millisecond per instance, which is still reasonable for an online system.

5 Concluding Remarks

LEarning Rules for Anomaly Detection (LERAD) is a learning algorithm that can characterize
normal behavior in logical rules by finding associations among nominal attributes. It forms a small
set of “easy to comprehend” rules that characterize the data. The algorithm is very efficient and
effective in capturing anomaly based attacks. In this paper we conjecture that LERAD eliminates
rules with possibly high coverage that can lead to missed detections. We propose keeping rules in
the rule set and associating a confidence value with each rule. Weights are representative of rule
confidence in our strategy (called LERAD-w) and updated incrementally. If a rule is satisfied by
an instance, it increases our confidence in the rule and hence the weight is increased. On the other
hand, weight is decreased upon rule violation symbolizing decrease in confidence. Our technique
adds new values to the consequent of the rule and recomputes the associated probability. We also
incorporate the weight into the anomaly scoring mechanism - each rule assigns an anomaly score
proportional to its weight, and all the scores are aggregated to compute the total anomaly score.

We evaluated LERAD and LERAD-w on various data sets. Empirical results show that LERAD-
w rules detects more attack-based anomalies than LERAD at less than 1% false alarm rates. For the
IDEVAL BSM data, LERAD-w detected upto 50% more attacks than LERAD. We also analysed
the new attack detections by LERAD-w, which are attributed to high anomaly scores resulting
from (a) violations of rules eliminated by LERAD during the validation phase (but retained in
LERAD-w); and (b) higher scores for existing rules due to our weight update function of Eq. 6.
Since rules eliminated by LERAD are retained in LERAD-w, it forms a larger rule set than LERAD.
But the size of the rule set is still fairly small - 179 rules for one week of IDEVAL BSM training
data comprising 11 different applications; and less than 100 rules per week of each network data.
The computational overhead of LERAD-w is minimal, taking only a fraction of a millisecond per
instance more than LERAD. We also studied the effect of weight update parameters. Results
indicate that a imposing severe penalty is better than a conservative one, whereas conservative
increase in weight generally detects more attacks.

For future work, we intend to limit the rule set size by eliminating a rule which has been violated
many times and its weight falls below a user-defined threshold. We are also exploring various linear
weight update functions other than the one used in Eq. 6.
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