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Abstract

With the increase in popularity of mobile devices, there
has been a significant rise in mobile related security prob-
lems. The biggest threat for a mobile subscriber is lost
or stolen device, which can lead to confidential data leak-
age, identity theft, misuse, impersonation, and high service
charges. A significant amount of time may elapse between
losing a device and disabling it through the service provider,
during which an unauthorized malicious user may gain ac-
cess and incur severe damage. We propose a probabilistic
approach to spatio-temporal anomaly detection and eval-
uate smoothing techniques for sparse data. Our approach
outperforms Markov Chain in experiments with a mobile
phone dataset comprising over 500,000 hours of real data.
Results indicate that our approach can effectively and ef-
ficiently detect device abnormalities for location, time, or
both.

1. Introduction

Mobile devices like cellular phones, smartphones and
Pocket PCs are rapidly gaining popularity worldwide, fea-
turing increased storage capacity, greater application sup-
port, and reduced price. Smartphones and PDAs are in-
creasingly used by employees to connect to corporate net-
works, retrieve and store important company data. Data
stored on a device is often not encrypted and no security
mechanism is adopted by the user. Losing a phone or hav-
ing it stolen is currently the biggest risk that a mobile con-
sumer faces [8, 16]. Over 55 million mobile phones were
estimated lost worldwide in 2006 alone and projections for
the total number over the subsequent five years exceed 500
million handsets [16]. A lost device may contain personal
and confidential company data that can be accessed by an
unauthorized user. The device can be misused, leading to
identity theft, data leakage (e.g. social security numbers
of employees or customers), impersonation, and high ser-

vice charges to the subscriber. Although one can notify the
loss to the network operator and have the device disabled
or data wiped out [1], a significant amount of time may
have elapsed. The unauthorized user may have already suc-
ceeded in his malicious intent, incurring significant losses
to the individual, the enterprise and potentially numerous
other people whose personal infomation was compromised.

A mobile phone is a wearable sensor that people gener-
ally carry with them all the time. With this assumption, we
propose a spatial temporal learning based anomaly detec-
tion approach to tackle the problem of lost or stolen mobile
device. Our approach uses the location of a subscriber at
different time intervals over a period of time and generates
a probabilistic user (subscriber) model. We assume that the
device is used by a single user, and will interchangeably
use the terms user and device. In this paper, we aim at de-
terming spatial temporal patterns for a given user. The sub-
scriber would generally be at the same location at a given
time. For example, an employee would typically be in his
office from 9 a.m. to 6 p.m. during the weekdays, and at
home most of the remaining time. Even the weekends could
generate potential patterns like weekly kids’ soccer games,
and grocery shopping. A learning algorithm can be used
to learn these contexts and then make predictions to deter-
mine any anomalies. A lost or stolen device could result in
contextual anomalies for the given model, either in terms of
location, or time, or both. The authors, to their best knowl-
edge, are unaware of any prior work to tackle the problem
of lost and stolen mobile phones in automated manner.

We present the problem as one dealing with sparse data,
which has been researched in the natural language process-
ing domain and applied to language modeling, text com-
pression and information retrieval problems. We evalu-
ate some smoothing methods on data set comprising over
500,000 hours of real data collected from 90 users. We
present STAD (Spatio Temporal Anomaly Detection) and
compare it with Markov Chains using multiple evaluation
criteria and parameter settings. Results show that our pro-
posed schemes are effective in capturing spatial temporal



anomalies introduced by an unauthorized user, and incur
minimal computational overhead for online usage. We also
demonstrate the effectiveness of feedback for model update
to take into account concept drift and restrict the generation
of false alarms.

This paper is organized as follows: Section 2 presents
existing literature from relevant domains. In Section 3 de-
scribes our proposed technique and discusses the smoothing
methods used. We present evaluation and comparison of the
various techniques on a real data set in Section 4. Param-
eter study and time requirements are also presented. Key
findings are compiled in Section 5.

2. Related Work

The relevant work is discussed under three categories:
context-aware mobile computing; anomaly detection sys-
tems; and smoothing techniques for sparse data.

Context-aware mobile computing has been an active
area of research in the last decade. Overview and earlier
work is reviewed in [9, 5]. Active badge system [35] used
infra-red based badges to determine the location of an em-
ployee and forward his call to the nearest telephone. A ra-
dio frequency system was proposed in [4] to detect user
location within a building. Signal strengths from differ-
ent base stations were triangulated to obtain that informa-
tion. Signal strength probability distributions and location
clustering for infrastructure LANs was presented in [38],
whereas a framework for plan recognition in an indoor RF-
based wireless network was proposed in [37]. Unsupervised
clustering and classification of contexts obtained from mul-
tiple sensors has been studied in [21, 12, 20], and fuzzy low
level contextual information was segmented to obtain high
level contexts in [17]. Most of context-aware research has
stressed on context extraction, clustering and learning. But
the discerned context has not been applied to securing the
devices themselves. This paper demonstrates use of contex-
tual information for fingerprinting mobile devices.

Anomaly detection research has been pursued to com-
plement signature-based intrusion detection systems (e.g.
anti-virus). Anomaly detectors applied to intrusion detec-
tion are known to detect novel attacks but generate false
alarms. Network-based systems monitor network protocol
headers and payload and can be specific to a protocol or
application [3, 23, 26]. Host-based systems model system
calls [18, 22], and have used representations such as neu-
ral networks [14] and finite state automata [33]. Combina-
tions of system features are proposed in [34]. Most of the
security-related anomaly detection research is focused on
wired networks and hosts, or specific to certain protocols
or applications, though a framework has been proposed to
detect routing anomalies in ad-hoc wireless networks [40].
Anomaly detection has also been used to detect outliers

in spatial data [2], where neighborhood relationships are
modeled and outliers are identified. Most recently, suspi-
cious moving objects have been detected as anomalies [24].
Though it involves route modeling, it deals with additional
attributes like speed and direction information generally not
available on mobile phones. This paper proposes contextual
information-based device profiling for anomaly detection.

Smoothing techniques have been applied to problems
arising due to data sparseness in speech recognition [29,
19], text compression [28, 36] and information retrieval
[31, 39]. They are essentially variance-reduction tech-
niques, where a small probability mass is subtracted from
total probability of seen events and assigned to novel (un-
seen) events. A review of various smoothing techniques
is presented in [6, 27]. Smoothing techniques can be
straightforward like additive smoothing, where a constant
frequency count is added to each observed event. It can also
involve discounting observed frequencies [30], distinct ob-
servation count [36], or counting observations of certain fre-
quencies [15, 19, 7]. This paper presents smoothing meth-
ods to detect spatial temporal anomalies for mobile devices.

3. Approach

This section introduces the framework for detecting ab-
normalities attributed to unauthorized users. We describe
how probabilities are learned and anomalies are scored. We
introduce the problem of data sparseness that motivates the
need for smoothing. We also describe a few smoothing
techniques in this section.

The scenario is represented in Fig. 1. For an authorized
user A, cell tower communicates with a mobile device and
captures its location. The information is sent to a central-
ized server, where a model is learned for the device loca-
tion over different time intervals, as explained in the next
section. The device may communicate with multiple cell
towers, but all contextual information is routed to the cen-
tralized server for model learning. Though fine grained lo-
cation information is known to the cell tower (for services
such as E911), we use cell ID for our experiments as that in-
formation is easy to extract. Although multiple cell IDs can
correspond to a single physical location, we argue that all
possible IDs can potentially be observed and learned over a
period of time. But cell ID data lacks the physical topology
and proximity of the actual locations. In Fig. 1, the model is
created for locations at time instances t1− t3. The learned
model is then used to maintain conformity for device (time
t4−t6 in the figure). Now consider the possibility of device
theft by unauthorized user U. Any subsequent usage (Fig. 1
time instance t6) by U would most likely be inconsistent
with the model in terms of location and time, hence raising
an anomaly flag. The device can then be locked by the net-
work operator using a PIN that can only be unlocked by the



Figure 1. Mobile Anomaly Detection: For au-
thorized user A, mobile data is used for con-
text learning over a period of time (t1 − t3).
Subsequent locations (at time instance t4 −
t6) are validated against the model to en-
sure conformance. An unauthorized user U
is likely to be inconsistent with the spatio-
temporal model for user A.

operator or the authentic user.

3.1. Naive Approach

We propose tracking the frequency of the mobile phone
at various locations within a fixed time interval. The fre-
quency is then normalized across all possible locations and
probability approximated at each of those locations during
the time period. The probability of a mobile phone m at
location l during time interval t is estimated by:

P t
m(l) =

freqt
m(l)∑

l

freqt
m(l)

(1)

P t
m is called the spatial probability distribution of m at

time t. To reduce the data size and complexity and ease
computation, we suggest using time intervals. For example,
an interval size (δ) of 10 minutes results in 144 intervals per
day (η). This creates a profile for a single day. Thus, for
any day of week d, a profile consists of η spatial probability
distributions (Eq. 1) denoted formally as

Profiled
m = (P d,1

m , P d,2
m , ..., P d,η

m ) (2)

where d ∈ {Sunday,Monday, Tuesday,Wednesday,
Thursday, Friday, Saturday}.

During the monitoring (test) phase, we use the learned
profile (spatial probability distributions) to estimate the

likelihood of each data record in the test set. To include
some state information of where the mobile phone was pre-
viously, we consider a time window W previous to the
current time instance to estimate the probability of cur-
rent location lc at current time instant tc. Time window
W is measured by number of minutes in this paper and
is a parameter to our algorithm. Let w be the number of
time instances (data records) in W (minutes). Let tc−w+1

to tc be the w instances in time window W . We denote
P d,W

m (lc−w+1, lc−w+2, ..., lc−1, lc) as P d,W
m (lW ), and ap-

proximate it using probability chain rule as:

P d,W
m (lW ) = P d,tc

m (lc|lc−1, ..., lc−w+1)×
P

d,tc−1
m (lc−1|lc−2, ..., lc−w+1)×
· · · × P

d,tc−w+2
m (lc−w+2|lc−w+1)×

P
d,tc−w+1
m (lc−w+1)

(3)
In the equation above, the probability of a sequence of states
is denoted as the product of probabilities of a state con-
ditioned upon the previous states in the sequence. Stor-
ing all such probability values imposes an overhead and
also increases the computational complexity. For simplic-
ity and because the independence assumption of the Naive
Bayes classifier generally seems to work well [10], we as-
sume independence between subsequent locations, resulting
in P d,tc

m (lc|lc−1, ..., lc−w+1) = P d,tc
m (lc). The likelihood of

mobile phone m over the time window W is thus approxi-
mated as the product of the marginal probabilities:

P d,W
m (lW ) =

c∏

i=c−w+1

P d,ti
m (li) (4)

To avoid the underflow in multiplication, we use log likeli-
hood instead:

log(P d,W
m (lW )) =

c∑

i=c−w+1

log(P d,ti
m (li)) (5)

For anomaly detection systems, an anomaly score denotes
the degree of abnormality for the test data instance. An
anomaly score can be calculated for m and location lc using
the negative log likelihood of aggregated spatial probability
distribution over a window W :

AnomalyScored,W
m (lW ) = −log(P d,W

m (lW ))

= −
c∑

i=c−w+1

log(P d,ti
m (li))

(6)

The lower the likelihood of a location given the current con-
text, the higher is the anomaly score.

The independence assumption of the Naive approach is
usually not valid, since to get to a specific location one typ-
ically traverses a fixed set of locations. The assumption is
relaxed with Markov Chains, described next.



3.2. Markov Chain

In Markov Chain, the current state depends only on the
previous state. This technique involves a probability transi-
tion matrix comprising of single step transition probabilities
for all observed states. The spatial probability distribution
of Eq. 1 is modified as

P t
m(lj |lk) = P t

m(lj ,lk)
P t

m(lk) = freqt
m(lj ,lk)

freqt
m(lk)

(7)

For the Markov Chain, P d,tc
m (lc|lc−1, ..., lc−w+1) =

P d,tc
m (lc|lc−1). The probability estimate for the sequence

of traversed states of Eq. 3 is now revised as

P d,W
m (lW ) = P d,tc

m (lc|lc−1)× P
d,tc−1
m (lc−1|lc−2)×

· · · × P
d,tc−w+2
m (lc−w+2|lc−w+1)×

P
d,tc−w+1
m (lc−w+1)

(8)
Log likelihood is used to prevent underflow and the modi-
fied anomaly score is the negative log likelihood of aggre-
gated spatial probability distribution:

AnomalyScored,W
m (lW ) = −log(P d,W

m (lW ))

= −logP
d,tc−w+1
m (lc−w+1)−

c∑

i=c−w+2

log(P d,ti
m (li|li−1))

(9)
The Naive approach in Section 3.1 can be considered as
zero-order Markov Chain, whereas this section describes
first-order Markov Chain. We limit ourselves to lower or-
der Markov Chains for ease of computation. Higher order
Markov Chains can also be considered with higher time and
space complexity.

Both the approaches discussed so far can flag valid but
low frequency events as anomalous, resulting in higher false
alarms. Next, we present STAD to alleviate false alarms due
to low probabilities.

3.3. STAD

In the naive and Markov Chain based approaches of Sec-
tions 3.1 and 3.2, probabilities of observed and novel
events contribute to the overall probability and anomaly
score. To reduce false alarms and increase detection rates,
we reason that observed events should have no contribu-
tion to the final anomaly score. Hence, we introduce STAD
(Spatial Temporal Anomaly Detection) that only consid-
ers novel events in calculating the anomaly score. STAD
ignores frequency for observed locations to reduce false
alarms. That is, no matter how frequent/likely an event has
been observed, it is considered normal and has no contri-
bution to the anomaly score. For example, an employee

heading to work uses an alternate route when there is traf-
fic congestion on the regular route. A low occurrence fre-
quency may still flag the event as anomalous using naive
and Markov Chain approaches, resulting in a false positive.
But it would be deemed normal in STAD.

For STADn (or nth order STAD), only smoothed prob-
ability for novel event P d,W

m (li|li−1...li−n) is estimated.
Smoothing methods and probability estimation formulae
are discussed in Section 3.4. We investigate zero and first
order STAD in this paper, called STAD0 and STAD1 re-
spectively. STAD0 maintains the subsequent location inde-
pendence assumption of Naive approach, whereas the as-
sumption is relaxed in STAD1 and the current state depends
on the previous state. In addition to reducing false alarms,
STAD ignores observed frequency counts to reduce the size
of the stored model. Since observed events have no con-
tribution to the anomaly score, frequency counts (or prob-
abilities) of observed events need not be stored. Further,
it improves the computational efficiency by avoiding addi-
tional calculations of anomaly score involving observed lo-
cation probabilities. STAD assigns negative logarithm of
the novel probability estimate as the anomaly score for the
current test instance. For STAD0, it is

Score0i =




−log(P d,ti

m (li)), if freqd,ti
m (li) = 0

0, otherwise
(10)

The anomaly score for lc is aggregated over a time window
W (lW ) of w instances to ignore spurious anomalies. For
STAD0, it is computed as:

AnomalyScored,W
m (lW ) =

c∑

i=c−w+1

Score0i (11)

For STAD1, which assumes that the current state is de-
pendent on the previous, the anomaly score for the current
test instance is calculated as:

Score1i =




−log(P d,ti

m (li|li−1)), if freqd,ti
m (li, li−1) = 0

0, otherwise
(12)

The anomaly score for lc over window W (lW ) is calculated
as:

AnomalyScored,W
m (lW ) = Score0c−w+1 +

c∑

i=c−w+2

Score1i

(13)
An alarm is generated on exceeding a threshold.

STAD uses the probability estimate of novel events to
score anomalies. Variance reduction techniques are re-
quired to compute the non-zero unobserved event probabil-
ity estimate, described next.



3.4. Smoothing Probability Estimates

In the event of an anomaly (i.e. a novel location), spa-
tial probability distribution underestimates the probability
of the new value by assigning it a value 0, resulting in an
undefined anomaly score (Eqs. 6, 9, 11, 13). This problem
of data sparseness is similar to the one arising in maximum
likelihood estimator of a language model in natural lan-
guage processing. Various smoothing techniques are used
to adjust the probability values such that no value has prob-
ability zero or one. We experimented with four smoothing
techniques that are simple to understand but inherently dif-
ferent in nature and rationale, and have been successfully
applied to a variety of problems. But our approach can be
easily extended to other smoothing methods as well.

3.4.1 Additional Notations

Let s be the number of times a device was present at a spe-
cific location l in a given time interval. Thus, s = freq(l).
We denote n as the total frequency count =

∑
l freq(l);

and r as the number of distinct locations for the device.
Furthermore, let fk be the number of distinct locations with
frequency count equal to k at a given context. It can be
observed that

∑
k fk = r and

∑
k kfk = n.

3.4.2 Good-Turing Estimate

The Good-Turing method [15] is a popular and widely ac-
cepted variance reduction and probability estimation tech-
nique. It also forms a basis for other methods, such as Katz
[19] and Church-Gale [7] smoothing. A simplified Good-
Turing approach is presented in [13]. The underlying idea
is that of curve fitting through seen value pairs (k, fk) us-
ing some function F , and subsequently using F (k) as a
smoothed value. The total probability mass associated with
novel values is f1

n .
For our study, we used the following approximation to

the Good-Turing estimate:

P (l) =





(1− f1
n ) s

n , if l is seen

f1
n , otherwise

(14)

Since we do not know apriori the total number of unseen
values, we assign the entire mass to the current novel lo-
cation. For the case when f1 = n, we used the fall-back
scheme presented in [36].

3.4.3 Witten-Bell Smoothing

Witten and Bell studied different schemes to deal with the
zero frequency problem in adaptive statistical coding, where
token probabilities are estimated in given context and used

for compression [36]. They found the following estimate
(due to [28]) to give the best results:

P (l) =





s
n+r , if l is seen

r
n+r , otherwise

(15)

This is referred to as Method C in the original paper
[36]. The rationale behind the above equation is to in-
crease the probability of novel events with the number
of distinct observations. For example, given two 10-
integer sequences S1 = 〈1, 0, 0, 0, 0, 1, 1, 0, 0, 0〉 and S2 =
〈1, 2, 1, 0, 5, 7,−8, 12, 0, 9〉, S2 is more likely to encounter
a novel subsequent value than S1, since there is more ran-
domness and variability in S2 than S1.

3.4.4 Absolute Discounting

Absolute discounting [30] involves deleted estimation, i.e.
reduction of frequency count for all seen events by a con-
stant, and assigning the aggregated mass uniformly to novel
events. Let the discount constant be denoted as D ∈ [0, 1].
We approximated the smoothed probability values as:

P (l) =





s−D
n , if l is seen

Dr
n , otherwise

(16)

The value for the discount parameter D is suggested as
f1

f1+2f2
in [30]. It is interesting to note that Eq. 16 is

a further smoothed version of Method B [P (seen) =
s−1
n ; P (novel) = r

n ] in [36], where D = 1.

3.4.5 Dirichlet Priors

Given a distribution P = {P1, P2, . . . , PN} such that∑
i Pi = 1, a Dirichlet distribution for P is Dir(α) =

Γ(
∑

i αi)∏
i Γ(αi)

∏
i Pαi−1

i , where Γ(x) denotes the gamma func-
tion and αi is the hyper-parameter, i.e. a parameter of prior.
The model is a multinomial distribution and the appropriate
value for αi (for a unigram model) is suggested as µPC(l),
where PC(l) is the probability of location l in a collection
C of contexts [25]. The Dirichlet smoothed model is thus
represented as

P (l) =
s + µPC(l)

n + µ
. (17)

The Laplace method is a special case with µ = 1.
For each of the equations above (Eqs. 14- 17), note that

the sum of all smoothed probability values (including novel
events) is unity.



Table 1. Confusion matrix in the context of
anomaly detection for mobile devices

Actual Prediction
Unauthorized user Authorized user

Unauthorized user True Positive False Negative
Authorized user False Positive True Negative

4 Empirical Evaluation

4.1 Experimental Data and Procedures

To evaluate and compare the smoothing methods, we
used over 500,000 hours of context data formerly studied
to better understand individual behavior and group patterns
[11]. The data was logged using the Context Phone frame-
work [32] and comprises of varied contexts including lo-
cation, time, and device proximity. Approximately 90 dif-
ferent users, ranging from freshmen to graduate students to
faculty members at a university, were the subjects in the ex-
periments.

For our experiments, we extracted the location and time
data - location corresponds to the cell id (for cellular net-
works), and timestamp was broken into day of the week and
time of the day features. Though multiple cell ids can corre-
spond to a single location, we assert that all of them can be
observed and learned by our model over time. Our anomaly
detector can also be used with location information of var-
ied granularity, such as GPS-based coordinates that boast
of an accuracy within 50 feet. A sampling rate of 10 sec-
onds/instance was used in our experiments.

To quantify the efficacy of the the smoothing algorithms,
we used location data for all devices. Disjoint training and
test sets were created for each user. Since we do not have
explicit labels for bad behavior, for each mobile device, we
pretend that the behavior of unauthorized users is similar to
the other mobile devices. That is, given a trained model for
a mobile device, test data from the remaining devices were
used to approximate behavior of unauthorized users. The
confusion matrix is presented in Table 1. A test data sample
from device B is validated against all models. Any alarm
against model A is a true positive and against model B is a
false alarm. No alarm against model B is a true negative,
but not flagging an anomaly against model A is considered
an undetected malicious attack on the device.

We compared the four smoothing methods using the
Naive approach. The best smoothing strategy was then used
to evaluate and compare Naive, Markov Chain, STAD0, and
STAD1. The discount parameter D in absolute discounting
(Eq. 16) is assigned the value f1

f1+2f2
, as suggested in [30].

For Dirichlet smoothing, parameter µ in Eq. 17 is set to 0.5

in the spirit of the widely accepted Jeffreys-Perk’s law (or
Expected Likelihood Estimation).

4.2. Evaluation Criteria

Computer security techniques are typically evaluated us-
ing a Receiver Operator Characteristic (ROC) curve. The
ROC curve plots the rate of correct anomalies detected (i.e.
different device) alongwith the false alarm (i.e. same de-
vice) rate. The area under the ROC curve (AUC) is also
calculated. A larger AUC value is desired as it is represen-
tative of the total percentage of true positives detected at the
cost of varied number of false alarms. Biometric systems
use another evaluation criterion called the equal error rate
(EER), which is the point at which the true negative rate
equals the true positive rate (i.e. the point where the ROC
curve intersects the line y = 1−x). A lower EER value im-
plies better performance, since it reflects how well a system
curtails false alarms as well missed detections. We com-
pute the equal error rates to compare the various smoothing
methods applied for anomaly detection. Apart from model
accuracy, it is also imperative for a security mechanism to
be computationally efficient. We compare the time require-
ments for model creation and validation.

Table 2. Area under ROC curve (AUC) for var-
ied δ values. Larger AUC value is better.

Smoothing AUC
Method

δ=10 min. δ=20 min. δ=30 min. δ=60 min.
Good- 0.766 0.786 0.798 0.814
Turing
Witten- 0.680 0.725 0.743 0.767
Bell
Absolute- 0.770 0.781 0.788 0.801
discounting
Dirichlet 0.769 0.784 0.801 0.823

Table 3. Equal Error Rate (EER) for varied δ
values. Smaller EER value is better.

Smoothing EER
Method

δ=10 min. δ=20 min. δ=30 min. δ=60 min.
Good- 0.289 0.268 0.258 0.241
Turing
Witten- 0.373 0.333 0.313 0.289
Bell
Absolute- 0.258 0.246 0.239 0.225
discounting
Dirichlet 0.247 0.236 0.217 0.203



4.3. Parameter Settings and Comparison of
Smoothing Methods

Time interval δ is a parameter (Section 3.1) common to
all smoothing methods for model creation, as explained in
Section 3. Coarse-grained values for δ reduce sparseness,
but tend to include multiple contexts. On the other hand,
fine-grained values for δ are focused on specific context but
exacerbate the issue of data sparseness. We experimented
with 4 different values for δ: 10, 20, 30 and 60 minutes.
Tables 2 and 3 list the AUC and EER values respectively
for the smoothing methods using different δ values. Results
show that performance improved with increase in the inter-
val size, irrespective of the technique. This suggests that
larger time intervals alleviate the problem data sparseness,
since more data is available to model. Inclusion of more
samples also improves the spatial probability distribution
for observed events. A small δ includes less data, result-
ing in inaccurate models and higher number of anomalies,
thereby increasing the number of false alarms as well. Also,
larger interval sizes accomodate spurious anomalies better
than small intervals. For example, an employee is usually
at work around 8:30 in the morning but could be late by
30 minutes due to a traffic jam. A small δ, say 10 or 20
minutes, will cause a false alarm but a larger interval size
might still accept it as a normal event. Thus, large δ values
perform better.

We also studied the effect of the time window parameter
W (Eq. 4) on the accuracy of smoothing methods. Large W
value would take longer to capture an anomaly but help re-
strain false alarm generation. Small W value, on the other
hand, is expected to identify the spatio-temporal anomaly
at an early stage thereby minimizing loss, but have higher
number of false positives. AUC and EER results for W
values ranging from 10-60 minutes are compiled in Ta-
ble 4. Results show that though AUC increases and EER
decreases with increase in W , the increase in performance
was not significant. Thus, small window size can be used
without loss in accuracy and emphasizes on the suitability
of the smoothing methods for online usage.

Amongst the four smoothing methods, Dirichlet smooth-
ing generally performs the best to detect anomalies, as seen
from Tables 2 and 3. But why did one smoothing method
perform better than the others? The anomaly score is high
if there is a novel event. The more the anomalous events
are aggregated, the higher the anomaly score. A statisti-
cal language model is considered better if it assigns a high
probability to words than another technique. But anomaly
detection is inherently different from language modeling as
aberrations with low probability need to be flagged. The
lower the probability, the more severe the alarm would be.
The best anomaly detector scores novel event the highest,
thus assigning it the lowest probability, as compared to an

Table 4. AUC and EER range for different win-
dow size (δ = 60 min.)

Smoothing Method AUC range EER range
W=10–60 min. W=10–60 min.

Good-Turing 0.801 – 0.814 0.252 – 0.241
Witten-Bell 0.754 – 0.767 0.299 – 0.289
Absolute discounting 0.792 – 0.801 0.233 – 0.225
Dirichlet 0.814 – 0.823 0.211 – 0.203

Table 5. Probability comparison for smooth-
ing methods for δ=60 min.

Smoothing Method Average Probability
Observed Novel

Good-Turing 0.141 0.025
Witten-Bell 0.138 0.047
Absolute discounting 0.144 0.013
Dirichlet 0.142 0.009

observed event. Probability comparison of smoothing meth-
ods is presented in Table 5. For the test set, the table lists
the average seen and unseen event probability values for
all smoothing techniques. The performance can largely be
attributed to the way the probability mass is allocated for
novel events (Eqs. 14- 17). Dirichlet smoothing uses hi-
erarchical modeling - in addition to the current context, it
also utilizes the knowledge from a collection of contexts.
This enables two pronged learning (from individual con-
text and context collection) and results in more accurate
modeling. Since Dirichlet smoothing assigns unseen events
with very low probability, it performs the best and suggests
more suitability for anomaly detection. Thus, we used it
to compare the four anomaly detectors for detecting spatio-
temporal anomalies for mobile devices, discussed next.

4.4. Comparison of anomaly detection tech-
niques

We evaluated and compared the four anomaly detectors –
Naive, Markov Chain, STAD0 and STAD1 as zero and first
order STAD respectively. Dirichlet smoothing was used
with parameters δ = 60 and W = 10 minutes. Accuracy was
measured in terms of AUC and EER, and time requirements
for training and testing were noted.

Accuracy Anomaly detection systems are prone to high
false alarm rates (FAR). Dealing with higher number of
false alarms can be overwhelming and frustrating for the
user. It is thus imperative for an anomaly detector to mini-
mize them. Thus, in addition to computing the AUC of the



Table 6. Area under ROC curve (AUC) upto
various false alarm rates (FAR).

Technique AUC
×10−5 ×10−3 ×10−1

FAR=0.001 FAR=0.01 FAR=0.1 FAR=1
Random 0.050 0.050 0.050 0.500
Naive 0.150 0.101 0.080 0.814
Markov Chain 0.200 0.046 0.230 0.857
STAD0 0.150 0.101 0.080 0.808
STAD1 0.200 0.052 0.280 0.862

Table 7. Equal Error Rate (EER) comparison.
Technique EER
Random Detector 0.500
Naive 0.211
Markov Chain 0.197
STAD0 0.209
STAD1 0.184

entire ROC curve (i.e. 100% FAR), we also compute the
area upto lower FAR - 0.1%, 1% and 10%.

Table 6 lists the AUC values for the anomaly detectors
upto various FAR, with the second row listing the constant
factor multiplied to AUC at the respective FAR. The EER
results are presented in Table 7. The random detector has
the same false alarm rate and true positive rate for any
threshold (x=y line for ROC). The AUC was highest for
STAD1 for all FAR except 1%, where Naive and STAD0
performed better. STAD1 also had the lowest EER, which
indicates fastest convergence. Both these tables suggest that
STAD1 anomaly detection technique generally performs the
best to detect the spatio-temporal anomalies. Comparing
the same order techniques against each other, Markov Chain
followed STAD1 closely but never outperforming it. Naive
approach and STAD0 had same AUC upto 0.1 FAR, though
Naive was slightly better on the complete ROC curve. But
at the same time, STAD0 had lower EER than Naive tech-
nique.

Time Requirements for Training and Testing For an
anomaly detection system to be effective, it should be able
to detect misuse in real-time. Training can be performed of-
fline, but testing needs to be performed online to minimize
loss. During training, STAD does not increment the fre-
quency counts, and only novel locations contribute to the
anomaly score during testing. So we expected STAD to
be faster as compared to the other techniques. For com-
pleteness, we computed time requirements for model cre-
ation (training) as well as model validation (testing) for the
four anomaly detection techniques. Experiments were per-

Table 8. Average training and testing rates
(microseconds/instance).

Technique Training Testing
Rate Rate

Naive 0.282 0.279
Markov Chain 0.469 0.415
STAD0 0.280 0.279
STAD1 0.450 0.414

Table 9. Comparison of no-update vs. model
update on false alarm. For random detector,
AUC = EER = 0.5.

Technique AUC EER
No-update Update No-update Update

Naive 0.814 0.924 0.211 0.156
Markov Chain 0.857 0.912 0.209 0.165
STAD0 0.808 0.946 0.197 0.092
STAD1 0.862 0.918 0.184 0.115

formed on a SUN Ultra 60 workstation with 450 MHz clock
speed and 512 MB RAM. The results are compiled in Table
8. As expected, STAD0 and STAD1 time requirements were
slightly better than Naive and Markov Chain approaches re-
spectively. Compared to STAD1, STAD0 was 38% faster in
training and 33% faster in testing, as only marginal proba-
bilities are involved. But all four approaches incur reason-
able computational overhead for an online system.

Model update using feedback The limitation of anomaly
detection systems is the generation of false alarms. In our
problem setting, it represents flagging a new location vis-
ited by an authorized user. For example, a researcher at-
tending a conference in a new city will constantly violate
the learned model, flooding the device with false alarms and
overwhelming the user. To suppress false alarms, the new
location information is fed back to the centralized server to
update the trained model for each erroneous alarm. We re-
peated the experiments and computed the AUC and EER
for ROC curves obtained for all techniques with model up-
date upon false alarm. Table 9 lists and compares the results
of the no-update techniques (Section 4.4) with the ones be-
ing updated. Results show a significant improvement in the
number of detections for model update in all four anomaly
detectors, indicating its effectiveness in tackling concept
drift and curtailing false alarms. Amongst the four tech-
niques, STAD0 performed the best with the highest AUC
and lowest EER for model update. STAD0 also had the
maximum improvement, with 17% AUC increase and EER
reduced by 53%.



4.5. Privacy Issues

As per our architecture, the models are created and
stored on a centralized server. It is thus imperative to dis-
cuss the privacy implications. The continuous monitoring
of user information may be deemed as unethical and breach
of privacy which every individual is entitled to. Currently,
not all mobile devices have high storage capabilities to store
data instances for training. But technology is progressing
fast with time and high storage devices do not seem a dis-
tant future. Our experiments were aimed at demonstrating
that device usage patterns can be modeled and detect unau-
thorized usage and also understand the smoothing variables
responsible for detecting anomalies. This knowledge can
be applied as appropriate with the advances in technology.
With sufficient device storage capacity, the data instances
and the spatial probability distribution models can be stored
locally on the device. Alternatively, incremental models can
be learned instead of batch training. The device can run the
anomaly detector without any information being sent off it.
On detecting any spatial temporal anomaly, it can activate a
self-lock mode that can only be unlocked by the authorized
user or the carrier.

5. Conclusions

We presented an automated technique to detect spa-
tial temporal anomalies for mobile devices to alleviate the
problem of lost and stolen devices. Our technique creates
stochastic user models and aggregates model violations to
flag alarms. We used probability smoothing methods that
have been successfully applied in language modeling for
speech recognition, data compression and information re-
trieval. We performed experiments on a real data set com-
prising over 500,000 hours of mobile data. We evaluated
four smoothing methods - Good-Turing, Witten-Bell, abso-
lute discounting and Dirichlet smoothing. Parameter study
suggested using larger time interval size (δ = 60 min.) for
better performance due to more accurate modeling (Sec-
tion 4.3). Low W values (= 10 min.) are effective in de-
tecting spatio-temporal anomalies without significant loss
in accuracy than higher values. Amongst the four smooth-
ing methods Dirichlet priors performed the best, with high-
est area under ROC curve (AUC) and lowest equal error rate
(EER) for varied δ values (Section 4.3). The reason for the
best performance of Dirichlet smoothing lies in the fact that
it assigns a lower probability to novel events as compared
to other methods.

We presented STAD in Section 3.3. We evaluated and
compared the zero and first order STAD (called STAD0
and STAD1 respectively) with Naive approach and Markov
Chain (Section 4.4). Results indicate that our technique was
effective in capturing contextual abnormalities due to an

unauthorized user, with STAD1 attaining the highest AUC
of 86.2%. STAD1 also demonstrated fastest convergence
with the lowest EER of 0.184. STAD reduces the storage
requirements of the trained models by ignoring observation
frequencies. This also enabled it to reduce the number of
false alarms. STAD has low time requirements for both
training (0.28-0.45 µsec./instance) and testing (0.28-0.41
µsec./instance), suggesting suitability for online usage. We
also demonstrated the effectiveness of feedback for model
update to take into account concept drift, thereby reducing
the generation of false alarms. AUC for STAD0 increased
to 94.6% and EER was 0.092.

The anomaly detector captures deviations from the spa-
tial probability distribution model. Since all aberrations do
not imply misuse, false alarms are generated. Similarly, it
is possible for misuse to go unnoticed. This is even more
relevant to our data set as the subjects are university stu-
dents and faculty, many of whom may go to same building
and demonstrate contextual similarity. Finer-grained loca-
tion data can be used (e.g. GPS) to tackle this issue. Al-
ternately, our anomaly detector can be used in a conglom-
erate of security mechanisms for a mobile device, includ-
ing signature-based systems like anti-virus and multi-modal
biometric systems such as fingerprint and voice recognition.
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